VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMMc.h@ 105221

Last change on this file since 105221 was 105183, checked in by vboxsync, 5 months ago

VMM/IEM: A few new IEM MC statements required for AVX/AVX2 floating point instruction emulations, bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 174.4 KB
Line 
1/* $Id: IEMMc.h 105183 2024-07-08 12:26:36Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - IEM_MC_XXX.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMMc_h
29#define VMM_INCLUDED_SRC_include_IEMMc_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @name "Microcode" macros.
36 *
37 * The idea is that we should be able to use the same code to interpret
38 * instructions as well as recompiler instructions. Thus this obfuscation.
39 *
40 * @{
41 */
42
43#define IEM_MC_BEGIN(a_fMcFlags, a_fCImplFlags) {
44#define IEM_MC_END() }
45
46/** Internal macro. */
47#define IEM_MC_RETURN_ON_FAILURE(a_Expr) \
48 do \
49 { \
50 VBOXSTRICTRC rcStrict2 = a_Expr; \
51 if (rcStrict2 == VINF_SUCCESS) \
52 { /* likely */ } \
53 else \
54 return rcStrict2; \
55 } while (0)
56
57
58/** Dummy MC that prevents native recompilation. */
59#define IEM_MC_NO_NATIVE_RECOMPILE() ((void)0)
60
61/** Advances RIP, finishes the instruction and returns.
62 * This may include raising debug exceptions and such. */
63#define IEM_MC_ADVANCE_RIP_AND_FINISH() return iemRegAddToRipAndFinishingClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
64/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
65#define IEM_MC_REL_JMP_S8_AND_FINISH(a_i8) \
66 return iemRegRipRelativeJumpS8AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i8), pVCpu->iem.s.enmEffOpSize)
67/** Sets RIP (may trigger \#GP), finishes the instruction and returns.
68 * @note only usable in 16-bit op size mode. */
69#define IEM_MC_REL_JMP_S16_AND_FINISH(a_i16) \
70 return iemRegRipRelativeJumpS16AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i16))
71/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
72#define IEM_MC_REL_JMP_S32_AND_FINISH(a_i32) \
73 return iemRegRipRelativeJumpS32AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i32), pVCpu->iem.s.enmEffOpSize)
74/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
75#define IEM_MC_SET_RIP_U16_AND_FINISH(a_u16NewIP) \
76 return iemRegRipJumpU16AndFinishClearingRF((pVCpu), (a_u16NewIP), IEM_GET_INSTR_LEN(pVCpu))
77/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
78#define IEM_MC_SET_RIP_U32_AND_FINISH(a_u32NewIP) \
79 return iemRegRipJumpU32AndFinishClearingRF((pVCpu), (a_u32NewIP), IEM_GET_INSTR_LEN(pVCpu))
80/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
81#define IEM_MC_SET_RIP_U64_AND_FINISH(a_u64NewIP) \
82 return iemRegRipJumpU64AndFinishClearingRF((pVCpu), (a_u64NewIP), IEM_GET_INSTR_LEN(pVCpu))
83
84/** Sets RIP (may trigger \#GP), finishes the instruction and returns.
85 * @note only usable in 16-bit op size mode. */
86#define IEM_MC_REL_CALL_S16_AND_FINISH(a_i16) \
87 return iemRegRipRelativeCallS16AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i16))
88/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
89#define IEM_MC_REL_CALL_S32_AND_FINISH(a_i32) \
90 return iemRegEip32RelativeCallS32AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i32))
91/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
92#define IEM_MC_REL_CALL_S64_AND_FINISH(a_i64) \
93 return iemRegRip64RelativeCallS64AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i64))
94/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
95#define IEM_MC_IND_CALL_U16_AND_FINISH(a_u16NewIP) \
96 return iemRegIp16IndirectCallU16AndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u16NewIP))
97/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
98#define IEM_MC_IND_CALL_U32_AND_FINISH(a_u32NewIP) \
99 return iemRegEip32IndirectCallU32AndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u32NewIP))
100/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
101#define IEM_MC_IND_CALL_U64_AND_FINISH(a_u64NewIP) \
102 return iemRegRip64IndirectCallU64AndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u64NewIP))
103
104
105/** Fetches the near return address from the stack, sets RIP and RSP (may trigger
106 * \#GP or \#SS), finishes the instruction and returns. */
107#define IEM_MC_RETN_AND_FINISH(a_u16Pop) \
108 return iemRegRipNearReturnAndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u16Pop), pVCpu->iem.s.enmEffOpSize)
109
110
111#define IEM_MC_RAISE_DIVIDE_ERROR() return iemRaiseDivideError(pVCpu)
112#define IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() \
113 do { \
114 if (RT_LIKELY(!(pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)))) \
115 { /* probable */ } \
116 else return iemRaiseDeviceNotAvailable(pVCpu); \
117 } while (0)
118#define IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() \
119 do { \
120 if (RT_LIKELY(!((pVCpu->cpum.GstCtx.cr0 & (X86_CR0_MP | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS)))) \
121 { /* probable */ } \
122 else return iemRaiseDeviceNotAvailable(pVCpu); \
123 } while (0)
124#define IEM_MC_MAYBE_RAISE_FPU_XCPT() \
125 do { \
126 if (RT_LIKELY(!(pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES))) \
127 { /* probable */ } \
128 else return iemRaiseMathFault(pVCpu); \
129 } while (0)
130#define IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() \
131 do { \
132 /* Since none of the bits we compare from XCR0, CR4 and CR0 overlap, it can \
133 be reduced to a single compare branch in the more probably code path. */ \
134 if (RT_LIKELY( ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) \
135 | (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) \
136 | (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)) \
137 == (XSAVE_C_YMM | XSAVE_C_SSE | X86_CR4_OSXSAVE))) \
138 { /* probable */ } \
139 else if ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) != (XSAVE_C_YMM | XSAVE_C_SSE) \
140 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)) \
141 return iemRaiseUndefinedOpcode(pVCpu); \
142 else \
143 return iemRaiseDeviceNotAvailable(pVCpu); \
144 } while (0)
145AssertCompile(!((XSAVE_C_YMM | XSAVE_C_SSE) & X86_CR4_OSXSAVE));
146AssertCompile(!((XSAVE_C_YMM | XSAVE_C_SSE) & X86_CR0_TS));
147AssertCompile(!(X86_CR4_OSXSAVE & X86_CR0_TS));
148#define IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() \
149 do { \
150 /* Since the CR4 and CR0 bits doesn't overlap, it can be reduced to a
151 single compare branch in the more probable code path. */ \
152 if (RT_LIKELY( ( (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
153 | (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR)) \
154 == X86_CR4_OSFXSR)) \
155 { /* likely */ } \
156 else if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
157 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR)) \
158 return iemRaiseUndefinedOpcode(pVCpu); \
159 else \
160 return iemRaiseDeviceNotAvailable(pVCpu); \
161 } while (0)
162AssertCompile(!((X86_CR0_EM | X86_CR0_TS) & X86_CR4_OSFXSR));
163#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT() \
164 do { \
165 /* Since the two CR0 bits doesn't overlap with FSW.ES, this can be reduced to a
166 single compare branch in the more probable code path. */ \
167 if (RT_LIKELY(!( (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
168 | (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES)))) \
169 { /* probable */ } \
170 else if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
171 return iemRaiseUndefinedOpcode(pVCpu); \
172 else if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
173 return iemRaiseDeviceNotAvailable(pVCpu); \
174 else \
175 return iemRaiseMathFault(pVCpu); \
176 } while (0)
177AssertCompile(!((X86_CR0_EM | X86_CR0_TS) & X86_FSW_ES));
178/** @todo recomp: this one is slightly problematic as the recompiler doesn't
179 * count the CPL into the TB key. However it is safe enough for now, as
180 * it calls iemRaiseGeneralProtectionFault0 directly so no calls will be
181 * emitted for it. */
182#define IEM_MC_RAISE_GP0_IF_CPL_NOT_ZERO() \
183 do { \
184 if (RT_LIKELY(IEM_GET_CPL(pVCpu) == 0)) { /* probable */ } \
185 else return iemRaiseGeneralProtectionFault0(pVCpu); \
186 } while (0)
187#define IEM_MC_RAISE_GP0_IF_EFF_ADDR_UNALIGNED(a_EffAddr, a_cbAlign) \
188 do { \
189 if (!((a_EffAddr) & ((a_cbAlign) - 1))) { /* likely */ } \
190 else return iemRaiseGeneralProtectionFault0(pVCpu); \
191 } while (0)
192#define IEM_MC_MAYBE_RAISE_FSGSBASE_XCPT() \
193 do { \
194 if (RT_LIKELY( ((pVCpu->cpum.GstCtx.cr4 & X86_CR4_FSGSBASE) | IEM_GET_CPU_MODE(pVCpu)) \
195 == (X86_CR4_FSGSBASE | IEMMODE_64BIT))) \
196 { /* probable */ } \
197 else return iemRaiseUndefinedOpcode(pVCpu); \
198 } while (0)
199AssertCompile(X86_CR4_FSGSBASE > UINT8_MAX);
200#define IEM_MC_MAYBE_RAISE_NON_CANONICAL_ADDR_GP0(a_u64Addr) \
201 do { \
202 if (RT_LIKELY(IEM_IS_CANONICAL(a_u64Addr))) { /* likely */ } \
203 else return iemRaiseGeneralProtectionFault0(pVCpu); \
204 } while (0)
205#define IEM_MC_MAYBE_RAISE_SSE_AVX_SIMD_FP_OR_UD_XCPT() \
206 do { \
207 if (RT_LIKELY(( ~((pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
208 & (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_FLAGS)) == 0)) \
209 { /* probable */ } \
210 else \
211 { \
212 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT) \
213 return iemRaiseSimdFpException(pVCpu); \
214 return iemRaiseUndefinedOpcode(pVCpu); \
215 } \
216 } while (0)
217
218
219#define IEM_MC_LOCAL(a_Type, a_Name) a_Type a_Name
220#define IEM_MC_LOCAL_ASSIGN(a_Type, a_Name, a_Value) a_Type a_Name = (a_Value)
221#define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) a_Type const a_Name = (a_Value)
222#define IEM_MC_NOREF(a_Name) RT_NOREF_PV(a_Name) /* NOP/liveness hack */
223#define IEM_MC_ARG(a_Type, a_Name, a_iArg) a_Type a_Name
224#define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) a_Type const a_Name = (a_Value)
225#define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_Local, a_iArg) a_Type const a_Name = &(a_Local)
226/** @note IEMAllInstPython.py duplicates the expansion. */
227#define IEM_MC_ARG_EFLAGS(a_Name, a_iArg) uint32_t const a_Name = pVCpu->cpum.GstCtx.eflags.u
228/** @note IEMAllInstPython.py duplicates the expansion. */
229#define IEM_MC_ARG_LOCAL_EFLAGS(a_pName, a_Name, a_iArg) \
230 uint32_t a_Name = pVCpu->cpum.GstCtx.eflags.u; \
231 uint32_t *a_pName = &a_Name
232/** @note IEMAllInstPython.py duplicates the expansion. */
233#define IEM_MC_LOCAL_EFLAGS(a_Name) uint32_t a_Name = pVCpu->cpum.GstCtx.eflags.u
234#define IEM_MC_COMMIT_EFLAGS(a_EFlags) \
235 do { pVCpu->cpum.GstCtx.eflags.u = (a_EFlags); Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_1); } while (0)
236#define IEM_MC_COMMIT_EFLAGS_EX(a_EFlags, a_fEflInput, a_fEflOutput) do { \
237 AssertMsg((pVCpu->cpum.GstCtx.eflags.u & ~(a_fEflOutput)) == ((a_EFlags) & ~(a_fEflOutput)), \
238 ("eflags.u=%#x (%#x) vs %s=%#x (%#x) - diff %#x (a_fEflOutput=%#x)\n", \
239 pVCpu->cpum.GstCtx.eflags.u & ~(a_fEflOutput), pVCpu->cpum.GstCtx.eflags.u, #a_EFlags, \
240 (a_EFlags) & ~(a_fEflOutput), (a_EFlags), \
241 (pVCpu->cpum.GstCtx.eflags.u & ~(a_fEflOutput)) ^ ((a_EFlags) & ~(a_fEflOutput)), a_fEflOutput)); \
242 pVCpu->cpum.GstCtx.eflags.u = (a_EFlags); \
243 Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_1); \
244 } while (0)
245#define IEM_MC_COMMIT_EFLAGS_OPT(a_EFlags) IEM_MC_COMMIT_EFLAGS(a_EFlags)
246#define IEM_MC_COMMIT_EFLAGS_OPT_EX(a_EFlags, a_fEflInput, a_fEflOutput) IEM_MC_COMMIT_EFLAGS_EX(a_EFlags, a_fEflInput, a_fEflOutput)
247
248/** ASSUMES the source variable not used after this statement. */
249#define IEM_MC_ASSIGN_TO_SMALLER(a_VarDst, a_VarSrcEol) (a_VarDst) = (a_VarSrcEol)
250
251#define IEM_MC_FETCH_GREG_U8(a_u8Dst, a_iGReg) (a_u8Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
252#define IEM_MC_FETCH_GREG_U8_ZX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
253#define IEM_MC_FETCH_GREG_U8_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
254#define IEM_MC_FETCH_GREG_U8_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
255#define IEM_MC_FETCH_GREG_U8_SX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
256#define IEM_MC_FETCH_GREG_U8_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
257#define IEM_MC_FETCH_GREG_U8_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
258#define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
259#define IEM_MC_FETCH_GREG_U16_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
260#define IEM_MC_FETCH_GREG_U16_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
261#define IEM_MC_FETCH_GREG_U16_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
262#define IEM_MC_FETCH_GREG_U16_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
263#define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
264#define IEM_MC_FETCH_GREG_U32_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
265#define IEM_MC_FETCH_GREG_U32_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int32_t)iemGRegFetchU32(pVCpu, (a_iGReg))
266#define IEM_MC_FETCH_GREG_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU64(pVCpu, (a_iGReg))
267#define IEM_MC_FETCH_GREG_U64_ZX_U64 IEM_MC_FETCH_GREG_U64
268#define IEM_MC_FETCH_GREG_PAIR_U32(a_u64Dst, a_iGRegLo, a_iGRegHi) do { \
269 (a_u64Dst).s.Lo = iemGRegFetchU32(pVCpu, (a_iGRegLo)); \
270 (a_u64Dst).s.Hi = iemGRegFetchU32(pVCpu, (a_iGRegHi)); \
271 } while(0)
272#define IEM_MC_FETCH_GREG_PAIR_U64(a_u128Dst, a_iGRegLo, a_iGRegHi) do { \
273 (a_u128Dst).s.Lo = iemGRegFetchU64(pVCpu, (a_iGRegLo)); \
274 (a_u128Dst).s.Hi = iemGRegFetchU64(pVCpu, (a_iGRegHi)); \
275 } while(0)
276#define IEM_MC_FETCH_SREG_U16(a_u16Dst, a_iSReg) do { \
277 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
278 (a_u16Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
279 } while (0)
280#define IEM_MC_FETCH_SREG_ZX_U32(a_u32Dst, a_iSReg) do { \
281 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
282 (a_u32Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
283 } while (0)
284#define IEM_MC_FETCH_SREG_ZX_U64(a_u64Dst, a_iSReg) do { \
285 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
286 (a_u64Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
287 } while (0)
288/** @todo IEM_MC_FETCH_SREG_BASE_U64 & IEM_MC_FETCH_SREG_BASE_U32 probably aren't worth it... */
289#define IEM_MC_FETCH_SREG_BASE_U64(a_u64Dst, a_iSReg) do { \
290 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
291 (a_u64Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
292 } while (0)
293#define IEM_MC_FETCH_SREG_BASE_U32(a_u32Dst, a_iSReg) do { \
294 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
295 (a_u32Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
296 } while (0)
297/** @note Not for IOPL or IF testing or modification. */
298#define IEM_MC_FETCH_EFLAGS(a_EFlags) (a_EFlags) = pVCpu->cpum.GstCtx.eflags.u
299#define IEM_MC_FETCH_EFLAGS_EX(a_EFlags, a_fEflInput, a_fEflOutput) IEM_MC_FETCH_EFLAGS(a_EFlags)
300#define IEM_MC_FETCH_EFLAGS_U8(a_EFlags) (a_EFlags) = (uint8_t)pVCpu->cpum.GstCtx.eflags.u /* (only LAHF) */
301#define IEM_MC_FETCH_FSW(a_u16Fsw) (a_u16Fsw) = pVCpu->cpum.GstCtx.XState.x87.FSW
302#define IEM_MC_FETCH_FCW(a_u16Fcw) (a_u16Fcw) = pVCpu->cpum.GstCtx.XState.x87.FCW
303
304#define IEM_MC_STORE_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) = (a_u8Value)
305#define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) = (a_u16Value)
306#define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (uint32_t)(a_u32Value) /* clear high bits. */
307#define IEM_MC_STORE_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (a_u64Value)
308#define IEM_MC_STORE_GREG_I64(a_iGReg, a_i64Value) *iemGRegRefI64(pVCpu, (a_iGReg)) = (a_i64Value)
309#define IEM_MC_STORE_GREG_U8_CONST IEM_MC_STORE_GREG_U8
310#define IEM_MC_STORE_GREG_U16_CONST IEM_MC_STORE_GREG_U16
311#define IEM_MC_STORE_GREG_U32_CONST IEM_MC_STORE_GREG_U32
312#define IEM_MC_STORE_GREG_U64_CONST IEM_MC_STORE_GREG_U64
313#define IEM_MC_STORE_GREG_PAIR_U32(a_iGRegLo, a_iGRegHi, a_u64Value) do { \
314 *iemGRegRefU64(pVCpu, (a_iGRegLo)) = (uint32_t)(a_u64Value).s.Lo; \
315 *iemGRegRefU64(pVCpu, (a_iGRegHi)) = (uint32_t)(a_u64Value).s.Hi; \
316 } while(0)
317#define IEM_MC_STORE_GREG_PAIR_U64(a_iGRegLo, a_iGRegHi, a_u128Value) do { \
318 *iemGRegRefU64(pVCpu, (a_iGRegLo)) = (uint64_t)(a_u128Value).s.Lo; \
319 *iemGRegRefU64(pVCpu, (a_iGRegHi)) = (uint64_t)(a_u128Value).s.Hi; \
320 } while(0)
321#define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) *iemGRegRefU64(pVCpu, (a_iGReg)) &= UINT32_MAX
322
323/** @todo IEM_MC_STORE_SREG_BASE_U64 & IEM_MC_STORE_SREG_BASE_U32 aren't worth it... */
324#define IEM_MC_STORE_SREG_BASE_U64(a_iSReg, a_u64Value) do { \
325 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
326 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (a_u64Value); \
327 } while (0)
328#define IEM_MC_STORE_SREG_BASE_U32(a_iSReg, a_u32Value) do { \
329 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
330 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (uint32_t)(a_u32Value); /* clear high bits. */ \
331 } while (0)
332#define IEM_MC_STORE_FPUREG_R80_SRC_REF(a_iSt, a_pr80Src) \
333 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80 = *(a_pr80Src); } while (0)
334
335
336#define IEM_MC_REF_GREG_U8(a_pu8Dst, a_iGReg) (a_pu8Dst) = iemGRegRefU8( pVCpu, (a_iGReg))
337#define IEM_MC_REF_GREG_U8_CONST(a_pu8Dst, a_iGReg) (a_pu8Dst) = (uint8_t const *)iemGRegRefU8( pVCpu, (a_iGReg))
338#define IEM_MC_REF_GREG_U16(a_pu16Dst, a_iGReg) (a_pu16Dst) = iemGRegRefU16(pVCpu, (a_iGReg))
339#define IEM_MC_REF_GREG_U16_CONST(a_pu16Dst, a_iGReg) (a_pu16Dst) = (uint16_t const *)iemGRegRefU16(pVCpu, (a_iGReg))
340/** @todo User of IEM_MC_REF_GREG_U32 needs to clear the high bits on commit.
341 * Use IEM_MC_CLEAR_HIGH_GREG_U64! */
342#define IEM_MC_REF_GREG_U32(a_pu32Dst, a_iGReg) (a_pu32Dst) = iemGRegRefU32(pVCpu, (a_iGReg))
343#define IEM_MC_REF_GREG_U32_CONST(a_pu32Dst, a_iGReg) (a_pu32Dst) = (uint32_t const *)iemGRegRefU32(pVCpu, (a_iGReg))
344#define IEM_MC_REF_GREG_I32(a_pi32Dst, a_iGReg) (a_pi32Dst) = (int32_t *)iemGRegRefU32(pVCpu, (a_iGReg))
345#define IEM_MC_REF_GREG_I32_CONST(a_pi32Dst, a_iGReg) (a_pi32Dst) = (int32_t const *)iemGRegRefU32(pVCpu, (a_iGReg))
346#define IEM_MC_REF_GREG_U64(a_pu64Dst, a_iGReg) (a_pu64Dst) = iemGRegRefU64(pVCpu, (a_iGReg))
347#define IEM_MC_REF_GREG_U64_CONST(a_pu64Dst, a_iGReg) (a_pu64Dst) = (uint64_t const *)iemGRegRefU64(pVCpu, (a_iGReg))
348#define IEM_MC_REF_GREG_I64(a_pi64Dst, a_iGReg) (a_pi64Dst) = (int64_t *)iemGRegRefU64(pVCpu, (a_iGReg))
349#define IEM_MC_REF_GREG_I64_CONST(a_pi64Dst, a_iGReg) (a_pi64Dst) = (int64_t const *)iemGRegRefU64(pVCpu, (a_iGReg))
350/** @note Not for IOPL or IF testing or modification.
351 * @note Must preserve any undefined bits, see CPUMX86EFLAGS! */
352#define IEM_MC_REF_EFLAGS(a_pEFlags) (a_pEFlags) = &pVCpu->cpum.GstCtx.eflags.uBoth
353#define IEM_MC_REF_EFLAGS_EX(a_pEFlags, a_fEflInput, a_fEflOutput) IEM_MC_REF_EFLAGS(a_pEFlags)
354
355#define IEM_MC_ADD_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) += (a_u16Value)
356#define IEM_MC_ADD_GREG_U32(a_iGReg, a_u32Value) \
357 do { \
358 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
359 *pu32Reg += (a_u32Value); \
360 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
361 } while (0)
362#define IEM_MC_ADD_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) += (a_u64Value)
363
364#define IEM_MC_SUB_GREG_U16(a_iGReg, a_u8Const) *iemGRegRefU16(pVCpu, (a_iGReg)) -= (a_u8Const)
365#define IEM_MC_SUB_GREG_U32(a_iGReg, a_u8Const) \
366 do { \
367 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
368 *pu32Reg -= (a_u8Const); \
369 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
370 } while (0)
371#define IEM_MC_SUB_GREG_U64(a_iGReg, a_u8Const) *iemGRegRefU64(pVCpu, (a_iGReg)) -= (a_u8Const)
372#define IEM_MC_SUB_LOCAL_U16(a_u16Value, a_u16Const) do { (a_u16Value) -= a_u16Const; } while (0)
373
374#define IEM_MC_ADD_GREG_U8_TO_LOCAL(a_u8Value, a_iGReg) do { (a_u8Value) += iemGRegFetchU8( pVCpu, (a_iGReg)); } while (0)
375#define IEM_MC_ADD_GREG_U16_TO_LOCAL(a_u16Value, a_iGReg) do { (a_u16Value) += iemGRegFetchU16(pVCpu, (a_iGReg)); } while (0)
376#define IEM_MC_ADD_GREG_U32_TO_LOCAL(a_u32Value, a_iGReg) do { (a_u32Value) += iemGRegFetchU32(pVCpu, (a_iGReg)); } while (0)
377#define IEM_MC_ADD_GREG_U64_TO_LOCAL(a_u64Value, a_iGReg) do { (a_u64Value) += iemGRegFetchU64(pVCpu, (a_iGReg)); } while (0)
378#define IEM_MC_ADD_LOCAL_S16_TO_EFF_ADDR(a_EffAddr, a_i16) do { (a_EffAddr) += (a_i16); } while (0)
379#define IEM_MC_ADD_LOCAL_S32_TO_EFF_ADDR(a_EffAddr, a_i32) do { (a_EffAddr) += (a_i32); } while (0)
380#define IEM_MC_ADD_LOCAL_S64_TO_EFF_ADDR(a_EffAddr, a_i64) do { (a_EffAddr) += (a_i64); } while (0)
381
382#define IEM_MC_AND_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) &= (a_u8Mask); } while (0)
383#define IEM_MC_AND_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) &= (a_u16Mask); } while (0)
384#define IEM_MC_AND_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
385#define IEM_MC_AND_LOCAL_U64(a_u64Local, a_u64Mask) do { (a_u64Local) &= (a_u64Mask); } while (0)
386
387#define IEM_MC_AND_ARG_U16(a_u16Arg, a_u16Mask) do { (a_u16Arg) &= (a_u16Mask); } while (0)
388#define IEM_MC_AND_ARG_U32(a_u32Arg, a_u32Mask) do { (a_u32Arg) &= (a_u32Mask); } while (0)
389#define IEM_MC_AND_ARG_U64(a_u64Arg, a_u64Mask) do { (a_u64Arg) &= (a_u64Mask); } while (0)
390
391#define IEM_MC_OR_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) |= (a_u8Mask); } while (0)
392#define IEM_MC_OR_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) |= (a_u16Mask); } while (0)
393#define IEM_MC_OR_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
394
395#define IEM_MC_SAR_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) >>= (a_cShift); } while (0)
396#define IEM_MC_SAR_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) >>= (a_cShift); } while (0)
397#define IEM_MC_SAR_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) >>= (a_cShift); } while (0)
398
399#define IEM_MC_SHR_LOCAL_U8(a_u8Local, a_cShift) do { (a_u8Local) >>= (a_cShift); } while (0)
400
401#define IEM_MC_SHL_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) <<= (a_cShift); } while (0)
402#define IEM_MC_SHL_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) <<= (a_cShift); } while (0)
403#define IEM_MC_SHL_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) <<= (a_cShift); } while (0)
404
405#define IEM_MC_AND_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
406
407#define IEM_MC_OR_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
408
409#define IEM_MC_AND_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) &= (a_u8Value)
410#define IEM_MC_AND_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) &= (a_u16Value)
411#define IEM_MC_AND_GREG_U32(a_iGReg, a_u32Value) \
412 do { \
413 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
414 *pu32Reg &= (a_u32Value); \
415 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
416 } while (0)
417#define IEM_MC_AND_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) &= (a_u64Value)
418
419#define IEM_MC_OR_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) |= (a_u8Value)
420#define IEM_MC_OR_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) |= (a_u16Value)
421#define IEM_MC_OR_GREG_U32(a_iGReg, a_u32Value) \
422 do { \
423 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
424 *pu32Reg |= (a_u32Value); \
425 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
426 } while (0)
427#define IEM_MC_OR_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) |= (a_u64Value)
428
429#define IEM_MC_BSWAP_LOCAL_U16(a_u16Local) (a_u16Local) = RT_BSWAP_U16((a_u16Local));
430#define IEM_MC_BSWAP_LOCAL_U32(a_u32Local) (a_u32Local) = RT_BSWAP_U32((a_u32Local));
431#define IEM_MC_BSWAP_LOCAL_U64(a_u64Local) (a_u64Local) = RT_BSWAP_U64((a_u64Local));
432
433/** @note Not for IOPL or IF modification. */
434#define IEM_MC_SET_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u |= (a_fBit); } while (0)
435/** @note Not for IOPL or IF modification. */
436#define IEM_MC_CLEAR_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u &= ~(a_fBit); } while (0)
437/** @note Not for IOPL or IF modification. */
438#define IEM_MC_FLIP_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u ^= (a_fBit); } while (0)
439
440#define IEM_MC_CLEAR_FSW_EX() do { pVCpu->cpum.GstCtx.XState.x87.FSW &= X86_FSW_C_MASK | X86_FSW_TOP_MASK; } while (0)
441
442/** Switches the FPU state to MMX mode (FSW.TOS=0, FTW=0) if necessary. */
443#define IEM_MC_FPU_TO_MMX_MODE() do { \
444 iemFpuRotateStackSetTop(&pVCpu->cpum.GstCtx.XState.x87, 0); \
445 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
446 pVCpu->cpum.GstCtx.XState.x87.FTW = 0xff; \
447 } while (0)
448
449/** Switches the FPU state from MMX mode (FSW.TOS=0, FTW=0xffff). */
450#define IEM_MC_FPU_FROM_MMX_MODE() do { \
451 iemFpuRotateStackSetTop(&pVCpu->cpum.GstCtx.XState.x87, 0); \
452 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
453 pVCpu->cpum.GstCtx.XState.x87.FTW = 0; \
454 } while (0)
455
456#define IEM_MC_FETCH_MREG_U64(a_u64Value, a_iMReg) \
457 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx; } while (0)
458#define IEM_MC_FETCH_MREG_U32(a_u32Value, a_iMReg, a_iDWord) \
459 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[a_iDWord]; } while (0)
460#define IEM_MC_FETCH_MREG_U16(a_u16Value, a_iMReg, a_iWord) \
461 do { (a_u16Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au16[a_iWord]; } while (0)
462#define IEM_MC_FETCH_MREG_U8(a_u8Value, a_iMReg, a_iByte) \
463 do { (a_u8Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au8[a_iByte]; } while (0)
464#define IEM_MC_STORE_MREG_U64(a_iMReg, a_u64Value) \
465 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (a_u64Value); \
466 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
467 } while (0)
468#define IEM_MC_STORE_MREG_U32(a_iMReg, a_iDword, a_u32Value) \
469 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[(a_iDword)] = (a_u32Value); \
470 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
471 } while (0)
472#define IEM_MC_STORE_MREG_U16(a_iMReg, a_iWord, a_u16Value) \
473 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au16[(a_iWord)] = (a_u16Value); \
474 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
475 } while (0)
476#define IEM_MC_STORE_MREG_U8(a_iMReg, a_iByte, a_u8Value) \
477 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au8[(a_iByte)] = (a_u8Value); \
478 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
479 } while (0)
480#define IEM_MC_STORE_MREG_U32_ZX_U64(a_iMReg, a_u32Value) \
481 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (uint32_t)(a_u32Value); \
482 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
483 } while (0)
484#define IEM_MC_REF_MREG_U64(a_pu64Dst, a_iMReg) /** @todo need to set high word to 0xffff on commit (see IEM_MC_STORE_MREG_U64) */ \
485 (a_pu64Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
486#define IEM_MC_REF_MREG_U64_CONST(a_pu64Dst, a_iMReg) \
487 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
488#define IEM_MC_REF_MREG_U32_CONST(a_pu32Dst, a_iMReg) \
489 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
490#define IEM_MC_MODIFIED_MREG(a_iMReg) \
491 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; } while (0)
492#define IEM_MC_MODIFIED_MREG_BY_REF(a_pu64Dst) \
493 do { ((uint32_t *)(a_pu64Dst))[2] = 0xffff; } while (0)
494
495#define IEM_MC_CLEAR_XREG_U32_MASK(a_iXReg, a_bMask) \
496 do { if ((a_bMask) & (1 << 0)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0] = 0; \
497 if ((a_bMask) & (1 << 1)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[1] = 0; \
498 if ((a_bMask) & (1 << 2)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[2] = 0; \
499 if ((a_bMask) & (1 << 3)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[3] = 0; \
500 } while (0)
501#define IEM_MC_FETCH_XREG_U128(a_u128Value, a_iXReg) \
502 do { (a_u128Value).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
503 (a_u128Value).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
504 } while (0)
505#define IEM_MC_FETCH_XREG_XMM(a_XmmValue, a_iXReg) \
506 do { (a_XmmValue).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
507 (a_XmmValue).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
508 } while (0)
509#define IEM_MC_FETCH_XREG_U64(a_u64Value, a_iXReg, a_iQWord) \
510 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQWord)]; } while (0)
511#define IEM_MC_FETCH_XREG_R64(a_r64Value, a_iXReg, a_iQWord) \
512 do { (a_r64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[(a_iQWord)]; } while (0)
513#define IEM_MC_FETCH_XREG_U32(a_u32Value, a_iXReg, a_iDWord) \
514 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDWord)]; } while (0)
515#define IEM_MC_FETCH_XREG_R32(a_r32Value, a_iXReg, a_iDWord) \
516 do { (a_r32Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[(a_iDWord)]; } while (0)
517#define IEM_MC_FETCH_XREG_U16(a_u16Value, a_iXReg, a_iWord) \
518 do { (a_u16Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au16[(a_iWord)]; } while (0)
519#define IEM_MC_FETCH_XREG_U8( a_u8Value, a_iXReg, a_iByte) \
520 do { (a_u8Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au8[(a_iByte)]; } while (0)
521#define IEM_MC_FETCH_XREG_PAIR_U128(a_Dst, a_iXReg1, a_iXReg2) \
522 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
523 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
524 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
525 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
526 } while (0)
527#define IEM_MC_FETCH_XREG_PAIR_XMM(a_Dst, a_iXReg1, a_iXReg2) \
528 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
529 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
530 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
531 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
532 } while (0)
533#define IEM_MC_FETCH_XREG_PAIR_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_iXReg2) \
534 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
535 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
536 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
537 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
538 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
539 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
540 } while (0)
541#define IEM_MC_FETCH_XREG_PAIR_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_iXReg2) \
542 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
543 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
544 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
545 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
546 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
547 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
548 } while (0)
549#define IEM_MC_STORE_XREG_U128(a_iXReg, a_u128Value) \
550 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u128Value).au64[0]; \
551 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u128Value).au64[1]; \
552 } while (0)
553#define IEM_MC_STORE_XREG_XMM(a_iXReg, a_XmmValue) \
554 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_XmmValue).au64[0]; \
555 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_XmmValue).au64[1]; \
556 } while (0)
557#define IEM_MC_STORE_XREG_XMM_U32(a_iXReg, a_iDword, a_XmmValue) \
558 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDword)] = (a_XmmValue).au32[(a_iDword)]; } while (0)
559#define IEM_MC_STORE_XREG_XMM_U64(a_iXReg, a_iQword, a_XmmValue) \
560 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQword)] = (a_XmmValue).au64[(a_iQword)]; } while (0)
561#define IEM_MC_STORE_XREG_U64(a_iXReg, a_iQword, a_u64Value) \
562 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQword)] = (a_u64Value); } while (0)
563#define IEM_MC_STORE_XREG_U32(a_iXReg, a_iDword, a_u32Value) \
564 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDword)] = (a_u32Value); } while (0)
565#define IEM_MC_STORE_XREG_U16(a_iXReg, a_iWord, a_u16Value) \
566 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au16[(a_iWord)] = (a_u16Value); } while (0)
567#define IEM_MC_STORE_XREG_U8(a_iXReg, a_iByte, a_u8Value) \
568 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au8[(a_iByte)] = (a_u8Value); } while (0)
569
570#define IEM_MC_STORE_XREG_U64_ZX_U128(a_iXReg, a_u64Value) \
571 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); \
572 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
573 } while (0)
574
575#define IEM_MC_STORE_XREG_U32_U128(a_iXReg, a_iDwDst, a_u128Value, a_iDwSrc) \
576 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDwDst)] = (a_u128Value).au32[(a_iDwSrc)]; } while (0)
577#define IEM_MC_STORE_XREG_R32(a_iXReg, a_r32Value) \
578 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0] = (a_r32Value); } while (0)
579#define IEM_MC_STORE_XREG_R64(a_iXReg, a_r64Value) \
580 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0] = (a_r64Value); } while (0)
581#define IEM_MC_STORE_XREG_U32_ZX_U128(a_iXReg, a_u32Value) \
582 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (uint32_t)(a_u32Value); \
583 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
584 } while (0)
585
586#define IEM_MC_BROADCAST_XREG_U8_ZX_VLMAX(a_iXRegDst, a_u8Src) \
587 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
588 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[0] = (a_u8Src); \
589 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[1] = (a_u8Src); \
590 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[2] = (a_u8Src); \
591 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[3] = (a_u8Src); \
592 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[4] = (a_u8Src); \
593 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[5] = (a_u8Src); \
594 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[6] = (a_u8Src); \
595 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[7] = (a_u8Src); \
596 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[8] = (a_u8Src); \
597 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[9] = (a_u8Src); \
598 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[10] = (a_u8Src); \
599 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[11] = (a_u8Src); \
600 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[12] = (a_u8Src); \
601 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[13] = (a_u8Src); \
602 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[14] = (a_u8Src); \
603 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[15] = (a_u8Src); \
604 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
605 } while (0)
606#define IEM_MC_BROADCAST_XREG_U16_ZX_VLMAX(a_iXRegDst, a_u16Src) \
607 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
608 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[0] = (a_u16Src); \
609 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[1] = (a_u16Src); \
610 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[2] = (a_u16Src); \
611 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[3] = (a_u16Src); \
612 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[4] = (a_u16Src); \
613 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[5] = (a_u16Src); \
614 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[6] = (a_u16Src); \
615 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[7] = (a_u16Src); \
616 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
617 } while (0)
618#define IEM_MC_BROADCAST_XREG_U32_ZX_VLMAX(a_iXRegDst, a_u32Src) \
619 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
620 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[0] = (a_u32Src); \
621 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[1] = (a_u32Src); \
622 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[2] = (a_u32Src); \
623 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[3] = (a_u32Src); \
624 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
625 } while (0)
626#define IEM_MC_BROADCAST_XREG_U64_ZX_VLMAX(a_iXRegDst, a_u64Src) \
627 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
628 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au64[0] = (a_u64Src); \
629 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au64[1] = (a_u64Src); \
630 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
631 } while (0)
632
633#define IEM_MC_REF_XREG_U128(a_pu128Dst, a_iXReg) \
634 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
635#define IEM_MC_REF_XREG_XMM(a_pXmmDst, a_iXReg) \
636 (a_pXmmDst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)])
637#define IEM_MC_REF_XREG_U128_CONST(a_pu128Dst, a_iXReg) \
638 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
639#define IEM_MC_REF_XREG_XMM_CONST(a_pXmmDst, a_iXReg) \
640 (a_pXmmDst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)])
641#define IEM_MC_REF_XREG_U32_CONST(a_pu32Dst, a_iXReg) \
642 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0])
643#define IEM_MC_REF_XREG_U64_CONST(a_pu64Dst, a_iXReg) \
644 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0])
645#define IEM_MC_REF_XREG_R32_CONST(a_pr32Dst, a_iXReg) \
646 (a_pr32Dst) = ((RTFLOAT32U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0])
647#define IEM_MC_REF_XREG_R64_CONST(a_pr64Dst, a_iXReg) \
648 (a_pr64Dst) = ((RTFLOAT64U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0])
649#define IEM_MC_COPY_XREG_U128(a_iXRegDst, a_iXRegSrc) \
650 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[0] \
651 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[0]; \
652 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[1] \
653 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[1]; \
654 } while (0)
655
656#define IEM_MC_FETCH_YREG_U32(a_u32Dst, a_iYRegSrc) \
657 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
658 (a_u32Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au32[0]; \
659 } while (0)
660#define IEM_MC_FETCH_YREG_U64(a_u64Dst, a_iYRegSrc, a_iQWord) \
661 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
662 if ((a_iQWord) < 2) \
663 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[(a_iQWord)]; \
664 else \
665 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[(a_iQWord) - 2]; \
666 } while (0)
667#define IEM_MC_FETCH_YREG_U128(a_u128Dst, a_iYRegSrc, a_iDQword) \
668 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
669 if ((a_iDQword) == 0) \
670 { \
671 (a_u128Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegSrcTmp)].au64[0]; \
672 (a_u128Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegSrcTmp)].au64[1]; \
673 } \
674 else \
675 { \
676 (a_u128Dst).au64[0] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegSrcTmp)].au64[0]; \
677 (a_u128Dst).au64[1] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegSrcTmp)].au64[1]; \
678 } \
679 } while (0)
680#define IEM_MC_FETCH_YREG_U256(a_u256Dst, a_iYRegSrc) \
681 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
682 (a_u256Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
683 (a_u256Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
684 (a_u256Dst).au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
685 (a_u256Dst).au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
686 } while (0)
687#define IEM_MC_FETCH_YREG_YMM(a_uYmmDst, a_iYRegSrc) \
688 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
689 (a_uYmmDst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
690 (a_uYmmDst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
691 (a_uYmmDst).au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
692 (a_uYmmDst).au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
693 } while (0)
694
695#define IEM_MC_STORE_YREG_U128(a_iYRegDst, a_iDQword, a_u128Value) \
696 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
697 if ((a_iDQword) == 0) \
698 { \
699 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[0] = (a_u128Value).au64[0]; \
700 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[1] = (a_u128Value).au64[1]; \
701 } \
702 else \
703 { \
704 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[0] = (a_u128Value).au64[0]; \
705 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[1] = (a_u128Value).au64[1]; \
706 } \
707 } while (0)
708
709#define IEM_MC_INT_CLEAR_ZMM_256_UP(a_iXRegDst) do { /* For AVX512 and AVX1024 support. */ } while (0)
710#define IEM_MC_STORE_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
711 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
712 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
713 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = 0; \
714 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
715 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
716 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
717 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
718 } while (0)
719#define IEM_MC_STORE_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
720 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
721 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
722 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
723 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
724 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
725 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
726 } while (0)
727#define IEM_MC_STORE_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
728 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
729 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
730 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
731 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
732 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
733 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
734 } while (0)
735#define IEM_MC_STORE_YREG_U256_ZX_VLMAX(a_iYRegDst, a_u256Src) \
736 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
737 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u256Src).au64[0]; \
738 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u256Src).au64[1]; \
739 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u256Src).au64[2]; \
740 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u256Src).au64[3]; \
741 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
742 } while (0)
743#define IEM_MC_STORE_YREG_YMM_ZX_VLMAX(a_iYRegDst, a_uYmmSrc) \
744 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
745 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_uYmmSrc).au64[0]; \
746 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_uYmmSrc).au64[1]; \
747 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_uYmmSrc).au64[2]; \
748 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_uYmmSrc).au64[3]; \
749 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
750 } while (0)
751#define IEM_MC_STORE_YREG_U32_U256(a_iYRegDst, a_iDwDst, a_u256Value, a_iDwSrc) \
752 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
753 if ((a_iDwDst) < 4) \
754 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au32[(a_iDwDst)] = (a_u256Value).au32[(a_iDwSrc)]; \
755 else \
756 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au32[(a_iDwDst) - 4] = (a_u256Value).au32[(a_iDwSrc)]; \
757 } while (0)
758#define IEM_MC_STORE_YREG_U64_U256(a_iYRegDst, a_iQwDst, a_u256Value, a_iQwSrc) \
759 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
760 if ((a_iQwDst) < 2) \
761 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[(a_iQwDst)] = (a_u256Value).au64[(a_iQwSrc)]; \
762 else \
763 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[(a_iQwDst) - 2] = (a_u256Value).au64[(a_iQwSrc)]; \
764 } while (0)
765#define IEM_MC_STORE_YREG_U64(a_iYRegDst, a_iQword, a_u64Value) \
766 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
767 if ((a_iQword) < 2) \
768 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[(a_iQword)] = (a_u64Value); \
769 else \
770 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[(a_iQword) - 2] = (a_u64Value); \
771 } while (0)
772
773#define IEM_MC_BROADCAST_YREG_U8_ZX_VLMAX(a_iYRegDst, a_u8Src) \
774 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
775 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[0] = (a_u8Src); \
776 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[1] = (a_u8Src); \
777 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[2] = (a_u8Src); \
778 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[3] = (a_u8Src); \
779 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[4] = (a_u8Src); \
780 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[5] = (a_u8Src); \
781 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[6] = (a_u8Src); \
782 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[7] = (a_u8Src); \
783 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[8] = (a_u8Src); \
784 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[9] = (a_u8Src); \
785 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[10] = (a_u8Src); \
786 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[11] = (a_u8Src); \
787 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[12] = (a_u8Src); \
788 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[13] = (a_u8Src); \
789 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[14] = (a_u8Src); \
790 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[15] = (a_u8Src); \
791 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[0] = (a_u8Src); \
792 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[1] = (a_u8Src); \
793 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[2] = (a_u8Src); \
794 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[3] = (a_u8Src); \
795 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[4] = (a_u8Src); \
796 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[5] = (a_u8Src); \
797 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[6] = (a_u8Src); \
798 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[7] = (a_u8Src); \
799 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[8] = (a_u8Src); \
800 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[9] = (a_u8Src); \
801 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[10] = (a_u8Src); \
802 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[11] = (a_u8Src); \
803 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[12] = (a_u8Src); \
804 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[13] = (a_u8Src); \
805 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[14] = (a_u8Src); \
806 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[15] = (a_u8Src); \
807 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
808 } while (0)
809#define IEM_MC_BROADCAST_YREG_U16_ZX_VLMAX(a_iYRegDst, a_u16Src) \
810 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
811 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[0] = (a_u16Src); \
812 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[1] = (a_u16Src); \
813 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[2] = (a_u16Src); \
814 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[3] = (a_u16Src); \
815 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[4] = (a_u16Src); \
816 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[5] = (a_u16Src); \
817 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[6] = (a_u16Src); \
818 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[7] = (a_u16Src); \
819 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[0] = (a_u16Src); \
820 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[1] = (a_u16Src); \
821 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[2] = (a_u16Src); \
822 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[3] = (a_u16Src); \
823 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[4] = (a_u16Src); \
824 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[5] = (a_u16Src); \
825 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[6] = (a_u16Src); \
826 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[7] = (a_u16Src); \
827 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
828 } while (0)
829#define IEM_MC_BROADCAST_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
830 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
831 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
832 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = (a_u32Src); \
833 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[2] = (a_u32Src); \
834 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[3] = (a_u32Src); \
835 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[0] = (a_u32Src); \
836 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[1] = (a_u32Src); \
837 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[2] = (a_u32Src); \
838 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[3] = (a_u32Src); \
839 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
840 } while (0)
841#define IEM_MC_BROADCAST_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
842 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
843 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
844 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Src); \
845 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u64Src); \
846 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u64Src); \
847 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
848 } while (0)
849#define IEM_MC_BROADCAST_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
850 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
851 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
852 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
853 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
854 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
855 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
856 } while (0)
857
858#define IEM_MC_REF_YREG_U128(a_pu128Dst, a_iYReg) \
859 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
860#define IEM_MC_REF_YREG_U128_CONST(a_pu128Dst, a_iYReg) \
861 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
862#define IEM_MC_REF_YREG_U64_CONST(a_pu64Dst, a_iYReg) \
863 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].au64[0])
864#define IEM_MC_CLEAR_YREG_128_UP(a_iYReg) \
865 do { uintptr_t const iYRegTmp = (a_iYReg); \
866 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[0] = 0; \
867 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[1] = 0; \
868 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegTmp); \
869 } while (0)
870
871#define IEM_MC_COPY_YREG_U256_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
872 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
873 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
874 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
875 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
876 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
877 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
878 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
879 } while (0)
880#define IEM_MC_COPY_YREG_U128_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
881 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
882 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
883 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
884 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
885 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
886 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
887 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
888 } while (0)
889#define IEM_MC_COPY_YREG_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
890 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
891 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
892 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
893 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
894 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
895 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
896 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
897 } while (0)
898
899#define IEM_MC_MERGE_YREG_U32_U96_ZX_VLMAX(a_iYRegDst, a_iYRegSrc32, a_iYRegSrcHx) \
900 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
901 uintptr_t const iYRegSrc32Tmp = (a_iYRegSrc32); \
902 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
903 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc32Tmp].au32[0]; \
904 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au32[1]; \
905 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
906 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
907 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
908 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
909 } while (0)
910#define IEM_MC_MERGE_YREG_U64_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) \
911 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
912 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
913 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
914 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
915 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
916 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
917 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
918 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
919 } while (0)
920#define IEM_MC_MERGE_YREG_U64LO_U64LO_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
921 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
922 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
923 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
924 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
925 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
926 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
927 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
928 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
929 } while (0)
930#define IEM_MC_MERGE_YREG_U64HI_U64HI_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
931 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
932 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
933 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
934 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[1]; \
935 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
936 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
937 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
938 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
939 } while (0)
940#define IEM_MC_MERGE_YREG_U64LO_U64LOCAL_ZX_VLMAX(a_iYRegDst, a_iYRegSrcHx, a_u64Local) \
941 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
942 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
943 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
944 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Local); \
945 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
946 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
947 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
948 } while (0)
949#define IEM_MC_MERGE_YREG_U64LOCAL_U64HI_ZX_VLMAX(a_iYRegDst, a_u64Local, a_iYRegSrcHx) \
950 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
951 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
952 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Local); \
953 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
954 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
955 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
956 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
957 } while (0)
958
959#define IEM_MC_CLEAR_ZREG_256_UP(a_iYReg) \
960 do { IEM_MC_INT_CLEAR_ZMM_256_UP(a_iYReg); } while (0)
961
962#ifndef IEM_WITH_SETJMP
963# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
964 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem)))
965# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
966 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem16)))
967# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
968 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem32)))
969#else
970# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
971 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
972# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
973 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem16)))
974# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
975 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem32)))
976
977# define IEM_MC_FETCH_MEM_FLAT_U8(a_u8Dst, a_GCPtrMem) \
978 ((a_u8Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
979# define IEM_MC_FETCH_MEM16_FLAT_U8(a_u8Dst, a_GCPtrMem16) \
980 ((a_u8Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem16)))
981# define IEM_MC_FETCH_MEM32_FLAT_U8(a_u8Dst, a_GCPtrMem32) \
982 ((a_u8Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem32)))
983#endif
984
985#ifndef IEM_WITH_SETJMP
986# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
987 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem)))
988# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
989 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
990# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
991 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem)))
992#else
993# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
994 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
995# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
996 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
997# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
998 ((a_i16Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
999
1000# define IEM_MC_FETCH_MEM_FLAT_U16(a_u16Dst, a_GCPtrMem) \
1001 ((a_u16Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1002# define IEM_MC_FETCH_MEM_FLAT_U16_DISP(a_u16Dst, a_GCPtrMem, a_offDisp) \
1003 ((a_u16Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1004# define IEM_MC_FETCH_MEM_FLAT_I16(a_i16Dst, a_GCPtrMem) \
1005 ((a_i16Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1006#endif
1007
1008#ifndef IEM_WITH_SETJMP
1009# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1010 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem)))
1011# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1012 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1013# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
1014 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem)))
1015#else
1016# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1017 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1018# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1019 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1020# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
1021 ((a_i32Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1022
1023# define IEM_MC_FETCH_MEM_FLAT_U32(a_u32Dst, a_GCPtrMem) \
1024 ((a_u32Dst) = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1025# define IEM_MC_FETCH_MEM_FLAT_U32_DISP(a_u32Dst, a_GCPtrMem, a_offDisp) \
1026 ((a_u32Dst) = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1027# define IEM_MC_FETCH_MEM_FLAT_I32(a_i32Dst, a_GCPtrMem) \
1028 ((a_i32Dst) = (int32_t)iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1029#endif
1030
1031#ifndef IEM_WITH_SETJMP
1032# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1033 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
1034# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1035 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1036# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
1037 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64AlignedU128(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
1038# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
1039 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, (uint64_t *)&(a_i64Dst), (a_iSeg), (a_GCPtrMem)))
1040#else
1041# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1042 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1043# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1044 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1045# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
1046 ((a_u64Dst) = iemMemFetchDataU64AlignedU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1047# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
1048 ((a_i64Dst) = (int64_t)iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1049
1050# define IEM_MC_FETCH_MEM_FLAT_U64(a_u64Dst, a_GCPtrMem) \
1051 ((a_u64Dst) = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem)))
1052# define IEM_MC_FETCH_MEM_FLAT_U64_DISP(a_u64Dst, a_GCPtrMem, a_offDisp) \
1053 ((a_u64Dst) = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1054# define IEM_MC_FETCH_MEM_FLAT_U64_ALIGN_U128(a_u64Dst, a_GCPtrMem) \
1055 ((a_u64Dst) = iemMemFlatFetchDataU64AlignedU128Jmp(pVCpu, (a_GCPtrMem)))
1056# define IEM_MC_FETCH_MEM_FLAT_I64(a_i64Dst, a_GCPtrMem) \
1057 ((a_i64Dst) = (int64_t)iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem)))
1058#endif
1059
1060#ifndef IEM_WITH_SETJMP
1061# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
1062 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_r32Dst).u, (a_iSeg), (a_GCPtrMem)))
1063# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
1064 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_r64Dst).u, (a_iSeg), (a_GCPtrMem)))
1065# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
1066 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataR80(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem)))
1067# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
1068 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataD80(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem)))
1069#else
1070# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
1071 ((a_r32Dst).u = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1072# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
1073 ((a_r64Dst).u = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1074# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
1075 iemMemFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem))
1076# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
1077 iemMemFetchDataD80Jmp(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem))
1078
1079# define IEM_MC_FETCH_MEM_FLAT_R32(a_r32Dst, a_GCPtrMem) \
1080 ((a_r32Dst).u = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1081# define IEM_MC_FETCH_MEM_FLAT_R64(a_r64Dst, a_GCPtrMem) \
1082 ((a_r64Dst).u = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem)))
1083# define IEM_MC_FETCH_MEM_FLAT_R80(a_r80Dst, a_GCPtrMem) \
1084 iemMemFlatFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_GCPtrMem))
1085# define IEM_MC_FETCH_MEM_FLAT_D80(a_d80Dst, a_GCPtrMem) \
1086 iemMemFlatFetchDataD80Jmp(pVCpu, &(a_d80Dst), (a_GCPtrMem))
1087#endif
1088
1089#ifndef IEM_WITH_SETJMP
1090# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
1091 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
1092# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
1093 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128NoAc(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
1094# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
1095 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
1096
1097# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
1098 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
1099# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
1100 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
1101
1102# define IEM_MC_FETCH_MEM_U128_NO_AC_AND_XREG_U128(a_u128Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1103 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128NoAc(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2))); \
1104 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1105 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1106 } while (0)
1107
1108# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE_AND_XREG_XMM(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1109 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_Dst).uSrc2.uXmm, (a_iSeg2), (a_GCPtrMem2))); \
1110 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1111 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1112 } while (0)
1113
1114# define IEM_MC_FETCH_MEM_XMM_U32_AND_XREG_XMM(a_Dst, a_iXReg1, a_iDWord2, a_iSeg2, a_GCPtrMem2) do { \
1115 (a_Dst).uSrc2.uXmm.au64[0] = 0; \
1116 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1117 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_Dst).uSrc2.uXmm.au32[(a_iDWord2)], (a_iSeg2), (a_GCPtrMem2))); \
1118 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1119 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1120 } while (0)
1121
1122# define IEM_MC_FETCH_MEM_XMM_U64_AND_XREG_XMM(a_Dst, a_iXReg1, a_iQWord2, a_iSeg2, a_GCPtrMem2) do { \
1123 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1124 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_Dst).uSrc2.uXmm.au64[(a_iQWord2)], (a_iSeg2), (a_GCPtrMem2))); \
1125 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1126 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1127 } while (0)
1128
1129# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1130 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2))); \
1131 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1132 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1133 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
1134 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
1135 } while (0)
1136# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1137 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2))); \
1138 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1139 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1140 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
1141 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
1142 } while (0)
1143
1144#else
1145# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
1146 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
1147# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
1148 iemMemFetchDataU128NoAcJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
1149# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
1150 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
1151
1152# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
1153 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
1154# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
1155 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
1156# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
1157 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
1158
1159# define IEM_MC_FETCH_MEM_FLAT_U128(a_u128Dst, a_GCPtrMem) \
1160 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_GCPtrMem))
1161# define IEM_MC_FETCH_MEM_FLAT_U128_NO_AC(a_u128Dst, a_GCPtrMem) \
1162 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_GCPtrMem))
1163# define IEM_MC_FETCH_MEM_FLAT_U128_ALIGN_SSE(a_u128Dst, a_GCPtrMem) \
1164 iemMemFlatFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_GCPtrMem))
1165
1166# define IEM_MC_FETCH_MEM_FLAT_XMM(a_XmmDst, a_GCPtrMem) \
1167 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_GCPtrMem))
1168# define IEM_MC_FETCH_MEM_FLAT_XMM_NO_AC(a_XmmDst, a_GCPtrMem) \
1169 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_GCPtrMem))
1170# define IEM_MC_FETCH_MEM_FLAT_XMM_ALIGN_SSE(a_XmmDst, a_GCPtrMem) \
1171 iemMemFlatFetchDataU128AlignedSseJmp(pVCpu, &(a_XmmDst).uXmm, (a_GCPtrMem))
1172
1173# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1174 iemMemFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2)); \
1175 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1176 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1177 } while (0)
1178# define IEM_MC_FETCH_MEM_FLAT_U128_AND_XREG_U128(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1179 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_GCPtrMem2)); \
1180 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1181 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1182 } while (0)
1183
1184# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE_AND_XREG_XMM(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1185 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_Dst).uSrc2.uXmm, (a_iSeg2), (a_GCPtrMem2)); \
1186 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1187 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1188 } while (0)
1189# define IEM_MC_FETCH_MEM_FLAT_XMM_ALIGN_SSE_AND_XREG_XMM(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1190 iemMemFlatFetchDataU128AlignedSseJmp(pVCpu, &(a_Dst).uSrc2.uXmm, (a_GCPtrMem2)); \
1191 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1192 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1193 } while (0)
1194
1195# define IEM_MC_FETCH_MEM_XMM_U32_AND_XREG_XMM(a_Dst, a_iXReg1, a_iDWord2, a_iSeg2, a_GCPtrMem2) do { \
1196 (a_Dst).uSrc2.uXmm.au64[0] = 0; \
1197 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1198 (a_Dst).uSrc2.uXmm.au32[(a_iDWord2)] = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg2), (a_GCPtrMem2)); \
1199 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1200 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1201 } while (0)
1202# define IEM_MC_FETCH_MEM_FLAT_XMM_U32_AND_XREG_XMM(a_Dst, a_iXReg1, a_iDWord2, a_GCPtrMem2) do { \
1203 (a_Dst).uSrc2.uXmm.au64[0] = 0; \
1204 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1205 (a_Dst).uSrc2.uXmm.au32[(a_iDWord2)] = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem2)); \
1206 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1207 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1208 } while (0)
1209
1210# define IEM_MC_FETCH_MEM_XMM_U64_AND_XREG_XMM(a_Dst, a_iXReg1, a_iQWord2, a_iSeg2, a_GCPtrMem2) do { \
1211 (a_Dst).uSrc2.uXmm.au64[!(a_iQWord2)] = 0; \
1212 (a_Dst).uSrc2.uXmm.au64[(a_iQWord2)] = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg2), (a_GCPtrMem2)); \
1213 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1214 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1215 } while (0)
1216# define IEM_MC_FETCH_MEM_FLAT_XMM_U64_AND_XREG_XMM(a_Dst, a_iXReg1, a_iQWord2, a_GCPtrMem2) do { \
1217 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1218 (a_Dst).uSrc2.uXmm.au64[(a_iQWord2)] = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem2)); \
1219 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1220 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1221 } while (0)
1222
1223
1224# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1225 iemMemFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2)); \
1226 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1227 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1228 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
1229 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
1230 } while (0)
1231# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1232 iemMemFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2)); \
1233 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1234 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1235 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
1236 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
1237 } while (0)
1238
1239# define IEM_MC_FETCH_MEM_FLAT_U128_AND_XREG_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1240 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_GCPtrMem2)); \
1241 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1242 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1243 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
1244 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
1245 } while (0)
1246# define IEM_MC_FETCH_MEM_FLAT_U128_AND_XREG_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1247 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_GCPtrMem2)); \
1248 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1249 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1250 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
1251 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
1252 } while (0)
1253
1254#endif
1255
1256#ifndef IEM_WITH_SETJMP
1257# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
1258 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
1259# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
1260 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
1261# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
1262 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedAvx(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
1263
1264# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
1265 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
1266# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
1267 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
1268# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
1269 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedAvx(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
1270#else
1271# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
1272 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
1273# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
1274 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
1275# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
1276 iemMemFetchDataU256AlignedAvxJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
1277
1278# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
1279 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
1280# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
1281 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
1282# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
1283 iemMemFetchDataU256AlignedAvxJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
1284
1285# define IEM_MC_FETCH_MEM_FLAT_U256(a_u256Dst, a_GCPtrMem) \
1286 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_GCPtrMem))
1287# define IEM_MC_FETCH_MEM_FLAT_U256_NO_AC(a_u256Dst, a_GCPtrMem) \
1288 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_GCPtrMem))
1289# define IEM_MC_FETCH_MEM_FLAT_U256_ALIGN_AVX(a_u256Dst, a_GCPtrMem) \
1290 iemMemFlatFetchDataU256AlignedAvxJmp(pVCpu, &(a_u256Dst), (a_GCPtrMem))
1291
1292# define IEM_MC_FETCH_MEM_FLAT_YMM(a_YmmDst, a_GCPtrMem) \
1293 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_GCPtrMem))
1294# define IEM_MC_FETCH_MEM_FLAT_YMM_NO_AC(a_YmmDst, a_GCPtrMem) \
1295 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_GCPtrMem))
1296# define IEM_MC_FETCH_MEM_FLAT_YMM_ALIGN_AVX(a_YmmDst, a_GCPtrMem) \
1297 iemMemFlatFetchDataU256AlignedAvxJmp(pVCpu, &(a_YmmDst).ymm, (a_GCPtrMem))
1298#endif
1299
1300
1301
1302#ifndef IEM_WITH_SETJMP
1303# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1304 do { \
1305 uint8_t u8Tmp; \
1306 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1307 (a_u16Dst) = u8Tmp; \
1308 } while (0)
1309# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1310 do { \
1311 uint8_t u8Tmp; \
1312 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1313 (a_u32Dst) = u8Tmp; \
1314 } while (0)
1315# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1316 do { \
1317 uint8_t u8Tmp; \
1318 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1319 (a_u64Dst) = u8Tmp; \
1320 } while (0)
1321# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1322 do { \
1323 uint16_t u16Tmp; \
1324 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1325 (a_u32Dst) = u16Tmp; \
1326 } while (0)
1327# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1328 do { \
1329 uint16_t u16Tmp; \
1330 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1331 (a_u64Dst) = u16Tmp; \
1332 } while (0)
1333# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1334 do { \
1335 uint32_t u32Tmp; \
1336 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
1337 (a_u64Dst) = u32Tmp; \
1338 } while (0)
1339#else /* IEM_WITH_SETJMP */
1340# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1341 ((a_u16Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1342# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1343 ((a_u32Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1344# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1345 ((a_u64Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1346# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1347 ((a_u32Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1348# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1349 ((a_u64Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1350# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1351 ((a_u64Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1352
1353# define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U16(a_u16Dst, a_GCPtrMem) \
1354 ((a_u16Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1355# define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U32(a_u32Dst, a_GCPtrMem) \
1356 ((a_u32Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1357# define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U64(a_u64Dst, a_GCPtrMem) \
1358 ((a_u64Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1359# define IEM_MC_FETCH_MEM_FLAT_U16_ZX_U32(a_u32Dst, a_GCPtrMem) \
1360 ((a_u32Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1361# define IEM_MC_FETCH_MEM_FLAT_U16_ZX_U64(a_u64Dst, a_GCPtrMem) \
1362 ((a_u64Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1363# define IEM_MC_FETCH_MEM_FLAT_U32_ZX_U64(a_u64Dst, a_GCPtrMem) \
1364 ((a_u64Dst) = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1365#endif /* IEM_WITH_SETJMP */
1366
1367#ifndef IEM_WITH_SETJMP
1368# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1369 do { \
1370 uint8_t u8Tmp; \
1371 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1372 (a_u16Dst) = (int8_t)u8Tmp; \
1373 } while (0)
1374# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1375 do { \
1376 uint8_t u8Tmp; \
1377 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1378 (a_u32Dst) = (int8_t)u8Tmp; \
1379 } while (0)
1380# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1381 do { \
1382 uint8_t u8Tmp; \
1383 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1384 (a_u64Dst) = (int8_t)u8Tmp; \
1385 } while (0)
1386# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1387 do { \
1388 uint16_t u16Tmp; \
1389 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1390 (a_u32Dst) = (int16_t)u16Tmp; \
1391 } while (0)
1392# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1393 do { \
1394 uint16_t u16Tmp; \
1395 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1396 (a_u64Dst) = (int16_t)u16Tmp; \
1397 } while (0)
1398# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1399 do { \
1400 uint32_t u32Tmp; \
1401 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
1402 (a_u64Dst) = (int32_t)u32Tmp; \
1403 } while (0)
1404#else /* IEM_WITH_SETJMP */
1405# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1406 ((a_u16Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1407# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1408 ((a_u32Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1409# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1410 ((a_u64Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1411# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1412 ((a_u32Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1413# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1414 ((a_u64Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1415# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1416 ((a_u64Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1417
1418# define IEM_MC_FETCH_MEM_FLAT_U8_SX_U16(a_u16Dst, a_GCPtrMem) \
1419 ((a_u16Dst) = (int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1420# define IEM_MC_FETCH_MEM_FLAT_U8_SX_U32(a_u32Dst, a_GCPtrMem) \
1421 ((a_u32Dst) = (int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1422# define IEM_MC_FETCH_MEM_FLAT_U8_SX_U64(a_u64Dst, a_GCPtrMem) \
1423 ((a_u64Dst) = (int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1424# define IEM_MC_FETCH_MEM_FLAT_U16_SX_U32(a_u32Dst, a_GCPtrMem) \
1425 ((a_u32Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1426# define IEM_MC_FETCH_MEM_FLAT_U16_SX_U64(a_u64Dst, a_GCPtrMem) \
1427 ((a_u64Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1428# define IEM_MC_FETCH_MEM_FLAT_U32_SX_U64(a_u64Dst, a_GCPtrMem) \
1429 ((a_u64Dst) = (int32_t)iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1430#endif /* IEM_WITH_SETJMP */
1431
1432#ifndef IEM_WITH_SETJMP
1433# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
1434 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value)))
1435# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
1436 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value)))
1437# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
1438 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value)))
1439# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
1440 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value)))
1441#else
1442# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
1443 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value))
1444# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
1445 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value))
1446# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
1447 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value))
1448# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
1449 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value))
1450
1451# define IEM_MC_STORE_MEM_FLAT_U8(a_GCPtrMem, a_u8Value) \
1452 iemMemFlatStoreDataU8Jmp(pVCpu, (a_GCPtrMem), (a_u8Value))
1453# define IEM_MC_STORE_MEM_FLAT_U16(a_GCPtrMem, a_u16Value) \
1454 iemMemFlatStoreDataU16Jmp(pVCpu, (a_GCPtrMem), (a_u16Value))
1455# define IEM_MC_STORE_MEM_FLAT_U32(a_GCPtrMem, a_u32Value) \
1456 iemMemFlatStoreDataU32Jmp(pVCpu, (a_GCPtrMem), (a_u32Value))
1457# define IEM_MC_STORE_MEM_FLAT_U64(a_GCPtrMem, a_u64Value) \
1458 iemMemFlatStoreDataU64Jmp(pVCpu, (a_GCPtrMem), (a_u64Value))
1459#endif
1460
1461#ifndef IEM_WITH_SETJMP
1462# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
1463 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C)))
1464# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
1465 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C)))
1466# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
1467 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C)))
1468# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
1469 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C)))
1470#else
1471# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
1472 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C))
1473# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
1474 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C))
1475# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
1476 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C))
1477# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
1478 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C))
1479
1480# define IEM_MC_STORE_MEM_FLAT_U8_CONST(a_GCPtrMem, a_u8C) \
1481 iemMemFlatStoreDataU8Jmp(pVCpu, (a_GCPtrMem), (a_u8C))
1482# define IEM_MC_STORE_MEM_FLAT_U16_CONST(a_GCPtrMem, a_u16C) \
1483 iemMemFlatStoreDataU16Jmp(pVCpu, (a_GCPtrMem), (a_u16C))
1484# define IEM_MC_STORE_MEM_FLAT_U32_CONST(a_GCPtrMem, a_u32C) \
1485 iemMemFlatStoreDataU32Jmp(pVCpu, (a_GCPtrMem), (a_u32C))
1486# define IEM_MC_STORE_MEM_FLAT_U64_CONST(a_GCPtrMem, a_u64C) \
1487 iemMemFlatStoreDataU64Jmp(pVCpu, (a_GCPtrMem), (a_u64C))
1488#endif
1489
1490#define IEM_MC_STORE_MEM_I8_CONST_BY_REF( a_pi8Dst, a_i8C) *(a_pi8Dst) = (a_i8C)
1491#define IEM_MC_STORE_MEM_I16_CONST_BY_REF(a_pi16Dst, a_i16C) *(a_pi16Dst) = (a_i16C)
1492#define IEM_MC_STORE_MEM_I32_CONST_BY_REF(a_pi32Dst, a_i32C) *(a_pi32Dst) = (a_i32C)
1493#define IEM_MC_STORE_MEM_I64_CONST_BY_REF(a_pi64Dst, a_i64C) *(a_pi64Dst) = (a_i64C)
1494#define IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(a_pr32Dst) (a_pr32Dst)->u = UINT32_C(0xffc00000)
1495#define IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(a_pr64Dst) (a_pr64Dst)->u = UINT64_C(0xfff8000000000000)
1496#define IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(a_pr80Dst) \
1497 do { \
1498 (a_pr80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
1499 (a_pr80Dst)->au16[4] = UINT16_C(0xffff); \
1500 } while (0)
1501#define IEM_MC_STORE_MEM_INDEF_D80_BY_REF(a_pd80Dst) \
1502 do { \
1503 (a_pd80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
1504 (a_pd80Dst)->au16[4] = UINT16_C(0xffff); \
1505 } while (0)
1506
1507#ifndef IEM_WITH_SETJMP
1508# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
1509 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value)))
1510# define IEM_MC_STORE_MEM_U128_NO_AC(a_iSeg, a_GCPtrMem, a_u128Value) \
1511 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128NoAc(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value)))
1512# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
1513 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128AlignedSse(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
1514#else
1515# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
1516 iemMemStoreDataU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value))
1517# define IEM_MC_STORE_MEM_U128_NO_AC(a_iSeg, a_GCPtrMem, a_u128Value) \
1518 iemMemStoreDataU128NoAcJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value))
1519# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
1520 iemMemStoreDataU128AlignedSseJmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
1521
1522# define IEM_MC_STORE_MEM_FLAT_U128(a_GCPtrMem, a_u128Value) \
1523 iemMemFlatStoreDataU128Jmp(pVCpu, (a_GCPtrMem), &(a_u128Value))
1524# define IEM_MC_STORE_MEM_FLAT_U128_NO_AC(a_GCPtrMem, a_u128Value) \
1525 iemMemFlatStoreDataU128NoAcJmp(pVCpu, (a_GCPtrMem), &(a_u128Value))
1526# define IEM_MC_STORE_MEM_FLAT_U128_ALIGN_SSE(a_GCPtrMem, a_u128Value) \
1527 iemMemStoreDataU128AlignedSseJmp(pVCpu, UINT8_MAX, (a_GCPtrMem), (a_u128Value))
1528#endif
1529
1530#ifndef IEM_WITH_SETJMP
1531# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
1532 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1533# define IEM_MC_STORE_MEM_U256_NO_AC(a_iSeg, a_GCPtrMem, a_u256Value) \
1534 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256NoAc(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1535# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
1536 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256AlignedAvx(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1537#else
1538# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
1539 iemMemStoreDataU256Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1540# define IEM_MC_STORE_MEM_U256_NO_AC(a_iSeg, a_GCPtrMem, a_u256Value) \
1541 iemMemStoreDataU256NoAcJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1542# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
1543 iemMemStoreDataU256AlignedAvxJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1544
1545# define IEM_MC_STORE_MEM_FLAT_U256(a_GCPtrMem, a_u256Value) \
1546 iemMemFlatStoreDataU256Jmp(pVCpu, (a_GCPtrMem), &(a_u256Value))
1547# define IEM_MC_STORE_MEM_FLAT_U256_NO_AC(a_GCPtrMem, a_u256Value) \
1548 iemMemFlatStoreDataU256NoAcJmp(pVCpu, (a_GCPtrMem), &(a_u256Value))
1549# define IEM_MC_STORE_MEM_FLAT_U256_ALIGN_AVX(a_GCPtrMem, a_u256Value) \
1550 iemMemFlatStoreDataU256AlignedAvxJmp(pVCpu, (a_GCPtrMem), &(a_u256Value))
1551#endif
1552
1553/* Regular stack push and pop: */
1554#ifndef IEM_WITH_SETJMP
1555# define IEM_MC_PUSH_U16(a_u16Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1556# define IEM_MC_PUSH_U32(a_u32Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
1557# define IEM_MC_PUSH_U32_SREG(a_uSegVal) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_uSegVal)))
1558# define IEM_MC_PUSH_U64(a_u64Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
1559
1560# define IEM_MC_POP_GREG_U16(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU16(pVCpu, (a_iGReg)))
1561# define IEM_MC_POP_GREG_U32(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU32(pVCpu, (a_iGReg)))
1562# define IEM_MC_POP_GREG_U64(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU64(pVCpu, (a_iGReg)))
1563#else
1564# define IEM_MC_PUSH_U16(a_u16Value) iemMemStackPushU16Jmp(pVCpu, (a_u16Value))
1565# define IEM_MC_PUSH_U32(a_u32Value) iemMemStackPushU32Jmp(pVCpu, (a_u32Value))
1566# define IEM_MC_PUSH_U32_SREG(a_uSegVal) iemMemStackPushU32SRegJmp(pVCpu, (a_uSegVal))
1567# define IEM_MC_PUSH_U64(a_u64Value) iemMemStackPushU64Jmp(pVCpu, (a_u64Value))
1568
1569# define IEM_MC_POP_GREG_U16(a_iGReg) iemMemStackPopGRegU16Jmp(pVCpu, (a_iGReg))
1570# define IEM_MC_POP_GREG_U32(a_iGReg) iemMemStackPopGRegU32Jmp(pVCpu, (a_iGReg))
1571# define IEM_MC_POP_GREG_U64(a_iGReg) iemMemStackPopGRegU64Jmp(pVCpu, (a_iGReg))
1572#endif
1573
1574/* 32-bit flat stack push and pop: */
1575#ifndef IEM_WITH_SETJMP
1576# define IEM_MC_FLAT32_PUSH_U16(a_u16Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1577# define IEM_MC_FLAT32_PUSH_U32(a_u32Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
1578# define IEM_MC_FLAT32_PUSH_U32_SREG(a_uSegVal) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_uSegVal)))
1579
1580# define IEM_MC_FLAT32_POP_GREG_U16(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU16(pVCpu, (a_iGReg)))
1581# define IEM_MC_FLAT32_POP_GREG_U32(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU32(pVCpu, (a_iGReg)))
1582#else
1583# define IEM_MC_FLAT32_PUSH_U16(a_u16Value) iemMemFlat32StackPushU16Jmp(pVCpu, (a_u16Value))
1584# define IEM_MC_FLAT32_PUSH_U32(a_u32Value) iemMemFlat32StackPushU32Jmp(pVCpu, (a_u32Value))
1585# define IEM_MC_FLAT32_PUSH_U32_SREG(a_uSegVal) iemMemFlat32StackPushU32SRegJmp(pVCpu, (a_uSegVal))
1586
1587# define IEM_MC_FLAT32_POP_GREG_U16(a_iGReg) iemMemFlat32StackPopGRegU16Jmp(pVCpu, a_iGReg))
1588# define IEM_MC_FLAT32_POP_GREG_U32(a_iGReg) iemMemFlat32StackPopGRegU32Jmp(pVCpu, a_iGReg))
1589#endif
1590
1591/* 64-bit flat stack push and pop: */
1592#ifndef IEM_WITH_SETJMP
1593# define IEM_MC_FLAT64_PUSH_U16(a_u16Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1594# define IEM_MC_FLAT64_PUSH_U64(a_u64Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
1595
1596# define IEM_MC_FLAT64_POP_GREG_U16(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU16(pVCpu, (a_iGReg)))
1597# define IEM_MC_FLAT64_POP_GREG_U64(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU64(pVCpu, (a_iGReg)))
1598#else
1599# define IEM_MC_FLAT64_PUSH_U16(a_u16Value) iemMemFlat64StackPushU16Jmp(pVCpu, (a_u16Value))
1600# define IEM_MC_FLAT64_PUSH_U64(a_u64Value) iemMemFlat64StackPushU64Jmp(pVCpu, (a_u64Value))
1601
1602# define IEM_MC_FLAT64_POP_GREG_U16(a_iGReg) iemMemFlat64StackPopGRegU16Jmp(pVCpu, (a_iGReg))
1603# define IEM_MC_FLAT64_POP_GREG_U64(a_iGReg) iemMemFlat64StackPopGRegU64Jmp(pVCpu, (a_iGReg))
1604#endif
1605
1606
1607/* 8-bit */
1608
1609/**
1610 * Maps guest memory for byte atomic read+write direct (or bounce) buffer
1611 * acccess, for atomic operations.
1612 *
1613 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1614 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1615 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1616 * @param[in] a_GCPtrMem The memory address.
1617 * @remarks Will return/long jump on errors.
1618 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1619 */
1620#ifndef IEM_WITH_SETJMP
1621# define IEM_MC_MEM_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1622 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1623 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, 0))
1624#else
1625# define IEM_MC_MEM_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1626 (a_pu8Mem) = iemMemMapDataU8AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1627#endif
1628
1629/**
1630 * Maps guest memory for byte read+write direct (or bounce) buffer acccess.
1631 *
1632 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1633 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1634 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1635 * @param[in] a_GCPtrMem The memory address.
1636 * @remarks Will return/long jump on errors.
1637 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1638 */
1639#ifndef IEM_WITH_SETJMP
1640# define IEM_MC_MEM_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1641 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1642 (a_GCPtrMem), IEM_ACCESS_DATA_RW, 0))
1643#else
1644# define IEM_MC_MEM_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1645 (a_pu8Mem) = iemMemMapDataU8RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1646#endif
1647
1648/**
1649 * Maps guest memory for byte writeonly direct (or bounce) buffer acccess.
1650 *
1651 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1652 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1653 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1654 * @param[in] a_GCPtrMem The memory address.
1655 * @remarks Will return/long jump on errors.
1656 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1657 */
1658#ifndef IEM_WITH_SETJMP
1659# define IEM_MC_MEM_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1660 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1661 (a_GCPtrMem), IEM_ACCESS_DATA_W, 0))
1662#else
1663# define IEM_MC_MEM_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1664 (a_pu8Mem) = iemMemMapDataU8WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1665#endif
1666
1667/**
1668 * Maps guest memory for byte readonly direct (or bounce) buffer acccess.
1669 *
1670 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1671 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1672 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1673 * @param[in] a_GCPtrMem The memory address.
1674 * @remarks Will return/long jump on errors.
1675 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1676 */
1677#ifndef IEM_WITH_SETJMP
1678# define IEM_MC_MEM_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1679 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1680 (a_GCPtrMem), IEM_ACCESS_DATA_R, 0))
1681#else
1682# define IEM_MC_MEM_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1683 (a_pu8Mem) = iemMemMapDataU8RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1684#endif
1685
1686/**
1687 * Maps guest memory for byte atomic read+write direct (or bounce) buffer
1688 * acccess, flat address variant.
1689 *
1690 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1691 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1692 * @param[in] a_GCPtrMem The memory address.
1693 * @remarks Will return/long jump on errors.
1694 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1695 */
1696#ifndef IEM_WITH_SETJMP
1697# define IEM_MC_MEM_FLAT_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1698 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1699 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, 0))
1700#else
1701# define IEM_MC_MEM_FLAT_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1702 (a_pu8Mem) = iemMemFlatMapDataU8AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1703#endif
1704
1705/**
1706 * Maps guest memory for byte read+write direct (or bounce) buffer acccess, flat
1707 * address variant.
1708 *
1709 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1710 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1711 * @param[in] a_GCPtrMem The memory address.
1712 * @remarks Will return/long jump on errors.
1713 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1714 */
1715#ifndef IEM_WITH_SETJMP
1716# define IEM_MC_MEM_FLAT_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1717 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1718 (a_GCPtrMem), IEM_ACCESS_DATA_RW, 0))
1719#else
1720# define IEM_MC_MEM_FLAT_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1721 (a_pu8Mem) = iemMemFlatMapDataU8RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1722#endif
1723
1724/**
1725 * Maps guest memory for byte writeonly direct (or bounce) buffer acccess, flat
1726 * address variant.
1727 *
1728 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1729 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1730 * @param[in] a_GCPtrMem The memory address.
1731 * @remarks Will return/long jump on errors.
1732 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1733 */
1734#ifndef IEM_WITH_SETJMP
1735# define IEM_MC_MEM_FLAT_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1736 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1737 (a_GCPtrMem), IEM_ACCESS_DATA_W, 0))
1738#else
1739# define IEM_MC_MEM_FLAT_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1740 (a_pu8Mem) = iemMemFlatMapDataU8WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1741#endif
1742
1743/**
1744 * Maps guest memory for byte readonly direct (or bounce) buffer acccess, flat
1745 * address variant.
1746 *
1747 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1748 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1749 * @param[in] a_GCPtrMem The memory address.
1750 * @remarks Will return/long jump on errors.
1751 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1752 */
1753#ifndef IEM_WITH_SETJMP
1754# define IEM_MC_MEM_FLAT_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1755 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1756 (a_GCPtrMem), IEM_ACCESS_DATA_R, 0))
1757#else
1758# define IEM_MC_MEM_FLAT_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1759 (a_pu8Mem) = iemMemFlatMapDataU8RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1760#endif
1761
1762
1763/* 16-bit */
1764
1765/**
1766 * Maps guest memory for word atomic read+write direct (or bounce) buffer acccess.
1767 *
1768 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1769 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1770 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1771 * @param[in] a_GCPtrMem The memory address.
1772 * @remarks Will return/long jump on errors.
1773 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1774 */
1775#ifndef IEM_WITH_SETJMP
1776# define IEM_MC_MEM_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1777 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1778 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint16_t) - 1))
1779#else
1780# define IEM_MC_MEM_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1781 (a_pu16Mem) = iemMemMapDataU16AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1782#endif
1783
1784/**
1785 * Maps guest memory for word read+write direct (or bounce) buffer acccess.
1786 *
1787 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1788 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1789 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1790 * @param[in] a_GCPtrMem The memory address.
1791 * @remarks Will return/long jump on errors.
1792 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1793 */
1794#ifndef IEM_WITH_SETJMP
1795# define IEM_MC_MEM_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1796 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1797 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint16_t) - 1))
1798#else
1799# define IEM_MC_MEM_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1800 (a_pu16Mem) = iemMemMapDataU16RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1801#endif
1802
1803/**
1804 * Maps guest memory for word writeonly direct (or bounce) buffer acccess.
1805 *
1806 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1807 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1808 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1809 * @param[in] a_GCPtrMem The memory address.
1810 * @remarks Will return/long jump on errors.
1811 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1812 */
1813#ifndef IEM_WITH_SETJMP
1814# define IEM_MC_MEM_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1815 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1816 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint16_t) - 1))
1817#else
1818# define IEM_MC_MEM_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1819 (a_pu16Mem) = iemMemMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1820#endif
1821
1822/**
1823 * Maps guest memory for word readonly direct (or bounce) buffer acccess.
1824 *
1825 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1826 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1827 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1828 * @param[in] a_GCPtrMem The memory address.
1829 * @remarks Will return/long jump on errors.
1830 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1831 */
1832#ifndef IEM_WITH_SETJMP
1833# define IEM_MC_MEM_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1834 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1835 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint16_t) - 1))
1836#else
1837# define IEM_MC_MEM_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1838 (a_pu16Mem) = iemMemMapDataU16RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1839#endif
1840
1841/**
1842 * Maps guest memory for word atomic read+write direct (or bounce) buffer
1843 * acccess, flat address variant.
1844 *
1845 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1846 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1847 * @param[in] a_GCPtrMem The memory address.
1848 * @remarks Will return/long jump on errors.
1849 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1850 */
1851#ifndef IEM_WITH_SETJMP
1852# define IEM_MC_MEM_FLAT_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1853 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1854 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint16_t) - 1))
1855#else
1856# define IEM_MC_MEM_FLAT_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1857 (a_pu16Mem) = iemMemFlatMapDataU16AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1858#endif
1859
1860/**
1861 * Maps guest memory for word read+write direct (or bounce) buffer acccess, flat
1862 * address variant.
1863 *
1864 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1865 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1866 * @param[in] a_GCPtrMem The memory address.
1867 * @remarks Will return/long jump on errors.
1868 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1869 */
1870#ifndef IEM_WITH_SETJMP
1871# define IEM_MC_MEM_FLAT_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1872 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1873 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint16_t) - 1))
1874#else
1875# define IEM_MC_MEM_FLAT_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1876 (a_pu16Mem) = iemMemFlatMapDataU16RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1877#endif
1878
1879/**
1880 * Maps guest memory for word writeonly direct (or bounce) buffer acccess, flat
1881 * address variant.
1882 *
1883 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1884 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1885 * @param[in] a_GCPtrMem The memory address.
1886 * @remarks Will return/long jump on errors.
1887 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1888 */
1889#ifndef IEM_WITH_SETJMP
1890# define IEM_MC_MEM_FLAT_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1891 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1892 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint16_t) - 1))
1893#else
1894# define IEM_MC_MEM_FLAT_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1895 (a_pu16Mem) = iemMemFlatMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1896#endif
1897
1898/**
1899 * Maps guest memory for word readonly direct (or bounce) buffer acccess, flat
1900 * address variant.
1901 *
1902 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1903 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1904 * @param[in] a_GCPtrMem The memory address.
1905 * @remarks Will return/long jump on errors.
1906 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1907 */
1908#ifndef IEM_WITH_SETJMP
1909# define IEM_MC_MEM_FLAT_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1910 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1911 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint16_t) - 1))
1912#else
1913# define IEM_MC_MEM_FLAT_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1914 (a_pu16Mem) = iemMemFlatMapDataU16RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1915#endif
1916
1917/** int16_t alias. */
1918#ifndef IEM_WITH_SETJMP
1919# define IEM_MC_MEM_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1920 IEM_MC_MEM_MAP_U16_WO(a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
1921#else
1922# define IEM_MC_MEM_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1923 (a_pi16Mem) = (int16_t *)iemMemMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1924#endif
1925
1926/** Flat int16_t alias. */
1927#ifndef IEM_WITH_SETJMP
1928# define IEM_MC_MEM_FLAT_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_GCPtrMem) \
1929 IEM_MC_MEM_FLAT_MAP_U16_WO(a_pi16Mem, a_bUnmapInfo, a_GCPtrMem)
1930#else
1931# define IEM_MC_MEM_FLAT_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_GCPtrMem) \
1932 (a_pi16Mem) = (int16_t *)iemMemFlatMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1933#endif
1934
1935
1936/* 32-bit */
1937
1938/**
1939 * Maps guest memory for dword atomic read+write direct (or bounce) buffer acccess.
1940 *
1941 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
1942 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1943 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1944 * @param[in] a_GCPtrMem The memory address.
1945 * @remarks Will return/long jump on errors.
1946 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1947 */
1948#ifndef IEM_WITH_SETJMP
1949# define IEM_MC_MEM_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1950 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
1951 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint32_t) - 1))
1952#else
1953# define IEM_MC_MEM_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1954 (a_pu32Mem) = iemMemMapDataU32AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1955#endif
1956
1957/**
1958 * Maps guest memory for dword read+write direct (or bounce) buffer acccess.
1959 *
1960 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
1961 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1962 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1963 * @param[in] a_GCPtrMem The memory address.
1964 * @remarks Will return/long jump on errors.
1965 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1966 */
1967#ifndef IEM_WITH_SETJMP
1968# define IEM_MC_MEM_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1969 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
1970 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint32_t) - 1))
1971#else
1972# define IEM_MC_MEM_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1973 (a_pu32Mem) = iemMemMapDataU32RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1974#endif
1975
1976/**
1977 * Maps guest memory for dword writeonly direct (or bounce) buffer acccess.
1978 *
1979 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
1980 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1981 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1982 * @param[in] a_GCPtrMem The memory address.
1983 * @remarks Will return/long jump on errors.
1984 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1985 */
1986#ifndef IEM_WITH_SETJMP
1987# define IEM_MC_MEM_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1988 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
1989 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint32_t) - 1))
1990#else
1991# define IEM_MC_MEM_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1992 (a_pu32Mem) = iemMemMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1993#endif
1994
1995/**
1996 * Maps guest memory for dword readonly direct (or bounce) buffer acccess.
1997 *
1998 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
1999 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2000 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2001 * @param[in] a_GCPtrMem The memory address.
2002 * @remarks Will return/long jump on errors.
2003 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2004 */
2005#ifndef IEM_WITH_SETJMP
2006# define IEM_MC_MEM_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2007 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
2008 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint32_t) - 1))
2009#else
2010# define IEM_MC_MEM_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2011 (a_pu32Mem) = iemMemMapDataU32RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2012#endif
2013
2014/**
2015 * Maps guest memory for dword atomic read+write direct (or bounce) buffer
2016 * acccess, flat address variant.
2017 *
2018 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2019 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2020 * @param[in] a_GCPtrMem The memory address.
2021 * @remarks Will return/long jump on errors.
2022 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2023 */
2024#ifndef IEM_WITH_SETJMP
2025# define IEM_MC_MEM_FLAT_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2026 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2027 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint32_t) - 1))
2028#else
2029# define IEM_MC_MEM_FLAT_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2030 (a_pu32Mem) = iemMemFlatMapDataU32AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2031#endif
2032
2033/**
2034 * Maps guest memory for dword read+write direct (or bounce) buffer acccess,
2035 * flat address variant.
2036 *
2037 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2038 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2039 * @param[in] a_GCPtrMem The memory address.
2040 * @remarks Will return/long jump on errors.
2041 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2042 */
2043#ifndef IEM_WITH_SETJMP
2044# define IEM_MC_MEM_FLAT_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2045 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2046 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint32_t) - 1))
2047#else
2048# define IEM_MC_MEM_FLAT_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2049 (a_pu32Mem) = iemMemFlatMapDataU32RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2050#endif
2051
2052/**
2053 * Maps guest memory for dword writeonly direct (or bounce) buffer acccess, flat
2054 * address variant.
2055 *
2056 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2057 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2058 * @param[in] a_GCPtrMem The memory address.
2059 * @remarks Will return/long jump on errors.
2060 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2061 */
2062#ifndef IEM_WITH_SETJMP
2063# define IEM_MC_MEM_FLAT_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2064 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2065 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint32_t) - 1))
2066#else
2067# define IEM_MC_MEM_FLAT_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2068 (a_pu32Mem) = iemMemFlatMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2069#endif
2070
2071/**
2072 * Maps guest memory for dword readonly direct (or bounce) buffer acccess, flat
2073 * address variant.
2074 *
2075 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2076 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2077 * @param[in] a_GCPtrMem The memory address.
2078 * @remarks Will return/long jump on errors.
2079 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2080 */
2081#ifndef IEM_WITH_SETJMP
2082# define IEM_MC_MEM_FLAT_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2083 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2084 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint32_t) - 1))
2085#else
2086# define IEM_MC_MEM_FLAT_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2087 (a_pu32Mem) = iemMemFlatMapDataU32RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2088#endif
2089
2090/** int32_t alias. */
2091#ifndef IEM_WITH_SETJMP
2092# define IEM_MC_MEM_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2093 IEM_MC_MEM_MAP_U32_WO(a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2094#else
2095# define IEM_MC_MEM_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2096 (a_pi32Mem) = (int32_t *)iemMemMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2097#endif
2098
2099/** Flat int32_t alias. */
2100#ifndef IEM_WITH_SETJMP
2101# define IEM_MC_MEM_FLAT_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_GCPtrMem) \
2102 IEM_MC_MEM_FLAT_MAP_U32_WO(a_pi32Mem, a_bUnmapInfo, a_GCPtrMem)
2103#else
2104# define IEM_MC_MEM_FLAT_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_GCPtrMem) \
2105 (a_pi32Mem) = (int32_t *)iemMemFlatMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2106#endif
2107
2108/** RTFLOAT32U alias. */
2109#ifndef IEM_WITH_SETJMP
2110# define IEM_MC_MEM_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2111 IEM_MC_MEM_MAP_U32_WO(a_pr32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2112#else
2113# define IEM_MC_MEM_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2114 (a_pr32Mem) = (PRTFLOAT32U)iemMemMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2115#endif
2116
2117/** Flat RTFLOAT32U alias. */
2118#ifndef IEM_WITH_SETJMP
2119# define IEM_MC_MEM_FLAT_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_GCPtrMem) \
2120 IEM_MC_MEM_FLAT_MAP_U32_WO(a_pr32Mem, a_bUnmapInfo, a_GCPtrMem)
2121#else
2122# define IEM_MC_MEM_FLAT_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_GCPtrMem) \
2123 (a_pr32Mem) = (PRTFLOAT32U)iemMemFlatMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2124#endif
2125
2126
2127/* 64-bit */
2128
2129/**
2130 * Maps guest memory for qword atomic read+write direct (or bounce) buffer acccess.
2131 *
2132 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2133 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2134 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2135 * @param[in] a_GCPtrMem The memory address.
2136 * @remarks Will return/long jump on errors.
2137 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2138 */
2139#ifndef IEM_WITH_SETJMP
2140# define IEM_MC_MEM_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2141 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2142 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint64_t) - 1))
2143#else
2144# define IEM_MC_MEM_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2145 (a_pu64Mem) = iemMemMapDataU64AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2146#endif
2147
2148/**
2149 * Maps guest memory for qword read+write direct (or bounce) buffer acccess.
2150 *
2151 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2152 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2153 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2154 * @param[in] a_GCPtrMem The memory address.
2155 * @remarks Will return/long jump on errors.
2156 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2157 */
2158#ifndef IEM_WITH_SETJMP
2159# define IEM_MC_MEM_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2160 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2161 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint64_t) - 1))
2162#else
2163# define IEM_MC_MEM_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2164 (a_pu64Mem) = iemMemMapDataU64RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2165#endif
2166
2167/**
2168 * Maps guest memory for qword writeonly direct (or bounce) buffer acccess.
2169 *
2170 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2171 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2172 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2173 * @param[in] a_GCPtrMem The memory address.
2174 * @remarks Will return/long jump on errors.
2175 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2176 */
2177#ifndef IEM_WITH_SETJMP
2178# define IEM_MC_MEM_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2179 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2180 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2181#else
2182# define IEM_MC_MEM_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2183 (a_pu64Mem) = iemMemMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2184#endif
2185
2186/**
2187 * Maps guest memory for qword readonly direct (or bounce) buffer acccess.
2188 *
2189 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2190 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2191 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2192 * @param[in] a_GCPtrMem The memory address.
2193 * @remarks Will return/long jump on errors.
2194 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2195 */
2196#ifndef IEM_WITH_SETJMP
2197# define IEM_MC_MEM_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2198 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2199 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint64_t) - 1))
2200#else
2201# define IEM_MC_MEM_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2202 (a_pu64Mem) = iemMemMapDataU64RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2203#endif
2204
2205/**
2206 * Maps guest memory for qword atomic read+write direct (or bounce) buffer
2207 * acccess, flat address variant.
2208 *
2209 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2210 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2211 * @param[in] a_GCPtrMem The memory address.
2212 * @remarks Will return/long jump on errors.
2213 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2214 */
2215#ifndef IEM_WITH_SETJMP
2216# define IEM_MC_MEM_FLAT_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2217 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2218 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint64_t) - 1))
2219#else
2220# define IEM_MC_MEM_FLAT_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2221 (a_pu64Mem) = iemMemFlatMapDataU64AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2222#endif
2223
2224/**
2225 * Maps guest memory for qword read+write direct (or bounce) buffer acccess,
2226 * flat address variant.
2227 *
2228 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2229 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2230 * @param[in] a_GCPtrMem The memory address.
2231 * @remarks Will return/long jump on errors.
2232 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2233 */
2234#ifndef IEM_WITH_SETJMP
2235# define IEM_MC_MEM_FLAT_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2236 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2237 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint64_t) - 1))
2238#else
2239# define IEM_MC_MEM_FLAT_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2240 (a_pu64Mem) = iemMemFlatMapDataU64RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2241#endif
2242
2243/**
2244 * Maps guest memory for qword writeonly direct (or bounce) buffer acccess, flat
2245 * address variant.
2246 *
2247 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2248 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2249 * @param[in] a_GCPtrMem The memory address.
2250 * @remarks Will return/long jump on errors.
2251 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2252 */
2253#ifndef IEM_WITH_SETJMP
2254# define IEM_MC_MEM_FLAT_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2255 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2256 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2257#else
2258# define IEM_MC_MEM_FLAT_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2259 (a_pu64Mem) = iemMemFlatMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2260#endif
2261
2262/**
2263 * Maps guest memory for qword readonly direct (or bounce) buffer acccess, flat
2264 * address variant.
2265 *
2266 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2267 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2268 * @param[in] a_GCPtrMem The memory address.
2269 * @remarks Will return/long jump on errors.
2270 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2271 */
2272#ifndef IEM_WITH_SETJMP
2273# define IEM_MC_MEM_FLAT_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2274 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2275 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint64_t) - 1))
2276#else
2277# define IEM_MC_MEM_FLAT_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2278 (a_pu64Mem) = iemMemFlatMapDataU64RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2279#endif
2280
2281/** int64_t alias. */
2282#ifndef IEM_WITH_SETJMP
2283# define IEM_MC_MEM_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2284 IEM_MC_MEM_MAP_U64_WO(a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2285#else
2286# define IEM_MC_MEM_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2287 (a_pi64Mem) = (int64_t *)iemMemMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2288#endif
2289
2290/** Flat int64_t alias. */
2291#ifndef IEM_WITH_SETJMP
2292# define IEM_MC_MEM_FLAT_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_GCPtrMem) \
2293 IEM_MC_MEM_FLAT_MAP_U64_WO(a_pi64Mem, a_bUnmapInfo, a_GCPtrMem)
2294#else
2295# define IEM_MC_MEM_FLAT_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_GCPtrMem) \
2296 (a_pi64Mem) = (int64_t *)iemMemFlatMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2297#endif
2298
2299/** RTFLOAT64U alias. */
2300#ifndef IEM_WITH_SETJMP
2301# define IEM_MC_MEM_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2302 IEM_MC_MEM_MAP_U64_WO(a_pr64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2303#else
2304# define IEM_MC_MEM_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2305 (a_pr64Mem) = (PRTFLOAT64U)iemMemMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2306#endif
2307
2308/** Flat RTFLOAT64U alias. */
2309#ifndef IEM_WITH_SETJMP
2310# define IEM_MC_MEM_FLAT_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_GCPtrMem) \
2311 IEM_MC_MEM_FLAT_MAP_U64_WO(a_pr64Mem, a_bUnmapInfo, a_GCPtrMem)
2312#else
2313# define IEM_MC_MEM_FLAT_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_GCPtrMem) \
2314 (a_pr64Mem) = (PRTFLOAT64U)iemMemFlatMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2315#endif
2316
2317
2318/* 128-bit */
2319
2320/**
2321 * Maps guest memory for dqword atomic read+write direct (or bounce) buffer acccess.
2322 *
2323 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2324 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2325 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2326 * @param[in] a_GCPtrMem The memory address.
2327 * @remarks Will return/long jump on errors.
2328 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2329 */
2330#ifndef IEM_WITH_SETJMP
2331# define IEM_MC_MEM_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2332 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128U), (a_iSeg), \
2333 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(RTUINT128U) - 1))
2334#else
2335# define IEM_MC_MEM_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2336 (a_pu128Mem) = iemMemMapDataU128AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2337#endif
2338
2339/**
2340 * Maps guest memory for dqword read+write direct (or bounce) buffer acccess.
2341 *
2342 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2343 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2344 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2345 * @param[in] a_GCPtrMem The memory address.
2346 * @remarks Will return/long jump on errors.
2347 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2348 */
2349#ifndef IEM_WITH_SETJMP
2350# define IEM_MC_MEM_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2351 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128U), (a_iSeg), \
2352 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(RTUINT128U) - 1))
2353#else
2354# define IEM_MC_MEM_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2355 (a_pu128Mem) = iemMemMapDataU128RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2356#endif
2357
2358/**
2359 * Maps guest memory for dqword writeonly direct (or bounce) buffer acccess.
2360 *
2361 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2362 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2363 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2364 * @param[in] a_GCPtrMem The memory address.
2365 * @remarks Will return/long jump on errors.
2366 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2367 */
2368#ifndef IEM_WITH_SETJMP
2369# define IEM_MC_MEM_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2370 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), (a_iSeg), \
2371 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(RTUINT128) - 1))
2372#else
2373# define IEM_MC_MEM_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2374 (a_pu128Mem) = iemMemMapDataU128WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2375#endif
2376
2377/**
2378 * Maps guest memory for dqword readonly direct (or bounce) buffer acccess.
2379 *
2380 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2381 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2382 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2383 * @param[in] a_GCPtrMem The memory address.
2384 * @remarks Will return/long jump on errors.
2385 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2386 */
2387#ifndef IEM_WITH_SETJMP
2388# define IEM_MC_MEM_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2389 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), (a_iSeg), \
2390 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(RTUINT128) - 1))
2391#else
2392# define IEM_MC_MEM_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2393 (a_pu128Mem) = iemMemMapDataU128RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2394#endif
2395
2396/**
2397 * Maps guest memory for dqword atomic read+write direct (or bounce) buffer
2398 * access, flat address variant.
2399 *
2400 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2401 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2402 * @param[in] a_GCPtrMem The memory address.
2403 * @remarks Will return/long jump on errors.
2404 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2405 */
2406#ifndef IEM_WITH_SETJMP
2407# define IEM_MC_MEM_FLAT_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2408 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2409 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(RTUINT128) - 1))
2410#else
2411# define IEM_MC_MEM_FLAT_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2412 (a_pu128Mem) = iemMemFlatMapDataU128AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2413#endif
2414
2415/**
2416 * Maps guest memory for dqword read+write direct (or bounce) buffer acccess,
2417 * flat address variant.
2418 *
2419 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2420 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2421 * @param[in] a_GCPtrMem The memory address.
2422 * @remarks Will return/long jump on errors.
2423 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2424 */
2425#ifndef IEM_WITH_SETJMP
2426# define IEM_MC_MEM_FLAT_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2427 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2428 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(RTUINT128) - 1))
2429#else
2430# define IEM_MC_MEM_FLAT_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2431 (a_pu128Mem) = iemMemFlatMapDataU128RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2432#endif
2433
2434/**
2435 * Maps guest memory for dqword writeonly direct (or bounce) buffer acccess,
2436 * flat address variant.
2437 *
2438 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2439 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2440 * @param[in] a_GCPtrMem The memory address.
2441 * @remarks Will return/long jump on errors.
2442 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2443 */
2444#ifndef IEM_WITH_SETJMP
2445# define IEM_MC_MEM_FLAT_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2446 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2447 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(RTUINT128) - 1))
2448#else
2449# define IEM_MC_MEM_FLAT_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2450 (a_pu128Mem) = iemMemFlatMapDataU128WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2451#endif
2452
2453/**
2454 * Maps guest memory for dqword readonly direct (or bounce) buffer acccess, flat
2455 * address variant.
2456 *
2457 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2458 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2459 * @param[in] a_GCPtrMem The memory address.
2460 * @remarks Will return/long jump on errors.
2461 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2462 */
2463#ifndef IEM_WITH_SETJMP
2464# define IEM_MC_MEM_FLAT_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2465 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2466 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(RTUINT128) - 1))
2467#else
2468# define IEM_MC_MEM_FLAT_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2469 (a_pu128Mem) = iemMemFlatMapDataU128RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2470#endif
2471
2472
2473/* misc */
2474
2475/**
2476 * Maps guest memory for 80-bit float writeonly direct (or bounce) buffer acccess.
2477 *
2478 * @param[out] a_pr80Mem Where to return the pointer to the mapping.
2479 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2480 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2481 * @param[in] a_GCPtrMem The memory address.
2482 * @remarks Will return/long jump on errors.
2483 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2484 */
2485#ifndef IEM_WITH_SETJMP
2486# define IEM_MC_MEM_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2487 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pr80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), (a_iSeg), \
2488 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2489#else
2490# define IEM_MC_MEM_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2491 (a_pr80Mem) = iemMemMapDataR80WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2492#endif
2493
2494/**
2495 * Maps guest memory for 80-bit float writeonly direct (or bounce) buffer acccess.
2496 *
2497 * @param[out] a_pr80Mem Where to return the pointer to the mapping.
2498 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2499 * @param[in] a_GCPtrMem The memory address.
2500 * @remarks Will return/long jump on errors.
2501 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2502 */
2503#ifndef IEM_WITH_SETJMP
2504# define IEM_MC_MEM_FLAT_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_GCPtrMem) \
2505 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pr80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), UINT8_MAX, \
2506 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2507#else
2508# define IEM_MC_MEM_FLAT_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_GCPtrMem) \
2509 (a_pr80Mem) = iemMemFlatMapDataR80WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2510#endif
2511
2512
2513/**
2514 * Maps guest memory for 80-bit BCD writeonly direct (or bounce) buffer acccess.
2515 *
2516 * @param[out] a_pd80Mem Where to return the pointer to the mapping.
2517 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2518 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2519 * @param[in] a_GCPtrMem The memory address.
2520 * @remarks Will return/long jump on errors.
2521 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2522 */
2523#ifndef IEM_WITH_SETJMP
2524# define IEM_MC_MEM_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2525 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pd80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), (a_iSeg), \
2526 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2527#else
2528# define IEM_MC_MEM_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2529 (a_pd80Mem) = iemMemMapDataD80WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2530#endif
2531
2532/**
2533 * Maps guest memory for 80-bit BCD writeonly direct (or bounce) buffer acccess.
2534 *
2535 * @param[out] a_pd80Mem Where to return the pointer to the mapping.
2536 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2537 * @param[in] a_GCPtrMem The memory address.
2538 * @remarks Will return/long jump on errors.
2539 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2540 */
2541#ifndef IEM_WITH_SETJMP
2542# define IEM_MC_MEM_FLAT_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_GCPtrMem) \
2543 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pd80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), UINT8_MAX, \
2544 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2545#else
2546# define IEM_MC_MEM_FLAT_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_GCPtrMem) \
2547 (a_pd80Mem) = iemMemFlatMapDataD80WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2548#endif
2549
2550
2551
2552/* commit + unmap */
2553
2554/** Commits the memory and unmaps guest memory previously mapped RW.
2555 * @remarks May return.
2556 * @note Implictly frees the a_bMapInfo variable.
2557 */
2558#ifndef IEM_WITH_SETJMP
2559# define IEM_MC_MEM_COMMIT_AND_UNMAP_RW(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2560#else
2561# define IEM_MC_MEM_COMMIT_AND_UNMAP_RW(a_bMapInfo) iemMemCommitAndUnmapRwJmp(pVCpu, (a_bMapInfo))
2562#endif
2563
2564/** Commits the memory and unmaps guest memory previously mapped ATOMIC.
2565 * @remarks May return.
2566 * @note Implictly frees the a_bMapInfo variable.
2567 */
2568#ifndef IEM_WITH_SETJMP
2569# define IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2570#else
2571# define IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC(a_bMapInfo) iemMemCommitAndUnmapRwJmp(pVCpu, (a_bMapInfo))
2572#endif
2573
2574/** Commits the memory and unmaps guest memory previously mapped W.
2575 * @remarks May return.
2576 * @note Implictly frees the a_bMapInfo variable.
2577 */
2578#ifndef IEM_WITH_SETJMP
2579# define IEM_MC_MEM_COMMIT_AND_UNMAP_WO(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2580#else
2581# define IEM_MC_MEM_COMMIT_AND_UNMAP_WO(a_bMapInfo) iemMemCommitAndUnmapWoJmp(pVCpu, (a_bMapInfo))
2582#endif
2583
2584/** Commits the memory and unmaps guest memory previously mapped R.
2585 * @remarks May return.
2586 * @note Implictly frees the a_bMapInfo variable.
2587 */
2588#ifndef IEM_WITH_SETJMP
2589# define IEM_MC_MEM_COMMIT_AND_UNMAP_RO(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2590#else
2591# define IEM_MC_MEM_COMMIT_AND_UNMAP_RO(a_bMapInfo) iemMemCommitAndUnmapRoJmp(pVCpu, (a_bMapInfo))
2592#endif
2593
2594
2595/** Commits the memory and unmaps the guest memory unless the FPU status word
2596 * indicates (@a a_u16FSW) and FPU control word indicates a pending exception
2597 * that would cause FLD not to store.
2598 *
2599 * The current understanding is that \#O, \#U, \#IA and \#IS will prevent a
2600 * store, while \#P will not.
2601 *
2602 * @remarks May in theory return - for now.
2603 * @note Implictly frees both the a_bMapInfo and a_u16FSW variables.
2604 */
2605#ifndef IEM_WITH_SETJMP
2606# define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE_WO(a_bMapInfo, a_u16FSW) do { \
2607 if ( !(a_u16FSW & X86_FSW_ES) \
2608 || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
2609 & ~(pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_MASK_ALL) ) ) \
2610 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo)); \
2611 else \
2612 iemMemRollbackAndUnmap(pVCpu, (a_pvMem), IEM_ACCESS_DATA_W); \
2613 } while (0)
2614#else
2615# define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE_WO(a_bMapInfo, a_u16FSW) do { \
2616 if ( !(a_u16FSW & X86_FSW_ES) \
2617 || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
2618 & ~(pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_MASK_ALL) ) ) \
2619 iemMemCommitAndUnmapWoJmp(pVCpu, a_bMapInfo); \
2620 else \
2621 iemMemRollbackAndUnmapWo(pVCpu, a_bMapInfo); \
2622 } while (0)
2623#endif
2624
2625/** Rolls back (conceptually only, assumes no writes) and unmaps the guest memory.
2626 * @note Implictly frees the a_bMapInfo variable. */
2627#ifndef IEM_WITH_SETJMP
2628# define IEM_MC_MEM_ROLLBACK_AND_UNMAP_WO(a_bMapInfo) iemMemRollbackAndUnmap(pVCpu, a_bMapInfo)
2629#else
2630# define IEM_MC_MEM_ROLLBACK_AND_UNMAP_WO(a_bMapInfo) iemMemRollbackAndUnmapWo(pVCpu, a_bMapInfo)
2631#endif
2632
2633
2634
2635/** Calculate efficient address from R/M. */
2636#ifndef IEM_WITH_SETJMP
2637# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \
2638 IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddr(pVCpu, (a_bRm), (a_cbImmAndRspOffset), &(a_GCPtrEff)))
2639#else
2640# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \
2641 ((a_GCPtrEff) = iemOpHlpCalcRmEffAddrJmp(pVCpu, (a_bRm), (a_cbImmAndRspOffset)))
2642#endif
2643
2644
2645/** The @a a_fSupportedHosts mask are ORed together RT_ARCH_VAL_XXX values. */
2646#define IEM_MC_NATIVE_IF(a_fSupportedHosts) if (false) {
2647#define IEM_MC_NATIVE_ELSE() } else {
2648#define IEM_MC_NATIVE_ENDIF() } ((void)0)
2649
2650#define IEM_MC_NATIVE_EMIT_0(a_fnEmitter)
2651#define IEM_MC_NATIVE_EMIT_1(a_fnEmitter, a0) (void)(a0)
2652#define IEM_MC_NATIVE_EMIT_2(a_fnEmitter, a0, a1) (void)(a0), (void)(a1)
2653#define IEM_MC_NATIVE_EMIT_3(a_fnEmitter, a0, a1, a2) (void)(a0), (void)(a1), (void)(a2)
2654#define IEM_MC_NATIVE_EMIT_4(a_fnEmitter, a0, a1, a2, a3) (void)(a0), (void)(a1), (void)(a2), (void)(a3)
2655#define IEM_MC_NATIVE_EMIT_5(a_fnEmitter, a0, a1, a2, a3, a4) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4)
2656#define IEM_MC_NATIVE_EMIT_6(a_fnEmitter, a0, a1, a2, a3, a4, a5) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4), (void)(a5)
2657#define IEM_MC_NATIVE_EMIT_7(a_fnEmitter, a0, a1, a2, a3, a4, a5, a6) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4), (void)(a5), (void)(a6)
2658#define IEM_MC_NATIVE_EMIT_8(a_fnEmitter, a0, a1, a2, a3, a4, a5, a6, a7) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4), (void)(a5), (void)(a6), (void)(a7)
2659
2660/** This can be used to direct the register allocator when dealing with
2661 * x86/AMD64 instructions (like SHL reg,CL) that takes fixed registers. */
2662#define IEM_MC_NATIVE_SET_AMD64_HOST_REG_FOR_LOCAL(a_VarNm, a_idxHostReg) ((void)0)
2663
2664
2665#define IEM_MC_CALL_VOID_AIMPL_0(a_pfn) (a_pfn)()
2666#define IEM_MC_CALL_VOID_AIMPL_1(a_pfn, a0) (a_pfn)((a0))
2667#define IEM_MC_CALL_VOID_AIMPL_2(a_pfn, a0, a1) (a_pfn)((a0), (a1))
2668#define IEM_MC_CALL_VOID_AIMPL_3(a_pfn, a0, a1, a2) (a_pfn)((a0), (a1), (a2))
2669#define IEM_MC_CALL_VOID_AIMPL_4(a_pfn, a0, a1, a2, a3) (a_pfn)((a0), (a1), (a2), (a3))
2670#define IEM_MC_CALL_AIMPL_3(a_rcType, a_rc, a_pfn, a0, a1, a2) a_rcType const a_rc = (a_pfn)((a0), (a1), (a2))
2671#define IEM_MC_CALL_AIMPL_4(a_rcType, a_rc, a_pfn, a0, a1, a2, a3) a_rcType const a_rc = (a_pfn)((a0), (a1), (a2), (a3))
2672
2673
2674/** @def IEM_MC_CALL_CIMPL_HLP_RET
2675 * Helper macro for check that all important IEM_CIMPL_F_XXX bits are set.
2676 */
2677#ifdef VBOX_STRICT
2678# define IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, a_CallExpr) \
2679 do { \
2680 uint8_t const cbInstr = IEM_GET_INSTR_LEN(pVCpu); /* may be flushed */ \
2681 uint16_t const uCsBefore = pVCpu->cpum.GstCtx.cs.Sel; \
2682 uint64_t const uRipBefore = pVCpu->cpum.GstCtx.rip; \
2683 uint32_t const fEflBefore = pVCpu->cpum.GstCtx.eflags.u; \
2684 uint32_t const fExecBefore = pVCpu->iem.s.fExec; \
2685 VBOXSTRICTRC const rcStrictHlp = a_CallExpr; \
2686 if (rcStrictHlp == VINF_SUCCESS) \
2687 { \
2688 uint64_t const fRipMask = (pVCpu->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT ? UINT64_MAX : UINT32_MAX; \
2689 AssertMsg( ((a_fFlags) & IEM_CIMPL_F_BRANCH_ANY) \
2690 || ( ((uRipBefore + cbInstr) & fRipMask) == pVCpu->cpum.GstCtx.rip \
2691 && uCsBefore == pVCpu->cpum.GstCtx.cs.Sel) \
2692 || ( ((a_fFlags) & IEM_CIMPL_F_REP) \
2693 && uRipBefore == pVCpu->cpum.GstCtx.rip \
2694 && uCsBefore == pVCpu->cpum.GstCtx.cs.Sel), \
2695 ("CS:RIP=%04x:%08RX64 + %x -> %04x:%08RX64, expected %04x:%08RX64\n", uCsBefore, uRipBefore, cbInstr, \
2696 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uCsBefore, (uRipBefore + cbInstr) & fRipMask)); \
2697 if ((a_fFlags) & IEM_CIMPL_F_RFLAGS) \
2698 { /* No need to check fEflBefore */ Assert(!((a_fFlags) & IEM_CIMPL_F_STATUS_FLAGS)); } \
2699 else if ((a_fFlags) & IEM_CIMPL_F_STATUS_FLAGS) \
2700 AssertMsg( (pVCpu->cpum.GstCtx.eflags.u & ~(X86_EFL_STATUS_BITS | X86_EFL_RF)) \
2701 == (fEflBefore & ~(X86_EFL_STATUS_BITS | X86_EFL_RF)), \
2702 ("EFL=%#RX32 -> %#RX32\n", fEflBefore, pVCpu->cpum.GstCtx.eflags.u)); \
2703 else \
2704 AssertMsg( (pVCpu->cpum.GstCtx.eflags.u & ~(X86_EFL_RF)) \
2705 == (fEflBefore & ~(X86_EFL_RF)), \
2706 ("EFL=%#RX32 -> %#RX32\n", fEflBefore, pVCpu->cpum.GstCtx.eflags.u)); \
2707 if (!((a_fFlags) & IEM_CIMPL_F_MODE)) \
2708 { \
2709 uint32_t fExecRecalc = iemCalcExecFlags(pVCpu) | (pVCpu->iem.s.fExec & IEM_F_USER_OPTS); \
2710 AssertMsg( fExecBefore == fExecRecalc \
2711 /* in case ES, DS or SS was external initially (happens alot with HM): */ \
2712 || ( fExecBefore == (fExecRecalc & ~IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK) \
2713 && (fExecRecalc & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT), \
2714 ("fExec=%#x -> %#x (diff %#x)\n", fExecBefore, fExecRecalc, fExecBefore ^ fExecRecalc)); \
2715 } \
2716 } \
2717 return rcStrictHlp; \
2718 } while (0)
2719#else
2720# define IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, a_CallExpr) return a_CallExpr
2721#endif
2722
2723/**
2724 * Defers the rest of the instruction emulation to a C implementation routine
2725 * and returns, only taking the standard parameters.
2726 *
2727 * @param a_fFlags IEM_CIMPL_F_XXX.
2728 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2729 * in the native recompiler.
2730 * @param a_pfnCImpl The pointer to the C routine.
2731 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
2732 */
2733#define IEM_MC_CALL_CIMPL_0(a_fFlags, a_fGstShwFlush, a_pfnCImpl) \
2734 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu)))
2735
2736/**
2737 * Defers the rest of instruction emulation to a C implementation routine and
2738 * returns, taking one argument in addition to the standard ones.
2739 *
2740 * @param a_fFlags IEM_CIMPL_F_XXX.
2741 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2742 * in the native recompiler.
2743 * @param a_pfnCImpl The pointer to the C routine.
2744 * @param a0 The argument.
2745 */
2746#define IEM_MC_CALL_CIMPL_1(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
2747 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0))
2748
2749/**
2750 * Defers the rest of the instruction emulation to a C implementation routine
2751 * and returns, taking two arguments in addition to the standard ones.
2752 *
2753 * @param a_fFlags IEM_CIMPL_F_XXX.
2754 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2755 * in the native recompiler.
2756 * @param a_pfnCImpl The pointer to the C routine.
2757 * @param a0 The first extra argument.
2758 * @param a1 The second extra argument.
2759 */
2760#define IEM_MC_CALL_CIMPL_2(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
2761 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1))
2762
2763/**
2764 * Defers the rest of the instruction emulation to a C implementation routine
2765 * and returns, taking three arguments in addition to the standard ones.
2766 *
2767 * @param a_fFlags IEM_CIMPL_F_XXX.
2768 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2769 * in the native recompiler.
2770 * @param a_pfnCImpl The pointer to the C routine.
2771 * @param a0 The first extra argument.
2772 * @param a1 The second extra argument.
2773 * @param a2 The third extra argument.
2774 */
2775#define IEM_MC_CALL_CIMPL_3(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
2776 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2))
2777
2778/**
2779 * Defers the rest of the instruction emulation to a C implementation routine
2780 * and returns, taking four arguments in addition to the standard ones.
2781 *
2782 * @param a_fFlags IEM_CIMPL_F_XXX.
2783 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2784 * in the native recompiler.
2785 * @param a_pfnCImpl The pointer to the C routine.
2786 * @param a0 The first extra argument.
2787 * @param a1 The second extra argument.
2788 * @param a2 The third extra argument.
2789 * @param a3 The fourth extra argument.
2790 */
2791#define IEM_MC_CALL_CIMPL_4(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3) \
2792 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3))
2793
2794/**
2795 * Defers the rest of the instruction emulation to a C implementation routine
2796 * and returns, taking two arguments in addition to the standard ones.
2797 *
2798 * @param a_fFlags IEM_CIMPL_F_XXX.
2799 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2800 * in the native recompiler.
2801 * @param a_pfnCImpl The pointer to the C routine.
2802 * @param a0 The first extra argument.
2803 * @param a1 The second extra argument.
2804 * @param a2 The third extra argument.
2805 * @param a3 The fourth extra argument.
2806 * @param a4 The fifth extra argument.
2807 */
2808#define IEM_MC_CALL_CIMPL_5(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3, a4) \
2809 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3, a4))
2810
2811/**
2812 * Defers the entire instruction emulation to a C implementation routine and
2813 * returns, only taking the standard parameters.
2814 *
2815 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2816 *
2817 * @param a_fFlags IEM_CIMPL_F_XXX.
2818 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2819 * in the native recompiler.
2820 * @param a_pfnCImpl The pointer to the C routine.
2821 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
2822 */
2823#define IEM_MC_DEFER_TO_CIMPL_0_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl) \
2824 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu)))
2825
2826/**
2827 * Defers the entire instruction emulation to a C implementation routine and
2828 * returns, taking one argument in addition to the standard ones.
2829 *
2830 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2831 *
2832 * @param a_fFlags IEM_CIMPL_F_XXX.
2833 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2834 * in the native recompiler.
2835 * @param a_pfnCImpl The pointer to the C routine.
2836 * @param a0 The argument.
2837 */
2838#define IEM_MC_DEFER_TO_CIMPL_1_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
2839 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0))
2840
2841/**
2842 * Defers the entire instruction emulation to a C implementation routine and
2843 * returns, taking two arguments in addition to the standard ones.
2844 *
2845 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2846 *
2847 * @param a_fFlags IEM_CIMPL_F_XXX.
2848 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2849 * in the native recompiler.
2850 * @param a_pfnCImpl The pointer to the C routine.
2851 * @param a0 The first extra argument.
2852 * @param a1 The second extra argument.
2853 */
2854#define IEM_MC_DEFER_TO_CIMPL_2_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
2855 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1))
2856
2857/**
2858 * Defers the entire instruction emulation to a C implementation routine and
2859 * returns, taking three arguments in addition to the standard ones.
2860 *
2861 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2862 *
2863 * @param a_fFlags IEM_CIMPL_F_XXX.
2864 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2865 * in the native recompiler.
2866 * @param a_pfnCImpl The pointer to the C routine.
2867 * @param a0 The first extra argument.
2868 * @param a1 The second extra argument.
2869 * @param a2 The third extra argument.
2870 */
2871#define IEM_MC_DEFER_TO_CIMPL_3_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
2872 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2))
2873
2874
2875/**
2876 * Calls a FPU assembly implementation taking one visible argument.
2877 *
2878 * @param a_pfnAImpl Pointer to the assembly FPU routine.
2879 * @param a0 The first extra argument.
2880 */
2881#define IEM_MC_CALL_FPU_AIMPL_1(a_pfnAImpl, a0) \
2882 do { \
2883 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0)); \
2884 } while (0)
2885
2886/**
2887 * Calls a FPU assembly implementation taking two visible arguments.
2888 *
2889 * @param a_pfnAImpl Pointer to the assembly FPU routine.
2890 * @param a0 The first extra argument.
2891 * @param a1 The second extra argument.
2892 */
2893#define IEM_MC_CALL_FPU_AIMPL_2(a_pfnAImpl, a0, a1) \
2894 do { \
2895 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
2896 } while (0)
2897
2898/**
2899 * Calls a FPU assembly implementation taking three visible arguments.
2900 *
2901 * @param a_pfnAImpl Pointer to the assembly FPU routine.
2902 * @param a0 The first extra argument.
2903 * @param a1 The second extra argument.
2904 * @param a2 The third extra argument.
2905 */
2906#define IEM_MC_CALL_FPU_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
2907 do { \
2908 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
2909 } while (0)
2910
2911#define IEM_MC_SET_FPU_RESULT(a_FpuData, a_FSW, a_pr80Value) \
2912 do { \
2913 (a_FpuData).FSW = (a_FSW); \
2914 (a_FpuData).r80Result = *(a_pr80Value); \
2915 } while (0)
2916
2917/** Pushes FPU result onto the stack. */
2918#define IEM_MC_PUSH_FPU_RESULT(a_FpuData, a_uFpuOpcode) \
2919 iemFpuPushResult(pVCpu, &a_FpuData, a_uFpuOpcode)
2920/** Pushes FPU result onto the stack and sets the FPUDP. */
2921#define IEM_MC_PUSH_FPU_RESULT_MEM_OP(a_FpuData, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2922 iemFpuPushResultWithMemOp(pVCpu, &a_FpuData, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2923
2924/** Replaces ST0 with value one and pushes value 2 onto the FPU stack. */
2925#define IEM_MC_PUSH_FPU_RESULT_TWO(a_FpuDataTwo, a_uFpuOpcode) \
2926 iemFpuPushResultTwo(pVCpu, &a_FpuDataTwo, a_uFpuOpcode)
2927
2928/** Stores FPU result in a stack register. */
2929#define IEM_MC_STORE_FPU_RESULT(a_FpuData, a_iStReg, a_uFpuOpcode) \
2930 iemFpuStoreResult(pVCpu, &a_FpuData, a_iStReg, a_uFpuOpcode)
2931/** Stores FPU result in a stack register and pops the stack. */
2932#define IEM_MC_STORE_FPU_RESULT_THEN_POP(a_FpuData, a_iStReg, a_uFpuOpcode) \
2933 iemFpuStoreResultThenPop(pVCpu, &a_FpuData, a_iStReg, a_uFpuOpcode)
2934/** Stores FPU result in a stack register and sets the FPUDP. */
2935#define IEM_MC_STORE_FPU_RESULT_MEM_OP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2936 iemFpuStoreResultWithMemOp(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2937/** Stores FPU result in a stack register, sets the FPUDP, and pops the
2938 * stack. */
2939#define IEM_MC_STORE_FPU_RESULT_WITH_MEM_OP_THEN_POP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2940 iemFpuStoreResultWithMemOpThenPop(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2941
2942/** Only update the FOP, FPUIP, and FPUCS. (For FNOP.) */
2943#define IEM_MC_UPDATE_FPU_OPCODE_IP(a_uFpuOpcode) \
2944 iemFpuUpdateOpcodeAndIp(pVCpu, a_uFpuOpcode)
2945/** Free a stack register (for FFREE and FFREEP). */
2946#define IEM_MC_FPU_STACK_FREE(a_iStReg) \
2947 iemFpuStackFree(pVCpu, a_iStReg)
2948/** Increment the FPU stack pointer. */
2949#define IEM_MC_FPU_STACK_INC_TOP() \
2950 iemFpuStackIncTop(pVCpu)
2951/** Decrement the FPU stack pointer. */
2952#define IEM_MC_FPU_STACK_DEC_TOP() \
2953 iemFpuStackDecTop(pVCpu)
2954
2955/** Updates the FSW, FOP, FPUIP, and FPUCS. */
2956#define IEM_MC_UPDATE_FSW(a_u16FSW, a_uFpuOpcode) \
2957 iemFpuUpdateFSW(pVCpu, a_u16FSW, a_uFpuOpcode)
2958/** Updates the FSW with a constant value as well as FOP, FPUIP, and FPUCS. */
2959#define IEM_MC_UPDATE_FSW_CONST(a_u16FSW, a_uFpuOpcode) \
2960 iemFpuUpdateFSW(pVCpu, a_u16FSW, a_uFpuOpcode)
2961/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS. */
2962#define IEM_MC_UPDATE_FSW_WITH_MEM_OP(a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2963 iemFpuUpdateFSWWithMemOp(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2964/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack. */
2965#define IEM_MC_UPDATE_FSW_THEN_POP(a_u16FSW, a_uFpuOpcode) \
2966 iemFpuUpdateFSWThenPop(pVCpu, a_u16FSW, a_uFpuOpcode)
2967/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP and FPUDS, and then pops the
2968 * stack. */
2969#define IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2970 iemFpuUpdateFSWWithMemOpThenPop(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2971/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack twice. */
2972#define IEM_MC_UPDATE_FSW_THEN_POP_POP(a_u16FSW, a_uFpuOpcode) \
2973 iemFpuUpdateFSWThenPopPop(pVCpu, a_u16FSW, a_uFpuOpcode)
2974
2975/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. */
2976#define IEM_MC_FPU_STACK_UNDERFLOW(a_iStDst, a_uFpuOpcode) \
2977 iemFpuStackUnderflow(pVCpu, a_iStDst, a_uFpuOpcode)
2978/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
2979 * stack. */
2980#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(a_iStDst, a_uFpuOpcode) \
2981 iemFpuStackUnderflowThenPop(pVCpu, a_iStDst, a_uFpuOpcode)
2982/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
2983 * FPUDS. */
2984#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2985 iemFpuStackUnderflowWithMemOp(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2986/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
2987 * FPUDS. Pops stack. */
2988#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2989 iemFpuStackUnderflowWithMemOpThenPop(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2990/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
2991 * stack twice. */
2992#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP(a_uFpuOpcode) \
2993 iemFpuStackUnderflowThenPopPop(pVCpu, a_uFpuOpcode)
2994/** Raises a FPU stack underflow exception for an instruction pushing a result
2995 * value onto the stack. Sets FPUIP, FPUCS and FOP. */
2996#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW(a_uFpuOpcode) \
2997 iemFpuStackPushUnderflow(pVCpu, a_uFpuOpcode)
2998/** Raises a FPU stack underflow exception for an instruction pushing a result
2999 * value onto the stack and replacing ST0. Sets FPUIP, FPUCS and FOP. */
3000#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO(a_uFpuOpcode) \
3001 iemFpuStackPushUnderflowTwo(pVCpu, a_uFpuOpcode)
3002
3003/** Raises a FPU stack overflow exception as part of a push attempt. Sets
3004 * FPUIP, FPUCS and FOP. */
3005#define IEM_MC_FPU_STACK_PUSH_OVERFLOW(a_uFpuOpcode) \
3006 iemFpuStackPushOverflow(pVCpu, a_uFpuOpcode)
3007/** Raises a FPU stack overflow exception as part of a push attempt. Sets
3008 * FPUIP, FPUCS, FOP, FPUDP and FPUDS. */
3009#define IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3010 iemFpuStackPushOverflowWithMemOp(pVCpu, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3011/** Prepares for using the FPU state.
3012 * Ensures that we can use the host FPU in the current context (RC+R0.
3013 * Ensures the guest FPU state in the CPUMCTX is up to date. */
3014#define IEM_MC_PREPARE_FPU_USAGE() iemFpuPrepareUsage(pVCpu)
3015/** Actualizes the guest FPU state so it can be accessed read-only fashion. */
3016#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ() iemFpuActualizeStateForRead(pVCpu)
3017/** Actualizes the guest FPU state so it can be accessed and modified. */
3018#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE() iemFpuActualizeStateForChange(pVCpu)
3019
3020/** Prepares for using the SSE state.
3021 * Ensures that we can use the host SSE/FPU in the current context (RC+R0.
3022 * Ensures the guest SSE state in the CPUMCTX is up to date. */
3023#define IEM_MC_PREPARE_SSE_USAGE() iemFpuPrepareUsageSse(pVCpu)
3024/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
3025#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_READ() iemFpuActualizeSseStateForRead(pVCpu)
3026/** Actualizes the guest XMM0..15 and MXCSR register state for read-write access. */
3027#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_CHANGE() iemFpuActualizeSseStateForChange(pVCpu)
3028
3029/** Prepares for using the AVX state.
3030 * Ensures that we can use the host AVX/FPU in the current context (RC+R0.
3031 * Ensures the guest AVX state in the CPUMCTX is up to date.
3032 * @note This will include the AVX512 state too when support for it is added
3033 * due to the zero extending feature of VEX instruction. */
3034#define IEM_MC_PREPARE_AVX_USAGE() iemFpuPrepareUsageAvx(pVCpu)
3035/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
3036#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_READ() iemFpuActualizeAvxStateForRead(pVCpu)
3037/** Actualizes the guest YMM0..15 and MXCSR register state for read-write access. */
3038#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_CHANGE() iemFpuActualizeAvxStateForChange(pVCpu)
3039
3040/**
3041 * Calls a MMX assembly implementation taking two visible arguments.
3042 *
3043 * @param a_pfnAImpl Pointer to the assembly MMX routine.
3044 * @param a0 The first extra argument.
3045 * @param a1 The second extra argument.
3046 */
3047#define IEM_MC_CALL_MMX_AIMPL_2(a_pfnAImpl, a0, a1) \
3048 do { \
3049 IEM_MC_PREPARE_FPU_USAGE(); \
3050 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
3051 } while (0)
3052
3053/**
3054 * Calls a MMX assembly implementation taking three visible arguments.
3055 *
3056 * @param a_pfnAImpl Pointer to the assembly MMX routine.
3057 * @param a0 The first extra argument.
3058 * @param a1 The second extra argument.
3059 * @param a2 The third extra argument.
3060 */
3061#define IEM_MC_CALL_MMX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
3062 do { \
3063 IEM_MC_PREPARE_FPU_USAGE(); \
3064 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
3065 } while (0)
3066
3067
3068/**
3069 * Calls a SSE assembly implementation taking two visible arguments.
3070 *
3071 * @param a_pfnAImpl Pointer to the assembly SSE routine.
3072 * @param a0 The first extra argument.
3073 * @param a1 The second extra argument.
3074 */
3075#define IEM_MC_CALL_SSE_AIMPL_2(a_pfnAImpl, a0, a1) \
3076 do { \
3077 IEM_MC_PREPARE_SSE_USAGE(); \
3078 pVCpu->cpum.GstCtx.XState.x87.MXCSR = a_pfnAImpl(pVCpu->cpum.GstCtx.XState.x87.MXCSR & ~X86_MXCSR_XCPT_FLAGS, \
3079 (a0), (a1)); \
3080 } while (0)
3081
3082/**
3083 * Calls a SSE assembly implementation taking three visible arguments.
3084 *
3085 * @param a_pfnAImpl Pointer to the assembly SSE routine.
3086 * @param a0 The first extra argument.
3087 * @param a1 The second extra argument.
3088 * @param a2 The third extra argument.
3089 */
3090#define IEM_MC_CALL_SSE_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
3091 do { \
3092 IEM_MC_PREPARE_SSE_USAGE(); \
3093 pVCpu->cpum.GstCtx.XState.x87.MXCSR = a_pfnAImpl(pVCpu->cpum.GstCtx.XState.x87.MXCSR & ~X86_MXCSR_XCPT_FLAGS, \
3094 (a0), (a1), (a2)); \
3095 } while (0)
3096
3097
3098/**
3099 * Calls a AVX assembly implementation taking two visible arguments.
3100 *
3101 * There is one implicit zero'th argument, a pointer to the extended state.
3102 *
3103 * @param a_pfnAImpl Pointer to the assembly AVX routine.
3104 * @param a0 The first extra argument.
3105 * @param a1 The second extra argument.
3106 */
3107#define IEM_MC_CALL_AVX_AIMPL_2(a_pfnAImpl, a0, a1) \
3108 do { \
3109 IEM_MC_PREPARE_AVX_USAGE(); \
3110 pVCpu->cpum.GstCtx.XState.x87.MXCSR = a_pfnAImpl(pVCpu->cpum.GstCtx.XState.x87.MXCSR & ~X86_MXCSR_XCPT_FLAGS, \
3111 (a0), (a1)); \
3112 } while (0)
3113
3114/**
3115 * Calls a AVX assembly implementation taking three visible arguments.
3116 *
3117 * There is one implicit zero'th argument, a pointer to the extended state.
3118 *
3119 * @param a_pfnAImpl Pointer to the assembly AVX routine.
3120 * @param a0 The first extra argument.
3121 * @param a1 The second extra argument.
3122 * @param a2 The third extra argument.
3123 */
3124#define IEM_MC_CALL_AVX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
3125 do { \
3126 IEM_MC_PREPARE_AVX_USAGE(); \
3127 pVCpu->cpum.GstCtx.XState.x87.MXCSR = a_pfnAImpl(pVCpu->cpum.GstCtx.XState.x87.MXCSR & ~X86_MXCSR_XCPT_FLAGS, \
3128 (a0), (a1), (a2)); \
3129 } while (0)
3130
3131/** @note Not for IOPL or IF testing. */
3132#define IEM_MC_IF_EFL_BIT_SET(a_fBit) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) {
3133/** @note Not for IOPL or IF testing. */
3134#define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit))) {
3135/** @note Not for IOPL or IF testing. */
3136#define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBits)) {
3137/** @note Not for IOPL or IF testing. */
3138#define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBits))) {
3139/** @note Not for IOPL or IF testing. */
3140#define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
3141 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3142 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3143/** @note Not for IOPL or IF testing. */
3144#define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
3145 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3146 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3147/** @note Not for IOPL or IF testing. */
3148#define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
3149 if ( (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
3150 || !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3151 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3152/** @note Not for IOPL or IF testing. */
3153#define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
3154 if ( !(pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
3155 && !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3156 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3157#define IEM_MC_IF_CX_IS_NZ() if (pVCpu->cpum.GstCtx.cx != 0) {
3158#define IEM_MC_IF_ECX_IS_NZ() if (pVCpu->cpum.GstCtx.ecx != 0) {
3159#define IEM_MC_IF_RCX_IS_NZ() if (pVCpu->cpum.GstCtx.rcx != 0) {
3160#define IEM_MC_IF_CX_IS_NOT_ONE() if (pVCpu->cpum.GstCtx.cx != 1) {
3161#define IEM_MC_IF_ECX_IS_NOT_ONE() if (pVCpu->cpum.GstCtx.ecx != 1) {
3162#define IEM_MC_IF_RCX_IS_NOT_ONE() if (pVCpu->cpum.GstCtx.rcx != 1) {
3163/** @note Not for IOPL or IF testing. */
3164#define IEM_MC_IF_CX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
3165 if ( pVCpu->cpum.GstCtx.cx != 1 \
3166 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3167/** @note Not for IOPL or IF testing. */
3168#define IEM_MC_IF_ECX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
3169 if ( pVCpu->cpum.GstCtx.ecx != 1 \
3170 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3171/** @note Not for IOPL or IF testing. */
3172#define IEM_MC_IF_RCX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
3173 if ( pVCpu->cpum.GstCtx.rcx != 1 \
3174 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3175/** @note Not for IOPL or IF testing. */
3176#define IEM_MC_IF_CX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
3177 if ( pVCpu->cpum.GstCtx.cx != 1 \
3178 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3179/** @note Not for IOPL or IF testing. */
3180#define IEM_MC_IF_ECX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
3181 if ( pVCpu->cpum.GstCtx.ecx != 1 \
3182 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3183/** @note Not for IOPL or IF testing. */
3184#define IEM_MC_IF_RCX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
3185 if ( pVCpu->cpum.GstCtx.rcx != 1 \
3186 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3187#define IEM_MC_IF_LOCAL_IS_Z(a_Local) if ((a_Local) == 0) {
3188#define IEM_MC_IF_GREG_BIT_SET(a_iGReg, a_iBitNo) if (iemGRegFetchU64(pVCpu, (a_iGReg)) & RT_BIT_64(a_iBitNo)) {
3189
3190#define IEM_MC_REF_FPUREG(a_pr80Dst, a_iSt) \
3191 do { (a_pr80Dst) = &pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80; } while (0)
3192#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
3193 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
3194#define IEM_MC_IF_FPUREG_NOT_EMPTY(a_iSt) \
3195 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) == VINF_SUCCESS) {
3196#define IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(a_pr80Dst, a_iSt) \
3197 if (iemFpuStRegNotEmptyRef(pVCpu, (a_iSt), &(a_pr80Dst)) == VINF_SUCCESS) {
3198#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(a_pr80Dst0, a_iSt0, a_pr80Dst1, a_iSt1) \
3199 if (iemFpu2StRegsNotEmptyRef(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1), &(a_pr80Dst1)) == VINF_SUCCESS) {
3200#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(a_pr80Dst0, a_iSt0, a_iSt1) \
3201 if (iemFpu2StRegsNotEmptyRefFirst(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1)) == VINF_SUCCESS) {
3202#define IEM_MC_IF_FCW_IM() \
3203 if (pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_IM) {
3204
3205#define IEM_MC_ELSE() } else {
3206#define IEM_MC_ENDIF() } do {} while (0)
3207
3208
3209/** Recompiler debugging: Flush guest register shadow copies. */
3210#define IEM_MC_HINT_FLUSH_GUEST_SHADOW(g_fGstShwFlush) ((void)0)
3211
3212/** @} */
3213
3214#endif /* !VMM_INCLUDED_SRC_include_IEMMc_h */
3215
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette