VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMMc.h@ 106427

Last change on this file since 106427 was 106427, checked in by vboxsync, 6 weeks ago

VMM/IEM: Reduced the paramters for iemNativeEmitRetn. bugref:10720

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 182.4 KB
Line 
1/* $Id: IEMMc.h 106427 2024-10-17 10:59:12Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - IEM_MC_XXX.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMMc_h
29#define VMM_INCLUDED_SRC_include_IEMMc_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @name "Microcode" macros.
36 *
37 * The idea is that we should be able to use the same code to interpret
38 * instructions as well as recompiler instructions. Thus this obfuscation.
39 *
40 * @{
41 */
42
43#define IEM_MC_BEGIN(a_fMcFlags, a_fCImplFlags) {
44#define IEM_MC_END() }
45
46/** Internal macro. */
47#define IEM_MC_RETURN_ON_FAILURE(a_Expr) \
48 do \
49 { \
50 VBOXSTRICTRC rcStrict2 = a_Expr; \
51 if (rcStrict2 == VINF_SUCCESS) \
52 { /* likely */ } \
53 else \
54 return rcStrict2; \
55 } while (0)
56
57
58/** Dummy MC that prevents native recompilation. */
59#define IEM_MC_NO_NATIVE_RECOMPILE() ((void)0)
60
61/** Advances RIP, finishes the instruction and returns.
62 * This may include raising debug exceptions and such. */
63#define IEM_MC_ADVANCE_RIP_AND_FINISH() return iemRegAddToRipAndFinishingClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
64/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
65#define IEM_MC_REL_JMP_S8_AND_FINISH(a_i8) \
66 return iemRegRipRelativeJumpS8AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i8), pVCpu->iem.s.enmEffOpSize)
67/** Sets RIP (may trigger \#GP), finishes the instruction and returns.
68 * @note only usable in 16-bit op size mode. */
69#define IEM_MC_REL_JMP_S16_AND_FINISH(a_i16) \
70 return iemRegRipRelativeJumpS16AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i16))
71/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
72#define IEM_MC_REL_JMP_S32_AND_FINISH(a_i32) \
73 return iemRegRipRelativeJumpS32AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i32), pVCpu->iem.s.enmEffOpSize)
74/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
75#define IEM_MC_SET_RIP_U16_AND_FINISH(a_u16NewIP) \
76 return iemRegRipJumpU16AndFinishClearingRF((pVCpu), (a_u16NewIP), IEM_GET_INSTR_LEN(pVCpu))
77/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
78#define IEM_MC_SET_RIP_U32_AND_FINISH(a_u32NewIP) \
79 return iemRegRipJumpU32AndFinishClearingRF((pVCpu), (a_u32NewIP), IEM_GET_INSTR_LEN(pVCpu))
80/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
81#define IEM_MC_SET_RIP_U64_AND_FINISH(a_u64NewIP) \
82 return iemRegRipJumpU64AndFinishClearingRF((pVCpu), (a_u64NewIP), IEM_GET_INSTR_LEN(pVCpu))
83
84/** Sets RIP (may trigger \#GP), finishes the instruction and returns.
85 * @note only usable in 16-bit op size mode. */
86#define IEM_MC_REL_CALL_S16_AND_FINISH(a_i16) \
87 return iemRegRipRelativeCallS16AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i16))
88/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
89#define IEM_MC_REL_CALL_S32_AND_FINISH(a_i32) \
90 return iemRegEip32RelativeCallS32AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i32))
91/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
92#define IEM_MC_REL_CALL_S64_AND_FINISH(a_i64) \
93 return iemRegRip64RelativeCallS64AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i64))
94/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
95#define IEM_MC_IND_CALL_U16_AND_FINISH(a_u16NewIP) \
96 return iemRegIp16IndirectCallU16AndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u16NewIP))
97/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
98#define IEM_MC_IND_CALL_U32_AND_FINISH(a_u32NewIP) \
99 return iemRegEip32IndirectCallU32AndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u32NewIP))
100/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
101#define IEM_MC_IND_CALL_U64_AND_FINISH(a_u64NewIP) \
102 return iemRegRip64IndirectCallU64AndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u64NewIP))
103
104
105/** Fetches the near return address from the stack, sets RIP and RSP (may trigger
106 * \#GP or \#SS), finishes the instruction and returns. */
107#define IEM_MC_RETN_AND_FINISH(a_cbPopArgs) \
108 return iemRegRipNearReturnAndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_cbPopArgs), pVCpu->iem.s.enmEffOpSize)
109
110
111#define IEM_MC_RAISE_DIVIDE_ERROR_IF_LOCAL_IS_ZERO(a_uVar) \
112 do { \
113 if (RT_LIKELY((a_uVar) != 0)) \
114 { /* probable */ } \
115 else return iemRaiseDivideError(pVCpu); \
116 } while (0)
117#define IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() \
118 do { \
119 if (RT_LIKELY(!(pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)))) \
120 { /* probable */ } \
121 else return iemRaiseDeviceNotAvailable(pVCpu); \
122 } while (0)
123#define IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() \
124 do { \
125 if (RT_LIKELY(!((pVCpu->cpum.GstCtx.cr0 & (X86_CR0_MP | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS)))) \
126 { /* probable */ } \
127 else return iemRaiseDeviceNotAvailable(pVCpu); \
128 } while (0)
129#define IEM_MC_MAYBE_RAISE_FPU_XCPT() \
130 do { \
131 if (RT_LIKELY(!(pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES))) \
132 { /* probable */ } \
133 else return iemRaiseMathFault(pVCpu); \
134 } while (0)
135#define IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() \
136 do { \
137 /* Since none of the bits we compare from XCR0, CR4 and CR0 overlap, it can \
138 be reduced to a single compare branch in the more probably code path. */ \
139 if (RT_LIKELY( ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) \
140 | (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) \
141 | (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)) \
142 == (XSAVE_C_YMM | XSAVE_C_SSE | X86_CR4_OSXSAVE))) \
143 { /* probable */ } \
144 else if ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) != (XSAVE_C_YMM | XSAVE_C_SSE) \
145 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)) \
146 return iemRaiseUndefinedOpcode(pVCpu); \
147 else \
148 return iemRaiseDeviceNotAvailable(pVCpu); \
149 } while (0)
150AssertCompile(!((XSAVE_C_YMM | XSAVE_C_SSE) & X86_CR4_OSXSAVE));
151AssertCompile(!((XSAVE_C_YMM | XSAVE_C_SSE) & X86_CR0_TS));
152AssertCompile(!(X86_CR4_OSXSAVE & X86_CR0_TS));
153#define IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() \
154 do { \
155 /* Since the CR4 and CR0 bits doesn't overlap, it can be reduced to a
156 single compare branch in the more probable code path. */ \
157 if (RT_LIKELY( ( (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
158 | (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR)) \
159 == X86_CR4_OSFXSR)) \
160 { /* likely */ } \
161 else if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
162 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR)) \
163 return iemRaiseUndefinedOpcode(pVCpu); \
164 else \
165 return iemRaiseDeviceNotAvailable(pVCpu); \
166 } while (0)
167AssertCompile(!((X86_CR0_EM | X86_CR0_TS) & X86_CR4_OSFXSR));
168#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT() \
169 do { \
170 /* Since the two CR0 bits doesn't overlap with FSW.ES, this can be reduced to a
171 single compare branch in the more probable code path. */ \
172 if (RT_LIKELY(!( (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
173 | (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES)))) \
174 { /* probable */ } \
175 else if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
176 return iemRaiseUndefinedOpcode(pVCpu); \
177 else if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
178 return iemRaiseDeviceNotAvailable(pVCpu); \
179 else \
180 return iemRaiseMathFault(pVCpu); \
181 } while (0)
182AssertCompile(!((X86_CR0_EM | X86_CR0_TS) & X86_FSW_ES));
183/** @todo recomp: this one is slightly problematic as the recompiler doesn't
184 * count the CPL into the TB key. However it is safe enough for now, as
185 * it calls iemRaiseGeneralProtectionFault0 directly so no calls will be
186 * emitted for it. */
187#define IEM_MC_RAISE_GP0_IF_CPL_NOT_ZERO() \
188 do { \
189 if (RT_LIKELY(IEM_GET_CPL(pVCpu) == 0)) { /* probable */ } \
190 else return iemRaiseGeneralProtectionFault0(pVCpu); \
191 } while (0)
192#define IEM_MC_RAISE_GP0_IF_EFF_ADDR_UNALIGNED(a_EffAddr, a_cbAlign) \
193 do { \
194 if (!((a_EffAddr) & ((a_cbAlign) - 1))) { /* likely */ } \
195 else return iemRaiseGeneralProtectionFault0(pVCpu); \
196 } while (0)
197#define IEM_MC_MAYBE_RAISE_FSGSBASE_XCPT() \
198 do { \
199 if (RT_LIKELY( ((pVCpu->cpum.GstCtx.cr4 & X86_CR4_FSGSBASE) | IEM_GET_CPU_MODE(pVCpu)) \
200 == (X86_CR4_FSGSBASE | IEMMODE_64BIT))) \
201 { /* probable */ } \
202 else return iemRaiseUndefinedOpcode(pVCpu); \
203 } while (0)
204AssertCompile(X86_CR4_FSGSBASE > UINT8_MAX);
205#define IEM_MC_MAYBE_RAISE_NON_CANONICAL_ADDR_GP0(a_u64Addr) \
206 do { \
207 if (RT_LIKELY(IEM_IS_CANONICAL(a_u64Addr))) { /* likely */ } \
208 else return iemRaiseGeneralProtectionFault0(pVCpu); \
209 } while (0)
210
211
212#define IEM_MC_LOCAL(a_Type, a_Name) a_Type a_Name
213#define IEM_MC_LOCAL_ASSIGN(a_Type, a_Name, a_Value) a_Type a_Name = (a_Value)
214#define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) a_Type const a_Name = (a_Value)
215#define IEM_MC_NOREF(a_Name) RT_NOREF_PV(a_Name) /* NOP/liveness hack */
216#define IEM_MC_ARG(a_Type, a_Name, a_iArg) a_Type a_Name
217#define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) a_Type const a_Name = (a_Value)
218#define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_Local, a_iArg) a_Type const a_Name = &(a_Local)
219/** @note IEMAllInstPython.py duplicates the expansion. */
220#define IEM_MC_ARG_EFLAGS(a_Name, a_iArg) uint32_t const a_Name = pVCpu->cpum.GstCtx.eflags.u
221/** @note IEMAllInstPython.py duplicates the expansion. */
222#define IEM_MC_ARG_LOCAL_EFLAGS(a_pName, a_Name, a_iArg) \
223 uint32_t a_Name = pVCpu->cpum.GstCtx.eflags.u; \
224 uint32_t *a_pName = &a_Name
225/** @note IEMAllInstPython.py duplicates the expansion. */
226#define IEM_MC_LOCAL_EFLAGS(a_Name) uint32_t a_Name = pVCpu->cpum.GstCtx.eflags.u
227#define IEM_MC_COMMIT_EFLAGS(a_EFlags) \
228 do { pVCpu->cpum.GstCtx.eflags.u = (a_EFlags); Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_1); } while (0)
229#define IEM_MC_COMMIT_EFLAGS_EX(a_EFlags, a_fEflInput, a_fEflOutput) do { \
230 AssertMsg((pVCpu->cpum.GstCtx.eflags.u & ~(a_fEflOutput)) == ((a_EFlags) & ~(a_fEflOutput)), \
231 ("eflags.u=%#x (%#x) vs %s=%#x (%#x) - diff %#x (a_fEflOutput=%#x)\n", \
232 pVCpu->cpum.GstCtx.eflags.u & ~(a_fEflOutput), pVCpu->cpum.GstCtx.eflags.u, #a_EFlags, \
233 (a_EFlags) & ~(a_fEflOutput), (a_EFlags), \
234 (pVCpu->cpum.GstCtx.eflags.u & ~(a_fEflOutput)) ^ ((a_EFlags) & ~(a_fEflOutput)), a_fEflOutput)); \
235 pVCpu->cpum.GstCtx.eflags.u = (a_EFlags); \
236 Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_1); \
237 } while (0)
238#define IEM_MC_COMMIT_EFLAGS_OPT(a_EFlags) IEM_MC_COMMIT_EFLAGS(a_EFlags)
239#define IEM_MC_COMMIT_EFLAGS_OPT_EX(a_EFlags, a_fEflInput, a_fEflOutput) IEM_MC_COMMIT_EFLAGS_EX(a_EFlags, a_fEflInput, a_fEflOutput)
240
241/** ASSUMES the source variable not used after this statement. */
242#define IEM_MC_ASSIGN_TO_SMALLER(a_VarDst, a_VarSrcEol) (a_VarDst) = (a_VarSrcEol)
243
244#define IEM_MC_FETCH_GREG_U8(a_u8Dst, a_iGReg) (a_u8Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
245#define IEM_MC_FETCH_GREG_U8_ZX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
246#define IEM_MC_FETCH_GREG_U8_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
247#define IEM_MC_FETCH_GREG_U8_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
248#define IEM_MC_FETCH_GREG_U8_SX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
249#define IEM_MC_FETCH_GREG_U8_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
250#define IEM_MC_FETCH_GREG_U8_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
251#define IEM_MC_FETCH_GREG_I16(a_i16Dst, a_iGReg) (a_i16Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
252#define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
253#define IEM_MC_FETCH_GREG_U16_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
254#define IEM_MC_FETCH_GREG_U16_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
255#define IEM_MC_FETCH_GREG_U16_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
256#define IEM_MC_FETCH_GREG_U16_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
257#define IEM_MC_FETCH_GREG_I32(a_i32Dst, a_iGReg) (a_i32Dst) = (int32_t)iemGRegFetchU32(pVCpu, (a_iGReg))
258#define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
259#define IEM_MC_FETCH_GREG_U32_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
260#define IEM_MC_FETCH_GREG_U32_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int32_t)iemGRegFetchU32(pVCpu, (a_iGReg))
261#define IEM_MC_FETCH_GREG_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU64(pVCpu, (a_iGReg))
262#define IEM_MC_FETCH_GREG_U64_ZX_U64 IEM_MC_FETCH_GREG_U64
263#define IEM_MC_FETCH_GREG_PAIR_U32(a_u64Dst, a_iGRegLo, a_iGRegHi) do { \
264 (a_u64Dst).s.Lo = iemGRegFetchU32(pVCpu, (a_iGRegLo)); \
265 (a_u64Dst).s.Hi = iemGRegFetchU32(pVCpu, (a_iGRegHi)); \
266 } while(0)
267#define IEM_MC_FETCH_GREG_PAIR_U64(a_u128Dst, a_iGRegLo, a_iGRegHi) do { \
268 (a_u128Dst).s.Lo = iemGRegFetchU64(pVCpu, (a_iGRegLo)); \
269 (a_u128Dst).s.Hi = iemGRegFetchU64(pVCpu, (a_iGRegHi)); \
270 } while(0)
271#define IEM_MC_FETCH_SREG_U16(a_u16Dst, a_iSReg) do { \
272 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
273 (a_u16Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
274 } while (0)
275#define IEM_MC_FETCH_SREG_ZX_U32(a_u32Dst, a_iSReg) do { \
276 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
277 (a_u32Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
278 } while (0)
279#define IEM_MC_FETCH_SREG_ZX_U64(a_u64Dst, a_iSReg) do { \
280 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
281 (a_u64Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
282 } while (0)
283/** @todo IEM_MC_FETCH_SREG_BASE_U64 & IEM_MC_FETCH_SREG_BASE_U32 probably aren't worth it... */
284#define IEM_MC_FETCH_SREG_BASE_U64(a_u64Dst, a_iSReg) do { \
285 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
286 (a_u64Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
287 } while (0)
288#define IEM_MC_FETCH_SREG_BASE_U32(a_u32Dst, a_iSReg) do { \
289 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
290 (a_u32Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
291 } while (0)
292/** @note Not for IOPL or IF testing or modification. */
293#define IEM_MC_FETCH_EFLAGS(a_EFlags) (a_EFlags) = pVCpu->cpum.GstCtx.eflags.u
294#define IEM_MC_FETCH_EFLAGS_EX(a_EFlags, a_fEflInput, a_fEflOutput) IEM_MC_FETCH_EFLAGS(a_EFlags)
295#define IEM_MC_FETCH_EFLAGS_U8(a_EFlags) (a_EFlags) = (uint8_t)pVCpu->cpum.GstCtx.eflags.u /* (only LAHF) */
296#define IEM_MC_FETCH_FSW(a_u16Fsw) (a_u16Fsw) = pVCpu->cpum.GstCtx.XState.x87.FSW
297#define IEM_MC_FETCH_FCW(a_u16Fcw) (a_u16Fcw) = pVCpu->cpum.GstCtx.XState.x87.FCW
298
299#define IEM_MC_STORE_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) = (a_u8Value)
300#define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) = (a_u16Value)
301#define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (uint32_t)(a_u32Value) /* clear high bits. */
302#define IEM_MC_STORE_GREG_I32(a_iGReg, a_i32Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (uint32_t)(a_i32Value) /* clear high bits. */
303#define IEM_MC_STORE_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (a_u64Value)
304#define IEM_MC_STORE_GREG_I64(a_iGReg, a_i64Value) *iemGRegRefI64(pVCpu, (a_iGReg)) = (a_i64Value)
305#define IEM_MC_STORE_GREG_U8_CONST IEM_MC_STORE_GREG_U8
306#define IEM_MC_STORE_GREG_U16_CONST IEM_MC_STORE_GREG_U16
307#define IEM_MC_STORE_GREG_U32_CONST IEM_MC_STORE_GREG_U32
308#define IEM_MC_STORE_GREG_U64_CONST IEM_MC_STORE_GREG_U64
309#define IEM_MC_STORE_GREG_PAIR_U32(a_iGRegLo, a_iGRegHi, a_u64Value) do { \
310 *iemGRegRefU64(pVCpu, (a_iGRegLo)) = (uint32_t)(a_u64Value).s.Lo; \
311 *iemGRegRefU64(pVCpu, (a_iGRegHi)) = (uint32_t)(a_u64Value).s.Hi; \
312 } while(0)
313#define IEM_MC_STORE_GREG_PAIR_U64(a_iGRegLo, a_iGRegHi, a_u128Value) do { \
314 *iemGRegRefU64(pVCpu, (a_iGRegLo)) = (uint64_t)(a_u128Value).s.Lo; \
315 *iemGRegRefU64(pVCpu, (a_iGRegHi)) = (uint64_t)(a_u128Value).s.Hi; \
316 } while(0)
317#define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) *iemGRegRefU64(pVCpu, (a_iGReg)) &= UINT32_MAX
318
319/** @todo IEM_MC_STORE_SREG_BASE_U64 & IEM_MC_STORE_SREG_BASE_U32 aren't worth it... */
320#define IEM_MC_STORE_SREG_BASE_U64(a_iSReg, a_u64Value) do { \
321 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
322 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (a_u64Value); \
323 } while (0)
324#define IEM_MC_STORE_SREG_BASE_U32(a_iSReg, a_u32Value) do { \
325 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
326 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (uint32_t)(a_u32Value); /* clear high bits. */ \
327 } while (0)
328#define IEM_MC_STORE_FPUREG_R80_SRC_REF(a_iSt, a_pr80Src) \
329 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80 = *(a_pr80Src); } while (0)
330
331
332#define IEM_MC_REF_GREG_U8(a_pu8Dst, a_iGReg) (a_pu8Dst) = iemGRegRefU8( pVCpu, (a_iGReg))
333#define IEM_MC_REF_GREG_U8_CONST(a_pu8Dst, a_iGReg) (a_pu8Dst) = (uint8_t const *)iemGRegRefU8( pVCpu, (a_iGReg))
334#define IEM_MC_REF_GREG_U16(a_pu16Dst, a_iGReg) (a_pu16Dst) = iemGRegRefU16(pVCpu, (a_iGReg))
335#define IEM_MC_REF_GREG_U16_CONST(a_pu16Dst, a_iGReg) (a_pu16Dst) = (uint16_t const *)iemGRegRefU16(pVCpu, (a_iGReg))
336/** @todo User of IEM_MC_REF_GREG_U32 needs to clear the high bits on commit.
337 * Use IEM_MC_CLEAR_HIGH_GREG_U64! */
338#define IEM_MC_REF_GREG_U32(a_pu32Dst, a_iGReg) (a_pu32Dst) = iemGRegRefU32(pVCpu, (a_iGReg))
339#define IEM_MC_REF_GREG_U32_CONST(a_pu32Dst, a_iGReg) (a_pu32Dst) = (uint32_t const *)iemGRegRefU32(pVCpu, (a_iGReg))
340#define IEM_MC_REF_GREG_I32(a_pi32Dst, a_iGReg) (a_pi32Dst) = (int32_t *)iemGRegRefU32(pVCpu, (a_iGReg))
341#define IEM_MC_REF_GREG_I32_CONST(a_pi32Dst, a_iGReg) (a_pi32Dst) = (int32_t const *)iemGRegRefU32(pVCpu, (a_iGReg))
342#define IEM_MC_REF_GREG_U64(a_pu64Dst, a_iGReg) (a_pu64Dst) = iemGRegRefU64(pVCpu, (a_iGReg))
343#define IEM_MC_REF_GREG_U64_CONST(a_pu64Dst, a_iGReg) (a_pu64Dst) = (uint64_t const *)iemGRegRefU64(pVCpu, (a_iGReg))
344#define IEM_MC_REF_GREG_I64(a_pi64Dst, a_iGReg) (a_pi64Dst) = (int64_t *)iemGRegRefU64(pVCpu, (a_iGReg))
345#define IEM_MC_REF_GREG_I64_CONST(a_pi64Dst, a_iGReg) (a_pi64Dst) = (int64_t const *)iemGRegRefU64(pVCpu, (a_iGReg))
346/** @note Not for IOPL or IF testing or modification.
347 * @note Must preserve any undefined bits, see CPUMX86EFLAGS! */
348#define IEM_MC_REF_EFLAGS(a_pEFlags) (a_pEFlags) = &pVCpu->cpum.GstCtx.eflags.uBoth
349#define IEM_MC_REF_EFLAGS_EX(a_pEFlags, a_fEflInput, a_fEflOutput) IEM_MC_REF_EFLAGS(a_pEFlags)
350
351#define IEM_MC_ADD_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) += (a_u16Value)
352#define IEM_MC_ADD_GREG_U32(a_iGReg, a_u32Value) \
353 do { \
354 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
355 *pu32Reg += (a_u32Value); \
356 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
357 } while (0)
358#define IEM_MC_ADD_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) += (a_u64Value)
359
360#define IEM_MC_SUB_GREG_U16(a_iGReg, a_u8Const) *iemGRegRefU16(pVCpu, (a_iGReg)) -= (a_u8Const)
361#define IEM_MC_SUB_GREG_U32(a_iGReg, a_u8Const) \
362 do { \
363 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
364 *pu32Reg -= (a_u8Const); \
365 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
366 } while (0)
367#define IEM_MC_SUB_GREG_U64(a_iGReg, a_u8Const) *iemGRegRefU64(pVCpu, (a_iGReg)) -= (a_u8Const)
368#define IEM_MC_SUB_LOCAL_U16(a_u16Value, a_u16Const) do { (a_u16Value) -= a_u16Const; } while (0)
369
370#define IEM_MC_ADD_GREG_U8_TO_LOCAL(a_u8Value, a_iGReg) do { (a_u8Value) += iemGRegFetchU8( pVCpu, (a_iGReg)); } while (0)
371#define IEM_MC_ADD_GREG_U16_TO_LOCAL(a_u16Value, a_iGReg) do { (a_u16Value) += iemGRegFetchU16(pVCpu, (a_iGReg)); } while (0)
372#define IEM_MC_ADD_GREG_U32_TO_LOCAL(a_u32Value, a_iGReg) do { (a_u32Value) += iemGRegFetchU32(pVCpu, (a_iGReg)); } while (0)
373#define IEM_MC_ADD_GREG_U64_TO_LOCAL(a_u64Value, a_iGReg) do { (a_u64Value) += iemGRegFetchU64(pVCpu, (a_iGReg)); } while (0)
374#define IEM_MC_ADD_LOCAL_S16_TO_EFF_ADDR(a_EffAddr, a_i16) do { (a_EffAddr) += (a_i16); } while (0)
375#define IEM_MC_ADD_LOCAL_S32_TO_EFF_ADDR(a_EffAddr, a_i32) do { (a_EffAddr) += (a_i32); } while (0)
376#define IEM_MC_ADD_LOCAL_S64_TO_EFF_ADDR(a_EffAddr, a_i64) do { (a_EffAddr) += (a_i64); } while (0)
377
378#define IEM_MC_AND_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) &= (a_u8Mask); } while (0)
379#define IEM_MC_AND_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) &= (a_u16Mask); } while (0)
380#define IEM_MC_AND_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
381#define IEM_MC_AND_LOCAL_U64(a_u64Local, a_u64Mask) do { (a_u64Local) &= (a_u64Mask); } while (0)
382
383#define IEM_MC_AND_ARG_U16(a_u16Arg, a_u16Mask) do { (a_u16Arg) &= (a_u16Mask); } while (0)
384#define IEM_MC_AND_ARG_U32(a_u32Arg, a_u32Mask) do { (a_u32Arg) &= (a_u32Mask); } while (0)
385#define IEM_MC_AND_ARG_U64(a_u64Arg, a_u64Mask) do { (a_u64Arg) &= (a_u64Mask); } while (0)
386
387#define IEM_MC_OR_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) |= (a_u8Mask); } while (0)
388#define IEM_MC_OR_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) |= (a_u16Mask); } while (0)
389#define IEM_MC_OR_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
390
391#define IEM_MC_SAR_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) >>= (a_cShift); } while (0)
392#define IEM_MC_SAR_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) >>= (a_cShift); } while (0)
393#define IEM_MC_SAR_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) >>= (a_cShift); } while (0)
394
395#define IEM_MC_SHR_LOCAL_U8(a_u8Local, a_cShift) do { (a_u8Local) >>= (a_cShift); } while (0)
396
397#define IEM_MC_SHL_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) <<= (a_cShift); } while (0)
398#define IEM_MC_SHL_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) <<= (a_cShift); } while (0)
399#define IEM_MC_SHL_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) <<= (a_cShift); } while (0)
400
401#define IEM_MC_AND_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
402
403#define IEM_MC_OR_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
404
405#define IEM_MC_AND_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) &= (a_u8Value)
406#define IEM_MC_AND_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) &= (a_u16Value)
407#define IEM_MC_AND_GREG_U32(a_iGReg, a_u32Value) \
408 do { \
409 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
410 *pu32Reg &= (a_u32Value); \
411 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
412 } while (0)
413#define IEM_MC_AND_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) &= (a_u64Value)
414
415#define IEM_MC_OR_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) |= (a_u8Value)
416#define IEM_MC_OR_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) |= (a_u16Value)
417#define IEM_MC_OR_GREG_U32(a_iGReg, a_u32Value) \
418 do { \
419 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
420 *pu32Reg |= (a_u32Value); \
421 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
422 } while (0)
423#define IEM_MC_OR_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) |= (a_u64Value)
424
425#define IEM_MC_BSWAP_LOCAL_U16(a_u16Local) (a_u16Local) = RT_BSWAP_U16((a_u16Local));
426#define IEM_MC_BSWAP_LOCAL_U32(a_u32Local) (a_u32Local) = RT_BSWAP_U32((a_u32Local));
427#define IEM_MC_BSWAP_LOCAL_U64(a_u64Local) (a_u64Local) = RT_BSWAP_U64((a_u64Local));
428
429/** @note Not for IOPL or IF modification. */
430#define IEM_MC_SET_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u |= (a_fBit); } while (0)
431/** @note Not for IOPL or IF modification. */
432#define IEM_MC_CLEAR_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u &= ~(a_fBit); } while (0)
433/** @note Not for IOPL or IF modification. */
434#define IEM_MC_FLIP_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u ^= (a_fBit); } while (0)
435
436#define IEM_MC_CLEAR_FSW_EX() do { pVCpu->cpum.GstCtx.XState.x87.FSW &= X86_FSW_C_MASK | X86_FSW_TOP_MASK; } while (0)
437
438/** Switches the FPU state to MMX mode (FSW.TOS=0, FTW=0) if necessary. */
439#define IEM_MC_FPU_TO_MMX_MODE() do { \
440 iemFpuRotateStackSetTop(&pVCpu->cpum.GstCtx.XState.x87, 0); \
441 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
442 pVCpu->cpum.GstCtx.XState.x87.FTW = 0xff; \
443 } while (0)
444
445/** Switches the FPU state from MMX mode (FSW.TOS=0, FTW=0xffff). */
446#define IEM_MC_FPU_FROM_MMX_MODE() do { \
447 iemFpuRotateStackSetTop(&pVCpu->cpum.GstCtx.XState.x87, 0); \
448 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
449 pVCpu->cpum.GstCtx.XState.x87.FTW = 0; \
450 } while (0)
451
452#define IEM_MC_FETCH_MREG_U64(a_u64Value, a_iMReg) \
453 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx; } while (0)
454#define IEM_MC_FETCH_MREG_U32(a_u32Value, a_iMReg, a_iDWord) \
455 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[a_iDWord]; } while (0)
456#define IEM_MC_FETCH_MREG_U16(a_u16Value, a_iMReg, a_iWord) \
457 do { (a_u16Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au16[a_iWord]; } while (0)
458#define IEM_MC_FETCH_MREG_U8(a_u8Value, a_iMReg, a_iByte) \
459 do { (a_u8Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au8[a_iByte]; } while (0)
460#define IEM_MC_STORE_MREG_U64(a_iMReg, a_u64Value) \
461 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (a_u64Value); \
462 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
463 } while (0)
464#define IEM_MC_STORE_MREG_U32(a_iMReg, a_iDword, a_u32Value) \
465 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[(a_iDword)] = (a_u32Value); \
466 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
467 } while (0)
468#define IEM_MC_STORE_MREG_U16(a_iMReg, a_iWord, a_u16Value) \
469 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au16[(a_iWord)] = (a_u16Value); \
470 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
471 } while (0)
472#define IEM_MC_STORE_MREG_U8(a_iMReg, a_iByte, a_u8Value) \
473 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au8[(a_iByte)] = (a_u8Value); \
474 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
475 } while (0)
476#define IEM_MC_STORE_MREG_U32_ZX_U64(a_iMReg, a_u32Value) \
477 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (uint32_t)(a_u32Value); \
478 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
479 } while (0)
480#define IEM_MC_REF_MREG_U64(a_pu64Dst, a_iMReg) /** @todo need to set high word to 0xffff on commit (see IEM_MC_STORE_MREG_U64) */ \
481 (a_pu64Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
482#define IEM_MC_REF_MREG_U64_CONST(a_pu64Dst, a_iMReg) \
483 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
484#define IEM_MC_REF_MREG_U32_CONST(a_pu32Dst, a_iMReg) \
485 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
486#define IEM_MC_MODIFIED_MREG(a_iMReg) \
487 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; } while (0)
488#define IEM_MC_MODIFIED_MREG_BY_REF(a_pu64Dst) \
489 do { ((uint32_t *)(a_pu64Dst))[2] = 0xffff; } while (0)
490
491#define IEM_MC_CLEAR_XREG_U32_MASK(a_iXReg, a_bMask) \
492 do { if ((a_bMask) & (1 << 0)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0] = 0; \
493 if ((a_bMask) & (1 << 1)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[1] = 0; \
494 if ((a_bMask) & (1 << 2)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[2] = 0; \
495 if ((a_bMask) & (1 << 3)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[3] = 0; \
496 } while (0)
497#define IEM_MC_FETCH_XREG_U128(a_u128Value, a_iXReg) \
498 do { (a_u128Value).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
499 (a_u128Value).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
500 } while (0)
501#define IEM_MC_FETCH_XREG_XMM(a_XmmValue, a_iXReg) \
502 do { (a_XmmValue).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
503 (a_XmmValue).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
504 } while (0)
505#define IEM_MC_FETCH_XREG_U64(a_u64Value, a_iXReg, a_iQWord) \
506 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQWord)]; } while (0)
507#define IEM_MC_FETCH_XREG_R64(a_r64Value, a_iXReg, a_iQWord) \
508 do { (a_r64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[(a_iQWord)]; } while (0)
509#define IEM_MC_FETCH_XREG_U32(a_u32Value, a_iXReg, a_iDWord) \
510 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDWord)]; } while (0)
511#define IEM_MC_FETCH_XREG_R32(a_r32Value, a_iXReg, a_iDWord) \
512 do { (a_r32Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[(a_iDWord)]; } while (0)
513#define IEM_MC_FETCH_XREG_U16(a_u16Value, a_iXReg, a_iWord) \
514 do { (a_u16Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au16[(a_iWord)]; } while (0)
515#define IEM_MC_FETCH_XREG_U8( a_u8Value, a_iXReg, a_iByte) \
516 do { (a_u8Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au8[(a_iByte)]; } while (0)
517#define IEM_MC_FETCH_XREG_PAIR_U128(a_Dst, a_iXReg1, a_iXReg2) \
518 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
519 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
520 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
521 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
522 } while (0)
523#define IEM_MC_FETCH_XREG_PAIR_XMM(a_Dst, a_iXReg1, a_iXReg2) \
524 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
525 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
526 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
527 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
528 } while (0)
529#define IEM_MC_FETCH_XREG_PAIR_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_iXReg2) \
530 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
531 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
532 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
533 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
534 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
535 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
536 } while (0)
537#define IEM_MC_FETCH_XREG_PAIR_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_iXReg2) \
538 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
539 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
540 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
541 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
542 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
543 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
544 } while (0)
545#define IEM_MC_STORE_XREG_U128(a_iXReg, a_u128Value) \
546 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u128Value).au64[0]; \
547 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u128Value).au64[1]; \
548 } while (0)
549#define IEM_MC_STORE_XREG_XMM(a_iXReg, a_XmmValue) \
550 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_XmmValue).au64[0]; \
551 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_XmmValue).au64[1]; \
552 } while (0)
553#define IEM_MC_STORE_XREG_XMM_U32(a_iXReg, a_iDword, a_XmmValue) \
554 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDword)] = (a_XmmValue).au32[(a_iDword)]; } while (0)
555#define IEM_MC_STORE_XREG_XMM_U64(a_iXReg, a_iQword, a_XmmValue) \
556 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQword)] = (a_XmmValue).au64[(a_iQword)]; } while (0)
557#define IEM_MC_STORE_XREG_U64(a_iXReg, a_iQword, a_u64Value) \
558 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQword)] = (a_u64Value); } while (0)
559#define IEM_MC_STORE_XREG_U32(a_iXReg, a_iDword, a_u32Value) \
560 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDword)] = (a_u32Value); } while (0)
561#define IEM_MC_STORE_XREG_U16(a_iXReg, a_iWord, a_u16Value) \
562 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au16[(a_iWord)] = (a_u16Value); } while (0)
563#define IEM_MC_STORE_XREG_U8(a_iXReg, a_iByte, a_u8Value) \
564 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au8[(a_iByte)] = (a_u8Value); } while (0)
565
566#define IEM_MC_STORE_XREG_U64_ZX_U128(a_iXReg, a_u64Value) \
567 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); \
568 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
569 } while (0)
570
571#define IEM_MC_STORE_XREG_U32_U128(a_iXReg, a_iDwDst, a_u128Value, a_iDwSrc) \
572 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDwDst)] = (a_u128Value).au32[(a_iDwSrc)]; } while (0)
573#define IEM_MC_STORE_XREG_R32(a_iXReg, a_r32Value) \
574 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0] = (a_r32Value); } while (0)
575#define IEM_MC_STORE_XREG_R64(a_iXReg, a_r64Value) \
576 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0] = (a_r64Value); } while (0)
577#define IEM_MC_STORE_XREG_U32_ZX_U128(a_iXReg, a_u32Value) \
578 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (uint32_t)(a_u32Value); \
579 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
580 } while (0)
581
582#define IEM_MC_BROADCAST_XREG_U8_ZX_VLMAX(a_iXRegDst, a_u8Src) \
583 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
584 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[0] = (a_u8Src); \
585 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[1] = (a_u8Src); \
586 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[2] = (a_u8Src); \
587 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[3] = (a_u8Src); \
588 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[4] = (a_u8Src); \
589 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[5] = (a_u8Src); \
590 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[6] = (a_u8Src); \
591 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[7] = (a_u8Src); \
592 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[8] = (a_u8Src); \
593 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[9] = (a_u8Src); \
594 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[10] = (a_u8Src); \
595 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[11] = (a_u8Src); \
596 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[12] = (a_u8Src); \
597 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[13] = (a_u8Src); \
598 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[14] = (a_u8Src); \
599 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[15] = (a_u8Src); \
600 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
601 } while (0)
602#define IEM_MC_BROADCAST_XREG_U16_ZX_VLMAX(a_iXRegDst, a_u16Src) \
603 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
604 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[0] = (a_u16Src); \
605 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[1] = (a_u16Src); \
606 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[2] = (a_u16Src); \
607 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[3] = (a_u16Src); \
608 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[4] = (a_u16Src); \
609 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[5] = (a_u16Src); \
610 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[6] = (a_u16Src); \
611 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[7] = (a_u16Src); \
612 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
613 } while (0)
614#define IEM_MC_BROADCAST_XREG_U32_ZX_VLMAX(a_iXRegDst, a_u32Src) \
615 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
616 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[0] = (a_u32Src); \
617 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[1] = (a_u32Src); \
618 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[2] = (a_u32Src); \
619 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[3] = (a_u32Src); \
620 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
621 } while (0)
622#define IEM_MC_BROADCAST_XREG_U64_ZX_VLMAX(a_iXRegDst, a_u64Src) \
623 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
624 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au64[0] = (a_u64Src); \
625 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au64[1] = (a_u64Src); \
626 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
627 } while (0)
628
629#define IEM_MC_REF_XREG_U128(a_pu128Dst, a_iXReg) \
630 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
631#define IEM_MC_REF_XREG_XMM(a_pXmmDst, a_iXReg) \
632 (a_pXmmDst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)])
633#define IEM_MC_REF_XREG_U128_CONST(a_pu128Dst, a_iXReg) \
634 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
635#define IEM_MC_REF_XREG_XMM_CONST(a_pXmmDst, a_iXReg) \
636 (a_pXmmDst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)])
637#define IEM_MC_REF_XREG_U32_CONST(a_pu32Dst, a_iXReg) \
638 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0])
639#define IEM_MC_REF_XREG_U64_CONST(a_pu64Dst, a_iXReg) \
640 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0])
641#define IEM_MC_REF_XREG_R32_CONST(a_pr32Dst, a_iXReg) \
642 (a_pr32Dst) = ((RTFLOAT32U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0])
643#define IEM_MC_REF_XREG_R64_CONST(a_pr64Dst, a_iXReg) \
644 (a_pr64Dst) = ((RTFLOAT64U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0])
645#define IEM_MC_COPY_XREG_U128(a_iXRegDst, a_iXRegSrc) \
646 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[0] \
647 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[0]; \
648 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[1] \
649 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[1]; \
650 } while (0)
651
652#define IEM_MC_FETCH_YREG_U32(a_u32Dst, a_iYRegSrc) \
653 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
654 (a_u32Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au32[0]; \
655 } while (0)
656#define IEM_MC_FETCH_YREG_U64(a_u64Dst, a_iYRegSrc, a_iQWord) \
657 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
658 if ((a_iQWord) < 2) \
659 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[(a_iQWord)]; \
660 else \
661 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[(a_iQWord) - 2]; \
662 } while (0)
663#define IEM_MC_FETCH_YREG_U128(a_u128Dst, a_iYRegSrc, a_iDQword) \
664 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
665 if ((a_iDQword) == 0) \
666 { \
667 (a_u128Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegSrcTmp)].au64[0]; \
668 (a_u128Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegSrcTmp)].au64[1]; \
669 } \
670 else \
671 { \
672 (a_u128Dst).au64[0] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegSrcTmp)].au64[0]; \
673 (a_u128Dst).au64[1] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegSrcTmp)].au64[1]; \
674 } \
675 } while (0)
676#define IEM_MC_FETCH_YREG_U256(a_u256Dst, a_iYRegSrc) \
677 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
678 (a_u256Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
679 (a_u256Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
680 (a_u256Dst).au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
681 (a_u256Dst).au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
682 } while (0)
683#define IEM_MC_FETCH_YREG_YMM(a_uYmmDst, a_iYRegSrc) \
684 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
685 (a_uYmmDst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
686 (a_uYmmDst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
687 (a_uYmmDst).au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
688 (a_uYmmDst).au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
689 } while (0)
690#define IEM_MC_FETCH_YREG_PAIR_YMM(a_uYmmDst, a_iYRegSrc1, a_iYRegSrc2) \
691 do { uintptr_t const iYRegSrc1Tmp = (a_iYRegSrc1); \
692 uintptr_t const iYRegSrc2Tmp = (a_iYRegSrc2); \
693 (a_uYmmDst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc1Tmp].au64[0]; \
694 (a_uYmmDst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc1Tmp].au64[1]; \
695 (a_uYmmDst).uSrc1.au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrc1Tmp].au64[0]; \
696 (a_uYmmDst).uSrc1.au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrc1Tmp].au64[1]; \
697 (a_uYmmDst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc2Tmp].au64[0]; \
698 (a_uYmmDst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc2Tmp].au64[1]; \
699 (a_uYmmDst).uSrc2.au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrc2Tmp].au64[0]; \
700 (a_uYmmDst).uSrc2.au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrc2Tmp].au64[1]; \
701 } while (0)
702
703#define IEM_MC_STORE_YREG_U128(a_iYRegDst, a_iDQword, a_u128Value) \
704 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
705 if ((a_iDQword) == 0) \
706 { \
707 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[0] = (a_u128Value).au64[0]; \
708 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[1] = (a_u128Value).au64[1]; \
709 } \
710 else \
711 { \
712 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[0] = (a_u128Value).au64[0]; \
713 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[1] = (a_u128Value).au64[1]; \
714 } \
715 } while (0)
716
717#define IEM_MC_INT_CLEAR_ZMM_256_UP(a_iXRegDst) do { /* For AVX512 and AVX1024 support. */ } while (0)
718#define IEM_MC_STORE_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
719 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
720 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
721 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = 0; \
722 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
723 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
724 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
725 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
726 } while (0)
727#define IEM_MC_STORE_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
728 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
729 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
730 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
731 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
732 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
733 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
734 } while (0)
735#define IEM_MC_STORE_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
736 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
737 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
738 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
739 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
740 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
741 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
742 } while (0)
743#define IEM_MC_STORE_YREG_U256_ZX_VLMAX(a_iYRegDst, a_u256Src) \
744 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
745 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u256Src).au64[0]; \
746 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u256Src).au64[1]; \
747 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u256Src).au64[2]; \
748 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u256Src).au64[3]; \
749 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
750 } while (0)
751#define IEM_MC_STORE_YREG_YMM_ZX_VLMAX(a_iYRegDst, a_uYmmSrc) \
752 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
753 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_uYmmSrc).au64[0]; \
754 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_uYmmSrc).au64[1]; \
755 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_uYmmSrc).au64[2]; \
756 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_uYmmSrc).au64[3]; \
757 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
758 } while (0)
759#define IEM_MC_STORE_YREG_U32_U256(a_iYRegDst, a_iDwDst, a_u256Value, a_iDwSrc) \
760 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
761 if ((a_iDwDst) < 4) \
762 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au32[(a_iDwDst)] = (a_u256Value).au32[(a_iDwSrc)]; \
763 else \
764 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au32[(a_iDwDst) - 4] = (a_u256Value).au32[(a_iDwSrc)]; \
765 } while (0)
766#define IEM_MC_STORE_YREG_U64_U256(a_iYRegDst, a_iQwDst, a_u256Value, a_iQwSrc) \
767 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
768 if ((a_iQwDst) < 2) \
769 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[(a_iQwDst)] = (a_u256Value).au64[(a_iQwSrc)]; \
770 else \
771 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[(a_iQwDst) - 2] = (a_u256Value).au64[(a_iQwSrc)]; \
772 } while (0)
773#define IEM_MC_STORE_YREG_U64(a_iYRegDst, a_iQword, a_u64Value) \
774 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
775 if ((a_iQword) < 2) \
776 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[(a_iQword)] = (a_u64Value); \
777 else \
778 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[(a_iQword) - 2] = (a_u64Value); \
779 } while (0)
780
781#define IEM_MC_BROADCAST_YREG_U8_ZX_VLMAX(a_iYRegDst, a_u8Src) \
782 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
783 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[0] = (a_u8Src); \
784 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[1] = (a_u8Src); \
785 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[2] = (a_u8Src); \
786 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[3] = (a_u8Src); \
787 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[4] = (a_u8Src); \
788 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[5] = (a_u8Src); \
789 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[6] = (a_u8Src); \
790 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[7] = (a_u8Src); \
791 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[8] = (a_u8Src); \
792 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[9] = (a_u8Src); \
793 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[10] = (a_u8Src); \
794 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[11] = (a_u8Src); \
795 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[12] = (a_u8Src); \
796 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[13] = (a_u8Src); \
797 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[14] = (a_u8Src); \
798 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[15] = (a_u8Src); \
799 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[0] = (a_u8Src); \
800 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[1] = (a_u8Src); \
801 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[2] = (a_u8Src); \
802 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[3] = (a_u8Src); \
803 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[4] = (a_u8Src); \
804 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[5] = (a_u8Src); \
805 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[6] = (a_u8Src); \
806 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[7] = (a_u8Src); \
807 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[8] = (a_u8Src); \
808 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[9] = (a_u8Src); \
809 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[10] = (a_u8Src); \
810 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[11] = (a_u8Src); \
811 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[12] = (a_u8Src); \
812 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[13] = (a_u8Src); \
813 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[14] = (a_u8Src); \
814 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[15] = (a_u8Src); \
815 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
816 } while (0)
817#define IEM_MC_BROADCAST_YREG_U16_ZX_VLMAX(a_iYRegDst, a_u16Src) \
818 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
819 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[0] = (a_u16Src); \
820 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[1] = (a_u16Src); \
821 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[2] = (a_u16Src); \
822 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[3] = (a_u16Src); \
823 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[4] = (a_u16Src); \
824 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[5] = (a_u16Src); \
825 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[6] = (a_u16Src); \
826 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[7] = (a_u16Src); \
827 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[0] = (a_u16Src); \
828 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[1] = (a_u16Src); \
829 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[2] = (a_u16Src); \
830 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[3] = (a_u16Src); \
831 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[4] = (a_u16Src); \
832 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[5] = (a_u16Src); \
833 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[6] = (a_u16Src); \
834 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[7] = (a_u16Src); \
835 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
836 } while (0)
837#define IEM_MC_BROADCAST_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
838 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
839 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
840 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = (a_u32Src); \
841 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[2] = (a_u32Src); \
842 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[3] = (a_u32Src); \
843 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[0] = (a_u32Src); \
844 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[1] = (a_u32Src); \
845 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[2] = (a_u32Src); \
846 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[3] = (a_u32Src); \
847 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
848 } while (0)
849#define IEM_MC_BROADCAST_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
850 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
851 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
852 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Src); \
853 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u64Src); \
854 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u64Src); \
855 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
856 } while (0)
857#define IEM_MC_BROADCAST_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
858 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
859 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
860 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
861 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
862 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
863 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
864 } while (0)
865
866#define IEM_MC_REF_YREG_U128(a_pu128Dst, a_iYReg) \
867 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
868#define IEM_MC_REF_YREG_U128_CONST(a_pu128Dst, a_iYReg) \
869 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
870#define IEM_MC_REF_YREG_U64_CONST(a_pu64Dst, a_iYReg) \
871 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].au64[0])
872#define IEM_MC_CLEAR_YREG_128_UP(a_iYReg) \
873 do { uintptr_t const iYRegTmp = (a_iYReg); \
874 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[0] = 0; \
875 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[1] = 0; \
876 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegTmp); \
877 } while (0)
878
879#define IEM_MC_COPY_YREG_U256_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
880 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
881 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
882 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
883 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
884 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
885 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
886 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
887 } while (0)
888#define IEM_MC_COPY_YREG_U128_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
889 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
890 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
891 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
892 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
893 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
894 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
895 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
896 } while (0)
897#define IEM_MC_COPY_YREG_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
898 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
899 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
900 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
901 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
902 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
903 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
904 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
905 } while (0)
906
907#define IEM_MC_MERGE_YREG_U32_U96_ZX_VLMAX(a_iYRegDst, a_iYRegSrc32, a_iYRegSrcHx) \
908 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
909 uintptr_t const iYRegSrc32Tmp = (a_iYRegSrc32); \
910 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
911 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc32Tmp].au32[0]; \
912 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au32[1]; \
913 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
914 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
915 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
916 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
917 } while (0)
918#define IEM_MC_MERGE_YREG_U64_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) \
919 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
920 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
921 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
922 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
923 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
924 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
925 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
926 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
927 } while (0)
928#define IEM_MC_MERGE_YREG_U64LO_U64LO_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
929 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
930 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
931 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
932 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
933 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
934 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
935 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
936 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
937 } while (0)
938#define IEM_MC_MERGE_YREG_U64HI_U64HI_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
939 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
940 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
941 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
942 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[1]; \
943 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
944 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
945 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
946 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
947 } while (0)
948#define IEM_MC_MERGE_YREG_U64LO_U64LOCAL_ZX_VLMAX(a_iYRegDst, a_iYRegSrcHx, a_u64Local) \
949 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
950 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
951 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
952 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Local); \
953 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
954 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
955 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
956 } while (0)
957#define IEM_MC_MERGE_YREG_U64LOCAL_U64HI_ZX_VLMAX(a_iYRegDst, a_u64Local, a_iYRegSrcHx) \
958 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
959 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
960 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Local); \
961 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
962 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
963 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
964 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
965 } while (0)
966
967#define IEM_MC_CLEAR_ZREG_256_UP(a_iYReg) \
968 do { IEM_MC_INT_CLEAR_ZMM_256_UP(a_iYReg); } while (0)
969
970#ifndef IEM_WITH_SETJMP
971# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
972 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem)))
973# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
974 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem16)))
975# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
976 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem32)))
977#else
978# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
979 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
980# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
981 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem16)))
982# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
983 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem32)))
984
985# define IEM_MC_FETCH_MEM_FLAT_U8(a_u8Dst, a_GCPtrMem) \
986 ((a_u8Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
987# define IEM_MC_FETCH_MEM16_FLAT_U8(a_u8Dst, a_GCPtrMem16) \
988 ((a_u8Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem16)))
989# define IEM_MC_FETCH_MEM32_FLAT_U8(a_u8Dst, a_GCPtrMem32) \
990 ((a_u8Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem32)))
991#endif
992
993#ifndef IEM_WITH_SETJMP
994# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
995 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem)))
996# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
997 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
998# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
999 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem)))
1000# define IEM_MC_FETCH_MEM_I16_DISP(a_i16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1001 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1002#else
1003# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1004 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1005# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1006 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1007# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
1008 ((a_i16Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1009# define IEM_MC_FETCH_MEM_I16_DISP(a_i16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1010 ((a_i16Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1011
1012# define IEM_MC_FETCH_MEM_FLAT_U16(a_u16Dst, a_GCPtrMem) \
1013 ((a_u16Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1014# define IEM_MC_FETCH_MEM_FLAT_U16_DISP(a_u16Dst, a_GCPtrMem, a_offDisp) \
1015 ((a_u16Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1016# define IEM_MC_FETCH_MEM_FLAT_I16(a_i16Dst, a_GCPtrMem) \
1017 ((a_i16Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1018# define IEM_MC_FETCH_MEM_FLAT_I16_DISP(a_i16Dst, a_GCPtrMem, a_offDisp) \
1019 ((a_i16Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1020#endif
1021
1022#ifndef IEM_WITH_SETJMP
1023# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1024 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem)))
1025# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1026 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1027# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
1028 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem)))
1029# define IEM_MC_FETCH_MEM_I32_DISP(a_i32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1030 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1031#else
1032# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1033 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1034# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1035 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1036# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
1037 ((a_i32Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1038# define IEM_MC_FETCH_MEM_I32_DISP(a_i32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1039 ((a_i32Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1040
1041# define IEM_MC_FETCH_MEM_FLAT_U32(a_u32Dst, a_GCPtrMem) \
1042 ((a_u32Dst) = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1043# define IEM_MC_FETCH_MEM_FLAT_U32_DISP(a_u32Dst, a_GCPtrMem, a_offDisp) \
1044 ((a_u32Dst) = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1045# define IEM_MC_FETCH_MEM_FLAT_I32(a_i32Dst, a_GCPtrMem) \
1046 ((a_i32Dst) = (int32_t)iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1047# define IEM_MC_FETCH_MEM_FLAT_I32_DISP(a_i32Dst, a_GCPtrMem, a_offDisp) \
1048 ((a_i32Dst) = (int32_t)iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1049#endif
1050
1051#ifndef IEM_WITH_SETJMP
1052# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1053 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
1054# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1055 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1056# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
1057 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64AlignedU128(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
1058# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
1059 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, (uint64_t *)&(a_i64Dst), (a_iSeg), (a_GCPtrMem)))
1060#else
1061# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1062 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1063# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1064 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1065# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
1066 ((a_u64Dst) = iemMemFetchDataU64AlignedU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1067# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
1068 ((a_i64Dst) = (int64_t)iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1069
1070# define IEM_MC_FETCH_MEM_FLAT_U64(a_u64Dst, a_GCPtrMem) \
1071 ((a_u64Dst) = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem)))
1072# define IEM_MC_FETCH_MEM_FLAT_U64_DISP(a_u64Dst, a_GCPtrMem, a_offDisp) \
1073 ((a_u64Dst) = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1074# define IEM_MC_FETCH_MEM_FLAT_U64_ALIGN_U128(a_u64Dst, a_GCPtrMem) \
1075 ((a_u64Dst) = iemMemFlatFetchDataU64AlignedU128Jmp(pVCpu, (a_GCPtrMem)))
1076# define IEM_MC_FETCH_MEM_FLAT_I64(a_i64Dst, a_GCPtrMem) \
1077 ((a_i64Dst) = (int64_t)iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem)))
1078#endif
1079
1080#ifndef IEM_WITH_SETJMP
1081# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
1082 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_r32Dst).u, (a_iSeg), (a_GCPtrMem)))
1083# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
1084 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_r64Dst).u, (a_iSeg), (a_GCPtrMem)))
1085# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
1086 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataR80(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem)))
1087# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
1088 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataD80(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem)))
1089#else
1090# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
1091 ((a_r32Dst).u = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1092# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
1093 ((a_r64Dst).u = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1094# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
1095 iemMemFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem))
1096# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
1097 iemMemFetchDataD80Jmp(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem))
1098
1099# define IEM_MC_FETCH_MEM_FLAT_R32(a_r32Dst, a_GCPtrMem) \
1100 ((a_r32Dst).u = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1101# define IEM_MC_FETCH_MEM_FLAT_R64(a_r64Dst, a_GCPtrMem) \
1102 ((a_r64Dst).u = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem)))
1103# define IEM_MC_FETCH_MEM_FLAT_R80(a_r80Dst, a_GCPtrMem) \
1104 iemMemFlatFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_GCPtrMem))
1105# define IEM_MC_FETCH_MEM_FLAT_D80(a_d80Dst, a_GCPtrMem) \
1106 iemMemFlatFetchDataD80Jmp(pVCpu, &(a_d80Dst), (a_GCPtrMem))
1107#endif
1108
1109#ifndef IEM_WITH_SETJMP
1110# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
1111 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
1112# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
1113 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128NoAc(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
1114# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
1115 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
1116
1117# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
1118 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128NoAc(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
1119# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
1120 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
1121
1122# define IEM_MC_FETCH_MEM_U128_NO_AC_AND_XREG_U128(a_u128Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1123 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128NoAc(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2))); \
1124 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1125 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1126 } while (0)
1127
1128# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE_AND_XREG_XMM(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1129 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_Dst).uSrc2.uXmm, (a_iSeg2), (a_GCPtrMem2))); \
1130 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1131 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1132 } while (0)
1133
1134# define IEM_MC_FETCH_MEM_XMM_U32_AND_XREG_XMM(a_Dst, a_iXReg1, a_iDWord2, a_iSeg2, a_GCPtrMem2) do { \
1135 (a_Dst).uSrc2.uXmm.au64[0] = 0; \
1136 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1137 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_Dst).uSrc2.uXmm.au32[(a_iDWord2)], (a_iSeg2), (a_GCPtrMem2))); \
1138 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1139 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1140 } while (0)
1141
1142# define IEM_MC_FETCH_MEM_XMM_U64_AND_XREG_XMM(a_Dst, a_iXReg1, a_iQWord2, a_iSeg2, a_GCPtrMem2) do { \
1143 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1144 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_Dst).uSrc2.uXmm.au64[(a_iQWord2)], (a_iSeg2), (a_GCPtrMem2))); \
1145 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1146 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1147 } while (0)
1148
1149# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1150 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2))); \
1151 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1152 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1153 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
1154 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
1155 } while (0)
1156# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1157 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2))); \
1158 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1159 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1160 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
1161 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
1162 } while (0)
1163
1164#else
1165# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
1166 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
1167# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
1168 iemMemFetchDataU128NoAcJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
1169# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
1170 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
1171
1172# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
1173 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
1174# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
1175 iemMemFetchDataU128NoAcJmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
1176# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
1177 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
1178
1179# define IEM_MC_FETCH_MEM_FLAT_U128(a_u128Dst, a_GCPtrMem) \
1180 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_GCPtrMem))
1181# define IEM_MC_FETCH_MEM_FLAT_U128_NO_AC(a_u128Dst, a_GCPtrMem) \
1182 iemMemFlatFetchDataU128NoAcJmp(pVCpu, &(a_u128Dst), (a_GCPtrMem))
1183# define IEM_MC_FETCH_MEM_FLAT_U128_ALIGN_SSE(a_u128Dst, a_GCPtrMem) \
1184 iemMemFlatFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_GCPtrMem))
1185
1186# define IEM_MC_FETCH_MEM_FLAT_XMM(a_XmmDst, a_GCPtrMem) \
1187 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_GCPtrMem))
1188# define IEM_MC_FETCH_MEM_FLAT_XMM_NO_AC(a_XmmDst, a_GCPtrMem) \
1189 iemMemFlatFetchDataU128NoAcJmp(pVCpu, &(a_XmmDst).uXmm, (a_GCPtrMem))
1190# define IEM_MC_FETCH_MEM_FLAT_XMM_ALIGN_SSE(a_XmmDst, a_GCPtrMem) \
1191 iemMemFlatFetchDataU128AlignedSseJmp(pVCpu, &(a_XmmDst).uXmm, (a_GCPtrMem))
1192
1193# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1194 iemMemFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2)); \
1195 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1196 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1197 } while (0)
1198# define IEM_MC_FETCH_MEM_FLAT_U128_AND_XREG_U128(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1199 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_GCPtrMem2)); \
1200 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1201 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1202 } while (0)
1203
1204# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE_AND_XREG_XMM(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1205 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_Dst).uSrc2.uXmm, (a_iSeg2), (a_GCPtrMem2)); \
1206 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1207 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1208 } while (0)
1209# define IEM_MC_FETCH_MEM_FLAT_XMM_ALIGN_SSE_AND_XREG_XMM(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1210 iemMemFlatFetchDataU128AlignedSseJmp(pVCpu, &(a_Dst).uSrc2.uXmm, (a_GCPtrMem2)); \
1211 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1212 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1213 } while (0)
1214
1215# define IEM_MC_FETCH_MEM_XMM_U32_AND_XREG_XMM(a_Dst, a_iXReg1, a_iDWord2, a_iSeg2, a_GCPtrMem2) do { \
1216 (a_Dst).uSrc2.uXmm.au64[0] = 0; \
1217 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1218 (a_Dst).uSrc2.uXmm.au32[(a_iDWord2)] = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg2), (a_GCPtrMem2)); \
1219 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1220 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1221 } while (0)
1222# define IEM_MC_FETCH_MEM_FLAT_XMM_U32_AND_XREG_XMM(a_Dst, a_iXReg1, a_iDWord2, a_GCPtrMem2) do { \
1223 (a_Dst).uSrc2.uXmm.au64[0] = 0; \
1224 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1225 (a_Dst).uSrc2.uXmm.au32[(a_iDWord2)] = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem2)); \
1226 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1227 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1228 } while (0)
1229
1230# define IEM_MC_FETCH_MEM_XMM_U64_AND_XREG_XMM(a_Dst, a_iXReg1, a_iQWord2, a_iSeg2, a_GCPtrMem2) do { \
1231 (a_Dst).uSrc2.uXmm.au64[!(a_iQWord2)] = 0; \
1232 (a_Dst).uSrc2.uXmm.au64[(a_iQWord2)] = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg2), (a_GCPtrMem2)); \
1233 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1234 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1235 } while (0)
1236# define IEM_MC_FETCH_MEM_FLAT_XMM_U64_AND_XREG_XMM(a_Dst, a_iXReg1, a_iQWord2, a_GCPtrMem2) do { \
1237 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1238 (a_Dst).uSrc2.uXmm.au64[(a_iQWord2)] = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem2)); \
1239 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1240 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1241 } while (0)
1242
1243
1244# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1245 iemMemFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2)); \
1246 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1247 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1248 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
1249 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
1250 } while (0)
1251# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1252 iemMemFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2)); \
1253 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1254 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1255 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
1256 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
1257 } while (0)
1258
1259# define IEM_MC_FETCH_MEM_FLAT_U128_AND_XREG_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1260 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_GCPtrMem2)); \
1261 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1262 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1263 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
1264 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
1265 } while (0)
1266# define IEM_MC_FETCH_MEM_FLAT_U128_AND_XREG_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1267 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_GCPtrMem2)); \
1268 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1269 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1270 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
1271 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
1272 } while (0)
1273
1274#endif
1275
1276#ifndef IEM_WITH_SETJMP
1277# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
1278 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
1279# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
1280 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
1281# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
1282 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedAvx(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
1283
1284# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
1285 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
1286# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
1287 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
1288# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
1289 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedAvx(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
1290
1291# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX_AND_YREG_YMM(a_uYmmDst, a_iYRegSrc1, a_iSeg2, a_GCPtrMem2) do { \
1292 uintptr_t const a_iYRegSrc1Tmp = (a_iYRegSrc1); \
1293 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedAvx(pVCpu, &(a_uYmmDst).uSrc2.ymm, (a_iSeg2), (a_GCPtrMem2))); \
1294 (a_uYmmDst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[0]; \
1295 (a_uYmmDst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[1]; \
1296 (a_uYmmDst).uSrc1.au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[0]; \
1297 (a_uYmmDst).uSrc1.au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[1]; \
1298 } while (0)
1299
1300#else
1301# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
1302 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
1303# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
1304 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
1305# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
1306 iemMemFetchDataU256AlignedAvxJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
1307
1308# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
1309 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
1310# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
1311 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
1312# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
1313 iemMemFetchDataU256AlignedAvxJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
1314
1315# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX_AND_YREG_YMM(a_uYmmDst, a_iYRegSrc1, a_iSeg2, a_GCPtrMem2) do { \
1316 uintptr_t const a_iYRegSrc1Tmp = (a_iYRegSrc1); \
1317 iemMemFetchDataU256AlignedAvxJmp(pVCpu, &(a_uYmmDst).uSrc2.ymm, (a_iSeg2), (a_GCPtrMem2)); \
1318 (a_uYmmDst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[0]; \
1319 (a_uYmmDst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[1]; \
1320 (a_uYmmDst).uSrc1.au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[0]; \
1321 (a_uYmmDst).uSrc1.au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[1]; \
1322 } while (0)
1323
1324# define IEM_MC_FETCH_MEM_FLAT_U256(a_u256Dst, a_GCPtrMem) \
1325 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_GCPtrMem))
1326# define IEM_MC_FETCH_MEM_FLAT_U256_NO_AC(a_u256Dst, a_GCPtrMem) \
1327 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_GCPtrMem))
1328# define IEM_MC_FETCH_MEM_FLAT_U256_ALIGN_AVX(a_u256Dst, a_GCPtrMem) \
1329 iemMemFlatFetchDataU256AlignedAvxJmp(pVCpu, &(a_u256Dst), (a_GCPtrMem))
1330
1331# define IEM_MC_FETCH_MEM_FLAT_YMM(a_YmmDst, a_GCPtrMem) \
1332 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_GCPtrMem))
1333# define IEM_MC_FETCH_MEM_FLAT_YMM_NO_AC(a_YmmDst, a_GCPtrMem) \
1334 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_GCPtrMem))
1335# define IEM_MC_FETCH_MEM_FLAT_YMM_ALIGN_AVX(a_YmmDst, a_GCPtrMem) \
1336 iemMemFlatFetchDataU256AlignedAvxJmp(pVCpu, &(a_YmmDst).ymm, (a_GCPtrMem))
1337
1338# define IEM_MC_FETCH_MEM_FLAT_YMM_ALIGN_AVX_AND_YREG_YMM(a_uYmmDst, a_iYRegSrc1, a_GCPtrMem2) do { \
1339 uintptr_t const a_iYRegSrc1Tmp = (a_iYRegSrc1); \
1340 iemMemFlatFetchDataU256AlignedAvxJmp(pVCpu, &(a_uYmmDst).uSrc2.ymm, (a_GCPtrMem2)); \
1341 (a_uYmmDst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[0]; \
1342 (a_uYmmDst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[1]; \
1343 (a_uYmmDst).uSrc1.au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[0]; \
1344 (a_uYmmDst).uSrc1.au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[1]; \
1345 } while (0)
1346
1347#endif
1348
1349
1350
1351#ifndef IEM_WITH_SETJMP
1352# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1353 do { \
1354 uint8_t u8Tmp; \
1355 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1356 (a_u16Dst) = u8Tmp; \
1357 } while (0)
1358# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1359 do { \
1360 uint8_t u8Tmp; \
1361 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1362 (a_u32Dst) = u8Tmp; \
1363 } while (0)
1364# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1365 do { \
1366 uint8_t u8Tmp; \
1367 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1368 (a_u64Dst) = u8Tmp; \
1369 } while (0)
1370# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1371 do { \
1372 uint16_t u16Tmp; \
1373 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1374 (a_u32Dst) = u16Tmp; \
1375 } while (0)
1376# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1377 do { \
1378 uint16_t u16Tmp; \
1379 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1380 (a_u64Dst) = u16Tmp; \
1381 } while (0)
1382# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1383 do { \
1384 uint32_t u32Tmp; \
1385 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
1386 (a_u64Dst) = u32Tmp; \
1387 } while (0)
1388#else /* IEM_WITH_SETJMP */
1389# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1390 ((a_u16Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1391# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1392 ((a_u32Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1393# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1394 ((a_u64Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1395# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1396 ((a_u32Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1397# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1398 ((a_u64Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1399# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1400 ((a_u64Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1401
1402# define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U16(a_u16Dst, a_GCPtrMem) \
1403 ((a_u16Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1404# define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U32(a_u32Dst, a_GCPtrMem) \
1405 ((a_u32Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1406# define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U64(a_u64Dst, a_GCPtrMem) \
1407 ((a_u64Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1408# define IEM_MC_FETCH_MEM_FLAT_U16_ZX_U32(a_u32Dst, a_GCPtrMem) \
1409 ((a_u32Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1410# define IEM_MC_FETCH_MEM_FLAT_U16_ZX_U64(a_u64Dst, a_GCPtrMem) \
1411 ((a_u64Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1412# define IEM_MC_FETCH_MEM_FLAT_U32_ZX_U64(a_u64Dst, a_GCPtrMem) \
1413 ((a_u64Dst) = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1414#endif /* IEM_WITH_SETJMP */
1415
1416#ifndef IEM_WITH_SETJMP
1417# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1418 do { \
1419 uint8_t u8Tmp; \
1420 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1421 (a_u16Dst) = (int8_t)u8Tmp; \
1422 } while (0)
1423# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1424 do { \
1425 uint8_t u8Tmp; \
1426 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1427 (a_u32Dst) = (int8_t)u8Tmp; \
1428 } while (0)
1429# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1430 do { \
1431 uint8_t u8Tmp; \
1432 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1433 (a_u64Dst) = (int8_t)u8Tmp; \
1434 } while (0)
1435# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1436 do { \
1437 uint16_t u16Tmp; \
1438 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1439 (a_u32Dst) = (int16_t)u16Tmp; \
1440 } while (0)
1441# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1442 do { \
1443 uint16_t u16Tmp; \
1444 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1445 (a_u64Dst) = (int16_t)u16Tmp; \
1446 } while (0)
1447# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1448 do { \
1449 uint32_t u32Tmp; \
1450 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
1451 (a_u64Dst) = (int32_t)u32Tmp; \
1452 } while (0)
1453#else /* IEM_WITH_SETJMP */
1454# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1455 ((a_u16Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1456# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1457 ((a_u32Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1458# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1459 ((a_u64Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1460# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1461 ((a_u32Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1462# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1463 ((a_u64Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1464# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1465 ((a_u64Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1466
1467# define IEM_MC_FETCH_MEM_FLAT_U8_SX_U16(a_u16Dst, a_GCPtrMem) \
1468 ((a_u16Dst) = (int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1469# define IEM_MC_FETCH_MEM_FLAT_U8_SX_U32(a_u32Dst, a_GCPtrMem) \
1470 ((a_u32Dst) = (int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1471# define IEM_MC_FETCH_MEM_FLAT_U8_SX_U64(a_u64Dst, a_GCPtrMem) \
1472 ((a_u64Dst) = (int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1473# define IEM_MC_FETCH_MEM_FLAT_U16_SX_U32(a_u32Dst, a_GCPtrMem) \
1474 ((a_u32Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1475# define IEM_MC_FETCH_MEM_FLAT_U16_SX_U64(a_u64Dst, a_GCPtrMem) \
1476 ((a_u64Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1477# define IEM_MC_FETCH_MEM_FLAT_U32_SX_U64(a_u64Dst, a_GCPtrMem) \
1478 ((a_u64Dst) = (int32_t)iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1479#endif /* IEM_WITH_SETJMP */
1480
1481#ifndef IEM_WITH_SETJMP
1482# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
1483 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value)))
1484# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
1485 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value)))
1486# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
1487 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value)))
1488# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
1489 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value)))
1490#else
1491# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
1492 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value))
1493# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
1494 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value))
1495# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
1496 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value))
1497# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
1498 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value))
1499
1500# define IEM_MC_STORE_MEM_FLAT_U8(a_GCPtrMem, a_u8Value) \
1501 iemMemFlatStoreDataU8Jmp(pVCpu, (a_GCPtrMem), (a_u8Value))
1502# define IEM_MC_STORE_MEM_FLAT_U16(a_GCPtrMem, a_u16Value) \
1503 iemMemFlatStoreDataU16Jmp(pVCpu, (a_GCPtrMem), (a_u16Value))
1504# define IEM_MC_STORE_MEM_FLAT_U32(a_GCPtrMem, a_u32Value) \
1505 iemMemFlatStoreDataU32Jmp(pVCpu, (a_GCPtrMem), (a_u32Value))
1506# define IEM_MC_STORE_MEM_FLAT_U64(a_GCPtrMem, a_u64Value) \
1507 iemMemFlatStoreDataU64Jmp(pVCpu, (a_GCPtrMem), (a_u64Value))
1508#endif
1509
1510#ifndef IEM_WITH_SETJMP
1511# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
1512 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C)))
1513# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
1514 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C)))
1515# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
1516 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C)))
1517# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
1518 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C)))
1519#else
1520# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
1521 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C))
1522# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
1523 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C))
1524# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
1525 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C))
1526# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
1527 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C))
1528
1529# define IEM_MC_STORE_MEM_FLAT_U8_CONST(a_GCPtrMem, a_u8C) \
1530 iemMemFlatStoreDataU8Jmp(pVCpu, (a_GCPtrMem), (a_u8C))
1531# define IEM_MC_STORE_MEM_FLAT_U16_CONST(a_GCPtrMem, a_u16C) \
1532 iemMemFlatStoreDataU16Jmp(pVCpu, (a_GCPtrMem), (a_u16C))
1533# define IEM_MC_STORE_MEM_FLAT_U32_CONST(a_GCPtrMem, a_u32C) \
1534 iemMemFlatStoreDataU32Jmp(pVCpu, (a_GCPtrMem), (a_u32C))
1535# define IEM_MC_STORE_MEM_FLAT_U64_CONST(a_GCPtrMem, a_u64C) \
1536 iemMemFlatStoreDataU64Jmp(pVCpu, (a_GCPtrMem), (a_u64C))
1537#endif
1538
1539#define IEM_MC_STORE_MEM_I8_CONST_BY_REF( a_pi8Dst, a_i8C) *(a_pi8Dst) = (a_i8C)
1540#define IEM_MC_STORE_MEM_I16_CONST_BY_REF(a_pi16Dst, a_i16C) *(a_pi16Dst) = (a_i16C)
1541#define IEM_MC_STORE_MEM_I32_CONST_BY_REF(a_pi32Dst, a_i32C) *(a_pi32Dst) = (a_i32C)
1542#define IEM_MC_STORE_MEM_I64_CONST_BY_REF(a_pi64Dst, a_i64C) *(a_pi64Dst) = (a_i64C)
1543#define IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(a_pr32Dst) (a_pr32Dst)->u = UINT32_C(0xffc00000)
1544#define IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(a_pr64Dst) (a_pr64Dst)->u = UINT64_C(0xfff8000000000000)
1545#define IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(a_pr80Dst) \
1546 do { \
1547 (a_pr80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
1548 (a_pr80Dst)->au16[4] = UINT16_C(0xffff); \
1549 } while (0)
1550#define IEM_MC_STORE_MEM_INDEF_D80_BY_REF(a_pd80Dst) \
1551 do { \
1552 (a_pd80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
1553 (a_pd80Dst)->au16[4] = UINT16_C(0xffff); \
1554 } while (0)
1555
1556#ifndef IEM_WITH_SETJMP
1557# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
1558 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value)))
1559# define IEM_MC_STORE_MEM_U128_NO_AC(a_iSeg, a_GCPtrMem, a_u128Value) \
1560 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128NoAc(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value)))
1561# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
1562 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128AlignedSse(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
1563#else
1564# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
1565 iemMemStoreDataU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value))
1566# define IEM_MC_STORE_MEM_U128_NO_AC(a_iSeg, a_GCPtrMem, a_u128Value) \
1567 iemMemStoreDataU128NoAcJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value))
1568# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
1569 iemMemStoreDataU128AlignedSseJmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
1570
1571# define IEM_MC_STORE_MEM_FLAT_U128(a_GCPtrMem, a_u128Value) \
1572 iemMemFlatStoreDataU128Jmp(pVCpu, (a_GCPtrMem), &(a_u128Value))
1573# define IEM_MC_STORE_MEM_FLAT_U128_NO_AC(a_GCPtrMem, a_u128Value) \
1574 iemMemFlatStoreDataU128NoAcJmp(pVCpu, (a_GCPtrMem), &(a_u128Value))
1575# define IEM_MC_STORE_MEM_FLAT_U128_ALIGN_SSE(a_GCPtrMem, a_u128Value) \
1576 iemMemStoreDataU128AlignedSseJmp(pVCpu, UINT8_MAX, (a_GCPtrMem), (a_u128Value))
1577#endif
1578
1579#ifndef IEM_WITH_SETJMP
1580# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
1581 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1582# define IEM_MC_STORE_MEM_U256_NO_AC(a_iSeg, a_GCPtrMem, a_u256Value) \
1583 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256NoAc(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1584# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
1585 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256AlignedAvx(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1586#else
1587# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
1588 iemMemStoreDataU256Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1589# define IEM_MC_STORE_MEM_U256_NO_AC(a_iSeg, a_GCPtrMem, a_u256Value) \
1590 iemMemStoreDataU256NoAcJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1591# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
1592 iemMemStoreDataU256AlignedAvxJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1593
1594# define IEM_MC_STORE_MEM_FLAT_U256(a_GCPtrMem, a_u256Value) \
1595 iemMemFlatStoreDataU256Jmp(pVCpu, (a_GCPtrMem), &(a_u256Value))
1596# define IEM_MC_STORE_MEM_FLAT_U256_NO_AC(a_GCPtrMem, a_u256Value) \
1597 iemMemFlatStoreDataU256NoAcJmp(pVCpu, (a_GCPtrMem), &(a_u256Value))
1598# define IEM_MC_STORE_MEM_FLAT_U256_ALIGN_AVX(a_GCPtrMem, a_u256Value) \
1599 iemMemFlatStoreDataU256AlignedAvxJmp(pVCpu, (a_GCPtrMem), &(a_u256Value))
1600#endif
1601
1602/* Regular stack push and pop: */
1603#ifndef IEM_WITH_SETJMP
1604# define IEM_MC_PUSH_U16(a_u16Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1605# define IEM_MC_PUSH_U32(a_u32Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
1606# define IEM_MC_PUSH_U32_SREG(a_uSegVal) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_uSegVal)))
1607# define IEM_MC_PUSH_U64(a_u64Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
1608
1609# define IEM_MC_POP_GREG_U16(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU16(pVCpu, (a_iGReg)))
1610# define IEM_MC_POP_GREG_U32(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU32(pVCpu, (a_iGReg)))
1611# define IEM_MC_POP_GREG_U64(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU64(pVCpu, (a_iGReg)))
1612#else
1613# define IEM_MC_PUSH_U16(a_u16Value) iemMemStackPushU16Jmp(pVCpu, (a_u16Value))
1614# define IEM_MC_PUSH_U32(a_u32Value) iemMemStackPushU32Jmp(pVCpu, (a_u32Value))
1615# define IEM_MC_PUSH_U32_SREG(a_uSegVal) iemMemStackPushU32SRegJmp(pVCpu, (a_uSegVal))
1616# define IEM_MC_PUSH_U64(a_u64Value) iemMemStackPushU64Jmp(pVCpu, (a_u64Value))
1617
1618# define IEM_MC_POP_GREG_U16(a_iGReg) iemMemStackPopGRegU16Jmp(pVCpu, (a_iGReg))
1619# define IEM_MC_POP_GREG_U32(a_iGReg) iemMemStackPopGRegU32Jmp(pVCpu, (a_iGReg))
1620# define IEM_MC_POP_GREG_U64(a_iGReg) iemMemStackPopGRegU64Jmp(pVCpu, (a_iGReg))
1621#endif
1622
1623/* 32-bit flat stack push and pop: */
1624#ifndef IEM_WITH_SETJMP
1625# define IEM_MC_FLAT32_PUSH_U16(a_u16Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1626# define IEM_MC_FLAT32_PUSH_U32(a_u32Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
1627# define IEM_MC_FLAT32_PUSH_U32_SREG(a_uSegVal) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_uSegVal)))
1628
1629# define IEM_MC_FLAT32_POP_GREG_U16(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU16(pVCpu, (a_iGReg)))
1630# define IEM_MC_FLAT32_POP_GREG_U32(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU32(pVCpu, (a_iGReg)))
1631#else
1632# define IEM_MC_FLAT32_PUSH_U16(a_u16Value) iemMemFlat32StackPushU16Jmp(pVCpu, (a_u16Value))
1633# define IEM_MC_FLAT32_PUSH_U32(a_u32Value) iemMemFlat32StackPushU32Jmp(pVCpu, (a_u32Value))
1634# define IEM_MC_FLAT32_PUSH_U32_SREG(a_uSegVal) iemMemFlat32StackPushU32SRegJmp(pVCpu, (a_uSegVal))
1635
1636# define IEM_MC_FLAT32_POP_GREG_U16(a_iGReg) iemMemFlat32StackPopGRegU16Jmp(pVCpu, a_iGReg))
1637# define IEM_MC_FLAT32_POP_GREG_U32(a_iGReg) iemMemFlat32StackPopGRegU32Jmp(pVCpu, a_iGReg))
1638#endif
1639
1640/* 64-bit flat stack push and pop: */
1641#ifndef IEM_WITH_SETJMP
1642# define IEM_MC_FLAT64_PUSH_U16(a_u16Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1643# define IEM_MC_FLAT64_PUSH_U64(a_u64Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
1644
1645# define IEM_MC_FLAT64_POP_GREG_U16(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU16(pVCpu, (a_iGReg)))
1646# define IEM_MC_FLAT64_POP_GREG_U64(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU64(pVCpu, (a_iGReg)))
1647#else
1648# define IEM_MC_FLAT64_PUSH_U16(a_u16Value) iemMemFlat64StackPushU16Jmp(pVCpu, (a_u16Value))
1649# define IEM_MC_FLAT64_PUSH_U64(a_u64Value) iemMemFlat64StackPushU64Jmp(pVCpu, (a_u64Value))
1650
1651# define IEM_MC_FLAT64_POP_GREG_U16(a_iGReg) iemMemFlat64StackPopGRegU16Jmp(pVCpu, (a_iGReg))
1652# define IEM_MC_FLAT64_POP_GREG_U64(a_iGReg) iemMemFlat64StackPopGRegU64Jmp(pVCpu, (a_iGReg))
1653#endif
1654
1655
1656/* 8-bit */
1657
1658/**
1659 * Maps guest memory for byte atomic read+write direct (or bounce) buffer
1660 * acccess, for atomic operations.
1661 *
1662 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1663 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1664 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1665 * @param[in] a_GCPtrMem The memory address.
1666 * @remarks Will return/long jump on errors.
1667 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1668 */
1669#ifndef IEM_WITH_SETJMP
1670# define IEM_MC_MEM_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1671 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1672 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, 0))
1673#else
1674# define IEM_MC_MEM_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1675 (a_pu8Mem) = iemMemMapDataU8AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1676#endif
1677
1678/**
1679 * Maps guest memory for byte read+write direct (or bounce) buffer acccess.
1680 *
1681 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1682 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1683 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1684 * @param[in] a_GCPtrMem The memory address.
1685 * @remarks Will return/long jump on errors.
1686 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1687 */
1688#ifndef IEM_WITH_SETJMP
1689# define IEM_MC_MEM_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1690 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1691 (a_GCPtrMem), IEM_ACCESS_DATA_RW, 0))
1692#else
1693# define IEM_MC_MEM_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1694 (a_pu8Mem) = iemMemMapDataU8RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1695#endif
1696
1697/**
1698 * Maps guest memory for byte writeonly direct (or bounce) buffer acccess.
1699 *
1700 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1701 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1702 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1703 * @param[in] a_GCPtrMem The memory address.
1704 * @remarks Will return/long jump on errors.
1705 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1706 */
1707#ifndef IEM_WITH_SETJMP
1708# define IEM_MC_MEM_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1709 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1710 (a_GCPtrMem), IEM_ACCESS_DATA_W, 0))
1711#else
1712# define IEM_MC_MEM_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1713 (a_pu8Mem) = iemMemMapDataU8WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1714#endif
1715
1716/**
1717 * Maps guest memory for byte readonly direct (or bounce) buffer acccess.
1718 *
1719 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1720 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1721 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1722 * @param[in] a_GCPtrMem The memory address.
1723 * @remarks Will return/long jump on errors.
1724 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1725 */
1726#ifndef IEM_WITH_SETJMP
1727# define IEM_MC_MEM_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1728 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1729 (a_GCPtrMem), IEM_ACCESS_DATA_R, 0))
1730#else
1731# define IEM_MC_MEM_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1732 (a_pu8Mem) = iemMemMapDataU8RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1733#endif
1734
1735/**
1736 * Maps guest memory for byte atomic read+write direct (or bounce) buffer
1737 * acccess, flat address variant.
1738 *
1739 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1740 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1741 * @param[in] a_GCPtrMem The memory address.
1742 * @remarks Will return/long jump on errors.
1743 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1744 */
1745#ifndef IEM_WITH_SETJMP
1746# define IEM_MC_MEM_FLAT_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1747 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1748 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, 0))
1749#else
1750# define IEM_MC_MEM_FLAT_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1751 (a_pu8Mem) = iemMemFlatMapDataU8AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1752#endif
1753
1754/**
1755 * Maps guest memory for byte read+write direct (or bounce) buffer acccess, flat
1756 * address variant.
1757 *
1758 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1759 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1760 * @param[in] a_GCPtrMem The memory address.
1761 * @remarks Will return/long jump on errors.
1762 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1763 */
1764#ifndef IEM_WITH_SETJMP
1765# define IEM_MC_MEM_FLAT_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1766 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1767 (a_GCPtrMem), IEM_ACCESS_DATA_RW, 0))
1768#else
1769# define IEM_MC_MEM_FLAT_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1770 (a_pu8Mem) = iemMemFlatMapDataU8RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1771#endif
1772
1773/**
1774 * Maps guest memory for byte writeonly direct (or bounce) buffer acccess, flat
1775 * address variant.
1776 *
1777 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1778 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1779 * @param[in] a_GCPtrMem The memory address.
1780 * @remarks Will return/long jump on errors.
1781 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1782 */
1783#ifndef IEM_WITH_SETJMP
1784# define IEM_MC_MEM_FLAT_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1785 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1786 (a_GCPtrMem), IEM_ACCESS_DATA_W, 0))
1787#else
1788# define IEM_MC_MEM_FLAT_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1789 (a_pu8Mem) = iemMemFlatMapDataU8WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1790#endif
1791
1792/**
1793 * Maps guest memory for byte readonly direct (or bounce) buffer acccess, flat
1794 * address variant.
1795 *
1796 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1797 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1798 * @param[in] a_GCPtrMem The memory address.
1799 * @remarks Will return/long jump on errors.
1800 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1801 */
1802#ifndef IEM_WITH_SETJMP
1803# define IEM_MC_MEM_FLAT_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1804 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1805 (a_GCPtrMem), IEM_ACCESS_DATA_R, 0))
1806#else
1807# define IEM_MC_MEM_FLAT_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1808 (a_pu8Mem) = iemMemFlatMapDataU8RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1809#endif
1810
1811
1812/* 16-bit */
1813
1814/**
1815 * Maps guest memory for word atomic read+write direct (or bounce) buffer acccess.
1816 *
1817 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1818 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1819 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1820 * @param[in] a_GCPtrMem The memory address.
1821 * @remarks Will return/long jump on errors.
1822 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1823 */
1824#ifndef IEM_WITH_SETJMP
1825# define IEM_MC_MEM_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1826 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1827 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint16_t) - 1))
1828#else
1829# define IEM_MC_MEM_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1830 (a_pu16Mem) = iemMemMapDataU16AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1831#endif
1832
1833/**
1834 * Maps guest memory for word read+write direct (or bounce) buffer acccess.
1835 *
1836 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1837 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1838 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1839 * @param[in] a_GCPtrMem The memory address.
1840 * @remarks Will return/long jump on errors.
1841 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1842 */
1843#ifndef IEM_WITH_SETJMP
1844# define IEM_MC_MEM_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1845 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1846 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint16_t) - 1))
1847#else
1848# define IEM_MC_MEM_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1849 (a_pu16Mem) = iemMemMapDataU16RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1850#endif
1851
1852/**
1853 * Maps guest memory for word writeonly direct (or bounce) buffer acccess.
1854 *
1855 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1856 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1857 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1858 * @param[in] a_GCPtrMem The memory address.
1859 * @remarks Will return/long jump on errors.
1860 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1861 */
1862#ifndef IEM_WITH_SETJMP
1863# define IEM_MC_MEM_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1864 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1865 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint16_t) - 1))
1866#else
1867# define IEM_MC_MEM_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1868 (a_pu16Mem) = iemMemMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1869#endif
1870
1871/**
1872 * Maps guest memory for word readonly direct (or bounce) buffer acccess.
1873 *
1874 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1875 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1876 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1877 * @param[in] a_GCPtrMem The memory address.
1878 * @remarks Will return/long jump on errors.
1879 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1880 */
1881#ifndef IEM_WITH_SETJMP
1882# define IEM_MC_MEM_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1883 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1884 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint16_t) - 1))
1885#else
1886# define IEM_MC_MEM_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1887 (a_pu16Mem) = iemMemMapDataU16RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1888#endif
1889
1890/**
1891 * Maps guest memory for word atomic read+write direct (or bounce) buffer
1892 * acccess, flat address variant.
1893 *
1894 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1895 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1896 * @param[in] a_GCPtrMem The memory address.
1897 * @remarks Will return/long jump on errors.
1898 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1899 */
1900#ifndef IEM_WITH_SETJMP
1901# define IEM_MC_MEM_FLAT_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1902 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1903 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint16_t) - 1))
1904#else
1905# define IEM_MC_MEM_FLAT_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1906 (a_pu16Mem) = iemMemFlatMapDataU16AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1907#endif
1908
1909/**
1910 * Maps guest memory for word read+write direct (or bounce) buffer acccess, flat
1911 * address variant.
1912 *
1913 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1914 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1915 * @param[in] a_GCPtrMem The memory address.
1916 * @remarks Will return/long jump on errors.
1917 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1918 */
1919#ifndef IEM_WITH_SETJMP
1920# define IEM_MC_MEM_FLAT_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1921 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1922 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint16_t) - 1))
1923#else
1924# define IEM_MC_MEM_FLAT_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1925 (a_pu16Mem) = iemMemFlatMapDataU16RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1926#endif
1927
1928/**
1929 * Maps guest memory for word writeonly direct (or bounce) buffer acccess, flat
1930 * address variant.
1931 *
1932 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1933 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1934 * @param[in] a_GCPtrMem The memory address.
1935 * @remarks Will return/long jump on errors.
1936 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1937 */
1938#ifndef IEM_WITH_SETJMP
1939# define IEM_MC_MEM_FLAT_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1940 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1941 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint16_t) - 1))
1942#else
1943# define IEM_MC_MEM_FLAT_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1944 (a_pu16Mem) = iemMemFlatMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1945#endif
1946
1947/**
1948 * Maps guest memory for word readonly direct (or bounce) buffer acccess, flat
1949 * address variant.
1950 *
1951 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1952 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1953 * @param[in] a_GCPtrMem The memory address.
1954 * @remarks Will return/long jump on errors.
1955 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1956 */
1957#ifndef IEM_WITH_SETJMP
1958# define IEM_MC_MEM_FLAT_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1959 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1960 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint16_t) - 1))
1961#else
1962# define IEM_MC_MEM_FLAT_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1963 (a_pu16Mem) = iemMemFlatMapDataU16RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1964#endif
1965
1966/** int16_t alias. */
1967#ifndef IEM_WITH_SETJMP
1968# define IEM_MC_MEM_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1969 IEM_MC_MEM_MAP_U16_WO(a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
1970#else
1971# define IEM_MC_MEM_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1972 (a_pi16Mem) = (int16_t *)iemMemMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1973#endif
1974
1975/** Flat int16_t alias. */
1976#ifndef IEM_WITH_SETJMP
1977# define IEM_MC_MEM_FLAT_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_GCPtrMem) \
1978 IEM_MC_MEM_FLAT_MAP_U16_WO(a_pi16Mem, a_bUnmapInfo, a_GCPtrMem)
1979#else
1980# define IEM_MC_MEM_FLAT_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_GCPtrMem) \
1981 (a_pi16Mem) = (int16_t *)iemMemFlatMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1982#endif
1983
1984
1985/* 32-bit */
1986
1987/**
1988 * Maps guest memory for dword atomic read+write direct (or bounce) buffer acccess.
1989 *
1990 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
1991 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1992 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1993 * @param[in] a_GCPtrMem The memory address.
1994 * @remarks Will return/long jump on errors.
1995 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1996 */
1997#ifndef IEM_WITH_SETJMP
1998# define IEM_MC_MEM_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1999 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
2000 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint32_t) - 1))
2001#else
2002# define IEM_MC_MEM_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2003 (a_pu32Mem) = iemMemMapDataU32AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2004#endif
2005
2006/**
2007 * Maps guest memory for dword read+write direct (or bounce) buffer acccess.
2008 *
2009 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2010 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2011 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2012 * @param[in] a_GCPtrMem The memory address.
2013 * @remarks Will return/long jump on errors.
2014 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2015 */
2016#ifndef IEM_WITH_SETJMP
2017# define IEM_MC_MEM_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2018 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
2019 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint32_t) - 1))
2020#else
2021# define IEM_MC_MEM_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2022 (a_pu32Mem) = iemMemMapDataU32RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2023#endif
2024
2025/**
2026 * Maps guest memory for dword writeonly direct (or bounce) buffer acccess.
2027 *
2028 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2029 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2030 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2031 * @param[in] a_GCPtrMem The memory address.
2032 * @remarks Will return/long jump on errors.
2033 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2034 */
2035#ifndef IEM_WITH_SETJMP
2036# define IEM_MC_MEM_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2037 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
2038 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint32_t) - 1))
2039#else
2040# define IEM_MC_MEM_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2041 (a_pu32Mem) = iemMemMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2042#endif
2043
2044/**
2045 * Maps guest memory for dword readonly direct (or bounce) buffer acccess.
2046 *
2047 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2048 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2049 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2050 * @param[in] a_GCPtrMem The memory address.
2051 * @remarks Will return/long jump on errors.
2052 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2053 */
2054#ifndef IEM_WITH_SETJMP
2055# define IEM_MC_MEM_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2056 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
2057 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint32_t) - 1))
2058#else
2059# define IEM_MC_MEM_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2060 (a_pu32Mem) = iemMemMapDataU32RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2061#endif
2062
2063/**
2064 * Maps guest memory for dword atomic read+write direct (or bounce) buffer
2065 * acccess, flat address variant.
2066 *
2067 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2068 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2069 * @param[in] a_GCPtrMem The memory address.
2070 * @remarks Will return/long jump on errors.
2071 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2072 */
2073#ifndef IEM_WITH_SETJMP
2074# define IEM_MC_MEM_FLAT_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2075 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2076 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint32_t) - 1))
2077#else
2078# define IEM_MC_MEM_FLAT_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2079 (a_pu32Mem) = iemMemFlatMapDataU32AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2080#endif
2081
2082/**
2083 * Maps guest memory for dword read+write direct (or bounce) buffer acccess,
2084 * flat address variant.
2085 *
2086 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2087 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2088 * @param[in] a_GCPtrMem The memory address.
2089 * @remarks Will return/long jump on errors.
2090 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2091 */
2092#ifndef IEM_WITH_SETJMP
2093# define IEM_MC_MEM_FLAT_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2094 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2095 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint32_t) - 1))
2096#else
2097# define IEM_MC_MEM_FLAT_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2098 (a_pu32Mem) = iemMemFlatMapDataU32RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2099#endif
2100
2101/**
2102 * Maps guest memory for dword writeonly direct (or bounce) buffer acccess, flat
2103 * address variant.
2104 *
2105 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2106 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2107 * @param[in] a_GCPtrMem The memory address.
2108 * @remarks Will return/long jump on errors.
2109 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2110 */
2111#ifndef IEM_WITH_SETJMP
2112# define IEM_MC_MEM_FLAT_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2113 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2114 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint32_t) - 1))
2115#else
2116# define IEM_MC_MEM_FLAT_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2117 (a_pu32Mem) = iemMemFlatMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2118#endif
2119
2120/**
2121 * Maps guest memory for dword readonly direct (or bounce) buffer acccess, flat
2122 * address variant.
2123 *
2124 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2125 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2126 * @param[in] a_GCPtrMem The memory address.
2127 * @remarks Will return/long jump on errors.
2128 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2129 */
2130#ifndef IEM_WITH_SETJMP
2131# define IEM_MC_MEM_FLAT_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2132 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2133 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint32_t) - 1))
2134#else
2135# define IEM_MC_MEM_FLAT_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2136 (a_pu32Mem) = iemMemFlatMapDataU32RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2137#endif
2138
2139/** int32_t alias. */
2140#ifndef IEM_WITH_SETJMP
2141# define IEM_MC_MEM_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2142 IEM_MC_MEM_MAP_U32_WO(a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2143#else
2144# define IEM_MC_MEM_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2145 (a_pi32Mem) = (int32_t *)iemMemMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2146#endif
2147
2148/** Flat int32_t alias. */
2149#ifndef IEM_WITH_SETJMP
2150# define IEM_MC_MEM_FLAT_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_GCPtrMem) \
2151 IEM_MC_MEM_FLAT_MAP_U32_WO(a_pi32Mem, a_bUnmapInfo, a_GCPtrMem)
2152#else
2153# define IEM_MC_MEM_FLAT_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_GCPtrMem) \
2154 (a_pi32Mem) = (int32_t *)iemMemFlatMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2155#endif
2156
2157/** RTFLOAT32U alias. */
2158#ifndef IEM_WITH_SETJMP
2159# define IEM_MC_MEM_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2160 IEM_MC_MEM_MAP_U32_WO(a_pr32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2161#else
2162# define IEM_MC_MEM_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2163 (a_pr32Mem) = (PRTFLOAT32U)iemMemMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2164#endif
2165
2166/** Flat RTFLOAT32U alias. */
2167#ifndef IEM_WITH_SETJMP
2168# define IEM_MC_MEM_FLAT_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_GCPtrMem) \
2169 IEM_MC_MEM_FLAT_MAP_U32_WO(a_pr32Mem, a_bUnmapInfo, a_GCPtrMem)
2170#else
2171# define IEM_MC_MEM_FLAT_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_GCPtrMem) \
2172 (a_pr32Mem) = (PRTFLOAT32U)iemMemFlatMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2173#endif
2174
2175
2176/* 64-bit */
2177
2178/**
2179 * Maps guest memory for qword atomic read+write direct (or bounce) buffer acccess.
2180 *
2181 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2182 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2183 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2184 * @param[in] a_GCPtrMem The memory address.
2185 * @remarks Will return/long jump on errors.
2186 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2187 */
2188#ifndef IEM_WITH_SETJMP
2189# define IEM_MC_MEM_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2190 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2191 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint64_t) - 1))
2192#else
2193# define IEM_MC_MEM_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2194 (a_pu64Mem) = iemMemMapDataU64AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2195#endif
2196
2197/**
2198 * Maps guest memory for qword read+write direct (or bounce) buffer acccess.
2199 *
2200 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2201 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2202 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2203 * @param[in] a_GCPtrMem The memory address.
2204 * @remarks Will return/long jump on errors.
2205 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2206 */
2207#ifndef IEM_WITH_SETJMP
2208# define IEM_MC_MEM_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2209 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2210 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint64_t) - 1))
2211#else
2212# define IEM_MC_MEM_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2213 (a_pu64Mem) = iemMemMapDataU64RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2214#endif
2215
2216/**
2217 * Maps guest memory for qword writeonly direct (or bounce) buffer acccess.
2218 *
2219 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2220 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2221 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2222 * @param[in] a_GCPtrMem The memory address.
2223 * @remarks Will return/long jump on errors.
2224 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2225 */
2226#ifndef IEM_WITH_SETJMP
2227# define IEM_MC_MEM_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2228 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2229 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2230#else
2231# define IEM_MC_MEM_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2232 (a_pu64Mem) = iemMemMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2233#endif
2234
2235/**
2236 * Maps guest memory for qword readonly direct (or bounce) buffer acccess.
2237 *
2238 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2239 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2240 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2241 * @param[in] a_GCPtrMem The memory address.
2242 * @remarks Will return/long jump on errors.
2243 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2244 */
2245#ifndef IEM_WITH_SETJMP
2246# define IEM_MC_MEM_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2247 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2248 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint64_t) - 1))
2249#else
2250# define IEM_MC_MEM_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2251 (a_pu64Mem) = iemMemMapDataU64RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2252#endif
2253
2254/**
2255 * Maps guest memory for qword atomic read+write direct (or bounce) buffer
2256 * acccess, flat address variant.
2257 *
2258 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2259 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2260 * @param[in] a_GCPtrMem The memory address.
2261 * @remarks Will return/long jump on errors.
2262 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2263 */
2264#ifndef IEM_WITH_SETJMP
2265# define IEM_MC_MEM_FLAT_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2266 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2267 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint64_t) - 1))
2268#else
2269# define IEM_MC_MEM_FLAT_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2270 (a_pu64Mem) = iemMemFlatMapDataU64AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2271#endif
2272
2273/**
2274 * Maps guest memory for qword read+write direct (or bounce) buffer acccess,
2275 * flat address variant.
2276 *
2277 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2278 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2279 * @param[in] a_GCPtrMem The memory address.
2280 * @remarks Will return/long jump on errors.
2281 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2282 */
2283#ifndef IEM_WITH_SETJMP
2284# define IEM_MC_MEM_FLAT_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2285 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2286 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint64_t) - 1))
2287#else
2288# define IEM_MC_MEM_FLAT_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2289 (a_pu64Mem) = iemMemFlatMapDataU64RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2290#endif
2291
2292/**
2293 * Maps guest memory for qword writeonly direct (or bounce) buffer acccess, flat
2294 * address variant.
2295 *
2296 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2297 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2298 * @param[in] a_GCPtrMem The memory address.
2299 * @remarks Will return/long jump on errors.
2300 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2301 */
2302#ifndef IEM_WITH_SETJMP
2303# define IEM_MC_MEM_FLAT_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2304 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2305 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2306#else
2307# define IEM_MC_MEM_FLAT_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2308 (a_pu64Mem) = iemMemFlatMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2309#endif
2310
2311/**
2312 * Maps guest memory for qword readonly direct (or bounce) buffer acccess, flat
2313 * address variant.
2314 *
2315 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2316 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2317 * @param[in] a_GCPtrMem The memory address.
2318 * @remarks Will return/long jump on errors.
2319 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2320 */
2321#ifndef IEM_WITH_SETJMP
2322# define IEM_MC_MEM_FLAT_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2323 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2324 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint64_t) - 1))
2325#else
2326# define IEM_MC_MEM_FLAT_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2327 (a_pu64Mem) = iemMemFlatMapDataU64RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2328#endif
2329
2330/** int64_t alias. */
2331#ifndef IEM_WITH_SETJMP
2332# define IEM_MC_MEM_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2333 IEM_MC_MEM_MAP_U64_WO(a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2334#else
2335# define IEM_MC_MEM_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2336 (a_pi64Mem) = (int64_t *)iemMemMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2337#endif
2338
2339/** Flat int64_t alias. */
2340#ifndef IEM_WITH_SETJMP
2341# define IEM_MC_MEM_FLAT_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_GCPtrMem) \
2342 IEM_MC_MEM_FLAT_MAP_U64_WO(a_pi64Mem, a_bUnmapInfo, a_GCPtrMem)
2343#else
2344# define IEM_MC_MEM_FLAT_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_GCPtrMem) \
2345 (a_pi64Mem) = (int64_t *)iemMemFlatMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2346#endif
2347
2348/** RTFLOAT64U alias. */
2349#ifndef IEM_WITH_SETJMP
2350# define IEM_MC_MEM_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2351 IEM_MC_MEM_MAP_U64_WO(a_pr64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2352#else
2353# define IEM_MC_MEM_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2354 (a_pr64Mem) = (PRTFLOAT64U)iemMemMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2355#endif
2356
2357/** Flat RTFLOAT64U alias. */
2358#ifndef IEM_WITH_SETJMP
2359# define IEM_MC_MEM_FLAT_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_GCPtrMem) \
2360 IEM_MC_MEM_FLAT_MAP_U64_WO(a_pr64Mem, a_bUnmapInfo, a_GCPtrMem)
2361#else
2362# define IEM_MC_MEM_FLAT_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_GCPtrMem) \
2363 (a_pr64Mem) = (PRTFLOAT64U)iemMemFlatMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2364#endif
2365
2366
2367/* 128-bit */
2368
2369/**
2370 * Maps guest memory for dqword atomic read+write direct (or bounce) buffer acccess.
2371 *
2372 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2373 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2374 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2375 * @param[in] a_GCPtrMem The memory address.
2376 * @remarks Will return/long jump on errors.
2377 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2378 */
2379#ifndef IEM_WITH_SETJMP
2380# define IEM_MC_MEM_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2381 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128U), (a_iSeg), \
2382 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(RTUINT128U) - 1))
2383#else
2384# define IEM_MC_MEM_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2385 (a_pu128Mem) = iemMemMapDataU128AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2386#endif
2387
2388/**
2389 * Maps guest memory for dqword read+write direct (or bounce) buffer acccess.
2390 *
2391 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2392 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2393 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2394 * @param[in] a_GCPtrMem The memory address.
2395 * @remarks Will return/long jump on errors.
2396 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2397 */
2398#ifndef IEM_WITH_SETJMP
2399# define IEM_MC_MEM_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2400 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128U), (a_iSeg), \
2401 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(RTUINT128U) - 1))
2402#else
2403# define IEM_MC_MEM_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2404 (a_pu128Mem) = iemMemMapDataU128RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2405#endif
2406
2407/**
2408 * Maps guest memory for dqword writeonly direct (or bounce) buffer acccess.
2409 *
2410 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2411 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2412 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2413 * @param[in] a_GCPtrMem The memory address.
2414 * @remarks Will return/long jump on errors.
2415 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2416 */
2417#ifndef IEM_WITH_SETJMP
2418# define IEM_MC_MEM_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2419 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), (a_iSeg), \
2420 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(RTUINT128) - 1))
2421#else
2422# define IEM_MC_MEM_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2423 (a_pu128Mem) = iemMemMapDataU128WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2424#endif
2425
2426/**
2427 * Maps guest memory for dqword readonly direct (or bounce) buffer acccess.
2428 *
2429 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2430 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2431 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2432 * @param[in] a_GCPtrMem The memory address.
2433 * @remarks Will return/long jump on errors.
2434 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2435 */
2436#ifndef IEM_WITH_SETJMP
2437# define IEM_MC_MEM_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2438 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), (a_iSeg), \
2439 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(RTUINT128) - 1))
2440#else
2441# define IEM_MC_MEM_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2442 (a_pu128Mem) = iemMemMapDataU128RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2443#endif
2444
2445/**
2446 * Maps guest memory for dqword atomic read+write direct (or bounce) buffer
2447 * access, flat address variant.
2448 *
2449 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2450 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2451 * @param[in] a_GCPtrMem The memory address.
2452 * @remarks Will return/long jump on errors.
2453 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2454 */
2455#ifndef IEM_WITH_SETJMP
2456# define IEM_MC_MEM_FLAT_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2457 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2458 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(RTUINT128) - 1))
2459#else
2460# define IEM_MC_MEM_FLAT_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2461 (a_pu128Mem) = iemMemFlatMapDataU128AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2462#endif
2463
2464/**
2465 * Maps guest memory for dqword read+write direct (or bounce) buffer acccess,
2466 * flat address variant.
2467 *
2468 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2469 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2470 * @param[in] a_GCPtrMem The memory address.
2471 * @remarks Will return/long jump on errors.
2472 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2473 */
2474#ifndef IEM_WITH_SETJMP
2475# define IEM_MC_MEM_FLAT_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2476 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2477 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(RTUINT128) - 1))
2478#else
2479# define IEM_MC_MEM_FLAT_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2480 (a_pu128Mem) = iemMemFlatMapDataU128RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2481#endif
2482
2483/**
2484 * Maps guest memory for dqword writeonly direct (or bounce) buffer acccess,
2485 * flat address variant.
2486 *
2487 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2488 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2489 * @param[in] a_GCPtrMem The memory address.
2490 * @remarks Will return/long jump on errors.
2491 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2492 */
2493#ifndef IEM_WITH_SETJMP
2494# define IEM_MC_MEM_FLAT_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2495 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2496 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(RTUINT128) - 1))
2497#else
2498# define IEM_MC_MEM_FLAT_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2499 (a_pu128Mem) = iemMemFlatMapDataU128WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2500#endif
2501
2502/**
2503 * Maps guest memory for dqword readonly direct (or bounce) buffer acccess, flat
2504 * address variant.
2505 *
2506 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2507 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2508 * @param[in] a_GCPtrMem The memory address.
2509 * @remarks Will return/long jump on errors.
2510 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2511 */
2512#ifndef IEM_WITH_SETJMP
2513# define IEM_MC_MEM_FLAT_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2514 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2515 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(RTUINT128) - 1))
2516#else
2517# define IEM_MC_MEM_FLAT_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2518 (a_pu128Mem) = iemMemFlatMapDataU128RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2519#endif
2520
2521
2522/* misc */
2523
2524/**
2525 * Maps guest memory for 80-bit float writeonly direct (or bounce) buffer acccess.
2526 *
2527 * @param[out] a_pr80Mem Where to return the pointer to the mapping.
2528 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2529 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2530 * @param[in] a_GCPtrMem The memory address.
2531 * @remarks Will return/long jump on errors.
2532 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2533 */
2534#ifndef IEM_WITH_SETJMP
2535# define IEM_MC_MEM_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2536 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pr80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), (a_iSeg), \
2537 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2538#else
2539# define IEM_MC_MEM_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2540 (a_pr80Mem) = iemMemMapDataR80WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2541#endif
2542
2543/**
2544 * Maps guest memory for 80-bit float writeonly direct (or bounce) buffer acccess.
2545 *
2546 * @param[out] a_pr80Mem Where to return the pointer to the mapping.
2547 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2548 * @param[in] a_GCPtrMem The memory address.
2549 * @remarks Will return/long jump on errors.
2550 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2551 */
2552#ifndef IEM_WITH_SETJMP
2553# define IEM_MC_MEM_FLAT_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_GCPtrMem) \
2554 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pr80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), UINT8_MAX, \
2555 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2556#else
2557# define IEM_MC_MEM_FLAT_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_GCPtrMem) \
2558 (a_pr80Mem) = iemMemFlatMapDataR80WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2559#endif
2560
2561
2562/**
2563 * Maps guest memory for 80-bit BCD writeonly direct (or bounce) buffer acccess.
2564 *
2565 * @param[out] a_pd80Mem Where to return the pointer to the mapping.
2566 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2567 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2568 * @param[in] a_GCPtrMem The memory address.
2569 * @remarks Will return/long jump on errors.
2570 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2571 */
2572#ifndef IEM_WITH_SETJMP
2573# define IEM_MC_MEM_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2574 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pd80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), (a_iSeg), \
2575 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2576#else
2577# define IEM_MC_MEM_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2578 (a_pd80Mem) = iemMemMapDataD80WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2579#endif
2580
2581/**
2582 * Maps guest memory for 80-bit BCD writeonly direct (or bounce) buffer acccess.
2583 *
2584 * @param[out] a_pd80Mem Where to return the pointer to the mapping.
2585 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2586 * @param[in] a_GCPtrMem The memory address.
2587 * @remarks Will return/long jump on errors.
2588 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2589 */
2590#ifndef IEM_WITH_SETJMP
2591# define IEM_MC_MEM_FLAT_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_GCPtrMem) \
2592 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pd80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), UINT8_MAX, \
2593 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2594#else
2595# define IEM_MC_MEM_FLAT_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_GCPtrMem) \
2596 (a_pd80Mem) = iemMemFlatMapDataD80WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2597#endif
2598
2599
2600
2601/* commit + unmap */
2602
2603/** Commits the memory and unmaps guest memory previously mapped RW.
2604 * @remarks May return.
2605 * @note Implictly frees the a_bMapInfo variable.
2606 */
2607#ifndef IEM_WITH_SETJMP
2608# define IEM_MC_MEM_COMMIT_AND_UNMAP_RW(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2609#else
2610# define IEM_MC_MEM_COMMIT_AND_UNMAP_RW(a_bMapInfo) iemMemCommitAndUnmapRwJmp(pVCpu, (a_bMapInfo))
2611#endif
2612
2613/** Commits the memory and unmaps guest memory previously mapped ATOMIC.
2614 * @remarks May return.
2615 * @note Implictly frees the a_bMapInfo variable.
2616 */
2617#ifndef IEM_WITH_SETJMP
2618# define IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2619#else
2620# define IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC(a_bMapInfo) iemMemCommitAndUnmapRwJmp(pVCpu, (a_bMapInfo))
2621#endif
2622
2623/** Commits the memory and unmaps guest memory previously mapped W.
2624 * @remarks May return.
2625 * @note Implictly frees the a_bMapInfo variable.
2626 */
2627#ifndef IEM_WITH_SETJMP
2628# define IEM_MC_MEM_COMMIT_AND_UNMAP_WO(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2629#else
2630# define IEM_MC_MEM_COMMIT_AND_UNMAP_WO(a_bMapInfo) iemMemCommitAndUnmapWoJmp(pVCpu, (a_bMapInfo))
2631#endif
2632
2633/** Commits the memory and unmaps guest memory previously mapped R.
2634 * @remarks May return.
2635 * @note Implictly frees the a_bMapInfo variable.
2636 */
2637#ifndef IEM_WITH_SETJMP
2638# define IEM_MC_MEM_COMMIT_AND_UNMAP_RO(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2639#else
2640# define IEM_MC_MEM_COMMIT_AND_UNMAP_RO(a_bMapInfo) iemMemCommitAndUnmapRoJmp(pVCpu, (a_bMapInfo))
2641#endif
2642
2643
2644/** Commits the memory and unmaps the guest memory unless the FPU status word
2645 * indicates (@a a_u16FSW) and FPU control word indicates a pending exception
2646 * that would cause FLD not to store.
2647 *
2648 * The current understanding is that \#O, \#U, \#IA and \#IS will prevent a
2649 * store, while \#P will not.
2650 *
2651 * @remarks May in theory return - for now.
2652 * @note Implictly frees both the a_bMapInfo and a_u16FSW variables.
2653 */
2654#ifndef IEM_WITH_SETJMP
2655# define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE_WO(a_bMapInfo, a_u16FSW) do { \
2656 if ( !(a_u16FSW & X86_FSW_ES) \
2657 || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
2658 & ~(pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_MASK_ALL) ) ) \
2659 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo)); \
2660 else \
2661 iemMemRollbackAndUnmap(pVCpu, (a_pvMem), IEM_ACCESS_DATA_W); \
2662 } while (0)
2663#else
2664# define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE_WO(a_bMapInfo, a_u16FSW) do { \
2665 if ( !(a_u16FSW & X86_FSW_ES) \
2666 || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
2667 & ~(pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_MASK_ALL) ) ) \
2668 iemMemCommitAndUnmapWoJmp(pVCpu, a_bMapInfo); \
2669 else \
2670 iemMemRollbackAndUnmapWo(pVCpu, a_bMapInfo); \
2671 } while (0)
2672#endif
2673
2674/** Rolls back (conceptually only, assumes no writes) and unmaps the guest memory.
2675 * @note Implictly frees the a_bMapInfo variable. */
2676#ifndef IEM_WITH_SETJMP
2677# define IEM_MC_MEM_ROLLBACK_AND_UNMAP_WO(a_bMapInfo) iemMemRollbackAndUnmap(pVCpu, a_bMapInfo)
2678#else
2679# define IEM_MC_MEM_ROLLBACK_AND_UNMAP_WO(a_bMapInfo) iemMemRollbackAndUnmapWo(pVCpu, a_bMapInfo)
2680#endif
2681
2682
2683
2684/** Calculate efficient address from R/M. */
2685#ifndef IEM_WITH_SETJMP
2686# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \
2687 IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddr(pVCpu, (a_bRm), (a_cbImmAndRspOffset), &(a_GCPtrEff)))
2688#else
2689# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \
2690 ((a_GCPtrEff) = iemOpHlpCalcRmEffAddrJmp(pVCpu, (a_bRm), (a_cbImmAndRspOffset)))
2691#endif
2692
2693
2694/** The @a a_fSupportedHosts mask are ORed together RT_ARCH_VAL_XXX values. */
2695#define IEM_MC_NATIVE_IF(a_fSupportedHosts) if (false) {
2696#define IEM_MC_NATIVE_ELSE() } else {
2697#define IEM_MC_NATIVE_ENDIF() } ((void)0)
2698
2699#define IEM_MC_NATIVE_EMIT_0(a_fnEmitter)
2700#define IEM_MC_NATIVE_EMIT_1(a_fnEmitter, a0) (void)(a0)
2701#define IEM_MC_NATIVE_EMIT_2(a_fnEmitter, a0, a1) (void)(a0), (void)(a1)
2702#define IEM_MC_NATIVE_EMIT_2_EX(a_fnEmitter, a0, a1) (void)(a0), (void)(a1)
2703#define IEM_MC_NATIVE_EMIT_3(a_fnEmitter, a0, a1, a2) (void)(a0), (void)(a1), (void)(a2)
2704#define IEM_MC_NATIVE_EMIT_4(a_fnEmitter, a0, a1, a2, a3) (void)(a0), (void)(a1), (void)(a2), (void)(a3)
2705#define IEM_MC_NATIVE_EMIT_5(a_fnEmitter, a0, a1, a2, a3, a4) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4)
2706#define IEM_MC_NATIVE_EMIT_6(a_fnEmitter, a0, a1, a2, a3, a4, a5) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4), (void)(a5)
2707#define IEM_MC_NATIVE_EMIT_7(a_fnEmitter, a0, a1, a2, a3, a4, a5, a6) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4), (void)(a5), (void)(a6)
2708#define IEM_MC_NATIVE_EMIT_8(a_fnEmitter, a0, a1, a2, a3, a4, a5, a6, a7) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4), (void)(a5), (void)(a6), (void)(a7)
2709
2710/** This can be used to direct the register allocator when dealing with
2711 * x86/AMD64 instructions (like SHL reg,CL) that takes fixed registers. */
2712#define IEM_MC_NATIVE_SET_AMD64_HOST_REG_FOR_LOCAL(a_VarNm, a_idxHostReg) ((void)0)
2713
2714
2715#define IEM_MC_CALL_VOID_AIMPL_0(a_pfn) (a_pfn)()
2716#define IEM_MC_CALL_VOID_AIMPL_1(a_pfn, a0) (a_pfn)((a0))
2717#define IEM_MC_CALL_VOID_AIMPL_2(a_pfn, a0, a1) (a_pfn)((a0), (a1))
2718#define IEM_MC_CALL_VOID_AIMPL_3(a_pfn, a0, a1, a2) (a_pfn)((a0), (a1), (a2))
2719#define IEM_MC_CALL_VOID_AIMPL_4(a_pfn, a0, a1, a2, a3) (a_pfn)((a0), (a1), (a2), (a3))
2720#define IEM_MC_CALL_AIMPL_3(a_rcType, a_rc, a_pfn, a0, a1, a2) a_rcType const a_rc = (a_pfn)((a0), (a1), (a2))
2721#define IEM_MC_CALL_AIMPL_4(a_rcType, a_rc, a_pfn, a0, a1, a2, a3) a_rcType const a_rc = (a_pfn)((a0), (a1), (a2), (a3))
2722
2723
2724/** @def IEM_MC_CALL_CIMPL_HLP_RET
2725 * Helper macro for check that all important IEM_CIMPL_F_XXX bits are set.
2726 */
2727#ifdef VBOX_STRICT
2728# define IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, a_CallExpr) \
2729 do { \
2730 uint8_t const cbInstr = IEM_GET_INSTR_LEN(pVCpu); /* may be flushed */ \
2731 uint16_t const uCsBefore = pVCpu->cpum.GstCtx.cs.Sel; \
2732 uint64_t const uRipBefore = pVCpu->cpum.GstCtx.rip; \
2733 uint32_t const fEflBefore = pVCpu->cpum.GstCtx.eflags.u; \
2734 uint32_t const fExecBefore = pVCpu->iem.s.fExec; \
2735 VBOXSTRICTRC const rcStrictHlp = a_CallExpr; \
2736 if (rcStrictHlp == VINF_SUCCESS) \
2737 { \
2738 uint64_t const fRipMask = (pVCpu->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT ? UINT64_MAX : UINT32_MAX; \
2739 AssertMsg( ((a_fFlags) & IEM_CIMPL_F_BRANCH_ANY) \
2740 || ( ((uRipBefore + cbInstr) & fRipMask) == pVCpu->cpum.GstCtx.rip \
2741 && uCsBefore == pVCpu->cpum.GstCtx.cs.Sel) \
2742 || ( ((a_fFlags) & IEM_CIMPL_F_REP) \
2743 && uRipBefore == pVCpu->cpum.GstCtx.rip \
2744 && uCsBefore == pVCpu->cpum.GstCtx.cs.Sel), \
2745 ("CS:RIP=%04x:%08RX64 + %x -> %04x:%08RX64, expected %04x:%08RX64\n", uCsBefore, uRipBefore, cbInstr, \
2746 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uCsBefore, (uRipBefore + cbInstr) & fRipMask)); \
2747 if ((a_fFlags) & IEM_CIMPL_F_RFLAGS) \
2748 { /* No need to check fEflBefore */ Assert(!((a_fFlags) & IEM_CIMPL_F_STATUS_FLAGS)); } \
2749 else if ((a_fFlags) & IEM_CIMPL_F_STATUS_FLAGS) \
2750 AssertMsg( (pVCpu->cpum.GstCtx.eflags.u & ~(X86_EFL_STATUS_BITS | X86_EFL_RF)) \
2751 == (fEflBefore & ~(X86_EFL_STATUS_BITS | X86_EFL_RF)), \
2752 ("EFL=%#RX32 -> %#RX32\n", fEflBefore, pVCpu->cpum.GstCtx.eflags.u)); \
2753 else \
2754 AssertMsg( (pVCpu->cpum.GstCtx.eflags.u & ~(X86_EFL_RF)) \
2755 == (fEflBefore & ~(X86_EFL_RF)), \
2756 ("EFL=%#RX32 -> %#RX32\n", fEflBefore, pVCpu->cpum.GstCtx.eflags.u)); \
2757 if (!((a_fFlags) & IEM_CIMPL_F_MODE)) \
2758 { \
2759 uint32_t fExecRecalc = iemCalcExecFlags(pVCpu) | (pVCpu->iem.s.fExec & IEM_F_USER_OPTS); \
2760 AssertMsg( fExecBefore == fExecRecalc \
2761 /* in case ES, DS or SS was external initially (happens alot with HM): */ \
2762 || ( fExecBefore == (fExecRecalc & ~IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK) \
2763 && (fExecRecalc & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT), \
2764 ("fExec=%#x -> %#x (diff %#x)\n", fExecBefore, fExecRecalc, fExecBefore ^ fExecRecalc)); \
2765 } \
2766 } \
2767 return rcStrictHlp; \
2768 } while (0)
2769#else
2770# define IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, a_CallExpr) return a_CallExpr
2771#endif
2772
2773/**
2774 * Defers the rest of the instruction emulation to a C implementation routine
2775 * and returns, only taking the standard parameters.
2776 *
2777 * @param a_fFlags IEM_CIMPL_F_XXX.
2778 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2779 * in the native recompiler.
2780 * @param a_pfnCImpl The pointer to the C routine.
2781 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
2782 */
2783#define IEM_MC_CALL_CIMPL_0(a_fFlags, a_fGstShwFlush, a_pfnCImpl) \
2784 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu)))
2785
2786/**
2787 * Defers the rest of instruction emulation to a C implementation routine and
2788 * returns, taking one argument in addition to the standard ones.
2789 *
2790 * @param a_fFlags IEM_CIMPL_F_XXX.
2791 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2792 * in the native recompiler.
2793 * @param a_pfnCImpl The pointer to the C routine.
2794 * @param a0 The argument.
2795 */
2796#define IEM_MC_CALL_CIMPL_1(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
2797 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0))
2798
2799/**
2800 * Defers the rest of the instruction emulation to a C implementation routine
2801 * and returns, taking two arguments in addition to the standard ones.
2802 *
2803 * @param a_fFlags IEM_CIMPL_F_XXX.
2804 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2805 * in the native recompiler.
2806 * @param a_pfnCImpl The pointer to the C routine.
2807 * @param a0 The first extra argument.
2808 * @param a1 The second extra argument.
2809 */
2810#define IEM_MC_CALL_CIMPL_2(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
2811 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1))
2812
2813/**
2814 * Defers the rest of the instruction emulation to a C implementation routine
2815 * and returns, taking three arguments in addition to the standard ones.
2816 *
2817 * @param a_fFlags IEM_CIMPL_F_XXX.
2818 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2819 * in the native recompiler.
2820 * @param a_pfnCImpl The pointer to the C routine.
2821 * @param a0 The first extra argument.
2822 * @param a1 The second extra argument.
2823 * @param a2 The third extra argument.
2824 */
2825#define IEM_MC_CALL_CIMPL_3(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
2826 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2))
2827
2828/**
2829 * Defers the rest of the instruction emulation to a C implementation routine
2830 * and returns, taking four arguments in addition to the standard ones.
2831 *
2832 * @param a_fFlags IEM_CIMPL_F_XXX.
2833 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2834 * in the native recompiler.
2835 * @param a_pfnCImpl The pointer to the C routine.
2836 * @param a0 The first extra argument.
2837 * @param a1 The second extra argument.
2838 * @param a2 The third extra argument.
2839 * @param a3 The fourth extra argument.
2840 */
2841#define IEM_MC_CALL_CIMPL_4(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3) \
2842 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3))
2843
2844/**
2845 * Defers the rest of the instruction emulation to a C implementation routine
2846 * and returns, taking five arguments in addition to the standard ones.
2847 *
2848 * @param a_fFlags IEM_CIMPL_F_XXX.
2849 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2850 * in the native recompiler.
2851 * @param a_pfnCImpl The pointer to the C routine.
2852 * @param a0 The first extra argument.
2853 * @param a1 The second extra argument.
2854 * @param a2 The third extra argument.
2855 * @param a3 The fourth extra argument.
2856 * @param a4 The fifth extra argument.
2857 */
2858#define IEM_MC_CALL_CIMPL_5(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3, a4) \
2859 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3, a4))
2860
2861/**
2862 * Defers the entire instruction emulation to a C implementation routine and
2863 * returns, only taking the standard parameters.
2864 *
2865 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2866 *
2867 * @param a_fFlags IEM_CIMPL_F_XXX.
2868 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2869 * in the native recompiler.
2870 * @param a_pfnCImpl The pointer to the C routine.
2871 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
2872 */
2873#define IEM_MC_DEFER_TO_CIMPL_0_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl) \
2874 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu)))
2875
2876/**
2877 * Defers the entire instruction emulation to a C implementation routine and
2878 * returns, taking one argument in addition to the standard ones.
2879 *
2880 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2881 *
2882 * @param a_fFlags IEM_CIMPL_F_XXX.
2883 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2884 * in the native recompiler.
2885 * @param a_pfnCImpl The pointer to the C routine.
2886 * @param a0 The argument.
2887 */
2888#define IEM_MC_DEFER_TO_CIMPL_1_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
2889 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0))
2890
2891/**
2892 * Defers the entire instruction emulation to a C implementation routine and
2893 * returns, taking two arguments in addition to the standard ones.
2894 *
2895 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2896 *
2897 * @param a_fFlags IEM_CIMPL_F_XXX.
2898 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2899 * in the native recompiler.
2900 * @param a_pfnCImpl The pointer to the C routine.
2901 * @param a0 The first extra argument.
2902 * @param a1 The second extra argument.
2903 */
2904#define IEM_MC_DEFER_TO_CIMPL_2_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
2905 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1))
2906
2907/**
2908 * Defers the entire instruction emulation to a C implementation routine and
2909 * returns, taking three arguments in addition to the standard ones.
2910 *
2911 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2912 *
2913 * @param a_fFlags IEM_CIMPL_F_XXX.
2914 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2915 * in the native recompiler.
2916 * @param a_pfnCImpl The pointer to the C routine.
2917 * @param a0 The first extra argument.
2918 * @param a1 The second extra argument.
2919 * @param a2 The third extra argument.
2920 */
2921#define IEM_MC_DEFER_TO_CIMPL_3_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
2922 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2))
2923
2924
2925/**
2926 * Calls a FPU assembly implementation taking one visible argument.
2927 *
2928 * @param a_pfnAImpl Pointer to the assembly FPU routine.
2929 * @param a0 The first extra argument.
2930 */
2931#define IEM_MC_CALL_FPU_AIMPL_1(a_pfnAImpl, a0) \
2932 do { \
2933 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0)); \
2934 } while (0)
2935
2936/**
2937 * Calls a FPU assembly implementation taking two visible arguments.
2938 *
2939 * @param a_pfnAImpl Pointer to the assembly FPU routine.
2940 * @param a0 The first extra argument.
2941 * @param a1 The second extra argument.
2942 */
2943#define IEM_MC_CALL_FPU_AIMPL_2(a_pfnAImpl, a0, a1) \
2944 do { \
2945 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
2946 } while (0)
2947
2948/**
2949 * Calls a FPU assembly implementation taking three visible arguments.
2950 *
2951 * @param a_pfnAImpl Pointer to the assembly FPU routine.
2952 * @param a0 The first extra argument.
2953 * @param a1 The second extra argument.
2954 * @param a2 The third extra argument.
2955 */
2956#define IEM_MC_CALL_FPU_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
2957 do { \
2958 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
2959 } while (0)
2960
2961#define IEM_MC_SET_FPU_RESULT(a_FpuData, a_FSW, a_pr80Value) \
2962 do { \
2963 (a_FpuData).FSW = (a_FSW); \
2964 (a_FpuData).r80Result = *(a_pr80Value); \
2965 } while (0)
2966
2967/** Pushes FPU result onto the stack. */
2968#define IEM_MC_PUSH_FPU_RESULT(a_FpuData, a_uFpuOpcode) \
2969 iemFpuPushResult(pVCpu, &a_FpuData, a_uFpuOpcode)
2970/** Pushes FPU result onto the stack and sets the FPUDP. */
2971#define IEM_MC_PUSH_FPU_RESULT_MEM_OP(a_FpuData, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2972 iemFpuPushResultWithMemOp(pVCpu, &a_FpuData, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2973
2974/** Replaces ST0 with value one and pushes value 2 onto the FPU stack. */
2975#define IEM_MC_PUSH_FPU_RESULT_TWO(a_FpuDataTwo, a_uFpuOpcode) \
2976 iemFpuPushResultTwo(pVCpu, &a_FpuDataTwo, a_uFpuOpcode)
2977
2978/** Stores FPU result in a stack register. */
2979#define IEM_MC_STORE_FPU_RESULT(a_FpuData, a_iStReg, a_uFpuOpcode) \
2980 iemFpuStoreResult(pVCpu, &a_FpuData, a_iStReg, a_uFpuOpcode)
2981/** Stores FPU result in a stack register and pops the stack. */
2982#define IEM_MC_STORE_FPU_RESULT_THEN_POP(a_FpuData, a_iStReg, a_uFpuOpcode) \
2983 iemFpuStoreResultThenPop(pVCpu, &a_FpuData, a_iStReg, a_uFpuOpcode)
2984/** Stores FPU result in a stack register and sets the FPUDP. */
2985#define IEM_MC_STORE_FPU_RESULT_MEM_OP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2986 iemFpuStoreResultWithMemOp(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2987/** Stores FPU result in a stack register, sets the FPUDP, and pops the
2988 * stack. */
2989#define IEM_MC_STORE_FPU_RESULT_WITH_MEM_OP_THEN_POP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2990 iemFpuStoreResultWithMemOpThenPop(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2991
2992/** Only update the FOP, FPUIP, and FPUCS. (For FNOP.) */
2993#define IEM_MC_UPDATE_FPU_OPCODE_IP(a_uFpuOpcode) \
2994 iemFpuUpdateOpcodeAndIp(pVCpu, a_uFpuOpcode)
2995/** Free a stack register (for FFREE and FFREEP). */
2996#define IEM_MC_FPU_STACK_FREE(a_iStReg) \
2997 iemFpuStackFree(pVCpu, a_iStReg)
2998/** Increment the FPU stack pointer. */
2999#define IEM_MC_FPU_STACK_INC_TOP() \
3000 iemFpuStackIncTop(pVCpu)
3001/** Decrement the FPU stack pointer. */
3002#define IEM_MC_FPU_STACK_DEC_TOP() \
3003 iemFpuStackDecTop(pVCpu)
3004
3005/** Updates the FSW, FOP, FPUIP, and FPUCS. */
3006#define IEM_MC_UPDATE_FSW(a_u16FSW, a_uFpuOpcode) \
3007 iemFpuUpdateFSW(pVCpu, a_u16FSW, a_uFpuOpcode)
3008/** Updates the FSW with a constant value as well as FOP, FPUIP, and FPUCS. */
3009#define IEM_MC_UPDATE_FSW_CONST(a_u16FSW, a_uFpuOpcode) \
3010 iemFpuUpdateFSW(pVCpu, a_u16FSW, a_uFpuOpcode)
3011/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS. */
3012#define IEM_MC_UPDATE_FSW_WITH_MEM_OP(a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3013 iemFpuUpdateFSWWithMemOp(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3014/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack. */
3015#define IEM_MC_UPDATE_FSW_THEN_POP(a_u16FSW, a_uFpuOpcode) \
3016 iemFpuUpdateFSWThenPop(pVCpu, a_u16FSW, a_uFpuOpcode)
3017/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP and FPUDS, and then pops the
3018 * stack. */
3019#define IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3020 iemFpuUpdateFSWWithMemOpThenPop(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3021/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack twice. */
3022#define IEM_MC_UPDATE_FSW_THEN_POP_POP(a_u16FSW, a_uFpuOpcode) \
3023 iemFpuUpdateFSWThenPopPop(pVCpu, a_u16FSW, a_uFpuOpcode)
3024
3025/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. */
3026#define IEM_MC_FPU_STACK_UNDERFLOW(a_iStDst, a_uFpuOpcode) \
3027 iemFpuStackUnderflow(pVCpu, a_iStDst, a_uFpuOpcode)
3028/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
3029 * stack. */
3030#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(a_iStDst, a_uFpuOpcode) \
3031 iemFpuStackUnderflowThenPop(pVCpu, a_iStDst, a_uFpuOpcode)
3032/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
3033 * FPUDS. */
3034#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3035 iemFpuStackUnderflowWithMemOp(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3036/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
3037 * FPUDS. Pops stack. */
3038#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3039 iemFpuStackUnderflowWithMemOpThenPop(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3040/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
3041 * stack twice. */
3042#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP(a_uFpuOpcode) \
3043 iemFpuStackUnderflowThenPopPop(pVCpu, a_uFpuOpcode)
3044/** Raises a FPU stack underflow exception for an instruction pushing a result
3045 * value onto the stack. Sets FPUIP, FPUCS and FOP. */
3046#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW(a_uFpuOpcode) \
3047 iemFpuStackPushUnderflow(pVCpu, a_uFpuOpcode)
3048/** Raises a FPU stack underflow exception for an instruction pushing a result
3049 * value onto the stack and replacing ST0. Sets FPUIP, FPUCS and FOP. */
3050#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO(a_uFpuOpcode) \
3051 iemFpuStackPushUnderflowTwo(pVCpu, a_uFpuOpcode)
3052
3053/** Raises a FPU stack overflow exception as part of a push attempt. Sets
3054 * FPUIP, FPUCS and FOP. */
3055#define IEM_MC_FPU_STACK_PUSH_OVERFLOW(a_uFpuOpcode) \
3056 iemFpuStackPushOverflow(pVCpu, a_uFpuOpcode)
3057/** Raises a FPU stack overflow exception as part of a push attempt. Sets
3058 * FPUIP, FPUCS, FOP, FPUDP and FPUDS. */
3059#define IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3060 iemFpuStackPushOverflowWithMemOp(pVCpu, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3061/** Prepares for using the FPU state.
3062 * Ensures that we can use the host FPU in the current context (RC+R0.
3063 * Ensures the guest FPU state in the CPUMCTX is up to date. */
3064#define IEM_MC_PREPARE_FPU_USAGE() iemFpuPrepareUsage(pVCpu)
3065/** Actualizes the guest FPU state so it can be accessed read-only fashion. */
3066#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ() iemFpuActualizeStateForRead(pVCpu)
3067/** Actualizes the guest FPU state so it can be accessed and modified. */
3068#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE() iemFpuActualizeStateForChange(pVCpu)
3069
3070/** Prepares for using the SSE state.
3071 * Ensures that we can use the host SSE/FPU in the current context (RC+R0.
3072 * Ensures the guest SSE state in the CPUMCTX is up to date. */
3073#define IEM_MC_PREPARE_SSE_USAGE() iemFpuPrepareUsageSse(pVCpu)
3074/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
3075#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_READ() iemFpuActualizeSseStateForRead(pVCpu)
3076/** Actualizes the guest XMM0..15 and MXCSR register state for read-write access. */
3077#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_CHANGE() iemFpuActualizeSseStateForChange(pVCpu)
3078
3079/** Prepares for using the AVX state.
3080 * Ensures that we can use the host AVX/FPU in the current context (RC+R0.
3081 * Ensures the guest AVX state in the CPUMCTX is up to date.
3082 * @note This will include the AVX512 state too when support for it is added
3083 * due to the zero extending feature of VEX instruction. */
3084#define IEM_MC_PREPARE_AVX_USAGE() iemFpuPrepareUsageAvx(pVCpu)
3085/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
3086#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_READ() iemFpuActualizeAvxStateForRead(pVCpu)
3087/** Actualizes the guest YMM0..15 and MXCSR register state for read-write access. */
3088#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_CHANGE() iemFpuActualizeAvxStateForChange(pVCpu)
3089
3090/**
3091 * Calls a MMX assembly implementation taking two visible arguments.
3092 *
3093 * @param a_pfnAImpl Pointer to the assembly MMX routine.
3094 * @param a0 The first extra argument.
3095 * @param a1 The second extra argument.
3096 */
3097#define IEM_MC_CALL_MMX_AIMPL_2(a_pfnAImpl, a0, a1) \
3098 do { \
3099 IEM_MC_PREPARE_FPU_USAGE(); \
3100 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
3101 } while (0)
3102
3103/**
3104 * Calls a MMX assembly implementation taking three visible arguments.
3105 *
3106 * @param a_pfnAImpl Pointer to the assembly MMX routine.
3107 * @param a0 The first extra argument.
3108 * @param a1 The second extra argument.
3109 * @param a2 The third extra argument.
3110 */
3111#define IEM_MC_CALL_MMX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
3112 do { \
3113 IEM_MC_PREPARE_FPU_USAGE(); \
3114 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
3115 } while (0)
3116
3117
3118/**
3119 * Calls a SSE assembly implementation taking two visible arguments.
3120 *
3121 * @param a_pfnAImpl Pointer to the assembly SSE routine.
3122 * @param a0 The first extra argument.
3123 * @param a1 The second extra argument.
3124 *
3125 * @note This throws an \#XF/\#UD exception if the helper indicates an exception
3126 * which is unmasked in the guest's MXCSR.
3127 */
3128#define IEM_MC_CALL_SSE_AIMPL_2(a_pfnAImpl, a0, a1) \
3129 do { \
3130 IEM_MC_PREPARE_SSE_USAGE(); \
3131 const uint32_t fMxcsrOld = pVCpu->cpum.GstCtx.XState.x87.MXCSR; \
3132 const uint32_t fMxcsrNew = a_pfnAImpl(fMxcsrOld & ~X86_MXCSR_XCPT_FLAGS, \
3133 (a0), (a1)); \
3134 pVCpu->cpum.GstCtx.XState.x87.MXCSR |= fMxcsrNew; \
3135 if (RT_LIKELY(( ~((fMxcsrOld & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
3136 & (fMxcsrNew & X86_MXCSR_XCPT_FLAGS)) == 0)) \
3137 { /* probable */ } \
3138 else \
3139 { \
3140 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT) \
3141 return iemRaiseSimdFpException(pVCpu); \
3142 return iemRaiseUndefinedOpcode(pVCpu); \
3143 } \
3144 } while (0)
3145
3146/**
3147 * Calls a SSE assembly implementation taking three visible arguments.
3148 *
3149 * @param a_pfnAImpl Pointer to the assembly SSE routine.
3150 * @param a0 The first extra argument.
3151 * @param a1 The second extra argument.
3152 * @param a2 The third extra argument.
3153 *
3154 * @note This throws an \#XF/\#UD exception if the helper indicates an exception
3155 * which is unmasked in the guest's MXCSR.
3156 */
3157#define IEM_MC_CALL_SSE_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
3158 do { \
3159 IEM_MC_PREPARE_SSE_USAGE(); \
3160 const uint32_t fMxcsrOld = pVCpu->cpum.GstCtx.XState.x87.MXCSR; \
3161 const uint32_t fMxcsrNew = a_pfnAImpl(fMxcsrOld & ~X86_MXCSR_XCPT_FLAGS, \
3162 (a0), (a1), (a2)); \
3163 pVCpu->cpum.GstCtx.XState.x87.MXCSR |= fMxcsrNew; \
3164 if (RT_LIKELY(( ~((fMxcsrOld & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
3165 & (fMxcsrNew & X86_MXCSR_XCPT_FLAGS)) == 0)) \
3166 { /* probable */ } \
3167 else \
3168 { \
3169 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT) \
3170 return iemRaiseSimdFpException(pVCpu); \
3171 return iemRaiseUndefinedOpcode(pVCpu); \
3172 } \
3173 } while (0)
3174
3175
3176/**
3177 * Calls a AVX assembly implementation taking two visible arguments.
3178 *
3179 * There is one implicit zero'th argument, a pointer to the extended state.
3180 *
3181 * @param a_pfnAImpl Pointer to the assembly AVX routine.
3182 * @param a0 The first extra argument.
3183 * @param a1 The second extra argument.
3184 *
3185 * @note This throws an \#XF/\#UD exception if the helper indicates an exception
3186 * which is unmasked in the guest's MXCSR.
3187 */
3188#define IEM_MC_CALL_AVX_AIMPL_2(a_pfnAImpl, a0, a1) \
3189 do { \
3190 IEM_MC_PREPARE_AVX_USAGE(); \
3191 const uint32_t fMxcsrOld = pVCpu->cpum.GstCtx.XState.x87.MXCSR; \
3192 const uint32_t fMxcsrNew = a_pfnAImpl(fMxcsrOld & ~X86_MXCSR_XCPT_FLAGS, \
3193 (a0), (a1)); \
3194 pVCpu->cpum.GstCtx.XState.x87.MXCSR |= fMxcsrNew; \
3195 if (RT_LIKELY(( ~((fMxcsrOld & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
3196 & (fMxcsrNew & X86_MXCSR_XCPT_FLAGS)) == 0)) \
3197 { /* probable */ } \
3198 else \
3199 { \
3200 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT) \
3201 return iemRaiseSimdFpException(pVCpu); \
3202 return iemRaiseUndefinedOpcode(pVCpu); \
3203 } \
3204 } while (0)
3205
3206/**
3207 * Calls a AVX assembly implementation taking three visible arguments.
3208 *
3209 * There is one implicit zero'th argument, a pointer to the extended state.
3210 *
3211 * @param a_pfnAImpl Pointer to the assembly AVX routine.
3212 * @param a0 The first extra argument.
3213 * @param a1 The second extra argument.
3214 * @param a2 The third extra argument.
3215 *
3216 * @note This throws an \#XF/\#UD exception if the helper indicates an exception
3217 * which is unmasked in the guest's MXCSR.
3218 */
3219#define IEM_MC_CALL_AVX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
3220 do { \
3221 IEM_MC_PREPARE_AVX_USAGE(); \
3222 const uint32_t fMxcsrOld = pVCpu->cpum.GstCtx.XState.x87.MXCSR; \
3223 const uint32_t fMxcsrNew = a_pfnAImpl(fMxcsrOld & ~X86_MXCSR_XCPT_FLAGS, \
3224 (a0), (a1), (a2)); \
3225 pVCpu->cpum.GstCtx.XState.x87.MXCSR |= fMxcsrNew; \
3226 if (RT_LIKELY(( ~((fMxcsrOld & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
3227 & (fMxcsrNew & X86_MXCSR_XCPT_FLAGS)) == 0)) \
3228 { /* probable */ } \
3229 else \
3230 { \
3231 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT) \
3232 return iemRaiseSimdFpException(pVCpu); \
3233 return iemRaiseUndefinedOpcode(pVCpu); \
3234 } \
3235 } while (0)
3236
3237/** @note Not for IOPL or IF testing. */
3238#define IEM_MC_IF_EFL_BIT_SET(a_fBit) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) {
3239/** @note Not for IOPL or IF testing. */
3240#define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit))) {
3241/** @note Not for IOPL or IF testing. */
3242#define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBits)) {
3243/** @note Not for IOPL or IF testing. */
3244#define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBits))) {
3245/** @note Not for IOPL or IF testing. */
3246#define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
3247 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3248 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3249/** @note Not for IOPL or IF testing. */
3250#define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
3251 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3252 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3253/** @note Not for IOPL or IF testing. */
3254#define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
3255 if ( (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
3256 || !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3257 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3258/** @note Not for IOPL or IF testing. */
3259#define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
3260 if ( !(pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
3261 && !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3262 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3263#define IEM_MC_IF_CX_IS_NZ() if (pVCpu->cpum.GstCtx.cx != 0) {
3264#define IEM_MC_IF_ECX_IS_NZ() if (pVCpu->cpum.GstCtx.ecx != 0) {
3265#define IEM_MC_IF_RCX_IS_NZ() if (pVCpu->cpum.GstCtx.rcx != 0) {
3266#define IEM_MC_IF_CX_IS_NOT_ONE() if (pVCpu->cpum.GstCtx.cx != 1) {
3267#define IEM_MC_IF_ECX_IS_NOT_ONE() if (pVCpu->cpum.GstCtx.ecx != 1) {
3268#define IEM_MC_IF_RCX_IS_NOT_ONE() if (pVCpu->cpum.GstCtx.rcx != 1) {
3269/** @note Not for IOPL or IF testing. */
3270#define IEM_MC_IF_CX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
3271 if ( pVCpu->cpum.GstCtx.cx != 1 \
3272 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3273/** @note Not for IOPL or IF testing. */
3274#define IEM_MC_IF_ECX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
3275 if ( pVCpu->cpum.GstCtx.ecx != 1 \
3276 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3277/** @note Not for IOPL or IF testing. */
3278#define IEM_MC_IF_RCX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
3279 if ( pVCpu->cpum.GstCtx.rcx != 1 \
3280 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3281/** @note Not for IOPL or IF testing. */
3282#define IEM_MC_IF_CX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
3283 if ( pVCpu->cpum.GstCtx.cx != 1 \
3284 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3285/** @note Not for IOPL or IF testing. */
3286#define IEM_MC_IF_ECX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
3287 if ( pVCpu->cpum.GstCtx.ecx != 1 \
3288 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3289/** @note Not for IOPL or IF testing. */
3290#define IEM_MC_IF_RCX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
3291 if ( pVCpu->cpum.GstCtx.rcx != 1 \
3292 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3293#define IEM_MC_IF_LOCAL_IS_Z(a_Local) if ((a_Local) == 0) {
3294#define IEM_MC_IF_GREG_BIT_SET(a_iGReg, a_iBitNo) if (iemGRegFetchU64(pVCpu, (a_iGReg)) & RT_BIT_64(a_iBitNo)) {
3295
3296#define IEM_MC_REF_FPUREG(a_pr80Dst, a_iSt) \
3297 do { (a_pr80Dst) = &pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80; } while (0)
3298#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
3299 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
3300#define IEM_MC_IF_FPUREG_NOT_EMPTY(a_iSt) \
3301 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) == VINF_SUCCESS) {
3302#define IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(a_pr80Dst, a_iSt) \
3303 if (iemFpuStRegNotEmptyRef(pVCpu, (a_iSt), &(a_pr80Dst)) == VINF_SUCCESS) {
3304#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(a_pr80Dst0, a_iSt0, a_pr80Dst1, a_iSt1) \
3305 if (iemFpu2StRegsNotEmptyRef(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1), &(a_pr80Dst1)) == VINF_SUCCESS) {
3306#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(a_pr80Dst0, a_iSt0, a_iSt1) \
3307 if (iemFpu2StRegsNotEmptyRefFirst(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1)) == VINF_SUCCESS) {
3308#define IEM_MC_IF_FCW_IM() \
3309 if (pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_IM) {
3310
3311#define IEM_MC_ELSE() } else {
3312#define IEM_MC_ENDIF() } do {} while (0)
3313
3314
3315/** Recompiler debugging: Flush guest register shadow copies. */
3316#define IEM_MC_HINT_FLUSH_GUEST_SHADOW(g_fGstShwFlush) ((void)0)
3317
3318/** Recompiler liveness info: input GPR */
3319#define IEM_MC_LIVENESS_GREG_INPUT(a_iGReg) ((void)0)
3320/** Recompiler liveness info: clobbered GPR */
3321#define IEM_MC_LIVENESS_GREG_CLOBBER(a_iGReg) ((void)0)
3322/** Recompiler liveness info: modified GPR register (i.e. input & output) */
3323#define IEM_MC_LIVENESS_GREG_MODIFY(a_iGReg) ((void)0)
3324
3325/** Recompiler liveness info: input MM register */
3326#define IEM_MC_LIVENESS_MREG_INPUT(a_iMReg) ((void)0)
3327/** Recompiler liveness info: clobbered MM register */
3328#define IEM_MC_LIVENESS_MREG_CLOBBER(a_iMReg) ((void)0)
3329/** Recompiler liveness info: modified MM register (i.e. input & output) */
3330#define IEM_MC_LIVENESS_MREG_MODIFY(a_iMReg) ((void)0)
3331
3332/** Recompiler liveness info: input SSE register */
3333#define IEM_MC_LIVENESS_XREG_INPUT(a_iXReg) ((void)0)
3334/** Recompiler liveness info: clobbered SSE register */
3335#define IEM_MC_LIVENESS_XREG_CLOBBER(a_iXReg) ((void)0)
3336/** Recompiler liveness info: modified SSE register (i.e. input & output) */
3337#define IEM_MC_LIVENESS_XREG_MODIFY(a_iXReg) ((void)0)
3338
3339/** Recompiler liveness info: input MXCSR */
3340#define IEM_MC_LIVENESS_MXCSR_INPUT() ((void)0)
3341/** Recompiler liveness info: clobbered MXCSR */
3342#define IEM_MC_LIVENESS_MXCSR_CLOBBER() ((void)0)
3343/** Recompiler liveness info: modified MXCSR (i.e. input & output) */
3344#define IEM_MC_LIVENESS_MXCSR_MODIFY() ((void)0)
3345
3346/** @todo add more as needed. */
3347
3348/** @} */
3349
3350#endif /* !VMM_INCLUDED_SRC_include_IEMMc_h */
3351
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette