VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMMc.h@ 96723

Last change on this file since 96723 was 96723, checked in by vboxsync, 2 years ago

VMM/IEM: Implement cvttsd2si instruction, bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 80.7 KB
Line 
1/* $Id: IEMMc.h 96723 2022-09-14 07:17:55Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - IEM_MC_XXX.
4 */
5
6/*
7 * Copyright (C) 2011-2022 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMMc_h
29#define VMM_INCLUDED_SRC_include_IEMMc_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @name "Microcode" macros.
36 *
37 * The idea is that we should be able to use the same code to interpret
38 * instructions as well as recompiler instructions. Thus this obfuscation.
39 *
40 * @{
41 */
42#define IEM_MC_BEGIN(a_cArgs, a_cLocals) {
43#define IEM_MC_END() }
44#define IEM_MC_PAUSE() do {} while (0)
45#define IEM_MC_CONTINUE() do {} while (0)
46
47/** Internal macro. */
48#define IEM_MC_RETURN_ON_FAILURE(a_Expr) \
49 do \
50 { \
51 VBOXSTRICTRC rcStrict2 = a_Expr; \
52 if (rcStrict2 != VINF_SUCCESS) \
53 return rcStrict2; \
54 } while (0)
55
56
57#define IEM_MC_ADVANCE_RIP() iemRegUpdateRipAndClearRF(pVCpu)
58#define IEM_MC_REL_JMP_S8(a_i8) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS8(pVCpu, a_i8))
59#define IEM_MC_REL_JMP_S16(a_i16) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS16(pVCpu, a_i16))
60#define IEM_MC_REL_JMP_S32(a_i32) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS32(pVCpu, a_i32))
61#define IEM_MC_SET_RIP_U16(a_u16NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pVCpu), (a_u16NewIP)))
62#define IEM_MC_SET_RIP_U32(a_u32NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pVCpu), (a_u32NewIP)))
63#define IEM_MC_SET_RIP_U64(a_u64NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pVCpu), (a_u64NewIP)))
64#define IEM_MC_RAISE_DIVIDE_ERROR() return iemRaiseDivideError(pVCpu)
65#define IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() \
66 do { \
67 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
68 return iemRaiseDeviceNotAvailable(pVCpu); \
69 } while (0)
70#define IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() \
71 do { \
72 if ((pVCpu->cpum.GstCtx.cr0 & (X86_CR0_MP | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS)) \
73 return iemRaiseDeviceNotAvailable(pVCpu); \
74 } while (0)
75#define IEM_MC_MAYBE_RAISE_FPU_XCPT() \
76 do { \
77 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
78 return iemRaiseMathFault(pVCpu); \
79 } while (0)
80#define IEM_MC_MAYBE_RAISE_AVX2_RELATED_XCPT() \
81 do { \
82 if ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) != (XSAVE_C_YMM | XSAVE_C_SSE) \
83 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) \
84 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx2) \
85 return iemRaiseUndefinedOpcode(pVCpu); \
86 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
87 return iemRaiseDeviceNotAvailable(pVCpu); \
88 } while (0)
89#define IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() \
90 do { \
91 if ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) != (XSAVE_C_YMM | XSAVE_C_SSE) \
92 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) \
93 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx) \
94 return iemRaiseUndefinedOpcode(pVCpu); \
95 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
96 return iemRaiseDeviceNotAvailable(pVCpu); \
97 } while (0)
98#define IEM_MC_MAYBE_RAISE_SSE42_RELATED_XCPT() \
99 do { \
100 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
101 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
102 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse42) \
103 return iemRaiseUndefinedOpcode(pVCpu); \
104 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
105 return iemRaiseDeviceNotAvailable(pVCpu); \
106 } while (0)
107#define IEM_MC_MAYBE_RAISE_SSE41_RELATED_XCPT() \
108 do { \
109 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
110 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
111 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse41) \
112 return iemRaiseUndefinedOpcode(pVCpu); \
113 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
114 return iemRaiseDeviceNotAvailable(pVCpu); \
115 } while (0)
116#define IEM_MC_MAYBE_RAISE_SSSE3_RELATED_XCPT() \
117 do { \
118 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
119 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
120 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSsse3) \
121 return iemRaiseUndefinedOpcode(pVCpu); \
122 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
123 return iemRaiseDeviceNotAvailable(pVCpu); \
124 } while (0)
125#define IEM_MC_MAYBE_RAISE_SSE3_RELATED_XCPT() \
126 do { \
127 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
128 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
129 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse3) \
130 return iemRaiseUndefinedOpcode(pVCpu); \
131 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
132 return iemRaiseDeviceNotAvailable(pVCpu); \
133 } while (0)
134#define IEM_MC_MAYBE_RAISE_SSE2_RELATED_XCPT() \
135 do { \
136 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
137 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
138 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse2) \
139 return iemRaiseUndefinedOpcode(pVCpu); \
140 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
141 return iemRaiseDeviceNotAvailable(pVCpu); \
142 } while (0)
143#define IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() \
144 do { \
145 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
146 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
147 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse) \
148 return iemRaiseUndefinedOpcode(pVCpu); \
149 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
150 return iemRaiseDeviceNotAvailable(pVCpu); \
151 } while (0)
152#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT() \
153 do { \
154 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
155 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMmx) \
156 return iemRaiseUndefinedOpcode(pVCpu); \
157 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
158 return iemRaiseDeviceNotAvailable(pVCpu); \
159 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
160 return iemRaiseMathFault(pVCpu); \
161 } while (0)
162#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT_EX(a_fSupported) \
163 do { \
164 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
165 || !(a_fSupported)) \
166 return iemRaiseUndefinedOpcode(pVCpu); \
167 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
168 return iemRaiseDeviceNotAvailable(pVCpu); \
169 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
170 return iemRaiseMathFault(pVCpu); \
171 } while (0)
172#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT_CHECK_SSE_OR_MMXEXT() \
173 do { \
174 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
175 || ( !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse \
176 && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAmdMmxExts) ) \
177 return iemRaiseUndefinedOpcode(pVCpu); \
178 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
179 return iemRaiseDeviceNotAvailable(pVCpu); \
180 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
181 return iemRaiseMathFault(pVCpu); \
182 } while (0)
183#define IEM_MC_RAISE_GP0_IF_CPL_NOT_ZERO() \
184 do { \
185 if (pVCpu->iem.s.uCpl != 0) \
186 return iemRaiseGeneralProtectionFault0(pVCpu); \
187 } while (0)
188#define IEM_MC_RAISE_GP0_IF_EFF_ADDR_UNALIGNED(a_EffAddr, a_cbAlign) \
189 do { \
190 if (!((a_EffAddr) & ((a_cbAlign) - 1))) { /* likely */ } \
191 else return iemRaiseGeneralProtectionFault0(pVCpu); \
192 } while (0)
193#define IEM_MC_MAYBE_RAISE_FSGSBASE_XCPT() \
194 do { \
195 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT \
196 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fFsGsBase \
197 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_FSGSBASE)) \
198 return iemRaiseUndefinedOpcode(pVCpu); \
199 } while (0)
200#define IEM_MC_MAYBE_RAISE_NON_CANONICAL_ADDR_GP0(a_u64Addr) \
201 do { \
202 if (!IEM_IS_CANONICAL(a_u64Addr)) \
203 return iemRaiseGeneralProtectionFault0(pVCpu); \
204 } while (0)
205#define IEM_MC_MAYBE_RAISE_SSE_AVX_SIMD_FP_OR_UD_XCPT() \
206 do { \
207 if (( ~((pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
208 & (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_FLAGS)) != 0) \
209 { \
210 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT)\
211 return iemRaiseSimdFpException(pVCpu); \
212 else \
213 return iemRaiseUndefinedOpcode(pVCpu); \
214 } \
215 } while (0)
216#define IEM_MC_RAISE_SSE_AVX_SIMD_FP_OR_UD_XCPT() \
217 do { \
218 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT)\
219 return iemRaiseSimdFpException(pVCpu); \
220 else \
221 return iemRaiseUndefinedOpcode(pVCpu); \
222 } while (0)
223#define IEM_MC_MAYBE_RAISE_PCLMUL_RELATED_XCPT() \
224 do { \
225 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
226 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
227 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fPclMul) \
228 return iemRaiseUndefinedOpcode(pVCpu); \
229 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
230 return iemRaiseDeviceNotAvailable(pVCpu); \
231 } while (0)
232
233
234#define IEM_MC_LOCAL(a_Type, a_Name) a_Type a_Name
235#define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) a_Type const a_Name = (a_Value)
236#define IEM_MC_REF_LOCAL(a_pRefArg, a_Local) (a_pRefArg) = &(a_Local)
237#define IEM_MC_ARG(a_Type, a_Name, a_iArg) a_Type a_Name
238#define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) a_Type const a_Name = (a_Value)
239#define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_Local, a_iArg) a_Type const a_Name = &(a_Local)
240#define IEM_MC_ARG_LOCAL_EFLAGS(a_pName, a_Name, a_iArg) \
241 uint32_t a_Name; \
242 uint32_t *a_pName = &a_Name
243#define IEM_MC_COMMIT_EFLAGS(a_EFlags) \
244 do { pVCpu->cpum.GstCtx.eflags.u = (a_EFlags); Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_1); } while (0)
245
246#define IEM_MC_ASSIGN(a_VarOrArg, a_CVariableOrConst) (a_VarOrArg) = (a_CVariableOrConst)
247#define IEM_MC_ASSIGN_TO_SMALLER IEM_MC_ASSIGN
248
249#define IEM_MC_FETCH_GREG_U8(a_u8Dst, a_iGReg) (a_u8Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
250#define IEM_MC_FETCH_GREG_U8_ZX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
251#define IEM_MC_FETCH_GREG_U8_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
252#define IEM_MC_FETCH_GREG_U8_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
253#define IEM_MC_FETCH_GREG_U8_SX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
254#define IEM_MC_FETCH_GREG_U8_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
255#define IEM_MC_FETCH_GREG_U8_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
256#define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
257#define IEM_MC_FETCH_GREG_U16_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
258#define IEM_MC_FETCH_GREG_U16_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
259#define IEM_MC_FETCH_GREG_U16_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
260#define IEM_MC_FETCH_GREG_U16_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
261#define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
262#define IEM_MC_FETCH_GREG_U32_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
263#define IEM_MC_FETCH_GREG_U32_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int32_t)iemGRegFetchU32(pVCpu, (a_iGReg))
264#define IEM_MC_FETCH_GREG_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU64(pVCpu, (a_iGReg))
265#define IEM_MC_FETCH_GREG_U64_ZX_U64 IEM_MC_FETCH_GREG_U64
266#define IEM_MC_FETCH_SREG_U16(a_u16Dst, a_iSReg) do { \
267 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
268 (a_u16Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
269 } while (0)
270#define IEM_MC_FETCH_SREG_ZX_U32(a_u32Dst, a_iSReg) do { \
271 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
272 (a_u32Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
273 } while (0)
274#define IEM_MC_FETCH_SREG_ZX_U64(a_u64Dst, a_iSReg) do { \
275 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
276 (a_u64Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
277 } while (0)
278/** @todo IEM_MC_FETCH_SREG_BASE_U64 & IEM_MC_FETCH_SREG_BASE_U32 probably aren't worth it... */
279#define IEM_MC_FETCH_SREG_BASE_U64(a_u64Dst, a_iSReg) do { \
280 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
281 (a_u64Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
282 } while (0)
283#define IEM_MC_FETCH_SREG_BASE_U32(a_u32Dst, a_iSReg) do { \
284 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
285 (a_u32Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
286 } while (0)
287/** @note Not for IOPL or IF testing or modification. */
288#define IEM_MC_FETCH_EFLAGS(a_EFlags) (a_EFlags) = pVCpu->cpum.GstCtx.eflags.u
289#define IEM_MC_FETCH_EFLAGS_U8(a_EFlags) (a_EFlags) = (uint8_t)pVCpu->cpum.GstCtx.eflags.u
290#define IEM_MC_FETCH_FSW(a_u16Fsw) (a_u16Fsw) = pVCpu->cpum.GstCtx.XState.x87.FSW
291#define IEM_MC_FETCH_FCW(a_u16Fcw) (a_u16Fcw) = pVCpu->cpum.GstCtx.XState.x87.FCW
292
293#define IEM_MC_STORE_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) = (a_u8Value)
294#define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) = (a_u16Value)
295#define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (uint32_t)(a_u32Value) /* clear high bits. */
296#define IEM_MC_STORE_GREG_I32(a_iGReg, a_i32Value) *iemGRegRefI64(pVCpu, (a_iGReg)) = (int64_t)(a_i32Value) /* Sign extension. */
297#define IEM_MC_STORE_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (a_u64Value)
298#define IEM_MC_STORE_GREG_I64(a_iGReg, a_i64Value) *iemGRegRefI64(pVCpu, (a_iGReg)) = (a_i64Value)
299#define IEM_MC_STORE_GREG_U8_CONST IEM_MC_STORE_GREG_U8
300#define IEM_MC_STORE_GREG_U16_CONST IEM_MC_STORE_GREG_U16
301#define IEM_MC_STORE_GREG_U32_CONST IEM_MC_STORE_GREG_U32
302#define IEM_MC_STORE_GREG_U64_CONST IEM_MC_STORE_GREG_U64
303#define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) *iemGRegRefU64(pVCpu, (a_iGReg)) &= UINT32_MAX
304#define IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(a_pu32Dst) do { (a_pu32Dst)[1] = 0; } while (0)
305/** @todo IEM_MC_STORE_SREG_BASE_U64 & IEM_MC_STORE_SREG_BASE_U32 aren't worth it... */
306#define IEM_MC_STORE_SREG_BASE_U64(a_iSReg, a_u64Value) do { \
307 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
308 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (a_u64Value); \
309 } while (0)
310#define IEM_MC_STORE_SREG_BASE_U32(a_iSReg, a_u32Value) do { \
311 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
312 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (uint32_t)(a_u32Value); /* clear high bits. */ \
313 } while (0)
314#define IEM_MC_STORE_FPUREG_R80_SRC_REF(a_iSt, a_pr80Src) \
315 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80 = *(a_pr80Src); } while (0)
316
317
318#define IEM_MC_REF_GREG_U8(a_pu8Dst, a_iGReg) (a_pu8Dst) = iemGRegRefU8( pVCpu, (a_iGReg))
319#define IEM_MC_REF_GREG_U16(a_pu16Dst, a_iGReg) (a_pu16Dst) = iemGRegRefU16(pVCpu, (a_iGReg))
320/** @todo User of IEM_MC_REF_GREG_U32 needs to clear the high bits on commit.
321 * Use IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF! */
322#define IEM_MC_REF_GREG_U32(a_pu32Dst, a_iGReg) (a_pu32Dst) = iemGRegRefU32(pVCpu, (a_iGReg))
323#define IEM_MC_REF_GREG_U64(a_pu64Dst, a_iGReg) (a_pu64Dst) = iemGRegRefU64(pVCpu, (a_iGReg))
324/** @note Not for IOPL or IF testing or modification. */
325#define IEM_MC_REF_EFLAGS(a_pEFlags) (a_pEFlags) = &pVCpu->cpum.GstCtx.eflags.u
326
327#define IEM_MC_ADD_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) += (a_u8Value)
328#define IEM_MC_ADD_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) += (a_u16Value)
329#define IEM_MC_ADD_GREG_U32(a_iGReg, a_u32Value) \
330 do { \
331 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
332 *pu32Reg += (a_u32Value); \
333 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
334 } while (0)
335#define IEM_MC_ADD_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) += (a_u64Value)
336
337#define IEM_MC_SUB_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) -= (a_u8Value)
338#define IEM_MC_SUB_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) -= (a_u16Value)
339#define IEM_MC_SUB_GREG_U32(a_iGReg, a_u32Value) \
340 do { \
341 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
342 *pu32Reg -= (a_u32Value); \
343 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
344 } while (0)
345#define IEM_MC_SUB_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) -= (a_u64Value)
346#define IEM_MC_SUB_LOCAL_U16(a_u16Value, a_u16Const) do { (a_u16Value) -= a_u16Const; } while (0)
347
348#define IEM_MC_ADD_GREG_U8_TO_LOCAL(a_u8Value, a_iGReg) do { (a_u8Value) += iemGRegFetchU8( pVCpu, (a_iGReg)); } while (0)
349#define IEM_MC_ADD_GREG_U16_TO_LOCAL(a_u16Value, a_iGReg) do { (a_u16Value) += iemGRegFetchU16(pVCpu, (a_iGReg)); } while (0)
350#define IEM_MC_ADD_GREG_U32_TO_LOCAL(a_u32Value, a_iGReg) do { (a_u32Value) += iemGRegFetchU32(pVCpu, (a_iGReg)); } while (0)
351#define IEM_MC_ADD_GREG_U64_TO_LOCAL(a_u64Value, a_iGReg) do { (a_u64Value) += iemGRegFetchU64(pVCpu, (a_iGReg)); } while (0)
352#define IEM_MC_ADD_LOCAL_S16_TO_EFF_ADDR(a_EffAddr, a_i16) do { (a_EffAddr) += (a_i16); } while (0)
353#define IEM_MC_ADD_LOCAL_S32_TO_EFF_ADDR(a_EffAddr, a_i32) do { (a_EffAddr) += (a_i32); } while (0)
354#define IEM_MC_ADD_LOCAL_S64_TO_EFF_ADDR(a_EffAddr, a_i64) do { (a_EffAddr) += (a_i64); } while (0)
355
356#define IEM_MC_AND_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) &= (a_u8Mask); } while (0)
357#define IEM_MC_AND_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) &= (a_u16Mask); } while (0)
358#define IEM_MC_AND_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
359#define IEM_MC_AND_LOCAL_U64(a_u64Local, a_u64Mask) do { (a_u64Local) &= (a_u64Mask); } while (0)
360
361#define IEM_MC_AND_ARG_U16(a_u16Arg, a_u16Mask) do { (a_u16Arg) &= (a_u16Mask); } while (0)
362#define IEM_MC_AND_ARG_U32(a_u32Arg, a_u32Mask) do { (a_u32Arg) &= (a_u32Mask); } while (0)
363#define IEM_MC_AND_ARG_U64(a_u64Arg, a_u64Mask) do { (a_u64Arg) &= (a_u64Mask); } while (0)
364
365#define IEM_MC_OR_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) |= (a_u8Mask); } while (0)
366#define IEM_MC_OR_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) |= (a_u16Mask); } while (0)
367#define IEM_MC_OR_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
368
369#define IEM_MC_SAR_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) >>= (a_cShift); } while (0)
370#define IEM_MC_SAR_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) >>= (a_cShift); } while (0)
371#define IEM_MC_SAR_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) >>= (a_cShift); } while (0)
372
373#define IEM_MC_SHL_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) <<= (a_cShift); } while (0)
374#define IEM_MC_SHL_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) <<= (a_cShift); } while (0)
375#define IEM_MC_SHL_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) <<= (a_cShift); } while (0)
376
377#define IEM_MC_AND_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
378
379#define IEM_MC_OR_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
380
381#define IEM_MC_AND_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) &= (a_u8Value)
382#define IEM_MC_AND_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) &= (a_u16Value)
383#define IEM_MC_AND_GREG_U32(a_iGReg, a_u32Value) \
384 do { \
385 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
386 *pu32Reg &= (a_u32Value); \
387 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
388 } while (0)
389#define IEM_MC_AND_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) &= (a_u64Value)
390
391#define IEM_MC_OR_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) |= (a_u8Value)
392#define IEM_MC_OR_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) |= (a_u16Value)
393#define IEM_MC_OR_GREG_U32(a_iGReg, a_u32Value) \
394 do { \
395 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
396 *pu32Reg |= (a_u32Value); \
397 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
398 } while (0)
399#define IEM_MC_OR_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) |= (a_u64Value)
400
401
402/** @note Not for IOPL or IF modification. */
403#define IEM_MC_SET_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u |= (a_fBit); } while (0)
404/** @note Not for IOPL or IF modification. */
405#define IEM_MC_CLEAR_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u &= ~(a_fBit); } while (0)
406/** @note Not for IOPL or IF modification. */
407#define IEM_MC_FLIP_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u ^= (a_fBit); } while (0)
408
409#define IEM_MC_CLEAR_FSW_EX() do { pVCpu->cpum.GstCtx.XState.x87.FSW &= X86_FSW_C_MASK | X86_FSW_TOP_MASK; } while (0)
410
411/** Switches the FPU state to MMX mode (FSW.TOS=0, FTW=0) if necessary. */
412#define IEM_MC_FPU_TO_MMX_MODE() do { \
413 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
414 pVCpu->cpum.GstCtx.XState.x87.FTW = 0xff; \
415 } while (0)
416
417/** Switches the FPU state from MMX mode (FTW=0xffff). */
418#define IEM_MC_FPU_FROM_MMX_MODE() do { \
419 pVCpu->cpum.GstCtx.XState.x87.FTW = 0; \
420 } while (0)
421
422#define IEM_MC_FETCH_MREG_U64(a_u64Value, a_iMReg) \
423 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx; } while (0)
424#define IEM_MC_FETCH_MREG_U32(a_u32Value, a_iMReg) \
425 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[0]; } while (0)
426#define IEM_MC_STORE_MREG_U64(a_iMReg, a_u64Value) do { \
427 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (a_u64Value); \
428 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
429 } while (0)
430#define IEM_MC_STORE_MREG_U32_ZX_U64(a_iMReg, a_u32Value) do { \
431 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (uint32_t)(a_u32Value); \
432 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
433 } while (0)
434#define IEM_MC_REF_MREG_U64(a_pu64Dst, a_iMReg) /** @todo need to set high word to 0xffff on commit (see IEM_MC_STORE_MREG_U64) */ \
435 (a_pu64Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
436#define IEM_MC_REF_MREG_U64_CONST(a_pu64Dst, a_iMReg) \
437 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
438#define IEM_MC_REF_MREG_U32_CONST(a_pu32Dst, a_iMReg) \
439 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
440#define IEM_MC_MODIFIED_MREG(a_iMReg) \
441 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; } while (0)
442#define IEM_MC_MODIFIED_MREG_BY_REF(a_pu64Dst) \
443 do { ((uint32_t *)(a_pu64Dst))[2] = 0xffff; } while (0)
444
445#define IEM_MC_FETCH_XREG_U128(a_u128Value, a_iXReg) \
446 do { (a_u128Value).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
447 (a_u128Value).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
448 } while (0)
449#define IEM_MC_FETCH_XREG_U64(a_u64Value, a_iXReg) \
450 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; } while (0)
451#define IEM_MC_FETCH_XREG_U32(a_u32Value, a_iXReg) \
452 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0]; } while (0)
453#define IEM_MC_FETCH_XREG_HI_U64(a_u64Value, a_iXReg) \
454 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; } while (0)
455#define IEM_MC_STORE_XREG_U128(a_iXReg, a_u128Value) \
456 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u128Value).au64[0]; \
457 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u128Value).au64[1]; \
458 } while (0)
459#define IEM_MC_STORE_XREG_U64(a_iXReg, a_u64Value) \
460 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); } while (0)
461#define IEM_MC_STORE_XREG_U64_ZX_U128(a_iXReg, a_u64Value) \
462 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); \
463 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
464 } while (0)
465#define IEM_MC_STORE_XREG_U32(a_iXReg, a_u32Value) \
466 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0] = (a_u32Value); } while (0)
467#define IEM_MC_STORE_XREG_U32_ZX_U128(a_iXReg, a_u32Value) \
468 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (uint32_t)(a_u32Value); \
469 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
470 } while (0)
471#define IEM_MC_STORE_XREG_HI_U64(a_iXReg, a_u64Value) \
472 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u64Value); } while (0)
473#define IEM_MC_REF_XREG_U128(a_pu128Dst, a_iXReg) \
474 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
475#define IEM_MC_REF_XREG_U128_CONST(a_pu128Dst, a_iXReg) \
476 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
477#define IEM_MC_REF_XREG_XMM_CONST(a_pXmmDst, a_iXReg) \
478 (a_pXmmDst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)])
479#define IEM_MC_REF_XREG_U64_CONST(a_pu64Dst, a_iXReg) \
480 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0])
481#define IEM_MC_REF_XREG_R32_CONST(a_pr32Dst, a_iXReg) \
482 (a_pr32Dst) = ((RTFLOAT32U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0])
483#define IEM_MC_REF_XREG_R64_CONST(a_pr64Dst, a_iXReg) \
484 (a_pr64Dst) = ((RTFLOAT64U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0])
485#define IEM_MC_COPY_XREG_U128(a_iXRegDst, a_iXRegSrc) \
486 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[0] \
487 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[0]; \
488 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[1] \
489 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[1]; \
490 } while (0)
491
492#define IEM_MC_FETCH_YREG_U32(a_u32Dst, a_iYRegSrc) \
493 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
494 (a_u32Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au32[0]; \
495 } while (0)
496#define IEM_MC_FETCH_YREG_U64(a_u64Dst, a_iYRegSrc) \
497 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
498 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
499 } while (0)
500#define IEM_MC_FETCH_YREG_2ND_U64(a_u64Dst, a_iYRegSrc) \
501 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
502 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
503 } while (0)
504#define IEM_MC_FETCH_YREG_U128(a_u128Dst, a_iYRegSrc) \
505 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
506 (a_u128Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
507 (a_u128Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
508 } while (0)
509#define IEM_MC_FETCH_YREG_U256(a_u256Dst, a_iYRegSrc) \
510 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
511 (a_u256Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
512 (a_u256Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
513 (a_u256Dst).au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
514 (a_u256Dst).au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
515 } while (0)
516
517#define IEM_MC_INT_CLEAR_ZMM_256_UP(a_iXRegDst) do { /* For AVX512 and AVX1024 support. */ } while (0)
518#define IEM_MC_STORE_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
519 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
520 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
521 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = 0; \
522 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
523 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
524 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
525 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
526 } while (0)
527#define IEM_MC_STORE_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
528 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
529 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
530 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
531 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
532 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
533 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
534 } while (0)
535#define IEM_MC_STORE_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
536 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
537 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
538 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
539 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
540 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
541 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
542 } while (0)
543#define IEM_MC_STORE_YREG_U256_ZX_VLMAX(a_iYRegDst, a_u256Src) \
544 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
545 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u256Src).au64[0]; \
546 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u256Src).au64[1]; \
547 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u256Src).au64[2]; \
548 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u256Src).au64[3]; \
549 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
550 } while (0)
551
552#define IEM_MC_REF_YREG_U128(a_pu128Dst, a_iYReg) \
553 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
554#define IEM_MC_REF_YREG_U128_CONST(a_pu128Dst, a_iYReg) \
555 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
556#define IEM_MC_REF_YREG_U64_CONST(a_pu64Dst, a_iYReg) \
557 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].au64[0])
558#define IEM_MC_CLEAR_YREG_128_UP(a_iYReg) \
559 do { uintptr_t const iYRegTmp = (a_iYReg); \
560 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[0] = 0; \
561 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[1] = 0; \
562 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegTmp); \
563 } while (0)
564
565#define IEM_MC_COPY_YREG_U256_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
566 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
567 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
568 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
569 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
570 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
571 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
572 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
573 } while (0)
574#define IEM_MC_COPY_YREG_U128_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
575 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
576 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
577 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
578 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
579 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
580 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
581 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
582 } while (0)
583#define IEM_MC_COPY_YREG_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
584 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
585 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
586 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
587 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
588 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
589 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
590 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
591 } while (0)
592
593#define IEM_MC_MERGE_YREG_U32_U96_ZX_VLMAX(a_iYRegDst, a_iYRegSrc32, a_iYRegSrcHx) \
594 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
595 uintptr_t const iYRegSrc32Tmp = (a_iYRegSrc32); \
596 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
597 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc32Tmp].au32[0]; \
598 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au32[1]; \
599 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
600 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
601 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
602 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
603 } while (0)
604#define IEM_MC_MERGE_YREG_U64_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) \
605 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
606 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
607 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
608 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
609 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
610 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
611 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
612 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
613 } while (0)
614#define IEM_MC_MERGE_YREG_U64LO_U64LO_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
615 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
616 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
617 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
618 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
619 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
620 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
621 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
622 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
623 } while (0)
624#define IEM_MC_MERGE_YREG_U64HI_U64HI_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
625 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
626 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
627 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
628 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[1]; \
629 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
630 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
631 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
632 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
633 } while (0)
634#define IEM_MC_MERGE_YREG_U64LO_U64LOCAL_ZX_VLMAX(a_iYRegDst, a_iYRegSrcHx, a_u64Local) \
635 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
636 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
637 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
638 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Local); \
639 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
640 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
641 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
642 } while (0)
643#define IEM_MC_MERGE_YREG_U64LOCAL_U64HI_ZX_VLMAX(a_iYRegDst, a_u64Local, a_iYRegSrcHx) \
644 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
645 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
646 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Local); \
647 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
648 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
649 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
650 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
651 } while (0)
652
653#ifndef IEM_WITH_SETJMP
654# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
655 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem)))
656# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
657 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem16)))
658# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
659 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem32)))
660#else
661# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
662 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
663# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
664 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem16)))
665# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
666 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem32)))
667#endif
668
669#ifndef IEM_WITH_SETJMP
670# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
671 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem)))
672# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
673 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
674# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
675 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem)))
676#else
677# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
678 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
679# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
680 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
681# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
682 ((a_i16Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
683#endif
684
685#ifndef IEM_WITH_SETJMP
686# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
687 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem)))
688# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
689 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
690# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
691 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem)))
692#else
693# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
694 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
695# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
696 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
697# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
698 ((a_i32Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
699#endif
700
701#ifdef SOME_UNUSED_FUNCTION
702# define IEM_MC_FETCH_MEM_S32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
703 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataS32SxU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
704#endif
705
706#ifndef IEM_WITH_SETJMP
707# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
708 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
709# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
710 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
711# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
712 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64AlignedU128(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
713# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
714 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, (uint64_t *)&(a_i64Dst), (a_iSeg), (a_GCPtrMem)))
715#else
716# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
717 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
718# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
719 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
720# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
721 ((a_u64Dst) = iemMemFetchDataU64AlignedU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
722# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
723 ((a_i64Dst) = (int64_t)iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
724#endif
725
726#ifndef IEM_WITH_SETJMP
727# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
728 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_r32Dst).u, (a_iSeg), (a_GCPtrMem)))
729# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
730 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_r64Dst).u, (a_iSeg), (a_GCPtrMem)))
731# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
732 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataR80(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem)))
733# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
734 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataD80(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem)))
735#else
736# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
737 ((a_r32Dst).u = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
738# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
739 ((a_r64Dst).u = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
740# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
741 iemMemFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem))
742# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
743 iemMemFetchDataD80Jmp(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem))
744#endif
745
746#ifndef IEM_WITH_SETJMP
747# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
748 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
749# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
750 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
751# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
752 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
753
754# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
755 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
756# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
757 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
758# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
759 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
760#else
761# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
762 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
763# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
764 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
765# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
766 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
767
768# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
769 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
770# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
771 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
772# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
773 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
774#endif
775
776#ifndef IEM_WITH_SETJMP
777# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
778 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
779# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
780 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
781# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
782 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedSse(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
783
784# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
785 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
786# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
787 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
788# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
789 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedSse(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
790#else
791# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
792 iemMemFetchDataU256Jmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
793# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
794 iemMemFetchDataU256Jmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
795# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
796 iemMemFetchDataU256AlignedSseJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
797
798# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
799 iemMemFetchDataU256Jmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
800# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
801 iemMemFetchDataU256Jmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
802# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
803 iemMemFetchDataU256AlignedSseJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
804#endif
805
806
807
808#ifndef IEM_WITH_SETJMP
809# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
810 do { \
811 uint8_t u8Tmp; \
812 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
813 (a_u16Dst) = u8Tmp; \
814 } while (0)
815# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
816 do { \
817 uint8_t u8Tmp; \
818 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
819 (a_u32Dst) = u8Tmp; \
820 } while (0)
821# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
822 do { \
823 uint8_t u8Tmp; \
824 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
825 (a_u64Dst) = u8Tmp; \
826 } while (0)
827# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
828 do { \
829 uint16_t u16Tmp; \
830 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
831 (a_u32Dst) = u16Tmp; \
832 } while (0)
833# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
834 do { \
835 uint16_t u16Tmp; \
836 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
837 (a_u64Dst) = u16Tmp; \
838 } while (0)
839# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
840 do { \
841 uint32_t u32Tmp; \
842 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
843 (a_u64Dst) = u32Tmp; \
844 } while (0)
845#else /* IEM_WITH_SETJMP */
846# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
847 ((a_u16Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
848# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
849 ((a_u32Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
850# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
851 ((a_u64Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
852# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
853 ((a_u32Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
854# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
855 ((a_u64Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
856# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
857 ((a_u64Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
858#endif /* IEM_WITH_SETJMP */
859
860#ifndef IEM_WITH_SETJMP
861# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
862 do { \
863 uint8_t u8Tmp; \
864 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
865 (a_u16Dst) = (int8_t)u8Tmp; \
866 } while (0)
867# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
868 do { \
869 uint8_t u8Tmp; \
870 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
871 (a_u32Dst) = (int8_t)u8Tmp; \
872 } while (0)
873# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
874 do { \
875 uint8_t u8Tmp; \
876 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
877 (a_u64Dst) = (int8_t)u8Tmp; \
878 } while (0)
879# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
880 do { \
881 uint16_t u16Tmp; \
882 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
883 (a_u32Dst) = (int16_t)u16Tmp; \
884 } while (0)
885# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
886 do { \
887 uint16_t u16Tmp; \
888 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
889 (a_u64Dst) = (int16_t)u16Tmp; \
890 } while (0)
891# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
892 do { \
893 uint32_t u32Tmp; \
894 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
895 (a_u64Dst) = (int32_t)u32Tmp; \
896 } while (0)
897#else /* IEM_WITH_SETJMP */
898# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
899 ((a_u16Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
900# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
901 ((a_u32Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
902# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
903 ((a_u64Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
904# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
905 ((a_u32Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
906# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
907 ((a_u64Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
908# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
909 ((a_u64Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
910#endif /* IEM_WITH_SETJMP */
911
912#ifndef IEM_WITH_SETJMP
913# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
914 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value)))
915# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
916 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value)))
917# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
918 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value)))
919# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
920 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value)))
921#else
922# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
923 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value))
924# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
925 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value))
926# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
927 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value))
928# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
929 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value))
930#endif
931
932#ifndef IEM_WITH_SETJMP
933# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
934 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C)))
935# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
936 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C)))
937# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
938 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C)))
939# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
940 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C)))
941#else
942# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
943 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C))
944# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
945 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C))
946# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
947 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C))
948# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
949 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C))
950#endif
951
952#define IEM_MC_STORE_MEM_I8_CONST_BY_REF( a_pi8Dst, a_i8C) *(a_pi8Dst) = (a_i8C)
953#define IEM_MC_STORE_MEM_I16_CONST_BY_REF(a_pi16Dst, a_i16C) *(a_pi16Dst) = (a_i16C)
954#define IEM_MC_STORE_MEM_I32_CONST_BY_REF(a_pi32Dst, a_i32C) *(a_pi32Dst) = (a_i32C)
955#define IEM_MC_STORE_MEM_I64_CONST_BY_REF(a_pi64Dst, a_i64C) *(a_pi64Dst) = (a_i64C)
956#define IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(a_pr32Dst) (a_pr32Dst)->u = UINT32_C(0xffc00000)
957#define IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(a_pr64Dst) (a_pr64Dst)->u = UINT64_C(0xfff8000000000000)
958#define IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(a_pr80Dst) \
959 do { \
960 (a_pr80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
961 (a_pr80Dst)->au16[4] = UINT16_C(0xffff); \
962 } while (0)
963#define IEM_MC_STORE_MEM_INDEF_D80_BY_REF(a_pd80Dst) \
964 do { \
965 (a_pd80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
966 (a_pd80Dst)->au16[4] = UINT16_C(0xffff); \
967 } while (0)
968
969#ifndef IEM_WITH_SETJMP
970# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
971 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
972# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
973 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128AlignedSse(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
974#else
975# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
976 iemMemStoreDataU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
977# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
978 iemMemStoreDataU128AlignedSseJmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
979#endif
980
981#ifndef IEM_WITH_SETJMP
982# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
983 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
984# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
985 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256AlignedAvx(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
986#else
987# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
988 iemMemStoreDataU256Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
989# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
990 iemMemStoreDataU256AlignedAvxJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
991#endif
992
993
994#define IEM_MC_PUSH_U16(a_u16Value) \
995 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
996#define IEM_MC_PUSH_U32(a_u32Value) \
997 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
998#define IEM_MC_PUSH_U32_SREG(a_u32Value) \
999 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_u32Value)))
1000#define IEM_MC_PUSH_U64(a_u64Value) \
1001 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
1002
1003#define IEM_MC_POP_U16(a_pu16Value) \
1004 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU16(pVCpu, (a_pu16Value)))
1005#define IEM_MC_POP_U32(a_pu32Value) \
1006 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU32(pVCpu, (a_pu32Value)))
1007#define IEM_MC_POP_U64(a_pu64Value) \
1008 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU64(pVCpu, (a_pu64Value)))
1009
1010/** Maps guest memory for direct or bounce buffered access.
1011 * The purpose is to pass it to an operand implementation, thus the a_iArg.
1012 * @remarks May return.
1013 */
1014#define IEM_MC_MEM_MAP(a_pMem, a_fAccess, a_iSeg, a_GCPtrMem, a_iArg) \
1015 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pMem), sizeof(*(a_pMem)), (a_iSeg), \
1016 (a_GCPtrMem), (a_fAccess), sizeof(*(a_pMem)) - 1))
1017
1018/** Maps guest memory for direct or bounce buffered access.
1019 * The purpose is to pass it to an operand implementation, thus the a_iArg.
1020 * @remarks May return.
1021 */
1022#define IEM_MC_MEM_MAP_EX(a_pvMem, a_fAccess, a_cbMem, a_iSeg, a_GCPtrMem, a_cbAlign, a_iArg) \
1023 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pvMem), (a_cbMem), (a_iSeg), \
1024 (a_GCPtrMem), (a_fAccess), (a_cbAlign)))
1025
1026/** Commits the memory and unmaps the guest memory.
1027 * @remarks May return.
1028 */
1029#define IEM_MC_MEM_COMMIT_AND_UNMAP(a_pvMem, a_fAccess) \
1030 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, (a_pvMem), (a_fAccess)))
1031
1032/** Commits the memory and unmaps the guest memory unless the FPU status word
1033 * indicates (@a a_u16FSW) and FPU control word indicates a pending exception
1034 * that would cause FLD not to store.
1035 *
1036 * The current understanding is that \#O, \#U, \#IA and \#IS will prevent a
1037 * store, while \#P will not.
1038 *
1039 * @remarks May in theory return - for now.
1040 */
1041#define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(a_pvMem, a_fAccess, a_u16FSW) \
1042 do { \
1043 if ( !(a_u16FSW & X86_FSW_ES) \
1044 || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
1045 & ~(pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_MASK_ALL) ) ) \
1046 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, (a_pvMem), (a_fAccess))); \
1047 } while (0)
1048
1049/** Calculate efficient address from R/M. */
1050#ifndef IEM_WITH_SETJMP
1051# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, bRm, cbImm) \
1052 IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddr(pVCpu, (bRm), (cbImm), &(a_GCPtrEff)))
1053#else
1054# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, bRm, cbImm) \
1055 ((a_GCPtrEff) = iemOpHlpCalcRmEffAddrJmp(pVCpu, (bRm), (cbImm)))
1056#endif
1057
1058#define IEM_MC_CALL_VOID_AIMPL_0(a_pfn) (a_pfn)()
1059#define IEM_MC_CALL_VOID_AIMPL_1(a_pfn, a0) (a_pfn)((a0))
1060#define IEM_MC_CALL_VOID_AIMPL_2(a_pfn, a0, a1) (a_pfn)((a0), (a1))
1061#define IEM_MC_CALL_VOID_AIMPL_3(a_pfn, a0, a1, a2) (a_pfn)((a0), (a1), (a2))
1062#define IEM_MC_CALL_VOID_AIMPL_4(a_pfn, a0, a1, a2, a3) (a_pfn)((a0), (a1), (a2), (a3))
1063#define IEM_MC_CALL_AIMPL_3(a_rc, a_pfn, a0, a1, a2) (a_rc) = (a_pfn)((a0), (a1), (a2))
1064#define IEM_MC_CALL_AIMPL_4(a_rc, a_pfn, a0, a1, a2, a3) (a_rc) = (a_pfn)((a0), (a1), (a2), (a3))
1065
1066/**
1067 * Defers the rest of the instruction emulation to a C implementation routine
1068 * and returns, only taking the standard parameters.
1069 *
1070 * @param a_pfnCImpl The pointer to the C routine.
1071 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
1072 */
1073#define IEM_MC_CALL_CIMPL_0(a_pfnCImpl) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
1074
1075/**
1076 * Defers the rest of instruction emulation to a C implementation routine and
1077 * returns, taking one argument in addition to the standard ones.
1078 *
1079 * @param a_pfnCImpl The pointer to the C routine.
1080 * @param a0 The argument.
1081 */
1082#define IEM_MC_CALL_CIMPL_1(a_pfnCImpl, a0) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0)
1083
1084/**
1085 * Defers the rest of the instruction emulation to a C implementation routine
1086 * and returns, taking two arguments in addition to the standard ones.
1087 *
1088 * @param a_pfnCImpl The pointer to the C routine.
1089 * @param a0 The first extra argument.
1090 * @param a1 The second extra argument.
1091 */
1092#define IEM_MC_CALL_CIMPL_2(a_pfnCImpl, a0, a1) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1)
1093
1094/**
1095 * Defers the rest of the instruction emulation to a C implementation routine
1096 * and returns, taking three arguments in addition to the standard ones.
1097 *
1098 * @param a_pfnCImpl The pointer to the C routine.
1099 * @param a0 The first extra argument.
1100 * @param a1 The second extra argument.
1101 * @param a2 The third extra argument.
1102 */
1103#define IEM_MC_CALL_CIMPL_3(a_pfnCImpl, a0, a1, a2) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2)
1104
1105/**
1106 * Defers the rest of the instruction emulation to a C implementation routine
1107 * and returns, taking four arguments in addition to the standard ones.
1108 *
1109 * @param a_pfnCImpl The pointer to the C routine.
1110 * @param a0 The first extra argument.
1111 * @param a1 The second extra argument.
1112 * @param a2 The third extra argument.
1113 * @param a3 The fourth extra argument.
1114 */
1115#define IEM_MC_CALL_CIMPL_4(a_pfnCImpl, a0, a1, a2, a3) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3)
1116
1117/**
1118 * Defers the rest of the instruction emulation to a C implementation routine
1119 * and returns, taking two arguments in addition to the standard ones.
1120 *
1121 * @param a_pfnCImpl The pointer to the C routine.
1122 * @param a0 The first extra argument.
1123 * @param a1 The second extra argument.
1124 * @param a2 The third extra argument.
1125 * @param a3 The fourth extra argument.
1126 * @param a4 The fifth extra argument.
1127 */
1128#define IEM_MC_CALL_CIMPL_5(a_pfnCImpl, a0, a1, a2, a3, a4) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3, a4)
1129
1130/**
1131 * Defers the entire instruction emulation to a C implementation routine and
1132 * returns, only taking the standard parameters.
1133 *
1134 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1135 *
1136 * @param a_pfnCImpl The pointer to the C routine.
1137 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
1138 */
1139#define IEM_MC_DEFER_TO_CIMPL_0(a_pfnCImpl) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
1140
1141/**
1142 * Defers the entire instruction emulation to a C implementation routine and
1143 * returns, taking one argument in addition to the standard ones.
1144 *
1145 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1146 *
1147 * @param a_pfnCImpl The pointer to the C routine.
1148 * @param a0 The argument.
1149 */
1150#define IEM_MC_DEFER_TO_CIMPL_1(a_pfnCImpl, a0) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0)
1151
1152/**
1153 * Defers the entire instruction emulation to a C implementation routine and
1154 * returns, taking two arguments in addition to the standard ones.
1155 *
1156 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1157 *
1158 * @param a_pfnCImpl The pointer to the C routine.
1159 * @param a0 The first extra argument.
1160 * @param a1 The second extra argument.
1161 */
1162#define IEM_MC_DEFER_TO_CIMPL_2(a_pfnCImpl, a0, a1) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1)
1163
1164/**
1165 * Defers the entire instruction emulation to a C implementation routine and
1166 * returns, taking three arguments in addition to the standard ones.
1167 *
1168 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1169 *
1170 * @param a_pfnCImpl The pointer to the C routine.
1171 * @param a0 The first extra argument.
1172 * @param a1 The second extra argument.
1173 * @param a2 The third extra argument.
1174 */
1175#define IEM_MC_DEFER_TO_CIMPL_3(a_pfnCImpl, a0, a1, a2) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2)
1176
1177/**
1178 * Calls a FPU assembly implementation taking one visible argument.
1179 *
1180 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1181 * @param a0 The first extra argument.
1182 */
1183#define IEM_MC_CALL_FPU_AIMPL_1(a_pfnAImpl, a0) \
1184 do { \
1185 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0)); \
1186 } while (0)
1187
1188/**
1189 * Calls a FPU assembly implementation taking two visible arguments.
1190 *
1191 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1192 * @param a0 The first extra argument.
1193 * @param a1 The second extra argument.
1194 */
1195#define IEM_MC_CALL_FPU_AIMPL_2(a_pfnAImpl, a0, a1) \
1196 do { \
1197 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1198 } while (0)
1199
1200/**
1201 * Calls a FPU assembly implementation taking three visible arguments.
1202 *
1203 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1204 * @param a0 The first extra argument.
1205 * @param a1 The second extra argument.
1206 * @param a2 The third extra argument.
1207 */
1208#define IEM_MC_CALL_FPU_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1209 do { \
1210 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1211 } while (0)
1212
1213#define IEM_MC_SET_FPU_RESULT(a_FpuData, a_FSW, a_pr80Value) \
1214 do { \
1215 (a_FpuData).FSW = (a_FSW); \
1216 (a_FpuData).r80Result = *(a_pr80Value); \
1217 } while (0)
1218
1219/** Pushes FPU result onto the stack. */
1220#define IEM_MC_PUSH_FPU_RESULT(a_FpuData) \
1221 iemFpuPushResult(pVCpu, &a_FpuData)
1222/** Pushes FPU result onto the stack and sets the FPUDP. */
1223#define IEM_MC_PUSH_FPU_RESULT_MEM_OP(a_FpuData, a_iEffSeg, a_GCPtrEff) \
1224 iemFpuPushResultWithMemOp(pVCpu, &a_FpuData, a_iEffSeg, a_GCPtrEff)
1225
1226/** Replaces ST0 with value one and pushes value 2 onto the FPU stack. */
1227#define IEM_MC_PUSH_FPU_RESULT_TWO(a_FpuDataTwo) \
1228 iemFpuPushResultTwo(pVCpu, &a_FpuDataTwo)
1229
1230/** Stores FPU result in a stack register. */
1231#define IEM_MC_STORE_FPU_RESULT(a_FpuData, a_iStReg) \
1232 iemFpuStoreResult(pVCpu, &a_FpuData, a_iStReg)
1233/** Stores FPU result in a stack register and pops the stack. */
1234#define IEM_MC_STORE_FPU_RESULT_THEN_POP(a_FpuData, a_iStReg) \
1235 iemFpuStoreResultThenPop(pVCpu, &a_FpuData, a_iStReg)
1236/** Stores FPU result in a stack register and sets the FPUDP. */
1237#define IEM_MC_STORE_FPU_RESULT_MEM_OP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff) \
1238 iemFpuStoreResultWithMemOp(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff)
1239/** Stores FPU result in a stack register, sets the FPUDP, and pops the
1240 * stack. */
1241#define IEM_MC_STORE_FPU_RESULT_WITH_MEM_OP_THEN_POP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff) \
1242 iemFpuStoreResultWithMemOpThenPop(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff)
1243
1244/** Only update the FOP, FPUIP, and FPUCS. (For FNOP.) */
1245#define IEM_MC_UPDATE_FPU_OPCODE_IP() \
1246 iemFpuUpdateOpcodeAndIp(pVCpu)
1247/** Free a stack register (for FFREE and FFREEP). */
1248#define IEM_MC_FPU_STACK_FREE(a_iStReg) \
1249 iemFpuStackFree(pVCpu, a_iStReg)
1250/** Increment the FPU stack pointer. */
1251#define IEM_MC_FPU_STACK_INC_TOP() \
1252 iemFpuStackIncTop(pVCpu)
1253/** Decrement the FPU stack pointer. */
1254#define IEM_MC_FPU_STACK_DEC_TOP() \
1255 iemFpuStackDecTop(pVCpu)
1256
1257/** Updates the FSW, FOP, FPUIP, and FPUCS. */
1258#define IEM_MC_UPDATE_FSW(a_u16FSW) \
1259 iemFpuUpdateFSW(pVCpu, a_u16FSW)
1260/** Updates the FSW with a constant value as well as FOP, FPUIP, and FPUCS. */
1261#define IEM_MC_UPDATE_FSW_CONST(a_u16FSW) \
1262 iemFpuUpdateFSW(pVCpu, a_u16FSW)
1263/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS. */
1264#define IEM_MC_UPDATE_FSW_WITH_MEM_OP(a_u16FSW, a_iEffSeg, a_GCPtrEff) \
1265 iemFpuUpdateFSWWithMemOp(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff)
1266/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack. */
1267#define IEM_MC_UPDATE_FSW_THEN_POP(a_u16FSW) \
1268 iemFpuUpdateFSWThenPop(pVCpu, a_u16FSW)
1269/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP and FPUDS, and then pops the
1270 * stack. */
1271#define IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(a_u16FSW, a_iEffSeg, a_GCPtrEff) \
1272 iemFpuUpdateFSWWithMemOpThenPop(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff)
1273/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack twice. */
1274#define IEM_MC_UPDATE_FSW_THEN_POP_POP(a_u16FSW) \
1275 iemFpuUpdateFSWThenPopPop(pVCpu, a_u16FSW)
1276
1277/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. */
1278#define IEM_MC_FPU_STACK_UNDERFLOW(a_iStDst) \
1279 iemFpuStackUnderflow(pVCpu, a_iStDst)
1280/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
1281 * stack. */
1282#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(a_iStDst) \
1283 iemFpuStackUnderflowThenPop(pVCpu, a_iStDst)
1284/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
1285 * FPUDS. */
1286#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(a_iStDst, a_iEffSeg, a_GCPtrEff) \
1287 iemFpuStackUnderflowWithMemOp(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff)
1288/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
1289 * FPUDS. Pops stack. */
1290#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(a_iStDst, a_iEffSeg, a_GCPtrEff) \
1291 iemFpuStackUnderflowWithMemOpThenPop(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff)
1292/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
1293 * stack twice. */
1294#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP() \
1295 iemFpuStackUnderflowThenPopPop(pVCpu)
1296/** Raises a FPU stack underflow exception for an instruction pushing a result
1297 * value onto the stack. Sets FPUIP, FPUCS and FOP. */
1298#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW() \
1299 iemFpuStackPushUnderflow(pVCpu)
1300/** Raises a FPU stack underflow exception for an instruction pushing a result
1301 * value onto the stack and replacing ST0. Sets FPUIP, FPUCS and FOP. */
1302#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO() \
1303 iemFpuStackPushUnderflowTwo(pVCpu)
1304
1305/** Raises a FPU stack overflow exception as part of a push attempt. Sets
1306 * FPUIP, FPUCS and FOP. */
1307#define IEM_MC_FPU_STACK_PUSH_OVERFLOW() \
1308 iemFpuStackPushOverflow(pVCpu)
1309/** Raises a FPU stack overflow exception as part of a push attempt. Sets
1310 * FPUIP, FPUCS, FOP, FPUDP and FPUDS. */
1311#define IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(a_iEffSeg, a_GCPtrEff) \
1312 iemFpuStackPushOverflowWithMemOp(pVCpu, a_iEffSeg, a_GCPtrEff)
1313/** Prepares for using the FPU state.
1314 * Ensures that we can use the host FPU in the current context (RC+R0.
1315 * Ensures the guest FPU state in the CPUMCTX is up to date. */
1316#define IEM_MC_PREPARE_FPU_USAGE() iemFpuPrepareUsage(pVCpu)
1317/** Actualizes the guest FPU state so it can be accessed read-only fashion. */
1318#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ() iemFpuActualizeStateForRead(pVCpu)
1319/** Actualizes the guest FPU state so it can be accessed and modified. */
1320#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE() iemFpuActualizeStateForChange(pVCpu)
1321
1322/** Stores SSE SIMD result updating MXCSR. */
1323#define IEM_MC_STORE_SSE_RESULT(a_SseData, a_iXmmReg) \
1324 iemSseStoreResult(pVCpu, &a_SseData, a_iXmmReg)
1325/** Updates MXCSR. */
1326#define IEM_MC_SSE_UPDATE_MXCSR(a_fMxcsr) \
1327 iemSseUpdateMxcsr(pVCpu, a_fMxcsr)
1328
1329/** Prepares for using the SSE state.
1330 * Ensures that we can use the host SSE/FPU in the current context (RC+R0.
1331 * Ensures the guest SSE state in the CPUMCTX is up to date. */
1332#define IEM_MC_PREPARE_SSE_USAGE() iemFpuPrepareUsageSse(pVCpu)
1333/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
1334#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_READ() iemFpuActualizeSseStateForRead(pVCpu)
1335/** Actualizes the guest XMM0..15 and MXCSR register state for read-write access. */
1336#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_CHANGE() iemFpuActualizeSseStateForChange(pVCpu)
1337
1338/** Prepares for using the AVX state.
1339 * Ensures that we can use the host AVX/FPU in the current context (RC+R0.
1340 * Ensures the guest AVX state in the CPUMCTX is up to date.
1341 * @note This will include the AVX512 state too when support for it is added
1342 * due to the zero extending feature of VEX instruction. */
1343#define IEM_MC_PREPARE_AVX_USAGE() iemFpuPrepareUsageAvx(pVCpu)
1344/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
1345#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_READ() iemFpuActualizeAvxStateForRead(pVCpu)
1346/** Actualizes the guest YMM0..15 and MXCSR register state for read-write access. */
1347#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_CHANGE() iemFpuActualizeAvxStateForChange(pVCpu)
1348
1349/**
1350 * Calls a MMX assembly implementation taking two visible arguments.
1351 *
1352 * @param a_pfnAImpl Pointer to the assembly MMX routine.
1353 * @param a0 The first extra argument.
1354 * @param a1 The second extra argument.
1355 */
1356#define IEM_MC_CALL_MMX_AIMPL_2(a_pfnAImpl, a0, a1) \
1357 do { \
1358 IEM_MC_PREPARE_FPU_USAGE(); \
1359 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1360 } while (0)
1361
1362/**
1363 * Calls a MMX assembly implementation taking three visible arguments.
1364 *
1365 * @param a_pfnAImpl Pointer to the assembly MMX routine.
1366 * @param a0 The first extra argument.
1367 * @param a1 The second extra argument.
1368 * @param a2 The third extra argument.
1369 */
1370#define IEM_MC_CALL_MMX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1371 do { \
1372 IEM_MC_PREPARE_FPU_USAGE(); \
1373 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1374 } while (0)
1375
1376
1377/**
1378 * Calls a SSE assembly implementation taking two visible arguments.
1379 *
1380 * @param a_pfnAImpl Pointer to the assembly SSE routine.
1381 * @param a0 The first extra argument.
1382 * @param a1 The second extra argument.
1383 */
1384#define IEM_MC_CALL_SSE_AIMPL_2(a_pfnAImpl, a0, a1) \
1385 do { \
1386 IEM_MC_PREPARE_SSE_USAGE(); \
1387 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1388 } while (0)
1389
1390/**
1391 * Calls a SSE assembly implementation taking three visible arguments.
1392 *
1393 * @param a_pfnAImpl Pointer to the assembly SSE routine.
1394 * @param a0 The first extra argument.
1395 * @param a1 The second extra argument.
1396 * @param a2 The third extra argument.
1397 */
1398#define IEM_MC_CALL_SSE_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1399 do { \
1400 IEM_MC_PREPARE_SSE_USAGE(); \
1401 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1402 } while (0)
1403
1404
1405/** Declares implicit arguments for IEM_MC_CALL_AVX_AIMPL_2,
1406 * IEM_MC_CALL_AVX_AIMPL_3, IEM_MC_CALL_AVX_AIMPL_4, ... */
1407#define IEM_MC_IMPLICIT_AVX_AIMPL_ARGS() \
1408 IEM_MC_ARG_CONST(PX86XSAVEAREA, pXState, &pVCpu->cpum.GstCtx.XState, 0)
1409
1410/**
1411 * Calls a AVX assembly implementation taking two visible arguments.
1412 *
1413 * There is one implicit zero'th argument, a pointer to the extended state.
1414 *
1415 * @param a_pfnAImpl Pointer to the assembly AVX routine.
1416 * @param a1 The first extra argument.
1417 * @param a2 The second extra argument.
1418 */
1419#define IEM_MC_CALL_AVX_AIMPL_2(a_pfnAImpl, a1, a2) \
1420 do { \
1421 IEM_MC_PREPARE_AVX_USAGE(); \
1422 a_pfnAImpl(pXState, (a1), (a2)); \
1423 } while (0)
1424
1425/**
1426 * Calls a AVX assembly implementation taking three visible arguments.
1427 *
1428 * There is one implicit zero'th argument, a pointer to the extended state.
1429 *
1430 * @param a_pfnAImpl Pointer to the assembly AVX routine.
1431 * @param a1 The first extra argument.
1432 * @param a2 The second extra argument.
1433 * @param a3 The third extra argument.
1434 */
1435#define IEM_MC_CALL_AVX_AIMPL_3(a_pfnAImpl, a1, a2, a3) \
1436 do { \
1437 IEM_MC_PREPARE_AVX_USAGE(); \
1438 a_pfnAImpl(pXState, (a1), (a2), (a3)); \
1439 } while (0)
1440
1441/** @note Not for IOPL or IF testing. */
1442#define IEM_MC_IF_EFL_BIT_SET(a_fBit) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) {
1443/** @note Not for IOPL or IF testing. */
1444#define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit))) {
1445/** @note Not for IOPL or IF testing. */
1446#define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBits)) {
1447/** @note Not for IOPL or IF testing. */
1448#define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBits))) {
1449/** @note Not for IOPL or IF testing. */
1450#define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
1451 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1452 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1453/** @note Not for IOPL or IF testing. */
1454#define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
1455 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1456 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1457/** @note Not for IOPL or IF testing. */
1458#define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
1459 if ( (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
1460 || !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1461 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1462/** @note Not for IOPL or IF testing. */
1463#define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
1464 if ( !(pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
1465 && !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1466 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1467#define IEM_MC_IF_CX_IS_NZ() if (pVCpu->cpum.GstCtx.cx != 0) {
1468#define IEM_MC_IF_ECX_IS_NZ() if (pVCpu->cpum.GstCtx.ecx != 0) {
1469#define IEM_MC_IF_RCX_IS_NZ() if (pVCpu->cpum.GstCtx.rcx != 0) {
1470/** @note Not for IOPL or IF testing. */
1471#define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1472 if ( pVCpu->cpum.GstCtx.cx != 0 \
1473 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1474/** @note Not for IOPL or IF testing. */
1475#define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1476 if ( pVCpu->cpum.GstCtx.ecx != 0 \
1477 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1478/** @note Not for IOPL or IF testing. */
1479#define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1480 if ( pVCpu->cpum.GstCtx.rcx != 0 \
1481 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1482/** @note Not for IOPL or IF testing. */
1483#define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1484 if ( pVCpu->cpum.GstCtx.cx != 0 \
1485 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1486/** @note Not for IOPL or IF testing. */
1487#define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1488 if ( pVCpu->cpum.GstCtx.ecx != 0 \
1489 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1490/** @note Not for IOPL or IF testing. */
1491#define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1492 if ( pVCpu->cpum.GstCtx.rcx != 0 \
1493 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1494#define IEM_MC_IF_LOCAL_IS_Z(a_Local) if ((a_Local) == 0) {
1495#define IEM_MC_IF_GREG_BIT_SET(a_iGReg, a_iBitNo) if (iemGRegFetchU64(pVCpu, (a_iGReg)) & RT_BIT_64(a_iBitNo)) {
1496
1497#define IEM_MC_REF_FPUREG(a_pr80Dst, a_iSt) \
1498 do { (a_pr80Dst) = &pVCpu->cpum.GstCtx.XState.x87.aRegs[X86_FSW_TOP_GET_ST(pVCpu->cpum.GstCtx.XState.x87.FSW, a_iSt)].r80; } while (0)
1499#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
1500 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
1501#define IEM_MC_IF_FPUREG_NOT_EMPTY(a_iSt) \
1502 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) == VINF_SUCCESS) {
1503#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
1504 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
1505#define IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(a_pr80Dst, a_iSt) \
1506 if (iemFpuStRegNotEmptyRef(pVCpu, (a_iSt), &(a_pr80Dst)) == VINF_SUCCESS) {
1507#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(a_pr80Dst0, a_iSt0, a_pr80Dst1, a_iSt1) \
1508 if (iemFpu2StRegsNotEmptyRef(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1), &(a_pr80Dst1)) == VINF_SUCCESS) {
1509#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(a_pr80Dst0, a_iSt0, a_iSt1) \
1510 if (iemFpu2StRegsNotEmptyRefFirst(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1)) == VINF_SUCCESS) {
1511#define IEM_MC_IF_FCW_IM() \
1512 if (pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_IM) {
1513#define IEM_MC_IF_MXCSR_XCPT_PENDING() \
1514 if (( ~((pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
1515 & (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_FLAGS)) != 0) {
1516
1517#define IEM_MC_ELSE() } else {
1518#define IEM_MC_ENDIF() } do {} while (0)
1519
1520/** @} */
1521
1522#endif /* !VMM_INCLUDED_SRC_include_IEMMc_h */
1523
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette