/* $Id: IEMN8veRecompiler.h 101705 2023-11-02 00:28:10Z vboxsync $ */ /** @file * IEM - Interpreted Execution Manager - Native Recompiler Internals. */ /* * Copyright (C) 2011-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ #ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h #define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h #ifndef RT_WITHOUT_PRAGMA_ONCE # pragma once #endif /** @defgroup grp_iem_n8ve_re Native Recompiler Internals. * @ingroup grp_iem_int * @{ */ /** @def IEMNATIVE_WITH_TB_DEBUG_INFO * Enables generating internal debug info for better TB disassembly dumping. */ #if defined(DEBUG) || defined(DOXYGEN_RUNNING) # define IEMNATIVE_WITH_TB_DEBUG_INFO #endif /** @name Stack Frame Layout * * @{ */ /** The size of the area for stack variables and spills and stuff. * @note This limit is duplicated in the python script(s). */ #define IEMNATIVE_FRAME_VAR_SIZE 0xc0 #ifdef RT_ARCH_AMD64 /** Number of stack arguments slots for calls made from the frame. */ # define IEMNATIVE_FRAME_STACK_ARG_COUNT 4 /** An stack alignment adjustment (between non-volatile register pushes and * the stack variable area, so the latter better aligned). */ # define IEMNATIVE_FRAME_ALIGN_SIZE 8 /** Number of any shadow arguments (spill area) for calls we make. */ # ifdef RT_OS_WINDOWS # define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4 # else # define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0 # endif /** Frame pointer (RBP) relative offset of the last push. */ # ifdef RT_OS_WINDOWS # define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8) # else # define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8) # endif /** Frame pointer (RBP) relative offset of the stack variable area (the lowest * address for it). */ # define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE) /** Frame pointer (RBP) relative offset of the first stack argument for calls. */ # define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8) /** Frame pointer (RBP) relative offset of the second stack argument for calls. */ # define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8) /** Frame pointer (RBP) relative offset of the third stack argument for calls. */ # define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16) /** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */ # define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24) # ifdef RT_OS_WINDOWS /** Frame pointer (RBP) relative offset of the first incoming shadow argument. */ # define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16) /** Frame pointer (RBP) relative offset of the second incoming shadow argument. */ # define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24) /** Frame pointer (RBP) relative offset of the third incoming shadow argument. */ # define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32) /** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */ # define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40) # endif #elif RT_ARCH_ARM64 /** No stack argument slots, enough got 8 registers for arguments. */ # define IEMNATIVE_FRAME_STACK_ARG_COUNT 0 /** There are no argument spill area. */ # define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0 /** Number of saved registers at the top of our stack frame. * This includes the return address and old frame pointer, so x19 thru x30. */ # define IEMNATIVE_FRAME_SAVE_REG_COUNT (12) /** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */ # define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8) /** Frame pointer (BP) relative offset of the last push. */ # define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8) /** Frame pointer (BP) relative offset of the stack variable area (the lowest * address for it). */ # define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE) #else # error "port me" #endif /** @} */ /** @name Fixed Register Allocation(s) * @{ */ /** @def IEMNATIVE_REG_FIXED_PVMCPU * The number of the register holding the pVCpu pointer. */ /** @def IEMNATIVE_REG_FIXED_PCPUMCTX * The number of the register holding the &pVCpu->cpum.GstCtx pointer. * @note This not available on AMD64, only ARM64. */ /** @def IEMNATIVE_REG_FIXED_TMP0 * Dedicated temporary register. * @todo replace this by a register allocator and content tracker. */ /** @def IEMNATIVE_REG_FIXED_MASK * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS * architecture. */ #if defined(RT_ARCH_AMD64) && !defined(DOXYGEN_RUNNING) # define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX # define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11 # define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \ | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \ | RT_BIT_32(X86_GREG_xSP) \ | RT_BIT_32(X86_GREG_xBP) ) #elif defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING) # define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28 # define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27 # define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15 # define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \ | RT_BIT_32(ARMV8_A64_REG_LR) \ | RT_BIT_32(ARMV8_A64_REG_BP) \ | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \ | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \ | RT_BIT_32(ARMV8_A64_REG_X18) \ | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) ) #else # error "port me" #endif /** @} */ /** @name Call related registers. * @{ */ /** @def IEMNATIVE_CALL_RET_GREG * The return value register. */ /** @def IEMNATIVE_CALL_ARG_GREG_COUNT * Number of arguments in registers. */ /** @def IEMNATIVE_CALL_ARG0_GREG * The general purpose register carrying argument \#0. */ /** @def IEMNATIVE_CALL_ARG1_GREG * The general purpose register carrying argument \#1. */ /** @def IEMNATIVE_CALL_ARG2_GREG * The general purpose register carrying argument \#2. */ /** @def IEMNATIVE_CALL_ARG3_GREG * The general purpose register carrying argument \#3. */ /** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK * Mask of registers the callee will not save and may trash. */ #ifdef RT_ARCH_AMD64 # define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX # ifdef RT_OS_WINDOWS # define IEMNATIVE_CALL_ARG_GREG_COUNT 4 # define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX # define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX # define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8 # define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9 # define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \ | RT_BIT_32(X86_GREG_xCX) \ | RT_BIT_32(X86_GREG_xDX) \ | RT_BIT_32(X86_GREG_x8) \ | RT_BIT_32(X86_GREG_x9) \ | RT_BIT_32(X86_GREG_x10) \ | RT_BIT_32(X86_GREG_x11) ) # else # define IEMNATIVE_CALL_ARG_GREG_COUNT 6 # define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI # define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI # define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX # define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX # define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8 # define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9 # define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \ | RT_BIT_32(X86_GREG_xCX) \ | RT_BIT_32(X86_GREG_xDX) \ | RT_BIT_32(X86_GREG_xDI) \ | RT_BIT_32(X86_GREG_xSI) \ | RT_BIT_32(X86_GREG_x8) \ | RT_BIT_32(X86_GREG_x9) \ | RT_BIT_32(X86_GREG_x10) \ | RT_BIT_32(X86_GREG_x11) ) # endif #elif defined(RT_ARCH_ARM64) # define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0 # define IEMNATIVE_CALL_ARG_GREG_COUNT 8 # define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0 # define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1 # define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2 # define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3 # define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4 # define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5 # define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6 # define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7 # define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \ | RT_BIT_32(ARMV8_A64_REG_X1) \ | RT_BIT_32(ARMV8_A64_REG_X2) \ | RT_BIT_32(ARMV8_A64_REG_X3) \ | RT_BIT_32(ARMV8_A64_REG_X4) \ | RT_BIT_32(ARMV8_A64_REG_X5) \ | RT_BIT_32(ARMV8_A64_REG_X6) \ | RT_BIT_32(ARMV8_A64_REG_X7) \ | RT_BIT_32(ARMV8_A64_REG_X8) \ | RT_BIT_32(ARMV8_A64_REG_X9) \ | RT_BIT_32(ARMV8_A64_REG_X10) \ | RT_BIT_32(ARMV8_A64_REG_X11) \ | RT_BIT_32(ARMV8_A64_REG_X12) \ | RT_BIT_32(ARMV8_A64_REG_X13) \ | RT_BIT_32(ARMV8_A64_REG_X14) \ | RT_BIT_32(ARMV8_A64_REG_X15) \ | RT_BIT_32(ARMV8_A64_REG_X16) \ | RT_BIT_32(ARMV8_A64_REG_X17) ) #endif /** @} */ /** @def IEMNATIVE_HST_GREG_COUNT * Number of host general purpose registers we tracker. */ /** @def IEMNATIVE_HST_GREG_MASK * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to * inverted register masks and such to get down to a correct set of regs. */ #ifdef RT_ARCH_AMD64 # define IEMNATIVE_HST_GREG_COUNT 16 # define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff) #elif defined(RT_ARCH_ARM64) # define IEMNATIVE_HST_GREG_COUNT 32 # define IEMNATIVE_HST_GREG_MASK UINT32_MAX #else # error "Port me!" #endif /** Native code generator label types. */ typedef enum { kIemNativeLabelType_Invalid = 0, /* Labels w/o data, only once instance per TB: */ kIemNativeLabelType_Return, kIemNativeLabelType_ReturnBreak, kIemNativeLabelType_ReturnWithFlags, kIemNativeLabelType_NonZeroRetOrPassUp, kIemNativeLabelType_RaiseGp0, /* Labels with data, potentially multiple instances per TB: */ kIemNativeLabelType_If, kIemNativeLabelType_Else, kIemNativeLabelType_Endif, kIemNativeLabelType_CheckIrq, kIemNativeLabelType_End } IEMNATIVELABELTYPE; /** Native code generator label definition. */ typedef struct IEMNATIVELABEL { /** Code offset if defined, UINT32_MAX if it needs to be generated after/in * the epilog. */ uint32_t off; /** The type of label (IEMNATIVELABELTYPE). */ uint16_t enmType; /** Additional label data, type specific. */ uint16_t uData; } IEMNATIVELABEL; /** Pointer to a label. */ typedef IEMNATIVELABEL *PIEMNATIVELABEL; /** Native code generator fixup types. */ typedef enum { kIemNativeFixupType_Invalid = 0, #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) /** AMD64 fixup: PC relative 32-bit with addend in bData. */ kIemNativeFixupType_Rel32, #elif defined(RT_ARCH_ARM64) /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B, B.CC). */ kIemNativeFixupType_RelImm19At5, /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */ kIemNativeFixupType_RelImm14At5, #endif kIemNativeFixupType_End } IEMNATIVEFIXUPTYPE; /** Native code generator fixup. */ typedef struct IEMNATIVEFIXUP { /** Code offset of the fixup location. */ uint32_t off; /** The IEMNATIVELABEL this is a fixup for. */ uint16_t idxLabel; /** The fixup type (IEMNATIVEFIXUPTYPE). */ uint8_t enmType; /** Addend or other data. */ int8_t offAddend; } IEMNATIVEFIXUP; /** Pointer to a native code generator fixup. */ typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP; /** * Guest registers that can be shadowed in GPRs. */ typedef enum IEMNATIVEGSTREG : uint8_t { kIemNativeGstReg_GprFirst = 0, kIemNativeGstReg_GprLast = 15, kIemNativeGstReg_Pc, kIemNativeGstReg_EFlags, /**< This one is problematic since the higher bits are used internally. */ /* gap: 18..23 */ kIemNativeGstReg_SegSelFirst = 24, kIemNativeGstReg_SegSelLast = 29, kIemNativeGstReg_SegBaseFirst = 30, kIemNativeGstReg_SegBaseLast = 35, kIemNativeGstReg_SegLimitFirst = 36, kIemNativeGstReg_SegLimitLast = 41, kIemNativeGstReg_End } IEMNATIVEGSTREG; /** * Intended use statement for iemNativeRegAllocTmpForGuestReg(). */ typedef enum IEMNATIVEGSTREGUSE { /** The usage is read-only, the register holding the guest register * shadow copy will not be modified by the caller. */ kIemNativeGstRegUse_ReadOnly = 0, /** The caller will update the guest register (think: PC += cbInstr). * The guest shadow copy will follow the returned register. */ kIemNativeGstRegUse_ForUpdate, /** The caller will use the guest register value as input in a calculation * and the host register will be modified. * This means that the returned host register will not be marked as a shadow * copy of the guest register. */ kIemNativeGstRegUse_Calculation } IEMNATIVEGSTREGUSE; /** * Guest registers (classes) that can be referenced. */ typedef enum IEMNATIVEGSTREGREF : uint8_t { kIemNativeGstRegRef_Invalid = 0, kIemNativeGstRegRef_Gpr, kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/ kIemNativeGstRegRef_EFlags, kIemNativeGstRegRef_MxCsr, kIemNativeGstRegRef_FpuReg, kIemNativeGstRegRef_MReg, kIemNativeGstRegRef_XReg, kIemNativeGstRegRef_YReg, kIemNativeGstRegRef_End } IEMNATIVEGSTREGREF; /** Variable kinds. */ typedef enum IEMNATIVEVARKIND : uint8_t { /** Customary invalid zero value. */ kIemNativeVarKind_Invalid = 0, /** This is either in a register or on the stack. */ kIemNativeVarKind_Stack, /** Immediate value - loaded into register when needed, or can live on the * stack if referenced (in theory). */ kIemNativeVarKind_Immediate, /** Variable reference - loaded into register when needed, never stack. */ kIemNativeVarKind_VarRef, /** Guest register reference - loaded into register when needed, never stack. */ kIemNativeVarKind_GstRegRef, /** End of valid values. */ kIemNativeVarKind_End } IEMNATIVEVARKIND; /** Variable or argument. */ typedef struct IEMNATIVEVAR { /** The kind of variable. */ IEMNATIVEVARKIND enmKind; /** The variable size in bytes. */ uint8_t cbVar; /** The first stack slot (uint64_t), except for immediate and references * where it usually is UINT8_MAX. */ uint8_t idxStackSlot; /** The host register allocated for the variable, UINT8_MAX if not. */ uint8_t idxReg; /** The argument number if argument, UINT8_MAX if regular variable. */ uint8_t uArgNo; /** If referenced, the index of the variable referencing this one, otherwise * UINT8_MAX. A referenced variable must only be placed on the stack and * must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */ uint8_t idxReferrerVar; /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not. */ IEMNATIVEGSTREG enmGstReg; uint8_t bAlign; union { /** kIemNativeVarKind_Immediate: The immediate value. */ uint64_t uValue; /** kIemNativeVarKind_VarRef: The index of the variable being referenced. */ uint8_t idxRefVar; /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */ struct { /** The class of register. */ IEMNATIVEGSTREGREF enmClass; /** Index within the class. */ uint8_t idx; } GstRegRef; } u; } IEMNATIVEVAR; /** What is being kept in a host register. */ typedef enum IEMNATIVEWHAT : uint8_t { /** The traditional invalid zero value. */ kIemNativeWhat_Invalid = 0, /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */ kIemNativeWhat_Var, /** Temporary register, this is typically freed when a MC completes. */ kIemNativeWhat_Tmp, /** Call argument w/o a variable mapping. This is free (via * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */ kIemNativeWhat_Arg, /** Return status code. * @todo not sure if we need this... */ kIemNativeWhat_rc, /** The fixed pVCpu (PVMCPUCC) register. * @todo consider offsetting this on amd64 to use negative offsets to access * more members using 8-byte disp. */ kIemNativeWhat_pVCpuFixed, /** The fixed pCtx (PCPUMCTX) register. * @todo consider offsetting this on amd64 to use negative offsets to access * more members using 8-byte disp. */ kIemNativeWhat_pCtxFixed, /** Fixed temporary register. */ kIemNativeWhat_FixedTmp, /** Register reserved by the CPU or OS architecture. */ kIemNativeWhat_FixedReserved, /** End of valid values. */ kIemNativeWhat_End } IEMNATIVEWHAT; /** * Host general register entry. * * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs. * * @todo Track immediate values in host registers similarlly to how we track the * guest register shadow copies. For it to be real helpful, though, * we probably need to know which will be reused and put them into * non-volatile registers, otherwise it's going to be more or less * restricted to an instruction or two. */ typedef struct IEMNATIVEHSTREG { /** Set of guest registers this one shadows. * * Using a bitmap here so we can designate the same host register as a copy * for more than one guest register. This is expected to be useful in * situations where one value is copied to several registers in a sequence. * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST' * sequence we'd want to let this register follow to be a copy of and there * will always be places where we'd be picking the wrong one. */ uint64_t fGstRegShadows; /** What is being kept in this register. */ IEMNATIVEWHAT enmWhat; /** Variable index if holding a variable, otherwise UINT8_MAX. */ uint8_t idxVar; /** Alignment padding. */ uint8_t abAlign[6]; } IEMNATIVEHSTREG; /** * Core state for the native recompiler, that is, things that needs careful * handling when dealing with branches. */ typedef struct IEMNATIVECORESTATE { /** Allocation bitmap for aHstRegs. */ uint32_t bmHstRegs; /** Bitmap marking which host register contains guest register shadow copies. * This is used during register allocation to try preserve copies. */ uint32_t bmHstRegsWithGstShadow; /** Bitmap marking valid entries in aidxGstRegShadows. */ uint64_t bmGstRegShadows; union { /** Index of variable arguments, UINT8_MAX if not valid. */ uint8_t aidxArgVars[8]; /** For more efficient resetting. */ uint64_t u64ArgVars; }; /** Allocation bitmap for aVars. */ uint32_t bmVars; /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG). * Entries are only valid if the corresponding bit in bmGstRegShadows is set. * (A shadow copy of a guest register can only be held in a one host register, * there are no duplicate copies or ambiguities like that). */ uint8_t aidxGstRegShadows[kIemNativeGstReg_End]; /** Host register allocation tracking. */ IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT]; /** Variables and arguments. */ IEMNATIVEVAR aVars[9]; } IEMNATIVECORESTATE; /** Pointer to core state. */ typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE; /** Pointer to const core state. */ typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE; /** * Conditional stack entry. */ typedef struct IEMNATIVECOND { /** Set if we're in the "else" part, clear if we're in the "if" before it. */ bool fInElse; /** The label for the IEM_MC_ELSE. */ uint32_t idxLabelElse; /** The label for the IEM_MC_ENDIF. */ uint32_t idxLabelEndIf; /** The initial state snapshot as the if-block starts executing. */ IEMNATIVECORESTATE InitialState; /** The state snapshot at the end of the if-block. */ IEMNATIVECORESTATE IfFinalState; } IEMNATIVECOND; /** Pointer to a condition stack entry. */ typedef IEMNATIVECOND *PIEMNATIVECOND; /** * Native recompiler state. */ typedef struct IEMRECOMPILERSTATE { /** Size of the buffer that pbNativeRecompileBufR3 points to in * IEMNATIVEINSTR units. */ uint32_t cInstrBufAlloc; #ifdef VBOX_STRICT /** Strict: How far the last iemNativeInstrBufEnsure() checked. */ uint32_t offInstrBufChecked; #else uint32_t uPadding1; /* We don't keep track of the size here... */ #endif /** Fixed temporary code buffer for native recompilation. */ PIEMNATIVEINSTR pInstrBuf; /** Bitmaps with the label types used. */ uint64_t bmLabelTypes; /** Actual number of labels in paLabels. */ uint32_t cLabels; /** Max number of entries allowed in paLabels before reallocating it. */ uint32_t cLabelsAlloc; /** Labels defined while recompiling (referenced by fixups). */ PIEMNATIVELABEL paLabels; /** Actual number of fixups paFixups. */ uint32_t cFixups; /** Max number of entries allowed in paFixups before reallocating it. */ uint32_t cFixupsAlloc; /** Buffer used by the recompiler for recording fixups when generating code. */ PIEMNATIVEFIXUP paFixups; #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO /** Number of debug info entries allocated for pDbgInfo. */ uint32_t cDbgInfoAlloc; uint32_t uPadding; /** Debug info. */ PIEMTBDBG pDbgInfo; #endif /** The translation block being recompiled. */ PCIEMTB pTbOrg; /** The current condition stack depth (aCondStack). */ uint8_t cCondDepth; uint8_t bPadding2; /** Condition sequence number (for generating unique labels). */ uint16_t uCondSeqNo; /** Check IRQ seqeunce number (for generating unique lables). */ uint16_t uCheckIrqSeqNo; uint16_t uPadding3; /** Core state requiring care with branches. */ IEMNATIVECORESTATE Core; /** The condition nesting stack. */ IEMNATIVECOND aCondStack[2]; #ifndef IEM_WITH_THROW_CATCH /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions * for recompilation error handling. */ jmp_buf JmpBuf; #endif } IEMRECOMPILERSTATE; /** Pointer to a native recompiler state. */ typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE; /** @def IEMNATIVE_TRY_SETJMP * Wrapper around setjmp / try, hiding all the ugly differences. * * @note Use with extreme care as this is a fragile macro. * @param a_pReNative The native recompile state. * @param a_rcTarget The variable that should receive the status code in case * of a longjmp/throw. */ /** @def IEMNATIVE_CATCH_LONGJMP_BEGIN * Start wrapper for catch / setjmp-else. * * This will set up a scope. * * @note Use with extreme care as this is a fragile macro. * @param a_pReNative The native recompile state. * @param a_rcTarget The variable that should receive the status code in case * of a longjmp/throw. */ /** @def IEMNATIVE_CATCH_LONGJMP_END * End wrapper for catch / setjmp-else. * * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean * up the state. * * @note Use with extreme care as this is a fragile macro. * @param a_pReNative The native recompile state. */ /** @def IEMNATIVE_DO_LONGJMP * * Wrapper around longjmp / throw. * * @param a_pReNative The native recompile state. * @param a_rc The status code jump back with / throw. */ #ifdef IEM_WITH_THROW_CATCH # define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \ a_rcTarget = VINF_SUCCESS; \ try # define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \ catch (int rcThrown) \ { \ a_rcTarget = rcThrown # define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \ } \ ((void)0) # define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc) #else /* !IEM_WITH_THROW_CATCH */ # define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \ if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0) # define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \ else \ { \ ((void)0) # define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \ } # define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc)) #endif /* !IEM_WITH_THROW_CATCH */ /** * Native recompiler worker for a threaded function. * * @returns New code buffer offset; throws VBox status code in case of a failure. * @param pReNative The native recompiler state. * @param off The current code buffer offset. * @param pCallEntry The threaded call entry. * * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT! */ typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry); /** Pointer to a native recompiler worker for a threaded function. */ typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC; /** Defines a native recompiler worker for a threaded function. * @see FNIEMNATIVERECOMPFUNC */ #define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \ uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry) /** Prototypes a native recompiler function for a threaded function. * @see FNIEMNATIVERECOMPFUNC */ #define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType, uint32_t offWhere = UINT32_MAX, uint16_t uData = 0); DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere); DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel, IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0); DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm, bool fPreferVolatile = true); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg, IEMNATIVEGSTREGUSE enmIntendedUse); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocVar(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t idxVar); DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg); DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT; DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT; DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT; DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT; DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr); /** * Ensures that there is sufficient space in the instruction output buffer. * * This will reallocate the buffer if needed and allowed. * * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the * allocation size. * * @returns Pointer to the instruction output buffer on success; throws VBox * status code on failure, so no need to check it. * @param pReNative The native recompile state. * @param off Current instruction offset. Works safely for UINT32_MAX * as well. * @param cInstrReq Number of instruction about to be added. It's okay to * overestimate this a bit. */ DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq) { uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */ if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc)) { #ifdef VBOX_STRICT pReNative->offInstrBufChecked = offChecked; #endif return pReNative->pInstrBuf; } return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq); } /** * Checks that we didn't exceed the space requested in the last * iemNativeInstrBufEnsure() call. */ #define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \ AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \ ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked)) /** * Emit a simple marker instruction to more easily tell where something starts * in the disassembly. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitMarker(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t uInfo) { #ifdef RT_ARCH_AMD64 uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (uInfo == 0) { /* nop */ pbCodeBuf[off++] = 0x90; } else { /* nop [disp32] */ pbCodeBuf[off++] = 0x0f; pbCodeBuf[off++] = 0x1f; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM0, 0, 5); pbCodeBuf[off++] = RT_BYTE1(uInfo); pbCodeBuf[off++] = RT_BYTE2(uInfo); pbCodeBuf[off++] = RT_BYTE3(uInfo); pbCodeBuf[off++] = RT_BYTE4(uInfo); } #elif RT_ARCH_ARM64 /* nop */ uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = 0xd503201f; RT_NOREF(uInfo); #else # error "port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /********************************************************************************************************************************* * Loads, Stores and Related Stuff. * *********************************************************************************************************************************/ /** * Emits setting a GPR to zero. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitGprZero(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr) { #ifdef RT_ARCH_AMD64 /* xor gpr32, gpr32 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); if (iGpr >= 8) pbCodeBuf[off++] = X86_OP_REX_R | X86_OP_REX_B; pbCodeBuf[off++] = 0x33; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGpr & 7, iGpr & 7); #elif RT_ARCH_ARM64 /* mov gpr, #0x0 */ uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = UINT32_C(0xd2800000) | iGpr; #else # error "port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits loading a constant into a 64-bit GPR */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGprImm64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr, uint64_t uImm64) { if (!uImm64) return iemNativeEmitGprZero(pReNative, off, iGpr); #ifdef RT_ARCH_AMD64 if (uImm64 <= UINT32_MAX) { /* mov gpr, imm32 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 6); if (iGpr >= 8) pbCodeBuf[off++] = X86_OP_REX_B; pbCodeBuf[off++] = 0xb8 + (iGpr & 7); pbCodeBuf[off++] = RT_BYTE1(uImm64); pbCodeBuf[off++] = RT_BYTE2(uImm64); pbCodeBuf[off++] = RT_BYTE3(uImm64); pbCodeBuf[off++] = RT_BYTE4(uImm64); } else { /* mov gpr, imm64 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 10); if (iGpr < 8) pbCodeBuf[off++] = X86_OP_REX_W; else pbCodeBuf[off++] = X86_OP_REX_W | X86_OP_REX_B; pbCodeBuf[off++] = 0xb8 + (iGpr & 7); pbCodeBuf[off++] = RT_BYTE1(uImm64); pbCodeBuf[off++] = RT_BYTE2(uImm64); pbCodeBuf[off++] = RT_BYTE3(uImm64); pbCodeBuf[off++] = RT_BYTE4(uImm64); pbCodeBuf[off++] = RT_BYTE5(uImm64); pbCodeBuf[off++] = RT_BYTE6(uImm64); pbCodeBuf[off++] = RT_BYTE7(uImm64); pbCodeBuf[off++] = RT_BYTE8(uImm64); } #elif RT_ARCH_ARM64 uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4); /* * We need to start this sequence with a 'mov grp, imm16, lsl #x' and * supply remaining bits using 'movk grp, imm16, lsl #x'. * * The mov instruction is encoded 0xd2800000 + shift + imm16 + grp, * while the movk is 0xf2800000 + shift + imm16 + grp, meaning the diff * is 0x20000000 (bit 29). So, we keep this bit in a variable and set it * after the first non-zero immediate component so we switch to movk for * the remainder. */ uint32_t fMovK = 0; /* mov gpr, imm16 */ uint32_t uImmPart = ((uint32_t)((uImm64 >> 0) & UINT32_C(0xffff)) << 5); if (uImmPart) { pu32CodeBuf[off++] = UINT32_C(0xd2800000) | (UINT32_C(0) << 21) | uImmPart | iGpr; fMovK |= RT_BIT_32(29); } /* mov[k] gpr, imm16, lsl #16 */ uImmPart = ((uint32_t)((uImm64 >> 16) & UINT32_C(0xffff)) << 5); if (uImmPart) { pu32CodeBuf[off++] = UINT32_C(0xd2800000) | fMovK | (UINT32_C(1) << 21) | uImmPart | iGpr; fMovK |= RT_BIT_32(29); } /* mov[k] gpr, imm16, lsl #32 */ uImmPart = ((uint32_t)((uImm64 >> 32) & UINT32_C(0xffff)) << 5); if (uImmPart) { pu32CodeBuf[off++] = UINT32_C(0xd2800000) | fMovK | (UINT32_C(2) << 21) | uImmPart | iGpr; fMovK |= RT_BIT_32(29); } /* mov[k] gpr, imm16, lsl #48 */ uImmPart = ((uint32_t)((uImm64 >> 48) & UINT32_C(0xffff)) << 5); if (uImmPart) pu32CodeBuf[off++] = UINT32_C(0xd2800000) | fMovK | (UINT32_C(3) << 21) | uImmPart | iGpr; /** @todo there is an inverted mask variant we might want to explore if it * reduces the number of instructions... */ /** @todo load into 'w' register instead of 'x' when imm64 <= UINT32_MAX? * clang 12.x does that, only to use the 'x' version for the * addressing in the following ldr). */ #else # error "port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits loading a constant into a 8-bit GPR * @note The AMD64 version does *NOT* clear any bits in the 8..63 range, * only the ARM64 version does that. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGpr8Imm(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr, uint8_t uImm8) { #ifdef RT_ARCH_AMD64 /* mov gpr, imm8 */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); if (iGpr >= 8) pbCodeBuf[off++] = X86_OP_REX_B; else if (iGpr >= 4) pbCodeBuf[off++] = X86_OP_REX; pbCodeBuf[off++] = 0xb0 + (iGpr & 7); pbCodeBuf[off++] = RT_BYTE1(uImm8); #elif RT_ARCH_ARM64 /* movz gpr, imm16, lsl #0 */ uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = UINT32_C(0xd2800000) | (UINT32_C(0) << 21) | ((uint32_t)uImm8 << 5) | iGpr; #else # error "port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } #ifdef RT_ARCH_AMD64 /** * Common bit of iemNativeEmitLoadGprFromVCpuU64 and friends. */ DECL_FORCE_INLINE(uint32_t) iemNativeEmitGprByVCpuDisp(uint8_t *pbCodeBuf, uint32_t off, uint8_t iGprReg, uint32_t offVCpu) { if (offVCpu < 128) { pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM1, iGprReg & 7, IEMNATIVE_REG_FIXED_PVMCPU); pbCodeBuf[off++] = (uint8_t)(int8_t)offVCpu; } else { pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM4, iGprReg & 7, IEMNATIVE_REG_FIXED_PVMCPU); pbCodeBuf[off++] = RT_BYTE1((uint32_t)offVCpu); pbCodeBuf[off++] = RT_BYTE2((uint32_t)offVCpu); pbCodeBuf[off++] = RT_BYTE3((uint32_t)offVCpu); pbCodeBuf[off++] = RT_BYTE4((uint32_t)offVCpu); } return off; } #elif RT_ARCH_ARM64 /** * Common bit of iemNativeEmitLoadGprFromVCpuU64 and friends. */ DECL_FORCE_INLINE_THROW(uint32_t) iemNativeEmitGprByVCpuLdSt(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprReg, uint32_t offVCpu, ARMV8A64INSTRLDSTTYPE enmOperation, unsigned cbData) { /* * There are a couple of ldr variants that takes an immediate offset, so * try use those if we can, otherwise we have to use the temporary register * help with the addressing. */ if (offVCpu < _4K * cbData && !(offVCpu & (cbData - 1))) { /* Use the unsigned variant of ldr Wt, [, #off]. */ uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrStLdRUOff(enmOperation, iGpr, IEMNATIVE_REG_FIXED_PVMCPU, offVCpu / cbData); } else if (offVCpu - RT_UOFFSETOF(VMCPU, cpum.GstCtx) < (unsigned)(_4K * cbData) && !(offVCpu & (cbData - 1))) { uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrStLdRUOff(enmOperation, iGpr, IEMNATIVE_REG_FIXED_PCPUMCTX, (offVCpu - RT_UOFFSETOF(VMCPU, cpum.GstCtx)) / cbData); } else { /* The offset is too large, so we must load it into a register and use ldr Wt, [, (|)]. */ /** @todo reduce by offVCpu by >> 3 or >> 2? if it saves instructions? */ off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_REG_FIXED_TMP0, offVCpu); uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrStLdRegIdx(enmOperation, iGpr, IEMNATIVE_REG_FIXED_PVMCPU, IEMNATIVE_REG_FIXED_TMP); } IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } #endif /** * Emits a 64-bit GPR load of a VCpu value. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGprFromVCpuU64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr, uint32_t offVCpu) { #ifdef RT_ARCH_AMD64 /* mov reg64, mem64 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGpr < 8) pbCodeBuf[off++] = X86_OP_REX_W; else pbCodeBuf[off++] = X86_OP_REX_W | X86_OP_REX_R; pbCodeBuf[off++] = 0x8b; off = iemNativeEmitGprByVCpuDisp(pbCodeBuf, off,iGpr, offVCpu); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif RT_ARCH_ARM64 off = iemNativeEmitGprByVCpuLdSt(pReNative, off, iGpr, offVCpu, kArmv8A64InstrLdStType_Ld_Dword, sizeof(uint64_t)); #else # error "port me" #endif return off; } /** * Emits a 32-bit GPR load of a VCpu value. * @note Bits 32 thru 63 in the GPR will be zero after the operation. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGprFromVCpuU32(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr, uint32_t offVCpu) { #ifdef RT_ARCH_AMD64 /* mov reg32, mem32 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGpr >= 8) pbCodeBuf[off++] = X86_OP_REX_R; pbCodeBuf[off++] = 0x8b; off = iemNativeEmitGprByVCpuDisp(pbCodeBuf, off, iGpr, offVCpu); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif RT_ARCH_ARM64 off = iemNativeEmitGprByVCpuLdSt(pReNative, off, iGpr, offVCpu, kArmv8A64InstrLdStType_Ld_Word, sizeof(uint32_t)); #else # error "port me" #endif return off; } /** * Emits a 16-bit GPR load of a VCpu value. * @note Bits 16 thru 63 in the GPR will be zero after the operation. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGprFromVCpuU16(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr, uint32_t offVCpu) { #ifdef RT_ARCH_AMD64 /* movzx reg32, mem16 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8); if (iGpr >= 8) pbCodeBuf[off++] = X86_OP_REX_R; pbCodeBuf[off++] = 0x0f; pbCodeBuf[off++] = 0xb7; off = iemNativeEmitGprByVCpuDisp(pbCodeBuf, off, iGpr, offVCpu); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif RT_ARCH_ARM64 off = iemNativeEmitGprByVCpuLdSt(pReNative, off, iGpr, offVCpu, kArmv8A64InstrLdStType_Ld_Half, sizeof(uint16_t)); #else # error "port me" #endif return off; } /** * Emits a 8-bit GPR load of a VCpu value. * @note Bits 8 thru 63 in the GPR will be zero after the operation. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGprFromVCpuU8(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr, uint32_t offVCpu) { #ifdef RT_ARCH_AMD64 /* movzx reg32, mem8 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8); if (iGpr >= 8) pbCodeBuf[off++] = X86_OP_REX_R; pbCodeBuf[off++] = 0x0f; pbCodeBuf[off++] = 0xb6; off = iemNativeEmitGprByVCpuDisp(pbCodeBuf, off, iGpr, offVCpu); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif RT_ARCH_ARM64 off = iemNativeEmitGprByVCpuLdSt(pReNative, off, iGpr, offVCpu, kArmv8A64InstrLdStType_Ld_Byte, sizeof(uint8_t)); #else # error "port me" #endif return off; } /** * Emits a store of a GPR value to a 64-bit VCpu field. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitStoreGprToVCpuU64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr, uint32_t offVCpu) { #ifdef RT_ARCH_AMD64 /* mov mem64, reg64 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGpr < 8) pbCodeBuf[off++] = X86_OP_REX_W; else pbCodeBuf[off++] = X86_OP_REX_W | X86_OP_REX_R; pbCodeBuf[off++] = 0x89; off = iemNativeEmitGprByVCpuDisp(pbCodeBuf,off,iGpr, offVCpu); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif RT_ARCH_ARM64 off = iemNativeEmitGprByVCpuLdSt(pReNative, off, iGpr, offVCpu, kArmv8A64InstrLdStType_St_Dword, sizeof(uint64_t)); #else # error "port me" #endif return off; } /** * Emits a store of a GPR value to a 32-bit VCpu field. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitStoreGprToVCpuU32(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr, uint32_t offVCpu) { #ifdef RT_ARCH_AMD64 /* mov mem32, reg32 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGpr >= 8) pbCodeBuf[off++] = X86_OP_REX_R; pbCodeBuf[off++] = 0x89; off = iemNativeEmitGprByVCpuDisp(pbCodeBuf, off, iGpr, offVCpu); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif RT_ARCH_ARM64 off = iemNativeEmitGprByVCpuLdSt(pReNative, off, iGpr, offVCpu, kArmv8A64InstrLdStType_St_Word, sizeof(uint32_t)); #else # error "port me" #endif return off; } /** * Emits a store of a GPR value to a 16-bit VCpu field. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitStoreGprToVCpuU16(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr, uint32_t offVCpu) { #ifdef RT_ARCH_AMD64 /* mov mem16, reg16 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8); pbCodeBuf[off++] = X86_OP_PRF_SIZE_OP; if (iGpr >= 8) pbCodeBuf[off++] = X86_OP_REX_R; pbCodeBuf[off++] = 0x89; off = iemNativeEmitGprByVCpuDisp(pbCodeBuf, off, iGpr, offVCpu); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif RT_ARCH_ARM64 off = iemNativeEmitGprByVCpuLdSt(pReNative, off, iGpr, offVCpu, kArmv8A64InstrLdStType_St_Half, sizeof(uint16_t)); #else # error "port me" #endif return off; } /** * Emits a store of a GPR value to a 8-bit VCpu field. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitStoreGprToVCpuU8(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGpr, uint32_t offVCpu) { #ifdef RT_ARCH_AMD64 /* mov mem8, reg8 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGpr >= 8) pbCodeBuf[off++] = X86_OP_REX_R; pbCodeBuf[off++] = 0x88; off = iemNativeEmitGprByVCpuDisp(pbCodeBuf, off, iGpr, offVCpu); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif RT_ARCH_ARM64 off = iemNativeEmitGprByVCpuLdSt(pReNative, off, iGpr, offVCpu, kArmv8A64InstrLdStType_St_Byte, sizeof(uint8_t)); #else # error "port me" #endif return off; } /** * Emits a gprdst = gprsrc load. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGprFromGpr(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t iGprSrc) { #ifdef RT_ARCH_AMD64 /* mov gprdst, gprsrc */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); if ((iGprDst | iGprSrc) >= 8) pbCodeBuf[off++] = iGprDst < 8 ? X86_OP_REX_W | X86_OP_REX_B : iGprSrc >= 8 ? X86_OP_REX_W | X86_OP_REX_R | X86_OP_REX_B : X86_OP_REX_W | X86_OP_REX_R; else pbCodeBuf[off++] = X86_OP_REX_W; pbCodeBuf[off++] = 0x8b; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprDst & 7, iGprSrc & 7); #elif RT_ARCH_ARM64 /* mov dst, src; alias for: orr dst, xzr, src */ uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = UINT32_C(0xaa000000) | ((uint32_t)iGprSrc << 16) | ((uint32_t)ARMV8_A64_REG_XZR << 5) | iGprDst; #else # error "port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } #ifdef RT_ARCH_AMD64 /** * Common bit of iemNativeEmitLoadGprByBp and friends. */ DECL_FORCE_INLINE(uint32_t) iemNativeEmitGprByBpDisp(uint8_t *pbCodeBuf, uint32_t off, uint8_t iGprReg, int32_t offDisp, PIEMRECOMPILERSTATE pReNativeAssert) { if (offDisp < 128 && offDisp >= -128) { pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM1, iGprReg & 7, X86_GREG_xBP); pbCodeBuf[off++] = (uint8_t)(int8_t)offDisp; } else { pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM4, iGprReg & 7, X86_GREG_xBP); pbCodeBuf[off++] = RT_BYTE1((uint32_t)offDisp); pbCodeBuf[off++] = RT_BYTE2((uint32_t)offDisp); pbCodeBuf[off++] = RT_BYTE3((uint32_t)offDisp); pbCodeBuf[off++] = RT_BYTE4((uint32_t)offDisp); } IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNativeAssert, off); RT_NOREF(pReNativeAssert); return off; } #endif #ifdef RT_ARCH_AMD64 /** * Emits a 64-bit GRP load instruction with an BP relative source address. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGprByBp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, int32_t offDisp) { /* mov gprdst, qword [rbp + offDisp] */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGprDst < 8) pbCodeBuf[off++] = X86_OP_REX_W; else pbCodeBuf[off++] = X86_OP_REX_W | X86_OP_REX_R; pbCodeBuf[off++] = 0x8b; return iemNativeEmitGprByBpDisp(pbCodeBuf, off, iGprDst, offDisp, pReNative); } #endif #ifdef RT_ARCH_AMD64 /** * Emits a 32-bit GRP load instruction with an BP relative source address. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGprByBpU32(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, int32_t offDisp) { /* mov gprdst, dword [rbp + offDisp] */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGprDst >= 8) pbCodeBuf[off++] = X86_OP_REX_R; pbCodeBuf[off++] = 0x8b; return iemNativeEmitGprByBpDisp(pbCodeBuf, off, iGprDst, offDisp, pReNative); } #endif #ifdef RT_ARCH_AMD64 /** * Emits a load effective address to a GRP with an BP relative source address. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLeaGprByBp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, int32_t offDisp) { /* lea gprdst, [rbp + offDisp] */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGprDst < 8) pbCodeBuf[off++] = X86_OP_REX_W; else pbCodeBuf[off++] = X86_OP_REX_W | X86_OP_REX_R; pbCodeBuf[off++] = 0x8d; return iemNativeEmitGprByBpDisp(pbCodeBuf, off, iGprDst, offDisp, pReNative); } #endif /** * Emits a 64-bit GPR store with an BP relative destination address. * * @note May trash IEMNATIVE_REG_FIXED_TMP0. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitStoreGprByBp(PIEMRECOMPILERSTATE pReNative, uint32_t off, int32_t offDisp, uint8_t iGprSrc) { #ifdef RT_ARCH_AMD64 /* mov qword [rbp + offDisp], gprdst */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGprSrc < 8) pbCodeBuf[off++] = X86_OP_REX_W; else pbCodeBuf[off++] = X86_OP_REX_W | X86_OP_REX_R; pbCodeBuf[off++] = 0x89; return iemNativeEmitGprByBpDisp(pbCodeBuf, off, iGprSrc, offDisp, pReNative); #elif defined(RT_ARCH_ARM64) if (offDisp >= 0 && offDisp < 4096 * 8 && !((uint32_t)offDisp & 7)) { /* str w/ unsigned imm12 (scaled) */ uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrStLdRUOff(kArmv8A64InstrLdStType_St_Dword, iGprSrc, ARMV8_A64_REG_BP, (uint32_t)offDisp / 8); } else if (offDisp >= -256 && offDisp <= 256) { /* stur w/ signed imm9 (unscaled) */ uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrSturLdur(kArmv8A64InstrLdStType_St_Dword, iGprSrc, ARMV8_A64_REG_BP, offDisp); } else { /* Use temporary indexing register. */ off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_REG_FIXED_TMP0, (uint32_t)offDisp); uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrStLdRegIdx(kArmv8A64InstrLdStType_St_Dword, iGprSrc, ARMV8_A64_REG_BP, IEMNATIVE_REG_FIXED_TMP0, kArmv8A64InstrLdStExtend_Sxtw); } IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; #else # error "Port me!" #endif } /** * Emits a 64-bit immediate store with an BP relative destination address. * * @note May trash IEMNATIVE_REG_FIXED_TMP0. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitStoreImm64ByBp(PIEMRECOMPILERSTATE pReNative, uint32_t off, int32_t offDisp, uint64_t uImm64) { #ifdef RT_ARCH_AMD64 if ((int64_t)uImm64 == (int32_t)uImm64) { /* mov qword [rbp + offDisp], imm32 - sign extended */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 11); pbCodeBuf[off++] = X86_OP_REX_W; pbCodeBuf[off++] = 0xc7; if (offDisp < 128 && offDisp >= -128) { pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM1, 0, X86_GREG_xBP); pbCodeBuf[off++] = (uint8_t)offDisp; } else { pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM4, 0, X86_GREG_xBP); pbCodeBuf[off++] = RT_BYTE1((uint32_t)offDisp); pbCodeBuf[off++] = RT_BYTE2((uint32_t)offDisp); pbCodeBuf[off++] = RT_BYTE3((uint32_t)offDisp); pbCodeBuf[off++] = RT_BYTE4((uint32_t)offDisp); } pbCodeBuf[off++] = RT_BYTE1(uImm64); pbCodeBuf[off++] = RT_BYTE2(uImm64); pbCodeBuf[off++] = RT_BYTE3(uImm64); pbCodeBuf[off++] = RT_BYTE4(uImm64); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } #endif /* Load tmp0, imm64; Store tmp to bp+disp. */ off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_REG_FIXED_TMP0, uImm64); return iemNativeEmitStoreGprByBp(pReNative, off, offDisp, IEMNATIVE_REG_FIXED_TMP0); } #ifdef RT_ARCH_AMD64 /** * Common bit of iemNativeEmitLoadGprByGpr and friends. */ DECL_FORCE_INLINE(uint32_t) iemNativeEmitGprByGprDisp(uint8_t *pbCodeBuf, uint32_t off, uint8_t iGprReg, uint8_t iGprBase, int32_t offDisp) { if (offDisp == 0 && (iGprBase & 7) != X86_GREG_xBP) /* Can use encoding w/o displacement field. */ { pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM0, iGprReg & 7, iGprBase & 7); if ((iGprBase & 7) == X86_GREG_xSP) /* for RSP/R12 relative addressing we have to use a SIB byte. */ pbCodeBuf[off++] = X86_SIB_MAKE(X86_GREG_xSP, X86_GREG_xSP, 0); /* -> [RSP/R12] */ } else if (offDisp == (int8_t)offDisp) { pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM1, iGprReg & 7, iGprBase & 7); if ((iGprBase & 7) == X86_GREG_xSP) /* for RSP/R12 relative addressing we have to use a SIB byte. */ pbCodeBuf[off++] = X86_SIB_MAKE(X86_GREG_xSP, X86_GREG_xSP, 0); /* -> [RSP/R12] */ pbCodeBuf[off++] = (uint8_t)offDisp; } else { pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM1, iGprReg & 7, iGprBase & 7); if ((iGprBase & 7) == X86_GREG_xSP) /* for RSP/R12 relative addressing we have to use a SIB byte. */ pbCodeBuf[off++] = X86_SIB_MAKE(X86_GREG_xSP, X86_GREG_xSP, 0); /* -> [RSP/R12] */ pbCodeBuf[off++] = RT_BYTE1((uint32_t)offDisp); pbCodeBuf[off++] = RT_BYTE2((uint32_t)offDisp); pbCodeBuf[off++] = RT_BYTE3((uint32_t)offDisp); pbCodeBuf[off++] = RT_BYTE4((uint32_t)offDisp); } return off; } #elif RT_ARCH_ARM64 /** * Common bit of iemNativeEmitLoadGprFromVCpuU64 and friends. */ DECL_FORCE_INLINE_THROW(uint32_t) iemNativeEmitGprByGprLdSt(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprReg, uint8_t iGprBase, int32_t offDisp, ARMV8A64INSTRLDSTTYPE enmOperation, unsigned cbData) { /* * There are a couple of ldr variants that takes an immediate offset, so * try use those if we can, otherwise we have to use the temporary register * help with the addressing. */ if ((uint32_t)offDisp < _4K * cbData && !((uint32_t)offDisp & (cbData - 1))) { /* Use the unsigned variant of ldr Wt, [, #off]. */ uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrStLdRUOff(enmOperation, iGprReg, iGprBase, (uint32_t)offDisp / cbData); } else { /* The offset is too large, so we must load it into a register and use ldr Wt, [, (|)]. */ /** @todo reduce by offVCpu by >> 3 or >> 2? if it saves instructions? */ uint8_t const idxTmpReg = iemNativeRegAllocTmpImm(pReNative, off, (uint64)offDisp); uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrStLdRegIdx(enmOperation, iGprReg, iGprBase, idxTmpReg); iemNativeRegFreeTmpImm(pReNative, idxTmpReg); } IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } #endif /** * Emits a 64-bit GPR load via a GPR base address with a displacement. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGprByGpr(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t iGprBase, int32_t offDisp) { #ifdef RT_ARCH_AMD64 /* mov reg64, mem64 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8); pbCodeBuf[off++] = X86_OP_REX_W | (iGprDst < 8 ? 0 : X86_OP_REX_R) | (iGprBase < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x8b; off = iemNativeEmitGprByGprDisp(pbCodeBuf, off, iGprDst, iGprBase, offDisp); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif RT_ARCH_ARM64 off = iemNativeEmitGprByGprLdSt(pReNative, off, iGprDst, offDisp, kArmv8A64InstrLdStType_Ld_Dword, sizeof(uint64_t)); #else # error "port me" #endif return off; } /** * Emits a 32-bit GPR load via a GPR base address with a displacement. * @note Bits 63 thru 32 in @a iGprDst will be cleared. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitLoadGpr32ByGpr(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t iGprBase, int32_t offDisp) { #ifdef RT_ARCH_AMD64 /* mov reg32, mem32 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8); if (iGprDst >= 8 || iGprBase >= 8) pbCodeBuf[off++] = (iGprDst < 8 ? 0 : X86_OP_REX_R) | (iGprBase < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x8b; off = iemNativeEmitGprByGprDisp(pbCodeBuf, off, iGprDst, iGprBase, offDisp); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif RT_ARCH_ARM64 off = iemNativeEmitGprByGprLdSt(pReNative, off, iGprDst, offDisp, kArmv8A64InstrLdStType_Ld_Word, sizeof(uint32_t)); #else # error "port me" #endif return off; } /********************************************************************************************************************************* * Subtraction and Additions * *********************************************************************************************************************************/ #ifdef RT_ARCH_AMD64 /** * Emits a 64-bit GPR subtract with a signed immediate subtrahend. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitSubGprImm(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, int32_t iSubtrahend) { /* sub gprdst, imm8/imm32 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGprDst < 8) pbCodeBuf[off++] = X86_OP_REX_W; else pbCodeBuf[off++] = X86_OP_REX_W | X86_OP_REX_B; if (iSubtrahend < 128 && iSubtrahend >= -128) { pbCodeBuf[off++] = 0x83; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, iGprDst & 7); pbCodeBuf[off++] = (uint8_t)iSubtrahend; } else { pbCodeBuf[off++] = 0x81; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, iGprDst & 7); pbCodeBuf[off++] = RT_BYTE1(iSubtrahend); pbCodeBuf[off++] = RT_BYTE2(iSubtrahend); pbCodeBuf[off++] = RT_BYTE3(iSubtrahend); pbCodeBuf[off++] = RT_BYTE4(iSubtrahend); } IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } #endif /** * Emits adding a 64-bit GPR to another, storing the result in the frist. * @note The AMD64 version sets flags. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitAddTwoGprs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t iGprAddend) { #if defined(RT_ARCH_AMD64) /* add Gv,Ev */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); pbCodeBuf[off++] = (iGprDst < 8 ? X86_OP_REX_W : X86_OP_REX_W | X86_OP_REX_R) | (iGprAddend < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x04; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprDst & 7, iGprAddend & 7); #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, iGprDst, iGprDst, iGprAddend); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits a 64-bit GPR additions with a 8-bit signed immediate. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitAddGprImm8(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, int8_t iImm8) { #if defined(RT_ARCH_AMD64) /* add or inc */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4); pbCodeBuf[off++] = iGprDst < 8 ? X86_OP_REX_W : X86_OP_REX_W | X86_OP_REX_B; if (iImm8 != 1) { pbCodeBuf[off++] = 0x83; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, iGprDst & 7); pbCodeBuf[off++] = (uint8_t)iImm8; } else { pbCodeBuf[off++] = 0xff; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, iGprDst & 7); } #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); if (iImm8 >= 0) pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, iGprDst, iGprDst, (uint8_t)iImm8); else pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, iGprDst, iGprDst, (uint8_t)-iImm8); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits a 32-bit GPR additions with a 8-bit signed immediate. * @note Bits 32 thru 63 in the GPR will be zero after the operation. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitAddGpr32Imm8(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, int8_t iImm8) { #if defined(RT_ARCH_AMD64) /* add or inc */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4); if (iGprDst >= 8) pbCodeBuf[off++] = X86_OP_REX_B; if (iImm8 != 1) { pbCodeBuf[off++] = 0x83; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, iGprDst & 7); pbCodeBuf[off++] = (uint8_t)iImm8; } else { pbCodeBuf[off++] = 0xff; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, iGprDst & 7); } #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); if (iImm8 >= 0) pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, iGprDst, iGprDst, (uint8_t)iImm8, false /*f64Bit*/); else pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, iGprDst, iGprDst, (uint8_t)-iImm8, false /*f64Bit*/); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits a 64-bit GPR additions with a 64-bit signed addend. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitAddGprImm(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, int64_t iAddend) { #if defined(RT_ARCH_AMD64) if (iAddend <= INT8_MAX && iAddend >= INT8_MIN) return iemNativeEmitAddGprImm8(pReNative, off, iGprDst, (int8_t)iAddend); if (iAddend <= INT32_MAX && iAddend >= INT32_MIN) { /* add grp, imm32 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); pbCodeBuf[off++] = iGprDst < 8 ? X86_OP_REX_W : X86_OP_REX_W | X86_OP_REX_B; pbCodeBuf[off++] = 0x81; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, iGprDst & 7); pbCodeBuf[off++] = RT_BYTE1((uint32_t)iAddend); pbCodeBuf[off++] = RT_BYTE2((uint32_t)iAddend); pbCodeBuf[off++] = RT_BYTE3((uint32_t)iAddend); pbCodeBuf[off++] = RT_BYTE4((uint32_t)iAddend); } else { /* Best to use a temporary register to deal with this in the simplest way: */ uint8_t iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, (uint64_t)iAddend); /* add dst, tmpreg */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); pbCodeBuf[off++] = (iGprDst < 8 ? X86_OP_REX_W : X86_OP_REX_W | X86_OP_REX_R) | (iTmpReg < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x03; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprDst & 7, iTmpReg & 7); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } #elif defined(RT_ARCH_ARM64) if ((uint64_t)RT_ABS(iAddend) < RT_BIT_32(12)) { uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); if (iAddend >= 0) pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, iGprDst, iGprDst, (uint32_t)iAddend); else pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, iGprDst, iGprDst, (uint32_t)-iAddend); } else { /* Use temporary register for the immediate. */ uint8_t iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, (uint64_t)iAddend); /* add gprdst, gprdst, tmpreg */ uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, iGprDst, iGprDst, iTmpReg); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits a 32-bit GPR additions with a 32-bit signed immediate. * @note Bits 32 thru 63 in the GPR will be zero after the operation. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitAddGpr32Imm(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, int32_t iAddend) { #if defined(RT_ARCH_AMD64) if (iAddend <= INT8_MAX && iAddend >= INT8_MIN) return iemNativeEmitAddGpr32Imm8(pReNative, off, iGprDst, (int8_t)iAddend); /* add grp, imm32 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGprDst >= 8) pbCodeBuf[off++] = X86_OP_REX_B; pbCodeBuf[off++] = 0x81; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, iGprDst & 7); pbCodeBuf[off++] = RT_BYTE1((uint32_t)iAddend); pbCodeBuf[off++] = RT_BYTE2((uint32_t)iAddend); pbCodeBuf[off++] = RT_BYTE3((uint32_t)iAddend); pbCodeBuf[off++] = RT_BYTE4((uint32_t)iAddend); #elif defined(RT_ARCH_ARM64) if ((uint64_t)RT_ABS(iAddend) < RT_BIT_32(12)) { uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); if (iAddend >= 0) pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, iGprDst, iGprDst, (uint32_t)iAddend, false /*f64Bit*/); else pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, iGprDst, iGprDst, (uint32_t)-iAddend, false /*f64Bit*/); } else { /* Use temporary register for the immediate. */ uint8_t iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, (uint32_t)iAddend); /* add gprdst, gprdst, tmpreg */ uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, iGprDst, iGprDst, iTmpReg, false /*f64Bit*/); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /********************************************************************************************************************************* * Bit Operations * *********************************************************************************************************************************/ /** * Emits code for clearing bits 16 thru 63 in the GPR. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitClear16UpGpr(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst) { #if defined(RT_ARCH_AMD64) /* movzx reg32, reg16 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4); if (iGprDst >= 8) pbCodeBuf[off++] = X86_OP_REX_B | X86_OP_REX_R; pbCodeBuf[off++] = 0x0f; pbCodeBuf[off++] = 0xb7; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprDst & 7, iGprDst & 7); #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); # if 1 pu32CodeBuf[off++] = Armv8A64MkInstrUxth(iGprDst, iGprDst); # else ///* This produces 0xffff; 0x4f: N=1 imms=001111 (immr=0) => size=64 length=15 */ //pu32CodeBuf[off++] = Armv8A64MkInstrAndImm(iGprDst, iGprDst, 0x4f); # endif #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits code for AND'ing two 64-bit GPRs. * * @note When fSetFlags=true, JZ/JNZ jumps can be used afterwards on both AMD64 * and ARM64 hosts. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitAndGprByGpr(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t iGprSrc, bool fSetFlags = false) { #if defined(RT_ARCH_AMD64) /* and Gv, Ev */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); pbCodeBuf[off++] = X86_OP_REX_W | (iGprDst < 8 ? 0 : X86_OP_REX_R) | (iGprSrc < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x23; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprDst & 7, iGprSrc & 7); RT_NOREF(fSetFlags); #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); if (!fSetFlags) pu32CodeBuf[off++] = Armv8A64MkInstrAnd(iGprDst, iGprDst, iGprSrc); else pu32CodeBuf[off++] = Armv8A64MkInstrAnds(iGprDst, iGprDst, iGprSrc); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits code for AND'ing two 32-bit GPRs. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitAndGpr32ByGpr32(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t iGprSrc) { #if defined(RT_ARCH_AMD64) /* and Gv, Ev */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); if (iGprDst >= 8 || iGprSrc >= 8) pbCodeBuf[off++] = (iGprDst < 8 ? 0 : X86_OP_REX_R) | (iGprSrc < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x23; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprDst & 7, iGprSrc & 7); #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrAnd(iGprDst, iGprDst, iGprSrc, false /*f64Bit*/); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits code for AND'ing a 64-bit GPRs with a constant. * * @note When fSetFlags=true, JZ/JNZ jumps can be used afterwards on both AMD64 * and ARM64 hosts. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitAndGprByImm(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint64_t uImm, bool fSetFlags = false) { #if defined(RT_ARCH_AMD64) if ((int64_t)uImm == (int8_t)uImm) { /* and Ev, imm8 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4); pbCodeBuf[off++] = X86_OP_REX_W | (iGprDst < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x83; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 4, iGprDst & 7); pbCodeBuf[off++] = (uint8_t)uImm; } else if ((int64_t)uImm == (int32_t)uImm) { /* and Ev, imm32 */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); pbCodeBuf[off++] = X86_OP_REX_W | (iGprDst < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x81; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 4, iGprDst & 7); pbCodeBuf[off++] = RT_BYTE1(uImm); pbCodeBuf[off++] = RT_BYTE2(uImm); pbCodeBuf[off++] = RT_BYTE3(uImm); pbCodeBuf[off++] = RT_BYTE4(uImm); } else { /* Use temporary register for the 64-bit immediate. */ uint8_t iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, uImm); off = iemNativeEmitAndGprByGpr(pReNative, off, iGprDst, iTmpReg); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } RT_NOREF(fSetFlags); #elif defined(RT_ARCH_ARM64) uint32_t uImmR = 0; uint32_t uImmNandS = 0; if (Armv8A64ConvertMaskToImmRImmS(uImm, &uImmNandS, &uImmR)) { uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); if (!fSetFlags) pu32CodeBuf[off++] = Armv8A64MkInstrAndImm(iGprDst, iGprDst, uImmNandS, uImmR); else pu32CodeBuf[off++] = Armv8A64MkInstrAndsImm(iGprDst, iGprDst, uImmNandS, uImmR); } else { /* Use temporary register for the 64-bit immediate. */ uint8_t iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, uImm); off = iemNativeEmitAndGprByGpr(pReNative, off, iGprDst, iTmpReg, fSetFlags); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits code for AND'ing an 32-bit GPRs with a constant. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitAndGpr32ByImm(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint32_t uImm, bool fSetFlags = false) { #if defined(RT_ARCH_AMD64) /* and Ev, imm */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGprDst >= 8) pbCodeBuf[off++] = X86_OP_REX_B; if ((int32_t)uImm == (int8_t)uImm) { pbCodeBuf[off++] = 0x83; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 4, iGprDst & 7); pbCodeBuf[off++] = (uint8_t)uImm; } else { pbCodeBuf[off++] = 0x81; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 4, iGprDst & 7); pbCodeBuf[off++] = RT_BYTE1(uImm); pbCodeBuf[off++] = RT_BYTE2(uImm); pbCodeBuf[off++] = RT_BYTE3(uImm); pbCodeBuf[off++] = RT_BYTE4(uImm); } RT_NOREF(fSetFlags); #elif defined(RT_ARCH_ARM64) uint32_t uImmR = 0; uint32_t uImmNandS = 0; if (Armv8A64ConvertMaskToImmRImmS(uImm, &uImmNandS, &uImmR)) { uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); if (!fSetFlags) pu32CodeBuf[off++] = Armv8A64MkInstrAndImm(iGprDst, iGprDst, uImmNandS, uImmR, false /*f64Bit*/); else pu32CodeBuf[off++] = Armv8A64MkInstrAndsImm(iGprDst, iGprDst, uImmNandS, uImmR, false /*f64Bit*/); } else { /* Use temporary register for the 64-bit immediate. */ uint8_t iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, uImm); if (!fSetFlags) off = iemNativeEmitAndGpr32ByGpr32(pReNative, off, iGprDst, iTmpReg); else off = iemNativeEmitAndsGpr32ByGpr32(pReNative, off, iGprDst, iTmpReg); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits code for XOR'ing two 64-bit GPRs. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitXorGprByGpr(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t iGprSrc) { #if defined(RT_ARCH_AMD64) /* and Gv, Ev */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); pbCodeBuf[off++] = X86_OP_REX_W | (iGprDst < 8 ? 0 : X86_OP_REX_R) | (iGprSrc < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x33; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprDst & 7, iGprSrc & 7); #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrEor(iGprDst, iGprDst, iGprSrc); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits code for XOR'ing two 32-bit GPRs. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitXorGpr32ByGpr32(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t iGprSrc) { #if defined(RT_ARCH_AMD64) /* and Gv, Ev */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); if (iGprDst >= 8 || iGprSrc >= 8) pbCodeBuf[off++] = (iGprDst < 8 ? 0 : X86_OP_REX_R) | (iGprSrc < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x33; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprDst & 7, iGprSrc & 7); #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrEor(iGprDst, iGprDst, iGprSrc, false /*f64Bit*/); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /********************************************************************************************************************************* * Shifting * *********************************************************************************************************************************/ /** * Emits code for shifting a GPR a fixed number of bits to the left. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitShiftGprLeft(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t cShift) { Assert(cShift > 0 && cShift < 64); #if defined(RT_ARCH_AMD64) /* shl dst, cShift */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4); pbCodeBuf[off++] = iGprDst < 8 ? X86_OP_REX_W : X86_OP_REX_W | X86_OP_REX_B; if (cShift != 1) { pbCodeBuf[off++] = 0xc1; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 4, iGprDst & 7); pbCodeBuf[off++] = cShift; } else { pbCodeBuf[off++] = 0xd1; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 4, iGprDst & 7); } #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrLslImm(iGprDst, iGprDst, cShift); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits code for shifting a 32-bit GPR a fixed number of bits to the left. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitShiftGpr32Left(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t cShift) { Assert(cShift > 0 && cShift < 32); #if defined(RT_ARCH_AMD64) /* shl dst, cShift */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4); if (iGprDst >= 8) pbCodeBuf[off++] = X86_OP_REX_B; if (cShift != 1) { pbCodeBuf[off++] = 0xc1; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 4, iGprDst & 7); pbCodeBuf[off++] = cShift; } else { pbCodeBuf[off++] = 0xd1; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 4, iGprDst & 7); } #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrLslImm(iGprDst, iGprDst, cShift, false /*64Bit*/); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits code for (unsigned) shifting a GPR a fixed number of bits to the right. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitShiftGprRight(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t cShift) { Assert(cShift > 0 && cShift < 64); #if defined(RT_ARCH_AMD64) /* shr dst, cShift */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4); pbCodeBuf[off++] = iGprDst < 8 ? X86_OP_REX_W : X86_OP_REX_W | X86_OP_REX_B; if (cShift != 1) { pbCodeBuf[off++] = 0xc1; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, iGprDst & 7); pbCodeBuf[off++] = cShift; } else { pbCodeBuf[off++] = 0xd1; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, iGprDst & 7); } #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrLsrImm(iGprDst, iGprDst, cShift); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits code for (unsigned) shifting a 32-bit GPR a fixed number of bits to the * right. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitShiftGpr32Right(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprDst, uint8_t cShift) { Assert(cShift > 0 && cShift < 32); #if defined(RT_ARCH_AMD64) /* shr dst, cShift */ uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4); if (iGprDst >= 8) pbCodeBuf[off++] = X86_OP_REX_B; if (cShift != 1) { pbCodeBuf[off++] = 0xc1; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, iGprDst & 7); pbCodeBuf[off++] = cShift; } else { pbCodeBuf[off++] = 0xd1; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, iGprDst & 7); } #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrLsrImm(iGprDst, iGprDst, cShift, false /*64Bit*/); #else # error "Port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /********************************************************************************************************************************* * Compare and Testing * *********************************************************************************************************************************/ #ifdef RT_ARCH_ARM64 /** * Emits an ARM64 compare instruction. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitCmpArm64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprLeft, uint8_t iGprRight, bool f64Bit = true, uint32_t cShift = 0, ARMV8A64INSTRSHIFT enmShift = kArmv8A64InstrShift_Lsr) { uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(true /*fSub*/, ARMV8_A64_REG_XZR /*iRegResult*/, iGprLeft, iGprRight, f64Bit, true /*fSetFlags*/, cShift, enmShift); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } #endif /** * Emits a compare of two 64-bit GPRs, settings status flags/whatever for use * with conditional instruction. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitCmpGprWithGpr(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprLeft, uint8_t iGprRight) { #ifdef RT_ARCH_AMD64 /* cmp Gv, Ev */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); pbCodeBuf[off++] = X86_OP_REX_W | (iGprLeft >= 8 ? X86_OP_REX_R : 0) | (iGprRight >= 8 ? X86_OP_REX_B : 0); pbCodeBuf[off++] = 0x3b; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprLeft & 7, iGprRight & 7); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif defined(RT_ARCH_ARM64) off = iemNativeEmitCmpArm64(pReNative, off, iGprLeft, iGprRight, false /*f64Bit*/); #else # error "Port me!" #endif return off; } /** * Emits a compare of two 32-bit GPRs, settings status flags/whatever for use * with conditional instruction. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitCmpGpr32WithGpr(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprLeft, uint8_t iGprRight) { #ifdef RT_ARCH_AMD64 /* cmp Gv, Ev */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); if (iGprLeft >= 8 || iGprRight >= 8) pbCodeBuf[off++] = (iGprLeft >= 8 ? X86_OP_REX_R : 0) | (iGprRight >= 8 ? X86_OP_REX_B : 0); pbCodeBuf[off++] = 0x3b; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprLeft & 7, iGprRight & 7); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #elif defined(RT_ARCH_ARM64) off = iemNativeEmitCmpArm64(pReNative, off, iGprLeft, iGprRight, false /*f64Bit*/); #else # error "Port me!" #endif return off; } /** * Emits a compare of a 64-bit GPR with a constant value, settings status * flags/whatever for use with conditional instruction. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitCmpGprWithImm(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprLeft, uint64_t uImm) { #ifdef RT_ARCH_AMD64 if (uImm <= UINT32_C(0xff)) { /* cmp Ev, Ib */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4); pbCodeBuf[off++] = X86_OP_REX_W | (iGprLeft >= 8 ? X86_OP_REX_B : 0); pbCodeBuf[off++] = 0x83; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 7, iGprLeft & 7); pbCodeBuf[off++] = (uint8_t)uImm; } else if ((int64_t)uImm == (int32_t)uImm) { /* cmp Ev, imm */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); pbCodeBuf[off++] = X86_OP_REX_W | (iGprLeft >= 8 ? X86_OP_REX_B : 0); pbCodeBuf[off++] = 0x81; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 7, iGprLeft & 7); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); pbCodeBuf[off++] = RT_BYTE1(uImm); pbCodeBuf[off++] = RT_BYTE2(uImm); pbCodeBuf[off++] = RT_BYTE3(uImm); pbCodeBuf[off++] = RT_BYTE4(uImm); } else { /* Use temporary register for the immediate. */ uint8_t const iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, uImm); off = iemNativeEmitCmpGprWithGpr(pReNative, off, iGprLeft, iTmpReg); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } #elif defined(RT_ARCH_ARM64) /** @todo guess there are clevere things we can do here... */ if (uImm < _4K) { uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, ARMV8_A64_REG_XZR, iGprLeft, (uint32_t)uImm, true /*64Bit*/, true /*fSetFlags*/); } else if (uImm < RT_BIT_32(12+12) && (uImm & (_4K - 1)) == 0) { uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, ARMV8_A64_REG_XZR, iGprLeft, (uint32_t)uImm, true /*64Bit*/, true /*fSetFlags*/, true /*fShift12*/); } else { /* Use temporary register for the immediate. */ uint8_t iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, uImm); off = iemNativeEmitCmpGprWithGpr(pReNative, off, iGprLeft, iTmpReg); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } #else # error "Port me!" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits a compare of a 32-bit GPR with a constant value, settings status * flags/whatever for use with conditional instruction. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitCmpGpr32WithImm(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprLeft, uint32_t uImm) { #ifdef RT_ARCH_AMD64 uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (iGprLeft >= 8) pbCodeBuf[off++] = X86_OP_REX_B; if (uImm <= UINT32_C(0xff)) { /* cmp Ev, Ib */ pbCodeBuf[off++] = 0x83; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 7, iGprLeft & 7); pbCodeBuf[off++] = (uint8_t)uImm; } else { /* cmp Ev, imm */ pbCodeBuf[off++] = 0x81; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 7, iGprLeft & 7); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); pbCodeBuf[off++] = RT_BYTE1(uImm); pbCodeBuf[off++] = RT_BYTE2(uImm); pbCodeBuf[off++] = RT_BYTE3(uImm); pbCodeBuf[off++] = RT_BYTE4(uImm); } #elif defined(RT_ARCH_ARM64) /** @todo guess there are clevere things we can do here... */ if (uImm < _4K) { uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, ARMV8_A64_REG_XZR, iGprLeft, (uint32_t)uImm, false /*64Bit*/, true /*fSetFlags*/); } else if (uImm < RT_BIT_32(12+12) && (uImm & (_4K - 1)) == 0) { uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, ARMV8_A64_REG_XZR, iGprLeft, (uint32_t)uImm, false /*64Bit*/, true /*fSetFlags*/, true /*fShift12*/); } else { /* Use temporary register for the immediate. */ uint8_t iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, uImm); off = iemNativeEmitCmpGpr32WithGpr(pReNative, off, iGprLeft, iTmpReg); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } #else # error "Port me!" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /********************************************************************************************************************************* * Branching * *********************************************************************************************************************************/ /** * Emits a JMP rel32 / B imm19 to the given label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJmpToLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxLabel) { Assert(idxLabel < pReNative->cLabels); #ifdef RT_ARCH_AMD64 uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 6); if (pReNative->paLabels[idxLabel].off != UINT32_MAX) { uint32_t offRel = pReNative->paLabels[idxLabel].off - (off + 2); if ((int32_t)offRel < 128 && (int32_t)offRel >= -128) { pbCodeBuf[off++] = 0xeb; /* jmp rel8 */ pbCodeBuf[off++] = (uint8_t)offRel; } else { offRel -= 3; pbCodeBuf[off++] = 0xe9; /* jmp rel32 */ pbCodeBuf[off++] = RT_BYTE1(offRel); pbCodeBuf[off++] = RT_BYTE2(offRel); pbCodeBuf[off++] = RT_BYTE3(offRel); pbCodeBuf[off++] = RT_BYTE4(offRel); } } else { pbCodeBuf[off++] = 0xe9; /* jmp rel32 */ iemNativeAddFixup(pReNative, off, idxLabel, kIemNativeFixupType_Rel32, -4); pbCodeBuf[off++] = 0xfe; pbCodeBuf[off++] = 0xff; pbCodeBuf[off++] = 0xff; pbCodeBuf[off++] = 0xff; } pbCodeBuf[off++] = 0xcc; /* int3 poison */ #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); if (pReNative->paLabels[idxLabel].off != UINT32_MAX) pu32CodeBuf[off++] = Armv8A64MkInstrB(pReNative->paLabels[idxReturnLabel].off - off); else { iemNativeAddFixup(pReNative, off, idxLabel, kIemNativeFixupType_RelImm19At5); pu32CodeBuf[off++] = Armv8A64MkInstrB(-1); } #else # error "Port me!" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits a JMP rel32 / B imm19 to a new undefined label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJmpToNewLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVELABELTYPE enmLabelType, uint16_t uData = 0) { uint32_t const idxLabel = iemNativeLabelCreate(pReNative, enmLabelType, UINT32_MAX /*offWhere*/, uData); return iemNativeEmitJmpToLabel(pReNative, off, idxLabel); } /** Condition type. */ #ifdef RT_ARCH_AMD64 typedef enum IEMNATIVEINSTRCOND : uint8_t { kIemNativeInstrCond_o = 0, kIemNativeInstrCond_no, kIemNativeInstrCond_c, kIemNativeInstrCond_nc, kIemNativeInstrCond_e, kIemNativeInstrCond_ne, kIemNativeInstrCond_be, kIemNativeInstrCond_nbe, kIemNativeInstrCond_s, kIemNativeInstrCond_ns, kIemNativeInstrCond_p, kIemNativeInstrCond_np, kIemNativeInstrCond_l, kIemNativeInstrCond_nl, kIemNativeInstrCond_le, kIemNativeInstrCond_nle } IEMNATIVEINSTRCOND; #elif defined(RT_ARCH_ARM64) typedef ARMV8INSTRCOND IEMNATIVEINSTRCOND; #else # error "Port me!" #endif /** * Emits a Jcc rel32 / B.cc imm19 to the given label (ASSUMED requiring fixup). */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJccToLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxLabel, IEMNATIVEINSTRCOND enmCond) { Assert(idxLabel < pReNative->cLabels); #ifdef RT_ARCH_AMD64 /* jcc rel32 */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 6); pbCodeBuf[off++] = 0x0f; pbCodeBuf[off++] = (uint8_t)enmCond | 0x80; iemNativeAddFixup(pReNative, off, idxLabel, kIemNativeFixupType_Rel32, -4); pbCodeBuf[off++] = 0x00; pbCodeBuf[off++] = 0x00; pbCodeBuf[off++] = 0x00; pbCodeBuf[off++] = 0x00; #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); iemNativeAddFixup(pReNative, off, idxLabel, kIemNativeFixupType_RelImm19At5); pu32CodeBuf[off++] = Armv8A64MkInstrBCond(enmCond, -1); #else # error "Port me!" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits a Jcc rel32 / B.cc imm19 to a new label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJccToNewLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVELABELTYPE enmLabelType, uint16_t uData, IEMNATIVEINSTRCOND enmCond) { uint32_t const idxLabel = iemNativeLabelCreate(pReNative, enmLabelType, UINT32_MAX /*offWhere*/, uData); return iemNativeEmitJccToLabel(pReNative, off, idxLabel, enmCond); } /** * Emits a JZ/JE rel32 / B.EQ imm19 to the given label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJzToLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxLabel) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToLabel(pReNative, off, idxLabel, kIemNativeInstrCond_e); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToLabel(pReNative, off, idxLabel, kArmv8InstrCond_Eq); #else # error "Port me!" #endif } /** * Emits a JZ/JE rel32 / B.EQ imm19 to a new label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJzToNewLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVELABELTYPE enmLabelType, uint16_t uData = 0) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToNewLabel(pReNative, off, enmLabelType, uData, kIemNativeInstrCond_e); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToNewLabel(pReNative, off, enmLabelType, uData, kArmv8InstrCond_Eq); #else # error "Port me!" #endif } /** * Emits a JNZ/JNE rel32 / B.NE imm19 to the given label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJnzToLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxLabel) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToLabel(pReNative, off, idxLabel, kIemNativeInstrCond_ne); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToLabel(pReNative, off, idxLabel, kArmv8InstrCond_Ne); #else # error "Port me!" #endif } /** * Emits a JNZ/JNE rel32 / B.NE imm19 to a new label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJnzToNewLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVELABELTYPE enmLabelType, uint16_t uData = 0) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToNewLabel(pReNative, off, enmLabelType, uData, kIemNativeInstrCond_ne); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToNewLabel(pReNative, off, enmLabelType, uData, kArmv8InstrCond_Ne); #else # error "Port me!" #endif } /** * Emits a JBE/JNA rel32 / B.LS imm19 to the given label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJbeToLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxLabel) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToLabel(pReNative, off, idxLabel, kIemNativeInstrCond_be); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToLabel(pReNative, off, idxLabel, kArmv8InstrCond_Ls); #else # error "Port me!" #endif } /** * Emits a JBE/JNA rel32 / B.LS imm19 to a new label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJbeToNewLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVELABELTYPE enmLabelType, uint16_t uData = 0) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToNewLabel(pReNative, off, enmLabelType, uData, kIemNativeInstrCond_be); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToNewLabel(pReNative, off, enmLabelType, uData, kArmv8InstrCond_Ls); #else # error "Port me!" #endif } /** * Emits a JA/JNBE rel32 / B.HI imm19 to the given label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJaToLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxLabel) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToLabel(pReNative, off, idxLabel, kIemNativeInstrCond_nbe); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToLabel(pReNative, off, idxLabel, kArmv8InstrCond_Hi); #else # error "Port me!" #endif } /** * Emits a JA/JNBE rel32 / B.HI imm19 to a new label. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJaToNewLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVELABELTYPE enmLabelType, uint16_t uData = 0) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToNewLabel(pReNative, off, enmLabelType, uData, kIemNativeInstrCond_nbe); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToNewLabel(pReNative, off, enmLabelType, uData, kArmv8InstrCond_Hi); #else # error "Port me!" #endif } /** * Emits a Jcc rel32 / B.cc imm19 with a fixed displacement. * How @a offJmp is applied is are target specific. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJccToFixed(PIEMRECOMPILERSTATE pReNative, uint32_t off, int32_t offTarget, IEMNATIVEINSTRCOND enmCond) { #ifdef RT_ARCH_AMD64 /* jcc rel32 */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 6); if (offTarget < 128 && offTarget >= -128) { pbCodeBuf[off++] = (uint8_t)enmCond | 0x70; pbCodeBuf[off++] = RT_BYTE1((uint32_t)offTarget); } else { pbCodeBuf[off++] = 0x0f; pbCodeBuf[off++] = (uint8_t)enmCond | 0x80; pbCodeBuf[off++] = RT_BYTE1((uint32_t)offTarget); pbCodeBuf[off++] = RT_BYTE2((uint32_t)offTarget); pbCodeBuf[off++] = RT_BYTE3((uint32_t)offTarget); pbCodeBuf[off++] = RT_BYTE4((uint32_t)offTarget); } #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrBCond(enmCond, offTarget); #else # error "Port me!" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits a JZ/JE rel32 / B.EQ imm19 with a fixed displacement. * How @a offJmp is applied is are target specific. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJzToFixed(PIEMRECOMPILERSTATE pReNative, uint32_t off, int32_t offTarget) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToFixed(pReNative, off, offTarget, kIemNativeInstrCond_e); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToFixed(pReNative, off, offTarget, kArmv8InstrCond_Eq); #else # error "Port me!" #endif } /** * Emits a JNZ/JNE rel32 / B.NE imm19 with a fixed displacement. * How @a offJmp is applied is are target specific. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJnzToFixed(PIEMRECOMPILERSTATE pReNative, uint32_t off, int32_t offTarget) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToFixed(pReNative, off, offTarget, kIemNativeInstrCond_ne); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToFixed(pReNative, off, offTarget, kArmv8InstrCond_Ne); #else # error "Port me!" #endif } /** * Emits a JBE/JNA rel32 / B.LS imm19 with a fixed displacement. * How @a offJmp is applied is are target specific. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJbeToFixed(PIEMRECOMPILERSTATE pReNative, uint32_t off, int32_t offTarget) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToFixed(pReNative, off, offTarget, kIemNativeInstrCond_be); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToFixed(pReNative, off, offTarget, kArmv8InstrCond_Ls); #else # error "Port me!" #endif } /** * Emits a JA/JNBE rel32 / B.EQ imm19 with a fixed displacement. * How @a offJmp is applied is are target specific. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitJaToFixed(PIEMRECOMPILERSTATE pReNative, uint32_t off, int32_t offTarget) { #ifdef RT_ARCH_AMD64 return iemNativeEmitJccToFixed(pReNative, off, offTarget, kIemNativeInstrCond_nbe); #elif defined(RT_ARCH_ARM64) return iemNativeEmitJccToFixed(pReNative, off, offTarget, kArmv8InstrCond_Hi); #else # error "Port me!" #endif } /** * Fixes up a conditional jump to a fixed label. * @see iemNativeEmitJnzToFixed, iemNativeEmitJzToFixed, ... */ DECLINLINE(void) iemNativeFixupFixedJump(PIEMRECOMPILERSTATE pReNative, uint32_t offFixup, uint32_t offTarget) { # if defined(RT_ARCH_AMD64) uint8_t * const pbCodeBuf = pReNative->pInstrBuf; if (pbCodeBuf[offFixup] != 0x0f) { Assert((uint8_t)(pbCodeBuf[offFixup] - 0x70) <= 0x10); pbCodeBuf[offFixup + 1] = (uint8_t)(offTarget - (offFixup + 2)); Assert(pbCodeBuf[offFixup + 1] == offTarget - (offFixup + 2)); } else { Assert((uint8_t)(pbCodeBuf[offFixup + 1] - 0x80) <= 0x10); uint32_t const offRel32 = offTarget - (offFixup + 6); pbCodeBuf[offFixup + 2] = RT_BYTE1(offRel32); pbCodeBuf[offFixup + 3] = RT_BYTE2(offRel32); pbCodeBuf[offFixup + 4] = RT_BYTE3(offRel32); pbCodeBuf[offFixup + 5] = RT_BYTE4(offRel32); } # elif defined(RT_ARCH_ARM64) uint32_t * const pu32CodeBuf = pReNative->pInstrBuf; Assert(RT_ABS((int32_t)(offTarget - offFixup)) < RT_BIT_32(18)); /* off by one for negative jumps, but not relevant here */ pu32CodeBuf[offFixup] = (pu32CodeBuf[offFixup] & ~((RT_BIT_32(19) - 1U) << 5)) | (((offTarget - offFixup) & (RT_BIT_32(19) - 1U)) << 5); # endif } /** * Internal helper, don't call directly. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestBitInGprAndJmpToLabelIfCc(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, uint8_t iBitNo, uint32_t idxLabel, bool fJmpIfSet) { Assert(iBitNo < 64); #ifdef RT_ARCH_AMD64 uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 5); if (iBitNo < 8) { /* test Eb, imm8 */ if (iGprSrc >= 4) pbCodeBuf[off++] = iGprSrc >= 8 ? X86_OP_REX_B : X86_OP_REX; pbCodeBuf[off++] = 0xf6; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, iGprSrc & 7); pbCodeBuf[off++] = (uint8_t)1 << iBitNo; off = iemNativeEmitJccToLabel(pReNative, off, idxLabel, fJmpIfSet ? kIemNativeInstrCond_ne : kIemNativeInstrCond_e); } else { /* bt Ev, imm8 */ if (iBitNo >= 32) pbCodeBuf[off++] = X86_OP_REX_W | (iGprSrc < 8 ? 0 : X86_OP_REX_B); else if (iGprSrc >= 8) pbCodeBuf[off++] = X86_OP_REX_B; pbCodeBuf[off++] = 0x0f; pbCodeBuf[off++] = 0xba; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 4, iGprSrc & 7); pbCodeBuf[off++] = iBitNo; off = iemNativeEmitJccToLabel(pReNative, off, idxLabel, fJmpIfSet ? kIemNativeInstrCond_c : kIemNativeInstrCond_nc); } #elif defined(RT_ARCH_ARM64) /* Use the TBNZ instruction here. */ uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); iemNativeAddFixup(pReNative, off, idxLabel, kIemNativeFixupType_RelImm14At5); pu32CodeBuf[off++] = Armv8A64MkInstrTbzTbnz(fJmpIfSet, 0, iGprSrc, iBitNo); #else # error "Port me!" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits a jump to @a idxLabel on the condition that bit @a iBitNo _is_ _set_ in * @a iGprSrc. * * @note On ARM64 the range is only +/-8191 instructions. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestBitInGprAndJmpToLabelIfSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, uint8_t iBitNo, uint32_t idxLabel) { return iemNativeEmitTestBitInGprAndJmpToLabelIfCc(pReNative, off, iGprSrc, iBitNo, idxLabel, true /*fJmpIfSet*/); } /** * Emits a jump to @a idxLabel on the condition that bit @a iBitNo _is_ _not_ * _set_ in @a iGprSrc. * * @note On ARM64 the range is only +/-8191 instructions. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestBitInGprAndJmpToLabelIfNotSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, uint8_t iBitNo, uint32_t idxLabel) { return iemNativeEmitTestBitInGprAndJmpToLabelIfCc(pReNative, off, iGprSrc, iBitNo, idxLabel, false /*fJmpIfSet*/); } /** * Emits a test for any of the bits from @a fBits in @a iGprSrc, setting CPU * flags accordingly. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestAnyBitsInGpr(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, uint64_t fBits) { Assert(fBits != 0); #ifdef RT_ARCH_AMD64 if (fBits >= UINT32_MAX) { uint8_t iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, fBits); /* test Ev,Gv */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 5); pbCodeBuf[off++] = X86_OP_REX_W | (iGprSrc < 8 ? 0 : X86_OP_REX_R) | (iTmpReg < 8 ? 0 : X86_OP_REX_B); pbCodeBuf[off++] = 0x85; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprSrc & 8, iTmpReg & 7); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } else if (fBits <= UINT32_MAX) { /* test Eb, imm8 or test Ev, imm32 */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7); if (fBits <= UINT8_MAX) { if (iGprSrc >= 4) pbCodeBuf[off++] = iGprSrc >= 8 ? X86_OP_REX_B : X86_OP_REX; pbCodeBuf[off++] = 0xf6; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, iGprSrc & 7); pbCodeBuf[off++] = (uint8_t)fBits; } else { if (iGprSrc >= 8) pbCodeBuf[off++] = X86_OP_REX_B; pbCodeBuf[off++] = 0xf7; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, iGprSrc & 7); pbCodeBuf[off++] = RT_BYTE1(fBits); pbCodeBuf[off++] = RT_BYTE2(fBits); pbCodeBuf[off++] = RT_BYTE3(fBits); pbCodeBuf[off++] = RT_BYTE4(fBits); } } /** @todo implement me. */ else AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_EMIT_CASE_NOT_IMPLEMENTED_1)); #elif defined(RT_ARCH_ARM64) if (false) { /** @todo figure out how to work the immr / N:imms constants. */ } else { /* ands Zr, iGprSrc, iTmpReg */ uint8_t const iTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, fBits); uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrAnds(ARMV8_A64_REG_XZR, iGprSrc, iTmpReg); iemNativeRegFreeTmpImm(pReNative, iTmpReg); } #else # error "Port me!" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** * Emits a jump to @a idxLabel on the condition _any_ of the bits in @a fBits * are set in @a iGprSrc. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfAnySet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, uint64_t fBits, uint32_t idxLabel) { Assert(fBits); Assert(!RT_IS_POWER_OF_TWO(fBits)); off = iemNativeEmitTestAnyBitsInGpr(pReNative, off, iGprSrc, fBits); off = iemNativeEmitJnzToLabel(pReNative, off, idxLabel); return off; } /** * Emits a jump to @a idxLabel on the condition _none_ of the bits in @a fBits * are set in @a iGprSrc. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfNoneSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, uint64_t fBits, uint32_t idxLabel) { Assert(fBits); Assert(!RT_IS_POWER_OF_TWO(fBits)); off = iemNativeEmitTestAnyBitsInGpr(pReNative, off, iGprSrc, fBits); off = iemNativeEmitJzToLabel(pReNative, off, idxLabel); return off; } /** * Emits code that jumps to @a idxLabel if @a iGprSrc is zero. * * The operand size is given by @a f64Bit. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestIfGprIsZeroAndJmpToLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, bool f64Bit, uint32_t idxLabel) { Assert(idxLabel < pReNative->cLabels); #ifdef RT_ARCH_AMD64 /* test reg32,reg32 / test reg64,reg64 */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3); if (f64Bit) pbCodeBuf[off++] = X86_OP_REX_W | (iGprSrc < 8 ? 0 : X86_OP_REX_R | X86_OP_REX_B); else if (iGprSrc >= 8) pbCodeBuf[off++] = X86_OP_REX_R | X86_OP_REX_B; pbCodeBuf[off++] = 0x85; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, iGprSrc & 7, iGprSrc & 7); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); /* jz idxLabel */ off = iemNativeEmitJzToLabel(pReNative, off, idxLabel); #elif defined(RT_ARCH_ARM64) uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); iemNativeAddFixup(pReNative, off, idxLabel, kIemNativeFixupType_RelImm19At5); pu32CodeBuf[off++] = Armv8A64MkInstrCbzCbnz(false /*fJmpIfNotZero*/, 0, f64Bit); IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); #else # error "Port me!" #endif return off; } /** * Emits code that jumps to a new label if @a iGprSrc is zero. * * The operand size is given by @a f64Bit. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestIfGprIsZeroAndJmpToNewLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, bool f64Bit, IEMNATIVELABELTYPE enmLabelType, uint16_t uData = 0) { uint32_t const idxLabel = iemNativeLabelCreate(pReNative, enmLabelType, UINT32_MAX /*offWhere*/, uData); return iemNativeEmitTestIfGprIsZeroAndJmpToLabel(pReNative, off, iGprSrc, f64Bit, idxLabel); } /** * Emits code that jumps to the given label if @a iGprLeft and @a iGprRight * differs. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestIfGprNotEqualGprAndJmpToLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprLeft, uint8_t iGprRight, uint32_t idxLabel) { off = iemNativeEmitCmpGprWithGpr(pReNative, off, iGprLeft, iGprRight); off = iemNativeEmitJnzToLabel(pReNative, off, idxLabel); return off; } /** * Emits code that jumps to a new label if @a iGprLeft and @a iGprRight differs. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestIfGprNotEqualGprAndJmpToNewLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprLeft, uint8_t iGprRight, IEMNATIVELABELTYPE enmLabelType, uint16_t uData = 0) { uint32_t const idxLabel = iemNativeLabelCreate(pReNative, enmLabelType, UINT32_MAX /*offWhere*/, uData); return iemNativeEmitTestIfGprNotEqualGprAndJmpToLabel(pReNative, off, iGprLeft, iGprRight, idxLabel); } /** * Emits code that jumps to the given label if @a iGprSrc differs from @a uImm. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestIfGprNotEqualImmAndJmpToLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, uint64_t uImm, uint32_t idxLabel) { off = iemNativeEmitCmpGprWithImm(pReNative, off, iGprSrc, uImm); off = iemNativeEmitJnzToLabel(pReNative, off, idxLabel); return off; } /** * Emits code that jumps to a new label if @a iGprSrc differs from @a uImm. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestIfGprNotEqualImmAndJmpToNewLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, uint64_t uImm, IEMNATIVELABELTYPE enmLabelType, uint16_t uData = 0) { uint32_t const idxLabel = iemNativeLabelCreate(pReNative, enmLabelType, UINT32_MAX /*offWhere*/, uData); return iemNativeEmitTestIfGprNotEqualImmAndJmpToLabel(pReNative, off, iGprSrc, uImm, idxLabel); } /** * Emits code that jumps to the given label if 32-bit @a iGprSrc differs from * @a uImm. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestIfGpr32NotEqualImmAndJmpToLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, uint32_t uImm, uint32_t idxLabel) { off = iemNativeEmitCmpGpr32WithImm(pReNative, off, iGprSrc, uImm); off = iemNativeEmitJnzToLabel(pReNative, off, idxLabel); return off; } /** * Emits code that jumps to a new label if 32-bit @a iGprSrc differs from * @a uImm. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitTestIfGpr32NotEqualImmAndJmpToNewLabel(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGprSrc, uint32_t uImm, IEMNATIVELABELTYPE enmLabelType, uint16_t uData = 0) { uint32_t const idxLabel = iemNativeLabelCreate(pReNative, enmLabelType, UINT32_MAX /*offWhere*/, uData); return iemNativeEmitTestIfGpr32NotEqualImmAndJmpToLabel(pReNative, off, iGprSrc, uImm, idxLabel); } /** * Emits a call to a 64-bit address. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitCallImm(PIEMRECOMPILERSTATE pReNative, uint32_t off, uintptr_t uPfn) { #ifdef RT_ARCH_AMD64 off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_xAX, uPfn); /* call rax */ uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2); pbCodeBuf[off++] = 0xff; pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 2, X86_GREG_xAX); #elif defined(RT_ARCH_ARM64) off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_REG_FIXED_TMP0, uPfn); uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1); pu32CodeBuf[off++] = Armv8A64MkInstrBlr(IEMNATIVE_REG_FIXED_TMP0); #else # error "port me" #endif IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off); return off; } /** @} */ #endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */