VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 103589

Last change on this file since 103589 was 103589, checked in by vboxsync, 14 months ago

VMM/IEM: Native translation of IEM_MC_FETCH_FCW() body, bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 57.1 KB
Line 
1/* $Id: IEMN8veRecompiler.h 103589 2024-02-27 16:14:12Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
41 * Enables generating internal debug info for better TB disassembly dumping. */
42#if defined(DEBUG) || defined(DOXYGEN_RUNNING)
43# define IEMNATIVE_WITH_TB_DEBUG_INFO
44#endif
45
46/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
47 * Enables liveness analysis. */
48#if 1 || defined(DOXYGEN_RUNNING)
49# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
50/*# define IEMLIVENESS_EXTENDED_LAYOUT*/
51#endif
52
53#ifdef VBOX_WITH_STATISTICS
54/** Always count instructions for now. */
55# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
56#endif
57
58
59/** @name Stack Frame Layout
60 *
61 * @{ */
62/** The size of the area for stack variables and spills and stuff.
63 * @note This limit is duplicated in the python script(s). We add 0x40 for
64 * alignment padding. */
65#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
66/** Number of 64-bit variable slots (0x100 / 8 = 32. */
67#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
68AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
69
70#ifdef RT_ARCH_AMD64
71/** An stack alignment adjustment (between non-volatile register pushes and
72 * the stack variable area, so the latter better aligned). */
73# define IEMNATIVE_FRAME_ALIGN_SIZE 8
74
75/** Number of stack arguments slots for calls made from the frame. */
76# ifdef RT_OS_WINDOWS
77# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
78# else
79# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
80# endif
81/** Number of any shadow arguments (spill area) for calls we make. */
82# ifdef RT_OS_WINDOWS
83# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
84# else
85# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
86# endif
87
88/** Frame pointer (RBP) relative offset of the last push. */
89# ifdef RT_OS_WINDOWS
90# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
91# else
92# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
93# endif
94/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
95 * address for it). */
96# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
97/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
98# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
99/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
100# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
101# ifdef RT_OS_WINDOWS
102/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
103# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
104/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
105# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
106# endif
107
108# ifdef RT_OS_WINDOWS
109/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
110# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
111/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
112# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
113/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
114# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
115/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
116# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
117# endif
118
119#elif RT_ARCH_ARM64
120/** No alignment padding needed for arm64. */
121# define IEMNATIVE_FRAME_ALIGN_SIZE 0
122/** No stack argument slots, got 8 registers for arguments will suffice. */
123# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
124/** There are no argument spill area. */
125# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
126
127/** Number of saved registers at the top of our stack frame.
128 * This includes the return address and old frame pointer, so x19 thru x30. */
129# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
130/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
131# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
132
133/** Frame pointer (BP) relative offset of the last push. */
134# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
135
136/** Frame pointer (BP) relative offset of the stack variable area (the lowest
137 * address for it). */
138# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
139
140#else
141# error "port me"
142#endif
143/** @} */
144
145
146/** @name Fixed Register Allocation(s)
147 * @{ */
148/** @def IEMNATIVE_REG_FIXED_PVMCPU
149 * The number of the register holding the pVCpu pointer. */
150/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
151 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
152 * @note This not available on AMD64, only ARM64. */
153/** @def IEMNATIVE_REG_FIXED_TMP0
154 * Dedicated temporary register.
155 * @todo replace this by a register allocator and content tracker. */
156/** @def IEMNATIVE_REG_FIXED_MASK
157 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
158 * architecture. */
159#if defined(RT_ARCH_AMD64) && !defined(DOXYGEN_RUNNING)
160# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
161# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
162# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
163 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
164 | RT_BIT_32(X86_GREG_xSP) \
165 | RT_BIT_32(X86_GREG_xBP) )
166
167#elif defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
168# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
169# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
170# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
171# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
172 | RT_BIT_32(ARMV8_A64_REG_LR) \
173 | RT_BIT_32(ARMV8_A64_REG_BP) \
174 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
175 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
176 | RT_BIT_32(ARMV8_A64_REG_X18) \
177 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) )
178
179#else
180# error "port me"
181#endif
182/** @} */
183
184/** @name Call related registers.
185 * @{ */
186/** @def IEMNATIVE_CALL_RET_GREG
187 * The return value register. */
188/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
189 * Number of arguments in registers. */
190/** @def IEMNATIVE_CALL_ARG0_GREG
191 * The general purpose register carrying argument \#0. */
192/** @def IEMNATIVE_CALL_ARG1_GREG
193 * The general purpose register carrying argument \#1. */
194/** @def IEMNATIVE_CALL_ARG2_GREG
195 * The general purpose register carrying argument \#2. */
196/** @def IEMNATIVE_CALL_ARG3_GREG
197 * The general purpose register carrying argument \#3. */
198/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
199 * Mask of registers the callee will not save and may trash. */
200#ifdef RT_ARCH_AMD64
201# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
202
203# ifdef RT_OS_WINDOWS
204# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
205# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
206# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
207# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
208# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
209# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
210 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
211 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
212 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
213# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
214 | RT_BIT_32(X86_GREG_xCX) \
215 | RT_BIT_32(X86_GREG_xDX) \
216 | RT_BIT_32(X86_GREG_x8) \
217 | RT_BIT_32(X86_GREG_x9) \
218 | RT_BIT_32(X86_GREG_x10) \
219 | RT_BIT_32(X86_GREG_x11) )
220# else
221# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
222# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
223# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
224# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
225# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
226# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
227# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
228# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
229 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
230 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
231 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
232 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
233 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
234# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
235 | RT_BIT_32(X86_GREG_xCX) \
236 | RT_BIT_32(X86_GREG_xDX) \
237 | RT_BIT_32(X86_GREG_xDI) \
238 | RT_BIT_32(X86_GREG_xSI) \
239 | RT_BIT_32(X86_GREG_x8) \
240 | RT_BIT_32(X86_GREG_x9) \
241 | RT_BIT_32(X86_GREG_x10) \
242 | RT_BIT_32(X86_GREG_x11) )
243# endif
244
245#elif defined(RT_ARCH_ARM64)
246# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
247# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
248# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
249# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
250# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
251# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
252# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
253# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
254# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
255# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
256# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
257 | RT_BIT_32(ARMV8_A64_REG_X1) \
258 | RT_BIT_32(ARMV8_A64_REG_X2) \
259 | RT_BIT_32(ARMV8_A64_REG_X3) \
260 | RT_BIT_32(ARMV8_A64_REG_X4) \
261 | RT_BIT_32(ARMV8_A64_REG_X5) \
262 | RT_BIT_32(ARMV8_A64_REG_X6) \
263 | RT_BIT_32(ARMV8_A64_REG_X7) )
264# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
265 | RT_BIT_32(ARMV8_A64_REG_X1) \
266 | RT_BIT_32(ARMV8_A64_REG_X2) \
267 | RT_BIT_32(ARMV8_A64_REG_X3) \
268 | RT_BIT_32(ARMV8_A64_REG_X4) \
269 | RT_BIT_32(ARMV8_A64_REG_X5) \
270 | RT_BIT_32(ARMV8_A64_REG_X6) \
271 | RT_BIT_32(ARMV8_A64_REG_X7) \
272 | RT_BIT_32(ARMV8_A64_REG_X8) \
273 | RT_BIT_32(ARMV8_A64_REG_X9) \
274 | RT_BIT_32(ARMV8_A64_REG_X10) \
275 | RT_BIT_32(ARMV8_A64_REG_X11) \
276 | RT_BIT_32(ARMV8_A64_REG_X12) \
277 | RT_BIT_32(ARMV8_A64_REG_X13) \
278 | RT_BIT_32(ARMV8_A64_REG_X14) \
279 | RT_BIT_32(ARMV8_A64_REG_X15) \
280 | RT_BIT_32(ARMV8_A64_REG_X16) \
281 | RT_BIT_32(ARMV8_A64_REG_X17) )
282
283#endif
284
285/** This is the maximum argument count we'll ever be needing. */
286#if defined(RT_OS_WINDOWS) && defined(VBOXSTRICTRC_STRICT_ENABLED)
287# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
288#else
289# define IEMNATIVE_CALL_MAX_ARG_COUNT 7
290#endif
291/** @} */
292
293
294/** @def IEMNATIVE_HST_GREG_COUNT
295 * Number of host general purpose registers we tracker. */
296/** @def IEMNATIVE_HST_GREG_MASK
297 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
298 * inverted register masks and such to get down to a correct set of regs. */
299#ifdef RT_ARCH_AMD64
300# define IEMNATIVE_HST_GREG_COUNT 16
301# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
302
303#elif defined(RT_ARCH_ARM64)
304# define IEMNATIVE_HST_GREG_COUNT 32
305# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
306#else
307# error "Port me!"
308#endif
309
310
311/** Native code generator label types. */
312typedef enum
313{
314 kIemNativeLabelType_Invalid = 0,
315 /* Labels w/o data, only once instance per TB: */
316 kIemNativeLabelType_Return,
317 kIemNativeLabelType_ReturnBreak,
318 kIemNativeLabelType_ReturnWithFlags,
319 kIemNativeLabelType_NonZeroRetOrPassUp,
320 kIemNativeLabelType_RaiseGp0,
321 kIemNativeLabelType_RaiseNm,
322 kIemNativeLabelType_ObsoleteTb,
323 kIemNativeLabelType_NeedCsLimChecking,
324 kIemNativeLabelType_CheckBranchMiss,
325 /* Labels with data, potentially multiple instances per TB: */
326 kIemNativeLabelType_FirstWithMultipleInstances,
327 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
328 kIemNativeLabelType_Else,
329 kIemNativeLabelType_Endif,
330 kIemNativeLabelType_CheckIrq,
331 kIemNativeLabelType_TlbLookup,
332 kIemNativeLabelType_TlbMiss,
333 kIemNativeLabelType_TlbDone,
334 kIemNativeLabelType_End
335} IEMNATIVELABELTYPE;
336
337/** Native code generator label definition. */
338typedef struct IEMNATIVELABEL
339{
340 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
341 * the epilog. */
342 uint32_t off;
343 /** The type of label (IEMNATIVELABELTYPE). */
344 uint16_t enmType;
345 /** Additional label data, type specific. */
346 uint16_t uData;
347} IEMNATIVELABEL;
348/** Pointer to a label. */
349typedef IEMNATIVELABEL *PIEMNATIVELABEL;
350
351
352/** Native code generator fixup types. */
353typedef enum
354{
355 kIemNativeFixupType_Invalid = 0,
356#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
357 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
358 kIemNativeFixupType_Rel32,
359#elif defined(RT_ARCH_ARM64)
360 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
361 kIemNativeFixupType_RelImm26At0,
362 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
363 kIemNativeFixupType_RelImm19At5,
364 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
365 kIemNativeFixupType_RelImm14At5,
366#endif
367 kIemNativeFixupType_End
368} IEMNATIVEFIXUPTYPE;
369
370/** Native code generator fixup. */
371typedef struct IEMNATIVEFIXUP
372{
373 /** Code offset of the fixup location. */
374 uint32_t off;
375 /** The IEMNATIVELABEL this is a fixup for. */
376 uint16_t idxLabel;
377 /** The fixup type (IEMNATIVEFIXUPTYPE). */
378 uint8_t enmType;
379 /** Addend or other data. */
380 int8_t offAddend;
381} IEMNATIVEFIXUP;
382/** Pointer to a native code generator fixup. */
383typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
384
385
386/**
387 * One bit of the state.
388 *
389 * Each register state takes up two bits. We keep the two bits in two separate
390 * 64-bit words to simplify applying them to the guest shadow register mask in
391 * the register allocator.
392 */
393typedef union IEMLIVENESSBIT
394{
395 uint64_t bm64;
396 RT_GCC_EXTENSION struct
397 { /* bit no */
398 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
399 uint64_t fUnusedPc : 1; /**< 0x10 / 16: (PC in ) */
400 uint64_t uPadding1 : 3; /**< 0x11 / 17: */
401 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
402 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
403 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
404 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
405 uint64_t fEflOther : 1; /**< 0x2c / 44: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
406 uint64_t fEflCf : 1; /**< 0x2d / 45: Carry flag (X86_EFL_CF / 0). */
407 uint64_t fEflPf : 1; /**< 0x2e / 46: Parity flag (X86_EFL_PF / 2). */
408 uint64_t fEflAf : 1; /**< 0x2f / 47: Auxilary carry flag (X86_EFL_AF / 4). */
409 uint64_t fEflZf : 1; /**< 0x30 / 48: Zero flag (X86_EFL_ZF / 6). */
410 uint64_t fEflSf : 1; /**< 0x31 / 49: Signed flag (X86_EFL_SF / 7). */
411 uint64_t fEflOf : 1; /**< 0x32 / 50: Overflow flag (X86_EFL_OF / 12). */
412 uint64_t uUnused : 13; /* 0x33 / 51 -> 0x40/64 */
413 };
414} IEMLIVENESSBIT;
415AssertCompileSize(IEMLIVENESSBIT, 8);
416
417#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
418#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
419#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
420#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
421#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
422#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
423#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
424
425
426/**
427 * A liveness state entry.
428 *
429 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
430 * Once we add a SSE register shadowing, we'll add another 64-bit element for
431 * that.
432 */
433typedef union IEMLIVENESSENTRY
434{
435#ifndef IEMLIVENESS_EXTENDED_LAYOUT
436 uint64_t bm64[16 / 8];
437 uint16_t bm32[16 / 4];
438 uint16_t bm16[16 / 2];
439 uint8_t bm8[ 16 / 1];
440 IEMLIVENESSBIT aBits[2];
441#else
442 uint64_t bm64[32 / 8];
443 uint16_t bm32[32 / 4];
444 uint16_t bm16[32 / 2];
445 uint8_t bm8[ 32 / 1];
446 IEMLIVENESSBIT aBits[4];
447#endif
448 RT_GCC_EXTENSION struct
449 {
450 /** Bit \#0 of the register states. */
451 IEMLIVENESSBIT Bit0;
452 /** Bit \#1 of the register states. */
453 IEMLIVENESSBIT Bit1;
454#ifdef IEMLIVENESS_EXTENDED_LAYOUT
455 /** Bit \#2 of the register states. */
456 IEMLIVENESSBIT Bit2;
457 /** Bit \#3 of the register states. */
458 IEMLIVENESSBIT Bit3;
459#endif
460 };
461} IEMLIVENESSENTRY;
462#ifndef IEMLIVENESS_EXTENDED_LAYOUT
463AssertCompileSize(IEMLIVENESSENTRY, 16);
464#else
465AssertCompileSize(IEMLIVENESSENTRY, 32);
466#endif
467/** Pointer to a liveness state entry. */
468typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
469/** Pointer to a const liveness state entry. */
470typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
471
472/** @name 64-bit value masks for IEMLIVENESSENTRY.
473 * @{ */ /* 0xzzzzyyyyxxxxwwww */
474#define IEMLIVENESSBIT_MASK UINT64_C(0x0007fffffff0ffff)
475
476#ifndef IEMLIVENESS_EXTENDED_LAYOUT
477# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
478# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
479
480# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
481# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
482#endif
483
484#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x0007f00000000000)
485
486#ifndef IEMLIVENESS_EXTENDED_LAYOUT
487# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
488# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
489#endif
490/** @} */
491
492
493/** @name The liveness state for a register.
494 *
495 * The state values have been picked to with state accumulation in mind (what
496 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
497 * performance critical work done with the values.
498 *
499 * This is a compressed state that only requires 2 bits per register.
500 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
501 * 1. the incoming state from the following call,
502 * 2. the outgoing state for this call,
503 * 3. mask of the entries set in the 2nd.
504 *
505 * The mask entry (3rd one above) will be used both when updating the outgoing
506 * state and when merging in incoming state for registers not touched by the
507 * current call.
508 *
509 * @{ */
510#ifndef IEMLIVENESS_EXTENDED_LAYOUT
511/** The register will be clobbered and the current value thrown away.
512 *
513 * When this is applied to the state (2) we'll simply be AND'ing it with the
514 * (old) mask (3) and adding the register to the mask. This way we'll
515 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
516 * IEMLIVENESS_STATE_INPUT states. */
517# define IEMLIVENESS_STATE_CLOBBERED 0
518/** The register is unused in the remainder of the TB.
519 *
520 * This is an initial state and can not be set by any of the
521 * iemNativeLivenessFunc_xxxx callbacks. */
522# define IEMLIVENESS_STATE_UNUSED 1
523/** The register value is required in a potential call or exception.
524 *
525 * This means that the register value must be calculated and is best written to
526 * the state, but that any shadowing registers can be flushed thereafter as it's
527 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
528 *
529 * It is typically applied across the board, but we preserve incoming
530 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
531 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
532 * 1. r0 = old & ~mask;
533 * 2. r0 = t1 & (t1 >> 1)'
534 * 3. state |= r0 | 0b10;
535 * 4. mask = ~0;
536 */
537# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
538/** The register value is used as input.
539 *
540 * This means that the register value must be calculated and it is best to keep
541 * it in a register. It does not need to be writtent out as such. This is the
542 * highest priority state.
543 *
544 * Whether the call modifies the register or not isn't relevant to earlier
545 * calls, so that's not recorded.
546 *
547 * When applying this state we just or in the value in the outgoing state and
548 * mask. */
549# define IEMLIVENESS_STATE_INPUT 3
550/** Mask of the state bits. */
551# define IEMLIVENESS_STATE_MASK 3
552/** The number of bits per state. */
553# define IEMLIVENESS_STATE_BIT_COUNT 2
554/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state. */
555# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
556/** Check if we're expecting read accesses to a register with the given (previous) liveness state. */
557# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
558/** Check if a register clobbering is expected given the (previous) liveness state.
559 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
560 * include INPUT if the register is used in more than one place. */
561# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
562
563#else /* IEMLIVENESS_EXTENDED_LAYOUT */
564/** The register is not used any more. */
565# define IEMLIVENESS_STATE_UNUSED 0
566/** Flag: The register is required in a potential exception or call. */
567# define IEMLIVENESS_STATE_POT_XCPT_OR_CALL 1
568# define IEMLIVENESS_BIT_POT_XCPT_OR_CALL 0
569/** Flag: The register is read. */
570# define IEMLIVENESS_STATE_READ 2
571# define IEMLIVENESS_BIT_READ 1
572/** Flag: The register is written. */
573# define IEMLIVENESS_STATE_WRITE 4
574# define IEMLIVENESS_BIT_WRITE 2
575/** Flag: Unconditional call (not needed, can be redefined for research). */
576# define IEMLIVENESS_STATE_CALL 8
577# define IEMLIVENESS_BIT_CALL 3
578# define IEMLIVENESS_BIT_OTHER 3 /**< More convenient name for this one. */
579# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
580 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
581# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
582# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
583#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
584/** @} */
585
586/** @name Liveness helpers for builtin functions and similar.
587 *
588 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
589 * own set of manimulator macros for those.
590 *
591 * @{ */
592/** Initializing the state as all unused. */
593#ifndef IEMLIVENESS_EXTENDED_LAYOUT
594# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
595 do { \
596 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
597 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
598 } while (0)
599#else
600# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
601 do { \
602 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = 0; \
603 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
604 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
605 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
606 } while (0)
607#endif
608
609/** Initializing the outgoing state with a potential xcpt or call state.
610 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT. */
611#ifndef IEMLIVENESS_EXTENDED_LAYOUT
612# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
613 do { \
614 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
615 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
616 } while (0)
617#else
618# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
619 do { \
620 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = IEMLIVENESSBIT_MASK; \
621 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64; \
622 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
623 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
624 } while (0)
625#endif
626
627/** Adds a segment base register as input to the outgoing state. */
628#ifndef IEMLIVENESS_EXTENDED_LAYOUT
629# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
630 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
631 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
632 } while (0)
633#else
634# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
635 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
636 } while (0)
637#endif
638
639/** Adds a segment attribute register as input to the outgoing state. */
640#ifndef IEMLIVENESS_EXTENDED_LAYOUT
641# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
642 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
643 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
644 } while (0)
645#else
646# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
647 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
648 } while (0)
649#endif
650
651/** Adds a segment limit register as input to the outgoing state. */
652#ifndef IEMLIVENESS_EXTENDED_LAYOUT
653# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
654 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
655 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
656 } while (0)
657#else
658# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
659 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
660 } while (0)
661#endif
662
663/** Adds a segment limit register as input to the outgoing state. */
664#ifndef IEMLIVENESS_EXTENDED_LAYOUT
665# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
666 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
667 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
668 } while (0)
669#else
670# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
671 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
672 } while (0)
673#endif
674/** @} */
675
676/**
677 * Guest registers that can be shadowed in GPRs.
678 *
679 * This runs parallel to the first 128-bits of liveness state. To avoid having
680 * the SegLimitXxxx range cross from the 1st 64-bit word to the 2nd,
681 * we've inserted some padding. The EFlags must be placed last, as the liveness
682 * state tracks it as 7 subcomponents and we don't want to waste space here.
683 */
684typedef enum IEMNATIVEGSTREG : uint8_t
685{
686 kIemNativeGstReg_GprFirst = 0,
687 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
688 kIemNativeGstReg_Pc,
689 kIemNativeGstReg_Cr0,
690 kIemNativeGstReg_FpuFcw,
691 kIemNativeGstReg_LivenessPadding19,
692 kIemNativeGstReg_SegBaseFirst,
693 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
694 kIemNativeGstReg_SegAttribFirst,
695 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
696 kIemNativeGstReg_SegLimitFirst,
697 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
698 kIemNativeGstReg_SegSelFirst,
699 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
700 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags - last! */
701 kIemNativeGstReg_End
702} IEMNATIVEGSTREG;
703AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
704
705/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
706 * @{ */
707#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
708#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
709#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
710#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
711#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
712/** @} */
713
714/**
715 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
716 */
717typedef enum IEMNATIVEGSTREGUSE
718{
719 /** The usage is read-only, the register holding the guest register
720 * shadow copy will not be modified by the caller. */
721 kIemNativeGstRegUse_ReadOnly = 0,
722 /** The caller will update the guest register (think: PC += cbInstr).
723 * The guest shadow copy will follow the returned register. */
724 kIemNativeGstRegUse_ForUpdate,
725 /** The call will put an entirely new value in the guest register, so
726 * if new register is allocate it will be returned uninitialized. */
727 kIemNativeGstRegUse_ForFullWrite,
728 /** The caller will use the guest register value as input in a calculation
729 * and the host register will be modified.
730 * This means that the returned host register will not be marked as a shadow
731 * copy of the guest register. */
732 kIemNativeGstRegUse_Calculation
733} IEMNATIVEGSTREGUSE;
734
735/**
736 * Guest registers (classes) that can be referenced.
737 */
738typedef enum IEMNATIVEGSTREGREF : uint8_t
739{
740 kIemNativeGstRegRef_Invalid = 0,
741 kIemNativeGstRegRef_Gpr,
742 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
743 kIemNativeGstRegRef_EFlags,
744 kIemNativeGstRegRef_MxCsr,
745 kIemNativeGstRegRef_FpuReg,
746 kIemNativeGstRegRef_MReg,
747 kIemNativeGstRegRef_XReg,
748 //kIemNativeGstRegRef_YReg, - doesn't work.
749 kIemNativeGstRegRef_End
750} IEMNATIVEGSTREGREF;
751
752
753/** Variable kinds. */
754typedef enum IEMNATIVEVARKIND : uint8_t
755{
756 /** Customary invalid zero value. */
757 kIemNativeVarKind_Invalid = 0,
758 /** This is either in a register or on the stack. */
759 kIemNativeVarKind_Stack,
760 /** Immediate value - loaded into register when needed, or can live on the
761 * stack if referenced (in theory). */
762 kIemNativeVarKind_Immediate,
763 /** Variable reference - loaded into register when needed, never stack. */
764 kIemNativeVarKind_VarRef,
765 /** Guest register reference - loaded into register when needed, never stack. */
766 kIemNativeVarKind_GstRegRef,
767 /** End of valid values. */
768 kIemNativeVarKind_End
769} IEMNATIVEVARKIND;
770
771
772/** Variable or argument. */
773typedef struct IEMNATIVEVAR
774{
775 /** The kind of variable. */
776 IEMNATIVEVARKIND enmKind;
777 /** The variable size in bytes. */
778 uint8_t cbVar;
779 /** The first stack slot (uint64_t), except for immediate and references
780 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
781 * has a stack slot it has been initialized and has a value. Unused variables
782 * has neither a stack slot nor a host register assignment. */
783 uint8_t idxStackSlot;
784 /** The host register allocated for the variable, UINT8_MAX if not. */
785 uint8_t idxReg;
786 /** The argument number if argument, UINT8_MAX if regular variable. */
787 uint8_t uArgNo;
788 /** If referenced, the index of the variable referencing this one, otherwise
789 * UINT8_MAX. A referenced variable must only be placed on the stack and
790 * must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
791 uint8_t idxReferrerVar;
792 /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not.
793 * @todo not sure what this really is for... */
794 IEMNATIVEGSTREG enmGstReg;
795 /** Set if the registered is currently used exclusively, false if the
796 * variable is idle and the register can be grabbed. */
797 bool fRegAcquired;
798
799 union
800 {
801 /** kIemNativeVarKind_Immediate: The immediate value. */
802 uint64_t uValue;
803 /** kIemNativeVarKind_VarRef: The index of the variable being referenced. */
804 uint8_t idxRefVar;
805 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
806 struct
807 {
808 /** The class of register. */
809 IEMNATIVEGSTREGREF enmClass;
810 /** Index within the class. */
811 uint8_t idx;
812 } GstRegRef;
813 } u;
814} IEMNATIVEVAR;
815
816/** What is being kept in a host register. */
817typedef enum IEMNATIVEWHAT : uint8_t
818{
819 /** The traditional invalid zero value. */
820 kIemNativeWhat_Invalid = 0,
821 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
822 kIemNativeWhat_Var,
823 /** Temporary register, this is typically freed when a MC completes. */
824 kIemNativeWhat_Tmp,
825 /** Call argument w/o a variable mapping. This is free (via
826 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
827 kIemNativeWhat_Arg,
828 /** Return status code.
829 * @todo not sure if we need this... */
830 kIemNativeWhat_rc,
831 /** The fixed pVCpu (PVMCPUCC) register.
832 * @todo consider offsetting this on amd64 to use negative offsets to access
833 * more members using 8-byte disp. */
834 kIemNativeWhat_pVCpuFixed,
835 /** The fixed pCtx (PCPUMCTX) register.
836 * @todo consider offsetting this on amd64 to use negative offsets to access
837 * more members using 8-byte disp. */
838 kIemNativeWhat_pCtxFixed,
839 /** Fixed temporary register. */
840 kIemNativeWhat_FixedTmp,
841 /** Register reserved by the CPU or OS architecture. */
842 kIemNativeWhat_FixedReserved,
843 /** End of valid values. */
844 kIemNativeWhat_End
845} IEMNATIVEWHAT;
846
847/**
848 * Host general register entry.
849 *
850 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
851 *
852 * @todo Track immediate values in host registers similarlly to how we track the
853 * guest register shadow copies. For it to be real helpful, though,
854 * we probably need to know which will be reused and put them into
855 * non-volatile registers, otherwise it's going to be more or less
856 * restricted to an instruction or two.
857 */
858typedef struct IEMNATIVEHSTREG
859{
860 /** Set of guest registers this one shadows.
861 *
862 * Using a bitmap here so we can designate the same host register as a copy
863 * for more than one guest register. This is expected to be useful in
864 * situations where one value is copied to several registers in a sequence.
865 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
866 * sequence we'd want to let this register follow to be a copy of and there
867 * will always be places where we'd be picking the wrong one.
868 */
869 uint64_t fGstRegShadows;
870 /** What is being kept in this register. */
871 IEMNATIVEWHAT enmWhat;
872 /** Variable index if holding a variable, otherwise UINT8_MAX. */
873 uint8_t idxVar;
874 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
875 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
876 * that scope. */
877 uint8_t idxStackSlot;
878 /** Alignment padding. */
879 uint8_t abAlign[5];
880} IEMNATIVEHSTREG;
881
882
883/**
884 * Core state for the native recompiler, that is, things that needs careful
885 * handling when dealing with branches.
886 */
887typedef struct IEMNATIVECORESTATE
888{
889 /** Allocation bitmap for aHstRegs. */
890 uint32_t bmHstRegs;
891
892 /** Bitmap marking which host register contains guest register shadow copies.
893 * This is used during register allocation to try preserve copies. */
894 uint32_t bmHstRegsWithGstShadow;
895 /** Bitmap marking valid entries in aidxGstRegShadows. */
896 uint64_t bmGstRegShadows;
897
898 union
899 {
900 /** Index of variable arguments, UINT8_MAX if not valid. */
901 uint8_t aidxArgVars[8];
902 /** For more efficient resetting. */
903 uint64_t u64ArgVars;
904 };
905
906 /** Allocation bitmap for the stack. */
907 uint32_t bmStack;
908 /** Allocation bitmap for aVars. */
909 uint32_t bmVars;
910
911 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
912 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
913 * (A shadow copy of a guest register can only be held in a one host register,
914 * there are no duplicate copies or ambiguities like that). */
915 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
916
917 /** Host register allocation tracking. */
918 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
919
920 /** Variables and arguments. */
921 IEMNATIVEVAR aVars[9];
922} IEMNATIVECORESTATE;
923/** Pointer to core state. */
924typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
925/** Pointer to const core state. */
926typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
927
928
929/**
930 * Conditional stack entry.
931 */
932typedef struct IEMNATIVECOND
933{
934 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
935 bool fInElse;
936 /** The label for the IEM_MC_ELSE. */
937 uint32_t idxLabelElse;
938 /** The label for the IEM_MC_ENDIF. */
939 uint32_t idxLabelEndIf;
940 /** The initial state snapshot as the if-block starts executing. */
941 IEMNATIVECORESTATE InitialState;
942 /** The state snapshot at the end of the if-block. */
943 IEMNATIVECORESTATE IfFinalState;
944} IEMNATIVECOND;
945/** Pointer to a condition stack entry. */
946typedef IEMNATIVECOND *PIEMNATIVECOND;
947
948
949/**
950 * Native recompiler state.
951 */
952typedef struct IEMRECOMPILERSTATE
953{
954 /** Size of the buffer that pbNativeRecompileBufR3 points to in
955 * IEMNATIVEINSTR units. */
956 uint32_t cInstrBufAlloc;
957#ifdef VBOX_STRICT
958 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
959 uint32_t offInstrBufChecked;
960#else
961 uint32_t uPadding1; /* We don't keep track of the size here... */
962#endif
963 /** Fixed temporary code buffer for native recompilation. */
964 PIEMNATIVEINSTR pInstrBuf;
965
966 /** Bitmaps with the label types used. */
967 uint64_t bmLabelTypes;
968 /** Actual number of labels in paLabels. */
969 uint32_t cLabels;
970 /** Max number of entries allowed in paLabels before reallocating it. */
971 uint32_t cLabelsAlloc;
972 /** Labels defined while recompiling (referenced by fixups). */
973 PIEMNATIVELABEL paLabels;
974 /** Array with indexes of unique labels (uData always 0). */
975 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
976
977 /** Actual number of fixups paFixups. */
978 uint32_t cFixups;
979 /** Max number of entries allowed in paFixups before reallocating it. */
980 uint32_t cFixupsAlloc;
981 /** Buffer used by the recompiler for recording fixups when generating code. */
982 PIEMNATIVEFIXUP paFixups;
983
984#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
985 /** Number of debug info entries allocated for pDbgInfo. */
986 uint32_t cDbgInfoAlloc;
987 uint32_t uPadding;
988 /** Debug info. */
989 PIEMTBDBG pDbgInfo;
990#endif
991
992#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
993 /** The current call index (liveness array and threaded calls in TB). */
994 uint32_t idxCurCall;
995 /** Number of liveness entries allocated. */
996 uint32_t cLivenessEntriesAlloc;
997 /** Liveness entries for all the calls in the TB begin recompiled.
998 * The entry for idxCurCall contains the info for what the next call will
999 * require wrt registers. (Which means the last entry is the initial liveness
1000 * state.) */
1001 PIEMLIVENESSENTRY paLivenessEntries;
1002#endif
1003
1004 /** The translation block being recompiled. */
1005 PCIEMTB pTbOrg;
1006 /** The VMCPU structure of the EMT. */
1007 PVMCPUCC pVCpu;
1008
1009 /** Condition sequence number (for generating unique labels). */
1010 uint16_t uCondSeqNo;
1011 /** Check IRQ seqeunce number (for generating unique labels). */
1012 uint16_t uCheckIrqSeqNo;
1013 /** TLB load sequence number (for generating unique labels). */
1014 uint16_t uTlbSeqNo;
1015 /** The current condition stack depth (aCondStack). */
1016 uint8_t cCondDepth;
1017
1018 /** The argument count + hidden regs from the IEM_MC_BEGIN statement. */
1019 uint8_t cArgs;
1020 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1021 uint32_t fCImpl;
1022 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1023 uint32_t fMc;
1024 /** The expected IEMCPU::fExec value for the current call/instruction. */
1025 uint32_t fExec;
1026
1027 /** Core state requiring care with branches. */
1028 IEMNATIVECORESTATE Core;
1029
1030 /** The condition nesting stack. */
1031 IEMNATIVECOND aCondStack[2];
1032
1033#ifndef IEM_WITH_THROW_CATCH
1034 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
1035 * for recompilation error handling. */
1036 jmp_buf JmpBuf;
1037#endif
1038} IEMRECOMPILERSTATE;
1039/** Pointer to a native recompiler state. */
1040typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
1041
1042
1043/** @def IEMNATIVE_TRY_SETJMP
1044 * Wrapper around setjmp / try, hiding all the ugly differences.
1045 *
1046 * @note Use with extreme care as this is a fragile macro.
1047 * @param a_pReNative The native recompile state.
1048 * @param a_rcTarget The variable that should receive the status code in case
1049 * of a longjmp/throw.
1050 */
1051/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
1052 * Start wrapper for catch / setjmp-else.
1053 *
1054 * This will set up a scope.
1055 *
1056 * @note Use with extreme care as this is a fragile macro.
1057 * @param a_pReNative The native recompile state.
1058 * @param a_rcTarget The variable that should receive the status code in case
1059 * of a longjmp/throw.
1060 */
1061/** @def IEMNATIVE_CATCH_LONGJMP_END
1062 * End wrapper for catch / setjmp-else.
1063 *
1064 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
1065 * up the state.
1066 *
1067 * @note Use with extreme care as this is a fragile macro.
1068 * @param a_pReNative The native recompile state.
1069 */
1070/** @def IEMNATIVE_DO_LONGJMP
1071 *
1072 * Wrapper around longjmp / throw.
1073 *
1074 * @param a_pReNative The native recompile state.
1075 * @param a_rc The status code jump back with / throw.
1076 */
1077#ifdef IEM_WITH_THROW_CATCH
1078# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1079 a_rcTarget = VINF_SUCCESS; \
1080 try
1081# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1082 catch (int rcThrown) \
1083 { \
1084 a_rcTarget = rcThrown
1085# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1086 } \
1087 ((void)0)
1088# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
1089#else /* !IEM_WITH_THROW_CATCH */
1090# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1091 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
1092# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1093 else \
1094 { \
1095 ((void)0)
1096# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1097 }
1098# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
1099#endif /* !IEM_WITH_THROW_CATCH */
1100
1101
1102/**
1103 * Native recompiler worker for a threaded function.
1104 *
1105 * @returns New code buffer offset; throws VBox status code in case of a failure.
1106 * @param pReNative The native recompiler state.
1107 * @param off The current code buffer offset.
1108 * @param pCallEntry The threaded call entry.
1109 *
1110 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
1111 */
1112typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
1113/** Pointer to a native recompiler worker for a threaded function. */
1114typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
1115
1116/** Defines a native recompiler worker for a threaded function.
1117 * @see FNIEMNATIVERECOMPFUNC */
1118#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
1119 uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
1120
1121/** Prototypes a native recompiler function for a threaded function.
1122 * @see FNIEMNATIVERECOMPFUNC */
1123#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
1124
1125
1126/**
1127 * Native recompiler liveness analysis worker for a threaded function.
1128 *
1129 * @param pCallEntry The threaded call entry.
1130 * @param pIncoming The incoming liveness state entry.
1131 * @param pOutgoing The outgoing liveness state entry.
1132 */
1133typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
1134 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
1135/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
1136typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
1137
1138/** Defines a native recompiler liveness analysis worker for a threaded function.
1139 * @see FNIEMNATIVELIVENESSFUNC */
1140#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
1141 DECLCALLBACK(void) a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
1142
1143/** Prototypes a native recompiler liveness analysis function for a threaded function.
1144 * @see FNIEMNATIVELIVENESSFUNC */
1145#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
1146
1147
1148/** Define a native recompiler helper function, safe to call from the TB code. */
1149#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
1150 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1151/** Prototype a native recompiler helper function, safe to call from the TB code. */
1152#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
1153 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1154
1155
1156DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1157 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
1158DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
1159DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
1160 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
1161DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
1162
1163DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1164DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1165 bool fPreferVolatile = true);
1166DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm,
1167 bool fPreferVolatile = true);
1168DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1169 IEMNATIVEGSTREG enmGstReg,
1170 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1171 bool fNoVolatileRegs = false, bool fSkipLivenessAssert = false);
1172DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1173 IEMNATIVEGSTREG enmGstReg);
1174
1175DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocVar(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t idxVar);
1176DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
1177DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
1178DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1179DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1180DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1181DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
1182DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
1183DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1184DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
1185 uint32_t fKeepVars = 0);
1186DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
1187DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
1188DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1189 uint32_t fHstRegsActiveShadows);
1190
1191DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1192DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1193 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1194DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1195 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
1196DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1197 uint32_t fHstRegsNotToSave);
1198DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1199 uint32_t fHstRegsNotToSave);
1200
1201DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1202 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
1203DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
1204DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
1205 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
1206 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
1207DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1208 PCIEMTHRDEDCALLENTRY pCallEntry);
1209
1210extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
1211
1212
1213/**
1214 * Ensures that there is sufficient space in the instruction output buffer.
1215 *
1216 * This will reallocate the buffer if needed and allowed.
1217 *
1218 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
1219 * allocation size.
1220 *
1221 * @returns Pointer to the instruction output buffer on success; throws VBox
1222 * status code on failure, so no need to check it.
1223 * @param pReNative The native recompile state.
1224 * @param off Current instruction offset. Works safely for UINT32_MAX
1225 * as well.
1226 * @param cInstrReq Number of instruction about to be added. It's okay to
1227 * overestimate this a bit.
1228 */
1229DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
1230iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
1231{
1232 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
1233 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
1234 {
1235#ifdef VBOX_STRICT
1236 pReNative->offInstrBufChecked = offChecked;
1237#endif
1238 return pReNative->pInstrBuf;
1239 }
1240 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
1241}
1242
1243/**
1244 * Checks that we didn't exceed the space requested in the last
1245 * iemNativeInstrBufEnsure() call.
1246 */
1247#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
1248 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
1249 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
1250
1251/**
1252 * Checks that a variable index is valid.
1253 */
1254#define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1255 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1256 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
1257
1258/**
1259 * Checks that a variable index is valid and that the variable is assigned the
1260 * correct argument number.
1261 * This also adds a RT_NOREF of a_idxVar.
1262 */
1263#define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1264 RT_NOREF_PV(a_idxVar); \
1265 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1266 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
1267 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
1268 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1269 (a_pReNative)->Core.aVars[RT_MAX(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
1270 } while (0)
1271
1272/**
1273 * Calculates the stack address of a variable as a [r]BP displacement value.
1274 */
1275DECL_FORCE_INLINE(int32_t)
1276iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
1277{
1278 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
1279 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
1280}
1281
1282
1283/**
1284 * Releases the variable's register.
1285 *
1286 * The register must have been previously acquired calling
1287 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
1288 * iemNativeVarRegisterSetAndAcquire().
1289 */
1290DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
1291{
1292 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
1293 Assert(pReNative->Core.aVars[idxVar].fRegAcquired);
1294 pReNative->Core.aVars[idxVar].fRegAcquired = false;
1295}
1296
1297/** @} */
1298
1299#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
1300
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette