VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 103599

Last change on this file since 103599 was 103592, checked in by vboxsync, 12 months ago

VMM/IEM: Native translation of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() body (untested due to no instruction still being re-compilable), bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 57.1 KB
Line 
1/* $Id: IEMN8veRecompiler.h 103592 2024-02-27 17:19:48Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
41 * Enables generating internal debug info for better TB disassembly dumping. */
42#if defined(DEBUG) || defined(DOXYGEN_RUNNING)
43# define IEMNATIVE_WITH_TB_DEBUG_INFO
44#endif
45
46/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
47 * Enables liveness analysis. */
48#if 1 || defined(DOXYGEN_RUNNING)
49# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
50/*# define IEMLIVENESS_EXTENDED_LAYOUT*/
51#endif
52
53#ifdef VBOX_WITH_STATISTICS
54/** Always count instructions for now. */
55# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
56#endif
57
58
59/** @name Stack Frame Layout
60 *
61 * @{ */
62/** The size of the area for stack variables and spills and stuff.
63 * @note This limit is duplicated in the python script(s). We add 0x40 for
64 * alignment padding. */
65#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
66/** Number of 64-bit variable slots (0x100 / 8 = 32. */
67#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
68AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
69
70#ifdef RT_ARCH_AMD64
71/** An stack alignment adjustment (between non-volatile register pushes and
72 * the stack variable area, so the latter better aligned). */
73# define IEMNATIVE_FRAME_ALIGN_SIZE 8
74
75/** Number of stack arguments slots for calls made from the frame. */
76# ifdef RT_OS_WINDOWS
77# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
78# else
79# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
80# endif
81/** Number of any shadow arguments (spill area) for calls we make. */
82# ifdef RT_OS_WINDOWS
83# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
84# else
85# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
86# endif
87
88/** Frame pointer (RBP) relative offset of the last push. */
89# ifdef RT_OS_WINDOWS
90# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
91# else
92# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
93# endif
94/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
95 * address for it). */
96# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
97/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
98# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
99/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
100# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
101# ifdef RT_OS_WINDOWS
102/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
103# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
104/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
105# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
106# endif
107
108# ifdef RT_OS_WINDOWS
109/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
110# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
111/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
112# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
113/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
114# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
115/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
116# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
117# endif
118
119#elif RT_ARCH_ARM64
120/** No alignment padding needed for arm64. */
121# define IEMNATIVE_FRAME_ALIGN_SIZE 0
122/** No stack argument slots, got 8 registers for arguments will suffice. */
123# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
124/** There are no argument spill area. */
125# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
126
127/** Number of saved registers at the top of our stack frame.
128 * This includes the return address and old frame pointer, so x19 thru x30. */
129# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
130/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
131# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
132
133/** Frame pointer (BP) relative offset of the last push. */
134# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
135
136/** Frame pointer (BP) relative offset of the stack variable area (the lowest
137 * address for it). */
138# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
139
140#else
141# error "port me"
142#endif
143/** @} */
144
145
146/** @name Fixed Register Allocation(s)
147 * @{ */
148/** @def IEMNATIVE_REG_FIXED_PVMCPU
149 * The number of the register holding the pVCpu pointer. */
150/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
151 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
152 * @note This not available on AMD64, only ARM64. */
153/** @def IEMNATIVE_REG_FIXED_TMP0
154 * Dedicated temporary register.
155 * @todo replace this by a register allocator and content tracker. */
156/** @def IEMNATIVE_REG_FIXED_MASK
157 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
158 * architecture. */
159#if defined(RT_ARCH_AMD64) && !defined(DOXYGEN_RUNNING)
160# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
161# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
162# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
163 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
164 | RT_BIT_32(X86_GREG_xSP) \
165 | RT_BIT_32(X86_GREG_xBP) )
166
167#elif defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
168# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
169# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
170# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
171# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
172 | RT_BIT_32(ARMV8_A64_REG_LR) \
173 | RT_BIT_32(ARMV8_A64_REG_BP) \
174 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
175 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
176 | RT_BIT_32(ARMV8_A64_REG_X18) \
177 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) )
178
179#else
180# error "port me"
181#endif
182/** @} */
183
184/** @name Call related registers.
185 * @{ */
186/** @def IEMNATIVE_CALL_RET_GREG
187 * The return value register. */
188/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
189 * Number of arguments in registers. */
190/** @def IEMNATIVE_CALL_ARG0_GREG
191 * The general purpose register carrying argument \#0. */
192/** @def IEMNATIVE_CALL_ARG1_GREG
193 * The general purpose register carrying argument \#1. */
194/** @def IEMNATIVE_CALL_ARG2_GREG
195 * The general purpose register carrying argument \#2. */
196/** @def IEMNATIVE_CALL_ARG3_GREG
197 * The general purpose register carrying argument \#3. */
198/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
199 * Mask of registers the callee will not save and may trash. */
200#ifdef RT_ARCH_AMD64
201# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
202
203# ifdef RT_OS_WINDOWS
204# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
205# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
206# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
207# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
208# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
209# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
210 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
211 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
212 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
213# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
214 | RT_BIT_32(X86_GREG_xCX) \
215 | RT_BIT_32(X86_GREG_xDX) \
216 | RT_BIT_32(X86_GREG_x8) \
217 | RT_BIT_32(X86_GREG_x9) \
218 | RT_BIT_32(X86_GREG_x10) \
219 | RT_BIT_32(X86_GREG_x11) )
220# else
221# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
222# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
223# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
224# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
225# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
226# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
227# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
228# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
229 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
230 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
231 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
232 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
233 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
234# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
235 | RT_BIT_32(X86_GREG_xCX) \
236 | RT_BIT_32(X86_GREG_xDX) \
237 | RT_BIT_32(X86_GREG_xDI) \
238 | RT_BIT_32(X86_GREG_xSI) \
239 | RT_BIT_32(X86_GREG_x8) \
240 | RT_BIT_32(X86_GREG_x9) \
241 | RT_BIT_32(X86_GREG_x10) \
242 | RT_BIT_32(X86_GREG_x11) )
243# endif
244
245#elif defined(RT_ARCH_ARM64)
246# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
247# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
248# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
249# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
250# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
251# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
252# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
253# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
254# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
255# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
256# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
257 | RT_BIT_32(ARMV8_A64_REG_X1) \
258 | RT_BIT_32(ARMV8_A64_REG_X2) \
259 | RT_BIT_32(ARMV8_A64_REG_X3) \
260 | RT_BIT_32(ARMV8_A64_REG_X4) \
261 | RT_BIT_32(ARMV8_A64_REG_X5) \
262 | RT_BIT_32(ARMV8_A64_REG_X6) \
263 | RT_BIT_32(ARMV8_A64_REG_X7) )
264# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
265 | RT_BIT_32(ARMV8_A64_REG_X1) \
266 | RT_BIT_32(ARMV8_A64_REG_X2) \
267 | RT_BIT_32(ARMV8_A64_REG_X3) \
268 | RT_BIT_32(ARMV8_A64_REG_X4) \
269 | RT_BIT_32(ARMV8_A64_REG_X5) \
270 | RT_BIT_32(ARMV8_A64_REG_X6) \
271 | RT_BIT_32(ARMV8_A64_REG_X7) \
272 | RT_BIT_32(ARMV8_A64_REG_X8) \
273 | RT_BIT_32(ARMV8_A64_REG_X9) \
274 | RT_BIT_32(ARMV8_A64_REG_X10) \
275 | RT_BIT_32(ARMV8_A64_REG_X11) \
276 | RT_BIT_32(ARMV8_A64_REG_X12) \
277 | RT_BIT_32(ARMV8_A64_REG_X13) \
278 | RT_BIT_32(ARMV8_A64_REG_X14) \
279 | RT_BIT_32(ARMV8_A64_REG_X15) \
280 | RT_BIT_32(ARMV8_A64_REG_X16) \
281 | RT_BIT_32(ARMV8_A64_REG_X17) )
282
283#endif
284
285/** This is the maximum argument count we'll ever be needing. */
286#if defined(RT_OS_WINDOWS) && defined(VBOXSTRICTRC_STRICT_ENABLED)
287# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
288#else
289# define IEMNATIVE_CALL_MAX_ARG_COUNT 7
290#endif
291/** @} */
292
293
294/** @def IEMNATIVE_HST_GREG_COUNT
295 * Number of host general purpose registers we tracker. */
296/** @def IEMNATIVE_HST_GREG_MASK
297 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
298 * inverted register masks and such to get down to a correct set of regs. */
299#ifdef RT_ARCH_AMD64
300# define IEMNATIVE_HST_GREG_COUNT 16
301# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
302
303#elif defined(RT_ARCH_ARM64)
304# define IEMNATIVE_HST_GREG_COUNT 32
305# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
306#else
307# error "Port me!"
308#endif
309
310
311/** Native code generator label types. */
312typedef enum
313{
314 kIemNativeLabelType_Invalid = 0,
315 /* Labels w/o data, only once instance per TB: */
316 kIemNativeLabelType_Return,
317 kIemNativeLabelType_ReturnBreak,
318 kIemNativeLabelType_ReturnWithFlags,
319 kIemNativeLabelType_NonZeroRetOrPassUp,
320 kIemNativeLabelType_RaiseGp0,
321 kIemNativeLabelType_RaiseNm,
322 kIemNativeLabelType_RaiseUd,
323 kIemNativeLabelType_ObsoleteTb,
324 kIemNativeLabelType_NeedCsLimChecking,
325 kIemNativeLabelType_CheckBranchMiss,
326 /* Labels with data, potentially multiple instances per TB: */
327 kIemNativeLabelType_FirstWithMultipleInstances,
328 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
329 kIemNativeLabelType_Else,
330 kIemNativeLabelType_Endif,
331 kIemNativeLabelType_CheckIrq,
332 kIemNativeLabelType_TlbLookup,
333 kIemNativeLabelType_TlbMiss,
334 kIemNativeLabelType_TlbDone,
335 kIemNativeLabelType_End
336} IEMNATIVELABELTYPE;
337
338/** Native code generator label definition. */
339typedef struct IEMNATIVELABEL
340{
341 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
342 * the epilog. */
343 uint32_t off;
344 /** The type of label (IEMNATIVELABELTYPE). */
345 uint16_t enmType;
346 /** Additional label data, type specific. */
347 uint16_t uData;
348} IEMNATIVELABEL;
349/** Pointer to a label. */
350typedef IEMNATIVELABEL *PIEMNATIVELABEL;
351
352
353/** Native code generator fixup types. */
354typedef enum
355{
356 kIemNativeFixupType_Invalid = 0,
357#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
358 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
359 kIemNativeFixupType_Rel32,
360#elif defined(RT_ARCH_ARM64)
361 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
362 kIemNativeFixupType_RelImm26At0,
363 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
364 kIemNativeFixupType_RelImm19At5,
365 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
366 kIemNativeFixupType_RelImm14At5,
367#endif
368 kIemNativeFixupType_End
369} IEMNATIVEFIXUPTYPE;
370
371/** Native code generator fixup. */
372typedef struct IEMNATIVEFIXUP
373{
374 /** Code offset of the fixup location. */
375 uint32_t off;
376 /** The IEMNATIVELABEL this is a fixup for. */
377 uint16_t idxLabel;
378 /** The fixup type (IEMNATIVEFIXUPTYPE). */
379 uint8_t enmType;
380 /** Addend or other data. */
381 int8_t offAddend;
382} IEMNATIVEFIXUP;
383/** Pointer to a native code generator fixup. */
384typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
385
386
387/**
388 * One bit of the state.
389 *
390 * Each register state takes up two bits. We keep the two bits in two separate
391 * 64-bit words to simplify applying them to the guest shadow register mask in
392 * the register allocator.
393 */
394typedef union IEMLIVENESSBIT
395{
396 uint64_t bm64;
397 RT_GCC_EXTENSION struct
398 { /* bit no */
399 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
400 uint64_t fUnusedPc : 1; /**< 0x10 / 16: (PC in ) */
401 uint64_t uPadding1 : 3; /**< 0x11 / 17: */
402 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
403 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
404 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
405 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
406 uint64_t fEflOther : 1; /**< 0x2c / 44: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
407 uint64_t fEflCf : 1; /**< 0x2d / 45: Carry flag (X86_EFL_CF / 0). */
408 uint64_t fEflPf : 1; /**< 0x2e / 46: Parity flag (X86_EFL_PF / 2). */
409 uint64_t fEflAf : 1; /**< 0x2f / 47: Auxilary carry flag (X86_EFL_AF / 4). */
410 uint64_t fEflZf : 1; /**< 0x30 / 48: Zero flag (X86_EFL_ZF / 6). */
411 uint64_t fEflSf : 1; /**< 0x31 / 49: Signed flag (X86_EFL_SF / 7). */
412 uint64_t fEflOf : 1; /**< 0x32 / 50: Overflow flag (X86_EFL_OF / 12). */
413 uint64_t uUnused : 13; /* 0x33 / 51 -> 0x40/64 */
414 };
415} IEMLIVENESSBIT;
416AssertCompileSize(IEMLIVENESSBIT, 8);
417
418#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
419#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
420#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
421#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
422#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
423#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
424#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
425
426
427/**
428 * A liveness state entry.
429 *
430 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
431 * Once we add a SSE register shadowing, we'll add another 64-bit element for
432 * that.
433 */
434typedef union IEMLIVENESSENTRY
435{
436#ifndef IEMLIVENESS_EXTENDED_LAYOUT
437 uint64_t bm64[16 / 8];
438 uint16_t bm32[16 / 4];
439 uint16_t bm16[16 / 2];
440 uint8_t bm8[ 16 / 1];
441 IEMLIVENESSBIT aBits[2];
442#else
443 uint64_t bm64[32 / 8];
444 uint16_t bm32[32 / 4];
445 uint16_t bm16[32 / 2];
446 uint8_t bm8[ 32 / 1];
447 IEMLIVENESSBIT aBits[4];
448#endif
449 RT_GCC_EXTENSION struct
450 {
451 /** Bit \#0 of the register states. */
452 IEMLIVENESSBIT Bit0;
453 /** Bit \#1 of the register states. */
454 IEMLIVENESSBIT Bit1;
455#ifdef IEMLIVENESS_EXTENDED_LAYOUT
456 /** Bit \#2 of the register states. */
457 IEMLIVENESSBIT Bit2;
458 /** Bit \#3 of the register states. */
459 IEMLIVENESSBIT Bit3;
460#endif
461 };
462} IEMLIVENESSENTRY;
463#ifndef IEMLIVENESS_EXTENDED_LAYOUT
464AssertCompileSize(IEMLIVENESSENTRY, 16);
465#else
466AssertCompileSize(IEMLIVENESSENTRY, 32);
467#endif
468/** Pointer to a liveness state entry. */
469typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
470/** Pointer to a const liveness state entry. */
471typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
472
473/** @name 64-bit value masks for IEMLIVENESSENTRY.
474 * @{ */ /* 0xzzzzyyyyxxxxwwww */
475#define IEMLIVENESSBIT_MASK UINT64_C(0x0007fffffff0ffff)
476
477#ifndef IEMLIVENESS_EXTENDED_LAYOUT
478# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
479# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
480
481# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
482# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
483#endif
484
485#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x0007f00000000000)
486
487#ifndef IEMLIVENESS_EXTENDED_LAYOUT
488# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
489# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
490#endif
491/** @} */
492
493
494/** @name The liveness state for a register.
495 *
496 * The state values have been picked to with state accumulation in mind (what
497 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
498 * performance critical work done with the values.
499 *
500 * This is a compressed state that only requires 2 bits per register.
501 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
502 * 1. the incoming state from the following call,
503 * 2. the outgoing state for this call,
504 * 3. mask of the entries set in the 2nd.
505 *
506 * The mask entry (3rd one above) will be used both when updating the outgoing
507 * state and when merging in incoming state for registers not touched by the
508 * current call.
509 *
510 * @{ */
511#ifndef IEMLIVENESS_EXTENDED_LAYOUT
512/** The register will be clobbered and the current value thrown away.
513 *
514 * When this is applied to the state (2) we'll simply be AND'ing it with the
515 * (old) mask (3) and adding the register to the mask. This way we'll
516 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
517 * IEMLIVENESS_STATE_INPUT states. */
518# define IEMLIVENESS_STATE_CLOBBERED 0
519/** The register is unused in the remainder of the TB.
520 *
521 * This is an initial state and can not be set by any of the
522 * iemNativeLivenessFunc_xxxx callbacks. */
523# define IEMLIVENESS_STATE_UNUSED 1
524/** The register value is required in a potential call or exception.
525 *
526 * This means that the register value must be calculated and is best written to
527 * the state, but that any shadowing registers can be flushed thereafter as it's
528 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
529 *
530 * It is typically applied across the board, but we preserve incoming
531 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
532 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
533 * 1. r0 = old & ~mask;
534 * 2. r0 = t1 & (t1 >> 1)'
535 * 3. state |= r0 | 0b10;
536 * 4. mask = ~0;
537 */
538# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
539/** The register value is used as input.
540 *
541 * This means that the register value must be calculated and it is best to keep
542 * it in a register. It does not need to be writtent out as such. This is the
543 * highest priority state.
544 *
545 * Whether the call modifies the register or not isn't relevant to earlier
546 * calls, so that's not recorded.
547 *
548 * When applying this state we just or in the value in the outgoing state and
549 * mask. */
550# define IEMLIVENESS_STATE_INPUT 3
551/** Mask of the state bits. */
552# define IEMLIVENESS_STATE_MASK 3
553/** The number of bits per state. */
554# define IEMLIVENESS_STATE_BIT_COUNT 2
555/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state. */
556# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
557/** Check if we're expecting read accesses to a register with the given (previous) liveness state. */
558# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
559/** Check if a register clobbering is expected given the (previous) liveness state.
560 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
561 * include INPUT if the register is used in more than one place. */
562# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
563
564#else /* IEMLIVENESS_EXTENDED_LAYOUT */
565/** The register is not used any more. */
566# define IEMLIVENESS_STATE_UNUSED 0
567/** Flag: The register is required in a potential exception or call. */
568# define IEMLIVENESS_STATE_POT_XCPT_OR_CALL 1
569# define IEMLIVENESS_BIT_POT_XCPT_OR_CALL 0
570/** Flag: The register is read. */
571# define IEMLIVENESS_STATE_READ 2
572# define IEMLIVENESS_BIT_READ 1
573/** Flag: The register is written. */
574# define IEMLIVENESS_STATE_WRITE 4
575# define IEMLIVENESS_BIT_WRITE 2
576/** Flag: Unconditional call (not needed, can be redefined for research). */
577# define IEMLIVENESS_STATE_CALL 8
578# define IEMLIVENESS_BIT_CALL 3
579# define IEMLIVENESS_BIT_OTHER 3 /**< More convenient name for this one. */
580# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
581 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
582# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
583# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
584#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
585/** @} */
586
587/** @name Liveness helpers for builtin functions and similar.
588 *
589 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
590 * own set of manimulator macros for those.
591 *
592 * @{ */
593/** Initializing the state as all unused. */
594#ifndef IEMLIVENESS_EXTENDED_LAYOUT
595# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
596 do { \
597 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
598 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
599 } while (0)
600#else
601# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
602 do { \
603 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = 0; \
604 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
605 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
606 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
607 } while (0)
608#endif
609
610/** Initializing the outgoing state with a potential xcpt or call state.
611 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT. */
612#ifndef IEMLIVENESS_EXTENDED_LAYOUT
613# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
614 do { \
615 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
616 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
617 } while (0)
618#else
619# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
620 do { \
621 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = IEMLIVENESSBIT_MASK; \
622 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64; \
623 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
624 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
625 } while (0)
626#endif
627
628/** Adds a segment base register as input to the outgoing state. */
629#ifndef IEMLIVENESS_EXTENDED_LAYOUT
630# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
631 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
632 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
633 } while (0)
634#else
635# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
636 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
637 } while (0)
638#endif
639
640/** Adds a segment attribute register as input to the outgoing state. */
641#ifndef IEMLIVENESS_EXTENDED_LAYOUT
642# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
643 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
644 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
645 } while (0)
646#else
647# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
648 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
649 } while (0)
650#endif
651
652/** Adds a segment limit register as input to the outgoing state. */
653#ifndef IEMLIVENESS_EXTENDED_LAYOUT
654# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
655 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
656 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
657 } while (0)
658#else
659# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
660 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
661 } while (0)
662#endif
663
664/** Adds a segment limit register as input to the outgoing state. */
665#ifndef IEMLIVENESS_EXTENDED_LAYOUT
666# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
667 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
668 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
669 } while (0)
670#else
671# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
672 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
673 } while (0)
674#endif
675/** @} */
676
677/**
678 * Guest registers that can be shadowed in GPRs.
679 *
680 * This runs parallel to the first 128-bits of liveness state. To avoid having
681 * the SegLimitXxxx range cross from the 1st 64-bit word to the 2nd,
682 * we've inserted some padding. The EFlags must be placed last, as the liveness
683 * state tracks it as 7 subcomponents and we don't want to waste space here.
684 */
685typedef enum IEMNATIVEGSTREG : uint8_t
686{
687 kIemNativeGstReg_GprFirst = 0,
688 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
689 kIemNativeGstReg_Pc,
690 kIemNativeGstReg_Cr0,
691 kIemNativeGstReg_FpuFcw,
692 kIemNativeGstReg_FpuFsw,
693 kIemNativeGstReg_SegBaseFirst,
694 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
695 kIemNativeGstReg_SegAttribFirst,
696 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
697 kIemNativeGstReg_SegLimitFirst,
698 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
699 kIemNativeGstReg_SegSelFirst,
700 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
701 kIemNativeGstReg_Cr4,
702 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags - last! */
703 kIemNativeGstReg_End
704} IEMNATIVEGSTREG;
705AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
706
707/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
708 * @{ */
709#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
710#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
711#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
712#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
713#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
714/** @} */
715
716/**
717 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
718 */
719typedef enum IEMNATIVEGSTREGUSE
720{
721 /** The usage is read-only, the register holding the guest register
722 * shadow copy will not be modified by the caller. */
723 kIemNativeGstRegUse_ReadOnly = 0,
724 /** The caller will update the guest register (think: PC += cbInstr).
725 * The guest shadow copy will follow the returned register. */
726 kIemNativeGstRegUse_ForUpdate,
727 /** The call will put an entirely new value in the guest register, so
728 * if new register is allocate it will be returned uninitialized. */
729 kIemNativeGstRegUse_ForFullWrite,
730 /** The caller will use the guest register value as input in a calculation
731 * and the host register will be modified.
732 * This means that the returned host register will not be marked as a shadow
733 * copy of the guest register. */
734 kIemNativeGstRegUse_Calculation
735} IEMNATIVEGSTREGUSE;
736
737/**
738 * Guest registers (classes) that can be referenced.
739 */
740typedef enum IEMNATIVEGSTREGREF : uint8_t
741{
742 kIemNativeGstRegRef_Invalid = 0,
743 kIemNativeGstRegRef_Gpr,
744 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
745 kIemNativeGstRegRef_EFlags,
746 kIemNativeGstRegRef_MxCsr,
747 kIemNativeGstRegRef_FpuReg,
748 kIemNativeGstRegRef_MReg,
749 kIemNativeGstRegRef_XReg,
750 //kIemNativeGstRegRef_YReg, - doesn't work.
751 kIemNativeGstRegRef_End
752} IEMNATIVEGSTREGREF;
753
754
755/** Variable kinds. */
756typedef enum IEMNATIVEVARKIND : uint8_t
757{
758 /** Customary invalid zero value. */
759 kIemNativeVarKind_Invalid = 0,
760 /** This is either in a register or on the stack. */
761 kIemNativeVarKind_Stack,
762 /** Immediate value - loaded into register when needed, or can live on the
763 * stack if referenced (in theory). */
764 kIemNativeVarKind_Immediate,
765 /** Variable reference - loaded into register when needed, never stack. */
766 kIemNativeVarKind_VarRef,
767 /** Guest register reference - loaded into register when needed, never stack. */
768 kIemNativeVarKind_GstRegRef,
769 /** End of valid values. */
770 kIemNativeVarKind_End
771} IEMNATIVEVARKIND;
772
773
774/** Variable or argument. */
775typedef struct IEMNATIVEVAR
776{
777 /** The kind of variable. */
778 IEMNATIVEVARKIND enmKind;
779 /** The variable size in bytes. */
780 uint8_t cbVar;
781 /** The first stack slot (uint64_t), except for immediate and references
782 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
783 * has a stack slot it has been initialized and has a value. Unused variables
784 * has neither a stack slot nor a host register assignment. */
785 uint8_t idxStackSlot;
786 /** The host register allocated for the variable, UINT8_MAX if not. */
787 uint8_t idxReg;
788 /** The argument number if argument, UINT8_MAX if regular variable. */
789 uint8_t uArgNo;
790 /** If referenced, the index of the variable referencing this one, otherwise
791 * UINT8_MAX. A referenced variable must only be placed on the stack and
792 * must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
793 uint8_t idxReferrerVar;
794 /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not.
795 * @todo not sure what this really is for... */
796 IEMNATIVEGSTREG enmGstReg;
797 /** Set if the registered is currently used exclusively, false if the
798 * variable is idle and the register can be grabbed. */
799 bool fRegAcquired;
800
801 union
802 {
803 /** kIemNativeVarKind_Immediate: The immediate value. */
804 uint64_t uValue;
805 /** kIemNativeVarKind_VarRef: The index of the variable being referenced. */
806 uint8_t idxRefVar;
807 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
808 struct
809 {
810 /** The class of register. */
811 IEMNATIVEGSTREGREF enmClass;
812 /** Index within the class. */
813 uint8_t idx;
814 } GstRegRef;
815 } u;
816} IEMNATIVEVAR;
817
818/** What is being kept in a host register. */
819typedef enum IEMNATIVEWHAT : uint8_t
820{
821 /** The traditional invalid zero value. */
822 kIemNativeWhat_Invalid = 0,
823 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
824 kIemNativeWhat_Var,
825 /** Temporary register, this is typically freed when a MC completes. */
826 kIemNativeWhat_Tmp,
827 /** Call argument w/o a variable mapping. This is free (via
828 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
829 kIemNativeWhat_Arg,
830 /** Return status code.
831 * @todo not sure if we need this... */
832 kIemNativeWhat_rc,
833 /** The fixed pVCpu (PVMCPUCC) register.
834 * @todo consider offsetting this on amd64 to use negative offsets to access
835 * more members using 8-byte disp. */
836 kIemNativeWhat_pVCpuFixed,
837 /** The fixed pCtx (PCPUMCTX) register.
838 * @todo consider offsetting this on amd64 to use negative offsets to access
839 * more members using 8-byte disp. */
840 kIemNativeWhat_pCtxFixed,
841 /** Fixed temporary register. */
842 kIemNativeWhat_FixedTmp,
843 /** Register reserved by the CPU or OS architecture. */
844 kIemNativeWhat_FixedReserved,
845 /** End of valid values. */
846 kIemNativeWhat_End
847} IEMNATIVEWHAT;
848
849/**
850 * Host general register entry.
851 *
852 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
853 *
854 * @todo Track immediate values in host registers similarlly to how we track the
855 * guest register shadow copies. For it to be real helpful, though,
856 * we probably need to know which will be reused and put them into
857 * non-volatile registers, otherwise it's going to be more or less
858 * restricted to an instruction or two.
859 */
860typedef struct IEMNATIVEHSTREG
861{
862 /** Set of guest registers this one shadows.
863 *
864 * Using a bitmap here so we can designate the same host register as a copy
865 * for more than one guest register. This is expected to be useful in
866 * situations where one value is copied to several registers in a sequence.
867 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
868 * sequence we'd want to let this register follow to be a copy of and there
869 * will always be places where we'd be picking the wrong one.
870 */
871 uint64_t fGstRegShadows;
872 /** What is being kept in this register. */
873 IEMNATIVEWHAT enmWhat;
874 /** Variable index if holding a variable, otherwise UINT8_MAX. */
875 uint8_t idxVar;
876 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
877 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
878 * that scope. */
879 uint8_t idxStackSlot;
880 /** Alignment padding. */
881 uint8_t abAlign[5];
882} IEMNATIVEHSTREG;
883
884
885/**
886 * Core state for the native recompiler, that is, things that needs careful
887 * handling when dealing with branches.
888 */
889typedef struct IEMNATIVECORESTATE
890{
891 /** Allocation bitmap for aHstRegs. */
892 uint32_t bmHstRegs;
893
894 /** Bitmap marking which host register contains guest register shadow copies.
895 * This is used during register allocation to try preserve copies. */
896 uint32_t bmHstRegsWithGstShadow;
897 /** Bitmap marking valid entries in aidxGstRegShadows. */
898 uint64_t bmGstRegShadows;
899
900 union
901 {
902 /** Index of variable arguments, UINT8_MAX if not valid. */
903 uint8_t aidxArgVars[8];
904 /** For more efficient resetting. */
905 uint64_t u64ArgVars;
906 };
907
908 /** Allocation bitmap for the stack. */
909 uint32_t bmStack;
910 /** Allocation bitmap for aVars. */
911 uint32_t bmVars;
912
913 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
914 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
915 * (A shadow copy of a guest register can only be held in a one host register,
916 * there are no duplicate copies or ambiguities like that). */
917 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
918
919 /** Host register allocation tracking. */
920 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
921
922 /** Variables and arguments. */
923 IEMNATIVEVAR aVars[9];
924} IEMNATIVECORESTATE;
925/** Pointer to core state. */
926typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
927/** Pointer to const core state. */
928typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
929
930
931/**
932 * Conditional stack entry.
933 */
934typedef struct IEMNATIVECOND
935{
936 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
937 bool fInElse;
938 /** The label for the IEM_MC_ELSE. */
939 uint32_t idxLabelElse;
940 /** The label for the IEM_MC_ENDIF. */
941 uint32_t idxLabelEndIf;
942 /** The initial state snapshot as the if-block starts executing. */
943 IEMNATIVECORESTATE InitialState;
944 /** The state snapshot at the end of the if-block. */
945 IEMNATIVECORESTATE IfFinalState;
946} IEMNATIVECOND;
947/** Pointer to a condition stack entry. */
948typedef IEMNATIVECOND *PIEMNATIVECOND;
949
950
951/**
952 * Native recompiler state.
953 */
954typedef struct IEMRECOMPILERSTATE
955{
956 /** Size of the buffer that pbNativeRecompileBufR3 points to in
957 * IEMNATIVEINSTR units. */
958 uint32_t cInstrBufAlloc;
959#ifdef VBOX_STRICT
960 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
961 uint32_t offInstrBufChecked;
962#else
963 uint32_t uPadding1; /* We don't keep track of the size here... */
964#endif
965 /** Fixed temporary code buffer for native recompilation. */
966 PIEMNATIVEINSTR pInstrBuf;
967
968 /** Bitmaps with the label types used. */
969 uint64_t bmLabelTypes;
970 /** Actual number of labels in paLabels. */
971 uint32_t cLabels;
972 /** Max number of entries allowed in paLabels before reallocating it. */
973 uint32_t cLabelsAlloc;
974 /** Labels defined while recompiling (referenced by fixups). */
975 PIEMNATIVELABEL paLabels;
976 /** Array with indexes of unique labels (uData always 0). */
977 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
978
979 /** Actual number of fixups paFixups. */
980 uint32_t cFixups;
981 /** Max number of entries allowed in paFixups before reallocating it. */
982 uint32_t cFixupsAlloc;
983 /** Buffer used by the recompiler for recording fixups when generating code. */
984 PIEMNATIVEFIXUP paFixups;
985
986#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
987 /** Number of debug info entries allocated for pDbgInfo. */
988 uint32_t cDbgInfoAlloc;
989 uint32_t uPadding;
990 /** Debug info. */
991 PIEMTBDBG pDbgInfo;
992#endif
993
994#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
995 /** The current call index (liveness array and threaded calls in TB). */
996 uint32_t idxCurCall;
997 /** Number of liveness entries allocated. */
998 uint32_t cLivenessEntriesAlloc;
999 /** Liveness entries for all the calls in the TB begin recompiled.
1000 * The entry for idxCurCall contains the info for what the next call will
1001 * require wrt registers. (Which means the last entry is the initial liveness
1002 * state.) */
1003 PIEMLIVENESSENTRY paLivenessEntries;
1004#endif
1005
1006 /** The translation block being recompiled. */
1007 PCIEMTB pTbOrg;
1008 /** The VMCPU structure of the EMT. */
1009 PVMCPUCC pVCpu;
1010
1011 /** Condition sequence number (for generating unique labels). */
1012 uint16_t uCondSeqNo;
1013 /** Check IRQ seqeunce number (for generating unique labels). */
1014 uint16_t uCheckIrqSeqNo;
1015 /** TLB load sequence number (for generating unique labels). */
1016 uint16_t uTlbSeqNo;
1017 /** The current condition stack depth (aCondStack). */
1018 uint8_t cCondDepth;
1019
1020 /** The argument count + hidden regs from the IEM_MC_BEGIN statement. */
1021 uint8_t cArgs;
1022 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1023 uint32_t fCImpl;
1024 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1025 uint32_t fMc;
1026 /** The expected IEMCPU::fExec value for the current call/instruction. */
1027 uint32_t fExec;
1028
1029 /** Core state requiring care with branches. */
1030 IEMNATIVECORESTATE Core;
1031
1032 /** The condition nesting stack. */
1033 IEMNATIVECOND aCondStack[2];
1034
1035#ifndef IEM_WITH_THROW_CATCH
1036 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
1037 * for recompilation error handling. */
1038 jmp_buf JmpBuf;
1039#endif
1040} IEMRECOMPILERSTATE;
1041/** Pointer to a native recompiler state. */
1042typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
1043
1044
1045/** @def IEMNATIVE_TRY_SETJMP
1046 * Wrapper around setjmp / try, hiding all the ugly differences.
1047 *
1048 * @note Use with extreme care as this is a fragile macro.
1049 * @param a_pReNative The native recompile state.
1050 * @param a_rcTarget The variable that should receive the status code in case
1051 * of a longjmp/throw.
1052 */
1053/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
1054 * Start wrapper for catch / setjmp-else.
1055 *
1056 * This will set up a scope.
1057 *
1058 * @note Use with extreme care as this is a fragile macro.
1059 * @param a_pReNative The native recompile state.
1060 * @param a_rcTarget The variable that should receive the status code in case
1061 * of a longjmp/throw.
1062 */
1063/** @def IEMNATIVE_CATCH_LONGJMP_END
1064 * End wrapper for catch / setjmp-else.
1065 *
1066 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
1067 * up the state.
1068 *
1069 * @note Use with extreme care as this is a fragile macro.
1070 * @param a_pReNative The native recompile state.
1071 */
1072/** @def IEMNATIVE_DO_LONGJMP
1073 *
1074 * Wrapper around longjmp / throw.
1075 *
1076 * @param a_pReNative The native recompile state.
1077 * @param a_rc The status code jump back with / throw.
1078 */
1079#ifdef IEM_WITH_THROW_CATCH
1080# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1081 a_rcTarget = VINF_SUCCESS; \
1082 try
1083# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1084 catch (int rcThrown) \
1085 { \
1086 a_rcTarget = rcThrown
1087# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1088 } \
1089 ((void)0)
1090# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
1091#else /* !IEM_WITH_THROW_CATCH */
1092# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1093 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
1094# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1095 else \
1096 { \
1097 ((void)0)
1098# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1099 }
1100# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
1101#endif /* !IEM_WITH_THROW_CATCH */
1102
1103
1104/**
1105 * Native recompiler worker for a threaded function.
1106 *
1107 * @returns New code buffer offset; throws VBox status code in case of a failure.
1108 * @param pReNative The native recompiler state.
1109 * @param off The current code buffer offset.
1110 * @param pCallEntry The threaded call entry.
1111 *
1112 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
1113 */
1114typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
1115/** Pointer to a native recompiler worker for a threaded function. */
1116typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
1117
1118/** Defines a native recompiler worker for a threaded function.
1119 * @see FNIEMNATIVERECOMPFUNC */
1120#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
1121 uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
1122
1123/** Prototypes a native recompiler function for a threaded function.
1124 * @see FNIEMNATIVERECOMPFUNC */
1125#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
1126
1127
1128/**
1129 * Native recompiler liveness analysis worker for a threaded function.
1130 *
1131 * @param pCallEntry The threaded call entry.
1132 * @param pIncoming The incoming liveness state entry.
1133 * @param pOutgoing The outgoing liveness state entry.
1134 */
1135typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
1136 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
1137/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
1138typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
1139
1140/** Defines a native recompiler liveness analysis worker for a threaded function.
1141 * @see FNIEMNATIVELIVENESSFUNC */
1142#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
1143 DECLCALLBACK(void) a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
1144
1145/** Prototypes a native recompiler liveness analysis function for a threaded function.
1146 * @see FNIEMNATIVELIVENESSFUNC */
1147#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
1148
1149
1150/** Define a native recompiler helper function, safe to call from the TB code. */
1151#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
1152 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1153/** Prototype a native recompiler helper function, safe to call from the TB code. */
1154#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
1155 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1156
1157
1158DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1159 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
1160DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
1161DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
1162 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
1163DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
1164
1165DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1166DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1167 bool fPreferVolatile = true);
1168DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm,
1169 bool fPreferVolatile = true);
1170DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1171 IEMNATIVEGSTREG enmGstReg,
1172 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1173 bool fNoVolatileRegs = false, bool fSkipLivenessAssert = false);
1174DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1175 IEMNATIVEGSTREG enmGstReg);
1176
1177DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocVar(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t idxVar);
1178DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
1179DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
1180DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1181DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1182DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1183DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
1184DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
1185DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1186DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
1187 uint32_t fKeepVars = 0);
1188DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
1189DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
1190DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1191 uint32_t fHstRegsActiveShadows);
1192
1193DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1194DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1195 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1196DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1197 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
1198DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1199 uint32_t fHstRegsNotToSave);
1200DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1201 uint32_t fHstRegsNotToSave);
1202
1203DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1204 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
1205DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
1206DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
1207 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
1208 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
1209DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1210 PCIEMTHRDEDCALLENTRY pCallEntry);
1211
1212extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
1213
1214
1215/**
1216 * Ensures that there is sufficient space in the instruction output buffer.
1217 *
1218 * This will reallocate the buffer if needed and allowed.
1219 *
1220 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
1221 * allocation size.
1222 *
1223 * @returns Pointer to the instruction output buffer on success; throws VBox
1224 * status code on failure, so no need to check it.
1225 * @param pReNative The native recompile state.
1226 * @param off Current instruction offset. Works safely for UINT32_MAX
1227 * as well.
1228 * @param cInstrReq Number of instruction about to be added. It's okay to
1229 * overestimate this a bit.
1230 */
1231DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
1232iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
1233{
1234 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
1235 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
1236 {
1237#ifdef VBOX_STRICT
1238 pReNative->offInstrBufChecked = offChecked;
1239#endif
1240 return pReNative->pInstrBuf;
1241 }
1242 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
1243}
1244
1245/**
1246 * Checks that we didn't exceed the space requested in the last
1247 * iemNativeInstrBufEnsure() call.
1248 */
1249#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
1250 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
1251 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
1252
1253/**
1254 * Checks that a variable index is valid.
1255 */
1256#define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1257 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1258 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
1259
1260/**
1261 * Checks that a variable index is valid and that the variable is assigned the
1262 * correct argument number.
1263 * This also adds a RT_NOREF of a_idxVar.
1264 */
1265#define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1266 RT_NOREF_PV(a_idxVar); \
1267 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1268 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
1269 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
1270 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1271 (a_pReNative)->Core.aVars[RT_MAX(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
1272 } while (0)
1273
1274/**
1275 * Calculates the stack address of a variable as a [r]BP displacement value.
1276 */
1277DECL_FORCE_INLINE(int32_t)
1278iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
1279{
1280 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
1281 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
1282}
1283
1284
1285/**
1286 * Releases the variable's register.
1287 *
1288 * The register must have been previously acquired calling
1289 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
1290 * iemNativeVarRegisterSetAndAcquire().
1291 */
1292DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
1293{
1294 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
1295 Assert(pReNative->Core.aVars[idxVar].fRegAcquired);
1296 pReNative->Core.aVars[idxVar].fRegAcquired = false;
1297}
1298
1299/** @} */
1300
1301#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
1302
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette