VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 103665

Last change on this file since 103665 was 103665, checked in by vboxsync, 14 months ago

VMM/IEM: Native translation of IEM_MC_MAYBE_RAISE_FPU_XCPT() body, bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 61.2 KB
Line 
1/* $Id: IEMN8veRecompiler.h 103665 2024-03-04 12:50:11Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
41 * Enables generating internal debug info for better TB disassembly dumping. */
42#if defined(DEBUG) || defined(DOXYGEN_RUNNING)
43# define IEMNATIVE_WITH_TB_DEBUG_INFO
44#endif
45
46/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
47 * Enables liveness analysis. */
48#if 1 || defined(DOXYGEN_RUNNING)
49# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
50/*# define IEMLIVENESS_EXTENDED_LAYOUT*/
51#endif
52
53#ifdef VBOX_WITH_STATISTICS
54/** Always count instructions for now. */
55# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
56#endif
57
58
59/** @name Stack Frame Layout
60 *
61 * @{ */
62/** The size of the area for stack variables and spills and stuff.
63 * @note This limit is duplicated in the python script(s). We add 0x40 for
64 * alignment padding. */
65#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
66/** Number of 64-bit variable slots (0x100 / 8 = 32. */
67#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
68AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
69
70#ifdef RT_ARCH_AMD64
71/** An stack alignment adjustment (between non-volatile register pushes and
72 * the stack variable area, so the latter better aligned). */
73# define IEMNATIVE_FRAME_ALIGN_SIZE 8
74
75/** Number of stack arguments slots for calls made from the frame. */
76# ifdef RT_OS_WINDOWS
77# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
78# else
79# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
80# endif
81/** Number of any shadow arguments (spill area) for calls we make. */
82# ifdef RT_OS_WINDOWS
83# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
84# else
85# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
86# endif
87
88/** Frame pointer (RBP) relative offset of the last push. */
89# ifdef RT_OS_WINDOWS
90# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
91# else
92# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
93# endif
94/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
95 * address for it). */
96# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
97/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
98# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
99/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
100# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
101# ifdef RT_OS_WINDOWS
102/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
103# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
104/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
105# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
106# endif
107
108# ifdef RT_OS_WINDOWS
109/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
110# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
111/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
112# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
113/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
114# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
115/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
116# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
117# endif
118
119#elif RT_ARCH_ARM64
120/** No alignment padding needed for arm64. */
121# define IEMNATIVE_FRAME_ALIGN_SIZE 0
122/** No stack argument slots, got 8 registers for arguments will suffice. */
123# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
124/** There are no argument spill area. */
125# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
126
127/** Number of saved registers at the top of our stack frame.
128 * This includes the return address and old frame pointer, so x19 thru x30. */
129# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
130/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
131# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
132
133/** Frame pointer (BP) relative offset of the last push. */
134# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
135
136/** Frame pointer (BP) relative offset of the stack variable area (the lowest
137 * address for it). */
138# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
139
140#else
141# error "port me"
142#endif
143/** @} */
144
145
146/** @name Fixed Register Allocation(s)
147 * @{ */
148/** @def IEMNATIVE_REG_FIXED_PVMCPU
149 * The number of the register holding the pVCpu pointer. */
150/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
151 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
152 * @note This not available on AMD64, only ARM64. */
153/** @def IEMNATIVE_REG_FIXED_TMP0
154 * Dedicated temporary register.
155 * @todo replace this by a register allocator and content tracker. */
156/** @def IEMNATIVE_REG_FIXED_MASK
157 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
158 * architecture. */
159#if defined(RT_ARCH_AMD64) && !defined(DOXYGEN_RUNNING)
160# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
161# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
162# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
163 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
164 | RT_BIT_32(X86_GREG_xSP) \
165 | RT_BIT_32(X86_GREG_xBP) )
166
167#elif defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
168# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
169# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
170# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
171# if defined(IEMNATIVE_WITH_DELAYED_PC_UPDATING) && 0 /* debug the updating with a shadow RIP. */
172# define IEMNATIVE_REG_FIXED_TMP1 ARMV8_A64_REG_X16
173# define IEMNATIVE_REG_FIXED_PC_DBG ARMV8_A64_REG_X26
174# define IEMNATIVE_REG_FIXED_MASK_ADD ( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1) \
175 | RT_BIT_32(IEMNATIVE_REG_FIXED_PC_DBG))
176# else
177# define IEMNATIVE_REG_FIXED_MASK_ADD 0
178# endif
179# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
180 | RT_BIT_32(ARMV8_A64_REG_LR) \
181 | RT_BIT_32(ARMV8_A64_REG_BP) \
182 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
183 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
184 | RT_BIT_32(ARMV8_A64_REG_X18) \
185 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
186 | IEMNATIVE_REG_FIXED_MASK_ADD)
187
188#else
189# error "port me"
190#endif
191/** @} */
192
193/** @name Call related registers.
194 * @{ */
195/** @def IEMNATIVE_CALL_RET_GREG
196 * The return value register. */
197/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
198 * Number of arguments in registers. */
199/** @def IEMNATIVE_CALL_ARG0_GREG
200 * The general purpose register carrying argument \#0. */
201/** @def IEMNATIVE_CALL_ARG1_GREG
202 * The general purpose register carrying argument \#1. */
203/** @def IEMNATIVE_CALL_ARG2_GREG
204 * The general purpose register carrying argument \#2. */
205/** @def IEMNATIVE_CALL_ARG3_GREG
206 * The general purpose register carrying argument \#3. */
207/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
208 * Mask of registers the callee will not save and may trash. */
209#ifdef RT_ARCH_AMD64
210# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
211
212# ifdef RT_OS_WINDOWS
213# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
214# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
215# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
216# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
217# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
218# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
219 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
220 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
221 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
222# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
223 | RT_BIT_32(X86_GREG_xCX) \
224 | RT_BIT_32(X86_GREG_xDX) \
225 | RT_BIT_32(X86_GREG_x8) \
226 | RT_BIT_32(X86_GREG_x9) \
227 | RT_BIT_32(X86_GREG_x10) \
228 | RT_BIT_32(X86_GREG_x11) )
229# else
230# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
231# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
232# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
233# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
234# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
235# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
236# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
237# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
238 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
239 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
240 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
241 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
242 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
243# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
244 | RT_BIT_32(X86_GREG_xCX) \
245 | RT_BIT_32(X86_GREG_xDX) \
246 | RT_BIT_32(X86_GREG_xDI) \
247 | RT_BIT_32(X86_GREG_xSI) \
248 | RT_BIT_32(X86_GREG_x8) \
249 | RT_BIT_32(X86_GREG_x9) \
250 | RT_BIT_32(X86_GREG_x10) \
251 | RT_BIT_32(X86_GREG_x11) )
252# endif
253
254#elif defined(RT_ARCH_ARM64)
255# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
256# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
257# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
258# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
259# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
260# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
261# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
262# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
263# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
264# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
265# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
266 | RT_BIT_32(ARMV8_A64_REG_X1) \
267 | RT_BIT_32(ARMV8_A64_REG_X2) \
268 | RT_BIT_32(ARMV8_A64_REG_X3) \
269 | RT_BIT_32(ARMV8_A64_REG_X4) \
270 | RT_BIT_32(ARMV8_A64_REG_X5) \
271 | RT_BIT_32(ARMV8_A64_REG_X6) \
272 | RT_BIT_32(ARMV8_A64_REG_X7) )
273# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
274 | RT_BIT_32(ARMV8_A64_REG_X1) \
275 | RT_BIT_32(ARMV8_A64_REG_X2) \
276 | RT_BIT_32(ARMV8_A64_REG_X3) \
277 | RT_BIT_32(ARMV8_A64_REG_X4) \
278 | RT_BIT_32(ARMV8_A64_REG_X5) \
279 | RT_BIT_32(ARMV8_A64_REG_X6) \
280 | RT_BIT_32(ARMV8_A64_REG_X7) \
281 | RT_BIT_32(ARMV8_A64_REG_X8) \
282 | RT_BIT_32(ARMV8_A64_REG_X9) \
283 | RT_BIT_32(ARMV8_A64_REG_X10) \
284 | RT_BIT_32(ARMV8_A64_REG_X11) \
285 | RT_BIT_32(ARMV8_A64_REG_X12) \
286 | RT_BIT_32(ARMV8_A64_REG_X13) \
287 | RT_BIT_32(ARMV8_A64_REG_X14) \
288 | RT_BIT_32(ARMV8_A64_REG_X15) \
289 | RT_BIT_32(ARMV8_A64_REG_X16) \
290 | RT_BIT_32(ARMV8_A64_REG_X17) )
291
292#endif
293
294/** This is the maximum argument count we'll ever be needing. */
295#if defined(RT_OS_WINDOWS) && defined(VBOXSTRICTRC_STRICT_ENABLED)
296# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
297#else
298# define IEMNATIVE_CALL_MAX_ARG_COUNT 7
299#endif
300/** @} */
301
302
303/** @def IEMNATIVE_HST_GREG_COUNT
304 * Number of host general purpose registers we tracker. */
305/** @def IEMNATIVE_HST_GREG_MASK
306 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
307 * inverted register masks and such to get down to a correct set of regs. */
308#ifdef RT_ARCH_AMD64
309# define IEMNATIVE_HST_GREG_COUNT 16
310# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
311
312#elif defined(RT_ARCH_ARM64)
313# define IEMNATIVE_HST_GREG_COUNT 32
314# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
315#else
316# error "Port me!"
317#endif
318
319
320/** Native code generator label types. */
321typedef enum
322{
323 kIemNativeLabelType_Invalid = 0,
324 /* Labels w/o data, only once instance per TB: */
325 kIemNativeLabelType_Return,
326 kIemNativeLabelType_ReturnBreak,
327 kIemNativeLabelType_ReturnWithFlags,
328 kIemNativeLabelType_NonZeroRetOrPassUp,
329 kIemNativeLabelType_RaiseGp0,
330 kIemNativeLabelType_RaiseNm,
331 kIemNativeLabelType_RaiseUd,
332 kIemNativeLabelType_RaiseMf,
333 kIemNativeLabelType_ObsoleteTb,
334 kIemNativeLabelType_NeedCsLimChecking,
335 kIemNativeLabelType_CheckBranchMiss,
336 /* Labels with data, potentially multiple instances per TB: */
337 kIemNativeLabelType_FirstWithMultipleInstances,
338 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
339 kIemNativeLabelType_Else,
340 kIemNativeLabelType_Endif,
341 kIemNativeLabelType_CheckIrq,
342 kIemNativeLabelType_TlbLookup,
343 kIemNativeLabelType_TlbMiss,
344 kIemNativeLabelType_TlbDone,
345 kIemNativeLabelType_End
346} IEMNATIVELABELTYPE;
347
348/** Native code generator label definition. */
349typedef struct IEMNATIVELABEL
350{
351 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
352 * the epilog. */
353 uint32_t off;
354 /** The type of label (IEMNATIVELABELTYPE). */
355 uint16_t enmType;
356 /** Additional label data, type specific. */
357 uint16_t uData;
358} IEMNATIVELABEL;
359/** Pointer to a label. */
360typedef IEMNATIVELABEL *PIEMNATIVELABEL;
361
362
363/** Native code generator fixup types. */
364typedef enum
365{
366 kIemNativeFixupType_Invalid = 0,
367#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
368 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
369 kIemNativeFixupType_Rel32,
370#elif defined(RT_ARCH_ARM64)
371 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
372 kIemNativeFixupType_RelImm26At0,
373 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
374 kIemNativeFixupType_RelImm19At5,
375 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
376 kIemNativeFixupType_RelImm14At5,
377#endif
378 kIemNativeFixupType_End
379} IEMNATIVEFIXUPTYPE;
380
381/** Native code generator fixup. */
382typedef struct IEMNATIVEFIXUP
383{
384 /** Code offset of the fixup location. */
385 uint32_t off;
386 /** The IEMNATIVELABEL this is a fixup for. */
387 uint16_t idxLabel;
388 /** The fixup type (IEMNATIVEFIXUPTYPE). */
389 uint8_t enmType;
390 /** Addend or other data. */
391 int8_t offAddend;
392} IEMNATIVEFIXUP;
393/** Pointer to a native code generator fixup. */
394typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
395
396
397/**
398 * One bit of the state.
399 *
400 * Each register state takes up two bits. We keep the two bits in two separate
401 * 64-bit words to simplify applying them to the guest shadow register mask in
402 * the register allocator.
403 */
404typedef union IEMLIVENESSBIT
405{
406 uint64_t bm64;
407 RT_GCC_EXTENSION struct
408 { /* bit no */
409 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
410 uint64_t fUnusedPc : 1; /**< 0x10 / 16: (PC in ) */
411 uint64_t fCr0 : 1; /**< 0x11 / 17: */
412 uint64_t fFcw : 1; /**< 0x12 / 18: */
413 uint64_t fFsw : 1; /**< 0x13 / 19: */
414 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
415 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
416 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
417 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
418 uint64_t fCr4 : 1; /**< 0x2c / 44: */
419 uint64_t fXcr0 : 1; /**< 0x2d / 45: */
420 uint64_t fEflOther : 1; /**< 0x2e / 46: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
421 uint64_t fEflCf : 1; /**< 0x2f / 47: Carry flag (X86_EFL_CF / 0). */
422 uint64_t fEflPf : 1; /**< 0x30 / 48: Parity flag (X86_EFL_PF / 2). */
423 uint64_t fEflAf : 1; /**< 0x31 / 49: Auxilary carry flag (X86_EFL_AF / 4). */
424 uint64_t fEflZf : 1; /**< 0x32 / 50: Zero flag (X86_EFL_ZF / 6). */
425 uint64_t fEflSf : 1; /**< 0x33 / 51: Signed flag (X86_EFL_SF / 7). */
426 uint64_t fEflOf : 1; /**< 0x34 / 52: Overflow flag (X86_EFL_OF / 12). */
427 uint64_t uUnused : 11; /* 0x35 / 53 -> 0x40/64 */
428 };
429} IEMLIVENESSBIT;
430AssertCompileSize(IEMLIVENESSBIT, 8);
431
432#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
433#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
434#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
435#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
436#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
437#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
438#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
439
440
441/**
442 * A liveness state entry.
443 *
444 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
445 * Once we add a SSE register shadowing, we'll add another 64-bit element for
446 * that.
447 */
448typedef union IEMLIVENESSENTRY
449{
450#ifndef IEMLIVENESS_EXTENDED_LAYOUT
451 uint64_t bm64[16 / 8];
452 uint16_t bm32[16 / 4];
453 uint16_t bm16[16 / 2];
454 uint8_t bm8[ 16 / 1];
455 IEMLIVENESSBIT aBits[2];
456#else
457 uint64_t bm64[32 / 8];
458 uint16_t bm32[32 / 4];
459 uint16_t bm16[32 / 2];
460 uint8_t bm8[ 32 / 1];
461 IEMLIVENESSBIT aBits[4];
462#endif
463 RT_GCC_EXTENSION struct
464 {
465 /** Bit \#0 of the register states. */
466 IEMLIVENESSBIT Bit0;
467 /** Bit \#1 of the register states. */
468 IEMLIVENESSBIT Bit1;
469#ifdef IEMLIVENESS_EXTENDED_LAYOUT
470 /** Bit \#2 of the register states. */
471 IEMLIVENESSBIT Bit2;
472 /** Bit \#3 of the register states. */
473 IEMLIVENESSBIT Bit3;
474#endif
475 };
476} IEMLIVENESSENTRY;
477#ifndef IEMLIVENESS_EXTENDED_LAYOUT
478AssertCompileSize(IEMLIVENESSENTRY, 16);
479#else
480AssertCompileSize(IEMLIVENESSENTRY, 32);
481#endif
482/** Pointer to a liveness state entry. */
483typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
484/** Pointer to a const liveness state entry. */
485typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
486
487/** @name 64-bit value masks for IEMLIVENESSENTRY.
488 * @{ */ /* 0xzzzzyyyyxxxxwwww */
489#define IEMLIVENESSBIT_MASK UINT64_C(0x001ffffffffeffff)
490
491#ifndef IEMLIVENESS_EXTENDED_LAYOUT
492# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
493# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
494
495# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
496# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
497#endif
498
499#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x001fc00000000000)
500
501#ifndef IEMLIVENESS_EXTENDED_LAYOUT
502# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
503# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
504#endif
505/** @} */
506
507
508/** @name The liveness state for a register.
509 *
510 * The state values have been picked to with state accumulation in mind (what
511 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
512 * performance critical work done with the values.
513 *
514 * This is a compressed state that only requires 2 bits per register.
515 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
516 * 1. the incoming state from the following call,
517 * 2. the outgoing state for this call,
518 * 3. mask of the entries set in the 2nd.
519 *
520 * The mask entry (3rd one above) will be used both when updating the outgoing
521 * state and when merging in incoming state for registers not touched by the
522 * current call.
523 *
524 * @{ */
525#ifndef IEMLIVENESS_EXTENDED_LAYOUT
526/** The register will be clobbered and the current value thrown away.
527 *
528 * When this is applied to the state (2) we'll simply be AND'ing it with the
529 * (old) mask (3) and adding the register to the mask. This way we'll
530 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
531 * IEMLIVENESS_STATE_INPUT states. */
532# define IEMLIVENESS_STATE_CLOBBERED 0
533/** The register is unused in the remainder of the TB.
534 *
535 * This is an initial state and can not be set by any of the
536 * iemNativeLivenessFunc_xxxx callbacks. */
537# define IEMLIVENESS_STATE_UNUSED 1
538/** The register value is required in a potential call or exception.
539 *
540 * This means that the register value must be calculated and is best written to
541 * the state, but that any shadowing registers can be flushed thereafter as it's
542 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
543 *
544 * It is typically applied across the board, but we preserve incoming
545 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
546 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
547 * 1. r0 = old & ~mask;
548 * 2. r0 = t1 & (t1 >> 1)'
549 * 3. state |= r0 | 0b10;
550 * 4. mask = ~0;
551 */
552# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
553/** The register value is used as input.
554 *
555 * This means that the register value must be calculated and it is best to keep
556 * it in a register. It does not need to be writtent out as such. This is the
557 * highest priority state.
558 *
559 * Whether the call modifies the register or not isn't relevant to earlier
560 * calls, so that's not recorded.
561 *
562 * When applying this state we just or in the value in the outgoing state and
563 * mask. */
564# define IEMLIVENESS_STATE_INPUT 3
565/** Mask of the state bits. */
566# define IEMLIVENESS_STATE_MASK 3
567/** The number of bits per state. */
568# define IEMLIVENESS_STATE_BIT_COUNT 2
569/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state. */
570# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
571/** Check if we're expecting read accesses to a register with the given (previous) liveness state. */
572# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
573/** Check if a register clobbering is expected given the (previous) liveness state.
574 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
575 * include INPUT if the register is used in more than one place. */
576# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
577
578#else /* IEMLIVENESS_EXTENDED_LAYOUT */
579/** The register is not used any more. */
580# define IEMLIVENESS_STATE_UNUSED 0
581/** Flag: The register is required in a potential exception or call. */
582# define IEMLIVENESS_STATE_POT_XCPT_OR_CALL 1
583# define IEMLIVENESS_BIT_POT_XCPT_OR_CALL 0
584/** Flag: The register is read. */
585# define IEMLIVENESS_STATE_READ 2
586# define IEMLIVENESS_BIT_READ 1
587/** Flag: The register is written. */
588# define IEMLIVENESS_STATE_WRITE 4
589# define IEMLIVENESS_BIT_WRITE 2
590/** Flag: Unconditional call (not needed, can be redefined for research). */
591# define IEMLIVENESS_STATE_CALL 8
592# define IEMLIVENESS_BIT_CALL 3
593# define IEMLIVENESS_BIT_OTHER 3 /**< More convenient name for this one. */
594# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
595 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
596# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
597# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
598#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
599/** @} */
600
601/** @name Liveness helpers for builtin functions and similar.
602 *
603 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
604 * own set of manimulator macros for those.
605 *
606 * @{ */
607/** Initializing the state as all unused. */
608#ifndef IEMLIVENESS_EXTENDED_LAYOUT
609# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
610 do { \
611 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
612 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
613 } while (0)
614#else
615# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
616 do { \
617 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = 0; \
618 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
619 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
620 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
621 } while (0)
622#endif
623
624/** Initializing the outgoing state with a potential xcpt or call state.
625 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT. */
626#ifndef IEMLIVENESS_EXTENDED_LAYOUT
627# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
628 do { \
629 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
630 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
631 } while (0)
632#else
633# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
634 do { \
635 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = IEMLIVENESSBIT_MASK; \
636 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64; \
637 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
638 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
639 } while (0)
640#endif
641
642/** Adds a segment base register as input to the outgoing state. */
643#ifndef IEMLIVENESS_EXTENDED_LAYOUT
644# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
645 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
646 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
647 } while (0)
648#else
649# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
650 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
651 } while (0)
652#endif
653
654/** Adds a segment attribute register as input to the outgoing state. */
655#ifndef IEMLIVENESS_EXTENDED_LAYOUT
656# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
657 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
658 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
659 } while (0)
660#else
661# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
662 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
663 } while (0)
664#endif
665
666/** Adds a segment limit register as input to the outgoing state. */
667#ifndef IEMLIVENESS_EXTENDED_LAYOUT
668# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
669 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
670 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
671 } while (0)
672#else
673# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
674 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
675 } while (0)
676#endif
677
678/** Adds a segment limit register as input to the outgoing state. */
679#ifndef IEMLIVENESS_EXTENDED_LAYOUT
680# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
681 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
682 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
683 } while (0)
684#else
685# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
686 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
687 } while (0)
688#endif
689/** @} */
690
691/**
692 * Guest registers that can be shadowed in GPRs.
693 *
694 * This runs parallel to the liveness state (IEMLIVENESSBIT, ++). The EFlags
695 * must be placed last, as the liveness state tracks it as 7 subcomponents and
696 * we don't want to waste space here.
697 *
698 * @note Make sure to update IEMLIVENESSBIT, IEMLIVENESSBIT_ALL_EFL_MASK and
699 * friends as well as IEMAllN8veLiveness.cpp.
700 */
701typedef enum IEMNATIVEGSTREG : uint8_t
702{
703 kIemNativeGstReg_GprFirst = 0,
704 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
705 kIemNativeGstReg_Pc,
706 kIemNativeGstReg_Cr0,
707 kIemNativeGstReg_FpuFcw,
708 kIemNativeGstReg_FpuFsw,
709 kIemNativeGstReg_SegBaseFirst,
710 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
711 kIemNativeGstReg_SegAttribFirst,
712 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
713 kIemNativeGstReg_SegLimitFirst,
714 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
715 kIemNativeGstReg_SegSelFirst,
716 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
717 kIemNativeGstReg_Cr4,
718 kIemNativeGstReg_Xcr0,
719 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags - last! */
720 kIemNativeGstReg_End
721} IEMNATIVEGSTREG;
722AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
723AssertCompile((UINT64_C(0x7f) << kIemNativeGstReg_EFlags) == IEMLIVENESSBIT_ALL_EFL_MASK);
724
725/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
726 * @{ */
727#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
728#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
729#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
730#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
731#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
732/** @} */
733
734/**
735 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
736 */
737typedef enum IEMNATIVEGSTREGUSE
738{
739 /** The usage is read-only, the register holding the guest register
740 * shadow copy will not be modified by the caller. */
741 kIemNativeGstRegUse_ReadOnly = 0,
742 /** The caller will update the guest register (think: PC += cbInstr).
743 * The guest shadow copy will follow the returned register. */
744 kIemNativeGstRegUse_ForUpdate,
745 /** The call will put an entirely new value in the guest register, so
746 * if new register is allocate it will be returned uninitialized. */
747 kIemNativeGstRegUse_ForFullWrite,
748 /** The caller will use the guest register value as input in a calculation
749 * and the host register will be modified.
750 * This means that the returned host register will not be marked as a shadow
751 * copy of the guest register. */
752 kIemNativeGstRegUse_Calculation
753} IEMNATIVEGSTREGUSE;
754
755/**
756 * Guest registers (classes) that can be referenced.
757 */
758typedef enum IEMNATIVEGSTREGREF : uint8_t
759{
760 kIemNativeGstRegRef_Invalid = 0,
761 kIemNativeGstRegRef_Gpr,
762 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
763 kIemNativeGstRegRef_EFlags,
764 kIemNativeGstRegRef_MxCsr,
765 kIemNativeGstRegRef_FpuReg,
766 kIemNativeGstRegRef_MReg,
767 kIemNativeGstRegRef_XReg,
768 //kIemNativeGstRegRef_YReg, - doesn't work.
769 kIemNativeGstRegRef_End
770} IEMNATIVEGSTREGREF;
771
772
773/** Variable kinds. */
774typedef enum IEMNATIVEVARKIND : uint8_t
775{
776 /** Customary invalid zero value. */
777 kIemNativeVarKind_Invalid = 0,
778 /** This is either in a register or on the stack. */
779 kIemNativeVarKind_Stack,
780 /** Immediate value - loaded into register when needed, or can live on the
781 * stack if referenced (in theory). */
782 kIemNativeVarKind_Immediate,
783 /** Variable reference - loaded into register when needed, never stack. */
784 kIemNativeVarKind_VarRef,
785 /** Guest register reference - loaded into register when needed, never stack. */
786 kIemNativeVarKind_GstRegRef,
787 /** End of valid values. */
788 kIemNativeVarKind_End
789} IEMNATIVEVARKIND;
790
791
792/** Variable or argument. */
793typedef struct IEMNATIVEVAR
794{
795 /** The kind of variable. */
796 IEMNATIVEVARKIND enmKind;
797 /** The variable size in bytes. */
798 uint8_t cbVar;
799 /** The first stack slot (uint64_t), except for immediate and references
800 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
801 * has a stack slot it has been initialized and has a value. Unused variables
802 * has neither a stack slot nor a host register assignment. */
803 uint8_t idxStackSlot;
804 /** The host register allocated for the variable, UINT8_MAX if not. */
805 uint8_t idxReg;
806 /** The argument number if argument, UINT8_MAX if regular variable. */
807 uint8_t uArgNo;
808 /** If referenced, the index (unpacked) of the variable referencing this one,
809 * otherwise UINT8_MAX. A referenced variable must only be placed on the stack
810 * and must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
811 uint8_t idxReferrerVar;
812 /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not.
813 * @todo not sure what this really is for... */
814 IEMNATIVEGSTREG enmGstReg;
815 /** Set if the registered is currently used exclusively, false if the
816 * variable is idle and the register can be grabbed. */
817 bool fRegAcquired;
818
819 union
820 {
821 /** kIemNativeVarKind_Immediate: The immediate value. */
822 uint64_t uValue;
823 /** kIemNativeVarKind_VarRef: The index (unpacked) of the variable being referenced. */
824 uint8_t idxRefVar;
825 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
826 struct
827 {
828 /** The class of register. */
829 IEMNATIVEGSTREGREF enmClass;
830 /** Index within the class. */
831 uint8_t idx;
832 } GstRegRef;
833 } u;
834} IEMNATIVEVAR;
835/** Pointer to a variable or argument. */
836typedef IEMNATIVEVAR *PIEMNATIVEVAR;
837/** Pointer to a const variable or argument. */
838typedef IEMNATIVEVAR const *PCIEMNATIVEVAR;
839
840/** What is being kept in a host register. */
841typedef enum IEMNATIVEWHAT : uint8_t
842{
843 /** The traditional invalid zero value. */
844 kIemNativeWhat_Invalid = 0,
845 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
846 kIemNativeWhat_Var,
847 /** Temporary register, this is typically freed when a MC completes. */
848 kIemNativeWhat_Tmp,
849 /** Call argument w/o a variable mapping. This is free (via
850 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
851 kIemNativeWhat_Arg,
852 /** Return status code.
853 * @todo not sure if we need this... */
854 kIemNativeWhat_rc,
855 /** The fixed pVCpu (PVMCPUCC) register.
856 * @todo consider offsetting this on amd64 to use negative offsets to access
857 * more members using 8-byte disp. */
858 kIemNativeWhat_pVCpuFixed,
859 /** The fixed pCtx (PCPUMCTX) register.
860 * @todo consider offsetting this on amd64 to use negative offsets to access
861 * more members using 8-byte disp. */
862 kIemNativeWhat_pCtxFixed,
863 /** Fixed temporary register. */
864 kIemNativeWhat_FixedTmp,
865#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
866 /** Shadow RIP for the delayed RIP updating debugging. */
867 kIemNativeWhat_PcShadow,
868#endif
869 /** Register reserved by the CPU or OS architecture. */
870 kIemNativeWhat_FixedReserved,
871 /** End of valid values. */
872 kIemNativeWhat_End
873} IEMNATIVEWHAT;
874
875/**
876 * Host general register entry.
877 *
878 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
879 *
880 * @todo Track immediate values in host registers similarlly to how we track the
881 * guest register shadow copies. For it to be real helpful, though,
882 * we probably need to know which will be reused and put them into
883 * non-volatile registers, otherwise it's going to be more or less
884 * restricted to an instruction or two.
885 */
886typedef struct IEMNATIVEHSTREG
887{
888 /** Set of guest registers this one shadows.
889 *
890 * Using a bitmap here so we can designate the same host register as a copy
891 * for more than one guest register. This is expected to be useful in
892 * situations where one value is copied to several registers in a sequence.
893 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
894 * sequence we'd want to let this register follow to be a copy of and there
895 * will always be places where we'd be picking the wrong one.
896 */
897 uint64_t fGstRegShadows;
898 /** What is being kept in this register. */
899 IEMNATIVEWHAT enmWhat;
900 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
901 uint8_t idxVar;
902 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
903 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
904 * that scope. */
905 uint8_t idxStackSlot;
906 /** Alignment padding. */
907 uint8_t abAlign[5];
908} IEMNATIVEHSTREG;
909
910
911/**
912 * Core state for the native recompiler, that is, things that needs careful
913 * handling when dealing with branches.
914 */
915typedef struct IEMNATIVECORESTATE
916{
917#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
918 /** The current instruction offset in bytes from when the guest program counter
919 * was updated last. Used for delaying the write to the guest context program counter
920 * as long as possible. */
921 uint32_t offPc;
922 /** Number of instructions where we could skip the updating. */
923 uint32_t cInstrPcUpdateSkipped;
924#endif
925 /** Allocation bitmap for aHstRegs. */
926 uint32_t bmHstRegs;
927
928 /** Bitmap marking which host register contains guest register shadow copies.
929 * This is used during register allocation to try preserve copies. */
930 uint32_t bmHstRegsWithGstShadow;
931 /** Bitmap marking valid entries in aidxGstRegShadows. */
932 uint64_t bmGstRegShadows;
933
934 union
935 {
936 /** Index of variable (unpacked) arguments, UINT8_MAX if not valid. */
937 uint8_t aidxArgVars[8];
938 /** For more efficient resetting. */
939 uint64_t u64ArgVars;
940 };
941
942 /** Allocation bitmap for the stack. */
943 uint32_t bmStack;
944 /** Allocation bitmap for aVars. */
945 uint32_t bmVars;
946
947 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
948 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
949 * (A shadow copy of a guest register can only be held in a one host register,
950 * there are no duplicate copies or ambiguities like that). */
951 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
952
953 /** Host register allocation tracking. */
954 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
955
956 /** Variables and arguments. */
957 IEMNATIVEVAR aVars[9];
958} IEMNATIVECORESTATE;
959/** Pointer to core state. */
960typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
961/** Pointer to const core state. */
962typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
963
964/** @def IEMNATIVE_VAR_IDX_UNPACK
965 * @returns Index into IEMNATIVECORESTATE::aVars.
966 * @param a_idxVar Variable index w/ magic (in strict builds).
967 */
968/** @def IEMNATIVE_VAR_IDX_PACK
969 * @returns Variable index w/ magic (in strict builds).
970 * @param a_idxVar Index into IEMNATIVECORESTATE::aVars.
971 */
972#ifdef VBOX_STRICT
973# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) ((a_idxVar) & IEMNATIVE_VAR_IDX_MASK)
974# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) ((a_idxVar) | IEMNATIVE_VAR_IDX_MAGIC)
975# define IEMNATIVE_VAR_IDX_MAGIC UINT8_C(0xd0)
976# define IEMNATIVE_VAR_IDX_MAGIC_MASK UINT8_C(0xf0)
977# define IEMNATIVE_VAR_IDX_MASK UINT8_C(0x0f)
978#else
979# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) (a_idxVar)
980# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) (a_idxVar)
981#endif
982
983
984/**
985 * Conditional stack entry.
986 */
987typedef struct IEMNATIVECOND
988{
989 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
990 bool fInElse;
991 /** The label for the IEM_MC_ELSE. */
992 uint32_t idxLabelElse;
993 /** The label for the IEM_MC_ENDIF. */
994 uint32_t idxLabelEndIf;
995 /** The initial state snapshot as the if-block starts executing. */
996 IEMNATIVECORESTATE InitialState;
997 /** The state snapshot at the end of the if-block. */
998 IEMNATIVECORESTATE IfFinalState;
999} IEMNATIVECOND;
1000/** Pointer to a condition stack entry. */
1001typedef IEMNATIVECOND *PIEMNATIVECOND;
1002
1003
1004/**
1005 * Native recompiler state.
1006 */
1007typedef struct IEMRECOMPILERSTATE
1008{
1009 /** Size of the buffer that pbNativeRecompileBufR3 points to in
1010 * IEMNATIVEINSTR units. */
1011 uint32_t cInstrBufAlloc;
1012#ifdef VBOX_STRICT
1013 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
1014 uint32_t offInstrBufChecked;
1015#else
1016 uint32_t uPadding1; /* We don't keep track of the size here... */
1017#endif
1018 /** Fixed temporary code buffer for native recompilation. */
1019 PIEMNATIVEINSTR pInstrBuf;
1020
1021 /** Bitmaps with the label types used. */
1022 uint64_t bmLabelTypes;
1023 /** Actual number of labels in paLabels. */
1024 uint32_t cLabels;
1025 /** Max number of entries allowed in paLabels before reallocating it. */
1026 uint32_t cLabelsAlloc;
1027 /** Labels defined while recompiling (referenced by fixups). */
1028 PIEMNATIVELABEL paLabels;
1029 /** Array with indexes of unique labels (uData always 0). */
1030 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
1031
1032 /** Actual number of fixups paFixups. */
1033 uint32_t cFixups;
1034 /** Max number of entries allowed in paFixups before reallocating it. */
1035 uint32_t cFixupsAlloc;
1036 /** Buffer used by the recompiler for recording fixups when generating code. */
1037 PIEMNATIVEFIXUP paFixups;
1038
1039#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1040 /** Number of debug info entries allocated for pDbgInfo. */
1041 uint32_t cDbgInfoAlloc;
1042 uint32_t uPadding;
1043 /** Debug info. */
1044 PIEMTBDBG pDbgInfo;
1045#endif
1046
1047#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1048 /** The current call index (liveness array and threaded calls in TB). */
1049 uint32_t idxCurCall;
1050 /** Number of liveness entries allocated. */
1051 uint32_t cLivenessEntriesAlloc;
1052 /** Liveness entries for all the calls in the TB begin recompiled.
1053 * The entry for idxCurCall contains the info for what the next call will
1054 * require wrt registers. (Which means the last entry is the initial liveness
1055 * state.) */
1056 PIEMLIVENESSENTRY paLivenessEntries;
1057#endif
1058
1059 /** The translation block being recompiled. */
1060 PCIEMTB pTbOrg;
1061 /** The VMCPU structure of the EMT. */
1062 PVMCPUCC pVCpu;
1063
1064 /** Condition sequence number (for generating unique labels). */
1065 uint16_t uCondSeqNo;
1066 /** Check IRQ seqeunce number (for generating unique labels). */
1067 uint16_t uCheckIrqSeqNo;
1068 /** TLB load sequence number (for generating unique labels). */
1069 uint16_t uTlbSeqNo;
1070 /** The current condition stack depth (aCondStack). */
1071 uint8_t cCondDepth;
1072
1073 /** The argument count + hidden regs from the IEM_MC_BEGIN statement. */
1074 uint8_t cArgs;
1075 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1076 uint32_t fCImpl;
1077 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1078 uint32_t fMc;
1079 /** The expected IEMCPU::fExec value for the current call/instruction. */
1080 uint32_t fExec;
1081
1082 /** Core state requiring care with branches. */
1083 IEMNATIVECORESTATE Core;
1084
1085 /** The condition nesting stack. */
1086 IEMNATIVECOND aCondStack[2];
1087
1088#ifndef IEM_WITH_THROW_CATCH
1089 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
1090 * for recompilation error handling. */
1091 jmp_buf JmpBuf;
1092#endif
1093} IEMRECOMPILERSTATE;
1094/** Pointer to a native recompiler state. */
1095typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
1096
1097
1098/** @def IEMNATIVE_TRY_SETJMP
1099 * Wrapper around setjmp / try, hiding all the ugly differences.
1100 *
1101 * @note Use with extreme care as this is a fragile macro.
1102 * @param a_pReNative The native recompile state.
1103 * @param a_rcTarget The variable that should receive the status code in case
1104 * of a longjmp/throw.
1105 */
1106/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
1107 * Start wrapper for catch / setjmp-else.
1108 *
1109 * This will set up a scope.
1110 *
1111 * @note Use with extreme care as this is a fragile macro.
1112 * @param a_pReNative The native recompile state.
1113 * @param a_rcTarget The variable that should receive the status code in case
1114 * of a longjmp/throw.
1115 */
1116/** @def IEMNATIVE_CATCH_LONGJMP_END
1117 * End wrapper for catch / setjmp-else.
1118 *
1119 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
1120 * up the state.
1121 *
1122 * @note Use with extreme care as this is a fragile macro.
1123 * @param a_pReNative The native recompile state.
1124 */
1125/** @def IEMNATIVE_DO_LONGJMP
1126 *
1127 * Wrapper around longjmp / throw.
1128 *
1129 * @param a_pReNative The native recompile state.
1130 * @param a_rc The status code jump back with / throw.
1131 */
1132#ifdef IEM_WITH_THROW_CATCH
1133# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1134 a_rcTarget = VINF_SUCCESS; \
1135 try
1136# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1137 catch (int rcThrown) \
1138 { \
1139 a_rcTarget = rcThrown
1140# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1141 } \
1142 ((void)0)
1143# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
1144#else /* !IEM_WITH_THROW_CATCH */
1145# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1146 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
1147# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1148 else \
1149 { \
1150 ((void)0)
1151# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1152 }
1153# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
1154#endif /* !IEM_WITH_THROW_CATCH */
1155
1156
1157/**
1158 * Native recompiler worker for a threaded function.
1159 *
1160 * @returns New code buffer offset; throws VBox status code in case of a failure.
1161 * @param pReNative The native recompiler state.
1162 * @param off The current code buffer offset.
1163 * @param pCallEntry The threaded call entry.
1164 *
1165 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
1166 */
1167typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
1168/** Pointer to a native recompiler worker for a threaded function. */
1169typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
1170
1171/** Defines a native recompiler worker for a threaded function.
1172 * @see FNIEMNATIVERECOMPFUNC */
1173#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
1174 uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
1175
1176/** Prototypes a native recompiler function for a threaded function.
1177 * @see FNIEMNATIVERECOMPFUNC */
1178#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
1179
1180
1181/**
1182 * Native recompiler liveness analysis worker for a threaded function.
1183 *
1184 * @param pCallEntry The threaded call entry.
1185 * @param pIncoming The incoming liveness state entry.
1186 * @param pOutgoing The outgoing liveness state entry.
1187 */
1188typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
1189 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
1190/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
1191typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
1192
1193/** Defines a native recompiler liveness analysis worker for a threaded function.
1194 * @see FNIEMNATIVELIVENESSFUNC */
1195#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
1196 DECLCALLBACK(void) a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
1197
1198/** Prototypes a native recompiler liveness analysis function for a threaded function.
1199 * @see FNIEMNATIVELIVENESSFUNC */
1200#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
1201
1202
1203/** Define a native recompiler helper function, safe to call from the TB code. */
1204#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
1205 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1206/** Prototype a native recompiler helper function, safe to call from the TB code. */
1207#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
1208 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1209
1210
1211DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1212 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
1213DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
1214DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
1215 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
1216DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
1217
1218DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1219DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1220 bool fPreferVolatile = true);
1221DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm,
1222 bool fPreferVolatile = true);
1223DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1224 IEMNATIVEGSTREG enmGstReg,
1225 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1226 bool fNoVolatileRegs = false, bool fSkipLivenessAssert = false);
1227DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1228 IEMNATIVEGSTREG enmGstReg);
1229
1230DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
1231DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
1232DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1233DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1234DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1235DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
1236DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
1237DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExept = 0);
1238DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
1239 uint32_t fKeepVars = 0);
1240DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
1241DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
1242DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1243 uint32_t fHstRegsActiveShadows);
1244
1245DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1246DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1247 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1248DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1249 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
1250DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1251 uint32_t fHstRegsNotToSave);
1252DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1253 uint32_t fHstRegsNotToSave);
1254
1255DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1256 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
1257DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
1258DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
1259 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
1260 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
1261DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1262 PCIEMTHRDEDCALLENTRY pCallEntry);
1263
1264extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
1265
1266
1267/**
1268 * Ensures that there is sufficient space in the instruction output buffer.
1269 *
1270 * This will reallocate the buffer if needed and allowed.
1271 *
1272 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
1273 * allocation size.
1274 *
1275 * @returns Pointer to the instruction output buffer on success; throws VBox
1276 * status code on failure, so no need to check it.
1277 * @param pReNative The native recompile state.
1278 * @param off Current instruction offset. Works safely for UINT32_MAX
1279 * as well.
1280 * @param cInstrReq Number of instruction about to be added. It's okay to
1281 * overestimate this a bit.
1282 */
1283DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
1284iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
1285{
1286 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
1287 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
1288 {
1289#ifdef VBOX_STRICT
1290 pReNative->offInstrBufChecked = offChecked;
1291#endif
1292 return pReNative->pInstrBuf;
1293 }
1294 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
1295}
1296
1297/**
1298 * Checks that we didn't exceed the space requested in the last
1299 * iemNativeInstrBufEnsure() call.
1300 */
1301#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
1302 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
1303 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
1304
1305/**
1306 * Checks that a variable index is valid.
1307 */
1308#ifdef IEMNATIVE_VAR_IDX_MAGIC
1309# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1310 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
1311 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1312 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))), \
1313 ("%s=%#x\n", #a_idxVar, a_idxVar))
1314#else
1315# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1316 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1317 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
1318#endif
1319
1320/**
1321 * Checks that a variable index is valid and that the variable is assigned the
1322 * correct argument number.
1323 * This also adds a RT_NOREF of a_idxVar.
1324 */
1325#ifdef IEMNATIVE_VAR_IDX_MAGIC
1326# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1327 RT_NOREF_PV(a_idxVar); \
1328 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
1329 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1330 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))) \
1331 && (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].uArgNo == (a_uArgNo), \
1332 ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1333 (a_pReNative)->Core.aVars[RT_MIN(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar), \
1334 RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, \
1335 a_uArgNo)); \
1336 } while (0)
1337#else
1338# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1339 RT_NOREF_PV(a_idxVar); \
1340 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1341 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
1342 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
1343 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1344 (a_pReNative)->Core.aVars[RT_MIN(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
1345 } while (0)
1346#endif
1347
1348
1349/**
1350 * Checks that a variable has the expected size.
1351 */
1352#define IEMNATIVE_ASSERT_VAR_SIZE(a_pReNative, a_idxVar, a_cbVar) \
1353 AssertMsg((a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar), \
1354 ("%s=%#x: cbVar=%#x, expected %#x!\n", #a_idxVar, a_idxVar, \
1355 (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar)))
1356
1357
1358/**
1359 * Calculates the stack address of a variable as a [r]BP displacement value.
1360 */
1361DECL_FORCE_INLINE(int32_t)
1362iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
1363{
1364 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
1365 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
1366}
1367
1368
1369/**
1370 * Releases the variable's register.
1371 *
1372 * The register must have been previously acquired calling
1373 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
1374 * iemNativeVarRegisterSetAndAcquire().
1375 */
1376DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
1377{
1378 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
1379 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired);
1380 pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired = false;
1381}
1382
1383/** @} */
1384
1385#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
1386
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette