VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 103809

Last change on this file since 103809 was 103809, checked in by vboxsync, 13 months ago

VMM/IEM: Split up the native recompiler functions (IEMNativeFunctions.cpp.h) into 4 files to speed up compilation and reduce compiler memory consumption. This involved splitting out half the content of IEMAllThrdRecompiler.cpp into IEMAllN8veRecompFuncs.h and IEMN8veRecompiler.h. [build fix] bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 110.3 KB
Line 
1/* $Id: IEMN8veRecompiler.h 103809 2024-03-12 19:56:41Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
41 * Enables generating internal debug info for better TB disassembly dumping. */
42#if defined(DEBUG) || defined(DOXYGEN_RUNNING)
43# define IEMNATIVE_WITH_TB_DEBUG_INFO
44#endif
45
46/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
47 * Enables liveness analysis. */
48#if 1 || defined(DOXYGEN_RUNNING)
49# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
50/*# define IEMLIVENESS_EXTENDED_LAYOUT*/
51#endif
52
53#ifdef VBOX_WITH_STATISTICS
54/** Always count instructions for now. */
55# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
56#endif
57
58
59/** @name Stack Frame Layout
60 *
61 * @{ */
62/** The size of the area for stack variables and spills and stuff.
63 * @note This limit is duplicated in the python script(s). We add 0x40 for
64 * alignment padding. */
65#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
66/** Number of 64-bit variable slots (0x100 / 8 = 32. */
67#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
68AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
69
70#ifdef RT_ARCH_AMD64
71/** An stack alignment adjustment (between non-volatile register pushes and
72 * the stack variable area, so the latter better aligned). */
73# define IEMNATIVE_FRAME_ALIGN_SIZE 8
74
75/** Number of stack arguments slots for calls made from the frame. */
76# ifdef RT_OS_WINDOWS
77# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
78# else
79# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
80# endif
81/** Number of any shadow arguments (spill area) for calls we make. */
82# ifdef RT_OS_WINDOWS
83# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
84# else
85# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
86# endif
87
88/** Frame pointer (RBP) relative offset of the last push. */
89# ifdef RT_OS_WINDOWS
90# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
91# else
92# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
93# endif
94/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
95 * address for it). */
96# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
97/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
98# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
99/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
100# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
101# ifdef RT_OS_WINDOWS
102/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
103# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
104/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
105# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
106# endif
107
108# ifdef RT_OS_WINDOWS
109/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
110# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
111/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
112# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
113/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
114# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
115/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
116# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
117# endif
118
119#elif RT_ARCH_ARM64
120/** No alignment padding needed for arm64. */
121# define IEMNATIVE_FRAME_ALIGN_SIZE 0
122/** No stack argument slots, got 8 registers for arguments will suffice. */
123# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
124/** There are no argument spill area. */
125# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
126
127/** Number of saved registers at the top of our stack frame.
128 * This includes the return address and old frame pointer, so x19 thru x30. */
129# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
130/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
131# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
132
133/** Frame pointer (BP) relative offset of the last push. */
134# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
135
136/** Frame pointer (BP) relative offset of the stack variable area (the lowest
137 * address for it). */
138# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
139
140#else
141# error "port me"
142#endif
143/** @} */
144
145
146/** @name Fixed Register Allocation(s)
147 * @{ */
148/** @def IEMNATIVE_REG_FIXED_PVMCPU
149 * The number of the register holding the pVCpu pointer. */
150/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
151 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
152 * @note This not available on AMD64, only ARM64. */
153/** @def IEMNATIVE_REG_FIXED_TMP0
154 * Dedicated temporary register.
155 * @todo replace this by a register allocator and content tracker. */
156/** @def IEMNATIVE_REG_FIXED_MASK
157 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
158 * architecture. */
159#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
160/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
161 * Mask SIMD registers with fixes assignments, either by us or dictated by the CPU/OS
162 * architecture. */
163/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
164 * Dedicated temporary SIMD register. */
165#endif
166#if defined(RT_ARCH_AMD64) && !defined(DOXYGEN_RUNNING)
167# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
168# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
169# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
170 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
171 | RT_BIT_32(X86_GREG_xSP) \
172 | RT_BIT_32(X86_GREG_xBP) )
173
174# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
175# define IEMNATIVE_SIMD_REG_FIXED_TMP0 5 /* xmm5/ymm5 */
176# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS) || !defined(_MSC_VER)
177# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0)
178# else
179/** On Windows xmm6 through xmm15 are marked as callee saved. */
180# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xffc0)
181 | RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
182# endif
183# endif
184
185#elif defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
186# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
187# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
188# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
189# if defined(IEMNATIVE_WITH_DELAYED_PC_UPDATING) && 0 /* debug the updating with a shadow RIP. */
190# define IEMNATIVE_REG_FIXED_TMP1 ARMV8_A64_REG_X16
191# define IEMNATIVE_REG_FIXED_PC_DBG ARMV8_A64_REG_X26
192# define IEMNATIVE_REG_FIXED_MASK_ADD ( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1) \
193 | RT_BIT_32(IEMNATIVE_REG_FIXED_PC_DBG))
194# else
195# define IEMNATIVE_REG_FIXED_MASK_ADD 0
196# endif
197# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
198 | RT_BIT_32(ARMV8_A64_REG_LR) \
199 | RT_BIT_32(ARMV8_A64_REG_BP) \
200 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
201 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
202 | RT_BIT_32(ARMV8_A64_REG_X18) \
203 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
204 | IEMNATIVE_REG_FIXED_MASK_ADD)
205
206# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
207# define IEMNATIVE_SIMD_REG_FIXED_TMP0 ARMV8_A64_REG_Q30
208# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS)
209# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(ARMV8_A64_REG_Q30)
210# else
211/** arm64 declares the low 64-bit of v8-v15 as callee saved. */
212# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xff00) \
213 | RT_BIT_32(ARMV8_A64_REG_Q30))
214# endif
215# endif
216
217#else
218# error "port me"
219#endif
220/** @} */
221
222/** @name Call related registers.
223 * @{ */
224/** @def IEMNATIVE_CALL_RET_GREG
225 * The return value register. */
226/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
227 * Number of arguments in registers. */
228/** @def IEMNATIVE_CALL_ARG0_GREG
229 * The general purpose register carrying argument \#0. */
230/** @def IEMNATIVE_CALL_ARG1_GREG
231 * The general purpose register carrying argument \#1. */
232/** @def IEMNATIVE_CALL_ARG2_GREG
233 * The general purpose register carrying argument \#2. */
234/** @def IEMNATIVE_CALL_ARG3_GREG
235 * The general purpose register carrying argument \#3. */
236/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
237 * Mask of registers the callee will not save and may trash. */
238#ifdef RT_ARCH_AMD64
239# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
240
241# ifdef RT_OS_WINDOWS
242# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
243# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
244# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
245# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
246# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
247# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
248 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
249 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
250 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
251# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
252 | RT_BIT_32(X86_GREG_xCX) \
253 | RT_BIT_32(X86_GREG_xDX) \
254 | RT_BIT_32(X86_GREG_x8) \
255 | RT_BIT_32(X86_GREG_x9) \
256 | RT_BIT_32(X86_GREG_x10) \
257 | RT_BIT_32(X86_GREG_x11) )
258# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
259/* xmm0 - xmm5 are marked as volatile. */
260# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0x3f))
261# endif
262
263# else
264# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
265# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
266# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
267# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
268# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
269# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
270# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
271# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
272 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
273 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
274 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
275 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
276 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
277# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
278 | RT_BIT_32(X86_GREG_xCX) \
279 | RT_BIT_32(X86_GREG_xDX) \
280 | RT_BIT_32(X86_GREG_xDI) \
281 | RT_BIT_32(X86_GREG_xSI) \
282 | RT_BIT_32(X86_GREG_x8) \
283 | RT_BIT_32(X86_GREG_x9) \
284 | RT_BIT_32(X86_GREG_x10) \
285 | RT_BIT_32(X86_GREG_x11) )
286# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
287/* xmm0 - xmm15 are marked as volatile. */
288# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffff))
289# endif
290# endif
291
292#elif defined(RT_ARCH_ARM64)
293# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
294# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
295# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
296# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
297# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
298# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
299# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
300# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
301# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
302# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
303# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
304 | RT_BIT_32(ARMV8_A64_REG_X1) \
305 | RT_BIT_32(ARMV8_A64_REG_X2) \
306 | RT_BIT_32(ARMV8_A64_REG_X3) \
307 | RT_BIT_32(ARMV8_A64_REG_X4) \
308 | RT_BIT_32(ARMV8_A64_REG_X5) \
309 | RT_BIT_32(ARMV8_A64_REG_X6) \
310 | RT_BIT_32(ARMV8_A64_REG_X7) )
311# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
312 | RT_BIT_32(ARMV8_A64_REG_X1) \
313 | RT_BIT_32(ARMV8_A64_REG_X2) \
314 | RT_BIT_32(ARMV8_A64_REG_X3) \
315 | RT_BIT_32(ARMV8_A64_REG_X4) \
316 | RT_BIT_32(ARMV8_A64_REG_X5) \
317 | RT_BIT_32(ARMV8_A64_REG_X6) \
318 | RT_BIT_32(ARMV8_A64_REG_X7) \
319 | RT_BIT_32(ARMV8_A64_REG_X8) \
320 | RT_BIT_32(ARMV8_A64_REG_X9) \
321 | RT_BIT_32(ARMV8_A64_REG_X10) \
322 | RT_BIT_32(ARMV8_A64_REG_X11) \
323 | RT_BIT_32(ARMV8_A64_REG_X12) \
324 | RT_BIT_32(ARMV8_A64_REG_X13) \
325 | RT_BIT_32(ARMV8_A64_REG_X14) \
326 | RT_BIT_32(ARMV8_A64_REG_X15) \
327 | RT_BIT_32(ARMV8_A64_REG_X16) \
328 | RT_BIT_32(ARMV8_A64_REG_X17) )
329# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
330/* The low 64 bits of v8 - v15 marked as callee saved but the rest is volatile,
331 * so to simplify our life a bit we just mark everything as volatile. */
332# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffffffff))
333# endif
334
335#endif
336
337/** This is the maximum argument count we'll ever be needing. */
338#if defined(RT_OS_WINDOWS) && defined(VBOXSTRICTRC_STRICT_ENABLED)
339# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
340#else
341# define IEMNATIVE_CALL_MAX_ARG_COUNT 7
342#endif
343/** @} */
344
345
346/** @def IEMNATIVE_HST_GREG_COUNT
347 * Number of host general purpose registers we tracker. */
348/** @def IEMNATIVE_HST_GREG_MASK
349 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
350 * inverted register masks and such to get down to a correct set of regs. */
351#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
352/** @def IEMNATIVE_HST_SIMD_REG_COUNT
353 * Number of host SIMD registers we track. */
354/** @def IEMNATIVE_HST_SIMD_REG_MASK
355 * Mask corresponding to IEMNATIVE_HST_SIMD_REG_COUNT that can be applied to
356 * inverted register masks and such to get down to a correct set of regs. */
357#endif
358#ifdef RT_ARCH_AMD64
359# define IEMNATIVE_HST_GREG_COUNT 16
360# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
361
362# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
363# define IEMNATIVE_HST_SIMD_REG_COUNT 16
364# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_C(0xffff)
365# endif
366
367#elif defined(RT_ARCH_ARM64)
368# define IEMNATIVE_HST_GREG_COUNT 32
369# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
370
371# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
372# define IEMNATIVE_HST_SIMD_REG_COUNT 32
373# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_MAX
374# endif
375
376#else
377# error "Port me!"
378#endif
379
380
381/** Native code generator label types. */
382typedef enum
383{
384 kIemNativeLabelType_Invalid = 0,
385 /* Labels w/o data, only once instance per TB: */
386 kIemNativeLabelType_Return,
387 kIemNativeLabelType_ReturnBreak,
388 kIemNativeLabelType_ReturnWithFlags,
389 kIemNativeLabelType_NonZeroRetOrPassUp,
390 kIemNativeLabelType_RaiseGp0,
391 kIemNativeLabelType_RaiseNm,
392 kIemNativeLabelType_RaiseUd,
393 kIemNativeLabelType_RaiseMf,
394 kIemNativeLabelType_RaiseXf,
395 kIemNativeLabelType_ObsoleteTb,
396 kIemNativeLabelType_NeedCsLimChecking,
397 kIemNativeLabelType_CheckBranchMiss,
398 /* Labels with data, potentially multiple instances per TB: */
399 kIemNativeLabelType_FirstWithMultipleInstances,
400 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
401 kIemNativeLabelType_Else,
402 kIemNativeLabelType_Endif,
403 kIemNativeLabelType_CheckIrq,
404 kIemNativeLabelType_TlbLookup,
405 kIemNativeLabelType_TlbMiss,
406 kIemNativeLabelType_TlbDone,
407 kIemNativeLabelType_End
408} IEMNATIVELABELTYPE;
409
410/** Native code generator label definition. */
411typedef struct IEMNATIVELABEL
412{
413 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
414 * the epilog. */
415 uint32_t off;
416 /** The type of label (IEMNATIVELABELTYPE). */
417 uint16_t enmType;
418 /** Additional label data, type specific. */
419 uint16_t uData;
420} IEMNATIVELABEL;
421/** Pointer to a label. */
422typedef IEMNATIVELABEL *PIEMNATIVELABEL;
423
424
425/** Native code generator fixup types. */
426typedef enum
427{
428 kIemNativeFixupType_Invalid = 0,
429#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
430 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
431 kIemNativeFixupType_Rel32,
432#elif defined(RT_ARCH_ARM64)
433 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
434 kIemNativeFixupType_RelImm26At0,
435 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
436 kIemNativeFixupType_RelImm19At5,
437 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
438 kIemNativeFixupType_RelImm14At5,
439#endif
440 kIemNativeFixupType_End
441} IEMNATIVEFIXUPTYPE;
442
443/** Native code generator fixup. */
444typedef struct IEMNATIVEFIXUP
445{
446 /** Code offset of the fixup location. */
447 uint32_t off;
448 /** The IEMNATIVELABEL this is a fixup for. */
449 uint16_t idxLabel;
450 /** The fixup type (IEMNATIVEFIXUPTYPE). */
451 uint8_t enmType;
452 /** Addend or other data. */
453 int8_t offAddend;
454} IEMNATIVEFIXUP;
455/** Pointer to a native code generator fixup. */
456typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
457
458
459/**
460 * One bit of the state.
461 *
462 * Each register state takes up two bits. We keep the two bits in two separate
463 * 64-bit words to simplify applying them to the guest shadow register mask in
464 * the register allocator.
465 */
466typedef union IEMLIVENESSBIT
467{
468 uint64_t bm64;
469 RT_GCC_EXTENSION struct
470 { /* bit no */
471 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
472 uint64_t fUnusedPc : 1; /**< 0x10 / 16: (PC in ) */
473 uint64_t fCr0 : 1; /**< 0x11 / 17: */
474 uint64_t fFcw : 1; /**< 0x12 / 18: */
475 uint64_t fFsw : 1; /**< 0x13 / 19: */
476 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
477 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
478 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
479 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
480 uint64_t fCr4 : 1; /**< 0x2c / 44: */
481 uint64_t fXcr0 : 1; /**< 0x2d / 45: */
482 uint64_t fMxCsr : 1; /**< 0x2e / 46: */
483 uint64_t fEflOther : 1; /**< 0x2f / 47: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
484 uint64_t fEflCf : 1; /**< 0x30 / 48: Carry flag (X86_EFL_CF / 0). */
485 uint64_t fEflPf : 1; /**< 0x31 / 49: Parity flag (X86_EFL_PF / 2). */
486 uint64_t fEflAf : 1; /**< 0x32 / 50: Auxilary carry flag (X86_EFL_AF / 4). */
487 uint64_t fEflZf : 1; /**< 0x33 / 51: Zero flag (X86_EFL_ZF / 6). */
488 uint64_t fEflSf : 1; /**< 0x34 / 52: Signed flag (X86_EFL_SF / 7). */
489 uint64_t fEflOf : 1; /**< 0x35 / 53: Overflow flag (X86_EFL_OF / 12). */
490 uint64_t uUnused : 10; /* 0x36 / 54 -> 0x40/64 */
491 };
492} IEMLIVENESSBIT;
493AssertCompileSize(IEMLIVENESSBIT, 8);
494
495#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
496#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
497#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
498#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
499#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
500#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
501#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
502
503
504/**
505 * A liveness state entry.
506 *
507 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
508 * Once we add a SSE register shadowing, we'll add another 64-bit element for
509 * that.
510 */
511typedef union IEMLIVENESSENTRY
512{
513#ifndef IEMLIVENESS_EXTENDED_LAYOUT
514 uint64_t bm64[16 / 8];
515 uint16_t bm32[16 / 4];
516 uint16_t bm16[16 / 2];
517 uint8_t bm8[ 16 / 1];
518 IEMLIVENESSBIT aBits[2];
519#else
520 uint64_t bm64[32 / 8];
521 uint16_t bm32[32 / 4];
522 uint16_t bm16[32 / 2];
523 uint8_t bm8[ 32 / 1];
524 IEMLIVENESSBIT aBits[4];
525#endif
526 RT_GCC_EXTENSION struct
527 {
528 /** Bit \#0 of the register states. */
529 IEMLIVENESSBIT Bit0;
530 /** Bit \#1 of the register states. */
531 IEMLIVENESSBIT Bit1;
532#ifdef IEMLIVENESS_EXTENDED_LAYOUT
533 /** Bit \#2 of the register states. */
534 IEMLIVENESSBIT Bit2;
535 /** Bit \#3 of the register states. */
536 IEMLIVENESSBIT Bit3;
537#endif
538 };
539} IEMLIVENESSENTRY;
540#ifndef IEMLIVENESS_EXTENDED_LAYOUT
541AssertCompileSize(IEMLIVENESSENTRY, 16);
542#else
543AssertCompileSize(IEMLIVENESSENTRY, 32);
544#endif
545/** Pointer to a liveness state entry. */
546typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
547/** Pointer to a const liveness state entry. */
548typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
549
550/** @name 64-bit value masks for IEMLIVENESSENTRY.
551 * @{ */ /* 0xzzzzyyyyxxxxwwww */
552#define IEMLIVENESSBIT_MASK UINT64_C(0x003ffffffffeffff)
553
554#ifndef IEMLIVENESS_EXTENDED_LAYOUT
555# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
556# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
557
558# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
559# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
560#endif
561
562#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x003f800000000000)
563
564#ifndef IEMLIVENESS_EXTENDED_LAYOUT
565# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
566# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
567#endif
568/** @} */
569
570
571/** @name The liveness state for a register.
572 *
573 * The state values have been picked to with state accumulation in mind (what
574 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
575 * performance critical work done with the values.
576 *
577 * This is a compressed state that only requires 2 bits per register.
578 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
579 * 1. the incoming state from the following call,
580 * 2. the outgoing state for this call,
581 * 3. mask of the entries set in the 2nd.
582 *
583 * The mask entry (3rd one above) will be used both when updating the outgoing
584 * state and when merging in incoming state for registers not touched by the
585 * current call.
586 *
587 * @{ */
588#ifndef IEMLIVENESS_EXTENDED_LAYOUT
589/** The register will be clobbered and the current value thrown away.
590 *
591 * When this is applied to the state (2) we'll simply be AND'ing it with the
592 * (old) mask (3) and adding the register to the mask. This way we'll
593 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
594 * IEMLIVENESS_STATE_INPUT states. */
595# define IEMLIVENESS_STATE_CLOBBERED 0
596/** The register is unused in the remainder of the TB.
597 *
598 * This is an initial state and can not be set by any of the
599 * iemNativeLivenessFunc_xxxx callbacks. */
600# define IEMLIVENESS_STATE_UNUSED 1
601/** The register value is required in a potential call or exception.
602 *
603 * This means that the register value must be calculated and is best written to
604 * the state, but that any shadowing registers can be flushed thereafter as it's
605 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
606 *
607 * It is typically applied across the board, but we preserve incoming
608 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
609 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
610 * 1. r0 = old & ~mask;
611 * 2. r0 = t1 & (t1 >> 1)'
612 * 3. state |= r0 | 0b10;
613 * 4. mask = ~0;
614 */
615# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
616/** The register value is used as input.
617 *
618 * This means that the register value must be calculated and it is best to keep
619 * it in a register. It does not need to be writtent out as such. This is the
620 * highest priority state.
621 *
622 * Whether the call modifies the register or not isn't relevant to earlier
623 * calls, so that's not recorded.
624 *
625 * When applying this state we just or in the value in the outgoing state and
626 * mask. */
627# define IEMLIVENESS_STATE_INPUT 3
628/** Mask of the state bits. */
629# define IEMLIVENESS_STATE_MASK 3
630/** The number of bits per state. */
631# define IEMLIVENESS_STATE_BIT_COUNT 2
632/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state. */
633# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
634/** Check if we're expecting read accesses to a register with the given (previous) liveness state. */
635# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
636/** Check if a register clobbering is expected given the (previous) liveness state.
637 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
638 * include INPUT if the register is used in more than one place. */
639# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
640
641#else /* IEMLIVENESS_EXTENDED_LAYOUT */
642/** The register is not used any more. */
643# define IEMLIVENESS_STATE_UNUSED 0
644/** Flag: The register is required in a potential exception or call. */
645# define IEMLIVENESS_STATE_POT_XCPT_OR_CALL 1
646# define IEMLIVENESS_BIT_POT_XCPT_OR_CALL 0
647/** Flag: The register is read. */
648# define IEMLIVENESS_STATE_READ 2
649# define IEMLIVENESS_BIT_READ 1
650/** Flag: The register is written. */
651# define IEMLIVENESS_STATE_WRITE 4
652# define IEMLIVENESS_BIT_WRITE 2
653/** Flag: Unconditional call (not needed, can be redefined for research). */
654# define IEMLIVENESS_STATE_CALL 8
655# define IEMLIVENESS_BIT_CALL 3
656# define IEMLIVENESS_BIT_OTHER 3 /**< More convenient name for this one. */
657# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
658 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
659# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
660# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
661#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
662/** @} */
663
664/** @name Liveness helpers for builtin functions and similar.
665 *
666 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
667 * own set of manimulator macros for those.
668 *
669 * @{ */
670/** Initializing the state as all unused. */
671#ifndef IEMLIVENESS_EXTENDED_LAYOUT
672# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
673 do { \
674 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
675 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
676 } while (0)
677#else
678# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
679 do { \
680 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = 0; \
681 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
682 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
683 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
684 } while (0)
685#endif
686
687/** Initializing the outgoing state with a potential xcpt or call state.
688 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT. */
689#ifndef IEMLIVENESS_EXTENDED_LAYOUT
690# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
691 do { \
692 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
693 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
694 } while (0)
695#else
696# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
697 do { \
698 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = IEMLIVENESSBIT_MASK; \
699 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64; \
700 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
701 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
702 } while (0)
703#endif
704
705/** Adds a segment base register as input to the outgoing state. */
706#ifndef IEMLIVENESS_EXTENDED_LAYOUT
707# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
708 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
709 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
710 } while (0)
711#else
712# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
713 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
714 } while (0)
715#endif
716
717/** Adds a segment attribute register as input to the outgoing state. */
718#ifndef IEMLIVENESS_EXTENDED_LAYOUT
719# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
720 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
721 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
722 } while (0)
723#else
724# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
725 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
726 } while (0)
727#endif
728
729/** Adds a segment limit register as input to the outgoing state. */
730#ifndef IEMLIVENESS_EXTENDED_LAYOUT
731# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
732 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
733 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
734 } while (0)
735#else
736# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
737 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
738 } while (0)
739#endif
740
741/** Adds a segment limit register as input to the outgoing state. */
742#ifndef IEMLIVENESS_EXTENDED_LAYOUT
743# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
744 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
745 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
746 } while (0)
747#else
748# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
749 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
750 } while (0)
751#endif
752/** @} */
753
754/**
755 * Guest registers that can be shadowed in GPRs.
756 *
757 * This runs parallel to the liveness state (IEMLIVENESSBIT, ++). The EFlags
758 * must be placed last, as the liveness state tracks it as 7 subcomponents and
759 * we don't want to waste space here.
760 *
761 * @note Make sure to update IEMLIVENESSBIT, IEMLIVENESSBIT_ALL_EFL_MASK and
762 * friends as well as IEMAllN8veLiveness.cpp.
763 */
764typedef enum IEMNATIVEGSTREG : uint8_t
765{
766 kIemNativeGstReg_GprFirst = 0,
767 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
768 kIemNativeGstReg_Pc,
769 kIemNativeGstReg_Cr0,
770 kIemNativeGstReg_FpuFcw,
771 kIemNativeGstReg_FpuFsw,
772 kIemNativeGstReg_SegBaseFirst,
773 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
774 kIemNativeGstReg_SegAttribFirst,
775 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
776 kIemNativeGstReg_SegLimitFirst,
777 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
778 kIemNativeGstReg_SegSelFirst,
779 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
780 kIemNativeGstReg_Cr4,
781 kIemNativeGstReg_Xcr0,
782 kIemNativeGstReg_MxCsr,
783 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags - last! */
784 kIemNativeGstReg_End
785} IEMNATIVEGSTREG;
786AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
787AssertCompile((UINT64_C(0x7f) << kIemNativeGstReg_EFlags) == IEMLIVENESSBIT_ALL_EFL_MASK);
788
789/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
790 * @{ */
791#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
792#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
793#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
794#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
795#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
796/** @} */
797
798#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
799
800/**
801 * Guest registers that can be shadowed in host SIMD registers.
802 *
803 * @todo r=aeichner Liveness tracking
804 * @todo r=aeichner Given that we can only track xmm/ymm here does this actually make sense?
805 */
806typedef enum IEMNATIVEGSTSIMDREG : uint8_t
807{
808 kIemNativeGstSimdReg_SimdRegFirst = 0,
809 kIemNativeGstSimdReg_SimdRegLast = kIemNativeGstSimdReg_SimdRegFirst + 15,
810 kIemNativeGstSimdReg_End
811} IEMNATIVEGSTSIMDREG;
812
813/** @name Helpers for converting register numbers to IEMNATIVEGSTSIMDREG values.
814 * @{ */
815#define IEMNATIVEGSTSIMDREG_SIMD(a_iSimdReg) ((IEMNATIVEGSTSIMDREG)(kIemNativeGstSimdReg_SimdRegFirst + (a_iSimdReg)))
816/** @} */
817
818/**
819 * The Load/store size for a SIMD guest register.
820 */
821typedef enum IEMNATIVEGSTSIMDREGLDSTSZ : uint8_t
822{
823 /** Invalid size. */
824 kIemNativeGstSimdRegLdStSz_Invalid = 0,
825 /** Loads the low 128-bit of a guest SIMD register. */
826 kIemNativeGstSimdRegLdStSz_Low128,
827 /** Loads the high 128-bit of a guest SIMD register. */
828 kIemNativeGstSimdRegLdStSz_High128,
829 /** Loads the whole 256-bits of a guest SIMD register. */
830 kIemNativeGstSimdRegLdStSz_256,
831 /** End value. */
832 kIemNativeGstSimdRegLdStSz_End
833} IEMNATIVEGSTSIMDREGLDSTSZ;
834
835#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
836
837/**
838 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
839 */
840typedef enum IEMNATIVEGSTREGUSE
841{
842 /** The usage is read-only, the register holding the guest register
843 * shadow copy will not be modified by the caller. */
844 kIemNativeGstRegUse_ReadOnly = 0,
845 /** The caller will update the guest register (think: PC += cbInstr).
846 * The guest shadow copy will follow the returned register. */
847 kIemNativeGstRegUse_ForUpdate,
848 /** The call will put an entirely new value in the guest register, so
849 * if new register is allocate it will be returned uninitialized. */
850 kIemNativeGstRegUse_ForFullWrite,
851 /** The caller will use the guest register value as input in a calculation
852 * and the host register will be modified.
853 * This means that the returned host register will not be marked as a shadow
854 * copy of the guest register. */
855 kIemNativeGstRegUse_Calculation
856} IEMNATIVEGSTREGUSE;
857
858/**
859 * Guest registers (classes) that can be referenced.
860 */
861typedef enum IEMNATIVEGSTREGREF : uint8_t
862{
863 kIemNativeGstRegRef_Invalid = 0,
864 kIemNativeGstRegRef_Gpr,
865 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
866 kIemNativeGstRegRef_EFlags,
867 kIemNativeGstRegRef_MxCsr,
868 kIemNativeGstRegRef_FpuReg,
869 kIemNativeGstRegRef_MReg,
870 kIemNativeGstRegRef_XReg,
871 //kIemNativeGstRegRef_YReg, - doesn't work.
872 kIemNativeGstRegRef_End
873} IEMNATIVEGSTREGREF;
874
875
876/** Variable kinds. */
877typedef enum IEMNATIVEVARKIND : uint8_t
878{
879 /** Customary invalid zero value. */
880 kIemNativeVarKind_Invalid = 0,
881 /** This is either in a register or on the stack. */
882 kIemNativeVarKind_Stack,
883 /** Immediate value - loaded into register when needed, or can live on the
884 * stack if referenced (in theory). */
885 kIemNativeVarKind_Immediate,
886 /** Variable reference - loaded into register when needed, never stack. */
887 kIemNativeVarKind_VarRef,
888 /** Guest register reference - loaded into register when needed, never stack. */
889 kIemNativeVarKind_GstRegRef,
890 /** End of valid values. */
891 kIemNativeVarKind_End
892} IEMNATIVEVARKIND;
893
894
895/** Variable or argument. */
896typedef struct IEMNATIVEVAR
897{
898 /** The kind of variable. */
899 IEMNATIVEVARKIND enmKind;
900 /** The variable size in bytes. */
901 uint8_t cbVar;
902 /** The first stack slot (uint64_t), except for immediate and references
903 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
904 * has a stack slot it has been initialized and has a value. Unused variables
905 * has neither a stack slot nor a host register assignment. */
906 uint8_t idxStackSlot;
907 /** The host register allocated for the variable, UINT8_MAX if not. */
908 uint8_t idxReg;
909 /** The argument number if argument, UINT8_MAX if regular variable. */
910 uint8_t uArgNo;
911 /** If referenced, the index (unpacked) of the variable referencing this one,
912 * otherwise UINT8_MAX. A referenced variable must only be placed on the stack
913 * and must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
914 uint8_t idxReferrerVar;
915 /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not.
916 * @todo not sure what this really is for... */
917 IEMNATIVEGSTREG enmGstReg;
918 /** Set if the registered is currently used exclusively, false if the
919 * variable is idle and the register can be grabbed. */
920 bool fRegAcquired;
921
922 union
923 {
924 /** kIemNativeVarKind_Immediate: The immediate value. */
925 uint64_t uValue;
926 /** kIemNativeVarKind_VarRef: The index (unpacked) of the variable being referenced. */
927 uint8_t idxRefVar;
928 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
929 struct
930 {
931 /** The class of register. */
932 IEMNATIVEGSTREGREF enmClass;
933 /** Index within the class. */
934 uint8_t idx;
935 } GstRegRef;
936 } u;
937} IEMNATIVEVAR;
938/** Pointer to a variable or argument. */
939typedef IEMNATIVEVAR *PIEMNATIVEVAR;
940/** Pointer to a const variable or argument. */
941typedef IEMNATIVEVAR const *PCIEMNATIVEVAR;
942
943/** What is being kept in a host register. */
944typedef enum IEMNATIVEWHAT : uint8_t
945{
946 /** The traditional invalid zero value. */
947 kIemNativeWhat_Invalid = 0,
948 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
949 kIemNativeWhat_Var,
950 /** Temporary register, this is typically freed when a MC completes. */
951 kIemNativeWhat_Tmp,
952 /** Call argument w/o a variable mapping. This is free (via
953 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
954 kIemNativeWhat_Arg,
955 /** Return status code.
956 * @todo not sure if we need this... */
957 kIemNativeWhat_rc,
958 /** The fixed pVCpu (PVMCPUCC) register.
959 * @todo consider offsetting this on amd64 to use negative offsets to access
960 * more members using 8-byte disp. */
961 kIemNativeWhat_pVCpuFixed,
962 /** The fixed pCtx (PCPUMCTX) register.
963 * @todo consider offsetting this on amd64 to use negative offsets to access
964 * more members using 8-byte disp. */
965 kIemNativeWhat_pCtxFixed,
966 /** Fixed temporary register. */
967 kIemNativeWhat_FixedTmp,
968#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
969 /** Shadow RIP for the delayed RIP updating debugging. */
970 kIemNativeWhat_PcShadow,
971#endif
972 /** Register reserved by the CPU or OS architecture. */
973 kIemNativeWhat_FixedReserved,
974 /** End of valid values. */
975 kIemNativeWhat_End
976} IEMNATIVEWHAT;
977
978/**
979 * Host general register entry.
980 *
981 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
982 *
983 * @todo Track immediate values in host registers similarlly to how we track the
984 * guest register shadow copies. For it to be real helpful, though,
985 * we probably need to know which will be reused and put them into
986 * non-volatile registers, otherwise it's going to be more or less
987 * restricted to an instruction or two.
988 */
989typedef struct IEMNATIVEHSTREG
990{
991 /** Set of guest registers this one shadows.
992 *
993 * Using a bitmap here so we can designate the same host register as a copy
994 * for more than one guest register. This is expected to be useful in
995 * situations where one value is copied to several registers in a sequence.
996 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
997 * sequence we'd want to let this register follow to be a copy of and there
998 * will always be places where we'd be picking the wrong one.
999 */
1000 uint64_t fGstRegShadows;
1001 /** What is being kept in this register. */
1002 IEMNATIVEWHAT enmWhat;
1003 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1004 uint8_t idxVar;
1005 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
1006 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
1007 * that scope. */
1008 uint8_t idxStackSlot;
1009 /** Alignment padding. */
1010 uint8_t abAlign[5];
1011} IEMNATIVEHSTREG;
1012
1013
1014#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1015/**
1016 * Host SIMD register entry - this tracks a virtual 256-bit register split into two 128-bit
1017 * halves, on architectures where there is no 256-bit register available this entry will track
1018 * two adjacent 128-bit host registers.
1019 *
1020 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstSimdRegs.
1021 */
1022typedef struct IEMNATIVEHSTSIMDREG
1023{
1024 /** Set of guest registers this one shadows.
1025 *
1026 * Using a bitmap here so we can designate the same host register as a copy
1027 * for more than one guest register. This is expected to be useful in
1028 * situations where one value is copied to several registers in a sequence.
1029 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1030 * sequence we'd want to let this register follow to be a copy of and there
1031 * will always be places where we'd be picking the wrong one.
1032 */
1033 uint64_t fGstRegShadows;
1034 /** What is being kept in this register. */
1035 IEMNATIVEWHAT enmWhat;
1036 /** Flag what is currently loaded, low 128-bits, high 128-bits or complete 256-bits. */
1037 IEMNATIVEGSTSIMDREGLDSTSZ enmLoaded;
1038 /** Alignment padding. */
1039 uint8_t abAlign[6];
1040} IEMNATIVEHSTSIMDREG;
1041#endif
1042
1043
1044/**
1045 * Core state for the native recompiler, that is, things that needs careful
1046 * handling when dealing with branches.
1047 */
1048typedef struct IEMNATIVECORESTATE
1049{
1050#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1051 /** The current instruction offset in bytes from when the guest program counter
1052 * was updated last. Used for delaying the write to the guest context program counter
1053 * as long as possible. */
1054 uint32_t offPc;
1055 /** Number of instructions where we could skip the updating. */
1056 uint32_t cInstrPcUpdateSkipped;
1057#endif
1058 /** Allocation bitmap for aHstRegs. */
1059 uint32_t bmHstRegs;
1060
1061 /** Bitmap marking which host register contains guest register shadow copies.
1062 * This is used during register allocation to try preserve copies. */
1063 uint32_t bmHstRegsWithGstShadow;
1064 /** Bitmap marking valid entries in aidxGstRegShadows. */
1065 uint64_t bmGstRegShadows;
1066
1067#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1068 /** Allocation bitmap for aHstSimdRegs. */
1069 uint32_t bmHstSimdRegs;
1070
1071 /** Bitmap marking which host SIMD register contains guest SIMD register shadow copies.
1072 * This is used during register allocation to try preserve copies. */
1073 uint32_t bmHstSimdRegsWithGstShadow;
1074 /** Bitmap marking valid entries in aidxSimdGstRegShadows. */
1075 uint64_t bmGstSimdRegShadows;
1076 /** Bitmap marking whether the low 128-bit of the shadowed guest register are dirty and need writeback. */
1077 uint64_t bmGstSimdRegShadowDirtyLo128;
1078 /** Bitmap marking whether the high 128-bit of the shadowed guest register are dirty and need writeback. */
1079 uint64_t bmGstSimdRegShadowDirtyHi128;
1080#endif
1081
1082 union
1083 {
1084 /** Index of variable (unpacked) arguments, UINT8_MAX if not valid. */
1085 uint8_t aidxArgVars[8];
1086 /** For more efficient resetting. */
1087 uint64_t u64ArgVars;
1088 };
1089
1090 /** Allocation bitmap for the stack. */
1091 uint32_t bmStack;
1092 /** Allocation bitmap for aVars. */
1093 uint32_t bmVars;
1094
1095 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
1096 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
1097 * (A shadow copy of a guest register can only be held in a one host register,
1098 * there are no duplicate copies or ambiguities like that). */
1099 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
1100#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1101 /** Maps a guest SIMD register to a host SIMD register (index by IEMNATIVEGSTSIMDREG).
1102 * Entries are only valid if the corresponding bit in bmGstSimdRegShadows is set.
1103 * (A shadow copy of a guest register can only be held in a one host register,
1104 * there are no duplicate copies or ambiguities like that). */
1105 uint8_t aidxGstSimdRegShadows[kIemNativeGstSimdReg_End];
1106#endif
1107
1108 /** Host register allocation tracking. */
1109 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
1110#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1111 /** Host SIMD register allocation tracking. */
1112 IEMNATIVEHSTSIMDREG aHstSimdRegs[IEMNATIVE_HST_SIMD_REG_COUNT];
1113#endif
1114
1115 /** Variables and arguments. */
1116 IEMNATIVEVAR aVars[9];
1117} IEMNATIVECORESTATE;
1118/** Pointer to core state. */
1119typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
1120/** Pointer to const core state. */
1121typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
1122
1123/** @def IEMNATIVE_VAR_IDX_UNPACK
1124 * @returns Index into IEMNATIVECORESTATE::aVars.
1125 * @param a_idxVar Variable index w/ magic (in strict builds).
1126 */
1127/** @def IEMNATIVE_VAR_IDX_PACK
1128 * @returns Variable index w/ magic (in strict builds).
1129 * @param a_idxVar Index into IEMNATIVECORESTATE::aVars.
1130 */
1131#ifdef VBOX_STRICT
1132# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) ((a_idxVar) & IEMNATIVE_VAR_IDX_MASK)
1133# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) ((a_idxVar) | IEMNATIVE_VAR_IDX_MAGIC)
1134# define IEMNATIVE_VAR_IDX_MAGIC UINT8_C(0xd0)
1135# define IEMNATIVE_VAR_IDX_MAGIC_MASK UINT8_C(0xf0)
1136# define IEMNATIVE_VAR_IDX_MASK UINT8_C(0x0f)
1137#else
1138# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) (a_idxVar)
1139# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) (a_idxVar)
1140#endif
1141
1142
1143#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1144/** Clear the dirty state of the given guest SIMD register. */
1145# define IEMNATIVE_SIMD_REG_STATE_CLR_DIRTY(a_pReNative, a_iSimdReg) \
1146 do { \
1147 (a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 &= ~RT_BIT_64(a_iSimdReg); \
1148 (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 &= ~RT_BIT_64(a_iSimdReg); \
1149 } while (0)
1150
1151/** Returns whether the low 128-bits of the given guest SIMD register are dirty. */
1152# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1153 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 & RT_BIT_64(a_iSimdReg))
1154/** Returns whether the high 128-bits of the given guest SIMD register are dirty. */
1155# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1156 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 & RT_BIT_64(a_iSimdReg))
1157/** Returns whether the given guest SIMD register is dirty. */
1158# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_U256(a_pReNative, a_iSimdReg) \
1159 RT_BOOL(((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 | (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128) & RT_BIT_64(a_iSimdReg))
1160
1161/** Set the low 128-bits of the given guest SIMD register to the dirty state. */
1162# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1163 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 |= RT_BIT_64(a_iSimdReg))
1164/** Set the high 128-bits of the given guest SIMD register to the dirty state. */
1165# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1166 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 |= RT_BIT_64(a_iSimdReg))
1167#endif
1168
1169
1170/**
1171 * Conditional stack entry.
1172 */
1173typedef struct IEMNATIVECOND
1174{
1175 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
1176 bool fInElse;
1177 /** The label for the IEM_MC_ELSE. */
1178 uint32_t idxLabelElse;
1179 /** The label for the IEM_MC_ENDIF. */
1180 uint32_t idxLabelEndIf;
1181 /** The initial state snapshot as the if-block starts executing. */
1182 IEMNATIVECORESTATE InitialState;
1183 /** The state snapshot at the end of the if-block. */
1184 IEMNATIVECORESTATE IfFinalState;
1185} IEMNATIVECOND;
1186/** Pointer to a condition stack entry. */
1187typedef IEMNATIVECOND *PIEMNATIVECOND;
1188
1189
1190/**
1191 * Native recompiler state.
1192 */
1193typedef struct IEMRECOMPILERSTATE
1194{
1195 /** Size of the buffer that pbNativeRecompileBufR3 points to in
1196 * IEMNATIVEINSTR units. */
1197 uint32_t cInstrBufAlloc;
1198#ifdef VBOX_STRICT
1199 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
1200 uint32_t offInstrBufChecked;
1201#else
1202 uint32_t uPadding1; /* We don't keep track of the size here... */
1203#endif
1204 /** Fixed temporary code buffer for native recompilation. */
1205 PIEMNATIVEINSTR pInstrBuf;
1206
1207 /** Bitmaps with the label types used. */
1208 uint64_t bmLabelTypes;
1209 /** Actual number of labels in paLabels. */
1210 uint32_t cLabels;
1211 /** Max number of entries allowed in paLabels before reallocating it. */
1212 uint32_t cLabelsAlloc;
1213 /** Labels defined while recompiling (referenced by fixups). */
1214 PIEMNATIVELABEL paLabels;
1215 /** Array with indexes of unique labels (uData always 0). */
1216 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
1217
1218 /** Actual number of fixups paFixups. */
1219 uint32_t cFixups;
1220 /** Max number of entries allowed in paFixups before reallocating it. */
1221 uint32_t cFixupsAlloc;
1222 /** Buffer used by the recompiler for recording fixups when generating code. */
1223 PIEMNATIVEFIXUP paFixups;
1224
1225#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1226 /** Number of debug info entries allocated for pDbgInfo. */
1227 uint32_t cDbgInfoAlloc;
1228 uint32_t uPadding;
1229 /** Debug info. */
1230 PIEMTBDBG pDbgInfo;
1231#endif
1232
1233#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1234 /** The current call index (liveness array and threaded calls in TB). */
1235 uint32_t idxCurCall;
1236 /** Number of liveness entries allocated. */
1237 uint32_t cLivenessEntriesAlloc;
1238 /** Liveness entries for all the calls in the TB begin recompiled.
1239 * The entry for idxCurCall contains the info for what the next call will
1240 * require wrt registers. (Which means the last entry is the initial liveness
1241 * state.) */
1242 PIEMLIVENESSENTRY paLivenessEntries;
1243#endif
1244
1245 /** The translation block being recompiled. */
1246 PCIEMTB pTbOrg;
1247 /** The VMCPU structure of the EMT. */
1248 PVMCPUCC pVCpu;
1249
1250 /** Condition sequence number (for generating unique labels). */
1251 uint16_t uCondSeqNo;
1252 /** Check IRQ seqeunce number (for generating unique labels). */
1253 uint16_t uCheckIrqSeqNo;
1254 /** TLB load sequence number (for generating unique labels). */
1255 uint16_t uTlbSeqNo;
1256 /** The current condition stack depth (aCondStack). */
1257 uint8_t cCondDepth;
1258
1259 /** The argument count + hidden regs from the IEM_MC_BEGIN statement. */
1260 uint8_t cArgs;
1261 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1262 uint32_t fCImpl;
1263 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1264 uint32_t fMc;
1265 /** The expected IEMCPU::fExec value for the current call/instruction. */
1266 uint32_t fExec;
1267
1268 /** Core state requiring care with branches. */
1269 IEMNATIVECORESTATE Core;
1270
1271 /** The condition nesting stack. */
1272 IEMNATIVECOND aCondStack[2];
1273
1274#ifndef IEM_WITH_THROW_CATCH
1275 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
1276 * for recompilation error handling. */
1277 jmp_buf JmpBuf;
1278#endif
1279} IEMRECOMPILERSTATE;
1280/** Pointer to a native recompiler state. */
1281typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
1282
1283
1284/** @def IEMNATIVE_TRY_SETJMP
1285 * Wrapper around setjmp / try, hiding all the ugly differences.
1286 *
1287 * @note Use with extreme care as this is a fragile macro.
1288 * @param a_pReNative The native recompile state.
1289 * @param a_rcTarget The variable that should receive the status code in case
1290 * of a longjmp/throw.
1291 */
1292/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
1293 * Start wrapper for catch / setjmp-else.
1294 *
1295 * This will set up a scope.
1296 *
1297 * @note Use with extreme care as this is a fragile macro.
1298 * @param a_pReNative The native recompile state.
1299 * @param a_rcTarget The variable that should receive the status code in case
1300 * of a longjmp/throw.
1301 */
1302/** @def IEMNATIVE_CATCH_LONGJMP_END
1303 * End wrapper for catch / setjmp-else.
1304 *
1305 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
1306 * up the state.
1307 *
1308 * @note Use with extreme care as this is a fragile macro.
1309 * @param a_pReNative The native recompile state.
1310 */
1311/** @def IEMNATIVE_DO_LONGJMP
1312 *
1313 * Wrapper around longjmp / throw.
1314 *
1315 * @param a_pReNative The native recompile state.
1316 * @param a_rc The status code jump back with / throw.
1317 */
1318#ifdef IEM_WITH_THROW_CATCH
1319# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1320 a_rcTarget = VINF_SUCCESS; \
1321 try
1322# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1323 catch (int rcThrown) \
1324 { \
1325 a_rcTarget = rcThrown
1326# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1327 } \
1328 ((void)0)
1329# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
1330#else /* !IEM_WITH_THROW_CATCH */
1331# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1332 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
1333# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1334 else \
1335 { \
1336 ((void)0)
1337# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1338 }
1339# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
1340#endif /* !IEM_WITH_THROW_CATCH */
1341
1342
1343/**
1344 * Native recompiler worker for a threaded function.
1345 *
1346 * @returns New code buffer offset; throws VBox status code in case of a failure.
1347 * @param pReNative The native recompiler state.
1348 * @param off The current code buffer offset.
1349 * @param pCallEntry The threaded call entry.
1350 *
1351 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
1352 */
1353typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
1354/** Pointer to a native recompiler worker for a threaded function. */
1355typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
1356
1357/** Defines a native recompiler worker for a threaded function.
1358 * @see FNIEMNATIVERECOMPFUNC */
1359#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
1360 uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
1361
1362/** Prototypes a native recompiler function for a threaded function.
1363 * @see FNIEMNATIVERECOMPFUNC */
1364#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
1365
1366
1367/**
1368 * Native recompiler liveness analysis worker for a threaded function.
1369 *
1370 * @param pCallEntry The threaded call entry.
1371 * @param pIncoming The incoming liveness state entry.
1372 * @param pOutgoing The outgoing liveness state entry.
1373 */
1374typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
1375 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
1376/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
1377typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
1378
1379/** Defines a native recompiler liveness analysis worker for a threaded function.
1380 * @see FNIEMNATIVELIVENESSFUNC */
1381#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
1382 DECLCALLBACK(void) a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
1383
1384/** Prototypes a native recompiler liveness analysis function for a threaded function.
1385 * @see FNIEMNATIVELIVENESSFUNC */
1386#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
1387
1388
1389/** Define a native recompiler helper function, safe to call from the TB code. */
1390#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
1391 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1392/** Prototype a native recompiler helper function, safe to call from the TB code. */
1393#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
1394 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1395
1396
1397#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1398DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1399DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg,
1400 uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX);
1401# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1402DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestSimdRegShadowing(PIEMRECOMPILERSTATE pReNative,
1403 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1404 uint8_t idxHstSimdReg = UINT8_MAX,
1405 uint8_t idxHstSimdRegPrev = UINT8_MAX);
1406# endif
1407DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddDelayedPcUpdate(PIEMRECOMPILERSTATE pReNative,
1408 uint32_t offPc, uint32_t cInstrSkipped);
1409#endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
1410
1411DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1412 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
1413DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
1414DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
1415 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
1416DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
1417
1418DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1419DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1420 bool fPreferVolatile = true);
1421DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm,
1422 bool fPreferVolatile = true);
1423DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1424 IEMNATIVEGSTREG enmGstReg,
1425 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1426 bool fNoVolatileRegs = false, bool fSkipLivenessAssert = false);
1427DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1428 IEMNATIVEGSTREG enmGstReg);
1429
1430DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
1431DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
1432#if (defined(IPRT_INCLUDED_x86_h) && defined(RT_ARCH_X86)) || (defined(IPRT_INCLUDED_armv8_h) && defined(RT_ARCH_ARM64))
1433DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
1434 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK);
1435#endif
1436DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1437DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1438DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1439DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
1440DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
1441DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
1442 uint32_t fKeepVars = 0);
1443DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
1444DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
1445DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1446 uint32_t fHstRegsActiveShadows);
1447#ifdef VBOX_STRICT
1448DECLHIDDEN(void) iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative);
1449#endif
1450DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWritesSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1451 uint64_t fGstShwExcept, bool fFlushShadows);
1452#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1453DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcWritebackSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1454#endif
1455
1456
1457#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1458DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1459DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1460 bool fPreferVolatile = true);
1461DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpForGuestSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1462 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1463 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz,
1464 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1465 bool fNoVolatileRegs = false);
1466DECLHIDDEN(void) iemNativeSimdRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg) RT_NOEXCEPT;
1467DECLHIDDEN(void) iemNativeSimdRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstSimdRegs) RT_NOEXCEPT;
1468DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1469 IEMNATIVEGSTSIMDREG enmGstSimdReg);
1470DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadSimdRegWithGstShadowSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1471 uint8_t idxHstSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg,
1472 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1473#endif
1474
1475DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType);
1476DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue);
1477DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar);
1478DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType);
1479DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue);
1480DECL_HIDDEN_THROW(void) iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1481DECL_HIDDEN_THROW(void) iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue);
1482DECL_HIDDEN_THROW(void) iemNativeVarSetKindToGstRegRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1483 IEMNATIVEGSTREGREF enmRegClass, uint8_t idxReg);
1484DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1485DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1486 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1487DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1488 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
1489DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1490 uint32_t fHstRegsNotToSave);
1491DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1492 uint32_t fHstRegsNotToSave);
1493DECLHIDDEN(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1494DECLHIDDEN(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars);
1495
1496DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1497 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
1498#ifdef VBOX_STRICT
1499DECL_HIDDEN_THROW(uint32_t) iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg);
1500DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg,
1501 IEMNATIVEGSTREG enmGstReg);
1502# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1503DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestSimdRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxSimdReg,
1504 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1505 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1506# endif
1507DECL_HIDDEN_THROW(uint32_t) iemNativeEmitExecFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fExec);
1508#endif
1509DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
1510DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs);
1511DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
1512 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
1513 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
1514DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1515 PCIEMTHRDEDCALLENTRY pCallEntry);
1516DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckGprCanonicalMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1517 uint8_t idxAddrReg, uint8_t idxInstr);
1518DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckGpr32AgainstCsSegLimitMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1519 uint8_t idxAddrReg, uint8_t idxInstr);
1520
1521
1522IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr));
1523IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu));
1524IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseNm,(PVMCPUCC pVCpu));
1525IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseUd,(PVMCPUCC pVCpu));
1526IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseMf,(PVMCPUCC pVCpu));
1527IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseXf,(PVMCPUCC pVCpu));
1528IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpObsoleteTb,(PVMCPUCC pVCpu));
1529IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpNeedCsLimChecking,(PVMCPUCC pVCpu));
1530IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpCheckBranchMiss,(PVMCPUCC pVCpu));
1531
1532IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1533IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1534IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1535IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1536IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1537IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1538IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1539IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1540IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1541IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1542IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint8_t u8Value));
1543IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint16_t u16Value));
1544IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint32_t u32Value));
1545IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint64_t u64Value));
1546IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1547IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1548IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1549IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1550IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1551IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1552IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1553
1554IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1555IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1556IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1557IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1558IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1559IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1560IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1561IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1562IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1563IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1564IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t u8Value));
1565IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1566IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1567IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1568IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1569IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1570IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1571IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1572IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFlatFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1573IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFlatFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1574IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFlatFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1575
1576IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1577IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1578IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1579IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1580IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1581IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1582IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1583IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1584IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1585IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1586IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1587IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1588IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1589IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1590IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1591IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1592IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1593IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1594IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1595IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1596IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1597IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1598
1599IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1600IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1601IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1602IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemFlatMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1603IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1604IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1605IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1606IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemFlatMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1607IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1608IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1609IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1610IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemFlatMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1611IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1612IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1613IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1614IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemFlatMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1615IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemFlatMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1616IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemFlatMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1617IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1618IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1619IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1620IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemFlatMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1621
1622IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapAtomic,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1623IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRw,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1624IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapWo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1625IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1626
1627
1628/**
1629 * Info about shadowed guest register values.
1630 * @see IEMNATIVEGSTREG
1631 */
1632typedef struct IEMANTIVEGSTREGINFO
1633{
1634 /** Offset in VMCPU. */
1635 uint32_t off;
1636 /** The field size. */
1637 uint8_t cb;
1638 /** Name (for logging). */
1639 const char *pszName;
1640} IEMANTIVEGSTREGINFO;
1641extern DECL_HIDDEN_DATA(IEMANTIVEGSTREGINFO const) g_aGstShadowInfo[];
1642extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
1643extern DECL_HIDDEN_DATA(int32_t const) g_aoffIemNativeCallStackArgBpDisp[];
1644extern DECL_HIDDEN_DATA(uint32_t const) g_afIemNativeCallRegs[];
1645extern DECL_HIDDEN_DATA(uint8_t const) g_aidxIemNativeCallRegs[];
1646
1647
1648
1649/**
1650 * Ensures that there is sufficient space in the instruction output buffer.
1651 *
1652 * This will reallocate the buffer if needed and allowed.
1653 *
1654 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
1655 * allocation size.
1656 *
1657 * @returns Pointer to the instruction output buffer on success; throws VBox
1658 * status code on failure, so no need to check it.
1659 * @param pReNative The native recompile state.
1660 * @param off Current instruction offset. Works safely for UINT32_MAX
1661 * as well.
1662 * @param cInstrReq Number of instruction about to be added. It's okay to
1663 * overestimate this a bit.
1664 */
1665DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
1666iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
1667{
1668 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
1669 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
1670 {
1671#ifdef VBOX_STRICT
1672 pReNative->offInstrBufChecked = offChecked;
1673#endif
1674 return pReNative->pInstrBuf;
1675 }
1676 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
1677}
1678
1679/**
1680 * Checks that we didn't exceed the space requested in the last
1681 * iemNativeInstrBufEnsure() call.
1682 */
1683#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
1684 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
1685 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
1686
1687/**
1688 * Checks that a variable index is valid.
1689 */
1690#ifdef IEMNATIVE_VAR_IDX_MAGIC
1691# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1692 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
1693 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1694 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))), \
1695 ("%s=%#x\n", #a_idxVar, a_idxVar))
1696#else
1697# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1698 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1699 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
1700#endif
1701
1702/**
1703 * Checks that a variable index is valid and that the variable is assigned the
1704 * correct argument number.
1705 * This also adds a RT_NOREF of a_idxVar.
1706 */
1707#ifdef IEMNATIVE_VAR_IDX_MAGIC
1708# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1709 RT_NOREF_PV(a_idxVar); \
1710 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
1711 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1712 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))) \
1713 && (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].uArgNo == (a_uArgNo), \
1714 ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1715 (a_pReNative)->Core.aVars[RT_MIN(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar), \
1716 RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, \
1717 a_uArgNo)); \
1718 } while (0)
1719#else
1720# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1721 RT_NOREF_PV(a_idxVar); \
1722 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1723 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
1724 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
1725 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1726 (a_pReNative)->Core.aVars[RT_MIN(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
1727 } while (0)
1728#endif
1729
1730
1731/**
1732 * Checks that a variable has the expected size.
1733 */
1734#define IEMNATIVE_ASSERT_VAR_SIZE(a_pReNative, a_idxVar, a_cbVar) \
1735 AssertMsg((a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar), \
1736 ("%s=%#x: cbVar=%#x, expected %#x!\n", #a_idxVar, a_idxVar, \
1737 (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar)))
1738
1739
1740/**
1741 * Calculates the stack address of a variable as a [r]BP displacement value.
1742 */
1743DECL_FORCE_INLINE(int32_t)
1744iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
1745{
1746 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
1747 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
1748}
1749
1750
1751/**
1752 * Releases the variable's register.
1753 *
1754 * The register must have been previously acquired calling
1755 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
1756 * iemNativeVarRegisterSetAndAcquire().
1757 */
1758DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
1759{
1760 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
1761 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired);
1762 pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired = false;
1763}
1764
1765
1766/**
1767 * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask.
1768 *
1769 * @returns The flush mask.
1770 * @param fCImpl The IEM_CIMPL_F_XXX flags.
1771 * @param fGstShwFlush The starting flush mask.
1772 */
1773DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush)
1774{
1775 if (fCImpl & IEM_CIMPL_F_BRANCH_FAR)
1776 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS)
1777 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS)
1778 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS);
1779 if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR)
1780 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP)
1781 | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS)
1782 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS)
1783 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS);
1784 else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK)
1785 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP);
1786 if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW))
1787 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
1788 return fGstShwFlush;
1789}
1790
1791
1792/** Number of hidden arguments for CIMPL calls.
1793 * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */
1794#if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
1795# define IEM_CIMPL_HIDDEN_ARGS 3
1796#else
1797# define IEM_CIMPL_HIDDEN_ARGS 2
1798#endif
1799
1800
1801#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1802
1803# ifndef IEMLIVENESS_EXTENDED_LAYOUT
1804/**
1805 * Helper for iemNativeLivenessGetStateByGstReg.
1806 *
1807 * @returns IEMLIVENESS_STATE_XXX
1808 * @param fMergedStateExp2 This is the RT_BIT_32() of each sub-state
1809 * ORed together.
1810 */
1811DECL_FORCE_INLINE(uint32_t)
1812iemNativeLivenessMergeExpandedEFlagsState(uint32_t fMergedStateExp2)
1813{
1814 /* INPUT trumps anything else. */
1815 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_INPUT))
1816 return IEMLIVENESS_STATE_INPUT;
1817
1818 /* CLOBBERED trumps XCPT_OR_CALL and UNUSED. */
1819 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_CLOBBERED))
1820 {
1821 /* If not all sub-fields are clobbered they must be considered INPUT. */
1822 if (fMergedStateExp2 & (RT_BIT_32(IEMLIVENESS_STATE_UNUSED) | RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL)))
1823 return IEMLIVENESS_STATE_INPUT;
1824 return IEMLIVENESS_STATE_CLOBBERED;
1825 }
1826
1827 /* XCPT_OR_CALL trumps UNUSED. */
1828 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL))
1829 return IEMLIVENESS_STATE_XCPT_OR_CALL;
1830
1831 return IEMLIVENESS_STATE_UNUSED;
1832}
1833# endif /* !IEMLIVENESS_EXTENDED_LAYOUT */
1834
1835
1836DECL_FORCE_INLINE(uint32_t)
1837iemNativeLivenessGetStateByGstRegEx(PCIEMLIVENESSENTRY pLivenessEntry, unsigned enmGstRegEx)
1838{
1839# ifndef IEMLIVENESS_EXTENDED_LAYOUT
1840 return ((pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
1841 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2);
1842# else
1843 return ( (pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
1844 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2)
1845 | (((pLivenessEntry->Bit2.bm64 >> enmGstRegEx) << 2) & 4)
1846 | (((pLivenessEntry->Bit3.bm64 >> enmGstRegEx) << 2) & 8);
1847# endif
1848}
1849
1850
1851DECL_FORCE_INLINE(uint32_t)
1852iemNativeLivenessGetStateByGstReg(PCIEMLIVENESSENTRY pLivenessEntry, IEMNATIVEGSTREG enmGstReg)
1853{
1854 uint32_t uRet = iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, (unsigned)enmGstReg);
1855 if (enmGstReg == kIemNativeGstReg_EFlags)
1856 {
1857 /* Merge the eflags states to one. */
1858# ifndef IEMLIVENESS_EXTENDED_LAYOUT
1859 uRet = RT_BIT_32(uRet);
1860 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflCf | (pLivenessEntry->Bit1.fEflCf << 1));
1861 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflPf | (pLivenessEntry->Bit1.fEflPf << 1));
1862 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflAf | (pLivenessEntry->Bit1.fEflAf << 1));
1863 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflZf | (pLivenessEntry->Bit1.fEflZf << 1));
1864 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflSf | (pLivenessEntry->Bit1.fEflSf << 1));
1865 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflOf | (pLivenessEntry->Bit1.fEflOf << 1));
1866 uRet = iemNativeLivenessMergeExpandedEFlagsState(uRet);
1867# else
1868 AssertCompile(IEMLIVENESSBIT_IDX_EFL_OTHER == (unsigned)kIemNativeGstReg_EFlags);
1869 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_CF);
1870 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_PF);
1871 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_AF);
1872 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_ZF);
1873 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_SF);
1874 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_OF);
1875# endif
1876 }
1877 return uRet;
1878}
1879
1880
1881# ifdef VBOX_STRICT
1882/** For assertions only, user checks that idxCurCall isn't zerow. */
1883DECL_FORCE_INLINE(uint32_t)
1884iemNativeLivenessGetPrevStateByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg)
1885{
1886 return iemNativeLivenessGetStateByGstReg(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg);
1887}
1888# endif /* VBOX_STRICT */
1889
1890#endif /* IEMNATIVE_WITH_LIVENESS_ANALYSIS */
1891
1892
1893/**
1894 * Gets the number of hidden arguments for an expected IEM_MC_CALL statement.
1895 */
1896DECL_FORCE_INLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative)
1897{
1898 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL)
1899 return IEM_CIMPL_HIDDEN_ARGS;
1900 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE)
1901 return 1;
1902 return 0;
1903}
1904
1905
1906DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg,
1907 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
1908{
1909 pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
1910
1911 pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat;
1912 pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
1913 pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
1914 return (uint8_t)idxReg;
1915}
1916
1917
1918
1919/*********************************************************************************************************************************
1920* Register Allocator (GPR) *
1921*********************************************************************************************************************************/
1922
1923/**
1924 * Marks host register @a idxHstReg as containing a shadow copy of guest
1925 * register @a enmGstReg.
1926 *
1927 * ASSUMES that caller has made sure @a enmGstReg is not associated with any
1928 * host register before calling.
1929 */
1930DECL_FORCE_INLINE(void)
1931iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
1932{
1933 Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)));
1934 Assert(!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
1935 Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End);
1936
1937 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg;
1938 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg); /** @todo why? not OR? */
1939 pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg);
1940 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
1941#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1942 iemNativeDbgInfoAddNativeOffset(pReNative, off);
1943 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg);
1944#else
1945 RT_NOREF(off);
1946#endif
1947}
1948
1949
1950/**
1951 * Clear any guest register shadow claims from @a idxHstReg.
1952 *
1953 * The register does not need to be shadowing any guest registers.
1954 */
1955DECL_FORCE_INLINE(void)
1956iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off)
1957{
1958 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
1959 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
1960 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
1961 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
1962 == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
1963
1964#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1965 uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
1966 if (fGstRegs)
1967 {
1968 Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End));
1969 iemNativeDbgInfoAddNativeOffset(pReNative, off);
1970 while (fGstRegs)
1971 {
1972 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
1973 fGstRegs &= ~RT_BIT_64(iGstReg);
1974 iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg);
1975 }
1976 }
1977#else
1978 RT_NOREF(off);
1979#endif
1980
1981 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
1982 pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
1983 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
1984}
1985
1986
1987/**
1988 * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg
1989 * and global overview flags.
1990 */
1991DECL_FORCE_INLINE(void)
1992iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
1993{
1994 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
1995 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
1996 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
1997 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
1998 Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg));
1999 Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg));
2000 Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
2001
2002#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2003 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2004 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg);
2005#else
2006 RT_NOREF(off);
2007#endif
2008
2009 uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2010 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
2011 if (!fGstRegShadowsNew)
2012 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2013 pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg);
2014}
2015
2016
2017#if 0 /* unused */
2018/**
2019 * Clear any guest register shadow claim for @a enmGstReg.
2020 */
2021DECL_FORCE_INLINE(void)
2022iemNativeRegClearGstRegShadowingByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2023{
2024 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2025 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2026 {
2027 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs));
2028 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2029 }
2030}
2031#endif
2032
2033
2034/**
2035 * Clear any guest register shadow claim for @a enmGstReg and mark @a idxHstRegNew
2036 * as the new shadow of it.
2037 *
2038 * Unlike the other guest reg shadow helpers, this does the logging for you.
2039 * However, it is the liveness state is not asserted here, the caller must do
2040 * that.
2041 */
2042DECL_FORCE_INLINE(void)
2043iemNativeRegClearAndMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstRegNew,
2044 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2045{
2046 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2047 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2048 {
2049 uint8_t const idxHstRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg];
2050 Assert(idxHstRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs));
2051 if (idxHstRegOld == idxHstRegNew)
2052 return;
2053 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s (from %s)\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2054 g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxHstRegOld]));
2055 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2056 }
2057 else
2058 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2059 g_aGstShadowInfo[enmGstReg].pszName));
2060 iemNativeRegMarkAsGstRegShadow(pReNative, idxHstRegNew, enmGstReg, off);
2061}
2062
2063
2064/**
2065 * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom
2066 * to @a idxRegTo.
2067 */
2068DECL_FORCE_INLINE(void)
2069iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo,
2070 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2071{
2072 Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg));
2073 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] == idxRegFrom);
2074 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)
2075 == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows
2076 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2077 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows)
2078 == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows);
2079 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom))
2080 == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows));
2081
2082 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2083 pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2084 if (!fGstRegShadowsFrom)
2085 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom);
2086 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo);
2087 pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg);
2088 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo;
2089#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2090 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2091 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom);
2092#else
2093 RT_NOREF(off);
2094#endif
2095}
2096
2097
2098/**
2099 * Flushes any delayed guest register writes.
2100 *
2101 * This must be called prior to calling CImpl functions and any helpers that use
2102 * the guest state (like raising exceptions) and such.
2103 *
2104 * This optimization has not yet been implemented. The first target would be
2105 * RIP updates, since these are the most common ones.
2106 */
2107DECL_INLINE_THROW(uint32_t)
2108iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept = 0, bool fFlushShadows = true)
2109{
2110#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2111 if (!(fGstShwExcept & kIemNativeGstReg_Pc))
2112 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fFlushShadows);
2113#else
2114 RT_NOREF(pReNative, fGstShwExcept);
2115#endif
2116
2117#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2118 /** @todo r=bird: There must be a quicker way to check if anything needs doing here! */
2119 /** @todo This doesn't mix well with fGstShwExcept but we ignore this for now and just flush everything. */
2120 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fFlushShadows);
2121#else
2122 RT_NOREF(pReNative, fGstShwExcept, fFlushShadows);
2123 return off;
2124#endif
2125}
2126
2127
2128
2129/*********************************************************************************************************************************
2130* SIMD register allocator (largely code duplication of the GPR allocator for now but might diverge) *
2131*********************************************************************************************************************************/
2132
2133#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2134
2135DECL_FORCE_INLINE(uint8_t)
2136iemNativeSimdRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdReg,
2137 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2138{
2139 pReNative->Core.bmHstSimdRegs |= RT_BIT_32(idxSimdReg);
2140
2141 pReNative->Core.aHstSimdRegs[idxSimdReg].enmWhat = enmWhat;
2142 pReNative->Core.aHstSimdRegs[idxSimdReg].fGstRegShadows = 0;
2143 RT_NOREF(idxVar);
2144 return idxSimdReg;
2145}
2146
2147
2148/**
2149 * Marks host SIMD register @a idxHstSimdReg as containing a shadow copy of guest
2150 * SIMD register @a enmGstSimdReg.
2151 *
2152 * ASSUMES that caller has made sure @a enmGstSimdReg is not associated with any
2153 * host register before calling.
2154 */
2155DECL_FORCE_INLINE(void)
2156iemNativeSimdRegMarkAsGstSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg,
2157 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2158{
2159 Assert(!(pReNative->Core.bmGstSimdRegShadows & RT_BIT_64(enmGstSimdReg)));
2160 Assert(!pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows);
2161 Assert((unsigned)enmGstSimdReg < (unsigned)kIemNativeGstSimdReg_End);
2162
2163 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxHstSimdReg;
2164 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2165 pReNative->Core.bmGstSimdRegShadows |= RT_BIT_64(enmGstSimdReg);
2166 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxHstSimdReg);
2167#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2168 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2169 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxHstSimdReg);
2170#else
2171 RT_NOREF(off);
2172#endif
2173}
2174
2175
2176/**
2177 * Transfers the guest SIMD register shadow claims of @a enmGstSimdReg from @a idxSimdRegFrom
2178 * to @a idxSimdRegTo.
2179 */
2180DECL_FORCE_INLINE(void)
2181iemNativeSimdRegTransferGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdRegFrom, uint8_t idxSimdRegTo,
2182 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2183{
2184 Assert(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & RT_BIT_64(enmGstSimdReg));
2185 Assert(pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] == idxSimdRegFrom);
2186 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows)
2187 == pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows
2188 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2189 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows)
2190 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows);
2191 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxSimdRegFrom))
2192 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows));
2193 Assert( pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded
2194 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].enmLoaded);
2195
2196 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstSimdReg);
2197 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2198 if (!fGstRegShadowsFrom)
2199 {
2200 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxSimdRegFrom);
2201 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2202 }
2203 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxSimdRegTo);
2204 pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2205 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxSimdRegTo;
2206#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2207 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2208 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxSimdRegTo, idxSimdRegFrom);
2209#else
2210 RT_NOREF(off);
2211#endif
2212}
2213
2214
2215/**
2216 * Clear any guest register shadow claims from @a idxHstSimdReg.
2217 *
2218 * The register does not need to be shadowing any guest registers.
2219 */
2220DECL_FORCE_INLINE(void)
2221iemNativeSimdRegClearGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, uint32_t off)
2222{
2223 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows)
2224 == pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows
2225 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstSimdReg_End));
2226 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxHstSimdReg))
2227 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows));
2228 Assert( !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyLo128)
2229 && !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyHi128));
2230
2231#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2232 uint64_t fGstRegs = pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2233 if (fGstRegs)
2234 {
2235 Assert(fGstRegs < RT_BIT_64(kIemNativeGstSimdReg_End));
2236 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2237 while (fGstRegs)
2238 {
2239 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2240 fGstRegs &= ~RT_BIT_64(iGstReg);
2241 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, (IEMNATIVEGSTSIMDREG)iGstReg, UINT8_MAX, idxHstSimdReg);
2242 }
2243 }
2244#else
2245 RT_NOREF(off);
2246#endif
2247
2248 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxHstSimdReg);
2249 pReNative->Core.bmGstSimdRegShadows &= ~pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2250 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows = 0;
2251 pReNative->Core.aHstSimdRegs[idxHstSimdReg].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2252}
2253
2254#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
2255
2256
2257#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2258/**
2259 * Emits code to update the guest RIP value by adding the current offset since the start of the last RIP update.
2260 */
2261DECL_INLINE_THROW(uint32_t) iemNativeEmitPcWriteback(PIEMRECOMPILERSTATE pReNative, uint32_t off)
2262{
2263 if (pReNative->Core.offPc)
2264 return iemNativeEmitPcWritebackSlow(pReNative, off);
2265 return off;
2266}
2267#endif /* IEMNATIVE_WITH_DELAYED_PC_UPDATING */
2268
2269
2270/** @} */
2271
2272#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
2273
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette