VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 103838

Last change on this file since 103838 was 103838, checked in by vboxsync, 13 months ago

VMM/IEM: Emit the IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE()/IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT()/IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks only once per TB or after a helper was called which could modify cr0/cr4/xcr0. Most of the time the check can be omitted for SIMD code, bugref:10614

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 113.5 KB
Line 
1/* $Id: IEMN8veRecompiler.h 103838 2024-03-13 20:06:55Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
41 * Enables generating internal debug info for better TB disassembly dumping. */
42#if defined(DEBUG) || defined(DOXYGEN_RUNNING)
43# define IEMNATIVE_WITH_TB_DEBUG_INFO
44#endif
45
46/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
47 * Enables liveness analysis. */
48#if 1 || defined(DOXYGEN_RUNNING)
49# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
50/*# define IEMLIVENESS_EXTENDED_LAYOUT*/
51#endif
52
53/** @def IEMNATIVE_WITH_EFLAGS_SKIPPING
54 * Enables skipping EFLAGS calculations/updating based on liveness info. */
55#if (defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) && 1) || defined(DOXYGEN_RUNNING)
56# define IEMNATIVE_WITH_EFLAGS_SKIPPING
57#endif
58
59
60/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING
61 * Enables strict consistency checks around EFLAGS skipping.
62 * @note Only defined when IEMNATIVE_WITH_EFLAGS_SKIPPING is also defined. */
63#if (defined(VBOX_STRICT) && defined(IEMNATIVE_WITH_EFLAGS_SKIPPING)) || defined(DOXYGEN_RUNNING)
64# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
65#endif
66
67#ifdef VBOX_WITH_STATISTICS
68/** Always count instructions for now. */
69# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
70#endif
71
72
73/** @name Stack Frame Layout
74 *
75 * @{ */
76/** The size of the area for stack variables and spills and stuff.
77 * @note This limit is duplicated in the python script(s). We add 0x40 for
78 * alignment padding. */
79#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
80/** Number of 64-bit variable slots (0x100 / 8 = 32. */
81#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
82AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
83
84#ifdef RT_ARCH_AMD64
85/** An stack alignment adjustment (between non-volatile register pushes and
86 * the stack variable area, so the latter better aligned). */
87# define IEMNATIVE_FRAME_ALIGN_SIZE 8
88
89/** Number of stack arguments slots for calls made from the frame. */
90# ifdef RT_OS_WINDOWS
91# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
92# else
93# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
94# endif
95/** Number of any shadow arguments (spill area) for calls we make. */
96# ifdef RT_OS_WINDOWS
97# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
98# else
99# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
100# endif
101
102/** Frame pointer (RBP) relative offset of the last push. */
103# ifdef RT_OS_WINDOWS
104# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
105# else
106# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
107# endif
108/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
109 * address for it). */
110# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
111/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
112# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
113/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
114# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
115# ifdef RT_OS_WINDOWS
116/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
117# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
118/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
119# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
120# endif
121
122# ifdef RT_OS_WINDOWS
123/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
124# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
125/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
126# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
127/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
128# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
129/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
130# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
131# endif
132
133#elif RT_ARCH_ARM64
134/** No alignment padding needed for arm64. */
135# define IEMNATIVE_FRAME_ALIGN_SIZE 0
136/** No stack argument slots, got 8 registers for arguments will suffice. */
137# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
138/** There are no argument spill area. */
139# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
140
141/** Number of saved registers at the top of our stack frame.
142 * This includes the return address and old frame pointer, so x19 thru x30. */
143# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
144/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
145# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
146
147/** Frame pointer (BP) relative offset of the last push. */
148# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
149
150/** Frame pointer (BP) relative offset of the stack variable area (the lowest
151 * address for it). */
152# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
153
154#else
155# error "port me"
156#endif
157/** @} */
158
159
160/** @name Fixed Register Allocation(s)
161 * @{ */
162/** @def IEMNATIVE_REG_FIXED_PVMCPU
163 * The number of the register holding the pVCpu pointer. */
164/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
165 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
166 * @note This not available on AMD64, only ARM64. */
167/** @def IEMNATIVE_REG_FIXED_TMP0
168 * Dedicated temporary register.
169 * @todo replace this by a register allocator and content tracker. */
170/** @def IEMNATIVE_REG_FIXED_MASK
171 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
172 * architecture. */
173#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
174/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
175 * Mask SIMD registers with fixes assignments, either by us or dictated by the CPU/OS
176 * architecture. */
177/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
178 * Dedicated temporary SIMD register. */
179#endif
180#if defined(RT_ARCH_AMD64) && !defined(DOXYGEN_RUNNING)
181# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
182# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
183# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
184 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
185 | RT_BIT_32(X86_GREG_xSP) \
186 | RT_BIT_32(X86_GREG_xBP) )
187
188# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
189# define IEMNATIVE_SIMD_REG_FIXED_TMP0 5 /* xmm5/ymm5 */
190# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS) || !defined(_MSC_VER)
191# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0)
192# else
193/** On Windows xmm6 through xmm15 are marked as callee saved. */
194# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xffc0) \
195 | RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
196# endif
197# endif
198
199#elif defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
200# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
201# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
202# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
203# if defined(IEMNATIVE_WITH_DELAYED_PC_UPDATING) && 0 /* debug the updating with a shadow RIP. */
204# define IEMNATIVE_REG_FIXED_TMP1 ARMV8_A64_REG_X16
205# define IEMNATIVE_REG_FIXED_PC_DBG ARMV8_A64_REG_X26
206# define IEMNATIVE_REG_FIXED_MASK_ADD ( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1) \
207 | RT_BIT_32(IEMNATIVE_REG_FIXED_PC_DBG))
208# else
209# define IEMNATIVE_REG_FIXED_MASK_ADD 0
210# endif
211# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
212 | RT_BIT_32(ARMV8_A64_REG_LR) \
213 | RT_BIT_32(ARMV8_A64_REG_BP) \
214 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
215 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
216 | RT_BIT_32(ARMV8_A64_REG_X18) \
217 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
218 | IEMNATIVE_REG_FIXED_MASK_ADD)
219
220# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
221# define IEMNATIVE_SIMD_REG_FIXED_TMP0 ARMV8_A64_REG_Q30
222# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS)
223# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(ARMV8_A64_REG_Q30)
224# else
225/** arm64 declares the low 64-bit of v8-v15 as callee saved. */
226# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xff00) \
227 | RT_BIT_32(ARMV8_A64_REG_Q30))
228# endif
229# endif
230
231#else
232# error "port me"
233#endif
234/** @} */
235
236/** @name Call related registers.
237 * @{ */
238/** @def IEMNATIVE_CALL_RET_GREG
239 * The return value register. */
240/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
241 * Number of arguments in registers. */
242/** @def IEMNATIVE_CALL_ARG0_GREG
243 * The general purpose register carrying argument \#0. */
244/** @def IEMNATIVE_CALL_ARG1_GREG
245 * The general purpose register carrying argument \#1. */
246/** @def IEMNATIVE_CALL_ARG2_GREG
247 * The general purpose register carrying argument \#2. */
248/** @def IEMNATIVE_CALL_ARG3_GREG
249 * The general purpose register carrying argument \#3. */
250/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
251 * Mask of registers the callee will not save and may trash. */
252#ifdef RT_ARCH_AMD64
253# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
254
255# ifdef RT_OS_WINDOWS
256# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
257# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
258# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
259# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
260# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
261# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
262 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
263 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
264 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
265# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
266 | RT_BIT_32(X86_GREG_xCX) \
267 | RT_BIT_32(X86_GREG_xDX) \
268 | RT_BIT_32(X86_GREG_x8) \
269 | RT_BIT_32(X86_GREG_x9) \
270 | RT_BIT_32(X86_GREG_x10) \
271 | RT_BIT_32(X86_GREG_x11) )
272# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
273/* xmm0 - xmm5 are marked as volatile. */
274# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0x3f))
275# endif
276
277# else
278# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
279# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
280# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
281# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
282# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
283# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
284# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
285# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
286 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
287 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
288 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
289 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
290 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
291# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
292 | RT_BIT_32(X86_GREG_xCX) \
293 | RT_BIT_32(X86_GREG_xDX) \
294 | RT_BIT_32(X86_GREG_xDI) \
295 | RT_BIT_32(X86_GREG_xSI) \
296 | RT_BIT_32(X86_GREG_x8) \
297 | RT_BIT_32(X86_GREG_x9) \
298 | RT_BIT_32(X86_GREG_x10) \
299 | RT_BIT_32(X86_GREG_x11) )
300# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
301/* xmm0 - xmm15 are marked as volatile. */
302# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffff))
303# endif
304# endif
305
306#elif defined(RT_ARCH_ARM64)
307# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
308# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
309# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
310# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
311# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
312# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
313# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
314# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
315# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
316# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
317# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
318 | RT_BIT_32(ARMV8_A64_REG_X1) \
319 | RT_BIT_32(ARMV8_A64_REG_X2) \
320 | RT_BIT_32(ARMV8_A64_REG_X3) \
321 | RT_BIT_32(ARMV8_A64_REG_X4) \
322 | RT_BIT_32(ARMV8_A64_REG_X5) \
323 | RT_BIT_32(ARMV8_A64_REG_X6) \
324 | RT_BIT_32(ARMV8_A64_REG_X7) )
325# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
326 | RT_BIT_32(ARMV8_A64_REG_X1) \
327 | RT_BIT_32(ARMV8_A64_REG_X2) \
328 | RT_BIT_32(ARMV8_A64_REG_X3) \
329 | RT_BIT_32(ARMV8_A64_REG_X4) \
330 | RT_BIT_32(ARMV8_A64_REG_X5) \
331 | RT_BIT_32(ARMV8_A64_REG_X6) \
332 | RT_BIT_32(ARMV8_A64_REG_X7) \
333 | RT_BIT_32(ARMV8_A64_REG_X8) \
334 | RT_BIT_32(ARMV8_A64_REG_X9) \
335 | RT_BIT_32(ARMV8_A64_REG_X10) \
336 | RT_BIT_32(ARMV8_A64_REG_X11) \
337 | RT_BIT_32(ARMV8_A64_REG_X12) \
338 | RT_BIT_32(ARMV8_A64_REG_X13) \
339 | RT_BIT_32(ARMV8_A64_REG_X14) \
340 | RT_BIT_32(ARMV8_A64_REG_X15) \
341 | RT_BIT_32(ARMV8_A64_REG_X16) \
342 | RT_BIT_32(ARMV8_A64_REG_X17) )
343# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
344/* The low 64 bits of v8 - v15 marked as callee saved but the rest is volatile,
345 * so to simplify our life a bit we just mark everything as volatile. */
346# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffffffff))
347# endif
348
349#endif
350
351/** This is the maximum argument count we'll ever be needing. */
352#if defined(RT_OS_WINDOWS) && defined(VBOXSTRICTRC_STRICT_ENABLED)
353# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
354#else
355# define IEMNATIVE_CALL_MAX_ARG_COUNT 7
356#endif
357/** @} */
358
359
360/** @def IEMNATIVE_HST_GREG_COUNT
361 * Number of host general purpose registers we tracker. */
362/** @def IEMNATIVE_HST_GREG_MASK
363 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
364 * inverted register masks and such to get down to a correct set of regs. */
365#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
366/** @def IEMNATIVE_HST_SIMD_REG_COUNT
367 * Number of host SIMD registers we track. */
368/** @def IEMNATIVE_HST_SIMD_REG_MASK
369 * Mask corresponding to IEMNATIVE_HST_SIMD_REG_COUNT that can be applied to
370 * inverted register masks and such to get down to a correct set of regs. */
371#endif
372#ifdef RT_ARCH_AMD64
373# define IEMNATIVE_HST_GREG_COUNT 16
374# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
375
376# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
377# define IEMNATIVE_HST_SIMD_REG_COUNT 16
378# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_C(0xffff)
379# endif
380
381#elif defined(RT_ARCH_ARM64)
382# define IEMNATIVE_HST_GREG_COUNT 32
383# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
384
385# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
386# define IEMNATIVE_HST_SIMD_REG_COUNT 32
387# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_MAX
388# endif
389
390#else
391# error "Port me!"
392#endif
393
394
395/** Native code generator label types. */
396typedef enum
397{
398 kIemNativeLabelType_Invalid = 0,
399 /* Labels w/o data, only once instance per TB: */
400 kIemNativeLabelType_Return,
401 kIemNativeLabelType_ReturnBreak,
402 kIemNativeLabelType_ReturnWithFlags,
403 kIemNativeLabelType_NonZeroRetOrPassUp,
404 kIemNativeLabelType_RaiseGp0,
405 kIemNativeLabelType_RaiseNm,
406 kIemNativeLabelType_RaiseUd,
407 kIemNativeLabelType_RaiseMf,
408 kIemNativeLabelType_RaiseXf,
409 kIemNativeLabelType_ObsoleteTb,
410 kIemNativeLabelType_NeedCsLimChecking,
411 kIemNativeLabelType_CheckBranchMiss,
412 /* Labels with data, potentially multiple instances per TB: */
413 kIemNativeLabelType_FirstWithMultipleInstances,
414 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
415 kIemNativeLabelType_Else,
416 kIemNativeLabelType_Endif,
417 kIemNativeLabelType_CheckIrq,
418 kIemNativeLabelType_TlbLookup,
419 kIemNativeLabelType_TlbMiss,
420 kIemNativeLabelType_TlbDone,
421 kIemNativeLabelType_End
422} IEMNATIVELABELTYPE;
423
424/** Native code generator label definition. */
425typedef struct IEMNATIVELABEL
426{
427 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
428 * the epilog. */
429 uint32_t off;
430 /** The type of label (IEMNATIVELABELTYPE). */
431 uint16_t enmType;
432 /** Additional label data, type specific. */
433 uint16_t uData;
434} IEMNATIVELABEL;
435/** Pointer to a label. */
436typedef IEMNATIVELABEL *PIEMNATIVELABEL;
437
438
439/** Native code generator fixup types. */
440typedef enum
441{
442 kIemNativeFixupType_Invalid = 0,
443#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
444 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
445 kIemNativeFixupType_Rel32,
446#elif defined(RT_ARCH_ARM64)
447 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
448 kIemNativeFixupType_RelImm26At0,
449 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
450 kIemNativeFixupType_RelImm19At5,
451 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
452 kIemNativeFixupType_RelImm14At5,
453#endif
454 kIemNativeFixupType_End
455} IEMNATIVEFIXUPTYPE;
456
457/** Native code generator fixup. */
458typedef struct IEMNATIVEFIXUP
459{
460 /** Code offset of the fixup location. */
461 uint32_t off;
462 /** The IEMNATIVELABEL this is a fixup for. */
463 uint16_t idxLabel;
464 /** The fixup type (IEMNATIVEFIXUPTYPE). */
465 uint8_t enmType;
466 /** Addend or other data. */
467 int8_t offAddend;
468} IEMNATIVEFIXUP;
469/** Pointer to a native code generator fixup. */
470typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
471
472
473/**
474 * One bit of the state.
475 *
476 * Each register state takes up two bits. We keep the two bits in two separate
477 * 64-bit words to simplify applying them to the guest shadow register mask in
478 * the register allocator.
479 */
480typedef union IEMLIVENESSBIT
481{
482 uint64_t bm64;
483 RT_GCC_EXTENSION struct
484 { /* bit no */
485 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
486 uint64_t fUnusedPc : 1; /**< 0x10 / 16: (PC in ) */
487 uint64_t fCr0 : 1; /**< 0x11 / 17: */
488 uint64_t fFcw : 1; /**< 0x12 / 18: */
489 uint64_t fFsw : 1; /**< 0x13 / 19: */
490 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
491 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
492 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
493 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
494 uint64_t fCr4 : 1; /**< 0x2c / 44: */
495 uint64_t fXcr0 : 1; /**< 0x2d / 45: */
496 uint64_t fMxCsr : 1; /**< 0x2e / 46: */
497 uint64_t fEflOther : 1; /**< 0x2f / 47: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
498 uint64_t fEflCf : 1; /**< 0x30 / 48: Carry flag (X86_EFL_CF / 0). */
499 uint64_t fEflPf : 1; /**< 0x31 / 49: Parity flag (X86_EFL_PF / 2). */
500 uint64_t fEflAf : 1; /**< 0x32 / 50: Auxilary carry flag (X86_EFL_AF / 4). */
501 uint64_t fEflZf : 1; /**< 0x33 / 51: Zero flag (X86_EFL_ZF / 6). */
502 uint64_t fEflSf : 1; /**< 0x34 / 52: Signed flag (X86_EFL_SF / 7). */
503 uint64_t fEflOf : 1; /**< 0x35 / 53: Overflow flag (X86_EFL_OF / 12). */
504 uint64_t uUnused : 10; /* 0x36 / 54 -> 0x40/64 */
505 };
506} IEMLIVENESSBIT;
507AssertCompileSize(IEMLIVENESSBIT, 8);
508
509#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
510#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
511#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
512#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
513#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
514#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
515#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
516
517
518/**
519 * A liveness state entry.
520 *
521 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
522 * Once we add a SSE register shadowing, we'll add another 64-bit element for
523 * that.
524 */
525typedef union IEMLIVENESSENTRY
526{
527#ifndef IEMLIVENESS_EXTENDED_LAYOUT
528 uint64_t bm64[16 / 8];
529 uint16_t bm32[16 / 4];
530 uint16_t bm16[16 / 2];
531 uint8_t bm8[ 16 / 1];
532 IEMLIVENESSBIT aBits[2];
533#else
534 uint64_t bm64[32 / 8];
535 uint16_t bm32[32 / 4];
536 uint16_t bm16[32 / 2];
537 uint8_t bm8[ 32 / 1];
538 IEMLIVENESSBIT aBits[4];
539#endif
540 RT_GCC_EXTENSION struct
541 {
542 /** Bit \#0 of the register states. */
543 IEMLIVENESSBIT Bit0;
544 /** Bit \#1 of the register states. */
545 IEMLIVENESSBIT Bit1;
546#ifdef IEMLIVENESS_EXTENDED_LAYOUT
547 /** Bit \#2 of the register states. */
548 IEMLIVENESSBIT Bit2;
549 /** Bit \#3 of the register states. */
550 IEMLIVENESSBIT Bit3;
551#endif
552 };
553} IEMLIVENESSENTRY;
554#ifndef IEMLIVENESS_EXTENDED_LAYOUT
555AssertCompileSize(IEMLIVENESSENTRY, 16);
556#else
557AssertCompileSize(IEMLIVENESSENTRY, 32);
558#endif
559/** Pointer to a liveness state entry. */
560typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
561/** Pointer to a const liveness state entry. */
562typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
563
564/** @name 64-bit value masks for IEMLIVENESSENTRY.
565 * @{ */ /* 0xzzzzyyyyxxxxwwww */
566#define IEMLIVENESSBIT_MASK UINT64_C(0x003ffffffffeffff)
567
568#ifndef IEMLIVENESS_EXTENDED_LAYOUT
569# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
570# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
571
572# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
573# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
574#endif
575
576#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x003f800000000000)
577#define IEMLIVENESSBIT_STATUS_EFL_MASK UINT64_C(0x003f000000000000)
578
579#ifndef IEMLIVENESS_EXTENDED_LAYOUT
580# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
581# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
582#endif
583/** @} */
584
585
586/** @name The liveness state for a register.
587 *
588 * The state values have been picked to with state accumulation in mind (what
589 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
590 * performance critical work done with the values.
591 *
592 * This is a compressed state that only requires 2 bits per register.
593 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
594 * 1. the incoming state from the following call,
595 * 2. the outgoing state for this call,
596 * 3. mask of the entries set in the 2nd.
597 *
598 * The mask entry (3rd one above) will be used both when updating the outgoing
599 * state and when merging in incoming state for registers not touched by the
600 * current call.
601 *
602 * @{ */
603#ifndef IEMLIVENESS_EXTENDED_LAYOUT
604/** The register will be clobbered and the current value thrown away.
605 *
606 * When this is applied to the state (2) we'll simply be AND'ing it with the
607 * (old) mask (3) and adding the register to the mask. This way we'll
608 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
609 * IEMLIVENESS_STATE_INPUT states. */
610# define IEMLIVENESS_STATE_CLOBBERED 0
611/** The register is unused in the remainder of the TB.
612 *
613 * This is an initial state and can not be set by any of the
614 * iemNativeLivenessFunc_xxxx callbacks. */
615# define IEMLIVENESS_STATE_UNUSED 1
616/** The register value is required in a potential call or exception.
617 *
618 * This means that the register value must be calculated and is best written to
619 * the state, but that any shadowing registers can be flushed thereafter as it's
620 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
621 *
622 * It is typically applied across the board, but we preserve incoming
623 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
624 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
625 * 1. r0 = old & ~mask;
626 * 2. r0 = t1 & (t1 >> 1)'
627 * 3. state |= r0 | 0b10;
628 * 4. mask = ~0;
629 */
630# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
631/** The register value is used as input.
632 *
633 * This means that the register value must be calculated and it is best to keep
634 * it in a register. It does not need to be writtent out as such. This is the
635 * highest priority state.
636 *
637 * Whether the call modifies the register or not isn't relevant to earlier
638 * calls, so that's not recorded.
639 *
640 * When applying this state we just or in the value in the outgoing state and
641 * mask. */
642# define IEMLIVENESS_STATE_INPUT 3
643/** Mask of the state bits. */
644# define IEMLIVENESS_STATE_MASK 3
645/** The number of bits per state. */
646# define IEMLIVENESS_STATE_BIT_COUNT 2
647/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state. */
648# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
649/** Check if we're expecting read accesses to a register with the given (previous) liveness state. */
650# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
651/** Check if a register clobbering is expected given the (previous) liveness state.
652 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
653 * include INPUT if the register is used in more than one place. */
654# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
655
656/** Check if all status flags are going to be clobbered and doesn't need
657 * calculating in the current step.
658 * @param a_pEntry The current liveness entry. */
659# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
660 ( (((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_STATUS_EFL_MASK) == 0 )
661
662#else /* IEMLIVENESS_EXTENDED_LAYOUT */
663/** The register is not used any more. */
664# define IEMLIVENESS_STATE_UNUSED 0
665/** Flag: The register is required in a potential exception or call. */
666# define IEMLIVENESS_STATE_POT_XCPT_OR_CALL 1
667# define IEMLIVENESS_BIT_POT_XCPT_OR_CALL 0
668/** Flag: The register is read. */
669# define IEMLIVENESS_STATE_READ 2
670# define IEMLIVENESS_BIT_READ 1
671/** Flag: The register is written. */
672# define IEMLIVENESS_STATE_WRITE 4
673# define IEMLIVENESS_BIT_WRITE 2
674/** Flag: Unconditional call (not needed, can be redefined for research). */
675# define IEMLIVENESS_STATE_CALL 8
676# define IEMLIVENESS_BIT_CALL 3
677# define IEMLIVENESS_BIT_OTHER 3 /**< More convenient name for this one. */
678# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
679 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
680# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
681# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
682
683# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
684 ( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & IEMLIVENESSBIT_STATUS_EFL_MASK) == IEMLIVENESSBIT_STATUS_EFL_MASK \
685 && !( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64) \
686 & IEMLIVENESSBIT_STATUS_EFL_MASK) )
687
688#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
689/** @} */
690
691/** @name Liveness helpers for builtin functions and similar.
692 *
693 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
694 * own set of manimulator macros for those.
695 *
696 * @{ */
697/** Initializing the state as all unused. */
698#ifndef IEMLIVENESS_EXTENDED_LAYOUT
699# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
700 do { \
701 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
702 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
703 } while (0)
704#else
705# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
706 do { \
707 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = 0; \
708 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
709 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
710 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
711 } while (0)
712#endif
713
714/** Initializing the outgoing state with a potential xcpt or call state.
715 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT. */
716#ifndef IEMLIVENESS_EXTENDED_LAYOUT
717# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
718 do { \
719 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
720 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
721 } while (0)
722#else
723# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
724 do { \
725 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = IEMLIVENESSBIT_MASK; \
726 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64; \
727 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
728 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
729 } while (0)
730#endif
731
732/** Adds a segment base register as input to the outgoing state. */
733#ifndef IEMLIVENESS_EXTENDED_LAYOUT
734# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
735 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
736 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
737 } while (0)
738#else
739# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
740 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
741 } while (0)
742#endif
743
744/** Adds a segment attribute register as input to the outgoing state. */
745#ifndef IEMLIVENESS_EXTENDED_LAYOUT
746# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
747 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
748 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
749 } while (0)
750#else
751# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
752 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
753 } while (0)
754#endif
755
756/** Adds a segment limit register as input to the outgoing state. */
757#ifndef IEMLIVENESS_EXTENDED_LAYOUT
758# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
759 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
760 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
761 } while (0)
762#else
763# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
764 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
765 } while (0)
766#endif
767
768/** Adds a segment limit register as input to the outgoing state. */
769#ifndef IEMLIVENESS_EXTENDED_LAYOUT
770# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
771 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
772 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
773 } while (0)
774#else
775# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
776 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
777 } while (0)
778#endif
779/** @} */
780
781/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK
782 * Checks that the EFLAGS bits specified by @a a_fEflNeeded are actually
783 * calculated and up to date. This is to double check that we haven't skipped
784 * EFLAGS calculations when we actually need them. NOP in non-strict builds.
785 * @note has to be placed in
786 */
787#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
788# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) \
789 do { (a_off) = iemNativeEmitEFlagsSkippingCheck(a_pReNative, a_off, a_fEflNeeded); } while (0)
790#else
791# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { } while (0)
792#endif
793
794
795/**
796 * Guest registers that can be shadowed in GPRs.
797 *
798 * This runs parallel to the liveness state (IEMLIVENESSBIT, ++). The EFlags
799 * must be placed last, as the liveness state tracks it as 7 subcomponents and
800 * we don't want to waste space here.
801 *
802 * @note Make sure to update IEMLIVENESSBIT, IEMLIVENESSBIT_ALL_EFL_MASK and
803 * friends as well as IEMAllN8veLiveness.cpp.
804 */
805typedef enum IEMNATIVEGSTREG : uint8_t
806{
807 kIemNativeGstReg_GprFirst = 0,
808 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
809 kIemNativeGstReg_Pc,
810 kIemNativeGstReg_Cr0,
811 kIemNativeGstReg_FpuFcw,
812 kIemNativeGstReg_FpuFsw,
813 kIemNativeGstReg_SegBaseFirst,
814 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
815 kIemNativeGstReg_SegAttribFirst,
816 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
817 kIemNativeGstReg_SegLimitFirst,
818 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
819 kIemNativeGstReg_SegSelFirst,
820 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
821 kIemNativeGstReg_Cr4,
822 kIemNativeGstReg_Xcr0,
823 kIemNativeGstReg_MxCsr,
824 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags - last! */
825 kIemNativeGstReg_End
826} IEMNATIVEGSTREG;
827AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
828AssertCompile((UINT64_C(0x7f) << kIemNativeGstReg_EFlags) == IEMLIVENESSBIT_ALL_EFL_MASK);
829
830/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
831 * @{ */
832#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
833#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
834#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
835#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
836#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
837/** @} */
838
839#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
840
841/**
842 * Guest registers that can be shadowed in host SIMD registers.
843 *
844 * @todo r=aeichner Liveness tracking
845 * @todo r=aeichner Given that we can only track xmm/ymm here does this actually make sense?
846 */
847typedef enum IEMNATIVEGSTSIMDREG : uint8_t
848{
849 kIemNativeGstSimdReg_SimdRegFirst = 0,
850 kIemNativeGstSimdReg_SimdRegLast = kIemNativeGstSimdReg_SimdRegFirst + 15,
851 kIemNativeGstSimdReg_End
852} IEMNATIVEGSTSIMDREG;
853
854/** @name Helpers for converting register numbers to IEMNATIVEGSTSIMDREG values.
855 * @{ */
856#define IEMNATIVEGSTSIMDREG_SIMD(a_iSimdReg) ((IEMNATIVEGSTSIMDREG)(kIemNativeGstSimdReg_SimdRegFirst + (a_iSimdReg)))
857/** @} */
858
859/**
860 * The Load/store size for a SIMD guest register.
861 */
862typedef enum IEMNATIVEGSTSIMDREGLDSTSZ : uint8_t
863{
864 /** Invalid size. */
865 kIemNativeGstSimdRegLdStSz_Invalid = 0,
866 /** Loads the low 128-bit of a guest SIMD register. */
867 kIemNativeGstSimdRegLdStSz_Low128,
868 /** Loads the high 128-bit of a guest SIMD register. */
869 kIemNativeGstSimdRegLdStSz_High128,
870 /** Loads the whole 256-bits of a guest SIMD register. */
871 kIemNativeGstSimdRegLdStSz_256,
872 /** End value. */
873 kIemNativeGstSimdRegLdStSz_End
874} IEMNATIVEGSTSIMDREGLDSTSZ;
875
876#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
877
878/**
879 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
880 */
881typedef enum IEMNATIVEGSTREGUSE
882{
883 /** The usage is read-only, the register holding the guest register
884 * shadow copy will not be modified by the caller. */
885 kIemNativeGstRegUse_ReadOnly = 0,
886 /** The caller will update the guest register (think: PC += cbInstr).
887 * The guest shadow copy will follow the returned register. */
888 kIemNativeGstRegUse_ForUpdate,
889 /** The call will put an entirely new value in the guest register, so
890 * if new register is allocate it will be returned uninitialized. */
891 kIemNativeGstRegUse_ForFullWrite,
892 /** The caller will use the guest register value as input in a calculation
893 * and the host register will be modified.
894 * This means that the returned host register will not be marked as a shadow
895 * copy of the guest register. */
896 kIemNativeGstRegUse_Calculation
897} IEMNATIVEGSTREGUSE;
898
899/**
900 * Guest registers (classes) that can be referenced.
901 */
902typedef enum IEMNATIVEGSTREGREF : uint8_t
903{
904 kIemNativeGstRegRef_Invalid = 0,
905 kIemNativeGstRegRef_Gpr,
906 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
907 kIemNativeGstRegRef_EFlags,
908 kIemNativeGstRegRef_MxCsr,
909 kIemNativeGstRegRef_FpuReg,
910 kIemNativeGstRegRef_MReg,
911 kIemNativeGstRegRef_XReg,
912 //kIemNativeGstRegRef_YReg, - doesn't work.
913 kIemNativeGstRegRef_End
914} IEMNATIVEGSTREGREF;
915
916
917/** Variable kinds. */
918typedef enum IEMNATIVEVARKIND : uint8_t
919{
920 /** Customary invalid zero value. */
921 kIemNativeVarKind_Invalid = 0,
922 /** This is either in a register or on the stack. */
923 kIemNativeVarKind_Stack,
924 /** Immediate value - loaded into register when needed, or can live on the
925 * stack if referenced (in theory). */
926 kIemNativeVarKind_Immediate,
927 /** Variable reference - loaded into register when needed, never stack. */
928 kIemNativeVarKind_VarRef,
929 /** Guest register reference - loaded into register when needed, never stack. */
930 kIemNativeVarKind_GstRegRef,
931 /** End of valid values. */
932 kIemNativeVarKind_End
933} IEMNATIVEVARKIND;
934
935
936/** Variable or argument. */
937typedef struct IEMNATIVEVAR
938{
939 /** The kind of variable. */
940 IEMNATIVEVARKIND enmKind;
941 /** The variable size in bytes. */
942 uint8_t cbVar;
943 /** The first stack slot (uint64_t), except for immediate and references
944 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
945 * has a stack slot it has been initialized and has a value. Unused variables
946 * has neither a stack slot nor a host register assignment. */
947 uint8_t idxStackSlot;
948 /** The host register allocated for the variable, UINT8_MAX if not. */
949 uint8_t idxReg;
950 /** The argument number if argument, UINT8_MAX if regular variable. */
951 uint8_t uArgNo;
952 /** If referenced, the index (unpacked) of the variable referencing this one,
953 * otherwise UINT8_MAX. A referenced variable must only be placed on the stack
954 * and must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
955 uint8_t idxReferrerVar;
956 /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not.
957 * @todo not sure what this really is for... */
958 IEMNATIVEGSTREG enmGstReg;
959 /** Set if the registered is currently used exclusively, false if the
960 * variable is idle and the register can be grabbed. */
961 bool fRegAcquired;
962
963 union
964 {
965 /** kIemNativeVarKind_Immediate: The immediate value. */
966 uint64_t uValue;
967 /** kIemNativeVarKind_VarRef: The index (unpacked) of the variable being referenced. */
968 uint8_t idxRefVar;
969 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
970 struct
971 {
972 /** The class of register. */
973 IEMNATIVEGSTREGREF enmClass;
974 /** Index within the class. */
975 uint8_t idx;
976 } GstRegRef;
977 } u;
978} IEMNATIVEVAR;
979/** Pointer to a variable or argument. */
980typedef IEMNATIVEVAR *PIEMNATIVEVAR;
981/** Pointer to a const variable or argument. */
982typedef IEMNATIVEVAR const *PCIEMNATIVEVAR;
983
984/** What is being kept in a host register. */
985typedef enum IEMNATIVEWHAT : uint8_t
986{
987 /** The traditional invalid zero value. */
988 kIemNativeWhat_Invalid = 0,
989 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
990 kIemNativeWhat_Var,
991 /** Temporary register, this is typically freed when a MC completes. */
992 kIemNativeWhat_Tmp,
993 /** Call argument w/o a variable mapping. This is free (via
994 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
995 kIemNativeWhat_Arg,
996 /** Return status code.
997 * @todo not sure if we need this... */
998 kIemNativeWhat_rc,
999 /** The fixed pVCpu (PVMCPUCC) register.
1000 * @todo consider offsetting this on amd64 to use negative offsets to access
1001 * more members using 8-byte disp. */
1002 kIemNativeWhat_pVCpuFixed,
1003 /** The fixed pCtx (PCPUMCTX) register.
1004 * @todo consider offsetting this on amd64 to use negative offsets to access
1005 * more members using 8-byte disp. */
1006 kIemNativeWhat_pCtxFixed,
1007 /** Fixed temporary register. */
1008 kIemNativeWhat_FixedTmp,
1009#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1010 /** Shadow RIP for the delayed RIP updating debugging. */
1011 kIemNativeWhat_PcShadow,
1012#endif
1013 /** Register reserved by the CPU or OS architecture. */
1014 kIemNativeWhat_FixedReserved,
1015 /** End of valid values. */
1016 kIemNativeWhat_End
1017} IEMNATIVEWHAT;
1018
1019/**
1020 * Host general register entry.
1021 *
1022 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
1023 *
1024 * @todo Track immediate values in host registers similarlly to how we track the
1025 * guest register shadow copies. For it to be real helpful, though,
1026 * we probably need to know which will be reused and put them into
1027 * non-volatile registers, otherwise it's going to be more or less
1028 * restricted to an instruction or two.
1029 */
1030typedef struct IEMNATIVEHSTREG
1031{
1032 /** Set of guest registers this one shadows.
1033 *
1034 * Using a bitmap here so we can designate the same host register as a copy
1035 * for more than one guest register. This is expected to be useful in
1036 * situations where one value is copied to several registers in a sequence.
1037 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1038 * sequence we'd want to let this register follow to be a copy of and there
1039 * will always be places where we'd be picking the wrong one.
1040 */
1041 uint64_t fGstRegShadows;
1042 /** What is being kept in this register. */
1043 IEMNATIVEWHAT enmWhat;
1044 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1045 uint8_t idxVar;
1046 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
1047 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
1048 * that scope. */
1049 uint8_t idxStackSlot;
1050 /** Alignment padding. */
1051 uint8_t abAlign[5];
1052} IEMNATIVEHSTREG;
1053
1054
1055#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1056/**
1057 * Host SIMD register entry - this tracks a virtual 256-bit register split into two 128-bit
1058 * halves, on architectures where there is no 256-bit register available this entry will track
1059 * two adjacent 128-bit host registers.
1060 *
1061 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstSimdRegs.
1062 */
1063typedef struct IEMNATIVEHSTSIMDREG
1064{
1065 /** Set of guest registers this one shadows.
1066 *
1067 * Using a bitmap here so we can designate the same host register as a copy
1068 * for more than one guest register. This is expected to be useful in
1069 * situations where one value is copied to several registers in a sequence.
1070 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1071 * sequence we'd want to let this register follow to be a copy of and there
1072 * will always be places where we'd be picking the wrong one.
1073 */
1074 uint64_t fGstRegShadows;
1075 /** What is being kept in this register. */
1076 IEMNATIVEWHAT enmWhat;
1077 /** Flag what is currently loaded, low 128-bits, high 128-bits or complete 256-bits. */
1078 IEMNATIVEGSTSIMDREGLDSTSZ enmLoaded;
1079 /** Alignment padding. */
1080 uint8_t abAlign[6];
1081} IEMNATIVEHSTSIMDREG;
1082#endif
1083
1084
1085/**
1086 * Core state for the native recompiler, that is, things that needs careful
1087 * handling when dealing with branches.
1088 */
1089typedef struct IEMNATIVECORESTATE
1090{
1091#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1092 /** The current instruction offset in bytes from when the guest program counter
1093 * was updated last. Used for delaying the write to the guest context program counter
1094 * as long as possible. */
1095 uint32_t offPc;
1096 /** Number of instructions where we could skip the updating. */
1097 uint32_t cInstrPcUpdateSkipped;
1098#endif
1099 /** Allocation bitmap for aHstRegs. */
1100 uint32_t bmHstRegs;
1101
1102 /** Bitmap marking which host register contains guest register shadow copies.
1103 * This is used during register allocation to try preserve copies. */
1104 uint32_t bmHstRegsWithGstShadow;
1105 /** Bitmap marking valid entries in aidxGstRegShadows. */
1106 uint64_t bmGstRegShadows;
1107
1108#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1109 /** Allocation bitmap for aHstSimdRegs. */
1110 uint32_t bmHstSimdRegs;
1111
1112 /** Bitmap marking which host SIMD register contains guest SIMD register shadow copies.
1113 * This is used during register allocation to try preserve copies. */
1114 uint32_t bmHstSimdRegsWithGstShadow;
1115 /** Bitmap marking valid entries in aidxSimdGstRegShadows. */
1116 uint64_t bmGstSimdRegShadows;
1117 /** Bitmap marking whether the low 128-bit of the shadowed guest register are dirty and need writeback. */
1118 uint64_t bmGstSimdRegShadowDirtyLo128;
1119 /** Bitmap marking whether the high 128-bit of the shadowed guest register are dirty and need writeback. */
1120 uint64_t bmGstSimdRegShadowDirtyHi128;
1121#endif
1122
1123 union
1124 {
1125 /** Index of variable (unpacked) arguments, UINT8_MAX if not valid. */
1126 uint8_t aidxArgVars[8];
1127 /** For more efficient resetting. */
1128 uint64_t u64ArgVars;
1129 };
1130
1131 /** Allocation bitmap for the stack. */
1132 uint32_t bmStack;
1133 /** Allocation bitmap for aVars. */
1134 uint32_t bmVars;
1135
1136 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
1137 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
1138 * (A shadow copy of a guest register can only be held in a one host register,
1139 * there are no duplicate copies or ambiguities like that). */
1140 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
1141#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1142 /** Maps a guest SIMD register to a host SIMD register (index by IEMNATIVEGSTSIMDREG).
1143 * Entries are only valid if the corresponding bit in bmGstSimdRegShadows is set.
1144 * (A shadow copy of a guest register can only be held in a one host register,
1145 * there are no duplicate copies or ambiguities like that). */
1146 uint8_t aidxGstSimdRegShadows[kIemNativeGstSimdReg_End];
1147#endif
1148
1149 /** Host register allocation tracking. */
1150 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
1151#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1152 /** Host SIMD register allocation tracking. */
1153 IEMNATIVEHSTSIMDREG aHstSimdRegs[IEMNATIVE_HST_SIMD_REG_COUNT];
1154#endif
1155
1156 /** Variables and arguments. */
1157 IEMNATIVEVAR aVars[9];
1158} IEMNATIVECORESTATE;
1159/** Pointer to core state. */
1160typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
1161/** Pointer to const core state. */
1162typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
1163
1164/** @def IEMNATIVE_VAR_IDX_UNPACK
1165 * @returns Index into IEMNATIVECORESTATE::aVars.
1166 * @param a_idxVar Variable index w/ magic (in strict builds).
1167 */
1168/** @def IEMNATIVE_VAR_IDX_PACK
1169 * @returns Variable index w/ magic (in strict builds).
1170 * @param a_idxVar Index into IEMNATIVECORESTATE::aVars.
1171 */
1172#ifdef VBOX_STRICT
1173# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) ((a_idxVar) & IEMNATIVE_VAR_IDX_MASK)
1174# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) ((a_idxVar) | IEMNATIVE_VAR_IDX_MAGIC)
1175# define IEMNATIVE_VAR_IDX_MAGIC UINT8_C(0xd0)
1176# define IEMNATIVE_VAR_IDX_MAGIC_MASK UINT8_C(0xf0)
1177# define IEMNATIVE_VAR_IDX_MASK UINT8_C(0x0f)
1178#else
1179# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) (a_idxVar)
1180# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) (a_idxVar)
1181#endif
1182
1183
1184#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1185/** Clear the dirty state of the given guest SIMD register. */
1186# define IEMNATIVE_SIMD_REG_STATE_CLR_DIRTY(a_pReNative, a_iSimdReg) \
1187 do { \
1188 (a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 &= ~RT_BIT_64(a_iSimdReg); \
1189 (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 &= ~RT_BIT_64(a_iSimdReg); \
1190 } while (0)
1191
1192/** Returns whether the low 128-bits of the given guest SIMD register are dirty. */
1193# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1194 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 & RT_BIT_64(a_iSimdReg))
1195/** Returns whether the high 128-bits of the given guest SIMD register are dirty. */
1196# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1197 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 & RT_BIT_64(a_iSimdReg))
1198/** Returns whether the given guest SIMD register is dirty. */
1199# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_U256(a_pReNative, a_iSimdReg) \
1200 RT_BOOL(((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 | (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128) & RT_BIT_64(a_iSimdReg))
1201
1202/** Set the low 128-bits of the given guest SIMD register to the dirty state. */
1203# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1204 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 |= RT_BIT_64(a_iSimdReg))
1205/** Set the high 128-bits of the given guest SIMD register to the dirty state. */
1206# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1207 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 |= RT_BIT_64(a_iSimdReg))
1208
1209/** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1210# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_DEVICE_NOT_AVAILABLE RT_BIT_32(0)
1211/** Flag for indicating that IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() has emitted code in the current TB. */
1212# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_SSE RT_BIT_32(1)
1213/** Flag for indicating that IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() has emitted code in the current TB. */
1214# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_AVX RT_BIT_32(2)
1215#endif
1216
1217
1218/**
1219 * Conditional stack entry.
1220 */
1221typedef struct IEMNATIVECOND
1222{
1223 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
1224 bool fInElse;
1225 /** The label for the IEM_MC_ELSE. */
1226 uint32_t idxLabelElse;
1227 /** The label for the IEM_MC_ENDIF. */
1228 uint32_t idxLabelEndIf;
1229 /** The initial state snapshot as the if-block starts executing. */
1230 IEMNATIVECORESTATE InitialState;
1231 /** The state snapshot at the end of the if-block. */
1232 IEMNATIVECORESTATE IfFinalState;
1233} IEMNATIVECOND;
1234/** Pointer to a condition stack entry. */
1235typedef IEMNATIVECOND *PIEMNATIVECOND;
1236
1237
1238/**
1239 * Native recompiler state.
1240 */
1241typedef struct IEMRECOMPILERSTATE
1242{
1243 /** Size of the buffer that pbNativeRecompileBufR3 points to in
1244 * IEMNATIVEINSTR units. */
1245 uint32_t cInstrBufAlloc;
1246#ifdef VBOX_STRICT
1247 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
1248 uint32_t offInstrBufChecked;
1249#else
1250 uint32_t uPadding1; /* We don't keep track of the size here... */
1251#endif
1252 /** Fixed temporary code buffer for native recompilation. */
1253 PIEMNATIVEINSTR pInstrBuf;
1254
1255 /** Bitmaps with the label types used. */
1256 uint64_t bmLabelTypes;
1257 /** Actual number of labels in paLabels. */
1258 uint32_t cLabels;
1259 /** Max number of entries allowed in paLabels before reallocating it. */
1260 uint32_t cLabelsAlloc;
1261 /** Labels defined while recompiling (referenced by fixups). */
1262 PIEMNATIVELABEL paLabels;
1263 /** Array with indexes of unique labels (uData always 0). */
1264 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
1265
1266 /** Actual number of fixups paFixups. */
1267 uint32_t cFixups;
1268 /** Max number of entries allowed in paFixups before reallocating it. */
1269 uint32_t cFixupsAlloc;
1270 /** Buffer used by the recompiler for recording fixups when generating code. */
1271 PIEMNATIVEFIXUP paFixups;
1272
1273#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1274 /** Number of debug info entries allocated for pDbgInfo. */
1275 uint32_t cDbgInfoAlloc;
1276 uint32_t uPadding;
1277 /** Debug info. */
1278 PIEMTBDBG pDbgInfo;
1279#endif
1280
1281#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1282 /** The current call index (liveness array and threaded calls in TB). */
1283 uint32_t idxCurCall;
1284 /** Number of liveness entries allocated. */
1285 uint32_t cLivenessEntriesAlloc;
1286 /** Liveness entries for all the calls in the TB begin recompiled.
1287 * The entry for idxCurCall contains the info for what the next call will
1288 * require wrt registers. (Which means the last entry is the initial liveness
1289 * state.) */
1290 PIEMLIVENESSENTRY paLivenessEntries;
1291#endif
1292
1293 /** The translation block being recompiled. */
1294 PCIEMTB pTbOrg;
1295 /** The VMCPU structure of the EMT. */
1296 PVMCPUCC pVCpu;
1297
1298 /** Condition sequence number (for generating unique labels). */
1299 uint16_t uCondSeqNo;
1300 /** Check IRQ seqeunce number (for generating unique labels). */
1301 uint16_t uCheckIrqSeqNo;
1302 /** TLB load sequence number (for generating unique labels). */
1303 uint16_t uTlbSeqNo;
1304 /** The current condition stack depth (aCondStack). */
1305 uint8_t cCondDepth;
1306
1307 /** The argument count + hidden regs from the IEM_MC_BEGIN statement. */
1308 uint8_t cArgs;
1309 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1310 uint32_t fCImpl;
1311 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1312 uint32_t fMc;
1313 /** The expected IEMCPU::fExec value for the current call/instruction. */
1314 uint32_t fExec;
1315#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1316 /** IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_XXX flags for exception flags
1317 * we only emit once per TB (or when the cr0/cr4/xcr0 register changes).
1318 *
1319 * This is an optimization because these control registers can only be changed from
1320 * by calling a C helper we can catch. Should reduce the number of instructions in a TB
1321 * consisting of multiple SIMD instructions.
1322 */
1323 uint32_t fSimdRaiseXcptChecksEmitted;
1324#endif
1325
1326 /** Core state requiring care with branches. */
1327 IEMNATIVECORESTATE Core;
1328
1329 /** The condition nesting stack. */
1330 IEMNATIVECOND aCondStack[2];
1331
1332#ifndef IEM_WITH_THROW_CATCH
1333 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
1334 * for recompilation error handling. */
1335 jmp_buf JmpBuf;
1336#endif
1337} IEMRECOMPILERSTATE;
1338/** Pointer to a native recompiler state. */
1339typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
1340
1341
1342/** @def IEMNATIVE_TRY_SETJMP
1343 * Wrapper around setjmp / try, hiding all the ugly differences.
1344 *
1345 * @note Use with extreme care as this is a fragile macro.
1346 * @param a_pReNative The native recompile state.
1347 * @param a_rcTarget The variable that should receive the status code in case
1348 * of a longjmp/throw.
1349 */
1350/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
1351 * Start wrapper for catch / setjmp-else.
1352 *
1353 * This will set up a scope.
1354 *
1355 * @note Use with extreme care as this is a fragile macro.
1356 * @param a_pReNative The native recompile state.
1357 * @param a_rcTarget The variable that should receive the status code in case
1358 * of a longjmp/throw.
1359 */
1360/** @def IEMNATIVE_CATCH_LONGJMP_END
1361 * End wrapper for catch / setjmp-else.
1362 *
1363 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
1364 * up the state.
1365 *
1366 * @note Use with extreme care as this is a fragile macro.
1367 * @param a_pReNative The native recompile state.
1368 */
1369/** @def IEMNATIVE_DO_LONGJMP
1370 *
1371 * Wrapper around longjmp / throw.
1372 *
1373 * @param a_pReNative The native recompile state.
1374 * @param a_rc The status code jump back with / throw.
1375 */
1376#ifdef IEM_WITH_THROW_CATCH
1377# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1378 a_rcTarget = VINF_SUCCESS; \
1379 try
1380# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1381 catch (int rcThrown) \
1382 { \
1383 a_rcTarget = rcThrown
1384# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1385 } \
1386 ((void)0)
1387# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
1388#else /* !IEM_WITH_THROW_CATCH */
1389# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1390 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
1391# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1392 else \
1393 { \
1394 ((void)0)
1395# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1396 }
1397# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
1398#endif /* !IEM_WITH_THROW_CATCH */
1399
1400
1401/**
1402 * Native recompiler worker for a threaded function.
1403 *
1404 * @returns New code buffer offset; throws VBox status code in case of a failure.
1405 * @param pReNative The native recompiler state.
1406 * @param off The current code buffer offset.
1407 * @param pCallEntry The threaded call entry.
1408 *
1409 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
1410 */
1411typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
1412/** Pointer to a native recompiler worker for a threaded function. */
1413typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
1414
1415/** Defines a native recompiler worker for a threaded function.
1416 * @see FNIEMNATIVERECOMPFUNC */
1417#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
1418 uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
1419
1420/** Prototypes a native recompiler function for a threaded function.
1421 * @see FNIEMNATIVERECOMPFUNC */
1422#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
1423
1424
1425/**
1426 * Native recompiler liveness analysis worker for a threaded function.
1427 *
1428 * @param pCallEntry The threaded call entry.
1429 * @param pIncoming The incoming liveness state entry.
1430 * @param pOutgoing The outgoing liveness state entry.
1431 */
1432typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
1433 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
1434/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
1435typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
1436
1437/** Defines a native recompiler liveness analysis worker for a threaded function.
1438 * @see FNIEMNATIVELIVENESSFUNC */
1439#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
1440 DECLCALLBACK(void) a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
1441
1442/** Prototypes a native recompiler liveness analysis function for a threaded function.
1443 * @see FNIEMNATIVELIVENESSFUNC */
1444#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
1445
1446
1447/** Define a native recompiler helper function, safe to call from the TB code. */
1448#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
1449 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1450/** Prototype a native recompiler helper function, safe to call from the TB code. */
1451#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
1452 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1453
1454
1455#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1456DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1457DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg,
1458 uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX);
1459# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1460DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestSimdRegShadowing(PIEMRECOMPILERSTATE pReNative,
1461 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1462 uint8_t idxHstSimdReg = UINT8_MAX,
1463 uint8_t idxHstSimdRegPrev = UINT8_MAX);
1464# endif
1465DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddDelayedPcUpdate(PIEMRECOMPILERSTATE pReNative,
1466 uint32_t offPc, uint32_t cInstrSkipped);
1467#endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
1468
1469DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1470 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
1471DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
1472DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
1473 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
1474DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
1475
1476DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1477DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1478 bool fPreferVolatile = true);
1479DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm,
1480 bool fPreferVolatile = true);
1481DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1482 IEMNATIVEGSTREG enmGstReg,
1483 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1484 bool fNoVolatileRegs = false, bool fSkipLivenessAssert = false);
1485DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1486 IEMNATIVEGSTREG enmGstReg);
1487
1488DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
1489DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
1490#if (defined(IPRT_INCLUDED_x86_h) && defined(RT_ARCH_AMD64)) || (defined(IPRT_INCLUDED_armv8_h) && defined(RT_ARCH_ARM64))
1491DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
1492 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK);
1493#endif
1494DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1495DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1496DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1497DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
1498DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
1499DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
1500 uint32_t fKeepVars = 0);
1501DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
1502DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
1503DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1504 uint32_t fHstRegsActiveShadows);
1505#ifdef VBOX_STRICT
1506DECLHIDDEN(void) iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative);
1507#endif
1508DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWritesSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1509 uint64_t fGstShwExcept, bool fFlushShadows);
1510#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1511DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcWritebackSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1512#endif
1513
1514
1515#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1516DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1517DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1518 bool fPreferVolatile = true);
1519DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpForGuestSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1520 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1521 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz,
1522 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1523 bool fNoVolatileRegs = false);
1524DECLHIDDEN(void) iemNativeSimdRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg) RT_NOEXCEPT;
1525DECLHIDDEN(void) iemNativeSimdRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstSimdRegs) RT_NOEXCEPT;
1526DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1527 IEMNATIVEGSTSIMDREG enmGstSimdReg);
1528DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadSimdRegWithGstShadowSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1529 uint8_t idxHstSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg,
1530 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1531#endif
1532
1533DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType);
1534DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue);
1535DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar);
1536DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType);
1537DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue);
1538DECL_HIDDEN_THROW(void) iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1539DECL_HIDDEN_THROW(void) iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue);
1540DECL_HIDDEN_THROW(void) iemNativeVarSetKindToGstRegRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1541 IEMNATIVEGSTREGREF enmRegClass, uint8_t idxReg);
1542DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1543DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1544 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1545DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1546 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
1547DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1548 uint32_t fHstRegsNotToSave);
1549DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1550 uint32_t fHstRegsNotToSave);
1551DECLHIDDEN(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1552DECLHIDDEN(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars);
1553
1554DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1555 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
1556#ifdef VBOX_STRICT
1557DECL_HIDDEN_THROW(uint32_t) iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg);
1558DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg,
1559 IEMNATIVEGSTREG enmGstReg);
1560# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1561DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestSimdRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxSimdReg,
1562 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1563 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1564# endif
1565DECL_HIDDEN_THROW(uint32_t) iemNativeEmitExecFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fExec);
1566#endif
1567#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
1568DECL_HIDDEN_THROW(uint32_t) iemNativeEmitEFlagsSkippingCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fEflNeeded);
1569#endif
1570DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
1571DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs);
1572DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
1573 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
1574 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
1575DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1576 PCIEMTHRDEDCALLENTRY pCallEntry);
1577DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckGprCanonicalMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1578 uint8_t idxAddrReg, uint8_t idxInstr);
1579DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckGpr32AgainstCsSegLimitMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1580 uint8_t idxAddrReg, uint8_t idxInstr);
1581
1582
1583IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr));
1584IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu));
1585IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseNm,(PVMCPUCC pVCpu));
1586IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseUd,(PVMCPUCC pVCpu));
1587IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseMf,(PVMCPUCC pVCpu));
1588IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseXf,(PVMCPUCC pVCpu));
1589IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpObsoleteTb,(PVMCPUCC pVCpu));
1590IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpNeedCsLimChecking,(PVMCPUCC pVCpu));
1591IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpCheckBranchMiss,(PVMCPUCC pVCpu));
1592
1593IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1594IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1595IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1596IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1597IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1598IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1599IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1600IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1601IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1602IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1603IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint8_t u8Value));
1604IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint16_t u16Value));
1605IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint32_t u32Value));
1606IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint64_t u64Value));
1607IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1608IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1609IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1610IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1611IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1612IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1613IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1614
1615IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1616IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1617IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1618IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1619IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1620IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1621IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1622IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1623IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1624IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1625IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t u8Value));
1626IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1627IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1628IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1629IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1630IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1631IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1632IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1633IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFlatFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1634IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFlatFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1635IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFlatFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1636
1637IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1638IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1639IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1640IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1641IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1642IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1643IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1644IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1645IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1646IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1647IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1648IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1649IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1650IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1651IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1652IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1653IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1654IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1655IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1656IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1657IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1658IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1659
1660IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1661IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1662IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1663IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemFlatMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1664IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1665IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1666IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1667IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemFlatMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1668IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1669IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1670IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1671IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemFlatMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1672IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1673IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1674IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1675IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemFlatMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1676IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemFlatMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1677IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemFlatMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1678IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1679IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1680IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1681IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemFlatMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1682
1683IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapAtomic,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1684IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRw,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1685IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapWo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1686IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1687
1688
1689/**
1690 * Info about shadowed guest register values.
1691 * @see IEMNATIVEGSTREG
1692 */
1693typedef struct IEMANTIVEGSTREGINFO
1694{
1695 /** Offset in VMCPU. */
1696 uint32_t off;
1697 /** The field size. */
1698 uint8_t cb;
1699 /** Name (for logging). */
1700 const char *pszName;
1701} IEMANTIVEGSTREGINFO;
1702extern DECL_HIDDEN_DATA(IEMANTIVEGSTREGINFO const) g_aGstShadowInfo[];
1703extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
1704extern DECL_HIDDEN_DATA(int32_t const) g_aoffIemNativeCallStackArgBpDisp[];
1705extern DECL_HIDDEN_DATA(uint32_t const) g_afIemNativeCallRegs[];
1706extern DECL_HIDDEN_DATA(uint8_t const) g_aidxIemNativeCallRegs[];
1707
1708
1709
1710/**
1711 * Ensures that there is sufficient space in the instruction output buffer.
1712 *
1713 * This will reallocate the buffer if needed and allowed.
1714 *
1715 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
1716 * allocation size.
1717 *
1718 * @returns Pointer to the instruction output buffer on success; throws VBox
1719 * status code on failure, so no need to check it.
1720 * @param pReNative The native recompile state.
1721 * @param off Current instruction offset. Works safely for UINT32_MAX
1722 * as well.
1723 * @param cInstrReq Number of instruction about to be added. It's okay to
1724 * overestimate this a bit.
1725 */
1726DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
1727iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
1728{
1729 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
1730 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
1731 {
1732#ifdef VBOX_STRICT
1733 pReNative->offInstrBufChecked = offChecked;
1734#endif
1735 return pReNative->pInstrBuf;
1736 }
1737 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
1738}
1739
1740/**
1741 * Checks that we didn't exceed the space requested in the last
1742 * iemNativeInstrBufEnsure() call.
1743 */
1744#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
1745 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
1746 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
1747
1748/**
1749 * Checks that a variable index is valid.
1750 */
1751#ifdef IEMNATIVE_VAR_IDX_MAGIC
1752# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1753 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
1754 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1755 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))), \
1756 ("%s=%#x\n", #a_idxVar, a_idxVar))
1757#else
1758# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1759 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1760 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
1761#endif
1762
1763/**
1764 * Checks that a variable index is valid and that the variable is assigned the
1765 * correct argument number.
1766 * This also adds a RT_NOREF of a_idxVar.
1767 */
1768#ifdef IEMNATIVE_VAR_IDX_MAGIC
1769# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1770 RT_NOREF_PV(a_idxVar); \
1771 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
1772 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1773 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))) \
1774 && (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].uArgNo == (a_uArgNo), \
1775 ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1776 (a_pReNative)->Core.aVars[RT_MIN(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar), \
1777 RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, \
1778 a_uArgNo)); \
1779 } while (0)
1780#else
1781# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1782 RT_NOREF_PV(a_idxVar); \
1783 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1784 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
1785 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
1786 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1787 (a_pReNative)->Core.aVars[RT_MIN(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
1788 } while (0)
1789#endif
1790
1791
1792/**
1793 * Checks that a variable has the expected size.
1794 */
1795#define IEMNATIVE_ASSERT_VAR_SIZE(a_pReNative, a_idxVar, a_cbVar) \
1796 AssertMsg((a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar), \
1797 ("%s=%#x: cbVar=%#x, expected %#x!\n", #a_idxVar, a_idxVar, \
1798 (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar)))
1799
1800
1801/**
1802 * Calculates the stack address of a variable as a [r]BP displacement value.
1803 */
1804DECL_FORCE_INLINE(int32_t)
1805iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
1806{
1807 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
1808 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
1809}
1810
1811
1812/**
1813 * Releases the variable's register.
1814 *
1815 * The register must have been previously acquired calling
1816 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
1817 * iemNativeVarRegisterSetAndAcquire().
1818 */
1819DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
1820{
1821 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
1822 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired);
1823 pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired = false;
1824}
1825
1826
1827/**
1828 * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask.
1829 *
1830 * @returns The flush mask.
1831 * @param fCImpl The IEM_CIMPL_F_XXX flags.
1832 * @param fGstShwFlush The starting flush mask.
1833 */
1834DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush)
1835{
1836 if (fCImpl & IEM_CIMPL_F_BRANCH_FAR)
1837 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS)
1838 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS)
1839 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS);
1840 if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR)
1841 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP)
1842 | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS)
1843 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS)
1844 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS);
1845 else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK)
1846 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP);
1847 if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW))
1848 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
1849 return fGstShwFlush;
1850}
1851
1852
1853/** Number of hidden arguments for CIMPL calls.
1854 * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */
1855#if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
1856# define IEM_CIMPL_HIDDEN_ARGS 3
1857#else
1858# define IEM_CIMPL_HIDDEN_ARGS 2
1859#endif
1860
1861
1862#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1863
1864# ifndef IEMLIVENESS_EXTENDED_LAYOUT
1865/**
1866 * Helper for iemNativeLivenessGetStateByGstReg.
1867 *
1868 * @returns IEMLIVENESS_STATE_XXX
1869 * @param fMergedStateExp2 This is the RT_BIT_32() of each sub-state
1870 * ORed together.
1871 */
1872DECL_FORCE_INLINE(uint32_t)
1873iemNativeLivenessMergeExpandedEFlagsState(uint32_t fMergedStateExp2)
1874{
1875 /* INPUT trumps anything else. */
1876 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_INPUT))
1877 return IEMLIVENESS_STATE_INPUT;
1878
1879 /* CLOBBERED trumps XCPT_OR_CALL and UNUSED. */
1880 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_CLOBBERED))
1881 {
1882 /* If not all sub-fields are clobbered they must be considered INPUT. */
1883 if (fMergedStateExp2 & (RT_BIT_32(IEMLIVENESS_STATE_UNUSED) | RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL)))
1884 return IEMLIVENESS_STATE_INPUT;
1885 return IEMLIVENESS_STATE_CLOBBERED;
1886 }
1887
1888 /* XCPT_OR_CALL trumps UNUSED. */
1889 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL))
1890 return IEMLIVENESS_STATE_XCPT_OR_CALL;
1891
1892 return IEMLIVENESS_STATE_UNUSED;
1893}
1894# endif /* !IEMLIVENESS_EXTENDED_LAYOUT */
1895
1896
1897DECL_FORCE_INLINE(uint32_t)
1898iemNativeLivenessGetStateByGstRegEx(PCIEMLIVENESSENTRY pLivenessEntry, unsigned enmGstRegEx)
1899{
1900# ifndef IEMLIVENESS_EXTENDED_LAYOUT
1901 return ((pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
1902 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2);
1903# else
1904 return ( (pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
1905 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2)
1906 | (((pLivenessEntry->Bit2.bm64 >> enmGstRegEx) << 2) & 4)
1907 | (((pLivenessEntry->Bit3.bm64 >> enmGstRegEx) << 2) & 8);
1908# endif
1909}
1910
1911
1912DECL_FORCE_INLINE(uint32_t)
1913iemNativeLivenessGetStateByGstReg(PCIEMLIVENESSENTRY pLivenessEntry, IEMNATIVEGSTREG enmGstReg)
1914{
1915 uint32_t uRet = iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, (unsigned)enmGstReg);
1916 if (enmGstReg == kIemNativeGstReg_EFlags)
1917 {
1918 /* Merge the eflags states to one. */
1919# ifndef IEMLIVENESS_EXTENDED_LAYOUT
1920 uRet = RT_BIT_32(uRet);
1921 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflCf | (pLivenessEntry->Bit1.fEflCf << 1));
1922 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflPf | (pLivenessEntry->Bit1.fEflPf << 1));
1923 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflAf | (pLivenessEntry->Bit1.fEflAf << 1));
1924 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflZf | (pLivenessEntry->Bit1.fEflZf << 1));
1925 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflSf | (pLivenessEntry->Bit1.fEflSf << 1));
1926 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflOf | (pLivenessEntry->Bit1.fEflOf << 1));
1927 uRet = iemNativeLivenessMergeExpandedEFlagsState(uRet);
1928# else
1929 AssertCompile(IEMLIVENESSBIT_IDX_EFL_OTHER == (unsigned)kIemNativeGstReg_EFlags);
1930 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_CF);
1931 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_PF);
1932 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_AF);
1933 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_ZF);
1934 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_SF);
1935 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_OF);
1936# endif
1937 }
1938 return uRet;
1939}
1940
1941
1942# ifdef VBOX_STRICT
1943/** For assertions only, user checks that idxCurCall isn't zerow. */
1944DECL_FORCE_INLINE(uint32_t)
1945iemNativeLivenessGetPrevStateByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg)
1946{
1947 return iemNativeLivenessGetStateByGstReg(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg);
1948}
1949# endif /* VBOX_STRICT */
1950
1951#endif /* IEMNATIVE_WITH_LIVENESS_ANALYSIS */
1952
1953
1954/**
1955 * Gets the number of hidden arguments for an expected IEM_MC_CALL statement.
1956 */
1957DECL_FORCE_INLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative)
1958{
1959 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL)
1960 return IEM_CIMPL_HIDDEN_ARGS;
1961 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE)
1962 return 1;
1963 return 0;
1964}
1965
1966
1967DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg,
1968 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
1969{
1970 pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
1971
1972 pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat;
1973 pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
1974 pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
1975 return (uint8_t)idxReg;
1976}
1977
1978
1979
1980/*********************************************************************************************************************************
1981* Register Allocator (GPR) *
1982*********************************************************************************************************************************/
1983
1984/**
1985 * Marks host register @a idxHstReg as containing a shadow copy of guest
1986 * register @a enmGstReg.
1987 *
1988 * ASSUMES that caller has made sure @a enmGstReg is not associated with any
1989 * host register before calling.
1990 */
1991DECL_FORCE_INLINE(void)
1992iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
1993{
1994 Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)));
1995 Assert(!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
1996 Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End);
1997
1998 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg;
1999 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg); /** @todo why? not OR? */
2000 pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg);
2001 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
2002#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2003 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2004 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg);
2005#else
2006 RT_NOREF(off);
2007#endif
2008}
2009
2010
2011/**
2012 * Clear any guest register shadow claims from @a idxHstReg.
2013 *
2014 * The register does not need to be shadowing any guest registers.
2015 */
2016DECL_FORCE_INLINE(void)
2017iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off)
2018{
2019 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2020 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2021 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2022 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
2023 == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
2024
2025#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2026 uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2027 if (fGstRegs)
2028 {
2029 Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End));
2030 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2031 while (fGstRegs)
2032 {
2033 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2034 fGstRegs &= ~RT_BIT_64(iGstReg);
2035 iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg);
2036 }
2037 }
2038#else
2039 RT_NOREF(off);
2040#endif
2041
2042 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2043 pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2044 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
2045}
2046
2047
2048/**
2049 * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg
2050 * and global overview flags.
2051 */
2052DECL_FORCE_INLINE(void)
2053iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2054{
2055 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2056 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2057 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2058 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2059 Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg));
2060 Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg));
2061 Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
2062
2063#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2064 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2065 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg);
2066#else
2067 RT_NOREF(off);
2068#endif
2069
2070 uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2071 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
2072 if (!fGstRegShadowsNew)
2073 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2074 pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg);
2075}
2076
2077
2078#if 0 /* unused */
2079/**
2080 * Clear any guest register shadow claim for @a enmGstReg.
2081 */
2082DECL_FORCE_INLINE(void)
2083iemNativeRegClearGstRegShadowingByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2084{
2085 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2086 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2087 {
2088 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs));
2089 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2090 }
2091}
2092#endif
2093
2094
2095/**
2096 * Clear any guest register shadow claim for @a enmGstReg and mark @a idxHstRegNew
2097 * as the new shadow of it.
2098 *
2099 * Unlike the other guest reg shadow helpers, this does the logging for you.
2100 * However, it is the liveness state is not asserted here, the caller must do
2101 * that.
2102 */
2103DECL_FORCE_INLINE(void)
2104iemNativeRegClearAndMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstRegNew,
2105 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2106{
2107 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2108 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2109 {
2110 uint8_t const idxHstRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg];
2111 Assert(idxHstRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs));
2112 if (idxHstRegOld == idxHstRegNew)
2113 return;
2114 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s (from %s)\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2115 g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxHstRegOld]));
2116 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2117 }
2118 else
2119 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2120 g_aGstShadowInfo[enmGstReg].pszName));
2121 iemNativeRegMarkAsGstRegShadow(pReNative, idxHstRegNew, enmGstReg, off);
2122}
2123
2124
2125/**
2126 * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom
2127 * to @a idxRegTo.
2128 */
2129DECL_FORCE_INLINE(void)
2130iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo,
2131 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2132{
2133 Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg));
2134 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] == idxRegFrom);
2135 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)
2136 == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows
2137 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2138 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows)
2139 == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows);
2140 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom))
2141 == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows));
2142
2143 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2144 pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2145 if (!fGstRegShadowsFrom)
2146 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom);
2147 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo);
2148 pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg);
2149 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo;
2150#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2151 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2152 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom);
2153#else
2154 RT_NOREF(off);
2155#endif
2156}
2157
2158
2159/**
2160 * Flushes any delayed guest register writes.
2161 *
2162 * This must be called prior to calling CImpl functions and any helpers that use
2163 * the guest state (like raising exceptions) and such.
2164 *
2165 * This optimization has not yet been implemented. The first target would be
2166 * RIP updates, since these are the most common ones.
2167 */
2168DECL_INLINE_THROW(uint32_t)
2169iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept = 0, bool fFlushShadows = true)
2170{
2171#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2172 if (!(fGstShwExcept & kIemNativeGstReg_Pc))
2173 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fFlushShadows);
2174#else
2175 RT_NOREF(pReNative, fGstShwExcept);
2176#endif
2177
2178#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2179 /** @todo r=bird: There must be a quicker way to check if anything needs doing here! */
2180 /** @todo This doesn't mix well with fGstShwExcept but we ignore this for now and just flush everything. */
2181 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fFlushShadows);
2182#else
2183 RT_NOREF(pReNative, fGstShwExcept, fFlushShadows);
2184 return off;
2185#endif
2186}
2187
2188
2189
2190/*********************************************************************************************************************************
2191* SIMD register allocator (largely code duplication of the GPR allocator for now but might diverge) *
2192*********************************************************************************************************************************/
2193
2194#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2195
2196DECL_FORCE_INLINE(uint8_t)
2197iemNativeSimdRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdReg,
2198 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2199{
2200 pReNative->Core.bmHstSimdRegs |= RT_BIT_32(idxSimdReg);
2201
2202 pReNative->Core.aHstSimdRegs[idxSimdReg].enmWhat = enmWhat;
2203 pReNative->Core.aHstSimdRegs[idxSimdReg].fGstRegShadows = 0;
2204 RT_NOREF(idxVar);
2205 return idxSimdReg;
2206}
2207
2208
2209/**
2210 * Marks host SIMD register @a idxHstSimdReg as containing a shadow copy of guest
2211 * SIMD register @a enmGstSimdReg.
2212 *
2213 * ASSUMES that caller has made sure @a enmGstSimdReg is not associated with any
2214 * host register before calling.
2215 */
2216DECL_FORCE_INLINE(void)
2217iemNativeSimdRegMarkAsGstSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg,
2218 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2219{
2220 Assert(!(pReNative->Core.bmGstSimdRegShadows & RT_BIT_64(enmGstSimdReg)));
2221 Assert(!pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows);
2222 Assert((unsigned)enmGstSimdReg < (unsigned)kIemNativeGstSimdReg_End);
2223
2224 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxHstSimdReg;
2225 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2226 pReNative->Core.bmGstSimdRegShadows |= RT_BIT_64(enmGstSimdReg);
2227 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxHstSimdReg);
2228#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2229 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2230 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxHstSimdReg);
2231#else
2232 RT_NOREF(off);
2233#endif
2234}
2235
2236
2237/**
2238 * Transfers the guest SIMD register shadow claims of @a enmGstSimdReg from @a idxSimdRegFrom
2239 * to @a idxSimdRegTo.
2240 */
2241DECL_FORCE_INLINE(void)
2242iemNativeSimdRegTransferGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdRegFrom, uint8_t idxSimdRegTo,
2243 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2244{
2245 Assert(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & RT_BIT_64(enmGstSimdReg));
2246 Assert(pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] == idxSimdRegFrom);
2247 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows)
2248 == pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows
2249 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2250 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows)
2251 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows);
2252 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxSimdRegFrom))
2253 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows));
2254 Assert( pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded
2255 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].enmLoaded);
2256
2257 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstSimdReg);
2258 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2259 if (!fGstRegShadowsFrom)
2260 {
2261 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxSimdRegFrom);
2262 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2263 }
2264 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxSimdRegTo);
2265 pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2266 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxSimdRegTo;
2267#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2268 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2269 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxSimdRegTo, idxSimdRegFrom);
2270#else
2271 RT_NOREF(off);
2272#endif
2273}
2274
2275
2276/**
2277 * Clear any guest register shadow claims from @a idxHstSimdReg.
2278 *
2279 * The register does not need to be shadowing any guest registers.
2280 */
2281DECL_FORCE_INLINE(void)
2282iemNativeSimdRegClearGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, uint32_t off)
2283{
2284 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows)
2285 == pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows
2286 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstSimdReg_End));
2287 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxHstSimdReg))
2288 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows));
2289 Assert( !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyLo128)
2290 && !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyHi128));
2291
2292#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2293 uint64_t fGstRegs = pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2294 if (fGstRegs)
2295 {
2296 Assert(fGstRegs < RT_BIT_64(kIemNativeGstSimdReg_End));
2297 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2298 while (fGstRegs)
2299 {
2300 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2301 fGstRegs &= ~RT_BIT_64(iGstReg);
2302 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, (IEMNATIVEGSTSIMDREG)iGstReg, UINT8_MAX, idxHstSimdReg);
2303 }
2304 }
2305#else
2306 RT_NOREF(off);
2307#endif
2308
2309 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxHstSimdReg);
2310 pReNative->Core.bmGstSimdRegShadows &= ~pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2311 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows = 0;
2312 pReNative->Core.aHstSimdRegs[idxHstSimdReg].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2313}
2314
2315#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
2316
2317
2318#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2319/**
2320 * Emits code to update the guest RIP value by adding the current offset since the start of the last RIP update.
2321 */
2322DECL_INLINE_THROW(uint32_t) iemNativeEmitPcWriteback(PIEMRECOMPILERSTATE pReNative, uint32_t off)
2323{
2324 if (pReNative->Core.offPc)
2325 return iemNativeEmitPcWritebackSlow(pReNative, off);
2326 return off;
2327}
2328#endif /* IEMNATIVE_WITH_DELAYED_PC_UPDATING */
2329
2330
2331/** @} */
2332
2333#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
2334
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette