VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 103839

Last change on this file since 103839 was 103839, checked in by vboxsync, 13 months ago

VMM/IEM: Implement native emitters for IEM_MC_RAISE_DIVIDE_ERROR() and IEM_MC_IF_LOCAL_IS_Z(), bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 113.6 KB
Line 
1/* $Id: IEMN8veRecompiler.h 103839 2024-03-14 09:05:23Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
41 * Enables generating internal debug info for better TB disassembly dumping. */
42#if defined(DEBUG) || defined(DOXYGEN_RUNNING)
43# define IEMNATIVE_WITH_TB_DEBUG_INFO
44#endif
45
46/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
47 * Enables liveness analysis. */
48#if 1 || defined(DOXYGEN_RUNNING)
49# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
50/*# define IEMLIVENESS_EXTENDED_LAYOUT*/
51#endif
52
53/** @def IEMNATIVE_WITH_EFLAGS_SKIPPING
54 * Enables skipping EFLAGS calculations/updating based on liveness info. */
55#if (defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) && 1) || defined(DOXYGEN_RUNNING)
56# define IEMNATIVE_WITH_EFLAGS_SKIPPING
57#endif
58
59
60/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING
61 * Enables strict consistency checks around EFLAGS skipping.
62 * @note Only defined when IEMNATIVE_WITH_EFLAGS_SKIPPING is also defined. */
63#if (defined(VBOX_STRICT) && defined(IEMNATIVE_WITH_EFLAGS_SKIPPING)) || defined(DOXYGEN_RUNNING)
64# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
65#endif
66
67#ifdef VBOX_WITH_STATISTICS
68/** Always count instructions for now. */
69# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
70#endif
71
72
73/** @name Stack Frame Layout
74 *
75 * @{ */
76/** The size of the area for stack variables and spills and stuff.
77 * @note This limit is duplicated in the python script(s). We add 0x40 for
78 * alignment padding. */
79#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
80/** Number of 64-bit variable slots (0x100 / 8 = 32. */
81#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
82AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
83
84#ifdef RT_ARCH_AMD64
85/** An stack alignment adjustment (between non-volatile register pushes and
86 * the stack variable area, so the latter better aligned). */
87# define IEMNATIVE_FRAME_ALIGN_SIZE 8
88
89/** Number of stack arguments slots for calls made from the frame. */
90# ifdef RT_OS_WINDOWS
91# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
92# else
93# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
94# endif
95/** Number of any shadow arguments (spill area) for calls we make. */
96# ifdef RT_OS_WINDOWS
97# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
98# else
99# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
100# endif
101
102/** Frame pointer (RBP) relative offset of the last push. */
103# ifdef RT_OS_WINDOWS
104# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
105# else
106# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
107# endif
108/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
109 * address for it). */
110# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
111/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
112# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
113/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
114# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
115# ifdef RT_OS_WINDOWS
116/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
117# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
118/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
119# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
120# endif
121
122# ifdef RT_OS_WINDOWS
123/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
124# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
125/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
126# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
127/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
128# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
129/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
130# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
131# endif
132
133#elif RT_ARCH_ARM64
134/** No alignment padding needed for arm64. */
135# define IEMNATIVE_FRAME_ALIGN_SIZE 0
136/** No stack argument slots, got 8 registers for arguments will suffice. */
137# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
138/** There are no argument spill area. */
139# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
140
141/** Number of saved registers at the top of our stack frame.
142 * This includes the return address and old frame pointer, so x19 thru x30. */
143# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
144/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
145# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
146
147/** Frame pointer (BP) relative offset of the last push. */
148# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
149
150/** Frame pointer (BP) relative offset of the stack variable area (the lowest
151 * address for it). */
152# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
153
154#else
155# error "port me"
156#endif
157/** @} */
158
159
160/** @name Fixed Register Allocation(s)
161 * @{ */
162/** @def IEMNATIVE_REG_FIXED_PVMCPU
163 * The number of the register holding the pVCpu pointer. */
164/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
165 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
166 * @note This not available on AMD64, only ARM64. */
167/** @def IEMNATIVE_REG_FIXED_TMP0
168 * Dedicated temporary register.
169 * @todo replace this by a register allocator and content tracker. */
170/** @def IEMNATIVE_REG_FIXED_MASK
171 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
172 * architecture. */
173#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
174/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
175 * Mask SIMD registers with fixes assignments, either by us or dictated by the CPU/OS
176 * architecture. */
177/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
178 * Dedicated temporary SIMD register. */
179#endif
180#if defined(RT_ARCH_AMD64) && !defined(DOXYGEN_RUNNING)
181# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
182# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
183# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
184 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
185 | RT_BIT_32(X86_GREG_xSP) \
186 | RT_BIT_32(X86_GREG_xBP) )
187
188# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
189# define IEMNATIVE_SIMD_REG_FIXED_TMP0 5 /* xmm5/ymm5 */
190# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS) || !defined(_MSC_VER)
191# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0)
192# else
193/** On Windows xmm6 through xmm15 are marked as callee saved. */
194# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xffc0) \
195 | RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
196# endif
197# endif
198
199#elif defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
200# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
201# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
202# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
203# if defined(IEMNATIVE_WITH_DELAYED_PC_UPDATING) && 0 /* debug the updating with a shadow RIP. */
204# define IEMNATIVE_REG_FIXED_TMP1 ARMV8_A64_REG_X16
205# define IEMNATIVE_REG_FIXED_PC_DBG ARMV8_A64_REG_X26
206# define IEMNATIVE_REG_FIXED_MASK_ADD ( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1) \
207 | RT_BIT_32(IEMNATIVE_REG_FIXED_PC_DBG))
208# else
209# define IEMNATIVE_REG_FIXED_MASK_ADD 0
210# endif
211# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
212 | RT_BIT_32(ARMV8_A64_REG_LR) \
213 | RT_BIT_32(ARMV8_A64_REG_BP) \
214 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
215 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
216 | RT_BIT_32(ARMV8_A64_REG_X18) \
217 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
218 | IEMNATIVE_REG_FIXED_MASK_ADD)
219
220# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
221# define IEMNATIVE_SIMD_REG_FIXED_TMP0 ARMV8_A64_REG_Q30
222# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS)
223# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(ARMV8_A64_REG_Q30)
224# else
225/** arm64 declares the low 64-bit of v8-v15 as callee saved. */
226# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xff00) \
227 | RT_BIT_32(ARMV8_A64_REG_Q30))
228# endif
229# endif
230
231#else
232# error "port me"
233#endif
234/** @} */
235
236/** @name Call related registers.
237 * @{ */
238/** @def IEMNATIVE_CALL_RET_GREG
239 * The return value register. */
240/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
241 * Number of arguments in registers. */
242/** @def IEMNATIVE_CALL_ARG0_GREG
243 * The general purpose register carrying argument \#0. */
244/** @def IEMNATIVE_CALL_ARG1_GREG
245 * The general purpose register carrying argument \#1. */
246/** @def IEMNATIVE_CALL_ARG2_GREG
247 * The general purpose register carrying argument \#2. */
248/** @def IEMNATIVE_CALL_ARG3_GREG
249 * The general purpose register carrying argument \#3. */
250/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
251 * Mask of registers the callee will not save and may trash. */
252#ifdef RT_ARCH_AMD64
253# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
254
255# ifdef RT_OS_WINDOWS
256# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
257# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
258# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
259# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
260# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
261# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
262 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
263 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
264 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
265# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
266 | RT_BIT_32(X86_GREG_xCX) \
267 | RT_BIT_32(X86_GREG_xDX) \
268 | RT_BIT_32(X86_GREG_x8) \
269 | RT_BIT_32(X86_GREG_x9) \
270 | RT_BIT_32(X86_GREG_x10) \
271 | RT_BIT_32(X86_GREG_x11) )
272# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
273/* xmm0 - xmm5 are marked as volatile. */
274# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0x3f))
275# endif
276
277# else
278# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
279# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
280# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
281# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
282# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
283# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
284# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
285# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
286 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
287 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
288 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
289 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
290 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
291# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
292 | RT_BIT_32(X86_GREG_xCX) \
293 | RT_BIT_32(X86_GREG_xDX) \
294 | RT_BIT_32(X86_GREG_xDI) \
295 | RT_BIT_32(X86_GREG_xSI) \
296 | RT_BIT_32(X86_GREG_x8) \
297 | RT_BIT_32(X86_GREG_x9) \
298 | RT_BIT_32(X86_GREG_x10) \
299 | RT_BIT_32(X86_GREG_x11) )
300# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
301/* xmm0 - xmm15 are marked as volatile. */
302# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffff))
303# endif
304# endif
305
306#elif defined(RT_ARCH_ARM64)
307# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
308# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
309# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
310# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
311# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
312# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
313# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
314# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
315# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
316# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
317# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
318 | RT_BIT_32(ARMV8_A64_REG_X1) \
319 | RT_BIT_32(ARMV8_A64_REG_X2) \
320 | RT_BIT_32(ARMV8_A64_REG_X3) \
321 | RT_BIT_32(ARMV8_A64_REG_X4) \
322 | RT_BIT_32(ARMV8_A64_REG_X5) \
323 | RT_BIT_32(ARMV8_A64_REG_X6) \
324 | RT_BIT_32(ARMV8_A64_REG_X7) )
325# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
326 | RT_BIT_32(ARMV8_A64_REG_X1) \
327 | RT_BIT_32(ARMV8_A64_REG_X2) \
328 | RT_BIT_32(ARMV8_A64_REG_X3) \
329 | RT_BIT_32(ARMV8_A64_REG_X4) \
330 | RT_BIT_32(ARMV8_A64_REG_X5) \
331 | RT_BIT_32(ARMV8_A64_REG_X6) \
332 | RT_BIT_32(ARMV8_A64_REG_X7) \
333 | RT_BIT_32(ARMV8_A64_REG_X8) \
334 | RT_BIT_32(ARMV8_A64_REG_X9) \
335 | RT_BIT_32(ARMV8_A64_REG_X10) \
336 | RT_BIT_32(ARMV8_A64_REG_X11) \
337 | RT_BIT_32(ARMV8_A64_REG_X12) \
338 | RT_BIT_32(ARMV8_A64_REG_X13) \
339 | RT_BIT_32(ARMV8_A64_REG_X14) \
340 | RT_BIT_32(ARMV8_A64_REG_X15) \
341 | RT_BIT_32(ARMV8_A64_REG_X16) \
342 | RT_BIT_32(ARMV8_A64_REG_X17) )
343# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
344/* The low 64 bits of v8 - v15 marked as callee saved but the rest is volatile,
345 * so to simplify our life a bit we just mark everything as volatile. */
346# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffffffff))
347# endif
348
349#endif
350
351/** This is the maximum argument count we'll ever be needing. */
352#if defined(RT_OS_WINDOWS) && defined(VBOXSTRICTRC_STRICT_ENABLED)
353# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
354#else
355# define IEMNATIVE_CALL_MAX_ARG_COUNT 7
356#endif
357/** @} */
358
359
360/** @def IEMNATIVE_HST_GREG_COUNT
361 * Number of host general purpose registers we tracker. */
362/** @def IEMNATIVE_HST_GREG_MASK
363 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
364 * inverted register masks and such to get down to a correct set of regs. */
365#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
366/** @def IEMNATIVE_HST_SIMD_REG_COUNT
367 * Number of host SIMD registers we track. */
368/** @def IEMNATIVE_HST_SIMD_REG_MASK
369 * Mask corresponding to IEMNATIVE_HST_SIMD_REG_COUNT that can be applied to
370 * inverted register masks and such to get down to a correct set of regs. */
371#endif
372#ifdef RT_ARCH_AMD64
373# define IEMNATIVE_HST_GREG_COUNT 16
374# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
375
376# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
377# define IEMNATIVE_HST_SIMD_REG_COUNT 16
378# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_C(0xffff)
379# endif
380
381#elif defined(RT_ARCH_ARM64)
382# define IEMNATIVE_HST_GREG_COUNT 32
383# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
384
385# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
386# define IEMNATIVE_HST_SIMD_REG_COUNT 32
387# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_MAX
388# endif
389
390#else
391# error "Port me!"
392#endif
393
394
395/** Native code generator label types. */
396typedef enum
397{
398 kIemNativeLabelType_Invalid = 0,
399 /* Labels w/o data, only once instance per TB: */
400 kIemNativeLabelType_Return,
401 kIemNativeLabelType_ReturnBreak,
402 kIemNativeLabelType_ReturnWithFlags,
403 kIemNativeLabelType_NonZeroRetOrPassUp,
404 kIemNativeLabelType_RaiseGp0,
405 kIemNativeLabelType_RaiseNm,
406 kIemNativeLabelType_RaiseUd,
407 kIemNativeLabelType_RaiseMf,
408 kIemNativeLabelType_RaiseXf,
409 kIemNativeLabelType_RaiseDe,
410 kIemNativeLabelType_ObsoleteTb,
411 kIemNativeLabelType_NeedCsLimChecking,
412 kIemNativeLabelType_CheckBranchMiss,
413 /* Labels with data, potentially multiple instances per TB: */
414 kIemNativeLabelType_FirstWithMultipleInstances,
415 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
416 kIemNativeLabelType_Else,
417 kIemNativeLabelType_Endif,
418 kIemNativeLabelType_CheckIrq,
419 kIemNativeLabelType_TlbLookup,
420 kIemNativeLabelType_TlbMiss,
421 kIemNativeLabelType_TlbDone,
422 kIemNativeLabelType_End
423} IEMNATIVELABELTYPE;
424
425/** Native code generator label definition. */
426typedef struct IEMNATIVELABEL
427{
428 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
429 * the epilog. */
430 uint32_t off;
431 /** The type of label (IEMNATIVELABELTYPE). */
432 uint16_t enmType;
433 /** Additional label data, type specific. */
434 uint16_t uData;
435} IEMNATIVELABEL;
436/** Pointer to a label. */
437typedef IEMNATIVELABEL *PIEMNATIVELABEL;
438
439
440/** Native code generator fixup types. */
441typedef enum
442{
443 kIemNativeFixupType_Invalid = 0,
444#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
445 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
446 kIemNativeFixupType_Rel32,
447#elif defined(RT_ARCH_ARM64)
448 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
449 kIemNativeFixupType_RelImm26At0,
450 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
451 kIemNativeFixupType_RelImm19At5,
452 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
453 kIemNativeFixupType_RelImm14At5,
454#endif
455 kIemNativeFixupType_End
456} IEMNATIVEFIXUPTYPE;
457
458/** Native code generator fixup. */
459typedef struct IEMNATIVEFIXUP
460{
461 /** Code offset of the fixup location. */
462 uint32_t off;
463 /** The IEMNATIVELABEL this is a fixup for. */
464 uint16_t idxLabel;
465 /** The fixup type (IEMNATIVEFIXUPTYPE). */
466 uint8_t enmType;
467 /** Addend or other data. */
468 int8_t offAddend;
469} IEMNATIVEFIXUP;
470/** Pointer to a native code generator fixup. */
471typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
472
473
474/**
475 * One bit of the state.
476 *
477 * Each register state takes up two bits. We keep the two bits in two separate
478 * 64-bit words to simplify applying them to the guest shadow register mask in
479 * the register allocator.
480 */
481typedef union IEMLIVENESSBIT
482{
483 uint64_t bm64;
484 RT_GCC_EXTENSION struct
485 { /* bit no */
486 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
487 uint64_t fUnusedPc : 1; /**< 0x10 / 16: (PC in ) */
488 uint64_t fCr0 : 1; /**< 0x11 / 17: */
489 uint64_t fFcw : 1; /**< 0x12 / 18: */
490 uint64_t fFsw : 1; /**< 0x13 / 19: */
491 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
492 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
493 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
494 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
495 uint64_t fCr4 : 1; /**< 0x2c / 44: */
496 uint64_t fXcr0 : 1; /**< 0x2d / 45: */
497 uint64_t fMxCsr : 1; /**< 0x2e / 46: */
498 uint64_t fEflOther : 1; /**< 0x2f / 47: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
499 uint64_t fEflCf : 1; /**< 0x30 / 48: Carry flag (X86_EFL_CF / 0). */
500 uint64_t fEflPf : 1; /**< 0x31 / 49: Parity flag (X86_EFL_PF / 2). */
501 uint64_t fEflAf : 1; /**< 0x32 / 50: Auxilary carry flag (X86_EFL_AF / 4). */
502 uint64_t fEflZf : 1; /**< 0x33 / 51: Zero flag (X86_EFL_ZF / 6). */
503 uint64_t fEflSf : 1; /**< 0x34 / 52: Signed flag (X86_EFL_SF / 7). */
504 uint64_t fEflOf : 1; /**< 0x35 / 53: Overflow flag (X86_EFL_OF / 12). */
505 uint64_t uUnused : 10; /* 0x36 / 54 -> 0x40/64 */
506 };
507} IEMLIVENESSBIT;
508AssertCompileSize(IEMLIVENESSBIT, 8);
509
510#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
511#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
512#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
513#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
514#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
515#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
516#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
517
518
519/**
520 * A liveness state entry.
521 *
522 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
523 * Once we add a SSE register shadowing, we'll add another 64-bit element for
524 * that.
525 */
526typedef union IEMLIVENESSENTRY
527{
528#ifndef IEMLIVENESS_EXTENDED_LAYOUT
529 uint64_t bm64[16 / 8];
530 uint16_t bm32[16 / 4];
531 uint16_t bm16[16 / 2];
532 uint8_t bm8[ 16 / 1];
533 IEMLIVENESSBIT aBits[2];
534#else
535 uint64_t bm64[32 / 8];
536 uint16_t bm32[32 / 4];
537 uint16_t bm16[32 / 2];
538 uint8_t bm8[ 32 / 1];
539 IEMLIVENESSBIT aBits[4];
540#endif
541 RT_GCC_EXTENSION struct
542 {
543 /** Bit \#0 of the register states. */
544 IEMLIVENESSBIT Bit0;
545 /** Bit \#1 of the register states. */
546 IEMLIVENESSBIT Bit1;
547#ifdef IEMLIVENESS_EXTENDED_LAYOUT
548 /** Bit \#2 of the register states. */
549 IEMLIVENESSBIT Bit2;
550 /** Bit \#3 of the register states. */
551 IEMLIVENESSBIT Bit3;
552#endif
553 };
554} IEMLIVENESSENTRY;
555#ifndef IEMLIVENESS_EXTENDED_LAYOUT
556AssertCompileSize(IEMLIVENESSENTRY, 16);
557#else
558AssertCompileSize(IEMLIVENESSENTRY, 32);
559#endif
560/** Pointer to a liveness state entry. */
561typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
562/** Pointer to a const liveness state entry. */
563typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
564
565/** @name 64-bit value masks for IEMLIVENESSENTRY.
566 * @{ */ /* 0xzzzzyyyyxxxxwwww */
567#define IEMLIVENESSBIT_MASK UINT64_C(0x003ffffffffeffff)
568
569#ifndef IEMLIVENESS_EXTENDED_LAYOUT
570# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
571# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
572
573# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
574# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
575#endif
576
577#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x003f800000000000)
578#define IEMLIVENESSBIT_STATUS_EFL_MASK UINT64_C(0x003f000000000000)
579
580#ifndef IEMLIVENESS_EXTENDED_LAYOUT
581# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
582# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
583#endif
584/** @} */
585
586
587/** @name The liveness state for a register.
588 *
589 * The state values have been picked to with state accumulation in mind (what
590 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
591 * performance critical work done with the values.
592 *
593 * This is a compressed state that only requires 2 bits per register.
594 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
595 * 1. the incoming state from the following call,
596 * 2. the outgoing state for this call,
597 * 3. mask of the entries set in the 2nd.
598 *
599 * The mask entry (3rd one above) will be used both when updating the outgoing
600 * state and when merging in incoming state for registers not touched by the
601 * current call.
602 *
603 * @{ */
604#ifndef IEMLIVENESS_EXTENDED_LAYOUT
605/** The register will be clobbered and the current value thrown away.
606 *
607 * When this is applied to the state (2) we'll simply be AND'ing it with the
608 * (old) mask (3) and adding the register to the mask. This way we'll
609 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
610 * IEMLIVENESS_STATE_INPUT states. */
611# define IEMLIVENESS_STATE_CLOBBERED 0
612/** The register is unused in the remainder of the TB.
613 *
614 * This is an initial state and can not be set by any of the
615 * iemNativeLivenessFunc_xxxx callbacks. */
616# define IEMLIVENESS_STATE_UNUSED 1
617/** The register value is required in a potential call or exception.
618 *
619 * This means that the register value must be calculated and is best written to
620 * the state, but that any shadowing registers can be flushed thereafter as it's
621 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
622 *
623 * It is typically applied across the board, but we preserve incoming
624 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
625 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
626 * 1. r0 = old & ~mask;
627 * 2. r0 = t1 & (t1 >> 1)'
628 * 3. state |= r0 | 0b10;
629 * 4. mask = ~0;
630 */
631# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
632/** The register value is used as input.
633 *
634 * This means that the register value must be calculated and it is best to keep
635 * it in a register. It does not need to be writtent out as such. This is the
636 * highest priority state.
637 *
638 * Whether the call modifies the register or not isn't relevant to earlier
639 * calls, so that's not recorded.
640 *
641 * When applying this state we just or in the value in the outgoing state and
642 * mask. */
643# define IEMLIVENESS_STATE_INPUT 3
644/** Mask of the state bits. */
645# define IEMLIVENESS_STATE_MASK 3
646/** The number of bits per state. */
647# define IEMLIVENESS_STATE_BIT_COUNT 2
648/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state. */
649# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
650/** Check if we're expecting read accesses to a register with the given (previous) liveness state. */
651# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
652/** Check if a register clobbering is expected given the (previous) liveness state.
653 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
654 * include INPUT if the register is used in more than one place. */
655# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
656
657/** Check if all status flags are going to be clobbered and doesn't need
658 * calculating in the current step.
659 * @param a_pEntry The current liveness entry. */
660# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
661 ( (((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_STATUS_EFL_MASK) == 0 )
662
663#else /* IEMLIVENESS_EXTENDED_LAYOUT */
664/** The register is not used any more. */
665# define IEMLIVENESS_STATE_UNUSED 0
666/** Flag: The register is required in a potential exception or call. */
667# define IEMLIVENESS_STATE_POT_XCPT_OR_CALL 1
668# define IEMLIVENESS_BIT_POT_XCPT_OR_CALL 0
669/** Flag: The register is read. */
670# define IEMLIVENESS_STATE_READ 2
671# define IEMLIVENESS_BIT_READ 1
672/** Flag: The register is written. */
673# define IEMLIVENESS_STATE_WRITE 4
674# define IEMLIVENESS_BIT_WRITE 2
675/** Flag: Unconditional call (not needed, can be redefined for research). */
676# define IEMLIVENESS_STATE_CALL 8
677# define IEMLIVENESS_BIT_CALL 3
678# define IEMLIVENESS_BIT_OTHER 3 /**< More convenient name for this one. */
679# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
680 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
681# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
682# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
683
684# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
685 ( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & IEMLIVENESSBIT_STATUS_EFL_MASK) == IEMLIVENESSBIT_STATUS_EFL_MASK \
686 && !( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64) \
687 & IEMLIVENESSBIT_STATUS_EFL_MASK) )
688
689#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
690/** @} */
691
692/** @name Liveness helpers for builtin functions and similar.
693 *
694 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
695 * own set of manimulator macros for those.
696 *
697 * @{ */
698/** Initializing the state as all unused. */
699#ifndef IEMLIVENESS_EXTENDED_LAYOUT
700# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
701 do { \
702 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
703 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
704 } while (0)
705#else
706# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
707 do { \
708 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = 0; \
709 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
710 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
711 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
712 } while (0)
713#endif
714
715/** Initializing the outgoing state with a potential xcpt or call state.
716 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT. */
717#ifndef IEMLIVENESS_EXTENDED_LAYOUT
718# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
719 do { \
720 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
721 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
722 } while (0)
723#else
724# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
725 do { \
726 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = IEMLIVENESSBIT_MASK; \
727 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64; \
728 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
729 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
730 } while (0)
731#endif
732
733/** Adds a segment base register as input to the outgoing state. */
734#ifndef IEMLIVENESS_EXTENDED_LAYOUT
735# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
736 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
737 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
738 } while (0)
739#else
740# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
741 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
742 } while (0)
743#endif
744
745/** Adds a segment attribute register as input to the outgoing state. */
746#ifndef IEMLIVENESS_EXTENDED_LAYOUT
747# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
748 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
749 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
750 } while (0)
751#else
752# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
753 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
754 } while (0)
755#endif
756
757/** Adds a segment limit register as input to the outgoing state. */
758#ifndef IEMLIVENESS_EXTENDED_LAYOUT
759# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
760 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
761 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
762 } while (0)
763#else
764# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
765 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
766 } while (0)
767#endif
768
769/** Adds a segment limit register as input to the outgoing state. */
770#ifndef IEMLIVENESS_EXTENDED_LAYOUT
771# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
772 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
773 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
774 } while (0)
775#else
776# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
777 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
778 } while (0)
779#endif
780/** @} */
781
782/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK
783 * Checks that the EFLAGS bits specified by @a a_fEflNeeded are actually
784 * calculated and up to date. This is to double check that we haven't skipped
785 * EFLAGS calculations when we actually need them. NOP in non-strict builds.
786 * @note has to be placed in
787 */
788#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
789# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) \
790 do { (a_off) = iemNativeEmitEFlagsSkippingCheck(a_pReNative, a_off, a_fEflNeeded); } while (0)
791#else
792# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { } while (0)
793#endif
794
795
796/**
797 * Guest registers that can be shadowed in GPRs.
798 *
799 * This runs parallel to the liveness state (IEMLIVENESSBIT, ++). The EFlags
800 * must be placed last, as the liveness state tracks it as 7 subcomponents and
801 * we don't want to waste space here.
802 *
803 * @note Make sure to update IEMLIVENESSBIT, IEMLIVENESSBIT_ALL_EFL_MASK and
804 * friends as well as IEMAllN8veLiveness.cpp.
805 */
806typedef enum IEMNATIVEGSTREG : uint8_t
807{
808 kIemNativeGstReg_GprFirst = 0,
809 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
810 kIemNativeGstReg_Pc,
811 kIemNativeGstReg_Cr0,
812 kIemNativeGstReg_FpuFcw,
813 kIemNativeGstReg_FpuFsw,
814 kIemNativeGstReg_SegBaseFirst,
815 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
816 kIemNativeGstReg_SegAttribFirst,
817 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
818 kIemNativeGstReg_SegLimitFirst,
819 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
820 kIemNativeGstReg_SegSelFirst,
821 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
822 kIemNativeGstReg_Cr4,
823 kIemNativeGstReg_Xcr0,
824 kIemNativeGstReg_MxCsr,
825 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags - last! */
826 kIemNativeGstReg_End
827} IEMNATIVEGSTREG;
828AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
829AssertCompile((UINT64_C(0x7f) << kIemNativeGstReg_EFlags) == IEMLIVENESSBIT_ALL_EFL_MASK);
830
831/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
832 * @{ */
833#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
834#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
835#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
836#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
837#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
838/** @} */
839
840#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
841
842/**
843 * Guest registers that can be shadowed in host SIMD registers.
844 *
845 * @todo r=aeichner Liveness tracking
846 * @todo r=aeichner Given that we can only track xmm/ymm here does this actually make sense?
847 */
848typedef enum IEMNATIVEGSTSIMDREG : uint8_t
849{
850 kIemNativeGstSimdReg_SimdRegFirst = 0,
851 kIemNativeGstSimdReg_SimdRegLast = kIemNativeGstSimdReg_SimdRegFirst + 15,
852 kIemNativeGstSimdReg_End
853} IEMNATIVEGSTSIMDREG;
854
855/** @name Helpers for converting register numbers to IEMNATIVEGSTSIMDREG values.
856 * @{ */
857#define IEMNATIVEGSTSIMDREG_SIMD(a_iSimdReg) ((IEMNATIVEGSTSIMDREG)(kIemNativeGstSimdReg_SimdRegFirst + (a_iSimdReg)))
858/** @} */
859
860/**
861 * The Load/store size for a SIMD guest register.
862 */
863typedef enum IEMNATIVEGSTSIMDREGLDSTSZ : uint8_t
864{
865 /** Invalid size. */
866 kIemNativeGstSimdRegLdStSz_Invalid = 0,
867 /** Loads the low 128-bit of a guest SIMD register. */
868 kIemNativeGstSimdRegLdStSz_Low128,
869 /** Loads the high 128-bit of a guest SIMD register. */
870 kIemNativeGstSimdRegLdStSz_High128,
871 /** Loads the whole 256-bits of a guest SIMD register. */
872 kIemNativeGstSimdRegLdStSz_256,
873 /** End value. */
874 kIemNativeGstSimdRegLdStSz_End
875} IEMNATIVEGSTSIMDREGLDSTSZ;
876
877#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
878
879/**
880 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
881 */
882typedef enum IEMNATIVEGSTREGUSE
883{
884 /** The usage is read-only, the register holding the guest register
885 * shadow copy will not be modified by the caller. */
886 kIemNativeGstRegUse_ReadOnly = 0,
887 /** The caller will update the guest register (think: PC += cbInstr).
888 * The guest shadow copy will follow the returned register. */
889 kIemNativeGstRegUse_ForUpdate,
890 /** The call will put an entirely new value in the guest register, so
891 * if new register is allocate it will be returned uninitialized. */
892 kIemNativeGstRegUse_ForFullWrite,
893 /** The caller will use the guest register value as input in a calculation
894 * and the host register will be modified.
895 * This means that the returned host register will not be marked as a shadow
896 * copy of the guest register. */
897 kIemNativeGstRegUse_Calculation
898} IEMNATIVEGSTREGUSE;
899
900/**
901 * Guest registers (classes) that can be referenced.
902 */
903typedef enum IEMNATIVEGSTREGREF : uint8_t
904{
905 kIemNativeGstRegRef_Invalid = 0,
906 kIemNativeGstRegRef_Gpr,
907 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
908 kIemNativeGstRegRef_EFlags,
909 kIemNativeGstRegRef_MxCsr,
910 kIemNativeGstRegRef_FpuReg,
911 kIemNativeGstRegRef_MReg,
912 kIemNativeGstRegRef_XReg,
913 //kIemNativeGstRegRef_YReg, - doesn't work.
914 kIemNativeGstRegRef_End
915} IEMNATIVEGSTREGREF;
916
917
918/** Variable kinds. */
919typedef enum IEMNATIVEVARKIND : uint8_t
920{
921 /** Customary invalid zero value. */
922 kIemNativeVarKind_Invalid = 0,
923 /** This is either in a register or on the stack. */
924 kIemNativeVarKind_Stack,
925 /** Immediate value - loaded into register when needed, or can live on the
926 * stack if referenced (in theory). */
927 kIemNativeVarKind_Immediate,
928 /** Variable reference - loaded into register when needed, never stack. */
929 kIemNativeVarKind_VarRef,
930 /** Guest register reference - loaded into register when needed, never stack. */
931 kIemNativeVarKind_GstRegRef,
932 /** End of valid values. */
933 kIemNativeVarKind_End
934} IEMNATIVEVARKIND;
935
936
937/** Variable or argument. */
938typedef struct IEMNATIVEVAR
939{
940 /** The kind of variable. */
941 IEMNATIVEVARKIND enmKind;
942 /** The variable size in bytes. */
943 uint8_t cbVar;
944 /** The first stack slot (uint64_t), except for immediate and references
945 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
946 * has a stack slot it has been initialized and has a value. Unused variables
947 * has neither a stack slot nor a host register assignment. */
948 uint8_t idxStackSlot;
949 /** The host register allocated for the variable, UINT8_MAX if not. */
950 uint8_t idxReg;
951 /** The argument number if argument, UINT8_MAX if regular variable. */
952 uint8_t uArgNo;
953 /** If referenced, the index (unpacked) of the variable referencing this one,
954 * otherwise UINT8_MAX. A referenced variable must only be placed on the stack
955 * and must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
956 uint8_t idxReferrerVar;
957 /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not.
958 * @todo not sure what this really is for... */
959 IEMNATIVEGSTREG enmGstReg;
960 /** Set if the registered is currently used exclusively, false if the
961 * variable is idle and the register can be grabbed. */
962 bool fRegAcquired;
963
964 union
965 {
966 /** kIemNativeVarKind_Immediate: The immediate value. */
967 uint64_t uValue;
968 /** kIemNativeVarKind_VarRef: The index (unpacked) of the variable being referenced. */
969 uint8_t idxRefVar;
970 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
971 struct
972 {
973 /** The class of register. */
974 IEMNATIVEGSTREGREF enmClass;
975 /** Index within the class. */
976 uint8_t idx;
977 } GstRegRef;
978 } u;
979} IEMNATIVEVAR;
980/** Pointer to a variable or argument. */
981typedef IEMNATIVEVAR *PIEMNATIVEVAR;
982/** Pointer to a const variable or argument. */
983typedef IEMNATIVEVAR const *PCIEMNATIVEVAR;
984
985/** What is being kept in a host register. */
986typedef enum IEMNATIVEWHAT : uint8_t
987{
988 /** The traditional invalid zero value. */
989 kIemNativeWhat_Invalid = 0,
990 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
991 kIemNativeWhat_Var,
992 /** Temporary register, this is typically freed when a MC completes. */
993 kIemNativeWhat_Tmp,
994 /** Call argument w/o a variable mapping. This is free (via
995 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
996 kIemNativeWhat_Arg,
997 /** Return status code.
998 * @todo not sure if we need this... */
999 kIemNativeWhat_rc,
1000 /** The fixed pVCpu (PVMCPUCC) register.
1001 * @todo consider offsetting this on amd64 to use negative offsets to access
1002 * more members using 8-byte disp. */
1003 kIemNativeWhat_pVCpuFixed,
1004 /** The fixed pCtx (PCPUMCTX) register.
1005 * @todo consider offsetting this on amd64 to use negative offsets to access
1006 * more members using 8-byte disp. */
1007 kIemNativeWhat_pCtxFixed,
1008 /** Fixed temporary register. */
1009 kIemNativeWhat_FixedTmp,
1010#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1011 /** Shadow RIP for the delayed RIP updating debugging. */
1012 kIemNativeWhat_PcShadow,
1013#endif
1014 /** Register reserved by the CPU or OS architecture. */
1015 kIemNativeWhat_FixedReserved,
1016 /** End of valid values. */
1017 kIemNativeWhat_End
1018} IEMNATIVEWHAT;
1019
1020/**
1021 * Host general register entry.
1022 *
1023 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
1024 *
1025 * @todo Track immediate values in host registers similarlly to how we track the
1026 * guest register shadow copies. For it to be real helpful, though,
1027 * we probably need to know which will be reused and put them into
1028 * non-volatile registers, otherwise it's going to be more or less
1029 * restricted to an instruction or two.
1030 */
1031typedef struct IEMNATIVEHSTREG
1032{
1033 /** Set of guest registers this one shadows.
1034 *
1035 * Using a bitmap here so we can designate the same host register as a copy
1036 * for more than one guest register. This is expected to be useful in
1037 * situations where one value is copied to several registers in a sequence.
1038 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1039 * sequence we'd want to let this register follow to be a copy of and there
1040 * will always be places where we'd be picking the wrong one.
1041 */
1042 uint64_t fGstRegShadows;
1043 /** What is being kept in this register. */
1044 IEMNATIVEWHAT enmWhat;
1045 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1046 uint8_t idxVar;
1047 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
1048 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
1049 * that scope. */
1050 uint8_t idxStackSlot;
1051 /** Alignment padding. */
1052 uint8_t abAlign[5];
1053} IEMNATIVEHSTREG;
1054
1055
1056#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1057/**
1058 * Host SIMD register entry - this tracks a virtual 256-bit register split into two 128-bit
1059 * halves, on architectures where there is no 256-bit register available this entry will track
1060 * two adjacent 128-bit host registers.
1061 *
1062 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstSimdRegs.
1063 */
1064typedef struct IEMNATIVEHSTSIMDREG
1065{
1066 /** Set of guest registers this one shadows.
1067 *
1068 * Using a bitmap here so we can designate the same host register as a copy
1069 * for more than one guest register. This is expected to be useful in
1070 * situations where one value is copied to several registers in a sequence.
1071 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1072 * sequence we'd want to let this register follow to be a copy of and there
1073 * will always be places where we'd be picking the wrong one.
1074 */
1075 uint64_t fGstRegShadows;
1076 /** What is being kept in this register. */
1077 IEMNATIVEWHAT enmWhat;
1078 /** Flag what is currently loaded, low 128-bits, high 128-bits or complete 256-bits. */
1079 IEMNATIVEGSTSIMDREGLDSTSZ enmLoaded;
1080 /** Alignment padding. */
1081 uint8_t abAlign[6];
1082} IEMNATIVEHSTSIMDREG;
1083#endif
1084
1085
1086/**
1087 * Core state for the native recompiler, that is, things that needs careful
1088 * handling when dealing with branches.
1089 */
1090typedef struct IEMNATIVECORESTATE
1091{
1092#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1093 /** The current instruction offset in bytes from when the guest program counter
1094 * was updated last. Used for delaying the write to the guest context program counter
1095 * as long as possible. */
1096 uint32_t offPc;
1097 /** Number of instructions where we could skip the updating. */
1098 uint32_t cInstrPcUpdateSkipped;
1099#endif
1100 /** Allocation bitmap for aHstRegs. */
1101 uint32_t bmHstRegs;
1102
1103 /** Bitmap marking which host register contains guest register shadow copies.
1104 * This is used during register allocation to try preserve copies. */
1105 uint32_t bmHstRegsWithGstShadow;
1106 /** Bitmap marking valid entries in aidxGstRegShadows. */
1107 uint64_t bmGstRegShadows;
1108
1109#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1110 /** Allocation bitmap for aHstSimdRegs. */
1111 uint32_t bmHstSimdRegs;
1112
1113 /** Bitmap marking which host SIMD register contains guest SIMD register shadow copies.
1114 * This is used during register allocation to try preserve copies. */
1115 uint32_t bmHstSimdRegsWithGstShadow;
1116 /** Bitmap marking valid entries in aidxSimdGstRegShadows. */
1117 uint64_t bmGstSimdRegShadows;
1118 /** Bitmap marking whether the low 128-bit of the shadowed guest register are dirty and need writeback. */
1119 uint64_t bmGstSimdRegShadowDirtyLo128;
1120 /** Bitmap marking whether the high 128-bit of the shadowed guest register are dirty and need writeback. */
1121 uint64_t bmGstSimdRegShadowDirtyHi128;
1122#endif
1123
1124 union
1125 {
1126 /** Index of variable (unpacked) arguments, UINT8_MAX if not valid. */
1127 uint8_t aidxArgVars[8];
1128 /** For more efficient resetting. */
1129 uint64_t u64ArgVars;
1130 };
1131
1132 /** Allocation bitmap for the stack. */
1133 uint32_t bmStack;
1134 /** Allocation bitmap for aVars. */
1135 uint32_t bmVars;
1136
1137 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
1138 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
1139 * (A shadow copy of a guest register can only be held in a one host register,
1140 * there are no duplicate copies or ambiguities like that). */
1141 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
1142#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1143 /** Maps a guest SIMD register to a host SIMD register (index by IEMNATIVEGSTSIMDREG).
1144 * Entries are only valid if the corresponding bit in bmGstSimdRegShadows is set.
1145 * (A shadow copy of a guest register can only be held in a one host register,
1146 * there are no duplicate copies or ambiguities like that). */
1147 uint8_t aidxGstSimdRegShadows[kIemNativeGstSimdReg_End];
1148#endif
1149
1150 /** Host register allocation tracking. */
1151 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
1152#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1153 /** Host SIMD register allocation tracking. */
1154 IEMNATIVEHSTSIMDREG aHstSimdRegs[IEMNATIVE_HST_SIMD_REG_COUNT];
1155#endif
1156
1157 /** Variables and arguments. */
1158 IEMNATIVEVAR aVars[9];
1159} IEMNATIVECORESTATE;
1160/** Pointer to core state. */
1161typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
1162/** Pointer to const core state. */
1163typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
1164
1165/** @def IEMNATIVE_VAR_IDX_UNPACK
1166 * @returns Index into IEMNATIVECORESTATE::aVars.
1167 * @param a_idxVar Variable index w/ magic (in strict builds).
1168 */
1169/** @def IEMNATIVE_VAR_IDX_PACK
1170 * @returns Variable index w/ magic (in strict builds).
1171 * @param a_idxVar Index into IEMNATIVECORESTATE::aVars.
1172 */
1173#ifdef VBOX_STRICT
1174# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) ((a_idxVar) & IEMNATIVE_VAR_IDX_MASK)
1175# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) ((a_idxVar) | IEMNATIVE_VAR_IDX_MAGIC)
1176# define IEMNATIVE_VAR_IDX_MAGIC UINT8_C(0xd0)
1177# define IEMNATIVE_VAR_IDX_MAGIC_MASK UINT8_C(0xf0)
1178# define IEMNATIVE_VAR_IDX_MASK UINT8_C(0x0f)
1179#else
1180# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) (a_idxVar)
1181# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) (a_idxVar)
1182#endif
1183
1184
1185#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1186/** Clear the dirty state of the given guest SIMD register. */
1187# define IEMNATIVE_SIMD_REG_STATE_CLR_DIRTY(a_pReNative, a_iSimdReg) \
1188 do { \
1189 (a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 &= ~RT_BIT_64(a_iSimdReg); \
1190 (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 &= ~RT_BIT_64(a_iSimdReg); \
1191 } while (0)
1192
1193/** Returns whether the low 128-bits of the given guest SIMD register are dirty. */
1194# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1195 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 & RT_BIT_64(a_iSimdReg))
1196/** Returns whether the high 128-bits of the given guest SIMD register are dirty. */
1197# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1198 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 & RT_BIT_64(a_iSimdReg))
1199/** Returns whether the given guest SIMD register is dirty. */
1200# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_U256(a_pReNative, a_iSimdReg) \
1201 RT_BOOL(((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 | (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128) & RT_BIT_64(a_iSimdReg))
1202
1203/** Set the low 128-bits of the given guest SIMD register to the dirty state. */
1204# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1205 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 |= RT_BIT_64(a_iSimdReg))
1206/** Set the high 128-bits of the given guest SIMD register to the dirty state. */
1207# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1208 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 |= RT_BIT_64(a_iSimdReg))
1209
1210/** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1211# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_DEVICE_NOT_AVAILABLE RT_BIT_32(0)
1212/** Flag for indicating that IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() has emitted code in the current TB. */
1213# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_SSE RT_BIT_32(1)
1214/** Flag for indicating that IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() has emitted code in the current TB. */
1215# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_AVX RT_BIT_32(2)
1216#endif
1217
1218
1219/**
1220 * Conditional stack entry.
1221 */
1222typedef struct IEMNATIVECOND
1223{
1224 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
1225 bool fInElse;
1226 /** The label for the IEM_MC_ELSE. */
1227 uint32_t idxLabelElse;
1228 /** The label for the IEM_MC_ENDIF. */
1229 uint32_t idxLabelEndIf;
1230 /** The initial state snapshot as the if-block starts executing. */
1231 IEMNATIVECORESTATE InitialState;
1232 /** The state snapshot at the end of the if-block. */
1233 IEMNATIVECORESTATE IfFinalState;
1234} IEMNATIVECOND;
1235/** Pointer to a condition stack entry. */
1236typedef IEMNATIVECOND *PIEMNATIVECOND;
1237
1238
1239/**
1240 * Native recompiler state.
1241 */
1242typedef struct IEMRECOMPILERSTATE
1243{
1244 /** Size of the buffer that pbNativeRecompileBufR3 points to in
1245 * IEMNATIVEINSTR units. */
1246 uint32_t cInstrBufAlloc;
1247#ifdef VBOX_STRICT
1248 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
1249 uint32_t offInstrBufChecked;
1250#else
1251 uint32_t uPadding1; /* We don't keep track of the size here... */
1252#endif
1253 /** Fixed temporary code buffer for native recompilation. */
1254 PIEMNATIVEINSTR pInstrBuf;
1255
1256 /** Bitmaps with the label types used. */
1257 uint64_t bmLabelTypes;
1258 /** Actual number of labels in paLabels. */
1259 uint32_t cLabels;
1260 /** Max number of entries allowed in paLabels before reallocating it. */
1261 uint32_t cLabelsAlloc;
1262 /** Labels defined while recompiling (referenced by fixups). */
1263 PIEMNATIVELABEL paLabels;
1264 /** Array with indexes of unique labels (uData always 0). */
1265 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
1266
1267 /** Actual number of fixups paFixups. */
1268 uint32_t cFixups;
1269 /** Max number of entries allowed in paFixups before reallocating it. */
1270 uint32_t cFixupsAlloc;
1271 /** Buffer used by the recompiler for recording fixups when generating code. */
1272 PIEMNATIVEFIXUP paFixups;
1273
1274#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1275 /** Number of debug info entries allocated for pDbgInfo. */
1276 uint32_t cDbgInfoAlloc;
1277 uint32_t uPadding;
1278 /** Debug info. */
1279 PIEMTBDBG pDbgInfo;
1280#endif
1281
1282#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1283 /** The current call index (liveness array and threaded calls in TB). */
1284 uint32_t idxCurCall;
1285 /** Number of liveness entries allocated. */
1286 uint32_t cLivenessEntriesAlloc;
1287 /** Liveness entries for all the calls in the TB begin recompiled.
1288 * The entry for idxCurCall contains the info for what the next call will
1289 * require wrt registers. (Which means the last entry is the initial liveness
1290 * state.) */
1291 PIEMLIVENESSENTRY paLivenessEntries;
1292#endif
1293
1294 /** The translation block being recompiled. */
1295 PCIEMTB pTbOrg;
1296 /** The VMCPU structure of the EMT. */
1297 PVMCPUCC pVCpu;
1298
1299 /** Condition sequence number (for generating unique labels). */
1300 uint16_t uCondSeqNo;
1301 /** Check IRQ seqeunce number (for generating unique labels). */
1302 uint16_t uCheckIrqSeqNo;
1303 /** TLB load sequence number (for generating unique labels). */
1304 uint16_t uTlbSeqNo;
1305 /** The current condition stack depth (aCondStack). */
1306 uint8_t cCondDepth;
1307
1308 /** The argument count + hidden regs from the IEM_MC_BEGIN statement. */
1309 uint8_t cArgs;
1310 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1311 uint32_t fCImpl;
1312 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1313 uint32_t fMc;
1314 /** The expected IEMCPU::fExec value for the current call/instruction. */
1315 uint32_t fExec;
1316#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1317 /** IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_XXX flags for exception flags
1318 * we only emit once per TB (or when the cr0/cr4/xcr0 register changes).
1319 *
1320 * This is an optimization because these control registers can only be changed from
1321 * by calling a C helper we can catch. Should reduce the number of instructions in a TB
1322 * consisting of multiple SIMD instructions.
1323 */
1324 uint32_t fSimdRaiseXcptChecksEmitted;
1325#endif
1326
1327 /** Core state requiring care with branches. */
1328 IEMNATIVECORESTATE Core;
1329
1330 /** The condition nesting stack. */
1331 IEMNATIVECOND aCondStack[2];
1332
1333#ifndef IEM_WITH_THROW_CATCH
1334 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
1335 * for recompilation error handling. */
1336 jmp_buf JmpBuf;
1337#endif
1338} IEMRECOMPILERSTATE;
1339/** Pointer to a native recompiler state. */
1340typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
1341
1342
1343/** @def IEMNATIVE_TRY_SETJMP
1344 * Wrapper around setjmp / try, hiding all the ugly differences.
1345 *
1346 * @note Use with extreme care as this is a fragile macro.
1347 * @param a_pReNative The native recompile state.
1348 * @param a_rcTarget The variable that should receive the status code in case
1349 * of a longjmp/throw.
1350 */
1351/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
1352 * Start wrapper for catch / setjmp-else.
1353 *
1354 * This will set up a scope.
1355 *
1356 * @note Use with extreme care as this is a fragile macro.
1357 * @param a_pReNative The native recompile state.
1358 * @param a_rcTarget The variable that should receive the status code in case
1359 * of a longjmp/throw.
1360 */
1361/** @def IEMNATIVE_CATCH_LONGJMP_END
1362 * End wrapper for catch / setjmp-else.
1363 *
1364 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
1365 * up the state.
1366 *
1367 * @note Use with extreme care as this is a fragile macro.
1368 * @param a_pReNative The native recompile state.
1369 */
1370/** @def IEMNATIVE_DO_LONGJMP
1371 *
1372 * Wrapper around longjmp / throw.
1373 *
1374 * @param a_pReNative The native recompile state.
1375 * @param a_rc The status code jump back with / throw.
1376 */
1377#ifdef IEM_WITH_THROW_CATCH
1378# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1379 a_rcTarget = VINF_SUCCESS; \
1380 try
1381# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1382 catch (int rcThrown) \
1383 { \
1384 a_rcTarget = rcThrown
1385# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1386 } \
1387 ((void)0)
1388# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
1389#else /* !IEM_WITH_THROW_CATCH */
1390# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1391 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
1392# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1393 else \
1394 { \
1395 ((void)0)
1396# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1397 }
1398# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
1399#endif /* !IEM_WITH_THROW_CATCH */
1400
1401
1402/**
1403 * Native recompiler worker for a threaded function.
1404 *
1405 * @returns New code buffer offset; throws VBox status code in case of a failure.
1406 * @param pReNative The native recompiler state.
1407 * @param off The current code buffer offset.
1408 * @param pCallEntry The threaded call entry.
1409 *
1410 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
1411 */
1412typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
1413/** Pointer to a native recompiler worker for a threaded function. */
1414typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
1415
1416/** Defines a native recompiler worker for a threaded function.
1417 * @see FNIEMNATIVERECOMPFUNC */
1418#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
1419 uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
1420
1421/** Prototypes a native recompiler function for a threaded function.
1422 * @see FNIEMNATIVERECOMPFUNC */
1423#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
1424
1425
1426/**
1427 * Native recompiler liveness analysis worker for a threaded function.
1428 *
1429 * @param pCallEntry The threaded call entry.
1430 * @param pIncoming The incoming liveness state entry.
1431 * @param pOutgoing The outgoing liveness state entry.
1432 */
1433typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
1434 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
1435/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
1436typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
1437
1438/** Defines a native recompiler liveness analysis worker for a threaded function.
1439 * @see FNIEMNATIVELIVENESSFUNC */
1440#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
1441 DECLCALLBACK(void) a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
1442
1443/** Prototypes a native recompiler liveness analysis function for a threaded function.
1444 * @see FNIEMNATIVELIVENESSFUNC */
1445#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
1446
1447
1448/** Define a native recompiler helper function, safe to call from the TB code. */
1449#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
1450 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1451/** Prototype a native recompiler helper function, safe to call from the TB code. */
1452#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
1453 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1454
1455
1456#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1457DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1458DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg,
1459 uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX);
1460# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1461DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestSimdRegShadowing(PIEMRECOMPILERSTATE pReNative,
1462 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1463 uint8_t idxHstSimdReg = UINT8_MAX,
1464 uint8_t idxHstSimdRegPrev = UINT8_MAX);
1465# endif
1466DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddDelayedPcUpdate(PIEMRECOMPILERSTATE pReNative,
1467 uint32_t offPc, uint32_t cInstrSkipped);
1468#endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
1469
1470DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1471 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
1472DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
1473DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
1474 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
1475DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
1476
1477DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1478DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1479 bool fPreferVolatile = true);
1480DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm,
1481 bool fPreferVolatile = true);
1482DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1483 IEMNATIVEGSTREG enmGstReg,
1484 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1485 bool fNoVolatileRegs = false, bool fSkipLivenessAssert = false);
1486DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1487 IEMNATIVEGSTREG enmGstReg);
1488
1489DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
1490DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
1491#if (defined(IPRT_INCLUDED_x86_h) && defined(RT_ARCH_AMD64)) || (defined(IPRT_INCLUDED_armv8_h) && defined(RT_ARCH_ARM64))
1492DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
1493 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK);
1494#endif
1495DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1496DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1497DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1498DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
1499DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
1500DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
1501 uint32_t fKeepVars = 0);
1502DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
1503DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
1504DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1505 uint32_t fHstRegsActiveShadows);
1506#ifdef VBOX_STRICT
1507DECLHIDDEN(void) iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative);
1508#endif
1509DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWritesSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1510 uint64_t fGstShwExcept, bool fFlushShadows);
1511#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1512DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcWritebackSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1513#endif
1514
1515
1516#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1517DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1518DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1519 bool fPreferVolatile = true);
1520DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpForGuestSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1521 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1522 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz,
1523 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1524 bool fNoVolatileRegs = false);
1525DECLHIDDEN(void) iemNativeSimdRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg) RT_NOEXCEPT;
1526DECLHIDDEN(void) iemNativeSimdRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstSimdRegs) RT_NOEXCEPT;
1527DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1528 IEMNATIVEGSTSIMDREG enmGstSimdReg);
1529DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadSimdRegWithGstShadowSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1530 uint8_t idxHstSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg,
1531 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1532#endif
1533
1534DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType);
1535DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue);
1536DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar);
1537DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType);
1538DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue);
1539DECL_HIDDEN_THROW(void) iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1540DECL_HIDDEN_THROW(void) iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue);
1541DECL_HIDDEN_THROW(void) iemNativeVarSetKindToGstRegRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1542 IEMNATIVEGSTREGREF enmRegClass, uint8_t idxReg);
1543DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1544DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1545 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1546DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1547 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
1548DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1549 uint32_t fHstRegsNotToSave);
1550DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1551 uint32_t fHstRegsNotToSave);
1552DECLHIDDEN(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1553DECLHIDDEN(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars);
1554
1555DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1556 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
1557#ifdef VBOX_STRICT
1558DECL_HIDDEN_THROW(uint32_t) iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg);
1559DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg,
1560 IEMNATIVEGSTREG enmGstReg);
1561# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1562DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestSimdRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxSimdReg,
1563 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1564 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1565# endif
1566DECL_HIDDEN_THROW(uint32_t) iemNativeEmitExecFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fExec);
1567#endif
1568#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
1569DECL_HIDDEN_THROW(uint32_t) iemNativeEmitEFlagsSkippingCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fEflNeeded);
1570#endif
1571DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
1572DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs);
1573DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
1574 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
1575 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
1576DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1577 PCIEMTHRDEDCALLENTRY pCallEntry);
1578DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckGprCanonicalMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1579 uint8_t idxAddrReg, uint8_t idxInstr);
1580DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckGpr32AgainstCsSegLimitMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1581 uint8_t idxAddrReg, uint8_t idxInstr);
1582
1583
1584IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr));
1585IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu));
1586IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseNm,(PVMCPUCC pVCpu));
1587IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseUd,(PVMCPUCC pVCpu));
1588IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseMf,(PVMCPUCC pVCpu));
1589IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseXf,(PVMCPUCC pVCpu));
1590IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseDe,(PVMCPUCC pVCpu));
1591IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpObsoleteTb,(PVMCPUCC pVCpu));
1592IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpNeedCsLimChecking,(PVMCPUCC pVCpu));
1593IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpCheckBranchMiss,(PVMCPUCC pVCpu));
1594
1595IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1596IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1597IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1598IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1599IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1600IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1601IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1602IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1603IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1604IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1605IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint8_t u8Value));
1606IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint16_t u16Value));
1607IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint32_t u32Value));
1608IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint64_t u64Value));
1609IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1610IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1611IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1612IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1613IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1614IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1615IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1616
1617IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1618IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1619IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1620IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1621IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1622IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1623IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1624IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1625IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1626IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1627IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t u8Value));
1628IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1629IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1630IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1631IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1632IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1633IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1634IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1635IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFlatFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1636IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFlatFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1637IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFlatFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1638
1639IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1640IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1641IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1642IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1643IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1644IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1645IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1646IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1647IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1648IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1649IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1650IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1651IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1652IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1653IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1654IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1655IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1656IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1657IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1658IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1659IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1660IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1661
1662IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1663IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1664IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1665IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemFlatMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1666IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1667IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1668IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1669IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemFlatMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1670IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1671IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1672IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1673IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemFlatMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1674IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1675IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1676IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1677IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemFlatMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1678IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemFlatMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1679IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemFlatMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1680IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1681IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1682IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1683IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemFlatMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1684
1685IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapAtomic,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1686IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRw,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1687IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapWo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1688IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1689
1690
1691/**
1692 * Info about shadowed guest register values.
1693 * @see IEMNATIVEGSTREG
1694 */
1695typedef struct IEMANTIVEGSTREGINFO
1696{
1697 /** Offset in VMCPU. */
1698 uint32_t off;
1699 /** The field size. */
1700 uint8_t cb;
1701 /** Name (for logging). */
1702 const char *pszName;
1703} IEMANTIVEGSTREGINFO;
1704extern DECL_HIDDEN_DATA(IEMANTIVEGSTREGINFO const) g_aGstShadowInfo[];
1705extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
1706extern DECL_HIDDEN_DATA(int32_t const) g_aoffIemNativeCallStackArgBpDisp[];
1707extern DECL_HIDDEN_DATA(uint32_t const) g_afIemNativeCallRegs[];
1708extern DECL_HIDDEN_DATA(uint8_t const) g_aidxIemNativeCallRegs[];
1709
1710
1711
1712/**
1713 * Ensures that there is sufficient space in the instruction output buffer.
1714 *
1715 * This will reallocate the buffer if needed and allowed.
1716 *
1717 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
1718 * allocation size.
1719 *
1720 * @returns Pointer to the instruction output buffer on success; throws VBox
1721 * status code on failure, so no need to check it.
1722 * @param pReNative The native recompile state.
1723 * @param off Current instruction offset. Works safely for UINT32_MAX
1724 * as well.
1725 * @param cInstrReq Number of instruction about to be added. It's okay to
1726 * overestimate this a bit.
1727 */
1728DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
1729iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
1730{
1731 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
1732 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
1733 {
1734#ifdef VBOX_STRICT
1735 pReNative->offInstrBufChecked = offChecked;
1736#endif
1737 return pReNative->pInstrBuf;
1738 }
1739 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
1740}
1741
1742/**
1743 * Checks that we didn't exceed the space requested in the last
1744 * iemNativeInstrBufEnsure() call.
1745 */
1746#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
1747 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
1748 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
1749
1750/**
1751 * Checks that a variable index is valid.
1752 */
1753#ifdef IEMNATIVE_VAR_IDX_MAGIC
1754# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1755 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
1756 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1757 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))), \
1758 ("%s=%#x\n", #a_idxVar, a_idxVar))
1759#else
1760# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1761 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1762 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
1763#endif
1764
1765/**
1766 * Checks that a variable index is valid and that the variable is assigned the
1767 * correct argument number.
1768 * This also adds a RT_NOREF of a_idxVar.
1769 */
1770#ifdef IEMNATIVE_VAR_IDX_MAGIC
1771# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1772 RT_NOREF_PV(a_idxVar); \
1773 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
1774 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1775 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))) \
1776 && (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].uArgNo == (a_uArgNo), \
1777 ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1778 (a_pReNative)->Core.aVars[RT_MIN(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar), \
1779 RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, \
1780 a_uArgNo)); \
1781 } while (0)
1782#else
1783# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1784 RT_NOREF_PV(a_idxVar); \
1785 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1786 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
1787 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
1788 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1789 (a_pReNative)->Core.aVars[RT_MIN(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
1790 } while (0)
1791#endif
1792
1793
1794/**
1795 * Checks that a variable has the expected size.
1796 */
1797#define IEMNATIVE_ASSERT_VAR_SIZE(a_pReNative, a_idxVar, a_cbVar) \
1798 AssertMsg((a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar), \
1799 ("%s=%#x: cbVar=%#x, expected %#x!\n", #a_idxVar, a_idxVar, \
1800 (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar)))
1801
1802
1803/**
1804 * Calculates the stack address of a variable as a [r]BP displacement value.
1805 */
1806DECL_FORCE_INLINE(int32_t)
1807iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
1808{
1809 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
1810 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
1811}
1812
1813
1814/**
1815 * Releases the variable's register.
1816 *
1817 * The register must have been previously acquired calling
1818 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
1819 * iemNativeVarRegisterSetAndAcquire().
1820 */
1821DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
1822{
1823 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
1824 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired);
1825 pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired = false;
1826}
1827
1828
1829/**
1830 * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask.
1831 *
1832 * @returns The flush mask.
1833 * @param fCImpl The IEM_CIMPL_F_XXX flags.
1834 * @param fGstShwFlush The starting flush mask.
1835 */
1836DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush)
1837{
1838 if (fCImpl & IEM_CIMPL_F_BRANCH_FAR)
1839 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS)
1840 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS)
1841 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS);
1842 if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR)
1843 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP)
1844 | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS)
1845 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS)
1846 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS);
1847 else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK)
1848 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP);
1849 if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW))
1850 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
1851 return fGstShwFlush;
1852}
1853
1854
1855/** Number of hidden arguments for CIMPL calls.
1856 * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */
1857#if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
1858# define IEM_CIMPL_HIDDEN_ARGS 3
1859#else
1860# define IEM_CIMPL_HIDDEN_ARGS 2
1861#endif
1862
1863
1864#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1865
1866# ifndef IEMLIVENESS_EXTENDED_LAYOUT
1867/**
1868 * Helper for iemNativeLivenessGetStateByGstReg.
1869 *
1870 * @returns IEMLIVENESS_STATE_XXX
1871 * @param fMergedStateExp2 This is the RT_BIT_32() of each sub-state
1872 * ORed together.
1873 */
1874DECL_FORCE_INLINE(uint32_t)
1875iemNativeLivenessMergeExpandedEFlagsState(uint32_t fMergedStateExp2)
1876{
1877 /* INPUT trumps anything else. */
1878 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_INPUT))
1879 return IEMLIVENESS_STATE_INPUT;
1880
1881 /* CLOBBERED trumps XCPT_OR_CALL and UNUSED. */
1882 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_CLOBBERED))
1883 {
1884 /* If not all sub-fields are clobbered they must be considered INPUT. */
1885 if (fMergedStateExp2 & (RT_BIT_32(IEMLIVENESS_STATE_UNUSED) | RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL)))
1886 return IEMLIVENESS_STATE_INPUT;
1887 return IEMLIVENESS_STATE_CLOBBERED;
1888 }
1889
1890 /* XCPT_OR_CALL trumps UNUSED. */
1891 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL))
1892 return IEMLIVENESS_STATE_XCPT_OR_CALL;
1893
1894 return IEMLIVENESS_STATE_UNUSED;
1895}
1896# endif /* !IEMLIVENESS_EXTENDED_LAYOUT */
1897
1898
1899DECL_FORCE_INLINE(uint32_t)
1900iemNativeLivenessGetStateByGstRegEx(PCIEMLIVENESSENTRY pLivenessEntry, unsigned enmGstRegEx)
1901{
1902# ifndef IEMLIVENESS_EXTENDED_LAYOUT
1903 return ((pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
1904 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2);
1905# else
1906 return ( (pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
1907 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2)
1908 | (((pLivenessEntry->Bit2.bm64 >> enmGstRegEx) << 2) & 4)
1909 | (((pLivenessEntry->Bit3.bm64 >> enmGstRegEx) << 2) & 8);
1910# endif
1911}
1912
1913
1914DECL_FORCE_INLINE(uint32_t)
1915iemNativeLivenessGetStateByGstReg(PCIEMLIVENESSENTRY pLivenessEntry, IEMNATIVEGSTREG enmGstReg)
1916{
1917 uint32_t uRet = iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, (unsigned)enmGstReg);
1918 if (enmGstReg == kIemNativeGstReg_EFlags)
1919 {
1920 /* Merge the eflags states to one. */
1921# ifndef IEMLIVENESS_EXTENDED_LAYOUT
1922 uRet = RT_BIT_32(uRet);
1923 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflCf | (pLivenessEntry->Bit1.fEflCf << 1));
1924 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflPf | (pLivenessEntry->Bit1.fEflPf << 1));
1925 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflAf | (pLivenessEntry->Bit1.fEflAf << 1));
1926 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflZf | (pLivenessEntry->Bit1.fEflZf << 1));
1927 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflSf | (pLivenessEntry->Bit1.fEflSf << 1));
1928 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflOf | (pLivenessEntry->Bit1.fEflOf << 1));
1929 uRet = iemNativeLivenessMergeExpandedEFlagsState(uRet);
1930# else
1931 AssertCompile(IEMLIVENESSBIT_IDX_EFL_OTHER == (unsigned)kIemNativeGstReg_EFlags);
1932 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_CF);
1933 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_PF);
1934 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_AF);
1935 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_ZF);
1936 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_SF);
1937 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_OF);
1938# endif
1939 }
1940 return uRet;
1941}
1942
1943
1944# ifdef VBOX_STRICT
1945/** For assertions only, user checks that idxCurCall isn't zerow. */
1946DECL_FORCE_INLINE(uint32_t)
1947iemNativeLivenessGetPrevStateByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg)
1948{
1949 return iemNativeLivenessGetStateByGstReg(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg);
1950}
1951# endif /* VBOX_STRICT */
1952
1953#endif /* IEMNATIVE_WITH_LIVENESS_ANALYSIS */
1954
1955
1956/**
1957 * Gets the number of hidden arguments for an expected IEM_MC_CALL statement.
1958 */
1959DECL_FORCE_INLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative)
1960{
1961 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL)
1962 return IEM_CIMPL_HIDDEN_ARGS;
1963 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE)
1964 return 1;
1965 return 0;
1966}
1967
1968
1969DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg,
1970 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
1971{
1972 pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
1973
1974 pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat;
1975 pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
1976 pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
1977 return (uint8_t)idxReg;
1978}
1979
1980
1981
1982/*********************************************************************************************************************************
1983* Register Allocator (GPR) *
1984*********************************************************************************************************************************/
1985
1986/**
1987 * Marks host register @a idxHstReg as containing a shadow copy of guest
1988 * register @a enmGstReg.
1989 *
1990 * ASSUMES that caller has made sure @a enmGstReg is not associated with any
1991 * host register before calling.
1992 */
1993DECL_FORCE_INLINE(void)
1994iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
1995{
1996 Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)));
1997 Assert(!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
1998 Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End);
1999
2000 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg;
2001 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg); /** @todo why? not OR? */
2002 pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg);
2003 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
2004#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2005 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2006 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg);
2007#else
2008 RT_NOREF(off);
2009#endif
2010}
2011
2012
2013/**
2014 * Clear any guest register shadow claims from @a idxHstReg.
2015 *
2016 * The register does not need to be shadowing any guest registers.
2017 */
2018DECL_FORCE_INLINE(void)
2019iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off)
2020{
2021 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2022 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2023 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2024 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
2025 == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
2026
2027#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2028 uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2029 if (fGstRegs)
2030 {
2031 Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End));
2032 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2033 while (fGstRegs)
2034 {
2035 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2036 fGstRegs &= ~RT_BIT_64(iGstReg);
2037 iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg);
2038 }
2039 }
2040#else
2041 RT_NOREF(off);
2042#endif
2043
2044 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2045 pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2046 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
2047}
2048
2049
2050/**
2051 * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg
2052 * and global overview flags.
2053 */
2054DECL_FORCE_INLINE(void)
2055iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2056{
2057 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2058 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2059 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2060 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2061 Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg));
2062 Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg));
2063 Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
2064
2065#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2066 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2067 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg);
2068#else
2069 RT_NOREF(off);
2070#endif
2071
2072 uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2073 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
2074 if (!fGstRegShadowsNew)
2075 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2076 pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg);
2077}
2078
2079
2080#if 0 /* unused */
2081/**
2082 * Clear any guest register shadow claim for @a enmGstReg.
2083 */
2084DECL_FORCE_INLINE(void)
2085iemNativeRegClearGstRegShadowingByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2086{
2087 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2088 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2089 {
2090 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs));
2091 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2092 }
2093}
2094#endif
2095
2096
2097/**
2098 * Clear any guest register shadow claim for @a enmGstReg and mark @a idxHstRegNew
2099 * as the new shadow of it.
2100 *
2101 * Unlike the other guest reg shadow helpers, this does the logging for you.
2102 * However, it is the liveness state is not asserted here, the caller must do
2103 * that.
2104 */
2105DECL_FORCE_INLINE(void)
2106iemNativeRegClearAndMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstRegNew,
2107 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2108{
2109 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2110 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2111 {
2112 uint8_t const idxHstRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg];
2113 Assert(idxHstRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs));
2114 if (idxHstRegOld == idxHstRegNew)
2115 return;
2116 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s (from %s)\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2117 g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxHstRegOld]));
2118 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2119 }
2120 else
2121 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2122 g_aGstShadowInfo[enmGstReg].pszName));
2123 iemNativeRegMarkAsGstRegShadow(pReNative, idxHstRegNew, enmGstReg, off);
2124}
2125
2126
2127/**
2128 * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom
2129 * to @a idxRegTo.
2130 */
2131DECL_FORCE_INLINE(void)
2132iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo,
2133 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2134{
2135 Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg));
2136 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] == idxRegFrom);
2137 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)
2138 == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows
2139 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2140 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows)
2141 == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows);
2142 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom))
2143 == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows));
2144
2145 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2146 pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2147 if (!fGstRegShadowsFrom)
2148 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom);
2149 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo);
2150 pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg);
2151 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo;
2152#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2153 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2154 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom);
2155#else
2156 RT_NOREF(off);
2157#endif
2158}
2159
2160
2161/**
2162 * Flushes any delayed guest register writes.
2163 *
2164 * This must be called prior to calling CImpl functions and any helpers that use
2165 * the guest state (like raising exceptions) and such.
2166 *
2167 * This optimization has not yet been implemented. The first target would be
2168 * RIP updates, since these are the most common ones.
2169 */
2170DECL_INLINE_THROW(uint32_t)
2171iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept = 0, bool fFlushShadows = true)
2172{
2173#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2174 if (!(fGstShwExcept & kIemNativeGstReg_Pc))
2175 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fFlushShadows);
2176#else
2177 RT_NOREF(pReNative, fGstShwExcept);
2178#endif
2179
2180#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2181 /** @todo r=bird: There must be a quicker way to check if anything needs doing here! */
2182 /** @todo This doesn't mix well with fGstShwExcept but we ignore this for now and just flush everything. */
2183 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fFlushShadows);
2184#else
2185 RT_NOREF(pReNative, fGstShwExcept, fFlushShadows);
2186 return off;
2187#endif
2188}
2189
2190
2191
2192/*********************************************************************************************************************************
2193* SIMD register allocator (largely code duplication of the GPR allocator for now but might diverge) *
2194*********************************************************************************************************************************/
2195
2196#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2197
2198DECL_FORCE_INLINE(uint8_t)
2199iemNativeSimdRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdReg,
2200 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2201{
2202 pReNative->Core.bmHstSimdRegs |= RT_BIT_32(idxSimdReg);
2203
2204 pReNative->Core.aHstSimdRegs[idxSimdReg].enmWhat = enmWhat;
2205 pReNative->Core.aHstSimdRegs[idxSimdReg].fGstRegShadows = 0;
2206 RT_NOREF(idxVar);
2207 return idxSimdReg;
2208}
2209
2210
2211/**
2212 * Marks host SIMD register @a idxHstSimdReg as containing a shadow copy of guest
2213 * SIMD register @a enmGstSimdReg.
2214 *
2215 * ASSUMES that caller has made sure @a enmGstSimdReg is not associated with any
2216 * host register before calling.
2217 */
2218DECL_FORCE_INLINE(void)
2219iemNativeSimdRegMarkAsGstSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg,
2220 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2221{
2222 Assert(!(pReNative->Core.bmGstSimdRegShadows & RT_BIT_64(enmGstSimdReg)));
2223 Assert(!pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows);
2224 Assert((unsigned)enmGstSimdReg < (unsigned)kIemNativeGstSimdReg_End);
2225
2226 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxHstSimdReg;
2227 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2228 pReNative->Core.bmGstSimdRegShadows |= RT_BIT_64(enmGstSimdReg);
2229 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxHstSimdReg);
2230#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2231 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2232 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxHstSimdReg);
2233#else
2234 RT_NOREF(off);
2235#endif
2236}
2237
2238
2239/**
2240 * Transfers the guest SIMD register shadow claims of @a enmGstSimdReg from @a idxSimdRegFrom
2241 * to @a idxSimdRegTo.
2242 */
2243DECL_FORCE_INLINE(void)
2244iemNativeSimdRegTransferGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdRegFrom, uint8_t idxSimdRegTo,
2245 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2246{
2247 Assert(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & RT_BIT_64(enmGstSimdReg));
2248 Assert(pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] == idxSimdRegFrom);
2249 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows)
2250 == pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows
2251 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2252 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows)
2253 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows);
2254 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxSimdRegFrom))
2255 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows));
2256 Assert( pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded
2257 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].enmLoaded);
2258
2259 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstSimdReg);
2260 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2261 if (!fGstRegShadowsFrom)
2262 {
2263 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxSimdRegFrom);
2264 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2265 }
2266 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxSimdRegTo);
2267 pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2268 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxSimdRegTo;
2269#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2270 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2271 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxSimdRegTo, idxSimdRegFrom);
2272#else
2273 RT_NOREF(off);
2274#endif
2275}
2276
2277
2278/**
2279 * Clear any guest register shadow claims from @a idxHstSimdReg.
2280 *
2281 * The register does not need to be shadowing any guest registers.
2282 */
2283DECL_FORCE_INLINE(void)
2284iemNativeSimdRegClearGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, uint32_t off)
2285{
2286 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows)
2287 == pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows
2288 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstSimdReg_End));
2289 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxHstSimdReg))
2290 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows));
2291 Assert( !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyLo128)
2292 && !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyHi128));
2293
2294#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2295 uint64_t fGstRegs = pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2296 if (fGstRegs)
2297 {
2298 Assert(fGstRegs < RT_BIT_64(kIemNativeGstSimdReg_End));
2299 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2300 while (fGstRegs)
2301 {
2302 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2303 fGstRegs &= ~RT_BIT_64(iGstReg);
2304 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, (IEMNATIVEGSTSIMDREG)iGstReg, UINT8_MAX, idxHstSimdReg);
2305 }
2306 }
2307#else
2308 RT_NOREF(off);
2309#endif
2310
2311 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxHstSimdReg);
2312 pReNative->Core.bmGstSimdRegShadows &= ~pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2313 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows = 0;
2314 pReNative->Core.aHstSimdRegs[idxHstSimdReg].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2315}
2316
2317#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
2318
2319
2320#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2321/**
2322 * Emits code to update the guest RIP value by adding the current offset since the start of the last RIP update.
2323 */
2324DECL_INLINE_THROW(uint32_t) iemNativeEmitPcWriteback(PIEMRECOMPILERSTATE pReNative, uint32_t off)
2325{
2326 if (pReNative->Core.offPc)
2327 return iemNativeEmitPcWritebackSlow(pReNative, off);
2328 return off;
2329}
2330#endif /* IEMNATIVE_WITH_DELAYED_PC_UPDATING */
2331
2332
2333/** @} */
2334
2335#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
2336
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette