VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 104797

Last change on this file since 104797 was 104797, checked in by vboxsync, 11 months ago

VMM/IEM: Introduce special helpers for generating code to exit a TB in order to be able to experiment with different approaches more easily and convert the code emitters to make use of them, bugref:10677

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 129.2 KB
Line 
1/* $Id: IEMN8veRecompiler.h 104797 2024-05-28 05:50:30Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40#include <iprt/assertcompile.h> /* for RT_IN_ASSEMBLER mode */
41
42/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
43 * Enables generating internal debug info for better TB disassembly dumping. */
44#if defined(DEBUG) || defined(DOXYGEN_RUNNING)
45# define IEMNATIVE_WITH_TB_DEBUG_INFO
46#endif
47
48/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
49 * Enables liveness analysis. */
50#if 1 || defined(DOXYGEN_RUNNING)
51# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
52/*# define IEMLIVENESS_EXTENDED_LAYOUT*/
53#endif
54
55/** @def IEMNATIVE_WITH_EFLAGS_SKIPPING
56 * Enables skipping EFLAGS calculations/updating based on liveness info. */
57#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || defined(DOXYGEN_RUNNING)
58# define IEMNATIVE_WITH_EFLAGS_SKIPPING
59#endif
60
61
62/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING
63 * Enables strict consistency checks around EFLAGS skipping.
64 * @note Only defined when IEMNATIVE_WITH_EFLAGS_SKIPPING is also defined. */
65#ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING
66# ifdef VBOX_STRICT
67# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
68# endif
69#elif defined(DOXYGEN_RUNNING)
70# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
71#endif
72
73#ifdef VBOX_WITH_STATISTICS
74/** Always count instructions for now. */
75# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
76#endif
77
78/** @def IEMNATIVE_WITH_RECOMPILER_PROLOGUE_SINGLETON
79 * Enables having only a single prologue for native TBs. */
80#if 1 || defined(DOXYGEN_RUNNING)
81# define IEMNATIVE_WITH_RECOMPILER_PROLOGUE_SINGLETON
82#endif
83
84
85/** @name Stack Frame Layout
86 *
87 * @{ */
88/** The size of the area for stack variables and spills and stuff.
89 * @note This limit is duplicated in the python script(s). We add 0x40 for
90 * alignment padding. */
91#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
92/** Number of 64-bit variable slots (0x100 / 8 = 32. */
93#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
94AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
95
96#ifdef RT_ARCH_AMD64
97/** An stack alignment adjustment (between non-volatile register pushes and
98 * the stack variable area, so the latter better aligned). */
99# define IEMNATIVE_FRAME_ALIGN_SIZE 8
100
101/** Number of stack arguments slots for calls made from the frame. */
102# ifdef RT_OS_WINDOWS
103# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
104# else
105# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
106# endif
107/** Number of any shadow arguments (spill area) for calls we make. */
108# ifdef RT_OS_WINDOWS
109# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
110# else
111# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
112# endif
113
114/** Frame pointer (RBP) relative offset of the last push. */
115# ifdef RT_OS_WINDOWS
116# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
117# else
118# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
119# endif
120/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
121 * address for it). */
122# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
123/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
124# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
125/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
126# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
127# ifdef RT_OS_WINDOWS
128/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
129# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
130/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
131# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
132# endif
133
134# ifdef RT_OS_WINDOWS
135/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
136# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
137/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
138# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
139/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
140# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
141/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
142# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
143# endif
144
145#elif RT_ARCH_ARM64
146/** No alignment padding needed for arm64. */
147# define IEMNATIVE_FRAME_ALIGN_SIZE 0
148/** No stack argument slots, got 8 registers for arguments will suffice. */
149# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
150/** There are no argument spill area. */
151# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
152
153/** Number of saved registers at the top of our stack frame.
154 * This includes the return address and old frame pointer, so x19 thru x30. */
155# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
156/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
157# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
158
159/** Frame pointer (BP) relative offset of the last push. */
160# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
161
162/** Frame pointer (BP) relative offset of the stack variable area (the lowest
163 * address for it). */
164# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
165
166#else
167# error "port me"
168#endif
169/** @} */
170
171
172/** @name Fixed Register Allocation(s)
173 * @{ */
174/** @def IEMNATIVE_REG_FIXED_PVMCPU
175 * The number of the register holding the pVCpu pointer. */
176/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
177 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
178 * @note This not available on AMD64, only ARM64. */
179/** @def IEMNATIVE_REG_FIXED_TMP0
180 * Dedicated temporary register.
181 * @todo replace this by a register allocator and content tracker. */
182/** @def IEMNATIVE_REG_FIXED_MASK
183 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
184 * architecture. */
185#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
186/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
187 * Mask SIMD registers with fixes assignments, either by us or dictated by the CPU/OS
188 * architecture. */
189/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
190 * Dedicated temporary SIMD register. */
191#endif
192#if defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING) /* arm64 goes first because of doxygen */
193# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
194# define IEMNATIVE_REG_FIXED_PVMCPU_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PVMCPU)
195# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
196# define IEMNATIVE_REG_FIXED_PCPUMCTX_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PCPUMCTX)
197# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
198# if defined(IEMNATIVE_WITH_DELAYED_PC_UPDATING) && 0 /* debug the updating with a shadow RIP. */
199# define IEMNATIVE_REG_FIXED_TMP1 ARMV8_A64_REG_X16
200# define IEMNATIVE_REG_FIXED_PC_DBG ARMV8_A64_REG_X26
201# define IEMNATIVE_REG_FIXED_MASK_ADD ( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1) \
202 | RT_BIT_32(IEMNATIVE_REG_FIXED_PC_DBG))
203# else
204# define IEMNATIVE_REG_FIXED_MASK_ADD 0
205# endif
206# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
207 | RT_BIT_32(ARMV8_A64_REG_LR) \
208 | RT_BIT_32(ARMV8_A64_REG_BP) \
209 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
210 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
211 | RT_BIT_32(ARMV8_A64_REG_X18) \
212 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
213 | IEMNATIVE_REG_FIXED_MASK_ADD)
214
215# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
216# define IEMNATIVE_SIMD_REG_FIXED_TMP0 ARMV8_A64_REG_Q30
217# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS)
218# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(ARMV8_A64_REG_Q30)
219# else
220/** @note
221 * ARM64 has 32 registers, but they are only 128-bit wide. So, in order to
222 * support emulating 256-bit registers we pair two real registers statically to
223 * one virtual for now, leaving us with only 16 256-bit registers. We always
224 * pair v0 with v1, v2 with v3, etc. so we mark the higher register as fixed and
225 * the register allocator assumes that it will be always free when the lower is
226 * picked.
227 *
228 * Also ARM64 declares the low 64-bit of v8-v15 as callee saved, so we don't
229 * touch them in order to avoid having to save and restore them in the
230 * prologue/epilogue.
231 */
232# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xff00) \
233 | RT_BIT_32(ARMV8_A64_REG_Q31) \
234 | RT_BIT_32(ARMV8_A64_REG_Q30) \
235 | RT_BIT_32(ARMV8_A64_REG_Q29) \
236 | RT_BIT_32(ARMV8_A64_REG_Q27) \
237 | RT_BIT_32(ARMV8_A64_REG_Q25) \
238 | RT_BIT_32(ARMV8_A64_REG_Q23) \
239 | RT_BIT_32(ARMV8_A64_REG_Q21) \
240 | RT_BIT_32(ARMV8_A64_REG_Q19) \
241 | RT_BIT_32(ARMV8_A64_REG_Q17) \
242 | RT_BIT_32(ARMV8_A64_REG_Q15) \
243 | RT_BIT_32(ARMV8_A64_REG_Q13) \
244 | RT_BIT_32(ARMV8_A64_REG_Q11) \
245 | RT_BIT_32(ARMV8_A64_REG_Q9) \
246 | RT_BIT_32(ARMV8_A64_REG_Q7) \
247 | RT_BIT_32(ARMV8_A64_REG_Q5) \
248 | RT_BIT_32(ARMV8_A64_REG_Q3) \
249 | RT_BIT_32(ARMV8_A64_REG_Q1))
250# endif
251# endif
252
253#elif defined(RT_ARCH_AMD64)
254# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
255# define IEMNATIVE_REG_FIXED_PVMCPU_ASM xBX
256# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
257# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
258 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
259 | RT_BIT_32(X86_GREG_xSP) \
260 | RT_BIT_32(X86_GREG_xBP) )
261
262# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
263# define IEMNATIVE_SIMD_REG_FIXED_TMP0 5 /* xmm5/ymm5 */
264# ifndef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
265# ifndef _MSC_VER
266# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
267# endif
268# endif
269# ifdef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
270# define IEMNATIVE_SIMD_REG_FIXED_MASK (RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
271# else
272/** @note On Windows/AMD64 xmm6 through xmm15 are marked as callee saved. */
273# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xffc0) \
274 | RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
275# endif
276# endif
277
278#else
279# error "port me"
280#endif
281/** @} */
282
283/** @name Call related registers.
284 * @{ */
285/** @def IEMNATIVE_CALL_RET_GREG
286 * The return value register. */
287/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
288 * Number of arguments in registers. */
289/** @def IEMNATIVE_CALL_ARG0_GREG
290 * The general purpose register carrying argument \#0. */
291/** @def IEMNATIVE_CALL_ARG1_GREG
292 * The general purpose register carrying argument \#1. */
293/** @def IEMNATIVE_CALL_ARG2_GREG
294 * The general purpose register carrying argument \#2. */
295/** @def IEMNATIVE_CALL_ARG3_GREG
296 * The general purpose register carrying argument \#3. */
297/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
298 * Mask of registers the callee will not save and may trash. */
299#ifdef RT_ARCH_AMD64
300# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
301
302# ifdef RT_OS_WINDOWS
303# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
304# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
305# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
306# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
307# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
308# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
309 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
310 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
311 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
312# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
313 | RT_BIT_32(X86_GREG_xCX) \
314 | RT_BIT_32(X86_GREG_xDX) \
315 | RT_BIT_32(X86_GREG_x8) \
316 | RT_BIT_32(X86_GREG_x9) \
317 | RT_BIT_32(X86_GREG_x10) \
318 | RT_BIT_32(X86_GREG_x11) )
319# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
320/* xmm0 - xmm5 are marked as volatile. */
321# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0x3f))
322# endif
323
324# else /* !RT_OS_WINDOWS */
325# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
326# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
327# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
328# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
329# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
330# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
331# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
332# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
333 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
334 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
335 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
336 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
337 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
338# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
339 | RT_BIT_32(X86_GREG_xCX) \
340 | RT_BIT_32(X86_GREG_xDX) \
341 | RT_BIT_32(X86_GREG_xDI) \
342 | RT_BIT_32(X86_GREG_xSI) \
343 | RT_BIT_32(X86_GREG_x8) \
344 | RT_BIT_32(X86_GREG_x9) \
345 | RT_BIT_32(X86_GREG_x10) \
346 | RT_BIT_32(X86_GREG_x11) )
347# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
348/* xmm0 - xmm15 are marked as volatile. */
349# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffff))
350# endif
351# endif /* !RT_OS_WINDOWS */
352
353#elif defined(RT_ARCH_ARM64)
354# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
355# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
356# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
357# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
358# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
359# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
360# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
361# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
362# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
363# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
364# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
365 | RT_BIT_32(ARMV8_A64_REG_X1) \
366 | RT_BIT_32(ARMV8_A64_REG_X2) \
367 | RT_BIT_32(ARMV8_A64_REG_X3) \
368 | RT_BIT_32(ARMV8_A64_REG_X4) \
369 | RT_BIT_32(ARMV8_A64_REG_X5) \
370 | RT_BIT_32(ARMV8_A64_REG_X6) \
371 | RT_BIT_32(ARMV8_A64_REG_X7) )
372# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
373 | RT_BIT_32(ARMV8_A64_REG_X1) \
374 | RT_BIT_32(ARMV8_A64_REG_X2) \
375 | RT_BIT_32(ARMV8_A64_REG_X3) \
376 | RT_BIT_32(ARMV8_A64_REG_X4) \
377 | RT_BIT_32(ARMV8_A64_REG_X5) \
378 | RT_BIT_32(ARMV8_A64_REG_X6) \
379 | RT_BIT_32(ARMV8_A64_REG_X7) \
380 | RT_BIT_32(ARMV8_A64_REG_X8) \
381 | RT_BIT_32(ARMV8_A64_REG_X9) \
382 | RT_BIT_32(ARMV8_A64_REG_X10) \
383 | RT_BIT_32(ARMV8_A64_REG_X11) \
384 | RT_BIT_32(ARMV8_A64_REG_X12) \
385 | RT_BIT_32(ARMV8_A64_REG_X13) \
386 | RT_BIT_32(ARMV8_A64_REG_X14) \
387 | RT_BIT_32(ARMV8_A64_REG_X15) \
388 | RT_BIT_32(ARMV8_A64_REG_X16) \
389 | RT_BIT_32(ARMV8_A64_REG_X17) )
390# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
391/* The low 64 bits of v8 - v15 marked as callee saved but the rest is volatile,
392 * so to simplify our life a bit we just mark everything as volatile. */
393# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffffffff))
394# endif
395
396#endif
397
398/** This is the maximum argument count we'll ever be needing. */
399#define IEMNATIVE_CALL_MAX_ARG_COUNT 7
400#ifdef RT_OS_WINDOWS
401# ifdef VBOXSTRICTRC_STRICT_ENABLED
402# undef IEMNATIVE_CALL_MAX_ARG_COUNT
403# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
404# endif
405#endif
406/** @} */
407
408
409/** @def IEMNATIVE_HST_GREG_COUNT
410 * Number of host general purpose registers we tracker. */
411/** @def IEMNATIVE_HST_GREG_MASK
412 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
413 * inverted register masks and such to get down to a correct set of regs. */
414#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
415/** @def IEMNATIVE_HST_SIMD_REG_COUNT
416 * Number of host SIMD registers we track. */
417/** @def IEMNATIVE_HST_SIMD_REG_MASK
418 * Mask corresponding to IEMNATIVE_HST_SIMD_REG_COUNT that can be applied to
419 * inverted register masks and such to get down to a correct set of regs. */
420#endif
421#ifdef RT_ARCH_AMD64
422# define IEMNATIVE_HST_GREG_COUNT 16
423# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
424
425# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
426# define IEMNATIVE_HST_SIMD_REG_COUNT 16
427# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_C(0xffff)
428# endif
429
430#elif defined(RT_ARCH_ARM64)
431# define IEMNATIVE_HST_GREG_COUNT 32
432# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
433
434# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
435# define IEMNATIVE_HST_SIMD_REG_COUNT 32
436# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_MAX
437# endif
438
439#else
440# error "Port me!"
441#endif
442
443
444#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
445
446
447/** TB exit reasons. */
448typedef enum
449{
450 kIemNativeExitReason_Invalid = 0,
451 kIemNativeExitReason_RaiseDe, /**< Raise (throw) X86_XCPT_DE (00h). */
452 kIemNativeExitReason_RaiseUd, /**< Raise (throw) X86_XCPT_UD (06h). */
453 kIemNativeExitReason_RaiseSseRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to cr0 & cr4. */
454 kIemNativeExitReason_RaiseAvxRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to xcr0, cr0 & cr4. */
455 kIemNativeExitReason_RaiseSseAvxFpRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_XF according to c4. */
456 kIemNativeExitReason_RaiseNm, /**< Raise (throw) X86_XCPT_NM (07h). */
457 kIemNativeExitReason_RaiseGp0, /**< Raise (throw) X86_XCPT_GP (0dh) w/ errcd=0. */
458 kIemNativeExitReason_RaiseMf, /**< Raise (throw) X86_XCPT_MF (10h). */
459 kIemNativeExitReason_RaiseXf, /**< Raise (throw) X86_XCPT_XF (13h). */
460 kIemNativeExitReason_ObsoleteTb,
461 kIemNativeExitReason_NeedCsLimChecking,
462 kIemNativeExitReason_CheckBranchMiss,
463 kIemNativeExitReason_Return, /** @todo Eliminate (needed for the compile assertion below). */
464 kIemNativeExitReason_ReturnBreak,
465 kIemNativeExitReason_ReturnBreakFF,
466 kIemNativeExitReason_ReturnBreakViaLookup,
467 kIemNativeExitReason_ReturnBreakViaLookupWithIrq,
468 kIemNativeExitReason_ReturnBreakViaLookupWithTlb,
469 kIemNativeExitReason_ReturnBreakViaLookupWithTlbAndIrq,
470 kIemNativeExitReason_ReturnWithFlags,
471 kIemNativeExitReason_NonZeroRetOrPassUp,
472} IEMNATIVEEXITREASON;
473
474
475/** Native code generator label types. */
476typedef enum
477{
478 kIemNativeLabelType_Invalid = 0,
479 /*
480 * Labels w/o data, only once instance per TB.
481 *
482 * Note! Jumps to these requires instructions that are capable of spanning
483 * the max TB length.
484 */
485 /* Simple labels comes first for indexing reasons. RaiseXx is order by the exception's numerical value(s). */
486 kIemNativeLabelType_RaiseDe, /**< Raise (throw) X86_XCPT_DE (00h). */
487 kIemNativeLabelType_RaiseUd, /**< Raise (throw) X86_XCPT_UD (06h). */
488 kIemNativeLabelType_RaiseSseRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to cr0 & cr4. */
489 kIemNativeLabelType_RaiseAvxRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to xcr0, cr0 & cr4. */
490 kIemNativeLabelType_RaiseSseAvxFpRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_XF according to c4. */
491 kIemNativeLabelType_RaiseNm, /**< Raise (throw) X86_XCPT_NM (07h). */
492 kIemNativeLabelType_RaiseGp0, /**< Raise (throw) X86_XCPT_GP (0dh) w/ errcd=0. */
493 kIemNativeLabelType_RaiseMf, /**< Raise (throw) X86_XCPT_MF (10h). */
494 kIemNativeLabelType_RaiseXf, /**< Raise (throw) X86_XCPT_XF (13h). */
495 kIemNativeLabelType_ObsoleteTb,
496 kIemNativeLabelType_NeedCsLimChecking,
497 kIemNativeLabelType_CheckBranchMiss,
498 kIemNativeLabelType_LastSimple = kIemNativeLabelType_CheckBranchMiss,
499 /* Manually defined labels. */
500 kIemNativeLabelType_Return,
501 kIemNativeLabelType_ReturnBreak,
502 kIemNativeLabelType_ReturnBreakFF,
503 kIemNativeLabelType_ReturnBreakViaLookup,
504 kIemNativeLabelType_ReturnBreakViaLookupWithIrq,
505 kIemNativeLabelType_ReturnBreakViaLookupWithTlb,
506 kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq,
507 kIemNativeLabelType_ReturnWithFlags,
508 kIemNativeLabelType_NonZeroRetOrPassUp,
509 /** The last fixup for branches that can span almost the whole TB length. */
510 kIemNativeLabelType_LastWholeTbBranch = kIemNativeLabelType_NonZeroRetOrPassUp,
511
512 /*
513 * Labels with data, potentially multiple instances per TB:
514 *
515 * These are localized labels, so no fixed jump type restrictions here.
516 */
517 kIemNativeLabelType_FirstWithMultipleInstances,
518 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
519 kIemNativeLabelType_Else,
520 kIemNativeLabelType_Endif,
521 kIemNativeLabelType_CheckIrq,
522 kIemNativeLabelType_TlbLookup,
523 kIemNativeLabelType_TlbMiss,
524 kIemNativeLabelType_TlbDone,
525 kIemNativeLabelType_End
526} IEMNATIVELABELTYPE;
527
528/* Temporary kludge until all jumps to TB exit labels are converted to the new TB exiting style,
529 * see @bugref{10677}. */
530#define IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(a_Reason) \
531 ((int)kIemNativeLabelType_ ## a_Reason == (int)kIemNativeExitReason_ ## a_Reason)
532AssertCompile( IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(RaiseDe)
533 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(RaiseUd)
534 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(RaiseSseRelated)
535 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(RaiseAvxRelated)
536 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(RaiseSseAvxFpRelated)
537 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(RaiseNm)
538 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(RaiseGp0)
539 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(RaiseMf)
540 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(RaiseXf)
541 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(ObsoleteTb)
542 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(NeedCsLimChecking)
543 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(CheckBranchMiss)
544 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(Return)
545 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(ReturnBreak)
546 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(ReturnBreakFF)
547 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(ReturnBreakViaLookup)
548 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(ReturnBreakViaLookupWithIrq)
549 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(ReturnBreakViaLookupWithTlb)
550 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(ReturnBreakViaLookupWithTlbAndIrq)
551 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(ReturnWithFlags)
552 && IEM_N8VE_RECOMP_LABELTYPE_EQ_EXITREASON(NonZeroRetOrPassUp));
553
554
555/** Native code generator label definition. */
556typedef struct IEMNATIVELABEL
557{
558 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
559 * the epilog. */
560 uint32_t off;
561 /** The type of label (IEMNATIVELABELTYPE). */
562 uint16_t enmType;
563 /** Additional label data, type specific. */
564 uint16_t uData;
565} IEMNATIVELABEL;
566/** Pointer to a label. */
567typedef IEMNATIVELABEL *PIEMNATIVELABEL;
568
569
570/** Native code generator fixup types. */
571typedef enum
572{
573 kIemNativeFixupType_Invalid = 0,
574#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
575 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
576 kIemNativeFixupType_Rel32,
577#elif defined(RT_ARCH_ARM64)
578 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
579 kIemNativeFixupType_RelImm26At0,
580 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
581 kIemNativeFixupType_RelImm19At5,
582 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
583 kIemNativeFixupType_RelImm14At5,
584#endif
585 kIemNativeFixupType_End
586} IEMNATIVEFIXUPTYPE;
587
588/** Native code generator fixup. */
589typedef struct IEMNATIVEFIXUP
590{
591 /** Code offset of the fixup location. */
592 uint32_t off;
593 /** The IEMNATIVELABEL this is a fixup for. */
594 uint16_t idxLabel;
595 /** The fixup type (IEMNATIVEFIXUPTYPE). */
596 uint8_t enmType;
597 /** Addend or other data. */
598 int8_t offAddend;
599} IEMNATIVEFIXUP;
600/** Pointer to a native code generator fixup. */
601typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
602
603
604/**
605 * One bit of the state.
606 *
607 * Each register state takes up two bits. We keep the two bits in two separate
608 * 64-bit words to simplify applying them to the guest shadow register mask in
609 * the register allocator.
610 */
611typedef union IEMLIVENESSBIT
612{
613 uint64_t bm64;
614 RT_GCC_EXTENSION struct
615 { /* bit no */
616 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
617 uint64_t fUnusedPc : 1; /**< 0x10 / 16: (PC in ) */
618 uint64_t fCr0 : 1; /**< 0x11 / 17: */
619 uint64_t fFcw : 1; /**< 0x12 / 18: */
620 uint64_t fFsw : 1; /**< 0x13 / 19: */
621 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
622 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
623 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
624 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
625 uint64_t fCr4 : 1; /**< 0x2c / 44: */
626 uint64_t fXcr0 : 1; /**< 0x2d / 45: */
627 uint64_t fMxCsr : 1; /**< 0x2e / 46: */
628 uint64_t fEflOther : 1; /**< 0x2f / 47: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
629 uint64_t fEflCf : 1; /**< 0x30 / 48: Carry flag (X86_EFL_CF / 0). */
630 uint64_t fEflPf : 1; /**< 0x31 / 49: Parity flag (X86_EFL_PF / 2). */
631 uint64_t fEflAf : 1; /**< 0x32 / 50: Auxilary carry flag (X86_EFL_AF / 4). */
632 uint64_t fEflZf : 1; /**< 0x33 / 51: Zero flag (X86_EFL_ZF / 6). */
633 uint64_t fEflSf : 1; /**< 0x34 / 52: Signed flag (X86_EFL_SF / 7). */
634 uint64_t fEflOf : 1; /**< 0x35 / 53: Overflow flag (X86_EFL_OF / 12). */
635 uint64_t uUnused : 10; /* 0x36 / 54 -> 0x40/64 */
636 };
637} IEMLIVENESSBIT;
638AssertCompileSize(IEMLIVENESSBIT, 8);
639
640#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
641#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
642#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
643#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
644#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
645#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
646#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
647
648
649/**
650 * A liveness state entry.
651 *
652 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
653 * Once we add a SSE register shadowing, we'll add another 64-bit element for
654 * that.
655 */
656typedef union IEMLIVENESSENTRY
657{
658#ifndef IEMLIVENESS_EXTENDED_LAYOUT
659 uint64_t bm64[16 / 8];
660 uint16_t bm32[16 / 4];
661 uint16_t bm16[16 / 2];
662 uint8_t bm8[ 16 / 1];
663 IEMLIVENESSBIT aBits[2];
664#else
665 uint64_t bm64[32 / 8];
666 uint16_t bm32[32 / 4];
667 uint16_t bm16[32 / 2];
668 uint8_t bm8[ 32 / 1];
669 IEMLIVENESSBIT aBits[4];
670#endif
671 RT_GCC_EXTENSION struct
672 {
673 /** Bit \#0 of the register states. */
674 IEMLIVENESSBIT Bit0;
675 /** Bit \#1 of the register states. */
676 IEMLIVENESSBIT Bit1;
677#ifdef IEMLIVENESS_EXTENDED_LAYOUT
678 /** Bit \#2 of the register states. */
679 IEMLIVENESSBIT Bit2;
680 /** Bit \#3 of the register states. */
681 IEMLIVENESSBIT Bit3;
682#endif
683 };
684} IEMLIVENESSENTRY;
685#ifndef IEMLIVENESS_EXTENDED_LAYOUT
686AssertCompileSize(IEMLIVENESSENTRY, 16);
687#else
688AssertCompileSize(IEMLIVENESSENTRY, 32);
689#endif
690/** Pointer to a liveness state entry. */
691typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
692/** Pointer to a const liveness state entry. */
693typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
694
695/** @name 64-bit value masks for IEMLIVENESSENTRY.
696 * @{ */ /* 0xzzzzyyyyxxxxwwww */
697#define IEMLIVENESSBIT_MASK UINT64_C(0x003ffffffffeffff)
698
699#ifndef IEMLIVENESS_EXTENDED_LAYOUT
700# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
701# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
702
703# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
704# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
705#endif
706
707#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x003f800000000000)
708#define IEMLIVENESSBIT_STATUS_EFL_MASK UINT64_C(0x003f000000000000)
709
710#ifndef IEMLIVENESS_EXTENDED_LAYOUT
711# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
712# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
713#endif
714/** @} */
715
716
717/** @name The liveness state for a register.
718 *
719 * The state values have been picked to with state accumulation in mind (what
720 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
721 * performance critical work done with the values.
722 *
723 * This is a compressed state that only requires 2 bits per register.
724 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
725 * 1. the incoming state from the following call,
726 * 2. the outgoing state for this call,
727 * 3. mask of the entries set in the 2nd.
728 *
729 * The mask entry (3rd one above) will be used both when updating the outgoing
730 * state and when merging in incoming state for registers not touched by the
731 * current call.
732 *
733 * @{ */
734#ifndef IEMLIVENESS_EXTENDED_LAYOUT
735/** The register will be clobbered and the current value thrown away.
736 *
737 * When this is applied to the state (2) we'll simply be AND'ing it with the
738 * (old) mask (3) and adding the register to the mask. This way we'll
739 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
740 * IEMLIVENESS_STATE_INPUT states. */
741# define IEMLIVENESS_STATE_CLOBBERED 0
742/** The register is unused in the remainder of the TB.
743 *
744 * This is an initial state and can not be set by any of the
745 * iemNativeLivenessFunc_xxxx callbacks. */
746# define IEMLIVENESS_STATE_UNUSED 1
747/** The register value is required in a potential call or exception.
748 *
749 * This means that the register value must be calculated and is best written to
750 * the state, but that any shadowing registers can be flushed thereafter as it's
751 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
752 *
753 * It is typically applied across the board, but we preserve incoming
754 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
755 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
756 * 1. r0 = old & ~mask;
757 * 2. r0 = t1 & (t1 >> 1)'
758 * 3. state |= r0 | 0b10;
759 * 4. mask = ~0;
760 */
761# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
762/** The register value is used as input.
763 *
764 * This means that the register value must be calculated and it is best to keep
765 * it in a register. It does not need to be writtent out as such. This is the
766 * highest priority state.
767 *
768 * Whether the call modifies the register or not isn't relevant to earlier
769 * calls, so that's not recorded.
770 *
771 * When applying this state we just or in the value in the outgoing state and
772 * mask. */
773# define IEMLIVENESS_STATE_INPUT 3
774/** Mask of the state bits. */
775# define IEMLIVENESS_STATE_MASK 3
776/** The number of bits per state. */
777# define IEMLIVENESS_STATE_BIT_COUNT 2
778/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state. */
779# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
780/** Check if we're expecting read accesses to a register with the given (previous) liveness state. */
781# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
782/** Check if a register clobbering is expected given the (previous) liveness state.
783 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
784 * include INPUT if the register is used in more than one place. */
785# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
786
787/** Check if all status flags are going to be clobbered and doesn't need
788 * calculating in the current step.
789 * @param a_pCurEntry The current liveness entry. */
790# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
791 ( (((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_STATUS_EFL_MASK) == 0 )
792
793#else /* IEMLIVENESS_EXTENDED_LAYOUT */
794/** The register is not used any more. */
795# define IEMLIVENESS_STATE_UNUSED 0
796/** Flag: The register is required in a potential exception or call. */
797# define IEMLIVENESS_STATE_POT_XCPT_OR_CALL 1
798# define IEMLIVENESS_BIT_POT_XCPT_OR_CALL 0
799/** Flag: The register is read. */
800# define IEMLIVENESS_STATE_READ 2
801# define IEMLIVENESS_BIT_READ 1
802/** Flag: The register is written. */
803# define IEMLIVENESS_STATE_WRITE 4
804# define IEMLIVENESS_BIT_WRITE 2
805/** Flag: Unconditional call (not needed, can be redefined for research). */
806# define IEMLIVENESS_STATE_CALL 8
807# define IEMLIVENESS_BIT_CALL 3
808# define IEMLIVENESS_BIT_OTHER 3 /**< More convenient name for this one. */
809# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
810 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
811# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
812# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
813
814# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
815 ( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & IEMLIVENESSBIT_STATUS_EFL_MASK) == IEMLIVENESSBIT_STATUS_EFL_MASK \
816 && !( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64) \
817 & IEMLIVENESSBIT_STATUS_EFL_MASK) )
818
819#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
820/** @} */
821
822/** @name Liveness helpers for builtin functions and similar.
823 *
824 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
825 * own set of manimulator macros for those.
826 *
827 * @{ */
828/** Initializing the state as all unused. */
829#ifndef IEMLIVENESS_EXTENDED_LAYOUT
830# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
831 do { \
832 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
833 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
834 } while (0)
835#else
836# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
837 do { \
838 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = 0; \
839 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
840 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
841 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
842 } while (0)
843#endif
844
845/** Initializing the outgoing state with a potential xcpt or call state.
846 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT. */
847#ifndef IEMLIVENESS_EXTENDED_LAYOUT
848# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
849 do { \
850 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
851 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
852 } while (0)
853#else
854# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
855 do { \
856 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = IEMLIVENESSBIT_MASK; \
857 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64; \
858 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
859 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
860 } while (0)
861#endif
862
863/** Adds a segment base register as input to the outgoing state. */
864#ifndef IEMLIVENESS_EXTENDED_LAYOUT
865# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
866 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
867 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
868 } while (0)
869#else
870# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
871 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
872 } while (0)
873#endif
874
875/** Adds a segment attribute register as input to the outgoing state. */
876#ifndef IEMLIVENESS_EXTENDED_LAYOUT
877# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
878 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
879 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
880 } while (0)
881#else
882# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
883 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
884 } while (0)
885#endif
886
887/** Adds a segment limit register as input to the outgoing state. */
888#ifndef IEMLIVENESS_EXTENDED_LAYOUT
889# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
890 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
891 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
892 } while (0)
893#else
894# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
895 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
896 } while (0)
897#endif
898
899/** Adds a segment limit register as input to the outgoing state. */
900#ifndef IEMLIVENESS_EXTENDED_LAYOUT
901# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
902 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
903 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
904 } while (0)
905#else
906# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
907 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
908 } while (0)
909#endif
910/** @} */
911
912/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK
913 * Checks that the EFLAGS bits specified by @a a_fEflNeeded are actually
914 * calculated and up to date. This is to double check that we haven't skipped
915 * EFLAGS calculations when we actually need them. NOP in non-strict builds.
916 * @note has to be placed in
917 */
918#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
919# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) \
920 do { (a_off) = iemNativeEmitEFlagsSkippingCheck(a_pReNative, a_off, a_fEflNeeded); } while (0)
921#else
922# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { } while (0)
923#endif
924
925
926/**
927 * Guest registers that can be shadowed in GPRs.
928 *
929 * This runs parallel to the liveness state (IEMLIVENESSBIT, ++). The EFlags
930 * must be placed last, as the liveness state tracks it as 7 subcomponents and
931 * we don't want to waste space here.
932 *
933 * @note Make sure to update IEMLIVENESSBIT, IEMLIVENESSBIT_ALL_EFL_MASK and
934 * friends as well as IEMAllN8veLiveness.cpp.
935 */
936typedef enum IEMNATIVEGSTREG : uint8_t
937{
938 kIemNativeGstReg_GprFirst = 0,
939 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
940 kIemNativeGstReg_Pc,
941 kIemNativeGstReg_Cr0,
942 kIemNativeGstReg_FpuFcw,
943 kIemNativeGstReg_FpuFsw,
944 kIemNativeGstReg_SegBaseFirst,
945 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
946 kIemNativeGstReg_SegAttribFirst,
947 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
948 kIemNativeGstReg_SegLimitFirst,
949 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
950 kIemNativeGstReg_SegSelFirst,
951 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
952 kIemNativeGstReg_Cr4,
953 kIemNativeGstReg_Xcr0,
954 kIemNativeGstReg_MxCsr,
955 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags - last! */
956 kIemNativeGstReg_End
957} IEMNATIVEGSTREG;
958AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
959AssertCompile((UINT64_C(0x7f) << kIemNativeGstReg_EFlags) == IEMLIVENESSBIT_ALL_EFL_MASK);
960
961/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
962 * @{ */
963#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
964#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
965#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
966#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
967#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
968/** @} */
969
970#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
971
972/**
973 * Guest registers that can be shadowed in host SIMD registers.
974 *
975 * @todo r=aeichner Liveness tracking
976 * @todo r=aeichner Given that we can only track xmm/ymm here does this actually make sense?
977 */
978typedef enum IEMNATIVEGSTSIMDREG : uint8_t
979{
980 kIemNativeGstSimdReg_SimdRegFirst = 0,
981 kIemNativeGstSimdReg_SimdRegLast = kIemNativeGstSimdReg_SimdRegFirst + 15,
982 kIemNativeGstSimdReg_End
983} IEMNATIVEGSTSIMDREG;
984
985/** @name Helpers for converting register numbers to IEMNATIVEGSTSIMDREG values.
986 * @{ */
987#define IEMNATIVEGSTSIMDREG_SIMD(a_iSimdReg) ((IEMNATIVEGSTSIMDREG)(kIemNativeGstSimdReg_SimdRegFirst + (a_iSimdReg)))
988/** @} */
989
990/**
991 * The Load/store size for a SIMD guest register.
992 */
993typedef enum IEMNATIVEGSTSIMDREGLDSTSZ : uint8_t
994{
995 /** Invalid size. */
996 kIemNativeGstSimdRegLdStSz_Invalid = 0,
997 /** Loads the low 128-bit of a guest SIMD register. */
998 kIemNativeGstSimdRegLdStSz_Low128,
999 /** Loads the high 128-bit of a guest SIMD register. */
1000 kIemNativeGstSimdRegLdStSz_High128,
1001 /** Loads the whole 256-bits of a guest SIMD register. */
1002 kIemNativeGstSimdRegLdStSz_256,
1003 /** End value. */
1004 kIemNativeGstSimdRegLdStSz_End
1005} IEMNATIVEGSTSIMDREGLDSTSZ;
1006
1007#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
1008
1009/**
1010 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
1011 */
1012typedef enum IEMNATIVEGSTREGUSE
1013{
1014 /** The usage is read-only, the register holding the guest register
1015 * shadow copy will not be modified by the caller. */
1016 kIemNativeGstRegUse_ReadOnly = 0,
1017 /** The caller will update the guest register (think: PC += cbInstr).
1018 * The guest shadow copy will follow the returned register. */
1019 kIemNativeGstRegUse_ForUpdate,
1020 /** The call will put an entirely new value in the guest register, so
1021 * if new register is allocate it will be returned uninitialized. */
1022 kIemNativeGstRegUse_ForFullWrite,
1023 /** The caller will use the guest register value as input in a calculation
1024 * and the host register will be modified.
1025 * This means that the returned host register will not be marked as a shadow
1026 * copy of the guest register. */
1027 kIemNativeGstRegUse_Calculation
1028} IEMNATIVEGSTREGUSE;
1029
1030/**
1031 * Guest registers (classes) that can be referenced.
1032 */
1033typedef enum IEMNATIVEGSTREGREF : uint8_t
1034{
1035 kIemNativeGstRegRef_Invalid = 0,
1036 kIemNativeGstRegRef_Gpr,
1037 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
1038 kIemNativeGstRegRef_EFlags,
1039 kIemNativeGstRegRef_MxCsr,
1040 kIemNativeGstRegRef_FpuReg,
1041 kIemNativeGstRegRef_MReg,
1042 kIemNativeGstRegRef_XReg,
1043 kIemNativeGstRegRef_X87,
1044 kIemNativeGstRegRef_XState,
1045 //kIemNativeGstRegRef_YReg, - doesn't work.
1046 kIemNativeGstRegRef_End
1047} IEMNATIVEGSTREGREF;
1048
1049
1050/** Variable kinds. */
1051typedef enum IEMNATIVEVARKIND : uint8_t
1052{
1053 /** Customary invalid zero value. */
1054 kIemNativeVarKind_Invalid = 0,
1055 /** This is either in a register or on the stack. */
1056 kIemNativeVarKind_Stack,
1057 /** Immediate value - loaded into register when needed, or can live on the
1058 * stack if referenced (in theory). */
1059 kIemNativeVarKind_Immediate,
1060 /** Variable reference - loaded into register when needed, never stack. */
1061 kIemNativeVarKind_VarRef,
1062 /** Guest register reference - loaded into register when needed, never stack. */
1063 kIemNativeVarKind_GstRegRef,
1064 /** End of valid values. */
1065 kIemNativeVarKind_End
1066} IEMNATIVEVARKIND;
1067
1068
1069/** Variable or argument. */
1070typedef struct IEMNATIVEVAR
1071{
1072 /** The kind of variable. */
1073 IEMNATIVEVARKIND enmKind;
1074 /** The variable size in bytes. */
1075 uint8_t cbVar;
1076 /** The first stack slot (uint64_t), except for immediate and references
1077 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
1078 * has a stack slot it has been initialized and has a value. Unused variables
1079 * has neither a stack slot nor a host register assignment. */
1080 uint8_t idxStackSlot;
1081 /** The host register allocated for the variable, UINT8_MAX if not. */
1082 uint8_t idxReg;
1083 /** The argument number if argument, UINT8_MAX if regular variable. */
1084 uint8_t uArgNo;
1085 /** If referenced, the index (unpacked) of the variable referencing this one,
1086 * otherwise UINT8_MAX. A referenced variable must only be placed on the stack
1087 * and must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
1088 uint8_t idxReferrerVar;
1089 /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not.
1090 * @todo not sure what this really is for... */
1091 IEMNATIVEGSTREG enmGstReg;
1092#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1093 /** Flag whether this variable is held in a SIMD register (only supported for 128-bit and 256-bit variables),
1094 * only valid when idxReg is not UINT8_MAX. */
1095 bool fSimdReg : 1;
1096 /** Set if the registered is currently used exclusively, false if the
1097 * variable is idle and the register can be grabbed. */
1098 bool fRegAcquired : 1;
1099#else
1100 /** Set if the registered is currently used exclusively, false if the
1101 * variable is idle and the register can be grabbed. */
1102 bool fRegAcquired;
1103#endif
1104
1105 union
1106 {
1107 /** kIemNativeVarKind_Immediate: The immediate value. */
1108 uint64_t uValue;
1109 /** kIemNativeVarKind_VarRef: The index (unpacked) of the variable being referenced. */
1110 uint8_t idxRefVar;
1111 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
1112 struct
1113 {
1114 /** The class of register. */
1115 IEMNATIVEGSTREGREF enmClass;
1116 /** Index within the class. */
1117 uint8_t idx;
1118 } GstRegRef;
1119 } u;
1120} IEMNATIVEVAR;
1121/** Pointer to a variable or argument. */
1122typedef IEMNATIVEVAR *PIEMNATIVEVAR;
1123/** Pointer to a const variable or argument. */
1124typedef IEMNATIVEVAR const *PCIEMNATIVEVAR;
1125
1126/** What is being kept in a host register. */
1127typedef enum IEMNATIVEWHAT : uint8_t
1128{
1129 /** The traditional invalid zero value. */
1130 kIemNativeWhat_Invalid = 0,
1131 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
1132 kIemNativeWhat_Var,
1133 /** Temporary register, this is typically freed when a MC completes. */
1134 kIemNativeWhat_Tmp,
1135 /** Call argument w/o a variable mapping. This is free (via
1136 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
1137 kIemNativeWhat_Arg,
1138 /** Return status code.
1139 * @todo not sure if we need this... */
1140 kIemNativeWhat_rc,
1141 /** The fixed pVCpu (PVMCPUCC) register.
1142 * @todo consider offsetting this on amd64 to use negative offsets to access
1143 * more members using 8-byte disp. */
1144 kIemNativeWhat_pVCpuFixed,
1145 /** The fixed pCtx (PCPUMCTX) register.
1146 * @todo consider offsetting this on amd64 to use negative offsets to access
1147 * more members using 8-byte disp. */
1148 kIemNativeWhat_pCtxFixed,
1149 /** Fixed temporary register. */
1150 kIemNativeWhat_FixedTmp,
1151#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1152 /** Shadow RIP for the delayed RIP updating debugging. */
1153 kIemNativeWhat_PcShadow,
1154#endif
1155 /** Register reserved by the CPU or OS architecture. */
1156 kIemNativeWhat_FixedReserved,
1157 /** End of valid values. */
1158 kIemNativeWhat_End
1159} IEMNATIVEWHAT;
1160
1161/**
1162 * Host general register entry.
1163 *
1164 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
1165 *
1166 * @todo Track immediate values in host registers similarlly to how we track the
1167 * guest register shadow copies. For it to be real helpful, though,
1168 * we probably need to know which will be reused and put them into
1169 * non-volatile registers, otherwise it's going to be more or less
1170 * restricted to an instruction or two.
1171 */
1172typedef struct IEMNATIVEHSTREG
1173{
1174 /** Set of guest registers this one shadows.
1175 *
1176 * Using a bitmap here so we can designate the same host register as a copy
1177 * for more than one guest register. This is expected to be useful in
1178 * situations where one value is copied to several registers in a sequence.
1179 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1180 * sequence we'd want to let this register follow to be a copy of and there
1181 * will always be places where we'd be picking the wrong one.
1182 */
1183 uint64_t fGstRegShadows;
1184 /** What is being kept in this register. */
1185 IEMNATIVEWHAT enmWhat;
1186 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1187 uint8_t idxVar;
1188 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
1189 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
1190 * that scope. */
1191 uint8_t idxStackSlot;
1192 /** Alignment padding. */
1193 uint8_t abAlign[5];
1194} IEMNATIVEHSTREG;
1195
1196
1197#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1198/**
1199 * Host SIMD register entry - this tracks a virtual 256-bit register split into two 128-bit
1200 * halves, on architectures where there is no 256-bit register available this entry will track
1201 * two adjacent 128-bit host registers.
1202 *
1203 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstSimdRegs.
1204 */
1205typedef struct IEMNATIVEHSTSIMDREG
1206{
1207 /** Set of guest registers this one shadows.
1208 *
1209 * Using a bitmap here so we can designate the same host register as a copy
1210 * for more than one guest register. This is expected to be useful in
1211 * situations where one value is copied to several registers in a sequence.
1212 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1213 * sequence we'd want to let this register follow to be a copy of and there
1214 * will always be places where we'd be picking the wrong one.
1215 */
1216 uint64_t fGstRegShadows;
1217 /** What is being kept in this register. */
1218 IEMNATIVEWHAT enmWhat;
1219 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1220 uint8_t idxVar;
1221 /** Flag what is currently loaded, low 128-bits, high 128-bits or complete 256-bits. */
1222 IEMNATIVEGSTSIMDREGLDSTSZ enmLoaded;
1223 /** Alignment padding. */
1224 uint8_t abAlign[5];
1225} IEMNATIVEHSTSIMDREG;
1226#endif
1227
1228
1229/**
1230 * Core state for the native recompiler, that is, things that needs careful
1231 * handling when dealing with branches.
1232 */
1233typedef struct IEMNATIVECORESTATE
1234{
1235#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1236 /** The current instruction offset in bytes from when the guest program counter
1237 * was updated last. Used for delaying the write to the guest context program counter
1238 * as long as possible. */
1239 uint32_t offPc;
1240 /** Number of instructions where we could skip the updating. */
1241 uint32_t cInstrPcUpdateSkipped;
1242#endif
1243 /** Allocation bitmap for aHstRegs. */
1244 uint32_t bmHstRegs;
1245
1246 /** Bitmap marking which host register contains guest register shadow copies.
1247 * This is used during register allocation to try preserve copies. */
1248 uint32_t bmHstRegsWithGstShadow;
1249 /** Bitmap marking valid entries in aidxGstRegShadows. */
1250 uint64_t bmGstRegShadows;
1251#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1252 /** Bitmap marking the shadowed guest register as dirty and needing writeback when flushing. */
1253 uint64_t bmGstRegShadowDirty;
1254#endif
1255
1256#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1257 /** Allocation bitmap for aHstSimdRegs. */
1258 uint32_t bmHstSimdRegs;
1259
1260 /** Bitmap marking which host SIMD register contains guest SIMD register shadow copies.
1261 * This is used during register allocation to try preserve copies. */
1262 uint32_t bmHstSimdRegsWithGstShadow;
1263 /** Bitmap marking valid entries in aidxSimdGstRegShadows. */
1264 uint64_t bmGstSimdRegShadows;
1265 /** Bitmap marking whether the low 128-bit of the shadowed guest register are dirty and need writeback. */
1266 uint64_t bmGstSimdRegShadowDirtyLo128;
1267 /** Bitmap marking whether the high 128-bit of the shadowed guest register are dirty and need writeback. */
1268 uint64_t bmGstSimdRegShadowDirtyHi128;
1269#endif
1270
1271 union
1272 {
1273 /** Index of variable (unpacked) arguments, UINT8_MAX if not valid. */
1274 uint8_t aidxArgVars[8];
1275 /** For more efficient resetting. */
1276 uint64_t u64ArgVars;
1277 };
1278
1279 /** Allocation bitmap for the stack. */
1280 uint32_t bmStack;
1281 /** Allocation bitmap for aVars. */
1282 uint32_t bmVars;
1283
1284 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
1285 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
1286 * (A shadow copy of a guest register can only be held in a one host register,
1287 * there are no duplicate copies or ambiguities like that). */
1288 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
1289#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1290 /** Maps a guest SIMD register to a host SIMD register (index by IEMNATIVEGSTSIMDREG).
1291 * Entries are only valid if the corresponding bit in bmGstSimdRegShadows is set.
1292 * (A shadow copy of a guest register can only be held in a one host register,
1293 * there are no duplicate copies or ambiguities like that). */
1294 uint8_t aidxGstSimdRegShadows[kIemNativeGstSimdReg_End];
1295#endif
1296
1297 /** Host register allocation tracking. */
1298 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
1299#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1300 /** Host SIMD register allocation tracking. */
1301 IEMNATIVEHSTSIMDREG aHstSimdRegs[IEMNATIVE_HST_SIMD_REG_COUNT];
1302#endif
1303
1304 /** Variables and arguments. */
1305 IEMNATIVEVAR aVars[9];
1306} IEMNATIVECORESTATE;
1307/** Pointer to core state. */
1308typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
1309/** Pointer to const core state. */
1310typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
1311
1312/** @def IEMNATIVE_VAR_IDX_UNPACK
1313 * @returns Index into IEMNATIVECORESTATE::aVars.
1314 * @param a_idxVar Variable index w/ magic (in strict builds).
1315 */
1316/** @def IEMNATIVE_VAR_IDX_PACK
1317 * @returns Variable index w/ magic (in strict builds).
1318 * @param a_idxVar Index into IEMNATIVECORESTATE::aVars.
1319 */
1320#ifdef VBOX_STRICT
1321# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) ((a_idxVar) & IEMNATIVE_VAR_IDX_MASK)
1322# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) ((a_idxVar) | IEMNATIVE_VAR_IDX_MAGIC)
1323# define IEMNATIVE_VAR_IDX_MAGIC UINT8_C(0xd0)
1324# define IEMNATIVE_VAR_IDX_MAGIC_MASK UINT8_C(0xf0)
1325# define IEMNATIVE_VAR_IDX_MASK UINT8_C(0x0f)
1326#else
1327# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) (a_idxVar)
1328# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) (a_idxVar)
1329#endif
1330
1331
1332#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1333/** Clear the dirty state of the given guest SIMD register. */
1334# define IEMNATIVE_SIMD_REG_STATE_CLR_DIRTY(a_pReNative, a_iSimdReg) \
1335 do { \
1336 (a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 &= ~RT_BIT_64(a_iSimdReg); \
1337 (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 &= ~RT_BIT_64(a_iSimdReg); \
1338 } while (0)
1339
1340/** Returns whether the low 128-bits of the given guest SIMD register are dirty. */
1341# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1342 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 & RT_BIT_64(a_iSimdReg))
1343/** Returns whether the high 128-bits of the given guest SIMD register are dirty. */
1344# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1345 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 & RT_BIT_64(a_iSimdReg))
1346/** Returns whether the given guest SIMD register is dirty. */
1347# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_U256(a_pReNative, a_iSimdReg) \
1348 RT_BOOL(((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 | (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128) & RT_BIT_64(a_iSimdReg))
1349
1350/** Set the low 128-bits of the given guest SIMD register to the dirty state. */
1351# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1352 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 |= RT_BIT_64(a_iSimdReg))
1353/** Set the high 128-bits of the given guest SIMD register to the dirty state. */
1354# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1355 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 |= RT_BIT_64(a_iSimdReg))
1356
1357/** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1358# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_DEVICE_NOT_AVAILABLE RT_BIT_32(0)
1359 /** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1360# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_WAIT_DEVICE_NOT_AVAILABLE RT_BIT_32(1)
1361/** Flag for indicating that IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() has emitted code in the current TB. */
1362# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_SSE RT_BIT_32(2)
1363/** Flag for indicating that IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() has emitted code in the current TB. */
1364# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_AVX RT_BIT_32(3)
1365#endif
1366
1367
1368/**
1369 * Conditional stack entry.
1370 */
1371typedef struct IEMNATIVECOND
1372{
1373 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
1374 bool fInElse;
1375 /** The label for the IEM_MC_ELSE. */
1376 uint32_t idxLabelElse;
1377 /** The label for the IEM_MC_ENDIF. */
1378 uint32_t idxLabelEndIf;
1379 /** The initial state snapshot as the if-block starts executing. */
1380 IEMNATIVECORESTATE InitialState;
1381 /** The state snapshot at the end of the if-block. */
1382 IEMNATIVECORESTATE IfFinalState;
1383} IEMNATIVECOND;
1384/** Pointer to a condition stack entry. */
1385typedef IEMNATIVECOND *PIEMNATIVECOND;
1386
1387
1388/**
1389 * Native recompiler state.
1390 */
1391typedef struct IEMRECOMPILERSTATE
1392{
1393 /** Size of the buffer that pbNativeRecompileBufR3 points to in
1394 * IEMNATIVEINSTR units. */
1395 uint32_t cInstrBufAlloc;
1396#ifdef VBOX_STRICT
1397 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
1398 uint32_t offInstrBufChecked;
1399#else
1400 uint32_t uPadding1; /* We don't keep track of the size here... */
1401#endif
1402 /** Fixed temporary code buffer for native recompilation. */
1403 PIEMNATIVEINSTR pInstrBuf;
1404
1405 /** Bitmaps with the label types used. */
1406 uint64_t bmLabelTypes;
1407 /** Actual number of labels in paLabels. */
1408 uint32_t cLabels;
1409 /** Max number of entries allowed in paLabels before reallocating it. */
1410 uint32_t cLabelsAlloc;
1411 /** Labels defined while recompiling (referenced by fixups). */
1412 PIEMNATIVELABEL paLabels;
1413 /** Array with indexes of unique labels (uData always 0). */
1414 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
1415
1416 /** Actual number of fixups paFixups. */
1417 uint32_t cFixups;
1418 /** Max number of entries allowed in paFixups before reallocating it. */
1419 uint32_t cFixupsAlloc;
1420 /** Buffer used by the recompiler for recording fixups when generating code. */
1421 PIEMNATIVEFIXUP paFixups;
1422
1423#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1424 /** Number of debug info entries allocated for pDbgInfo. */
1425 uint32_t cDbgInfoAlloc;
1426 uint32_t uPadding;
1427 /** Debug info. */
1428 PIEMTBDBG pDbgInfo;
1429#endif
1430
1431#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1432 /** The current call index (liveness array and threaded calls in TB). */
1433 uint32_t idxCurCall;
1434 /** Number of liveness entries allocated. */
1435 uint32_t cLivenessEntriesAlloc;
1436 /** Liveness entries for all the calls in the TB begin recompiled.
1437 * The entry for idxCurCall contains the info for what the next call will
1438 * require wrt registers. (Which means the last entry is the initial liveness
1439 * state.) */
1440 PIEMLIVENESSENTRY paLivenessEntries;
1441#endif
1442
1443 /** The translation block being recompiled. */
1444 PCIEMTB pTbOrg;
1445 /** The VMCPU structure of the EMT. */
1446 PVMCPUCC pVCpu;
1447
1448 /** Condition sequence number (for generating unique labels). */
1449 uint16_t uCondSeqNo;
1450 /** Check IRQ seqeunce number (for generating unique labels). */
1451 uint16_t uCheckIrqSeqNo;
1452 /** TLB load sequence number (for generating unique labels). */
1453 uint16_t uTlbSeqNo;
1454 /** The current condition stack depth (aCondStack). */
1455 uint8_t cCondDepth;
1456
1457 /** The argument count + hidden regs from the IEM_MC_BEGIN_EX statement. */
1458 uint8_t cArgsX;
1459 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1460 uint32_t fCImpl;
1461 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1462 uint32_t fMc;
1463 /** The expected IEMCPU::fExec value for the current call/instruction. */
1464 uint32_t fExec;
1465#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1466 /** IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_XXX flags for exception flags
1467 * we only emit once per TB (or when the cr0/cr4/xcr0 register changes).
1468 *
1469 * This is an optimization because these control registers can only be changed from
1470 * by calling a C helper we can catch. Should reduce the number of instructions in a TB
1471 * consisting of multiple SIMD instructions.
1472 */
1473 uint32_t fSimdRaiseXcptChecksEmitted;
1474#endif
1475 /** The call number of the last CheckIrq, UINT32_MAX if not seen. */
1476 uint32_t idxLastCheckIrqCallNo;
1477
1478 /** Core state requiring care with branches. */
1479 IEMNATIVECORESTATE Core;
1480
1481 /** The condition nesting stack. */
1482 IEMNATIVECOND aCondStack[2];
1483
1484#ifndef IEM_WITH_THROW_CATCH
1485 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
1486 * for recompilation error handling. */
1487 jmp_buf JmpBuf;
1488#endif
1489} IEMRECOMPILERSTATE;
1490/** Pointer to a native recompiler state. */
1491typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
1492
1493
1494/** @def IEMNATIVE_TRY_SETJMP
1495 * Wrapper around setjmp / try, hiding all the ugly differences.
1496 *
1497 * @note Use with extreme care as this is a fragile macro.
1498 * @param a_pReNative The native recompile state.
1499 * @param a_rcTarget The variable that should receive the status code in case
1500 * of a longjmp/throw.
1501 */
1502/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
1503 * Start wrapper for catch / setjmp-else.
1504 *
1505 * This will set up a scope.
1506 *
1507 * @note Use with extreme care as this is a fragile macro.
1508 * @param a_pReNative The native recompile state.
1509 * @param a_rcTarget The variable that should receive the status code in case
1510 * of a longjmp/throw.
1511 */
1512/** @def IEMNATIVE_CATCH_LONGJMP_END
1513 * End wrapper for catch / setjmp-else.
1514 *
1515 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
1516 * up the state.
1517 *
1518 * @note Use with extreme care as this is a fragile macro.
1519 * @param a_pReNative The native recompile state.
1520 */
1521/** @def IEMNATIVE_DO_LONGJMP
1522 *
1523 * Wrapper around longjmp / throw.
1524 *
1525 * @param a_pReNative The native recompile state.
1526 * @param a_rc The status code jump back with / throw.
1527 */
1528#ifdef IEM_WITH_THROW_CATCH
1529# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1530 a_rcTarget = VINF_SUCCESS; \
1531 try
1532# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1533 catch (int rcThrown) \
1534 { \
1535 a_rcTarget = rcThrown
1536# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1537 } \
1538 ((void)0)
1539# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
1540#else /* !IEM_WITH_THROW_CATCH */
1541# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1542 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
1543# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1544 else \
1545 { \
1546 ((void)0)
1547# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1548 }
1549# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
1550#endif /* !IEM_WITH_THROW_CATCH */
1551
1552
1553/**
1554 * Native recompiler worker for a threaded function.
1555 *
1556 * @returns New code buffer offset; throws VBox status code in case of a failure.
1557 * @param pReNative The native recompiler state.
1558 * @param off The current code buffer offset.
1559 * @param pCallEntry The threaded call entry.
1560 *
1561 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
1562 */
1563typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
1564/** Pointer to a native recompiler worker for a threaded function. */
1565typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
1566
1567/** Defines a native recompiler worker for a threaded function.
1568 * @see FNIEMNATIVERECOMPFUNC */
1569#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
1570 uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
1571
1572/** Prototypes a native recompiler function for a threaded function.
1573 * @see FNIEMNATIVERECOMPFUNC */
1574#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
1575
1576
1577/**
1578 * Native recompiler liveness analysis worker for a threaded function.
1579 *
1580 * @param pCallEntry The threaded call entry.
1581 * @param pIncoming The incoming liveness state entry.
1582 * @param pOutgoing The outgoing liveness state entry.
1583 */
1584typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
1585 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
1586/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
1587typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
1588
1589/** Defines a native recompiler liveness analysis worker for a threaded function.
1590 * @see FNIEMNATIVELIVENESSFUNC */
1591#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
1592 DECLCALLBACK(void) a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
1593
1594/** Prototypes a native recompiler liveness analysis function for a threaded function.
1595 * @see FNIEMNATIVELIVENESSFUNC */
1596#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
1597
1598
1599/** Define a native recompiler helper function, safe to call from the TB code. */
1600#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
1601 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1602/** Prototype a native recompiler helper function, safe to call from the TB code. */
1603#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
1604 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1605/** Pointer typedef a native recompiler helper function, safe to call from the TB code. */
1606#define IEM_DECL_NATIVE_HLP_PTR(a_RetType, a_Name, a_ArgList) \
1607 a_RetType (VBOXCALL *a_Name) a_ArgList
1608
1609
1610#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1611DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1612DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg,
1613 uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX);
1614# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1615DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestSimdRegShadowing(PIEMRECOMPILERSTATE pReNative,
1616 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1617 uint8_t idxHstSimdReg = UINT8_MAX,
1618 uint8_t idxHstSimdRegPrev = UINT8_MAX);
1619# endif
1620# if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1621DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegDirty(PIEMRECOMPILERSTATE pReNative, bool fSimdReg,
1622 uint8_t idxGstReg, uint8_t idxHstReg);
1623DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegWriteback(PIEMRECOMPILERSTATE pReNative, bool fSimdReg,
1624 uint64_t fGstReg);
1625# endif
1626DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddDelayedPcUpdate(PIEMRECOMPILERSTATE pReNative,
1627 uint32_t offPc, uint32_t cInstrSkipped);
1628#endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
1629
1630DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1631 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
1632DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
1633DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
1634 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
1635DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
1636
1637DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1638DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1639 bool fPreferVolatile = true);
1640DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm,
1641 bool fPreferVolatile = true);
1642DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1643 IEMNATIVEGSTREG enmGstReg,
1644 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1645 bool fNoVolatileRegs = false, bool fSkipLivenessAssert = false);
1646DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1647 IEMNATIVEGSTREG enmGstReg);
1648
1649DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
1650DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
1651#if (defined(IPRT_INCLUDED_x86_h) && defined(RT_ARCH_AMD64)) || (defined(IPRT_INCLUDED_armv8_h) && defined(RT_ARCH_ARM64))
1652DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
1653 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK);
1654# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1655DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
1656 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK);
1657# endif
1658#endif
1659DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1660DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1661DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1662DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
1663#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1664DECLHIDDEN(void) iemNativeSimdRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, bool fFlushShadows) RT_NOEXCEPT;
1665# ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1666DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushDirtyGuestByHostSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg);
1667# endif
1668#endif
1669DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
1670DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
1671 uint32_t fKeepVars = 0);
1672DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
1673DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
1674DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1675 uint32_t fHstRegsActiveShadows);
1676#ifdef VBOX_STRICT
1677DECLHIDDEN(void) iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative);
1678#endif
1679DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWritesSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept,
1680 uint64_t fGstSimdShwExcept);
1681#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1682DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcWritebackSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1683#endif
1684#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1685DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVEGSTREG enmGstReg);
1686DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuest(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fFlushGstReg = UINT64_MAX);
1687DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuestByHostRegShadow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg);
1688#endif
1689
1690
1691#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1692DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1693DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1694 bool fPreferVolatile = true);
1695DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpForGuestSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1696 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1697 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz,
1698 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1699 bool fNoVolatileRegs = false);
1700DECLHIDDEN(void) iemNativeSimdRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg) RT_NOEXCEPT;
1701DECLHIDDEN(void) iemNativeSimdRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstSimdRegs) RT_NOEXCEPT;
1702DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1703 IEMNATIVEGSTSIMDREG enmGstSimdReg);
1704DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadSimdRegWithGstShadowSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1705 uint8_t idxHstSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg,
1706 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1707#endif
1708
1709DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType);
1710DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue);
1711DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar);
1712DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType);
1713DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue);
1714DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocAssign(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t cbType, uint8_t idxVarOther);
1715DECL_HIDDEN_THROW(void) iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1716DECL_HIDDEN_THROW(void) iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue);
1717DECL_HIDDEN_THROW(void) iemNativeVarSetKindToGstRegRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1718 IEMNATIVEGSTREGREF enmRegClass, uint8_t idxReg);
1719DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1720DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1721 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1722#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1723DECL_HIDDEN_THROW(uint8_t) iemNativeVarSimdRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1724 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1725#endif
1726DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1727 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
1728DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1729 uint32_t fHstRegsNotToSave);
1730DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1731 uint32_t fHstRegsNotToSave);
1732DECLHIDDEN(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1733DECLHIDDEN(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars);
1734
1735DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1736 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
1737#ifdef VBOX_STRICT
1738DECL_HIDDEN_THROW(uint32_t) iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg);
1739DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg,
1740 IEMNATIVEGSTREG enmGstReg);
1741# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1742DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestSimdRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxSimdReg,
1743 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1744 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1745# endif
1746DECL_HIDDEN_THROW(uint32_t) iemNativeEmitExecFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fExec);
1747#endif
1748#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
1749DECL_HIDDEN_THROW(uint32_t) iemNativeEmitEFlagsSkippingCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fEflNeeded);
1750#endif
1751DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
1752DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs, bool fFlushPendingWrites = true);
1753DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
1754 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
1755 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
1756DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1757 PCIEMTHRDEDCALLENTRY pCallEntry);
1758DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckGprCanonicalMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1759 uint8_t idxAddrReg, uint8_t idxInstr);
1760DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckGpr32AgainstCsSegLimitMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1761 uint8_t idxAddrReg, uint8_t idxInstr);
1762DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLeaGprByGstRegRef(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxGprDst,
1763 IEMNATIVEGSTREGREF enmClass, uint8_t idxRegInClass);
1764
1765
1766IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr));
1767IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu));
1768IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseNm,(PVMCPUCC pVCpu));
1769IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseUd,(PVMCPUCC pVCpu));
1770IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseMf,(PVMCPUCC pVCpu));
1771IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseXf,(PVMCPUCC pVCpu));
1772IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseDe,(PVMCPUCC pVCpu));
1773IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpObsoleteTb,(PVMCPUCC pVCpu));
1774IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpNeedCsLimChecking,(PVMCPUCC pVCpu));
1775IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpCheckBranchMiss,(PVMCPUCC pVCpu));
1776
1777IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1778IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1779IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1780IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1781IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1782IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1783IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1784IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1785IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1786IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1787#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1788IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
1789IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
1790IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
1791IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst));
1792IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst));
1793#endif
1794IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint8_t u8Value));
1795IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint16_t u16Value));
1796IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint32_t u32Value));
1797IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint64_t u64Value));
1798#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1799IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src));
1800IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src));
1801IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src));
1802IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src));
1803#endif
1804IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1805IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1806IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1807IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1808IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1809IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1810IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1811
1812IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1813IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1814IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1815IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1816IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1817IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1818IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1819IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1820IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1821IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1822#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1823IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
1824IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
1825IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
1826IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst));
1827IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst));
1828#endif
1829IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t u8Value));
1830IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1831IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1832IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1833#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1834IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src));
1835IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src));
1836IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src));
1837IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src));
1838#endif
1839IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1840IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1841IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1842IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1843IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFlatFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1844IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFlatFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1845IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFlatFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1846
1847IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1848IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1849IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1850IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1851IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1852IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1853IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1854IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1855IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1856IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1857IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1858IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1859IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1860IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1861IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1862IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1863IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1864IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1865IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1866IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1867IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1868IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1869
1870IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1871IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1872IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1873IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemFlatMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1874IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1875IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1876IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1877IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemFlatMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1878IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1879IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1880IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1881IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemFlatMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1882IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1883IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1884IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1885IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemFlatMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1886IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemFlatMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1887IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemFlatMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1888IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1889IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1890IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1891IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemFlatMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1892
1893IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapAtomic,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1894IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRw,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1895IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapWo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1896IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1897
1898
1899/**
1900 * Info about shadowed guest register values.
1901 * @see IEMNATIVEGSTREG
1902 */
1903typedef struct IEMANTIVEGSTREGINFO
1904{
1905 /** Offset in VMCPU. */
1906 uint32_t off;
1907 /** The field size. */
1908 uint8_t cb;
1909 /** Name (for logging). */
1910 const char *pszName;
1911} IEMANTIVEGSTREGINFO;
1912extern DECL_HIDDEN_DATA(IEMANTIVEGSTREGINFO const) g_aGstShadowInfo[];
1913extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
1914extern DECL_HIDDEN_DATA(int32_t const) g_aoffIemNativeCallStackArgBpDisp[];
1915extern DECL_HIDDEN_DATA(uint32_t const) g_afIemNativeCallRegs[];
1916extern DECL_HIDDEN_DATA(uint8_t const) g_aidxIemNativeCallRegs[];
1917
1918
1919
1920/**
1921 * Ensures that there is sufficient space in the instruction output buffer.
1922 *
1923 * This will reallocate the buffer if needed and allowed.
1924 *
1925 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
1926 * allocation size.
1927 *
1928 * @returns Pointer to the instruction output buffer on success; throws VBox
1929 * status code on failure, so no need to check it.
1930 * @param pReNative The native recompile state.
1931 * @param off Current instruction offset. Works safely for UINT32_MAX
1932 * as well.
1933 * @param cInstrReq Number of instruction about to be added. It's okay to
1934 * overestimate this a bit.
1935 */
1936DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
1937iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
1938{
1939 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
1940 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
1941 {
1942#ifdef VBOX_STRICT
1943 pReNative->offInstrBufChecked = offChecked;
1944#endif
1945 return pReNative->pInstrBuf;
1946 }
1947 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
1948}
1949
1950/**
1951 * Checks that we didn't exceed the space requested in the last
1952 * iemNativeInstrBufEnsure() call.
1953 */
1954#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
1955 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
1956 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
1957
1958/**
1959 * Checks that a variable index is valid.
1960 */
1961#ifdef IEMNATIVE_VAR_IDX_MAGIC
1962# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1963 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
1964 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1965 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))), \
1966 ("%s=%#x\n", #a_idxVar, a_idxVar))
1967#else
1968# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
1969 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1970 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
1971#endif
1972
1973/**
1974 * Checks that a variable index is valid and that the variable is assigned the
1975 * correct argument number.
1976 * This also adds a RT_NOREF of a_idxVar.
1977 */
1978#ifdef IEMNATIVE_VAR_IDX_MAGIC
1979# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1980 RT_NOREF_PV(a_idxVar); \
1981 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
1982 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1983 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))) \
1984 && (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].uArgNo == (a_uArgNo), \
1985 ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1986 (a_pReNative)->Core.aVars[RT_MIN(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar), \
1987 RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, \
1988 a_uArgNo)); \
1989 } while (0)
1990#else
1991# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
1992 RT_NOREF_PV(a_idxVar); \
1993 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
1994 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
1995 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
1996 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
1997 (a_pReNative)->Core.aVars[RT_MIN(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
1998 } while (0)
1999#endif
2000
2001
2002/**
2003 * Checks that a variable has the expected size.
2004 */
2005#define IEMNATIVE_ASSERT_VAR_SIZE(a_pReNative, a_idxVar, a_cbVar) \
2006 AssertMsg((a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar), \
2007 ("%s=%#x: cbVar=%#x, expected %#x!\n", #a_idxVar, a_idxVar, \
2008 (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar)))
2009
2010
2011/**
2012 * Calculates the stack address of a variable as a [r]BP displacement value.
2013 */
2014DECL_FORCE_INLINE(int32_t)
2015iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
2016{
2017 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
2018 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
2019}
2020
2021
2022/**
2023 * Releases the variable's register.
2024 *
2025 * The register must have been previously acquired calling
2026 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
2027 * iemNativeVarRegisterSetAndAcquire().
2028 */
2029DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
2030{
2031 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2032 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired);
2033 pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired = false;
2034}
2035
2036
2037#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2038DECL_INLINE_THROW(void) iemNativeVarSimdRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
2039{
2040 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fSimdReg);
2041 iemNativeVarRegisterRelease(pReNative, idxVar);
2042}
2043#endif
2044
2045
2046/**
2047 * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask.
2048 *
2049 * @returns The flush mask.
2050 * @param fCImpl The IEM_CIMPL_F_XXX flags.
2051 * @param fGstShwFlush The starting flush mask.
2052 */
2053DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush)
2054{
2055 if (fCImpl & IEM_CIMPL_F_BRANCH_FAR)
2056 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS)
2057 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS)
2058 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS);
2059 if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR)
2060 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP)
2061 | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS)
2062 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS)
2063 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS);
2064 else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK)
2065 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP);
2066 if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW))
2067 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
2068 return fGstShwFlush;
2069}
2070
2071
2072/** Number of hidden arguments for CIMPL calls.
2073 * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */
2074#if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
2075# define IEM_CIMPL_HIDDEN_ARGS 3
2076#else
2077# define IEM_CIMPL_HIDDEN_ARGS 2
2078#endif
2079
2080
2081#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2082/** Number of hidden arguments for SSE_AIMPL calls. */
2083# define IEM_SSE_AIMPL_HIDDEN_ARGS 1
2084/** Number of hidden arguments for AVX_AIMPL calls. */
2085# define IEM_AVX_AIMPL_HIDDEN_ARGS 1
2086#endif
2087
2088
2089#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
2090
2091# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2092/**
2093 * Helper for iemNativeLivenessGetStateByGstReg.
2094 *
2095 * @returns IEMLIVENESS_STATE_XXX
2096 * @param fMergedStateExp2 This is the RT_BIT_32() of each sub-state
2097 * ORed together.
2098 */
2099DECL_FORCE_INLINE(uint32_t)
2100iemNativeLivenessMergeExpandedEFlagsState(uint32_t fMergedStateExp2)
2101{
2102 /* INPUT trumps anything else. */
2103 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_INPUT))
2104 return IEMLIVENESS_STATE_INPUT;
2105
2106 /* CLOBBERED trumps XCPT_OR_CALL and UNUSED. */
2107 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_CLOBBERED))
2108 {
2109 /* If not all sub-fields are clobbered they must be considered INPUT. */
2110 if (fMergedStateExp2 & (RT_BIT_32(IEMLIVENESS_STATE_UNUSED) | RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL)))
2111 return IEMLIVENESS_STATE_INPUT;
2112 return IEMLIVENESS_STATE_CLOBBERED;
2113 }
2114
2115 /* XCPT_OR_CALL trumps UNUSED. */
2116 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL))
2117 return IEMLIVENESS_STATE_XCPT_OR_CALL;
2118
2119 return IEMLIVENESS_STATE_UNUSED;
2120}
2121# endif /* !IEMLIVENESS_EXTENDED_LAYOUT */
2122
2123
2124DECL_FORCE_INLINE(uint32_t)
2125iemNativeLivenessGetStateByGstRegEx(PCIEMLIVENESSENTRY pLivenessEntry, unsigned enmGstRegEx)
2126{
2127# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2128 return ((pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
2129 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2);
2130# else
2131 return ( (pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
2132 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2)
2133 | (((pLivenessEntry->Bit2.bm64 >> enmGstRegEx) << 2) & 4)
2134 | (((pLivenessEntry->Bit3.bm64 >> enmGstRegEx) << 2) & 8);
2135# endif
2136}
2137
2138
2139DECL_FORCE_INLINE(uint32_t)
2140iemNativeLivenessGetStateByGstReg(PCIEMLIVENESSENTRY pLivenessEntry, IEMNATIVEGSTREG enmGstReg)
2141{
2142 uint32_t uRet = iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, (unsigned)enmGstReg);
2143 if (enmGstReg == kIemNativeGstReg_EFlags)
2144 {
2145 /* Merge the eflags states to one. */
2146# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2147 uRet = RT_BIT_32(uRet);
2148 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflCf | (pLivenessEntry->Bit1.fEflCf << 1));
2149 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflPf | (pLivenessEntry->Bit1.fEflPf << 1));
2150 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflAf | (pLivenessEntry->Bit1.fEflAf << 1));
2151 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflZf | (pLivenessEntry->Bit1.fEflZf << 1));
2152 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflSf | (pLivenessEntry->Bit1.fEflSf << 1));
2153 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflOf | (pLivenessEntry->Bit1.fEflOf << 1));
2154 uRet = iemNativeLivenessMergeExpandedEFlagsState(uRet);
2155# else
2156 AssertCompile(IEMLIVENESSBIT_IDX_EFL_OTHER == (unsigned)kIemNativeGstReg_EFlags);
2157 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_CF);
2158 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_PF);
2159 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_AF);
2160 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_ZF);
2161 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_SF);
2162 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_OF);
2163# endif
2164 }
2165 return uRet;
2166}
2167
2168
2169# ifdef VBOX_STRICT
2170/** For assertions only, user checks that idxCurCall isn't zerow. */
2171DECL_FORCE_INLINE(uint32_t)
2172iemNativeLivenessGetPrevStateByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg)
2173{
2174 return iemNativeLivenessGetStateByGstReg(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg);
2175}
2176# endif /* VBOX_STRICT */
2177
2178#endif /* IEMNATIVE_WITH_LIVENESS_ANALYSIS */
2179
2180
2181/**
2182 * Gets the number of hidden arguments for an expected IEM_MC_CALL statement.
2183 */
2184DECL_FORCE_INLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative)
2185{
2186 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL)
2187 return IEM_CIMPL_HIDDEN_ARGS;
2188 if (pReNative->fCImpl & (IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE | IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE))
2189 return 1;
2190 return 0;
2191}
2192
2193
2194DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg,
2195 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2196{
2197 pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
2198
2199 pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat;
2200 pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
2201 pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
2202 return (uint8_t)idxReg;
2203}
2204
2205
2206
2207/*********************************************************************************************************************************
2208* Register Allocator (GPR) *
2209*********************************************************************************************************************************/
2210
2211/**
2212 * Marks host register @a idxHstReg as containing a shadow copy of guest
2213 * register @a enmGstReg.
2214 *
2215 * ASSUMES that caller has made sure @a enmGstReg is not associated with any
2216 * host register before calling.
2217 */
2218DECL_FORCE_INLINE(void)
2219iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2220{
2221 Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)));
2222 Assert(!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
2223 Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End);
2224
2225 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg;
2226 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg); /** @todo why? not OR? */
2227 pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg);
2228 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
2229#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2230 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2231 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg);
2232#else
2233 RT_NOREF(off);
2234#endif
2235}
2236
2237
2238/**
2239 * Clear any guest register shadow claims from @a idxHstReg.
2240 *
2241 * The register does not need to be shadowing any guest registers.
2242 */
2243DECL_FORCE_INLINE(void)
2244iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off)
2245{
2246 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2247 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2248 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2249 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
2250 == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
2251#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2252 Assert(!(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & pReNative->Core.bmGstRegShadowDirty));
2253#endif
2254
2255#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2256 uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2257 if (fGstRegs)
2258 {
2259 Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End));
2260 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2261 while (fGstRegs)
2262 {
2263 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2264 fGstRegs &= ~RT_BIT_64(iGstReg);
2265 iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg);
2266 }
2267 }
2268#else
2269 RT_NOREF(off);
2270#endif
2271
2272 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2273 pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2274 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
2275}
2276
2277
2278/**
2279 * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg
2280 * and global overview flags.
2281 */
2282DECL_FORCE_INLINE(void)
2283iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2284{
2285 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2286 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2287 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2288 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2289 Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg));
2290 Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg));
2291 Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
2292#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2293 Assert(!(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & pReNative->Core.bmGstRegShadowDirty));
2294#endif
2295
2296#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2297 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2298 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg);
2299#else
2300 RT_NOREF(off);
2301#endif
2302
2303 uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2304 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
2305 if (!fGstRegShadowsNew)
2306 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2307 pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg);
2308}
2309
2310
2311#if 0 /* unused */
2312/**
2313 * Clear any guest register shadow claim for @a enmGstReg.
2314 */
2315DECL_FORCE_INLINE(void)
2316iemNativeRegClearGstRegShadowingByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2317{
2318 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2319 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2320 {
2321 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs));
2322 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2323 }
2324}
2325#endif
2326
2327
2328/**
2329 * Clear any guest register shadow claim for @a enmGstReg and mark @a idxHstRegNew
2330 * as the new shadow of it.
2331 *
2332 * Unlike the other guest reg shadow helpers, this does the logging for you.
2333 * However, it is the liveness state is not asserted here, the caller must do
2334 * that.
2335 */
2336DECL_FORCE_INLINE(void)
2337iemNativeRegClearAndMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstRegNew,
2338 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2339{
2340 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2341 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2342 {
2343 uint8_t const idxHstRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg];
2344 Assert(idxHstRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs));
2345 if (idxHstRegOld == idxHstRegNew)
2346 return;
2347 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s (from %s)\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2348 g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxHstRegOld]));
2349 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2350 }
2351 else
2352 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2353 g_aGstShadowInfo[enmGstReg].pszName));
2354 iemNativeRegMarkAsGstRegShadow(pReNative, idxHstRegNew, enmGstReg, off);
2355}
2356
2357
2358/**
2359 * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom
2360 * to @a idxRegTo.
2361 */
2362DECL_FORCE_INLINE(void)
2363iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo,
2364 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2365{
2366 Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg));
2367 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] == idxRegFrom);
2368 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)
2369 == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows
2370 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2371 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows)
2372 == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows);
2373 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom))
2374 == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows));
2375
2376 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2377 pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2378 if (!fGstRegShadowsFrom)
2379 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom);
2380 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo);
2381 pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg);
2382 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo;
2383#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2384 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2385 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom);
2386#else
2387 RT_NOREF(off);
2388#endif
2389}
2390
2391
2392/**
2393 * Flushes any delayed guest register writes.
2394 *
2395 * This must be called prior to calling CImpl functions and any helpers that use
2396 * the guest state (like raising exceptions) and such.
2397 *
2398 * This optimization has not yet been implemented. The first target would be
2399 * RIP updates, since these are the most common ones.
2400 *
2401 * @note This function does not flush any shadowing information for guest registers. This needs to be done by
2402 * the caller if it wishes to do so.
2403 */
2404DECL_INLINE_THROW(uint32_t)
2405iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept = 0, uint64_t fGstSimdShwExcept = 0)
2406{
2407#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2408 uint64_t const bmGstRegShadowDirty = pReNative->Core.bmGstRegShadowDirty & ~fGstShwExcept;
2409#else
2410 uint64_t const bmGstRegShadowDirty = 0;
2411#endif
2412#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2413 uint64_t const bmGstSimdRegShadowDirty = (pReNative->Core.bmGstSimdRegShadowDirtyLo128 | pReNative->Core.bmGstSimdRegShadowDirtyHi128)
2414 & ~fGstSimdShwExcept;
2415#else
2416 uint64_t const bmGstSimdRegShadowDirty = 0;
2417#endif
2418#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2419 uint64_t const fWritebackPc = ~(fGstShwExcept & kIemNativeGstReg_Pc);
2420#else
2421 uint64_t const fWritebackPc = 0;
2422#endif
2423 if (bmGstRegShadowDirty | bmGstSimdRegShadowDirty | fWritebackPc)
2424 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fGstSimdShwExcept);
2425
2426 return off;
2427}
2428
2429
2430
2431/*********************************************************************************************************************************
2432* SIMD register allocator (largely code duplication of the GPR allocator for now but might diverge) *
2433*********************************************************************************************************************************/
2434
2435#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2436
2437DECL_FORCE_INLINE(uint8_t)
2438iemNativeSimdRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdReg,
2439 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2440{
2441 pReNative->Core.bmHstSimdRegs |= RT_BIT_32(idxSimdReg);
2442
2443 pReNative->Core.aHstSimdRegs[idxSimdReg].enmWhat = enmWhat;
2444 pReNative->Core.aHstSimdRegs[idxSimdReg].idxVar = idxVar;
2445 pReNative->Core.aHstSimdRegs[idxSimdReg].fGstRegShadows = 0;
2446 return idxSimdReg;
2447}
2448
2449
2450/**
2451 * Marks host SIMD register @a idxHstSimdReg as containing a shadow copy of guest
2452 * SIMD register @a enmGstSimdReg.
2453 *
2454 * ASSUMES that caller has made sure @a enmGstSimdReg is not associated with any
2455 * host register before calling.
2456 */
2457DECL_FORCE_INLINE(void)
2458iemNativeSimdRegMarkAsGstSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg,
2459 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2460{
2461 Assert(!(pReNative->Core.bmGstSimdRegShadows & RT_BIT_64(enmGstSimdReg)));
2462 Assert(!pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows);
2463 Assert((unsigned)enmGstSimdReg < (unsigned)kIemNativeGstSimdReg_End);
2464
2465 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxHstSimdReg;
2466 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2467 pReNative->Core.bmGstSimdRegShadows |= RT_BIT_64(enmGstSimdReg);
2468 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxHstSimdReg);
2469#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2470 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2471 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxHstSimdReg);
2472#else
2473 RT_NOREF(off);
2474#endif
2475}
2476
2477
2478/**
2479 * Transfers the guest SIMD register shadow claims of @a enmGstSimdReg from @a idxSimdRegFrom
2480 * to @a idxSimdRegTo.
2481 */
2482DECL_FORCE_INLINE(void)
2483iemNativeSimdRegTransferGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdRegFrom, uint8_t idxSimdRegTo,
2484 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2485{
2486 Assert(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & RT_BIT_64(enmGstSimdReg));
2487 Assert(pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] == idxSimdRegFrom);
2488 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows)
2489 == pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows
2490 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2491 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows)
2492 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows);
2493 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxSimdRegFrom))
2494 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows));
2495 Assert( pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded
2496 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].enmLoaded);
2497
2498 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstSimdReg);
2499 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2500 if (!fGstRegShadowsFrom)
2501 {
2502 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxSimdRegFrom);
2503 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2504 }
2505 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxSimdRegTo);
2506 pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2507 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxSimdRegTo;
2508#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2509 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2510 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxSimdRegTo, idxSimdRegFrom);
2511#else
2512 RT_NOREF(off);
2513#endif
2514}
2515
2516
2517/**
2518 * Clear any guest register shadow claims from @a idxHstSimdReg.
2519 *
2520 * The register does not need to be shadowing any guest registers.
2521 */
2522DECL_FORCE_INLINE(void)
2523iemNativeSimdRegClearGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, uint32_t off)
2524{
2525 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows)
2526 == pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows
2527 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstSimdReg_End));
2528 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxHstSimdReg))
2529 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows));
2530 Assert( !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyLo128)
2531 && !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyHi128));
2532
2533#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2534 uint64_t fGstRegs = pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2535 if (fGstRegs)
2536 {
2537 Assert(fGstRegs < RT_BIT_64(kIemNativeGstSimdReg_End));
2538 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2539 while (fGstRegs)
2540 {
2541 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2542 fGstRegs &= ~RT_BIT_64(iGstReg);
2543 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, (IEMNATIVEGSTSIMDREG)iGstReg, UINT8_MAX, idxHstSimdReg);
2544 }
2545 }
2546#else
2547 RT_NOREF(off);
2548#endif
2549
2550 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxHstSimdReg);
2551 pReNative->Core.bmGstSimdRegShadows &= ~pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2552 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows = 0;
2553 pReNative->Core.aHstSimdRegs[idxHstSimdReg].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2554}
2555
2556#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
2557
2558
2559#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2560/**
2561 * Emits code to update the guest RIP value by adding the current offset since the start of the last RIP update.
2562 */
2563DECL_INLINE_THROW(uint32_t) iemNativeEmitPcWriteback(PIEMRECOMPILERSTATE pReNative, uint32_t off)
2564{
2565 if (pReNative->Core.offPc)
2566 return iemNativeEmitPcWritebackSlow(pReNative, off);
2567 return off;
2568}
2569#endif /* IEMNATIVE_WITH_DELAYED_PC_UPDATING */
2570
2571
2572#ifdef IEMNATIVE_WITH_RECOMPILER_PROLOGUE_SINGLETON
2573/** @note iemNativeTbEntry returns VBOXSTRICTRC, but we don't declare it as
2574 * it saves us the trouble of a hidden parameter on MSC/amd64. */
2575# ifdef RT_ARCH_AMD64
2576extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, uintptr_t pfnTbBody));
2577# elif defined(RT_ARCH_ARM64)
2578extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, PCPUMCTX pCpumCtx, uintptr_t pfnTbBody));
2579# endif
2580#endif
2581
2582#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
2583
2584/** @} */
2585
2586#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
2587
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette