VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 106061

Last change on this file since 106061 was 106061, checked in by vboxsync, 5 months ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 131.4 KB
Line 
1/* $Id: IEMN8veRecompiler.h 106061 2024-09-16 14:03:52Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40#include <iprt/assertcompile.h> /* for RT_IN_ASSEMBLER mode */
41
42/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
43 * Enables generating internal debug info for better TB disassembly dumping. */
44#if defined(DEBUG) || defined(DOXYGEN_RUNNING) || 0
45# define IEMNATIVE_WITH_TB_DEBUG_INFO
46#endif
47
48/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
49 * Enables liveness analysis. */
50#if 1 || defined(DOXYGEN_RUNNING)
51# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
52/*# define IEMLIVENESS_EXTENDED_LAYOUT*/
53#endif
54
55/** @def IEMNATIVE_WITH_EFLAGS_SKIPPING
56 * Enables skipping EFLAGS calculations/updating based on liveness info. */
57#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || defined(DOXYGEN_RUNNING)
58# define IEMNATIVE_WITH_EFLAGS_SKIPPING
59#endif
60
61/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING
62 * Enables strict consistency checks around EFLAGS skipping.
63 * @note Only defined when IEMNATIVE_WITH_EFLAGS_SKIPPING is also defined. */
64#ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING
65# ifdef VBOX_STRICT
66# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
67# endif
68#elif defined(DOXYGEN_RUNNING)
69# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
70#endif
71
72#ifdef VBOX_WITH_STATISTICS
73/** Always count instructions for now. */
74# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
75#endif
76
77/** @def IEMNATIVE_WITH_RECOMPILER_PROLOGUE_SINGLETON
78 * Enables having only a single prologue for native TBs. */
79#if 1 || defined(DOXYGEN_RUNNING)
80# define IEMNATIVE_WITH_RECOMPILER_PROLOGUE_SINGLETON
81#endif
82
83/** @def IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
84 * Enable this to use common epilogue and tail code for all TBs in a chunk. */
85#if 1 || defined(DOXYGEN_RUNNING)
86# define IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
87#endif
88
89
90/** @name Stack Frame Layout
91 *
92 * @{ */
93/** The size of the area for stack variables and spills and stuff.
94 * @note This limit is duplicated in the python script(s). We add 0x40 for
95 * alignment padding. */
96#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
97/** Number of 64-bit variable slots (0x100 / 8 = 32. */
98#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
99AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
100
101#ifdef RT_ARCH_AMD64
102/** An stack alignment adjustment (between non-volatile register pushes and
103 * the stack variable area, so the latter better aligned). */
104# define IEMNATIVE_FRAME_ALIGN_SIZE 8
105
106/** Number of stack arguments slots for calls made from the frame. */
107# ifdef RT_OS_WINDOWS
108# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
109# else
110# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
111# endif
112/** Number of any shadow arguments (spill area) for calls we make. */
113# ifdef RT_OS_WINDOWS
114# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
115# else
116# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
117# endif
118
119/** Frame pointer (RBP) relative offset of the last push. */
120# ifdef RT_OS_WINDOWS
121# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
122# else
123# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
124# endif
125/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
126 * address for it). */
127# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
128/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
129# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
130/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
131# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
132# ifdef RT_OS_WINDOWS
133/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
134# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
135/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
136# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
137# endif
138
139# ifdef RT_OS_WINDOWS
140/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
141# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
142/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
143# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
144/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
145# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
146/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
147# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
148# endif
149
150#elif RT_ARCH_ARM64
151/** No alignment padding needed for arm64. */
152# define IEMNATIVE_FRAME_ALIGN_SIZE 0
153/** No stack argument slots, got 8 registers for arguments will suffice. */
154# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
155/** There are no argument spill area. */
156# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
157
158/** Number of saved registers at the top of our stack frame.
159 * This includes the return address and old frame pointer, so x19 thru x30. */
160# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
161/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
162# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
163
164/** Frame pointer (BP) relative offset of the last push. */
165# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
166
167/** Frame pointer (BP) relative offset of the stack variable area (the lowest
168 * address for it). */
169# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
170
171#else
172# error "port me"
173#endif
174/** @} */
175
176
177/** @name Fixed Register Allocation(s)
178 * @{ */
179/** @def IEMNATIVE_REG_FIXED_PVMCPU
180 * The number of the register holding the pVCpu pointer. */
181/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
182 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
183 * @note This not available on AMD64, only ARM64. */
184/** @def IEMNATIVE_REG_FIXED_TMP0
185 * Dedicated temporary register.
186 * @note This has extremely short lifetime, must be used with great care to make
187 * sure any calling code or code being called is making use of it.
188 * It will definitely not survive a call or anything of that nature.
189 * @todo replace this by a register allocator and content tracker. */
190/** @def IEMNATIVE_REG_FIXED_MASK
191 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
192 * architecture. */
193#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
194/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
195 * Mask SIMD registers with fixes assignments, either by us or dictated by the CPU/OS
196 * architecture. */
197/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
198 * Dedicated temporary SIMD register. */
199#endif
200#if defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING) /* arm64 goes first because of doxygen */
201# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
202# define IEMNATIVE_REG_FIXED_PVMCPU_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PVMCPU)
203# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
204# define IEMNATIVE_REG_FIXED_PCPUMCTX_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PCPUMCTX)
205# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
206# if defined(IEMNATIVE_WITH_DELAYED_PC_UPDATING) && 0 /* debug the updating with a shadow RIP. */
207# define IEMNATIVE_REG_FIXED_TMP1 ARMV8_A64_REG_X16
208# define IEMNATIVE_REG_FIXED_PC_DBG ARMV8_A64_REG_X26
209# define IEMNATIVE_REG_FIXED_MASK_ADD ( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1) \
210 | RT_BIT_32(IEMNATIVE_REG_FIXED_PC_DBG))
211# else
212# define IEMNATIVE_REG_FIXED_MASK_ADD 0
213# endif
214# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
215 | RT_BIT_32(ARMV8_A64_REG_LR) \
216 | RT_BIT_32(ARMV8_A64_REG_BP) \
217 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
218 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
219 | RT_BIT_32(ARMV8_A64_REG_X18) \
220 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
221 | IEMNATIVE_REG_FIXED_MASK_ADD)
222
223# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
224# define IEMNATIVE_SIMD_REG_FIXED_TMP0 ARMV8_A64_REG_Q30
225# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS)
226# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(ARMV8_A64_REG_Q30)
227# else
228/** @note
229 * ARM64 has 32 registers, but they are only 128-bit wide. So, in order to
230 * support emulating 256-bit registers we pair two real registers statically to
231 * one virtual for now, leaving us with only 16 256-bit registers. We always
232 * pair v0 with v1, v2 with v3, etc. so we mark the higher register as fixed and
233 * the register allocator assumes that it will be always free when the lower is
234 * picked.
235 *
236 * Also ARM64 declares the low 64-bit of v8-v15 as callee saved, so we don't
237 * touch them in order to avoid having to save and restore them in the
238 * prologue/epilogue.
239 */
240# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xff00) \
241 | RT_BIT_32(ARMV8_A64_REG_Q31) \
242 | RT_BIT_32(ARMV8_A64_REG_Q30) \
243 | RT_BIT_32(ARMV8_A64_REG_Q29) \
244 | RT_BIT_32(ARMV8_A64_REG_Q27) \
245 | RT_BIT_32(ARMV8_A64_REG_Q25) \
246 | RT_BIT_32(ARMV8_A64_REG_Q23) \
247 | RT_BIT_32(ARMV8_A64_REG_Q21) \
248 | RT_BIT_32(ARMV8_A64_REG_Q19) \
249 | RT_BIT_32(ARMV8_A64_REG_Q17) \
250 | RT_BIT_32(ARMV8_A64_REG_Q15) \
251 | RT_BIT_32(ARMV8_A64_REG_Q13) \
252 | RT_BIT_32(ARMV8_A64_REG_Q11) \
253 | RT_BIT_32(ARMV8_A64_REG_Q9) \
254 | RT_BIT_32(ARMV8_A64_REG_Q7) \
255 | RT_BIT_32(ARMV8_A64_REG_Q5) \
256 | RT_BIT_32(ARMV8_A64_REG_Q3) \
257 | RT_BIT_32(ARMV8_A64_REG_Q1))
258# endif
259# endif
260
261#elif defined(RT_ARCH_AMD64)
262# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
263# define IEMNATIVE_REG_FIXED_PVMCPU_ASM xBX
264# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
265# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
266 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
267 | RT_BIT_32(X86_GREG_xSP) \
268 | RT_BIT_32(X86_GREG_xBP) )
269
270# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
271# define IEMNATIVE_SIMD_REG_FIXED_TMP0 5 /* xmm5/ymm5 */
272# ifndef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
273# ifndef _MSC_VER
274# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
275# endif
276# endif
277# ifdef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
278# define IEMNATIVE_SIMD_REG_FIXED_MASK (RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
279# else
280/** @note On Windows/AMD64 xmm6 through xmm15 are marked as callee saved. */
281# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xffc0) \
282 | RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
283# endif
284# endif
285
286#else
287# error "port me"
288#endif
289/** @} */
290
291/** @name Call related registers.
292 * @{ */
293/** @def IEMNATIVE_CALL_RET_GREG
294 * The return value register. */
295/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
296 * Number of arguments in registers. */
297/** @def IEMNATIVE_CALL_ARG0_GREG
298 * The general purpose register carrying argument \#0. */
299/** @def IEMNATIVE_CALL_ARG1_GREG
300 * The general purpose register carrying argument \#1. */
301/** @def IEMNATIVE_CALL_ARG2_GREG
302 * The general purpose register carrying argument \#2. */
303/** @def IEMNATIVE_CALL_ARG3_GREG
304 * The general purpose register carrying argument \#3. */
305/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
306 * Mask of registers the callee will not save and may trash. */
307#ifdef RT_ARCH_AMD64
308# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
309
310# ifdef RT_OS_WINDOWS
311# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
312# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
313# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
314# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
315# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
316# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
317 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
318 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
319 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
320# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
321 | RT_BIT_32(X86_GREG_xCX) \
322 | RT_BIT_32(X86_GREG_xDX) \
323 | RT_BIT_32(X86_GREG_x8) \
324 | RT_BIT_32(X86_GREG_x9) \
325 | RT_BIT_32(X86_GREG_x10) \
326 | RT_BIT_32(X86_GREG_x11) )
327# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
328/* xmm0 - xmm5 are marked as volatile. */
329# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0x3f))
330# endif
331
332# else /* !RT_OS_WINDOWS */
333# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
334# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
335# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
336# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
337# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
338# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
339# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
340# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
341 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
342 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
343 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
344 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
345 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
346# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
347 | RT_BIT_32(X86_GREG_xCX) \
348 | RT_BIT_32(X86_GREG_xDX) \
349 | RT_BIT_32(X86_GREG_xDI) \
350 | RT_BIT_32(X86_GREG_xSI) \
351 | RT_BIT_32(X86_GREG_x8) \
352 | RT_BIT_32(X86_GREG_x9) \
353 | RT_BIT_32(X86_GREG_x10) \
354 | RT_BIT_32(X86_GREG_x11) )
355# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
356/* xmm0 - xmm15 are marked as volatile. */
357# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffff))
358# endif
359# endif /* !RT_OS_WINDOWS */
360
361#elif defined(RT_ARCH_ARM64)
362# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
363# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
364# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
365# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
366# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
367# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
368# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
369# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
370# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
371# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
372# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
373 | RT_BIT_32(ARMV8_A64_REG_X1) \
374 | RT_BIT_32(ARMV8_A64_REG_X2) \
375 | RT_BIT_32(ARMV8_A64_REG_X3) \
376 | RT_BIT_32(ARMV8_A64_REG_X4) \
377 | RT_BIT_32(ARMV8_A64_REG_X5) \
378 | RT_BIT_32(ARMV8_A64_REG_X6) \
379 | RT_BIT_32(ARMV8_A64_REG_X7) )
380# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
381 | RT_BIT_32(ARMV8_A64_REG_X1) \
382 | RT_BIT_32(ARMV8_A64_REG_X2) \
383 | RT_BIT_32(ARMV8_A64_REG_X3) \
384 | RT_BIT_32(ARMV8_A64_REG_X4) \
385 | RT_BIT_32(ARMV8_A64_REG_X5) \
386 | RT_BIT_32(ARMV8_A64_REG_X6) \
387 | RT_BIT_32(ARMV8_A64_REG_X7) \
388 | RT_BIT_32(ARMV8_A64_REG_X8) \
389 | RT_BIT_32(ARMV8_A64_REG_X9) \
390 | RT_BIT_32(ARMV8_A64_REG_X10) \
391 | RT_BIT_32(ARMV8_A64_REG_X11) \
392 | RT_BIT_32(ARMV8_A64_REG_X12) \
393 | RT_BIT_32(ARMV8_A64_REG_X13) \
394 | RT_BIT_32(ARMV8_A64_REG_X14) \
395 | RT_BIT_32(ARMV8_A64_REG_X15) \
396 | RT_BIT_32(ARMV8_A64_REG_X16) \
397 | RT_BIT_32(ARMV8_A64_REG_X17) )
398# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
399/* The low 64 bits of v8 - v15 marked as callee saved but the rest is volatile,
400 * so to simplify our life a bit we just mark everything as volatile. */
401# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffffffff))
402# endif
403
404#endif
405
406/** This is the maximum argument count we'll ever be needing. */
407#define IEMNATIVE_CALL_MAX_ARG_COUNT 7
408#ifdef RT_OS_WINDOWS
409# ifdef VBOXSTRICTRC_STRICT_ENABLED
410# undef IEMNATIVE_CALL_MAX_ARG_COUNT
411# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
412# endif
413#endif
414
415/** @def IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK
416 * Variant of IEMNATIVE_CALL_VOLATILE_GREG_MASK that excludes
417 * IEMNATIVE_REG_FIXED_TMP0 on hosts that uses it. */
418#ifdef IEMNATIVE_REG_FIXED_TMP0
419# ifdef IEMNATIVE_REG_FIXED_TMP1
420# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK ( IEMNATIVE_CALL_VOLATILE_GREG_MASK \
421 & ~( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
422 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1)))
423# else
424# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK (IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0))
425# endif
426#else
427# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK IEMNATIVE_CALL_VOLATILE_GREG_MASK
428#endif
429/** @} */
430
431
432/** @def IEMNATIVE_HST_GREG_COUNT
433 * Number of host general purpose registers we tracker. */
434/** @def IEMNATIVE_HST_GREG_MASK
435 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
436 * inverted register masks and such to get down to a correct set of regs. */
437#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
438/** @def IEMNATIVE_HST_SIMD_REG_COUNT
439 * Number of host SIMD registers we track. */
440/** @def IEMNATIVE_HST_SIMD_REG_MASK
441 * Mask corresponding to IEMNATIVE_HST_SIMD_REG_COUNT that can be applied to
442 * inverted register masks and such to get down to a correct set of regs. */
443#endif
444#ifdef RT_ARCH_AMD64
445# define IEMNATIVE_HST_GREG_COUNT 16
446# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
447
448# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
449# define IEMNATIVE_HST_SIMD_REG_COUNT 16
450# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_C(0xffff)
451# endif
452
453#elif defined(RT_ARCH_ARM64)
454# define IEMNATIVE_HST_GREG_COUNT 32
455# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
456
457# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
458# define IEMNATIVE_HST_SIMD_REG_COUNT 32
459# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_MAX
460# endif
461
462#else
463# error "Port me!"
464#endif
465
466
467#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
468
469
470/** Native code generator label types. */
471typedef enum
472{
473 kIemNativeLabelType_Invalid = 0,
474 /*
475 * Labels w/o data, only once instance per TB - aka exit reasons.
476 *
477 * Note! Jumps to these requires instructions that are capable of spanning
478 * the max TB length.
479 */
480 /* Simple labels comes first for indexing reasons. RaiseXx is order by the exception's numerical value(s). */
481 kIemNativeLabelType_RaiseDe, /**< Raise (throw) X86_XCPT_DE (00h). */
482 kIemNativeLabelType_RaiseUd, /**< Raise (throw) X86_XCPT_UD (06h). */
483 kIemNativeLabelType_RaiseSseRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to cr0 & cr4. */
484 kIemNativeLabelType_RaiseAvxRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to xcr0, cr0 & cr4. */
485 kIemNativeLabelType_RaiseSseAvxFpRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_XF according to c4. */
486 kIemNativeLabelType_RaiseNm, /**< Raise (throw) X86_XCPT_NM (07h). */
487 kIemNativeLabelType_RaiseGp0, /**< Raise (throw) X86_XCPT_GP (0dh) w/ errcd=0. */
488 kIemNativeLabelType_RaiseMf, /**< Raise (throw) X86_XCPT_MF (10h). */
489 kIemNativeLabelType_RaiseXf, /**< Raise (throw) X86_XCPT_XF (13h). */
490 kIemNativeLabelType_ObsoleteTb,
491 kIemNativeLabelType_NeedCsLimChecking,
492 kIemNativeLabelType_CheckBranchMiss,
493 kIemNativeLabelType_LastSimple = kIemNativeLabelType_CheckBranchMiss,
494 /* Manually defined labels. */
495 kIemNativeLabelType_ReturnBreak,
496 kIemNativeLabelType_ReturnBreakFF,
497 kIemNativeLabelType_ReturnBreakViaLookup,
498 kIemNativeLabelType_ReturnBreakViaLookupWithIrq,
499 kIemNativeLabelType_ReturnBreakViaLookupWithTlb,
500 kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq,
501 kIemNativeLabelType_ReturnWithFlags,
502 kIemNativeLabelType_NonZeroRetOrPassUp,
503#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
504 kIemNativeLabelType_ReturnSuccess, /**< Sets eax/w0 to zero and returns. */
505#else
506 kIemNativeLabelType_Return,
507#endif
508 /** The last fixup for branches that can span almost the whole TB length.
509 * @note Whether kIemNativeLabelType_Return needs to be one of these is
510 * a bit questionable, since nobody jumps to it except other tail code. */
511#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
512 kIemNativeLabelType_LastWholeTbBranch = kIemNativeLabelType_ReturnSuccess,
513#else
514 kIemNativeLabelType_LastWholeTbBranch = kIemNativeLabelType_Return,
515#endif
516 /** The last fixup for branches that exits the TB. */
517#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
518 kIemNativeLabelType_LastTbExit = kIemNativeLabelType_ReturnSuccess,
519#else
520 kIemNativeLabelType_LastTbExit = kIemNativeLabelType_Return,
521#endif
522
523 /** Loop-jump target. */
524 kIemNativeLabelType_LoopJumpTarget,
525
526 /*
527 * Labels with data, potentially multiple instances per TB:
528 *
529 * These are localized labels, so no fixed jump type restrictions here.
530 */
531 kIemNativeLabelType_FirstWithMultipleInstances,
532 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
533 kIemNativeLabelType_Else,
534 kIemNativeLabelType_Endif,
535 kIemNativeLabelType_CheckIrq,
536 kIemNativeLabelType_TlbLookup,
537 kIemNativeLabelType_TlbMiss,
538 kIemNativeLabelType_TlbDone,
539 kIemNativeLabelType_End
540} IEMNATIVELABELTYPE;
541
542#define IEMNATIVELABELTYPE_IS_EXIT_REASON(a_enmLabel) \
543 ((a_enmLabel) <= kIemNativeLabelType_LastTbExit && (a_enmLabel) > kIemNativeLabelType_Invalid)
544
545
546/** Native code generator label definition. */
547typedef struct IEMNATIVELABEL
548{
549 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
550 * the epilog. */
551 uint32_t off;
552 /** The type of label (IEMNATIVELABELTYPE). */
553 uint16_t enmType;
554 /** Additional label data, type specific. */
555 uint16_t uData;
556} IEMNATIVELABEL;
557/** Pointer to a label. */
558typedef IEMNATIVELABEL *PIEMNATIVELABEL;
559
560
561/** Native code generator fixup types. */
562typedef enum
563{
564 kIemNativeFixupType_Invalid = 0,
565#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
566 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
567 kIemNativeFixupType_Rel32,
568#elif defined(RT_ARCH_ARM64)
569 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
570 kIemNativeFixupType_RelImm26At0,
571 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
572 kIemNativeFixupType_RelImm19At5,
573 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
574 kIemNativeFixupType_RelImm14At5,
575#endif
576 kIemNativeFixupType_End
577} IEMNATIVEFIXUPTYPE;
578
579/** Native code generator fixup. */
580typedef struct IEMNATIVEFIXUP
581{
582 /** Code offset of the fixup location. */
583 uint32_t off;
584 /** The IEMNATIVELABEL this is a fixup for. */
585 uint16_t idxLabel;
586 /** The fixup type (IEMNATIVEFIXUPTYPE). */
587 uint8_t enmType;
588 /** Addend or other data. */
589 int8_t offAddend;
590} IEMNATIVEFIXUP;
591/** Pointer to a native code generator fixup. */
592typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
593
594#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
595
596/** Native code generator fixup to per chunk TB tail code. */
597typedef struct IEMNATIVEEXITFIXUP
598{
599 /** Code offset of the fixup location. */
600 uint32_t off;
601 /** The exit reason. */
602 IEMNATIVELABELTYPE enmExitReason;
603} IEMNATIVEEXITFIXUP;
604/** Pointer to a native code generator TB exit fixup. */
605typedef IEMNATIVEEXITFIXUP *PIEMNATIVEEXITFIXUP;
606
607/**
608 * Per executable memory chunk context with addresses for common code.
609 */
610typedef struct IEMNATIVEPERCHUNKCTX
611{
612 /** Pointers to the exit labels */
613 PIEMNATIVEINSTR apExitLabels[kIemNativeLabelType_LastTbExit + 1];
614} IEMNATIVEPERCHUNKCTX;
615/** Pointer to per-chunk recompiler context. */
616typedef IEMNATIVEPERCHUNKCTX *PIEMNATIVEPERCHUNKCTX;
617/** Pointer to const per-chunk recompiler context. */
618typedef const IEMNATIVEPERCHUNKCTX *PCIEMNATIVEPERCHUNKCTX;
619
620#endif /* IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE */
621
622
623/**
624 * One bit of the state.
625 *
626 * Each register state takes up two bits. We keep the two bits in two separate
627 * 64-bit words to simplify applying them to the guest shadow register mask in
628 * the register allocator.
629 */
630typedef union IEMLIVENESSBIT
631{
632 uint64_t bm64;
633 RT_GCC_EXTENSION struct
634 { /* bit no */
635 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
636 uint64_t fUnusedPc : 1; /**< 0x10 / 16: (PC in ) */
637 uint64_t fCr0 : 1; /**< 0x11 / 17: */
638 uint64_t fFcw : 1; /**< 0x12 / 18: */
639 uint64_t fFsw : 1; /**< 0x13 / 19: */
640 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
641 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
642 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
643 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
644 uint64_t fCr4 : 1; /**< 0x2c / 44: */
645 uint64_t fXcr0 : 1; /**< 0x2d / 45: */
646 uint64_t fMxCsr : 1; /**< 0x2e / 46: */
647 uint64_t fEflOther : 1; /**< 0x2f / 47: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
648 uint64_t fEflCf : 1; /**< 0x30 / 48: Carry flag (X86_EFL_CF / 0). */
649 uint64_t fEflPf : 1; /**< 0x31 / 49: Parity flag (X86_EFL_PF / 2). */
650 uint64_t fEflAf : 1; /**< 0x32 / 50: Auxilary carry flag (X86_EFL_AF / 4). */
651 uint64_t fEflZf : 1; /**< 0x33 / 51: Zero flag (X86_EFL_ZF / 6). */
652 uint64_t fEflSf : 1; /**< 0x34 / 52: Signed flag (X86_EFL_SF / 7). */
653 uint64_t fEflOf : 1; /**< 0x35 / 53: Overflow flag (X86_EFL_OF / 12). */
654 uint64_t uUnused : 10; /* 0x36 / 54 -> 0x40/64 */
655 };
656} IEMLIVENESSBIT;
657AssertCompileSize(IEMLIVENESSBIT, 8);
658
659#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
660#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
661#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
662#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
663#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
664#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
665#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
666
667
668/**
669 * A liveness state entry.
670 *
671 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
672 * Once we add a SSE register shadowing, we'll add another 64-bit element for
673 * that.
674 */
675typedef union IEMLIVENESSENTRY
676{
677#ifndef IEMLIVENESS_EXTENDED_LAYOUT
678 uint64_t bm64[16 / 8];
679 uint16_t bm32[16 / 4];
680 uint16_t bm16[16 / 2];
681 uint8_t bm8[ 16 / 1];
682 IEMLIVENESSBIT aBits[2];
683#else
684 uint64_t bm64[32 / 8];
685 uint16_t bm32[32 / 4];
686 uint16_t bm16[32 / 2];
687 uint8_t bm8[ 32 / 1];
688 IEMLIVENESSBIT aBits[4];
689#endif
690 RT_GCC_EXTENSION struct
691 {
692 /** Bit \#0 of the register states. */
693 IEMLIVENESSBIT Bit0;
694 /** Bit \#1 of the register states. */
695 IEMLIVENESSBIT Bit1;
696#ifdef IEMLIVENESS_EXTENDED_LAYOUT
697 /** Bit \#2 of the register states. */
698 IEMLIVENESSBIT Bit2;
699 /** Bit \#3 of the register states. */
700 IEMLIVENESSBIT Bit3;
701#endif
702 };
703} IEMLIVENESSENTRY;
704#ifndef IEMLIVENESS_EXTENDED_LAYOUT
705AssertCompileSize(IEMLIVENESSENTRY, 16);
706#else
707AssertCompileSize(IEMLIVENESSENTRY, 32);
708#endif
709/** Pointer to a liveness state entry. */
710typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
711/** Pointer to a const liveness state entry. */
712typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
713
714/** @name 64-bit value masks for IEMLIVENESSENTRY.
715 * @{ */ /* 0xzzzzyyyyxxxxwwww */
716#define IEMLIVENESSBIT_MASK UINT64_C(0x003ffffffffeffff)
717
718#ifndef IEMLIVENESS_EXTENDED_LAYOUT
719# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
720# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
721
722# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
723# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
724#endif
725
726#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x003f800000000000)
727#define IEMLIVENESSBIT_STATUS_EFL_MASK UINT64_C(0x003f000000000000)
728
729#ifndef IEMLIVENESS_EXTENDED_LAYOUT
730# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
731# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
732#endif
733/** @} */
734
735
736/** @name The liveness state for a register.
737 *
738 * The state values have been picked to with state accumulation in mind (what
739 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
740 * performance critical work done with the values.
741 *
742 * This is a compressed state that only requires 2 bits per register.
743 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
744 * 1. the incoming state from the following call,
745 * 2. the outgoing state for this call,
746 * 3. mask of the entries set in the 2nd.
747 *
748 * The mask entry (3rd one above) will be used both when updating the outgoing
749 * state and when merging in incoming state for registers not touched by the
750 * current call.
751 *
752 * @{ */
753#ifndef IEMLIVENESS_EXTENDED_LAYOUT
754/** The register will be clobbered and the current value thrown away.
755 *
756 * When this is applied to the state (2) we'll simply be AND'ing it with the
757 * (old) mask (3) and adding the register to the mask. This way we'll
758 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
759 * IEMLIVENESS_STATE_INPUT states. */
760# define IEMLIVENESS_STATE_CLOBBERED 0
761/** The register is unused in the remainder of the TB.
762 *
763 * This is an initial state and can not be set by any of the
764 * iemNativeLivenessFunc_xxxx callbacks. */
765# define IEMLIVENESS_STATE_UNUSED 1
766/** The register value is required in a potential call or exception.
767 *
768 * This means that the register value must be calculated and is best written to
769 * the state, but that any shadowing registers can be flushed thereafter as it's
770 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
771 *
772 * It is typically applied across the board, but we preserve incoming
773 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
774 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
775 * 1. r0 = old & ~mask;
776 * 2. r0 = t1 & (t1 >> 1)'
777 * 3. state |= r0 | 0b10;
778 * 4. mask = ~0;
779 */
780# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
781/** The register value is used as input.
782 *
783 * This means that the register value must be calculated and it is best to keep
784 * it in a register. It does not need to be writtent out as such. This is the
785 * highest priority state.
786 *
787 * Whether the call modifies the register or not isn't relevant to earlier
788 * calls, so that's not recorded.
789 *
790 * When applying this state we just or in the value in the outgoing state and
791 * mask. */
792# define IEMLIVENESS_STATE_INPUT 3
793/** Mask of the state bits. */
794# define IEMLIVENESS_STATE_MASK 3
795/** The number of bits per state. */
796# define IEMLIVENESS_STATE_BIT_COUNT 2
797/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state. */
798# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
799/** Check if we're expecting read accesses to a register with the given (previous) liveness state. */
800# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
801/** Check if a register clobbering is expected given the (previous) liveness state.
802 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
803 * include INPUT if the register is used in more than one place. */
804# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
805
806/** Check if all status flags are going to be clobbered and doesn't need
807 * calculating in the current step.
808 * @param a_pCurEntry The current liveness entry. */
809# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
810 ( (((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_STATUS_EFL_MASK) == 0 )
811
812#else /* IEMLIVENESS_EXTENDED_LAYOUT */
813/** The register is not used any more. */
814# define IEMLIVENESS_STATE_UNUSED 0
815/** Flag: The register is required in a potential exception or call. */
816# define IEMLIVENESS_STATE_POT_XCPT_OR_CALL 1
817# define IEMLIVENESS_BIT_POT_XCPT_OR_CALL 0
818/** Flag: The register is read. */
819# define IEMLIVENESS_STATE_READ 2
820# define IEMLIVENESS_BIT_READ 1
821/** Flag: The register is written. */
822# define IEMLIVENESS_STATE_WRITE 4
823# define IEMLIVENESS_BIT_WRITE 2
824/** Flag: Unconditional call (not needed, can be redefined for research). */
825# define IEMLIVENESS_STATE_CALL 8
826# define IEMLIVENESS_BIT_CALL 3
827# define IEMLIVENESS_BIT_OTHER 3 /**< More convenient name for this one. */
828# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
829 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
830# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
831# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
832
833# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
834 ( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & IEMLIVENESSBIT_STATUS_EFL_MASK) == IEMLIVENESSBIT_STATUS_EFL_MASK \
835 && !( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64) \
836 & IEMLIVENESSBIT_STATUS_EFL_MASK) )
837
838#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
839/** @} */
840
841/** @name Liveness helpers for builtin functions and similar.
842 *
843 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
844 * own set of manimulator macros for those.
845 *
846 * @{ */
847/** Initializing the state as all unused. */
848#ifndef IEMLIVENESS_EXTENDED_LAYOUT
849# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
850 do { \
851 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
852 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
853 } while (0)
854#else
855# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
856 do { \
857 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = 0; \
858 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
859 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
860 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
861 } while (0)
862#endif
863
864/** Initializing the outgoing state with a potential xcpt or call state.
865 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT. */
866#ifndef IEMLIVENESS_EXTENDED_LAYOUT
867# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
868 do { \
869 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
870 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
871 } while (0)
872#else
873# define IEM_LIVENESS_RAW_INIT_WITH_XCPT_OR_CALL(a_pOutgoing, a_pIncoming) \
874 do { \
875 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POT_XCPT_OR_CALL].bm64 = IEMLIVENESSBIT_MASK; \
876 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64; \
877 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
878 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_OTHER ].bm64 = 0; \
879 } while (0)
880#endif
881
882/** Adds a segment base register as input to the outgoing state. */
883#ifndef IEMLIVENESS_EXTENDED_LAYOUT
884# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
885 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
886 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
887 } while (0)
888#else
889# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
890 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
891 } while (0)
892#endif
893
894/** Adds a segment attribute register as input to the outgoing state. */
895#ifndef IEMLIVENESS_EXTENDED_LAYOUT
896# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
897 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
898 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
899 } while (0)
900#else
901# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
902 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
903 } while (0)
904#endif
905
906/** Adds a segment limit register as input to the outgoing state. */
907#ifndef IEMLIVENESS_EXTENDED_LAYOUT
908# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
909 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
910 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
911 } while (0)
912#else
913# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
914 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
915 } while (0)
916#endif
917
918/** Adds a segment limit register as input to the outgoing state. */
919#ifndef IEMLIVENESS_EXTENDED_LAYOUT
920# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
921 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
922 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
923 } while (0)
924#else
925# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
926 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
927 } while (0)
928#endif
929/** @} */
930
931/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK
932 * Checks that the EFLAGS bits specified by @a a_fEflNeeded are actually
933 * calculated and up to date. This is to double check that we haven't skipped
934 * EFLAGS calculations when we actually need them. NOP in non-strict builds.
935 * @note has to be placed in
936 */
937#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
938# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) \
939 do { (a_off) = iemNativeEmitEFlagsSkippingCheck(a_pReNative, a_off, a_fEflNeeded); } while (0)
940#else
941# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { } while (0)
942#endif
943
944
945/**
946 * Guest registers that can be shadowed in GPRs.
947 *
948 * This runs parallel to the liveness state (IEMLIVENESSBIT, ++). The EFlags
949 * must be placed last, as the liveness state tracks it as 7 subcomponents and
950 * we don't want to waste space here.
951 *
952 * @note Make sure to update IEMLIVENESSBIT, IEMLIVENESSBIT_ALL_EFL_MASK and
953 * friends as well as IEMAllN8veLiveness.cpp.
954 */
955typedef enum IEMNATIVEGSTREG : uint8_t
956{
957 kIemNativeGstReg_GprFirst = 0,
958 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
959 kIemNativeGstReg_Pc,
960 kIemNativeGstReg_Cr0,
961 kIemNativeGstReg_FpuFcw,
962 kIemNativeGstReg_FpuFsw,
963 kIemNativeGstReg_SegBaseFirst,
964 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
965 kIemNativeGstReg_SegAttribFirst,
966 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
967 kIemNativeGstReg_SegLimitFirst,
968 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
969 kIemNativeGstReg_SegSelFirst,
970 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
971 kIemNativeGstReg_Cr4,
972 kIemNativeGstReg_Xcr0,
973 kIemNativeGstReg_MxCsr,
974 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags - last! */
975 kIemNativeGstReg_End
976} IEMNATIVEGSTREG;
977AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
978AssertCompile((UINT64_C(0x7f) << kIemNativeGstReg_EFlags) == IEMLIVENESSBIT_ALL_EFL_MASK);
979
980/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
981 * @{ */
982#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
983#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
984#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
985#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
986#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
987/** @} */
988
989#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
990
991/**
992 * Guest registers that can be shadowed in host SIMD registers.
993 *
994 * @todo r=aeichner Liveness tracking
995 * @todo r=aeichner Given that we can only track xmm/ymm here does this actually make sense?
996 */
997typedef enum IEMNATIVEGSTSIMDREG : uint8_t
998{
999 kIemNativeGstSimdReg_SimdRegFirst = 0,
1000 kIemNativeGstSimdReg_SimdRegLast = kIemNativeGstSimdReg_SimdRegFirst + 15,
1001 kIemNativeGstSimdReg_End
1002} IEMNATIVEGSTSIMDREG;
1003
1004/** @name Helpers for converting register numbers to IEMNATIVEGSTSIMDREG values.
1005 * @{ */
1006#define IEMNATIVEGSTSIMDREG_SIMD(a_iSimdReg) ((IEMNATIVEGSTSIMDREG)(kIemNativeGstSimdReg_SimdRegFirst + (a_iSimdReg)))
1007/** @} */
1008
1009/**
1010 * The Load/store size for a SIMD guest register.
1011 */
1012typedef enum IEMNATIVEGSTSIMDREGLDSTSZ : uint8_t
1013{
1014 /** Invalid size. */
1015 kIemNativeGstSimdRegLdStSz_Invalid = 0,
1016 /** Loads the low 128-bit of a guest SIMD register. */
1017 kIemNativeGstSimdRegLdStSz_Low128,
1018 /** Loads the high 128-bit of a guest SIMD register. */
1019 kIemNativeGstSimdRegLdStSz_High128,
1020 /** Loads the whole 256-bits of a guest SIMD register. */
1021 kIemNativeGstSimdRegLdStSz_256,
1022 /** End value. */
1023 kIemNativeGstSimdRegLdStSz_End
1024} IEMNATIVEGSTSIMDREGLDSTSZ;
1025
1026#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
1027
1028/**
1029 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
1030 */
1031typedef enum IEMNATIVEGSTREGUSE
1032{
1033 /** The usage is read-only, the register holding the guest register
1034 * shadow copy will not be modified by the caller. */
1035 kIemNativeGstRegUse_ReadOnly = 0,
1036 /** The caller will update the guest register (think: PC += cbInstr).
1037 * The guest shadow copy will follow the returned register. */
1038 kIemNativeGstRegUse_ForUpdate,
1039 /** The call will put an entirely new value in the guest register, so
1040 * if new register is allocate it will be returned uninitialized. */
1041 kIemNativeGstRegUse_ForFullWrite,
1042 /** The caller will use the guest register value as input in a calculation
1043 * and the host register will be modified.
1044 * This means that the returned host register will not be marked as a shadow
1045 * copy of the guest register. */
1046 kIemNativeGstRegUse_Calculation
1047} IEMNATIVEGSTREGUSE;
1048
1049/**
1050 * Guest registers (classes) that can be referenced.
1051 */
1052typedef enum IEMNATIVEGSTREGREF : uint8_t
1053{
1054 kIemNativeGstRegRef_Invalid = 0,
1055 kIemNativeGstRegRef_Gpr,
1056 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
1057 kIemNativeGstRegRef_EFlags,
1058 kIemNativeGstRegRef_MxCsr,
1059 kIemNativeGstRegRef_FpuReg,
1060 kIemNativeGstRegRef_MReg,
1061 kIemNativeGstRegRef_XReg,
1062 kIemNativeGstRegRef_X87,
1063 kIemNativeGstRegRef_XState,
1064 //kIemNativeGstRegRef_YReg, - doesn't work.
1065 kIemNativeGstRegRef_End
1066} IEMNATIVEGSTREGREF;
1067
1068
1069/** Variable kinds. */
1070typedef enum IEMNATIVEVARKIND : uint8_t
1071{
1072 /** Customary invalid zero value. */
1073 kIemNativeVarKind_Invalid = 0,
1074 /** This is either in a register or on the stack. */
1075 kIemNativeVarKind_Stack,
1076 /** Immediate value - loaded into register when needed, or can live on the
1077 * stack if referenced (in theory). */
1078 kIemNativeVarKind_Immediate,
1079 /** Variable reference - loaded into register when needed, never stack. */
1080 kIemNativeVarKind_VarRef,
1081 /** Guest register reference - loaded into register when needed, never stack. */
1082 kIemNativeVarKind_GstRegRef,
1083 /** End of valid values. */
1084 kIemNativeVarKind_End
1085} IEMNATIVEVARKIND;
1086
1087
1088/** Variable or argument. */
1089typedef struct IEMNATIVEVAR
1090{
1091 /** The kind of variable. */
1092 IEMNATIVEVARKIND enmKind;
1093 /** The variable size in bytes. */
1094 uint8_t cbVar;
1095 /** The first stack slot (uint64_t), except for immediate and references
1096 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
1097 * has a stack slot it has been initialized and has a value. Unused variables
1098 * has neither a stack slot nor a host register assignment. */
1099 uint8_t idxStackSlot;
1100 /** The host register allocated for the variable, UINT8_MAX if not. */
1101 uint8_t idxReg;
1102 /** The argument number if argument, UINT8_MAX if regular variable. */
1103 uint8_t uArgNo;
1104 /** If referenced, the index (unpacked) of the variable referencing this one,
1105 * otherwise UINT8_MAX. A referenced variable must only be placed on the stack
1106 * and must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
1107 uint8_t idxReferrerVar;
1108 /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not.
1109 * @todo not sure what this really is for... */
1110 IEMNATIVEGSTREG enmGstReg;
1111#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1112 /** Flag whether this variable is held in a SIMD register (only supported for 128-bit and 256-bit variables),
1113 * only valid when idxReg is not UINT8_MAX. */
1114 bool fSimdReg : 1;
1115 /** Set if the registered is currently used exclusively, false if the
1116 * variable is idle and the register can be grabbed. */
1117 bool fRegAcquired : 1;
1118#else
1119 /** Set if the registered is currently used exclusively, false if the
1120 * variable is idle and the register can be grabbed. */
1121 bool fRegAcquired;
1122#endif
1123
1124 union
1125 {
1126 /** kIemNativeVarKind_Immediate: The immediate value. */
1127 uint64_t uValue;
1128 /** kIemNativeVarKind_VarRef: The index (unpacked) of the variable being referenced. */
1129 uint8_t idxRefVar;
1130 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
1131 struct
1132 {
1133 /** The class of register. */
1134 IEMNATIVEGSTREGREF enmClass;
1135 /** Index within the class. */
1136 uint8_t idx;
1137 } GstRegRef;
1138 } u;
1139} IEMNATIVEVAR;
1140/** Pointer to a variable or argument. */
1141typedef IEMNATIVEVAR *PIEMNATIVEVAR;
1142/** Pointer to a const variable or argument. */
1143typedef IEMNATIVEVAR const *PCIEMNATIVEVAR;
1144
1145/** What is being kept in a host register. */
1146typedef enum IEMNATIVEWHAT : uint8_t
1147{
1148 /** The traditional invalid zero value. */
1149 kIemNativeWhat_Invalid = 0,
1150 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
1151 kIemNativeWhat_Var,
1152 /** Temporary register, this is typically freed when a MC completes. */
1153 kIemNativeWhat_Tmp,
1154 /** Call argument w/o a variable mapping. This is free (via
1155 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
1156 kIemNativeWhat_Arg,
1157 /** Return status code.
1158 * @todo not sure if we need this... */
1159 kIemNativeWhat_rc,
1160 /** The fixed pVCpu (PVMCPUCC) register.
1161 * @todo consider offsetting this on amd64 to use negative offsets to access
1162 * more members using 8-byte disp. */
1163 kIemNativeWhat_pVCpuFixed,
1164 /** The fixed pCtx (PCPUMCTX) register.
1165 * @todo consider offsetting this on amd64 to use negative offsets to access
1166 * more members using 8-byte disp. */
1167 kIemNativeWhat_pCtxFixed,
1168 /** Fixed temporary register. */
1169 kIemNativeWhat_FixedTmp,
1170#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1171 /** Shadow RIP for the delayed RIP updating debugging. */
1172 kIemNativeWhat_PcShadow,
1173#endif
1174 /** Register reserved by the CPU or OS architecture. */
1175 kIemNativeWhat_FixedReserved,
1176 /** End of valid values. */
1177 kIemNativeWhat_End
1178} IEMNATIVEWHAT;
1179
1180/**
1181 * Host general register entry.
1182 *
1183 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
1184 *
1185 * @todo Track immediate values in host registers similarlly to how we track the
1186 * guest register shadow copies. For it to be real helpful, though,
1187 * we probably need to know which will be reused and put them into
1188 * non-volatile registers, otherwise it's going to be more or less
1189 * restricted to an instruction or two.
1190 */
1191typedef struct IEMNATIVEHSTREG
1192{
1193 /** Set of guest registers this one shadows.
1194 *
1195 * Using a bitmap here so we can designate the same host register as a copy
1196 * for more than one guest register. This is expected to be useful in
1197 * situations where one value is copied to several registers in a sequence.
1198 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1199 * sequence we'd want to let this register follow to be a copy of and there
1200 * will always be places where we'd be picking the wrong one.
1201 */
1202 uint64_t fGstRegShadows;
1203 /** What is being kept in this register. */
1204 IEMNATIVEWHAT enmWhat;
1205 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1206 uint8_t idxVar;
1207 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
1208 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
1209 * that scope. */
1210 uint8_t idxStackSlot;
1211 /** Alignment padding. */
1212 uint8_t abAlign[5];
1213} IEMNATIVEHSTREG;
1214
1215
1216#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1217/**
1218 * Host SIMD register entry - this tracks a virtual 256-bit register split into two 128-bit
1219 * halves, on architectures where there is no 256-bit register available this entry will track
1220 * two adjacent 128-bit host registers.
1221 *
1222 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstSimdRegs.
1223 */
1224typedef struct IEMNATIVEHSTSIMDREG
1225{
1226 /** Set of guest registers this one shadows.
1227 *
1228 * Using a bitmap here so we can designate the same host register as a copy
1229 * for more than one guest register. This is expected to be useful in
1230 * situations where one value is copied to several registers in a sequence.
1231 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1232 * sequence we'd want to let this register follow to be a copy of and there
1233 * will always be places where we'd be picking the wrong one.
1234 */
1235 uint64_t fGstRegShadows;
1236 /** What is being kept in this register. */
1237 IEMNATIVEWHAT enmWhat;
1238 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1239 uint8_t idxVar;
1240 /** Flag what is currently loaded, low 128-bits, high 128-bits or complete 256-bits. */
1241 IEMNATIVEGSTSIMDREGLDSTSZ enmLoaded;
1242 /** Alignment padding. */
1243 uint8_t abAlign[5];
1244} IEMNATIVEHSTSIMDREG;
1245#endif
1246
1247
1248/**
1249 * Core state for the native recompiler, that is, things that needs careful
1250 * handling when dealing with branches.
1251 */
1252typedef struct IEMNATIVECORESTATE
1253{
1254 /** Allocation bitmap for aHstRegs. */
1255 uint32_t bmHstRegs;
1256
1257 /** Bitmap marking which host register contains guest register shadow copies.
1258 * This is used during register allocation to try preserve copies. */
1259 uint32_t bmHstRegsWithGstShadow;
1260 /** Bitmap marking valid entries in aidxGstRegShadows. */
1261 uint64_t bmGstRegShadows;
1262#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1263 /** Bitmap marking the shadowed guest register as dirty and needing writeback when flushing. */
1264 uint64_t bmGstRegShadowDirty;
1265#endif
1266
1267#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1268 /** The current instruction offset in bytes from when the guest program counter
1269 * was updated last. Used for delaying the write to the guest context program counter
1270 * as long as possible. */
1271 int64_t offPc;
1272# ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
1273 /** Set after we've loaded PC into uPcUpdatingDebug at the first update. */
1274 bool fDebugPcInitialized;
1275# endif
1276#endif
1277
1278#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1279 /** Allocation bitmap for aHstSimdRegs. */
1280 uint32_t bmHstSimdRegs;
1281
1282 /** Bitmap marking which host SIMD register contains guest SIMD register shadow copies.
1283 * This is used during register allocation to try preserve copies. */
1284 uint32_t bmHstSimdRegsWithGstShadow;
1285 /** Bitmap marking valid entries in aidxSimdGstRegShadows. */
1286 uint64_t bmGstSimdRegShadows;
1287 /** Bitmap marking whether the low 128-bit of the shadowed guest register are dirty and need writeback. */
1288 uint64_t bmGstSimdRegShadowDirtyLo128;
1289 /** Bitmap marking whether the high 128-bit of the shadowed guest register are dirty and need writeback. */
1290 uint64_t bmGstSimdRegShadowDirtyHi128;
1291#endif
1292
1293 union
1294 {
1295 /** Index of variable (unpacked) arguments, UINT8_MAX if not valid. */
1296 uint8_t aidxArgVars[8];
1297 /** For more efficient resetting. */
1298 uint64_t u64ArgVars;
1299 };
1300
1301 /** Allocation bitmap for the stack. */
1302 uint32_t bmStack;
1303 /** Allocation bitmap for aVars. */
1304 uint32_t bmVars;
1305
1306 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
1307 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
1308 * (A shadow copy of a guest register can only be held in a one host register,
1309 * there are no duplicate copies or ambiguities like that). */
1310 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
1311#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1312 /** Maps a guest SIMD register to a host SIMD register (index by IEMNATIVEGSTSIMDREG).
1313 * Entries are only valid if the corresponding bit in bmGstSimdRegShadows is set.
1314 * (A shadow copy of a guest register can only be held in a one host register,
1315 * there are no duplicate copies or ambiguities like that). */
1316 uint8_t aidxGstSimdRegShadows[kIemNativeGstSimdReg_End];
1317#endif
1318
1319 /** Host register allocation tracking. */
1320 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
1321#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1322 /** Host SIMD register allocation tracking. */
1323 IEMNATIVEHSTSIMDREG aHstSimdRegs[IEMNATIVE_HST_SIMD_REG_COUNT];
1324#endif
1325
1326 /** Variables and arguments. */
1327 IEMNATIVEVAR aVars[9];
1328} IEMNATIVECORESTATE;
1329/** Pointer to core state. */
1330typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
1331/** Pointer to const core state. */
1332typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
1333
1334/** @def IEMNATIVE_VAR_IDX_UNPACK
1335 * @returns Index into IEMNATIVECORESTATE::aVars.
1336 * @param a_idxVar Variable index w/ magic (in strict builds).
1337 */
1338/** @def IEMNATIVE_VAR_IDX_PACK
1339 * @returns Variable index w/ magic (in strict builds).
1340 * @param a_idxVar Index into IEMNATIVECORESTATE::aVars.
1341 */
1342#ifdef VBOX_STRICT
1343# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) ((a_idxVar) & IEMNATIVE_VAR_IDX_MASK)
1344# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) ((a_idxVar) | IEMNATIVE_VAR_IDX_MAGIC)
1345# define IEMNATIVE_VAR_IDX_MAGIC UINT8_C(0xd0)
1346# define IEMNATIVE_VAR_IDX_MAGIC_MASK UINT8_C(0xf0)
1347# define IEMNATIVE_VAR_IDX_MASK UINT8_C(0x0f)
1348#else
1349# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) (a_idxVar)
1350# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) (a_idxVar)
1351#endif
1352
1353
1354#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1355/** Clear the dirty state of the given guest SIMD register. */
1356# define IEMNATIVE_SIMD_REG_STATE_CLR_DIRTY(a_pReNative, a_iSimdReg) \
1357 do { \
1358 (a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 &= ~RT_BIT_64(a_iSimdReg); \
1359 (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 &= ~RT_BIT_64(a_iSimdReg); \
1360 } while (0)
1361
1362/** Returns whether the low 128-bits of the given guest SIMD register are dirty. */
1363# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1364 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 & RT_BIT_64(a_iSimdReg))
1365/** Returns whether the high 128-bits of the given guest SIMD register are dirty. */
1366# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1367 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 & RT_BIT_64(a_iSimdReg))
1368/** Returns whether the given guest SIMD register is dirty. */
1369# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_U256(a_pReNative, a_iSimdReg) \
1370 RT_BOOL(((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 | (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128) & RT_BIT_64(a_iSimdReg))
1371
1372/** Set the low 128-bits of the given guest SIMD register to the dirty state. */
1373# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1374 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 |= RT_BIT_64(a_iSimdReg))
1375/** Set the high 128-bits of the given guest SIMD register to the dirty state. */
1376# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1377 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 |= RT_BIT_64(a_iSimdReg))
1378
1379/** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1380# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_DEVICE_NOT_AVAILABLE RT_BIT_32(0)
1381 /** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1382# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_WAIT_DEVICE_NOT_AVAILABLE RT_BIT_32(1)
1383/** Flag for indicating that IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() has emitted code in the current TB. */
1384# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_SSE RT_BIT_32(2)
1385/** Flag for indicating that IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() has emitted code in the current TB. */
1386# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_AVX RT_BIT_32(3)
1387# ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
1388/** Flag indicating that the guest MXCSR was synced to the host floating point control register. */
1389# define IEMNATIVE_SIMD_HOST_FP_CTRL_REG_SYNCED RT_BIT_32(4)
1390/** Flag indicating whether the host floating point control register was saved before overwriting it. */
1391# define IEMNATIVE_SIMD_HOST_FP_CTRL_REG_SAVED RT_BIT_32(5)
1392# endif
1393#endif
1394
1395
1396/**
1397 * Conditional stack entry.
1398 */
1399typedef struct IEMNATIVECOND
1400{
1401 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
1402 bool fInElse;
1403 union
1404 {
1405 RT_GCC_EXTENSION struct
1406 {
1407 /** Set if the if-block unconditionally exited the TB. */
1408 bool fIfExitTb;
1409 /** Set if the else-block unconditionally exited the TB. */
1410 bool fElseExitTb;
1411 };
1412 /** Indexed by fInElse. */
1413 bool afExitTb[2];
1414 };
1415 bool afPadding[5];
1416 /** The label for the IEM_MC_ELSE. */
1417 uint32_t idxLabelElse;
1418 /** The label for the IEM_MC_ENDIF. */
1419 uint32_t idxLabelEndIf;
1420 /** The initial state snapshot as the if-block starts executing. */
1421 IEMNATIVECORESTATE InitialState;
1422 /** The state snapshot at the end of the if-block. */
1423 IEMNATIVECORESTATE IfFinalState;
1424} IEMNATIVECOND;
1425/** Pointer to a condition stack entry. */
1426typedef IEMNATIVECOND *PIEMNATIVECOND;
1427
1428
1429/**
1430 * Native recompiler state.
1431 */
1432typedef struct IEMRECOMPILERSTATE
1433{
1434 /** Size of the buffer that pbNativeRecompileBufR3 points to in
1435 * IEMNATIVEINSTR units. */
1436 uint32_t cInstrBufAlloc;
1437#ifdef VBOX_STRICT
1438 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
1439 uint32_t offInstrBufChecked;
1440#else
1441 uint32_t uPadding1; /* We don't keep track of the size here... */
1442#endif
1443 /** Fixed temporary code buffer for native recompilation. */
1444 PIEMNATIVEINSTR pInstrBuf;
1445
1446 /** Bitmaps with the label types used. */
1447 uint64_t bmLabelTypes;
1448 /** Actual number of labels in paLabels. */
1449 uint32_t cLabels;
1450 /** Max number of entries allowed in paLabels before reallocating it. */
1451 uint32_t cLabelsAlloc;
1452 /** Labels defined while recompiling (referenced by fixups). */
1453 PIEMNATIVELABEL paLabels;
1454 /** Array with indexes of unique labels (uData always 0). */
1455 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
1456
1457 /** Actual number of fixups paFixups. */
1458 uint32_t cFixups;
1459 /** Max number of entries allowed in paFixups before reallocating it. */
1460 uint32_t cFixupsAlloc;
1461 /** Buffer used by the recompiler for recording fixups when generating code. */
1462 PIEMNATIVEFIXUP paFixups;
1463
1464#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
1465 /** Actual number of fixups in paTbExitFixups. */
1466 uint32_t cTbExitFixups;
1467 /** Max number of entries allowed in paTbExitFixups before reallocating it. */
1468 uint32_t cTbExitFixupsAlloc;
1469 /** Buffer used by the recompiler for recording fixups when generating code. */
1470 PIEMNATIVEEXITFIXUP paTbExitFixups;
1471#endif
1472
1473#if defined(IEMNATIVE_WITH_TB_DEBUG_INFO) || defined(VBOX_WITH_STATISTICS)
1474 /** Statistics: The idxInstr+1 value at the last PC update. */
1475 uint8_t idxInstrPlusOneOfLastPcUpdate;
1476#endif
1477
1478#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1479 /** Number of debug info entries allocated for pDbgInfo. */
1480 uint32_t cDbgInfoAlloc;
1481 /** Debug info. */
1482 PIEMTBDBG pDbgInfo;
1483#endif
1484
1485#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1486 /** The current call index (liveness array and threaded calls in TB). */
1487 uint32_t idxCurCall;
1488 /** Number of liveness entries allocated. */
1489 uint32_t cLivenessEntriesAlloc;
1490 /** Liveness entries for all the calls in the TB begin recompiled.
1491 * The entry for idxCurCall contains the info for what the next call will
1492 * require wrt registers. (Which means the last entry is the initial liveness
1493 * state.) */
1494 PIEMLIVENESSENTRY paLivenessEntries;
1495#endif
1496
1497 /** The translation block being recompiled. */
1498 PCIEMTB pTbOrg;
1499 /** The VMCPU structure of the EMT. */
1500 PVMCPUCC pVCpu;
1501
1502 /** Condition sequence number (for generating unique labels). */
1503 uint16_t uCondSeqNo;
1504 /** Check IRQ sequence number (for generating unique labels). */
1505 uint16_t uCheckIrqSeqNo;
1506 /** TLB load sequence number (for generating unique labels). */
1507 uint16_t uTlbSeqNo;
1508 /** The current condition stack depth (aCondStack). */
1509 uint8_t cCondDepth;
1510
1511 /** The argument count + hidden regs from the IEM_MC_BEGIN_EX statement. */
1512 uint8_t cArgsX;
1513 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1514 uint32_t fCImpl;
1515 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1516 uint32_t fMc;
1517 /** The expected IEMCPU::fExec value for the current call/instruction. */
1518 uint32_t fExec;
1519#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1520 /** IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_XXX flags for exception flags
1521 * we only emit once per TB (or when the cr0/cr4/xcr0 register changes).
1522 *
1523 * This is an optimization because these control registers can only be changed from
1524 * by calling a C helper we can catch. Should reduce the number of instructions in a TB
1525 * consisting of multiple SIMD instructions.
1526 */
1527 uint32_t fSimdRaiseXcptChecksEmitted;
1528#endif
1529 /** The call number of the last CheckIrq, UINT32_MAX if not seen. */
1530 uint32_t idxLastCheckIrqCallNo;
1531
1532 /** Core state requiring care with branches. */
1533 IEMNATIVECORESTATE Core;
1534
1535 /** The condition nesting stack. */
1536 IEMNATIVECOND aCondStack[2];
1537
1538#ifndef IEM_WITH_THROW_CATCH
1539 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
1540 * for recompilation error handling. */
1541 jmp_buf JmpBuf;
1542#endif
1543} IEMRECOMPILERSTATE;
1544/** Pointer to a native recompiler state. */
1545typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
1546
1547
1548/** @def IEMNATIVE_TRY_SETJMP
1549 * Wrapper around setjmp / try, hiding all the ugly differences.
1550 *
1551 * @note Use with extreme care as this is a fragile macro.
1552 * @param a_pReNative The native recompile state.
1553 * @param a_rcTarget The variable that should receive the status code in case
1554 * of a longjmp/throw.
1555 */
1556/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
1557 * Start wrapper for catch / setjmp-else.
1558 *
1559 * This will set up a scope.
1560 *
1561 * @note Use with extreme care as this is a fragile macro.
1562 * @param a_pReNative The native recompile state.
1563 * @param a_rcTarget The variable that should receive the status code in case
1564 * of a longjmp/throw.
1565 */
1566/** @def IEMNATIVE_CATCH_LONGJMP_END
1567 * End wrapper for catch / setjmp-else.
1568 *
1569 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
1570 * up the state.
1571 *
1572 * @note Use with extreme care as this is a fragile macro.
1573 * @param a_pReNative The native recompile state.
1574 */
1575/** @def IEMNATIVE_DO_LONGJMP
1576 *
1577 * Wrapper around longjmp / throw.
1578 *
1579 * @param a_pReNative The native recompile state.
1580 * @param a_rc The status code jump back with / throw.
1581 */
1582#ifdef IEM_WITH_THROW_CATCH
1583# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1584 a_rcTarget = VINF_SUCCESS; \
1585 try
1586# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1587 catch (int rcThrown) \
1588 { \
1589 a_rcTarget = rcThrown
1590# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1591 } \
1592 ((void)0)
1593# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
1594#else /* !IEM_WITH_THROW_CATCH */
1595# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1596 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
1597# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1598 else \
1599 { \
1600 ((void)0)
1601# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1602 }
1603# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
1604#endif /* !IEM_WITH_THROW_CATCH */
1605
1606
1607/**
1608 * Native recompiler worker for a threaded function.
1609 *
1610 * @returns New code buffer offset; throws VBox status code in case of a failure.
1611 * @param pReNative The native recompiler state.
1612 * @param off The current code buffer offset.
1613 * @param pCallEntry The threaded call entry.
1614 *
1615 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
1616 */
1617typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
1618/** Pointer to a native recompiler worker for a threaded function. */
1619typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
1620
1621/** Defines a native recompiler worker for a threaded function.
1622 * @see FNIEMNATIVERECOMPFUNC */
1623#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
1624 uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
1625
1626/** Prototypes a native recompiler function for a threaded function.
1627 * @see FNIEMNATIVERECOMPFUNC */
1628#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
1629
1630
1631/**
1632 * Native recompiler liveness analysis worker for a threaded function.
1633 *
1634 * @param pCallEntry The threaded call entry.
1635 * @param pIncoming The incoming liveness state entry.
1636 * @param pOutgoing The outgoing liveness state entry.
1637 */
1638typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
1639 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
1640/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
1641typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
1642
1643/** Defines a native recompiler liveness analysis worker for a threaded function.
1644 * @see FNIEMNATIVELIVENESSFUNC */
1645#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
1646 DECLCALLBACK(void) a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
1647
1648/** Prototypes a native recompiler liveness analysis function for a threaded function.
1649 * @see FNIEMNATIVELIVENESSFUNC */
1650#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
1651
1652
1653/** Define a native recompiler helper function, safe to call from the TB code. */
1654#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
1655 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1656/** Prototype a native recompiler helper function, safe to call from the TB code. */
1657#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
1658 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1659/** Pointer typedef a native recompiler helper function, safe to call from the TB code. */
1660#define IEM_DECL_NATIVE_HLP_PTR(a_RetType, a_Name, a_ArgList) \
1661 a_RetType (VBOXCALL *a_Name) a_ArgList
1662
1663
1664#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1665DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1666DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg,
1667 uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX);
1668# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1669DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestSimdRegShadowing(PIEMRECOMPILERSTATE pReNative,
1670 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1671 uint8_t idxHstSimdReg = UINT8_MAX,
1672 uint8_t idxHstSimdRegPrev = UINT8_MAX);
1673# endif
1674# if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1675DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegDirty(PIEMRECOMPILERSTATE pReNative, bool fSimdReg,
1676 uint8_t idxGstReg, uint8_t idxHstReg);
1677DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegWriteback(PIEMRECOMPILERSTATE pReNative, bool fSimdReg,
1678 uint64_t fGstReg);
1679# endif
1680DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddDelayedPcUpdate(PIEMRECOMPILERSTATE pReNative,
1681 uint64_t offPc, uint32_t cInstrSkipped);
1682#endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
1683
1684DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1685 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
1686DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
1687DECLHIDDEN(uint32_t) iemNativeLabelFind(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1688 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0) RT_NOEXCEPT;
1689DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
1690 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
1691#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
1692DECL_HIDDEN_THROW(void) iemNativeAddTbExitFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, IEMNATIVELABELTYPE enmExitReason);
1693#endif
1694DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
1695
1696DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1697DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1698 bool fPreferVolatile = true);
1699DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm,
1700 bool fPreferVolatile = true);
1701DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1702 IEMNATIVEGSTREG enmGstReg,
1703 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1704 bool fNoVolatileRegs = false, bool fSkipLivenessAssert = false);
1705DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1706 IEMNATIVEGSTREG enmGstReg);
1707
1708DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
1709DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
1710#if (defined(IPRT_INCLUDED_x86_h) && defined(RT_ARCH_AMD64)) || (defined(IPRT_INCLUDED_armv8_h) && defined(RT_ARCH_ARM64))
1711DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
1712 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK);
1713# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1714DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
1715 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK);
1716# endif
1717#endif
1718DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1719DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1720DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1721DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
1722#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1723DECLHIDDEN(void) iemNativeSimdRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, bool fFlushShadows) RT_NOEXCEPT;
1724# ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1725DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushDirtyGuestByHostSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg);
1726# endif
1727#endif
1728DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
1729DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
1730 uint32_t fKeepVars = 0);
1731DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
1732DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
1733DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1734 uint32_t fHstRegsActiveShadows);
1735#ifdef VBOX_STRICT
1736DECLHIDDEN(void) iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative);
1737#endif
1738DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWritesSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept,
1739 uint64_t fGstSimdShwExcept);
1740#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1741# ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
1742DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcDebugCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1743DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcDebugCheckWithReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxPcReg);
1744# endif
1745DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcWritebackSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1746#endif
1747#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1748DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVEGSTREG enmGstReg);
1749DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWriteEx(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1750 PIEMNATIVECORESTATE pCore, IEMNATIVEGSTREG enmGstReg);
1751DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuest(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1752 uint64_t fFlushGstReg = UINT64_MAX);
1753DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuestByHostRegShadow(PIEMRECOMPILERSTATE pReNative,
1754 uint32_t off, uint8_t idxHstReg);
1755#endif
1756
1757
1758#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1759DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1760DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1761 bool fPreferVolatile = true);
1762DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpForGuestSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1763 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1764 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz,
1765 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1766 bool fNoVolatileRegs = false);
1767DECLHIDDEN(void) iemNativeSimdRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg) RT_NOEXCEPT;
1768DECLHIDDEN(void) iemNativeSimdRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstSimdRegs) RT_NOEXCEPT;
1769DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1770 IEMNATIVEGSTSIMDREG enmGstSimdReg);
1771DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadSimdRegWithGstShadowSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1772 uint8_t idxHstSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg,
1773 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1774#endif
1775
1776DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType);
1777DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue);
1778DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar);
1779DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType);
1780DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue);
1781DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocAssign(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t cbType, uint8_t idxVarOther);
1782DECL_HIDDEN_THROW(void) iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1783DECL_HIDDEN_THROW(void) iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue);
1784DECL_HIDDEN_THROW(void) iemNativeVarSetKindToGstRegRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1785 IEMNATIVEGSTREGREF enmRegClass, uint8_t idxReg);
1786DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1787DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1788 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1789#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1790DECL_HIDDEN_THROW(uint8_t) iemNativeVarSimdRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1791 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1792#endif
1793DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1794 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
1795DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1796 uint32_t fHstRegsNotToSave);
1797DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1798 uint32_t fHstRegsNotToSave);
1799DECLHIDDEN(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1800DECLHIDDEN(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars);
1801
1802DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1803 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
1804#ifdef VBOX_STRICT
1805DECL_HIDDEN_THROW(uint32_t) iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg);
1806DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg,
1807 IEMNATIVEGSTREG enmGstReg);
1808# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1809DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestSimdRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxSimdReg,
1810 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1811 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1812# endif
1813DECL_HIDDEN_THROW(uint32_t) iemNativeEmitExecFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fExec);
1814#endif
1815#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
1816DECL_HIDDEN_THROW(uint32_t) iemNativeEmitEFlagsSkippingCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fEflNeeded);
1817#endif
1818DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
1819DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs, bool fFlushPendingWrites = true);
1820DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
1821 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
1822 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
1823DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1824 PCIEMTHRDEDCALLENTRY pCallEntry);
1825DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLeaGprByGstRegRef(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxGprDst,
1826 IEMNATIVEGSTREGREF enmClass, uint8_t idxRegInClass);
1827
1828
1829IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr));
1830IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu));
1831IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseNm,(PVMCPUCC pVCpu));
1832IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseUd,(PVMCPUCC pVCpu));
1833IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseMf,(PVMCPUCC pVCpu));
1834IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseXf,(PVMCPUCC pVCpu));
1835IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseDe,(PVMCPUCC pVCpu));
1836IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpObsoleteTb,(PVMCPUCC pVCpu));
1837IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpNeedCsLimChecking,(PVMCPUCC pVCpu));
1838IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpCheckBranchMiss,(PVMCPUCC pVCpu));
1839IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseAvxRelated,(PVMCPUCC pVCpu));
1840IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseSseRelated,(PVMCPUCC pVCpu));
1841IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseSseAvxFpRelated,(PVMCPUCC pVCpu));
1842
1843IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1844IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1845IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1846IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1847IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1848IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1849IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1850IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1851IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1852IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1853#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1854IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
1855IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
1856IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
1857IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst));
1858IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst));
1859#endif
1860IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint8_t u8Value));
1861IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint16_t u16Value));
1862IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint32_t u32Value));
1863IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint64_t u64Value));
1864#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1865IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src));
1866IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src));
1867IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src));
1868IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src));
1869#endif
1870IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1871IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1872IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1873IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1874IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1875IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1876IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1877
1878IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1879IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1880IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1881IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1882IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1883IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1884IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1885IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1886IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1887IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1888#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1889IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
1890IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
1891IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
1892IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst));
1893IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst));
1894#endif
1895IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t u8Value));
1896IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1897IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1898IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1899#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1900IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src));
1901IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src));
1902IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src));
1903IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src));
1904#endif
1905IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1906IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1907IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1908IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1909IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFlatFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1910IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFlatFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1911IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFlatFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1912
1913IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1914IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1915IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1916IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1917IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1918IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1919IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1920IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1921IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1922IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1923IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1924IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1925IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1926IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1927IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1928IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1929IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1930IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1931IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1932IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1933IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1934IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
1935
1936IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1937IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1938IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1939IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemFlatMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1940IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1941IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1942IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1943IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemFlatMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1944IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1945IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1946IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1947IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemFlatMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1948IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1949IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1950IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1951IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemFlatMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1952IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemFlatMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1953IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemFlatMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1954IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1955IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1956IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1957IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemFlatMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
1958
1959IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapAtomic,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1960IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRw,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1961IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapWo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1962IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
1963
1964
1965/**
1966 * Info about shadowed guest register values.
1967 * @see IEMNATIVEGSTREG
1968 */
1969typedef struct IEMANTIVEGSTREGINFO
1970{
1971 /** Offset in VMCPU. */
1972 uint32_t off;
1973 /** The field size. */
1974 uint8_t cb;
1975 /** Name (for logging). */
1976 const char *pszName;
1977} IEMANTIVEGSTREGINFO;
1978extern DECL_HIDDEN_DATA(IEMANTIVEGSTREGINFO const) g_aGstShadowInfo[];
1979extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
1980extern DECL_HIDDEN_DATA(int32_t const) g_aoffIemNativeCallStackArgBpDisp[];
1981extern DECL_HIDDEN_DATA(uint32_t const) g_afIemNativeCallRegs[];
1982extern DECL_HIDDEN_DATA(uint8_t const) g_aidxIemNativeCallRegs[];
1983
1984
1985
1986/**
1987 * Ensures that there is sufficient space in the instruction output buffer.
1988 *
1989 * This will reallocate the buffer if needed and allowed.
1990 *
1991 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
1992 * allocation size.
1993 *
1994 * @returns Pointer to the instruction output buffer on success; throws VBox
1995 * status code on failure, so no need to check it.
1996 * @param pReNative The native recompile state.
1997 * @param off Current instruction offset. Works safely for UINT32_MAX
1998 * as well.
1999 * @param cInstrReq Number of instruction about to be added. It's okay to
2000 * overestimate this a bit.
2001 */
2002DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
2003iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
2004{
2005 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
2006 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
2007 {
2008#ifdef VBOX_STRICT
2009 pReNative->offInstrBufChecked = offChecked;
2010#endif
2011 return pReNative->pInstrBuf;
2012 }
2013 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
2014}
2015
2016/**
2017 * Checks that we didn't exceed the space requested in the last
2018 * iemNativeInstrBufEnsure() call.
2019 */
2020#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
2021 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
2022 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
2023
2024/**
2025 * Checks that a variable index is valid.
2026 */
2027#ifdef IEMNATIVE_VAR_IDX_MAGIC
2028# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
2029 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
2030 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2031 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))), \
2032 ("%s=%#x\n", #a_idxVar, a_idxVar))
2033#else
2034# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
2035 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2036 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
2037#endif
2038
2039/**
2040 * Checks that a variable index is valid and that the variable is assigned the
2041 * correct argument number.
2042 * This also adds a RT_NOREF of a_idxVar.
2043 */
2044#ifdef IEMNATIVE_VAR_IDX_MAGIC
2045# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
2046 RT_NOREF_PV(a_idxVar); \
2047 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
2048 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2049 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))) \
2050 && (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].uArgNo == (a_uArgNo), \
2051 ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
2052 (a_pReNative)->Core.aVars[RT_MIN(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar), \
2053 RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, \
2054 a_uArgNo)); \
2055 } while (0)
2056#else
2057# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
2058 RT_NOREF_PV(a_idxVar); \
2059 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2060 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
2061 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
2062 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
2063 (a_pReNative)->Core.aVars[RT_MIN(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
2064 } while (0)
2065#endif
2066
2067
2068/**
2069 * Checks that a variable has the expected size.
2070 */
2071#define IEMNATIVE_ASSERT_VAR_SIZE(a_pReNative, a_idxVar, a_cbVar) \
2072 AssertMsg((a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar), \
2073 ("%s=%#x: cbVar=%#x, expected %#x!\n", #a_idxVar, a_idxVar, \
2074 (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar, (a_cbVar)))
2075
2076
2077/**
2078 * Calculates the stack address of a variable as a [r]BP displacement value.
2079 */
2080DECL_FORCE_INLINE(int32_t)
2081iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
2082{
2083 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
2084 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
2085}
2086
2087
2088/**
2089 * Releases the variable's register.
2090 *
2091 * The register must have been previously acquired calling
2092 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
2093 * iemNativeVarRegisterSetAndAcquire().
2094 */
2095DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
2096{
2097 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2098 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired);
2099 pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired = false;
2100}
2101
2102
2103#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2104DECL_INLINE_THROW(void) iemNativeVarSimdRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
2105{
2106 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fSimdReg);
2107 iemNativeVarRegisterRelease(pReNative, idxVar);
2108}
2109#endif
2110
2111
2112/**
2113 * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask.
2114 *
2115 * @returns The flush mask.
2116 * @param fCImpl The IEM_CIMPL_F_XXX flags.
2117 * @param fGstShwFlush The starting flush mask.
2118 */
2119DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush)
2120{
2121 if (fCImpl & IEM_CIMPL_F_BRANCH_FAR)
2122 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS)
2123 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS)
2124 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS);
2125 if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR)
2126 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP)
2127 | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS)
2128 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS)
2129 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS);
2130 else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK)
2131 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP);
2132 if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW))
2133 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
2134 return fGstShwFlush;
2135}
2136
2137
2138/** Number of hidden arguments for CIMPL calls.
2139 * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */
2140#if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
2141# define IEM_CIMPL_HIDDEN_ARGS 3
2142#else
2143# define IEM_CIMPL_HIDDEN_ARGS 2
2144#endif
2145
2146
2147#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2148/** Number of hidden arguments for SSE_AIMPL calls. */
2149# define IEM_SSE_AIMPL_HIDDEN_ARGS 1
2150/** Number of hidden arguments for AVX_AIMPL calls. */
2151# define IEM_AVX_AIMPL_HIDDEN_ARGS 1
2152#endif
2153
2154
2155#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
2156
2157# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2158/**
2159 * Helper for iemNativeLivenessGetStateByGstReg.
2160 *
2161 * @returns IEMLIVENESS_STATE_XXX
2162 * @param fMergedStateExp2 This is the RT_BIT_32() of each sub-state
2163 * ORed together.
2164 */
2165DECL_FORCE_INLINE(uint32_t)
2166iemNativeLivenessMergeExpandedEFlagsState(uint32_t fMergedStateExp2)
2167{
2168 /* INPUT trumps anything else. */
2169 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_INPUT))
2170 return IEMLIVENESS_STATE_INPUT;
2171
2172 /* CLOBBERED trumps XCPT_OR_CALL and UNUSED. */
2173 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_CLOBBERED))
2174 {
2175 /* If not all sub-fields are clobbered they must be considered INPUT. */
2176 if (fMergedStateExp2 & (RT_BIT_32(IEMLIVENESS_STATE_UNUSED) | RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL)))
2177 return IEMLIVENESS_STATE_INPUT;
2178 return IEMLIVENESS_STATE_CLOBBERED;
2179 }
2180
2181 /* XCPT_OR_CALL trumps UNUSED. */
2182 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL))
2183 return IEMLIVENESS_STATE_XCPT_OR_CALL;
2184
2185 return IEMLIVENESS_STATE_UNUSED;
2186}
2187# endif /* !IEMLIVENESS_EXTENDED_LAYOUT */
2188
2189
2190DECL_FORCE_INLINE(uint32_t)
2191iemNativeLivenessGetStateByGstRegEx(PCIEMLIVENESSENTRY pLivenessEntry, unsigned enmGstRegEx)
2192{
2193# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2194 return ((pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
2195 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2);
2196# else
2197 return ( (pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
2198 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2)
2199 | (((pLivenessEntry->Bit2.bm64 >> enmGstRegEx) << 2) & 4)
2200 | (((pLivenessEntry->Bit3.bm64 >> enmGstRegEx) << 2) & 8);
2201# endif
2202}
2203
2204
2205DECL_FORCE_INLINE(uint32_t)
2206iemNativeLivenessGetStateByGstReg(PCIEMLIVENESSENTRY pLivenessEntry, IEMNATIVEGSTREG enmGstReg)
2207{
2208 uint32_t uRet = iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, (unsigned)enmGstReg);
2209 if (enmGstReg == kIemNativeGstReg_EFlags)
2210 {
2211 /* Merge the eflags states to one. */
2212# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2213 uRet = RT_BIT_32(uRet);
2214 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflCf | (pLivenessEntry->Bit1.fEflCf << 1));
2215 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflPf | (pLivenessEntry->Bit1.fEflPf << 1));
2216 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflAf | (pLivenessEntry->Bit1.fEflAf << 1));
2217 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflZf | (pLivenessEntry->Bit1.fEflZf << 1));
2218 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflSf | (pLivenessEntry->Bit1.fEflSf << 1));
2219 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflOf | (pLivenessEntry->Bit1.fEflOf << 1));
2220 uRet = iemNativeLivenessMergeExpandedEFlagsState(uRet);
2221# else
2222 AssertCompile(IEMLIVENESSBIT_IDX_EFL_OTHER == (unsigned)kIemNativeGstReg_EFlags);
2223 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_CF);
2224 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_PF);
2225 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_AF);
2226 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_ZF);
2227 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_SF);
2228 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_OF);
2229# endif
2230 }
2231 return uRet;
2232}
2233
2234
2235# ifdef VBOX_STRICT
2236/** For assertions only, user checks that idxCurCall isn't zerow. */
2237DECL_FORCE_INLINE(uint32_t)
2238iemNativeLivenessGetPrevStateByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg)
2239{
2240 return iemNativeLivenessGetStateByGstReg(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg);
2241}
2242# endif /* VBOX_STRICT */
2243
2244#endif /* IEMNATIVE_WITH_LIVENESS_ANALYSIS */
2245
2246
2247/**
2248 * Gets the number of hidden arguments for an expected IEM_MC_CALL statement.
2249 */
2250DECL_FORCE_INLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative)
2251{
2252 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL)
2253 return IEM_CIMPL_HIDDEN_ARGS;
2254 if (pReNative->fCImpl & (IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE | IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE))
2255 return 1;
2256 return 0;
2257}
2258
2259
2260DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg,
2261 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2262{
2263 pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
2264
2265 pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat;
2266 pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
2267 pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
2268 return (uint8_t)idxReg;
2269}
2270
2271
2272
2273/*********************************************************************************************************************************
2274* Register Allocator (GPR) *
2275*********************************************************************************************************************************/
2276
2277/**
2278 * Marks host register @a idxHstReg as containing a shadow copy of guest
2279 * register @a enmGstReg.
2280 *
2281 * ASSUMES that caller has made sure @a enmGstReg is not associated with any
2282 * host register before calling.
2283 */
2284DECL_FORCE_INLINE(void)
2285iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2286{
2287 Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)));
2288 Assert(!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
2289 Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End);
2290
2291 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg;
2292 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg); /** @todo why? not OR? */
2293 pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg);
2294 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
2295#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2296 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2297 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg);
2298#else
2299 RT_NOREF(off);
2300#endif
2301}
2302
2303
2304/**
2305 * Clear any guest register shadow claims from @a idxHstReg.
2306 *
2307 * The register does not need to be shadowing any guest registers.
2308 */
2309DECL_FORCE_INLINE(void)
2310iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off)
2311{
2312 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2313 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2314 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2315 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
2316 == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
2317#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2318 Assert(!(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & pReNative->Core.bmGstRegShadowDirty));
2319#endif
2320
2321#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2322 uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2323 if (fGstRegs)
2324 {
2325 Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End));
2326 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2327 while (fGstRegs)
2328 {
2329 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2330 fGstRegs &= ~RT_BIT_64(iGstReg);
2331 iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg);
2332 }
2333 }
2334#else
2335 RT_NOREF(off);
2336#endif
2337
2338 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2339 pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2340 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
2341}
2342
2343
2344/**
2345 * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg
2346 * and global overview flags.
2347 */
2348DECL_FORCE_INLINE(void)
2349iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2350{
2351 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2352 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2353 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2354 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2355 Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg));
2356 Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg));
2357 Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
2358#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2359 Assert(!(pReNative->Core.bmGstRegShadowDirty & RT_BIT_64(enmGstReg)));
2360#endif
2361
2362#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2363 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2364 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg);
2365#else
2366 RT_NOREF(off);
2367#endif
2368
2369 uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2370 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
2371 if (!fGstRegShadowsNew)
2372 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2373 pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg);
2374}
2375
2376
2377#if 0 /* unused */
2378/**
2379 * Clear any guest register shadow claim for @a enmGstReg.
2380 */
2381DECL_FORCE_INLINE(void)
2382iemNativeRegClearGstRegShadowingByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2383{
2384 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2385 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2386 {
2387 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs));
2388 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2389 }
2390}
2391#endif
2392
2393
2394/**
2395 * Clear any guest register shadow claim for @a enmGstReg and mark @a idxHstRegNew
2396 * as the new shadow of it.
2397 *
2398 * Unlike the other guest reg shadow helpers, this does the logging for you.
2399 * However, it is the liveness state is not asserted here, the caller must do
2400 * that.
2401 */
2402DECL_FORCE_INLINE(void)
2403iemNativeRegClearAndMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstRegNew,
2404 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2405{
2406 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2407 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2408 {
2409 uint8_t const idxHstRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg];
2410 Assert(idxHstRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs));
2411 if (idxHstRegOld == idxHstRegNew)
2412 return;
2413 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s (from %s)\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2414 g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxHstRegOld]));
2415 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2416 }
2417 else
2418 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2419 g_aGstShadowInfo[enmGstReg].pszName));
2420 iemNativeRegMarkAsGstRegShadow(pReNative, idxHstRegNew, enmGstReg, off);
2421}
2422
2423
2424/**
2425 * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom
2426 * to @a idxRegTo.
2427 */
2428DECL_FORCE_INLINE(void)
2429iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo,
2430 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2431{
2432 Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg));
2433 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] == idxRegFrom);
2434 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)
2435 == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows
2436 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2437 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows)
2438 == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows);
2439 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom))
2440 == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows));
2441
2442 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2443 pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2444 if (!fGstRegShadowsFrom)
2445 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom);
2446 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo);
2447 pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg);
2448 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo;
2449#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2450 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2451 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom);
2452#else
2453 RT_NOREF(off);
2454#endif
2455}
2456
2457
2458/**
2459 * Flushes any delayed guest register writes.
2460 *
2461 * This must be called prior to calling CImpl functions and any helpers that use
2462 * the guest state (like raising exceptions) and such.
2463 *
2464 * This optimization has not yet been implemented. The first target would be
2465 * RIP updates, since these are the most common ones.
2466 *
2467 * @note This function does not flush any shadowing information for guest
2468 * registers. This needs to be done by the caller if it wishes to do so.
2469 */
2470DECL_INLINE_THROW(uint32_t)
2471iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept = 0,
2472 uint64_t fGstSimdShwExcept = 0)
2473{
2474#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2475 uint64_t const fWritebackPc = ~fGstShwExcept & RT_BIT_64(kIemNativeGstReg_Pc);
2476#else
2477 uint64_t const fWritebackPc = 0;
2478#endif
2479#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2480 uint64_t const bmGstRegShadowDirty = pReNative->Core.bmGstRegShadowDirty & ~fGstShwExcept;
2481#else
2482 uint64_t const bmGstRegShadowDirty = 0;
2483#endif
2484#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2485 uint64_t const bmGstSimdRegShadowDirty = ( pReNative->Core.bmGstSimdRegShadowDirtyLo128
2486 | pReNative->Core.bmGstSimdRegShadowDirtyHi128)
2487 & ~fGstSimdShwExcept;
2488#else
2489 uint64_t const bmGstSimdRegShadowDirty = 0;
2490#endif
2491 if (bmGstRegShadowDirty | bmGstSimdRegShadowDirty | fWritebackPc)
2492 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fGstSimdShwExcept);
2493
2494 return off;
2495}
2496
2497
2498
2499/*********************************************************************************************************************************
2500* SIMD register allocator (largely code duplication of the GPR allocator for now but might diverge) *
2501*********************************************************************************************************************************/
2502
2503#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2504
2505DECL_FORCE_INLINE(uint8_t)
2506iemNativeSimdRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdReg,
2507 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2508{
2509 pReNative->Core.bmHstSimdRegs |= RT_BIT_32(idxSimdReg);
2510
2511 pReNative->Core.aHstSimdRegs[idxSimdReg].enmWhat = enmWhat;
2512 pReNative->Core.aHstSimdRegs[idxSimdReg].idxVar = idxVar;
2513 pReNative->Core.aHstSimdRegs[idxSimdReg].fGstRegShadows = 0;
2514 return idxSimdReg;
2515}
2516
2517
2518/**
2519 * Marks host SIMD register @a idxHstSimdReg as containing a shadow copy of guest
2520 * SIMD register @a enmGstSimdReg.
2521 *
2522 * ASSUMES that caller has made sure @a enmGstSimdReg is not associated with any
2523 * host register before calling.
2524 */
2525DECL_FORCE_INLINE(void)
2526iemNativeSimdRegMarkAsGstSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg,
2527 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2528{
2529 Assert(!(pReNative->Core.bmGstSimdRegShadows & RT_BIT_64(enmGstSimdReg)));
2530 Assert(!pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows);
2531 Assert((unsigned)enmGstSimdReg < (unsigned)kIemNativeGstSimdReg_End);
2532
2533 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxHstSimdReg;
2534 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2535 pReNative->Core.bmGstSimdRegShadows |= RT_BIT_64(enmGstSimdReg);
2536 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxHstSimdReg);
2537#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2538 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2539 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxHstSimdReg);
2540#else
2541 RT_NOREF(off);
2542#endif
2543}
2544
2545
2546/**
2547 * Transfers the guest SIMD register shadow claims of @a enmGstSimdReg from @a idxSimdRegFrom
2548 * to @a idxSimdRegTo.
2549 */
2550DECL_FORCE_INLINE(void)
2551iemNativeSimdRegTransferGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdRegFrom, uint8_t idxSimdRegTo,
2552 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2553{
2554 Assert(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & RT_BIT_64(enmGstSimdReg));
2555 Assert(pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] == idxSimdRegFrom);
2556 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows)
2557 == pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows
2558 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2559 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows)
2560 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows);
2561 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxSimdRegFrom))
2562 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows));
2563 Assert( pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded
2564 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].enmLoaded);
2565
2566 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstSimdReg);
2567 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2568 if (!fGstRegShadowsFrom)
2569 {
2570 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxSimdRegFrom);
2571 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2572 }
2573 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxSimdRegTo);
2574 pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2575 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxSimdRegTo;
2576#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2577 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2578 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxSimdRegTo, idxSimdRegFrom);
2579#else
2580 RT_NOREF(off);
2581#endif
2582}
2583
2584
2585/**
2586 * Clear any guest register shadow claims from @a idxHstSimdReg.
2587 *
2588 * The register does not need to be shadowing any guest registers.
2589 */
2590DECL_FORCE_INLINE(void)
2591iemNativeSimdRegClearGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, uint32_t off)
2592{
2593 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows)
2594 == pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows
2595 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstSimdReg_End));
2596 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxHstSimdReg))
2597 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows));
2598 Assert( !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyLo128)
2599 && !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyHi128));
2600
2601#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2602 uint64_t fGstRegs = pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2603 if (fGstRegs)
2604 {
2605 Assert(fGstRegs < RT_BIT_64(kIemNativeGstSimdReg_End));
2606 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2607 while (fGstRegs)
2608 {
2609 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2610 fGstRegs &= ~RT_BIT_64(iGstReg);
2611 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, (IEMNATIVEGSTSIMDREG)iGstReg, UINT8_MAX, idxHstSimdReg);
2612 }
2613 }
2614#else
2615 RT_NOREF(off);
2616#endif
2617
2618 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxHstSimdReg);
2619 pReNative->Core.bmGstSimdRegShadows &= ~pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2620 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows = 0;
2621 pReNative->Core.aHstSimdRegs[idxHstSimdReg].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2622}
2623
2624#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
2625
2626
2627#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2628/**
2629 * Emits code to update the guest RIP value by adding the current offset since the start of the last RIP update.
2630 */
2631DECL_INLINE_THROW(uint32_t) iemNativeEmitPcWriteback(PIEMRECOMPILERSTATE pReNative, uint32_t off)
2632{
2633 if (pReNative->Core.offPc)
2634 return iemNativeEmitPcWritebackSlow(pReNative, off);
2635 return off;
2636}
2637#endif /* IEMNATIVE_WITH_DELAYED_PC_UPDATING */
2638
2639
2640#ifdef IEMNATIVE_WITH_RECOMPILER_PROLOGUE_SINGLETON
2641/** @note iemNativeTbEntry returns VBOXSTRICTRC, but we don't declare it as
2642 * it saves us the trouble of a hidden parameter on MSC/amd64. */
2643# ifdef RT_ARCH_AMD64
2644extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, uintptr_t pfnTbBody));
2645# elif defined(RT_ARCH_ARM64)
2646extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, PCPUMCTX pCpumCtx, uintptr_t pfnTbBody));
2647# endif
2648#endif
2649
2650#ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
2651extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeFpCtrlRegRestore, (uint64_t u64RegFpCtrl));
2652#endif
2653
2654#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
2655
2656/** @} */
2657
2658#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
2659
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette