VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 106099

Last change on this file since 106099 was 106099, checked in by vboxsync, 7 months ago

VMM/IEM: Moved the kIemNativeGstReg_Pc to the end of the enum to optimize IEMLIVENESSBIT_MASK loading on arm, reducing the liveness code by ~80KB (compressed) / 144 KB (extended layout). bugref:10372

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 136.0 KB
Line 
1/* $Id: IEMN8veRecompiler.h 106099 2024-09-19 20:18:15Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40#include <iprt/assertcompile.h> /* for RT_IN_ASSEMBLER mode */
41
42/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
43 * Enables generating internal debug info for better TB disassembly dumping. */
44#if defined(DEBUG) || defined(DOXYGEN_RUNNING) || 0
45# define IEMNATIVE_WITH_TB_DEBUG_INFO
46#endif
47
48/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
49 * Enables liveness analysis. */
50#if 1 || defined(DOXYGEN_RUNNING)
51# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
52/*# define IEMLIVENESS_EXTENDED_LAYOUT*/
53#endif
54
55/** @def IEMNATIVE_WITH_EFLAGS_SKIPPING
56 * Enables skipping EFLAGS calculations/updating based on liveness info. */
57#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || defined(DOXYGEN_RUNNING)
58# define IEMNATIVE_WITH_EFLAGS_SKIPPING
59#endif
60
61/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING
62 * Enables strict consistency checks around EFLAGS skipping.
63 * @note Only defined when IEMNATIVE_WITH_EFLAGS_SKIPPING is also defined. */
64#ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING
65# ifdef VBOX_STRICT
66# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
67# endif
68#elif defined(DOXYGEN_RUNNING)
69# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
70#endif
71
72#ifdef VBOX_WITH_STATISTICS
73/** Always count instructions for now. */
74# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
75#endif
76
77/** @def IEMNATIVE_WITH_RECOMPILER_PROLOGUE_SINGLETON
78 * Enables having only a single prologue for native TBs. */
79#if 1 || defined(DOXYGEN_RUNNING)
80# define IEMNATIVE_WITH_RECOMPILER_PROLOGUE_SINGLETON
81#endif
82
83/** @def IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
84 * Enable this to use common epilogue and tail code for all TBs in a chunk. */
85#if 1 || defined(DOXYGEN_RUNNING)
86# define IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
87#endif
88
89
90/** @name Stack Frame Layout
91 *
92 * @{ */
93/** The size of the area for stack variables and spills and stuff.
94 * @note This limit is duplicated in the python script(s). We add 0x40 for
95 * alignment padding. */
96#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
97/** Number of 64-bit variable slots (0x100 / 8 = 32. */
98#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
99AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
100
101#ifdef RT_ARCH_AMD64
102/** An stack alignment adjustment (between non-volatile register pushes and
103 * the stack variable area, so the latter better aligned). */
104# define IEMNATIVE_FRAME_ALIGN_SIZE 8
105
106/** Number of stack arguments slots for calls made from the frame. */
107# ifdef RT_OS_WINDOWS
108# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
109# else
110# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
111# endif
112/** Number of any shadow arguments (spill area) for calls we make. */
113# ifdef RT_OS_WINDOWS
114# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
115# else
116# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
117# endif
118
119/** Frame pointer (RBP) relative offset of the last push. */
120# ifdef RT_OS_WINDOWS
121# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
122# else
123# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
124# endif
125/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
126 * address for it). */
127# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
128/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
129# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
130/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
131# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
132# ifdef RT_OS_WINDOWS
133/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
134# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
135/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
136# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
137# endif
138
139# ifdef RT_OS_WINDOWS
140/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
141# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
142/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
143# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
144/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
145# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
146/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
147# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
148# endif
149
150#elif RT_ARCH_ARM64
151/** No alignment padding needed for arm64. */
152# define IEMNATIVE_FRAME_ALIGN_SIZE 0
153/** No stack argument slots, got 8 registers for arguments will suffice. */
154# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
155/** There are no argument spill area. */
156# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
157
158/** Number of saved registers at the top of our stack frame.
159 * This includes the return address and old frame pointer, so x19 thru x30. */
160# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
161/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
162# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
163
164/** Frame pointer (BP) relative offset of the last push. */
165# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
166
167/** Frame pointer (BP) relative offset of the stack variable area (the lowest
168 * address for it). */
169# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
170
171#else
172# error "port me"
173#endif
174/** @} */
175
176
177/** @name Fixed Register Allocation(s)
178 * @{ */
179/** @def IEMNATIVE_REG_FIXED_PVMCPU
180 * The number of the register holding the pVCpu pointer. */
181/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
182 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
183 * @note This not available on AMD64, only ARM64. */
184/** @def IEMNATIVE_REG_FIXED_TMP0
185 * Dedicated temporary register.
186 * @note This has extremely short lifetime, must be used with great care to make
187 * sure any calling code or code being called is making use of it.
188 * It will definitely not survive a call or anything of that nature.
189 * @todo replace this by a register allocator and content tracker. */
190/** @def IEMNATIVE_REG_FIXED_MASK
191 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
192 * architecture. */
193#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
194/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
195 * Mask SIMD registers with fixes assignments, either by us or dictated by the CPU/OS
196 * architecture. */
197/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
198 * Dedicated temporary SIMD register. */
199#endif
200#if defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING) /* arm64 goes first because of doxygen */
201# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
202# define IEMNATIVE_REG_FIXED_PVMCPU_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PVMCPU)
203# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
204# define IEMNATIVE_REG_FIXED_PCPUMCTX_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PCPUMCTX)
205# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
206# if defined(IEMNATIVE_WITH_DELAYED_PC_UPDATING) && 0 /* debug the updating with a shadow RIP. */
207# define IEMNATIVE_REG_FIXED_TMP1 ARMV8_A64_REG_X16
208# define IEMNATIVE_REG_FIXED_PC_DBG ARMV8_A64_REG_X26
209# define IEMNATIVE_REG_FIXED_MASK_ADD ( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1) \
210 | RT_BIT_32(IEMNATIVE_REG_FIXED_PC_DBG))
211# else
212# define IEMNATIVE_REG_FIXED_MASK_ADD 0
213# endif
214# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
215 | RT_BIT_32(ARMV8_A64_REG_LR) \
216 | RT_BIT_32(ARMV8_A64_REG_BP) \
217 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
218 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
219 | RT_BIT_32(ARMV8_A64_REG_X18) \
220 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
221 | IEMNATIVE_REG_FIXED_MASK_ADD)
222
223# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
224# define IEMNATIVE_SIMD_REG_FIXED_TMP0 ARMV8_A64_REG_Q30
225# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS)
226# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(ARMV8_A64_REG_Q30)
227# else
228/** @note
229 * ARM64 has 32 registers, but they are only 128-bit wide. So, in order to
230 * support emulating 256-bit registers we pair two real registers statically to
231 * one virtual for now, leaving us with only 16 256-bit registers. We always
232 * pair v0 with v1, v2 with v3, etc. so we mark the higher register as fixed and
233 * the register allocator assumes that it will be always free when the lower is
234 * picked.
235 *
236 * Also ARM64 declares the low 64-bit of v8-v15 as callee saved, so we don't
237 * touch them in order to avoid having to save and restore them in the
238 * prologue/epilogue.
239 */
240# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xff00) \
241 | RT_BIT_32(ARMV8_A64_REG_Q31) \
242 | RT_BIT_32(ARMV8_A64_REG_Q30) \
243 | RT_BIT_32(ARMV8_A64_REG_Q29) \
244 | RT_BIT_32(ARMV8_A64_REG_Q27) \
245 | RT_BIT_32(ARMV8_A64_REG_Q25) \
246 | RT_BIT_32(ARMV8_A64_REG_Q23) \
247 | RT_BIT_32(ARMV8_A64_REG_Q21) \
248 | RT_BIT_32(ARMV8_A64_REG_Q19) \
249 | RT_BIT_32(ARMV8_A64_REG_Q17) \
250 | RT_BIT_32(ARMV8_A64_REG_Q15) \
251 | RT_BIT_32(ARMV8_A64_REG_Q13) \
252 | RT_BIT_32(ARMV8_A64_REG_Q11) \
253 | RT_BIT_32(ARMV8_A64_REG_Q9) \
254 | RT_BIT_32(ARMV8_A64_REG_Q7) \
255 | RT_BIT_32(ARMV8_A64_REG_Q5) \
256 | RT_BIT_32(ARMV8_A64_REG_Q3) \
257 | RT_BIT_32(ARMV8_A64_REG_Q1))
258# endif
259# endif
260
261#elif defined(RT_ARCH_AMD64)
262# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
263# define IEMNATIVE_REG_FIXED_PVMCPU_ASM xBX
264# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
265# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
266 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
267 | RT_BIT_32(X86_GREG_xSP) \
268 | RT_BIT_32(X86_GREG_xBP) )
269
270# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
271# define IEMNATIVE_SIMD_REG_FIXED_TMP0 5 /* xmm5/ymm5 */
272# ifndef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
273# ifndef _MSC_VER
274# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
275# endif
276# endif
277# ifdef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
278# define IEMNATIVE_SIMD_REG_FIXED_MASK (RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
279# else
280/** @note On Windows/AMD64 xmm6 through xmm15 are marked as callee saved. */
281# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xffc0) \
282 | RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
283# endif
284# endif
285
286#else
287# error "port me"
288#endif
289/** @} */
290
291/** @name Call related registers.
292 * @{ */
293/** @def IEMNATIVE_CALL_RET_GREG
294 * The return value register. */
295/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
296 * Number of arguments in registers. */
297/** @def IEMNATIVE_CALL_ARG0_GREG
298 * The general purpose register carrying argument \#0. */
299/** @def IEMNATIVE_CALL_ARG1_GREG
300 * The general purpose register carrying argument \#1. */
301/** @def IEMNATIVE_CALL_ARG2_GREG
302 * The general purpose register carrying argument \#2. */
303/** @def IEMNATIVE_CALL_ARG3_GREG
304 * The general purpose register carrying argument \#3. */
305/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
306 * Mask of registers the callee will not save and may trash. */
307#ifdef RT_ARCH_AMD64
308# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
309
310# ifdef RT_OS_WINDOWS
311# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
312# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
313# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
314# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
315# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
316# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
317 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
318 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
319 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
320# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
321 | RT_BIT_32(X86_GREG_xCX) \
322 | RT_BIT_32(X86_GREG_xDX) \
323 | RT_BIT_32(X86_GREG_x8) \
324 | RT_BIT_32(X86_GREG_x9) \
325 | RT_BIT_32(X86_GREG_x10) \
326 | RT_BIT_32(X86_GREG_x11) )
327# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
328/* xmm0 - xmm5 are marked as volatile. */
329# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0x3f))
330# endif
331
332# else /* !RT_OS_WINDOWS */
333# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
334# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
335# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
336# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
337# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
338# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
339# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
340# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
341 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
342 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
343 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
344 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
345 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
346# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
347 | RT_BIT_32(X86_GREG_xCX) \
348 | RT_BIT_32(X86_GREG_xDX) \
349 | RT_BIT_32(X86_GREG_xDI) \
350 | RT_BIT_32(X86_GREG_xSI) \
351 | RT_BIT_32(X86_GREG_x8) \
352 | RT_BIT_32(X86_GREG_x9) \
353 | RT_BIT_32(X86_GREG_x10) \
354 | RT_BIT_32(X86_GREG_x11) )
355# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
356/* xmm0 - xmm15 are marked as volatile. */
357# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffff))
358# endif
359# endif /* !RT_OS_WINDOWS */
360
361#elif defined(RT_ARCH_ARM64)
362# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
363# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
364# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
365# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
366# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
367# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
368# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
369# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
370# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
371# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
372# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
373 | RT_BIT_32(ARMV8_A64_REG_X1) \
374 | RT_BIT_32(ARMV8_A64_REG_X2) \
375 | RT_BIT_32(ARMV8_A64_REG_X3) \
376 | RT_BIT_32(ARMV8_A64_REG_X4) \
377 | RT_BIT_32(ARMV8_A64_REG_X5) \
378 | RT_BIT_32(ARMV8_A64_REG_X6) \
379 | RT_BIT_32(ARMV8_A64_REG_X7) )
380# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
381 | RT_BIT_32(ARMV8_A64_REG_X1) \
382 | RT_BIT_32(ARMV8_A64_REG_X2) \
383 | RT_BIT_32(ARMV8_A64_REG_X3) \
384 | RT_BIT_32(ARMV8_A64_REG_X4) \
385 | RT_BIT_32(ARMV8_A64_REG_X5) \
386 | RT_BIT_32(ARMV8_A64_REG_X6) \
387 | RT_BIT_32(ARMV8_A64_REG_X7) \
388 | RT_BIT_32(ARMV8_A64_REG_X8) \
389 | RT_BIT_32(ARMV8_A64_REG_X9) \
390 | RT_BIT_32(ARMV8_A64_REG_X10) \
391 | RT_BIT_32(ARMV8_A64_REG_X11) \
392 | RT_BIT_32(ARMV8_A64_REG_X12) \
393 | RT_BIT_32(ARMV8_A64_REG_X13) \
394 | RT_BIT_32(ARMV8_A64_REG_X14) \
395 | RT_BIT_32(ARMV8_A64_REG_X15) \
396 | RT_BIT_32(ARMV8_A64_REG_X16) \
397 | RT_BIT_32(ARMV8_A64_REG_X17) )
398# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
399/* The low 64 bits of v8 - v15 marked as callee saved but the rest is volatile,
400 * so to simplify our life a bit we just mark everything as volatile. */
401# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffffffff))
402# endif
403
404#endif
405
406/** This is the maximum argument count we'll ever be needing. */
407#define IEMNATIVE_CALL_MAX_ARG_COUNT 7
408#ifdef RT_OS_WINDOWS
409# ifdef VBOXSTRICTRC_STRICT_ENABLED
410# undef IEMNATIVE_CALL_MAX_ARG_COUNT
411# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
412# endif
413#endif
414
415/** @def IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK
416 * Variant of IEMNATIVE_CALL_VOLATILE_GREG_MASK that excludes
417 * IEMNATIVE_REG_FIXED_TMP0 on hosts that uses it. */
418#ifdef IEMNATIVE_REG_FIXED_TMP0
419# ifdef IEMNATIVE_REG_FIXED_TMP1
420# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK ( IEMNATIVE_CALL_VOLATILE_GREG_MASK \
421 & ~( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
422 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1)))
423# else
424# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK (IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0))
425# endif
426#else
427# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK IEMNATIVE_CALL_VOLATILE_GREG_MASK
428#endif
429/** @} */
430
431
432/** @def IEMNATIVE_HST_GREG_COUNT
433 * Number of host general purpose registers we tracker. */
434/** @def IEMNATIVE_HST_GREG_MASK
435 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
436 * inverted register masks and such to get down to a correct set of regs. */
437#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
438/** @def IEMNATIVE_HST_SIMD_REG_COUNT
439 * Number of host SIMD registers we track. */
440/** @def IEMNATIVE_HST_SIMD_REG_MASK
441 * Mask corresponding to IEMNATIVE_HST_SIMD_REG_COUNT that can be applied to
442 * inverted register masks and such to get down to a correct set of regs. */
443#endif
444#ifdef RT_ARCH_AMD64
445# define IEMNATIVE_HST_GREG_COUNT 16
446# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
447
448# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
449# define IEMNATIVE_HST_SIMD_REG_COUNT 16
450# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_C(0xffff)
451# endif
452
453#elif defined(RT_ARCH_ARM64)
454# define IEMNATIVE_HST_GREG_COUNT 32
455# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
456
457# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
458# define IEMNATIVE_HST_SIMD_REG_COUNT 32
459# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_MAX
460# endif
461
462#else
463# error "Port me!"
464#endif
465
466
467#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
468
469
470/** Native code generator label types. */
471typedef enum
472{
473 kIemNativeLabelType_Invalid = 0,
474 /*
475 * Labels w/o data, only once instance per TB - aka exit reasons.
476 *
477 * Note! Jumps to these requires instructions that are capable of spanning
478 * the max TB length.
479 */
480 /* Simple labels comes first for indexing reasons. RaiseXx is order by the exception's numerical value(s). */
481 kIemNativeLabelType_RaiseDe, /**< Raise (throw) X86_XCPT_DE (00h). */
482 kIemNativeLabelType_RaiseUd, /**< Raise (throw) X86_XCPT_UD (06h). */
483 kIemNativeLabelType_RaiseSseRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to cr0 & cr4. */
484 kIemNativeLabelType_RaiseAvxRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to xcr0, cr0 & cr4. */
485 kIemNativeLabelType_RaiseSseAvxFpRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_XF according to c4. */
486 kIemNativeLabelType_RaiseNm, /**< Raise (throw) X86_XCPT_NM (07h). */
487 kIemNativeLabelType_RaiseGp0, /**< Raise (throw) X86_XCPT_GP (0dh) w/ errcd=0. */
488 kIemNativeLabelType_RaiseMf, /**< Raise (throw) X86_XCPT_MF (10h). */
489 kIemNativeLabelType_RaiseXf, /**< Raise (throw) X86_XCPT_XF (13h). */
490 kIemNativeLabelType_ObsoleteTb,
491 kIemNativeLabelType_NeedCsLimChecking,
492 kIemNativeLabelType_CheckBranchMiss,
493 kIemNativeLabelType_LastSimple = kIemNativeLabelType_CheckBranchMiss,
494 /* Manually defined labels. */
495 kIemNativeLabelType_ReturnBreak,
496 kIemNativeLabelType_ReturnBreakFF,
497 kIemNativeLabelType_ReturnBreakViaLookup,
498 kIemNativeLabelType_ReturnBreakViaLookupWithIrq,
499 kIemNativeLabelType_ReturnBreakViaLookupWithTlb,
500 kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq,
501 kIemNativeLabelType_ReturnWithFlags,
502 kIemNativeLabelType_NonZeroRetOrPassUp,
503#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
504 kIemNativeLabelType_ReturnSuccess, /**< Sets eax/w0 to zero and returns. */
505#else
506 kIemNativeLabelType_Return,
507#endif
508 /** The last fixup for branches that can span almost the whole TB length.
509 * @note Whether kIemNativeLabelType_Return needs to be one of these is
510 * a bit questionable, since nobody jumps to it except other tail code. */
511#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
512 kIemNativeLabelType_LastWholeTbBranch = kIemNativeLabelType_ReturnSuccess,
513#else
514 kIemNativeLabelType_LastWholeTbBranch = kIemNativeLabelType_Return,
515#endif
516 /** The last fixup for branches that exits the TB. */
517#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
518 kIemNativeLabelType_LastTbExit = kIemNativeLabelType_ReturnSuccess,
519#else
520 kIemNativeLabelType_LastTbExit = kIemNativeLabelType_Return,
521#endif
522
523 /** Loop-jump target. */
524 kIemNativeLabelType_LoopJumpTarget,
525
526 /*
527 * Labels with data, potentially multiple instances per TB:
528 *
529 * These are localized labels, so no fixed jump type restrictions here.
530 */
531 kIemNativeLabelType_FirstWithMultipleInstances,
532 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
533 kIemNativeLabelType_Else,
534 kIemNativeLabelType_Endif,
535 kIemNativeLabelType_CheckIrq,
536 kIemNativeLabelType_TlbLookup,
537 kIemNativeLabelType_TlbMiss,
538 kIemNativeLabelType_TlbDone,
539 kIemNativeLabelType_End
540} IEMNATIVELABELTYPE;
541
542#define IEMNATIVELABELTYPE_IS_EXIT_REASON(a_enmLabel) \
543 ((a_enmLabel) <= kIemNativeLabelType_LastTbExit && (a_enmLabel) > kIemNativeLabelType_Invalid)
544
545
546/** Native code generator label definition. */
547typedef struct IEMNATIVELABEL
548{
549 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
550 * the epilog. */
551 uint32_t off;
552 /** The type of label (IEMNATIVELABELTYPE). */
553 uint16_t enmType;
554 /** Additional label data, type specific. */
555 uint16_t uData;
556} IEMNATIVELABEL;
557/** Pointer to a label. */
558typedef IEMNATIVELABEL *PIEMNATIVELABEL;
559
560
561/** Native code generator fixup types. */
562typedef enum
563{
564 kIemNativeFixupType_Invalid = 0,
565#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
566 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
567 kIemNativeFixupType_Rel32,
568#elif defined(RT_ARCH_ARM64)
569 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
570 kIemNativeFixupType_RelImm26At0,
571 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
572 kIemNativeFixupType_RelImm19At5,
573 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
574 kIemNativeFixupType_RelImm14At5,
575#endif
576 kIemNativeFixupType_End
577} IEMNATIVEFIXUPTYPE;
578
579/** Native code generator fixup. */
580typedef struct IEMNATIVEFIXUP
581{
582 /** Code offset of the fixup location. */
583 uint32_t off;
584 /** The IEMNATIVELABEL this is a fixup for. */
585 uint16_t idxLabel;
586 /** The fixup type (IEMNATIVEFIXUPTYPE). */
587 uint8_t enmType;
588 /** Addend or other data. */
589 int8_t offAddend;
590} IEMNATIVEFIXUP;
591/** Pointer to a native code generator fixup. */
592typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
593
594#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
595
596/** Native code generator fixup to per chunk TB tail code. */
597typedef struct IEMNATIVEEXITFIXUP
598{
599 /** Code offset of the fixup location. */
600 uint32_t off;
601 /** The exit reason. */
602 IEMNATIVELABELTYPE enmExitReason;
603} IEMNATIVEEXITFIXUP;
604/** Pointer to a native code generator TB exit fixup. */
605typedef IEMNATIVEEXITFIXUP *PIEMNATIVEEXITFIXUP;
606
607/**
608 * Per executable memory chunk context with addresses for common code.
609 */
610typedef struct IEMNATIVEPERCHUNKCTX
611{
612 /** Pointers to the exit labels */
613 PIEMNATIVEINSTR apExitLabels[kIemNativeLabelType_LastTbExit + 1];
614} IEMNATIVEPERCHUNKCTX;
615/** Pointer to per-chunk recompiler context. */
616typedef IEMNATIVEPERCHUNKCTX *PIEMNATIVEPERCHUNKCTX;
617/** Pointer to const per-chunk recompiler context. */
618typedef const IEMNATIVEPERCHUNKCTX *PCIEMNATIVEPERCHUNKCTX;
619
620#endif /* IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE */
621
622
623/**
624 * One bit of the state.
625 *
626 * Each register state takes up two bits. We keep the two bits in two separate
627 * 64-bit words to simplify applying them to the guest shadow register mask in
628 * the register allocator.
629 */
630typedef union IEMLIVENESSBIT
631{
632 uint64_t bm64;
633 RT_GCC_EXTENSION struct
634 { /* bit no */
635 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
636 uint64_t fCr0 : 1; /**< 0x10 / 16: */
637 uint64_t fCr4 : 1; /**< 0x11 / 17: */
638 uint64_t fFcw : 1; /**< 0x12 / 18: */
639 uint64_t fFsw : 1; /**< 0x13 / 19: */
640 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
641 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
642 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
643 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
644 uint64_t fXcr0 : 1; /**< 0x2c / 44: */
645 uint64_t fMxCsr : 1; /**< 0x2d / 45: */
646 uint64_t fEflOther : 1; /**< 0x2e / 46: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
647 uint64_t fEflCf : 1; /**< 0x2f / 47: Carry flag (X86_EFL_CF / 0). */
648 uint64_t fEflPf : 1; /**< 0x30 / 48: Parity flag (X86_EFL_PF / 2). */
649 uint64_t fEflAf : 1; /**< 0x31 / 59: Auxilary carry flag (X86_EFL_AF / 4). */
650 uint64_t fEflZf : 1; /**< 0x32 / 50: Zero flag (X86_EFL_ZF / 6). */
651 uint64_t fEflSf : 1; /**< 0x33 / 51: Signed flag (X86_EFL_SF / 7). */
652 uint64_t fEflOf : 1; /**< 0x34 / 52: Overflow flag (X86_EFL_OF / 12). */
653 uint64_t fUnusedPc : 1; /**< 0x35 / 53: (PC in ) */
654 uint64_t uUnused : 10; /* 0x36 / 54 -> 0x40/64 */
655 };
656} IEMLIVENESSBIT;
657AssertCompileSize(IEMLIVENESSBIT, 8);
658
659#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
660#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
661#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
662#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
663#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
664#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
665#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
666
667
668/**
669 * A liveness state entry.
670 *
671 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
672 * Once we add a SSE register shadowing, we'll add another 64-bit element for
673 * that.
674 */
675typedef union IEMLIVENESSENTRY
676{
677#ifndef IEMLIVENESS_EXTENDED_LAYOUT
678 uint64_t bm64[16 / 8];
679 uint16_t bm32[16 / 4];
680 uint16_t bm16[16 / 2];
681 uint8_t bm8[ 16 / 1];
682 IEMLIVENESSBIT aBits[2];
683#else
684 uint64_t bm64[32 / 8];
685 uint16_t bm32[32 / 4];
686 uint16_t bm16[32 / 2];
687 uint8_t bm8[ 32 / 1];
688 IEMLIVENESSBIT aBits[4];
689#endif
690 RT_GCC_EXTENSION struct
691 {
692 /** Bit \#0 of the register states. */
693 IEMLIVENESSBIT Bit0;
694 /** Bit \#1 of the register states. */
695 IEMLIVENESSBIT Bit1;
696#ifdef IEMLIVENESS_EXTENDED_LAYOUT
697 /** Bit \#2 of the register states. */
698 IEMLIVENESSBIT Bit2;
699 /** Bit \#3 of the register states. */
700 IEMLIVENESSBIT Bit3;
701#endif
702 };
703} IEMLIVENESSENTRY;
704#ifndef IEMLIVENESS_EXTENDED_LAYOUT
705AssertCompileSize(IEMLIVENESSENTRY, 16);
706#else
707AssertCompileSize(IEMLIVENESSENTRY, 32);
708#endif
709/** Pointer to a liveness state entry. */
710typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
711/** Pointer to a const liveness state entry. */
712typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
713
714/** @name 64-bit value masks for IEMLIVENESSENTRY.
715 * @{ */ /* 0xzzzzyyyyxxxxwwww */
716#define IEMLIVENESSBIT_MASK UINT64_C(0x001fffffffffffff)
717
718#ifndef IEMLIVENESS_EXTENDED_LAYOUT
719# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
720# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
721
722# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
723# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
724#endif
725
726#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x001fc00000000000)
727#define IEMLIVENESSBIT_STATUS_EFL_MASK UINT64_C(0x001f800000000000)
728
729#ifndef IEMLIVENESS_EXTENDED_LAYOUT
730# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
731# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
732#endif
733/** @} */
734
735
736/** @name The liveness state for a register.
737 *
738 * The state values have been picked to with state accumulation in mind (what
739 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
740 * performance critical work done with the values.
741 *
742 * This is a compressed state that only requires 2 bits per register.
743 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
744 * 1. the incoming state from the following call,
745 * 2. the outgoing state for this call,
746 * 3. mask of the entries set in the 2nd.
747 *
748 * The mask entry (3rd one above) will be used both when updating the outgoing
749 * state and when merging in incoming state for registers not touched by the
750 * current call.
751 *
752 *
753 * Extended Layout:
754 *
755 * The extended layout variation differs from the above as it records the
756 * different register accesses as individual bits, and it is currently used for
757 * the delayed EFLAGS calculation experiments. The latter means that
758 * calls/tb-exits and potential calls/exceptions/tb-exits are recorded
759 * separately so the latter can be checked for in combination with clobbering.
760 *
761 * @{ */
762#ifndef IEMLIVENESS_EXTENDED_LAYOUT
763/** The register will be clobbered and the current value thrown away.
764 *
765 * When this is applied to the state (2) we'll simply be AND'ing it with the
766 * (old) mask (3) and adding the register to the mask. This way we'll
767 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
768 * IEMLIVENESS_STATE_INPUT states. */
769# define IEMLIVENESS_STATE_CLOBBERED 0
770/** The register is unused in the remainder of the TB.
771 *
772 * This is an initial state and can not be set by any of the
773 * iemNativeLivenessFunc_xxxx callbacks. */
774# define IEMLIVENESS_STATE_UNUSED 1
775/** The register value is required in a potential call or exception.
776 *
777 * This means that the register value must be calculated and is best written to
778 * the state, but that any shadowing registers can be flushed thereafter as it's
779 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
780 *
781 * It is typically applied across the board, but we preserve incoming
782 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
783 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
784 * 1. r0 = old & ~mask;
785 * 2. r0 = t1 & (t1 >> 1);
786 * 3. state |= r0 | 0b10;
787 * 4. mask = ~0;
788 */
789# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
790/** The register value is used as input.
791 *
792 * This means that the register value must be calculated and it is best to keep
793 * it in a register. It does not need to be writtent out as such. This is the
794 * highest priority state.
795 *
796 * Whether the call modifies the register or not isn't relevant to earlier
797 * calls, so that's not recorded.
798 *
799 * When applying this state we just or in the value in the outgoing state and
800 * mask. */
801# define IEMLIVENESS_STATE_INPUT 3
802/** Mask of the state bits. */
803# define IEMLIVENESS_STATE_MASK 3
804/** The number of bits per state. */
805# define IEMLIVENESS_STATE_BIT_COUNT 2
806
807/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state.
808 * @note only used in assertions. */
809# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
810/** Check if we're expecting read accesses to a register with the given (previous) liveness state.
811 * @note only used in assertions. */
812# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
813/** Check if a register clobbering is expected given the (previous) liveness state.
814 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
815 * include INPUT if the register is used in more than one place.
816 * @note only used in assertions. */
817# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
818
819/** Check if all status flags are going to be clobbered and doesn't need
820 * calculating in the current step.
821 * @param a_pCurEntry The current liveness entry.
822 * @note Used by actual code. */
823# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
824 ( (((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_STATUS_EFL_MASK) == 0 )
825
826/** Construct a mask of the guest registers in the UNUSED and XCPT_OR_CALL
827 * states, as these are no longer needed.
828 * @param a_pCurEntry The current liveness entry.
829 * @note Used by actual code. */
830AssertCompile(IEMLIVENESS_STATE_UNUSED == 1 && IEMLIVENESS_STATE_XCPT_OR_CALL == 2);
831# define IEMLIVENESS_STATE_GET_CAN_BE_FREED_SET(a_pCurEntry) \
832 ( (a_pCurEntry)->Bit0.bm64 ^ (a_pCurEntry)->Bit1.bm64 )
833
834
835#else /* IEMLIVENESS_EXTENDED_LAYOUT */
836/** The register is not used any more. */
837# define IEMLIVENESS_STATE_UNUSED 0
838/** Flag: The register is required in a potential call or/and exception. */
839# define IEMLIVENESS_STATE_POTENTIAL_CALL 1
840# define IEMLIVENESS_BIT_POTENTIAL_CALL 0
841/** Flag: The register is read. */
842# define IEMLIVENESS_STATE_READ 2
843# define IEMLIVENESS_BIT_READ 1
844/** Flag: The register is written. */
845# define IEMLIVENESS_STATE_WRITE 4
846# define IEMLIVENESS_BIT_WRITE 2
847/** Flag: Unconditional call. */
848# define IEMLIVENESS_STATE_CALL 8
849# define IEMLIVENESS_BIT_CALL 3
850
851# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
852 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
853# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
854# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
855
856# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
857 ( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & IEMLIVENESSBIT_STATUS_EFL_MASK) == IEMLIVENESSBIT_STATUS_EFL_MASK \
858 && !( ( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 \
859 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \
860 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_CALL].bm64) \
861 & IEMLIVENESSBIT_STATUS_EFL_MASK) )
862
863/** Construct a mask of the registers not in the read or write state.
864 * @note We could skips writes, if they aren't from us, as this is just a hack
865 * to prevent trashing registers that have just been written or will be
866 * written when we retire the current instruction.
867 * @param a_pCurEntry The current liveness entry.
868 * @note Used by actual code. */
869# define IEMLIVENESS_STATE_GET_CAN_BE_FREED_SET(a_pCurEntry) \
870 ( ~(a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \
871 & ~(a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 \
872 & IEMLIVENESSBIT_MASK )
873
874
875#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
876/** @} */
877
878/** @name Liveness helpers for builtin functions and similar.
879 *
880 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
881 * own set of manipulator macros for those.
882 *
883 * @{ */
884/** Initializing the state as all unused. */
885#ifndef IEMLIVENESS_EXTENDED_LAYOUT
886# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
887 do { \
888 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
889 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
890 } while (0)
891#else
892# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
893 do { \
894 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = 0; \
895 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
896 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
897 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = 0; \
898 } while (0)
899#endif
900
901/** Initializing the outgoing state with a potential xcpt or call state.
902 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT.
903 *
904 * @note Must invoke IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL when done!
905 */
906#ifndef IEMLIVENESS_EXTENDED_LAYOUT
907# define IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
908 do { \
909 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
910 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
911 } while (0)
912#else
913# define IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
914 do { \
915 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = IEMLIVENESSBIT_MASK; \
916 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
917 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
918 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = 0; \
919 } while (0)
920#endif
921
922/** Completes IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL after applying any
923 * other state modifications.
924 */
925#ifndef IEMLIVENESS_EXTENDED_LAYOUT
926# define IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) ((void)0)
927#else
928# define IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
929 do { \
930 uint64_t const fInhMask = ~( (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL].bm64 \
931 | (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE].bm64); \
932 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 & fInhMask; \
933 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64 & fInhMask; \
934 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & fInhMask; \
935 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_CALL].bm64 & fInhMask; \
936 } while (0)
937#endif
938
939/** Initializing the outgoing state with an unconditional call state.
940 * This should only really be used alone. */
941#ifndef IEMLIVENESS_EXTENDED_LAYOUT
942# define IEM_LIVENESS_RAW_INIT_WITH_CALL(a_pOutgoing, a_pIncoming) \
943 do { \
944 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
945 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
946 } while (0)
947#else
948# define IEM_LIVENESS_RAW_INIT_WITH_CALL(a_pOutgoing, a_pIncoming) \
949 do { \
950 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = IEMLIVENESSBIT_MASK; \
951 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = 0; \
952 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
953 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
954 RT_NOREF(a_pIncoming); \
955 } while (0)
956#endif
957
958#if 0 /* unused */
959/** Initializing the outgoing state with an unconditional call state as well as
960 * an potential call/exception preceeding it.
961 * This should only really be used alone. */
962#ifndef IEMLIVENESS_EXTENDED_LAYOUT
963# define IEM_LIVENESS_RAW_INIT_WITH_CALL_AND_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
964 do { \
965 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
966 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
967 } while (0)
968#else
969# define IEM_LIVENESS_RAW_INIT_WITH_CALL_AND_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
970 do { \
971 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = IEMLIVENESSBIT_MASK; \
972 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = IEMLIVENESSBIT_MASK; \
973 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
974 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
975 } while (0)
976#endif
977#endif
978
979/** Adds a segment base register as input to the outgoing state. */
980#ifndef IEMLIVENESS_EXTENDED_LAYOUT
981# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
982 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
983 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
984 } while (0)
985#else
986# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
987 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
988 } while (0)
989#endif
990
991/** Adds a segment attribute register as input to the outgoing state. */
992#ifndef IEMLIVENESS_EXTENDED_LAYOUT
993# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
994 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
995 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
996 } while (0)
997#else
998# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
999 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
1000 } while (0)
1001#endif
1002
1003/** Adds a segment limit register as input to the outgoing state. */
1004#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1005# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
1006 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
1007 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
1008 } while (0)
1009#else
1010# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
1011 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
1012 } while (0)
1013#endif
1014
1015/** Adds a segment limit register as input to the outgoing state. */
1016#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1017# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
1018 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
1019 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
1020 } while (0)
1021#else
1022# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
1023 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
1024 } while (0)
1025#endif
1026/** @} */
1027
1028/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK
1029 * Checks that the EFLAGS bits specified by @a a_fEflNeeded are actually
1030 * calculated and up to date. This is to double check that we haven't skipped
1031 * EFLAGS calculations when we actually need them. NOP in non-strict builds.
1032 * @note has to be placed in
1033 */
1034#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
1035# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) \
1036 do { (a_off) = iemNativeEmitEFlagsSkippingCheck(a_pReNative, a_off, a_fEflNeeded); } while (0)
1037#else
1038# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { } while (0)
1039#endif
1040
1041
1042/**
1043 * Guest registers that can be shadowed in GPRs.
1044 *
1045 * This runs parallel to the liveness state (IEMLIVENESSBIT, ++). The EFlags
1046 * must be placed last, as the liveness state tracks it as 7 subcomponents and
1047 * we don't want to waste space here.
1048 *
1049 * @note Make sure to update IEMLIVENESSBIT, IEMLIVENESSBIT_ALL_EFL_MASK and
1050 * friends as well as IEMAllN8veLiveness.cpp.
1051 */
1052typedef enum IEMNATIVEGSTREG : uint8_t
1053{
1054 kIemNativeGstReg_GprFirst = 0,
1055 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
1056 kIemNativeGstReg_Cr0,
1057 kIemNativeGstReg_Cr4,
1058 kIemNativeGstReg_FpuFcw,
1059 kIemNativeGstReg_FpuFsw,
1060 kIemNativeGstReg_SegBaseFirst,
1061 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
1062 kIemNativeGstReg_SegAttribFirst,
1063 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
1064 kIemNativeGstReg_SegLimitFirst,
1065 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
1066 kIemNativeGstReg_SegSelFirst,
1067 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
1068 kIemNativeGstReg_Xcr0,
1069 kIemNativeGstReg_MxCsr,
1070 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags. */
1071 /* 6 entry gap for liveness EFlags subdivisions. */
1072 kIemNativeGstReg_Pc = kIemNativeGstReg_EFlags + 7,
1073 kIemNativeGstReg_End
1074} IEMNATIVEGSTREG;
1075AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
1076AssertCompile((UINT64_C(0x7f) << kIemNativeGstReg_EFlags) == IEMLIVENESSBIT_ALL_EFL_MASK);
1077AssertCompile(RT_BIT_64(kIemNativeGstReg_Pc) - UINT64_C(1) == IEMLIVENESSBIT_MASK);
1078
1079/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
1080 * @{ */
1081#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
1082#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
1083#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
1084#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
1085#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
1086/** @} */
1087
1088#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1089
1090/**
1091 * Guest registers that can be shadowed in host SIMD registers.
1092 *
1093 * @todo r=aeichner Liveness tracking
1094 * @todo r=aeichner Given that we can only track xmm/ymm here does this actually make sense?
1095 */
1096typedef enum IEMNATIVEGSTSIMDREG : uint8_t
1097{
1098 kIemNativeGstSimdReg_SimdRegFirst = 0,
1099 kIemNativeGstSimdReg_SimdRegLast = kIemNativeGstSimdReg_SimdRegFirst + 15,
1100 kIemNativeGstSimdReg_End
1101} IEMNATIVEGSTSIMDREG;
1102
1103/** @name Helpers for converting register numbers to IEMNATIVEGSTSIMDREG values.
1104 * @{ */
1105#define IEMNATIVEGSTSIMDREG_SIMD(a_iSimdReg) ((IEMNATIVEGSTSIMDREG)(kIemNativeGstSimdReg_SimdRegFirst + (a_iSimdReg)))
1106/** @} */
1107
1108/**
1109 * The Load/store size for a SIMD guest register.
1110 */
1111typedef enum IEMNATIVEGSTSIMDREGLDSTSZ : uint8_t
1112{
1113 /** Invalid size. */
1114 kIemNativeGstSimdRegLdStSz_Invalid = 0,
1115 /** Loads the low 128-bit of a guest SIMD register. */
1116 kIemNativeGstSimdRegLdStSz_Low128,
1117 /** Loads the high 128-bit of a guest SIMD register. */
1118 kIemNativeGstSimdRegLdStSz_High128,
1119 /** Loads the whole 256-bits of a guest SIMD register. */
1120 kIemNativeGstSimdRegLdStSz_256,
1121 /** End value. */
1122 kIemNativeGstSimdRegLdStSz_End
1123} IEMNATIVEGSTSIMDREGLDSTSZ;
1124
1125#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
1126
1127/**
1128 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
1129 */
1130typedef enum IEMNATIVEGSTREGUSE
1131{
1132 /** The usage is read-only, the register holding the guest register
1133 * shadow copy will not be modified by the caller. */
1134 kIemNativeGstRegUse_ReadOnly = 0,
1135 /** The caller will update the guest register (think: PC += cbInstr).
1136 * The guest shadow copy will follow the returned register. */
1137 kIemNativeGstRegUse_ForUpdate,
1138 /** The call will put an entirely new value in the guest register, so
1139 * if new register is allocate it will be returned uninitialized. */
1140 kIemNativeGstRegUse_ForFullWrite,
1141 /** The caller will use the guest register value as input in a calculation
1142 * and the host register will be modified.
1143 * This means that the returned host register will not be marked as a shadow
1144 * copy of the guest register. */
1145 kIemNativeGstRegUse_Calculation
1146} IEMNATIVEGSTREGUSE;
1147
1148/**
1149 * Guest registers (classes) that can be referenced.
1150 */
1151typedef enum IEMNATIVEGSTREGREF : uint8_t
1152{
1153 kIemNativeGstRegRef_Invalid = 0,
1154 kIemNativeGstRegRef_Gpr,
1155 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
1156 kIemNativeGstRegRef_EFlags,
1157 kIemNativeGstRegRef_MxCsr,
1158 kIemNativeGstRegRef_FpuReg,
1159 kIemNativeGstRegRef_MReg,
1160 kIemNativeGstRegRef_XReg,
1161 kIemNativeGstRegRef_X87,
1162 kIemNativeGstRegRef_XState,
1163 //kIemNativeGstRegRef_YReg, - doesn't work.
1164 kIemNativeGstRegRef_End
1165} IEMNATIVEGSTREGREF;
1166
1167
1168/** Variable kinds. */
1169typedef enum IEMNATIVEVARKIND : uint8_t
1170{
1171 /** Customary invalid zero value. */
1172 kIemNativeVarKind_Invalid = 0,
1173 /** This is either in a register or on the stack. */
1174 kIemNativeVarKind_Stack,
1175 /** Immediate value - loaded into register when needed, or can live on the
1176 * stack if referenced (in theory). */
1177 kIemNativeVarKind_Immediate,
1178 /** Variable reference - loaded into register when needed, never stack. */
1179 kIemNativeVarKind_VarRef,
1180 /** Guest register reference - loaded into register when needed, never stack. */
1181 kIemNativeVarKind_GstRegRef,
1182 /** End of valid values. */
1183 kIemNativeVarKind_End
1184} IEMNATIVEVARKIND;
1185
1186
1187/** Variable or argument. */
1188typedef struct IEMNATIVEVAR
1189{
1190 /** The kind of variable. */
1191 IEMNATIVEVARKIND enmKind;
1192 /** The variable size in bytes. */
1193 uint8_t cbVar;
1194 /** The first stack slot (uint64_t), except for immediate and references
1195 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
1196 * has a stack slot it has been initialized and has a value. Unused variables
1197 * has neither a stack slot nor a host register assignment. */
1198 uint8_t idxStackSlot;
1199 /** The host register allocated for the variable, UINT8_MAX if not. */
1200 uint8_t idxReg;
1201 /** The argument number if argument, UINT8_MAX if regular variable. */
1202 uint8_t uArgNo;
1203 /** If referenced, the index (unpacked) of the variable referencing this one,
1204 * otherwise UINT8_MAX. A referenced variable must only be placed on the stack
1205 * and must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
1206 uint8_t idxReferrerVar;
1207 /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not.
1208 * @todo not sure what this really is for... */
1209 IEMNATIVEGSTREG enmGstReg;
1210#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1211 /** Flag whether this variable is held in a SIMD register (only supported for 128-bit and 256-bit variables),
1212 * only valid when idxReg is not UINT8_MAX. */
1213 bool fSimdReg : 1;
1214 /** Set if the registered is currently used exclusively, false if the
1215 * variable is idle and the register can be grabbed. */
1216 bool fRegAcquired : 1;
1217#else
1218 /** Set if the registered is currently used exclusively, false if the
1219 * variable is idle and the register can be grabbed. */
1220 bool fRegAcquired;
1221#endif
1222
1223 union
1224 {
1225 /** kIemNativeVarKind_Immediate: The immediate value. */
1226 uint64_t uValue;
1227 /** kIemNativeVarKind_VarRef: The index (unpacked) of the variable being referenced. */
1228 uint8_t idxRefVar;
1229 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
1230 struct
1231 {
1232 /** The class of register. */
1233 IEMNATIVEGSTREGREF enmClass;
1234 /** Index within the class. */
1235 uint8_t idx;
1236 } GstRegRef;
1237 } u;
1238} IEMNATIVEVAR;
1239/** Pointer to a variable or argument. */
1240typedef IEMNATIVEVAR *PIEMNATIVEVAR;
1241/** Pointer to a const variable or argument. */
1242typedef IEMNATIVEVAR const *PCIEMNATIVEVAR;
1243
1244/** What is being kept in a host register. */
1245typedef enum IEMNATIVEWHAT : uint8_t
1246{
1247 /** The traditional invalid zero value. */
1248 kIemNativeWhat_Invalid = 0,
1249 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
1250 kIemNativeWhat_Var,
1251 /** Temporary register, this is typically freed when a MC completes. */
1252 kIemNativeWhat_Tmp,
1253 /** Call argument w/o a variable mapping. This is free (via
1254 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
1255 kIemNativeWhat_Arg,
1256 /** Return status code.
1257 * @todo not sure if we need this... */
1258 kIemNativeWhat_rc,
1259 /** The fixed pVCpu (PVMCPUCC) register.
1260 * @todo consider offsetting this on amd64 to use negative offsets to access
1261 * more members using 8-byte disp. */
1262 kIemNativeWhat_pVCpuFixed,
1263 /** The fixed pCtx (PCPUMCTX) register.
1264 * @todo consider offsetting this on amd64 to use negative offsets to access
1265 * more members using 8-byte disp. */
1266 kIemNativeWhat_pCtxFixed,
1267 /** Fixed temporary register. */
1268 kIemNativeWhat_FixedTmp,
1269#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1270 /** Shadow RIP for the delayed RIP updating debugging. */
1271 kIemNativeWhat_PcShadow,
1272#endif
1273 /** Register reserved by the CPU or OS architecture. */
1274 kIemNativeWhat_FixedReserved,
1275 /** End of valid values. */
1276 kIemNativeWhat_End
1277} IEMNATIVEWHAT;
1278
1279/**
1280 * Host general register entry.
1281 *
1282 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
1283 *
1284 * @todo Track immediate values in host registers similarlly to how we track the
1285 * guest register shadow copies. For it to be real helpful, though,
1286 * we probably need to know which will be reused and put them into
1287 * non-volatile registers, otherwise it's going to be more or less
1288 * restricted to an instruction or two.
1289 */
1290typedef struct IEMNATIVEHSTREG
1291{
1292 /** Set of guest registers this one shadows.
1293 *
1294 * Using a bitmap here so we can designate the same host register as a copy
1295 * for more than one guest register. This is expected to be useful in
1296 * situations where one value is copied to several registers in a sequence.
1297 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1298 * sequence we'd want to let this register follow to be a copy of and there
1299 * will always be places where we'd be picking the wrong one.
1300 */
1301 uint64_t fGstRegShadows;
1302 /** What is being kept in this register. */
1303 IEMNATIVEWHAT enmWhat;
1304 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1305 uint8_t idxVar;
1306 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
1307 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
1308 * that scope. */
1309 uint8_t idxStackSlot;
1310 /** Alignment padding. */
1311 uint8_t abAlign[5];
1312} IEMNATIVEHSTREG;
1313
1314
1315#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1316/**
1317 * Host SIMD register entry - this tracks a virtual 256-bit register split into two 128-bit
1318 * halves, on architectures where there is no 256-bit register available this entry will track
1319 * two adjacent 128-bit host registers.
1320 *
1321 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstSimdRegs.
1322 */
1323typedef struct IEMNATIVEHSTSIMDREG
1324{
1325 /** Set of guest registers this one shadows.
1326 *
1327 * Using a bitmap here so we can designate the same host register as a copy
1328 * for more than one guest register. This is expected to be useful in
1329 * situations where one value is copied to several registers in a sequence.
1330 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1331 * sequence we'd want to let this register follow to be a copy of and there
1332 * will always be places where we'd be picking the wrong one.
1333 */
1334 uint64_t fGstRegShadows;
1335 /** What is being kept in this register. */
1336 IEMNATIVEWHAT enmWhat;
1337 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1338 uint8_t idxVar;
1339 /** Flag what is currently loaded, low 128-bits, high 128-bits or complete 256-bits. */
1340 IEMNATIVEGSTSIMDREGLDSTSZ enmLoaded;
1341 /** Alignment padding. */
1342 uint8_t abAlign[5];
1343} IEMNATIVEHSTSIMDREG;
1344#endif
1345
1346
1347/**
1348 * Core state for the native recompiler, that is, things that needs careful
1349 * handling when dealing with branches.
1350 */
1351typedef struct IEMNATIVECORESTATE
1352{
1353 /** Allocation bitmap for aHstRegs. */
1354 uint32_t bmHstRegs;
1355
1356 /** Bitmap marking which host register contains guest register shadow copies.
1357 * This is used during register allocation to try preserve copies. */
1358 uint32_t bmHstRegsWithGstShadow;
1359 /** Bitmap marking valid entries in aidxGstRegShadows. */
1360 uint64_t bmGstRegShadows;
1361#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1362 /** Bitmap marking the shadowed guest register as dirty and needing writeback when flushing. */
1363 uint64_t bmGstRegShadowDirty;
1364#endif
1365
1366#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1367 /** The current instruction offset in bytes from when the guest program counter
1368 * was updated last. Used for delaying the write to the guest context program counter
1369 * as long as possible. */
1370 int64_t offPc;
1371# ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
1372 /** Set after we've loaded PC into uPcUpdatingDebug at the first update. */
1373 bool fDebugPcInitialized;
1374# endif
1375#endif
1376
1377#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1378 /** Allocation bitmap for aHstSimdRegs. */
1379 uint32_t bmHstSimdRegs;
1380
1381 /** Bitmap marking which host SIMD register contains guest SIMD register shadow copies.
1382 * This is used during register allocation to try preserve copies. */
1383 uint32_t bmHstSimdRegsWithGstShadow;
1384 /** Bitmap marking valid entries in aidxSimdGstRegShadows. */
1385 uint64_t bmGstSimdRegShadows;
1386 /** Bitmap marking whether the low 128-bit of the shadowed guest register are dirty and need writeback. */
1387 uint64_t bmGstSimdRegShadowDirtyLo128;
1388 /** Bitmap marking whether the high 128-bit of the shadowed guest register are dirty and need writeback. */
1389 uint64_t bmGstSimdRegShadowDirtyHi128;
1390#endif
1391
1392 union
1393 {
1394 /** Index of variable (unpacked) arguments, UINT8_MAX if not valid. */
1395 uint8_t aidxArgVars[8];
1396 /** For more efficient resetting. */
1397 uint64_t u64ArgVars;
1398 };
1399
1400 /** Allocation bitmap for the stack. */
1401 uint32_t bmStack;
1402 /** Allocation bitmap for aVars. */
1403 uint32_t bmVars;
1404
1405 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
1406 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
1407 * (A shadow copy of a guest register can only be held in a one host register,
1408 * there are no duplicate copies or ambiguities like that). */
1409 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
1410#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1411 /** Maps a guest SIMD register to a host SIMD register (index by IEMNATIVEGSTSIMDREG).
1412 * Entries are only valid if the corresponding bit in bmGstSimdRegShadows is set.
1413 * (A shadow copy of a guest register can only be held in a one host register,
1414 * there are no duplicate copies or ambiguities like that). */
1415 uint8_t aidxGstSimdRegShadows[kIemNativeGstSimdReg_End];
1416#endif
1417
1418 /** Host register allocation tracking. */
1419 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
1420#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1421 /** Host SIMD register allocation tracking. */
1422 IEMNATIVEHSTSIMDREG aHstSimdRegs[IEMNATIVE_HST_SIMD_REG_COUNT];
1423#endif
1424
1425 /** Variables and arguments. */
1426 IEMNATIVEVAR aVars[9];
1427} IEMNATIVECORESTATE;
1428/** Pointer to core state. */
1429typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
1430/** Pointer to const core state. */
1431typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
1432
1433/** @def IEMNATIVE_VAR_IDX_UNPACK
1434 * @returns Index into IEMNATIVECORESTATE::aVars.
1435 * @param a_idxVar Variable index w/ magic (in strict builds).
1436 */
1437/** @def IEMNATIVE_VAR_IDX_PACK
1438 * @returns Variable index w/ magic (in strict builds).
1439 * @param a_idxVar Index into IEMNATIVECORESTATE::aVars.
1440 */
1441#ifdef VBOX_STRICT
1442# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) ((a_idxVar) & IEMNATIVE_VAR_IDX_MASK)
1443# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) ((a_idxVar) | IEMNATIVE_VAR_IDX_MAGIC)
1444# define IEMNATIVE_VAR_IDX_MAGIC UINT8_C(0xd0)
1445# define IEMNATIVE_VAR_IDX_MAGIC_MASK UINT8_C(0xf0)
1446# define IEMNATIVE_VAR_IDX_MASK UINT8_C(0x0f)
1447#else
1448# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) (a_idxVar)
1449# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) (a_idxVar)
1450#endif
1451
1452
1453#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1454/** Clear the dirty state of the given guest SIMD register. */
1455# define IEMNATIVE_SIMD_REG_STATE_CLR_DIRTY(a_pReNative, a_iSimdReg) \
1456 do { \
1457 (a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 &= ~RT_BIT_64(a_iSimdReg); \
1458 (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 &= ~RT_BIT_64(a_iSimdReg); \
1459 } while (0)
1460
1461/** Returns whether the low 128-bits of the given guest SIMD register are dirty. */
1462# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1463 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 & RT_BIT_64(a_iSimdReg))
1464/** Returns whether the high 128-bits of the given guest SIMD register are dirty. */
1465# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1466 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 & RT_BIT_64(a_iSimdReg))
1467/** Returns whether the given guest SIMD register is dirty. */
1468# define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_U256(a_pReNative, a_iSimdReg) \
1469 RT_BOOL(((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 | (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128) & RT_BIT_64(a_iSimdReg))
1470
1471/** Set the low 128-bits of the given guest SIMD register to the dirty state. */
1472# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1473 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 |= RT_BIT_64(a_iSimdReg))
1474/** Set the high 128-bits of the given guest SIMD register to the dirty state. */
1475# define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1476 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 |= RT_BIT_64(a_iSimdReg))
1477
1478/** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1479# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_DEVICE_NOT_AVAILABLE RT_BIT_32(0)
1480 /** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1481# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_WAIT_DEVICE_NOT_AVAILABLE RT_BIT_32(1)
1482/** Flag for indicating that IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() has emitted code in the current TB. */
1483# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_SSE RT_BIT_32(2)
1484/** Flag for indicating that IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() has emitted code in the current TB. */
1485# define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_AVX RT_BIT_32(3)
1486# ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
1487/** Flag indicating that the guest MXCSR was synced to the host floating point control register. */
1488# define IEMNATIVE_SIMD_HOST_FP_CTRL_REG_SYNCED RT_BIT_32(4)
1489/** Flag indicating whether the host floating point control register was saved before overwriting it. */
1490# define IEMNATIVE_SIMD_HOST_FP_CTRL_REG_SAVED RT_BIT_32(5)
1491# endif
1492#endif
1493
1494
1495/**
1496 * Conditional stack entry.
1497 */
1498typedef struct IEMNATIVECOND
1499{
1500 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
1501 bool fInElse;
1502 union
1503 {
1504 RT_GCC_EXTENSION struct
1505 {
1506 /** Set if the if-block unconditionally exited the TB. */
1507 bool fIfExitTb;
1508 /** Set if the else-block unconditionally exited the TB. */
1509 bool fElseExitTb;
1510 };
1511 /** Indexed by fInElse. */
1512 bool afExitTb[2];
1513 };
1514 bool afPadding[5];
1515 /** The label for the IEM_MC_ELSE. */
1516 uint32_t idxLabelElse;
1517 /** The label for the IEM_MC_ENDIF. */
1518 uint32_t idxLabelEndIf;
1519 /** The initial state snapshot as the if-block starts executing. */
1520 IEMNATIVECORESTATE InitialState;
1521 /** The state snapshot at the end of the if-block. */
1522 IEMNATIVECORESTATE IfFinalState;
1523} IEMNATIVECOND;
1524/** Pointer to a condition stack entry. */
1525typedef IEMNATIVECOND *PIEMNATIVECOND;
1526
1527
1528/**
1529 * Native recompiler state.
1530 */
1531typedef struct IEMRECOMPILERSTATE
1532{
1533 /** Size of the buffer that pbNativeRecompileBufR3 points to in
1534 * IEMNATIVEINSTR units. */
1535 uint32_t cInstrBufAlloc;
1536#ifdef VBOX_STRICT
1537 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
1538 uint32_t offInstrBufChecked;
1539#else
1540 uint32_t uPadding1; /* We don't keep track of the size here... */
1541#endif
1542 /** Fixed temporary code buffer for native recompilation. */
1543 PIEMNATIVEINSTR pInstrBuf;
1544
1545 /** Bitmaps with the label types used. */
1546 uint64_t bmLabelTypes;
1547 /** Actual number of labels in paLabels. */
1548 uint32_t cLabels;
1549 /** Max number of entries allowed in paLabels before reallocating it. */
1550 uint32_t cLabelsAlloc;
1551 /** Labels defined while recompiling (referenced by fixups). */
1552 PIEMNATIVELABEL paLabels;
1553 /** Array with indexes of unique labels (uData always 0). */
1554 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
1555
1556 /** Actual number of fixups paFixups. */
1557 uint32_t cFixups;
1558 /** Max number of entries allowed in paFixups before reallocating it. */
1559 uint32_t cFixupsAlloc;
1560 /** Buffer used by the recompiler for recording fixups when generating code. */
1561 PIEMNATIVEFIXUP paFixups;
1562
1563#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
1564 /** Actual number of fixups in paTbExitFixups. */
1565 uint32_t cTbExitFixups;
1566 /** Max number of entries allowed in paTbExitFixups before reallocating it. */
1567 uint32_t cTbExitFixupsAlloc;
1568 /** Buffer used by the recompiler for recording fixups when generating code. */
1569 PIEMNATIVEEXITFIXUP paTbExitFixups;
1570#endif
1571
1572#if defined(IEMNATIVE_WITH_TB_DEBUG_INFO) || defined(VBOX_WITH_STATISTICS)
1573 /** Statistics: The idxInstr+1 value at the last PC update. */
1574 uint8_t idxInstrPlusOneOfLastPcUpdate;
1575#endif
1576
1577#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1578 /** Number of debug info entries allocated for pDbgInfo. */
1579 uint32_t cDbgInfoAlloc;
1580 /** Debug info. */
1581 PIEMTBDBG pDbgInfo;
1582#endif
1583
1584#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1585 /** The current call index (liveness array and threaded calls in TB). */
1586 uint32_t idxCurCall;
1587 /** Number of liveness entries allocated. */
1588 uint32_t cLivenessEntriesAlloc;
1589 /** Liveness entries for all the calls in the TB begin recompiled.
1590 * The entry for idxCurCall contains the info for what the next call will
1591 * require wrt registers. (Which means the last entry is the initial liveness
1592 * state.) */
1593 PIEMLIVENESSENTRY paLivenessEntries;
1594#endif
1595
1596 /** The translation block being recompiled. */
1597 PCIEMTB pTbOrg;
1598 /** The VMCPU structure of the EMT. */
1599 PVMCPUCC pVCpu;
1600
1601 /** Condition sequence number (for generating unique labels). */
1602 uint16_t uCondSeqNo;
1603 /** Check IRQ sequence number (for generating unique labels). */
1604 uint16_t uCheckIrqSeqNo;
1605 /** TLB load sequence number (for generating unique labels). */
1606 uint16_t uTlbSeqNo;
1607 /** The current condition stack depth (aCondStack). */
1608 uint8_t cCondDepth;
1609
1610 /** The argument count + hidden regs from the IEM_MC_BEGIN_EX statement. */
1611 uint8_t cArgsX;
1612 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1613 uint32_t fCImpl;
1614 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1615 uint32_t fMc;
1616 /** The expected IEMCPU::fExec value for the current call/instruction. */
1617 uint32_t fExec;
1618#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1619 /** IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_XXX flags for exception flags
1620 * we only emit once per TB (or when the cr0/cr4/xcr0 register changes).
1621 *
1622 * This is an optimization because these control registers can only be changed from
1623 * by calling a C helper we can catch. Should reduce the number of instructions in a TB
1624 * consisting of multiple SIMD instructions.
1625 */
1626 uint32_t fSimdRaiseXcptChecksEmitted;
1627#endif
1628 /** The call number of the last CheckIrq, UINT32_MAX if not seen. */
1629 uint32_t idxLastCheckIrqCallNo;
1630
1631 /** Core state requiring care with branches. */
1632 IEMNATIVECORESTATE Core;
1633
1634 /** The condition nesting stack. */
1635 IEMNATIVECOND aCondStack[2];
1636
1637#ifndef IEM_WITH_THROW_CATCH
1638 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
1639 * for recompilation error handling. */
1640 jmp_buf JmpBuf;
1641#endif
1642} IEMRECOMPILERSTATE;
1643/** Pointer to a native recompiler state. */
1644typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
1645
1646
1647/** @def IEMNATIVE_TRY_SETJMP
1648 * Wrapper around setjmp / try, hiding all the ugly differences.
1649 *
1650 * @note Use with extreme care as this is a fragile macro.
1651 * @param a_pReNative The native recompile state.
1652 * @param a_rcTarget The variable that should receive the status code in case
1653 * of a longjmp/throw.
1654 */
1655/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
1656 * Start wrapper for catch / setjmp-else.
1657 *
1658 * This will set up a scope.
1659 *
1660 * @note Use with extreme care as this is a fragile macro.
1661 * @param a_pReNative The native recompile state.
1662 * @param a_rcTarget The variable that should receive the status code in case
1663 * of a longjmp/throw.
1664 */
1665/** @def IEMNATIVE_CATCH_LONGJMP_END
1666 * End wrapper for catch / setjmp-else.
1667 *
1668 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
1669 * up the state.
1670 *
1671 * @note Use with extreme care as this is a fragile macro.
1672 * @param a_pReNative The native recompile state.
1673 */
1674/** @def IEMNATIVE_DO_LONGJMP
1675 *
1676 * Wrapper around longjmp / throw.
1677 *
1678 * @param a_pReNative The native recompile state.
1679 * @param a_rc The status code jump back with / throw.
1680 */
1681#ifdef IEM_WITH_THROW_CATCH
1682# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1683 a_rcTarget = VINF_SUCCESS; \
1684 try
1685# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1686 catch (int rcThrown) \
1687 { \
1688 a_rcTarget = rcThrown
1689# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1690 } \
1691 ((void)0)
1692# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
1693#else /* !IEM_WITH_THROW_CATCH */
1694# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
1695 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
1696# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
1697 else \
1698 { \
1699 ((void)0)
1700# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
1701 }
1702# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
1703#endif /* !IEM_WITH_THROW_CATCH */
1704
1705
1706/**
1707 * Native recompiler worker for a threaded function.
1708 *
1709 * @returns New code buffer offset; throws VBox status code in case of a failure.
1710 * @param pReNative The native recompiler state.
1711 * @param off The current code buffer offset.
1712 * @param pCallEntry The threaded call entry.
1713 *
1714 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
1715 */
1716typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
1717/** Pointer to a native recompiler worker for a threaded function. */
1718typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
1719
1720/** Defines a native recompiler worker for a threaded function.
1721 * @see FNIEMNATIVERECOMPFUNC */
1722#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
1723 uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
1724
1725/** Prototypes a native recompiler function for a threaded function.
1726 * @see FNIEMNATIVERECOMPFUNC */
1727#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
1728
1729
1730/**
1731 * Native recompiler liveness analysis worker for a threaded function.
1732 *
1733 * @param pCallEntry The threaded call entry.
1734 * @param pIncoming The incoming liveness state entry.
1735 * @param pOutgoing The outgoing liveness state entry.
1736 */
1737typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
1738 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
1739/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
1740typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
1741
1742/** Defines a native recompiler liveness analysis worker for a threaded function.
1743 * @see FNIEMNATIVELIVENESSFUNC */
1744#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
1745 DECLCALLBACK(void) a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
1746
1747/** Prototypes a native recompiler liveness analysis function for a threaded function.
1748 * @see FNIEMNATIVELIVENESSFUNC */
1749#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
1750
1751
1752/** Define a native recompiler helper function, safe to call from the TB code. */
1753#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
1754 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1755/** Prototype a native recompiler helper function, safe to call from the TB code. */
1756#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
1757 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
1758/** Pointer typedef a native recompiler helper function, safe to call from the TB code. */
1759#define IEM_DECL_NATIVE_HLP_PTR(a_RetType, a_Name, a_ArgList) \
1760 a_RetType (VBOXCALL *a_Name) a_ArgList
1761
1762
1763#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1764DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1765DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg,
1766 uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX);
1767# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1768DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestSimdRegShadowing(PIEMRECOMPILERSTATE pReNative,
1769 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1770 uint8_t idxHstSimdReg = UINT8_MAX,
1771 uint8_t idxHstSimdRegPrev = UINT8_MAX);
1772# endif
1773# if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1774DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegDirty(PIEMRECOMPILERSTATE pReNative, bool fSimdReg,
1775 uint8_t idxGstReg, uint8_t idxHstReg);
1776DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegWriteback(PIEMRECOMPILERSTATE pReNative, bool fSimdReg,
1777 uint64_t fGstReg);
1778# endif
1779DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddDelayedPcUpdate(PIEMRECOMPILERSTATE pReNative,
1780 uint64_t offPc, uint32_t cInstrSkipped);
1781#endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
1782
1783DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1784 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
1785DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
1786DECLHIDDEN(uint32_t) iemNativeLabelFind(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
1787 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0) RT_NOEXCEPT;
1788DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
1789 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
1790#ifdef IEMNATIVE_WITH_RECOMPILER_PER_CHUNK_TAIL_CODE
1791DECL_HIDDEN_THROW(void) iemNativeAddTbExitFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, IEMNATIVELABELTYPE enmExitReason);
1792#endif
1793DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
1794
1795DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1796DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1797 bool fPreferVolatile = true);
1798DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm,
1799 bool fPreferVolatile = true);
1800DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1801 IEMNATIVEGSTREG enmGstReg,
1802 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1803 bool fNoVolatileRegs = false, bool fSkipLivenessAssert = false);
1804DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1805 IEMNATIVEGSTREG enmGstReg);
1806
1807DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
1808DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
1809#if (defined(IPRT_INCLUDED_x86_h) && defined(RT_ARCH_AMD64)) || (defined(IPRT_INCLUDED_armv8_h) && defined(RT_ARCH_ARM64))
1810DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
1811 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK);
1812# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1813DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
1814 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK);
1815# endif
1816#endif
1817DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1818DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1819DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
1820DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
1821#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1822DECLHIDDEN(void) iemNativeSimdRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, bool fFlushShadows) RT_NOEXCEPT;
1823# ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1824DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushDirtyGuestByHostSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg);
1825# endif
1826#endif
1827DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
1828DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
1829 uint32_t fKeepVars = 0);
1830DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
1831DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
1832DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1833 uint32_t fHstRegsActiveShadows);
1834#ifdef VBOX_STRICT
1835DECLHIDDEN(void) iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative);
1836#endif
1837DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWritesSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept,
1838 uint64_t fGstSimdShwExcept);
1839#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1840# ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
1841DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcDebugCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1842DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcDebugCheckWithReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxPcReg);
1843# endif
1844DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcWritebackSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off);
1845#endif
1846#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1847DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVEGSTREG enmGstReg);
1848DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWriteEx(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1849 PIEMNATIVECORESTATE pCore, IEMNATIVEGSTREG enmGstReg);
1850DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuest(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1851 uint64_t fFlushGstReg = UINT64_MAX);
1852DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuestByHostRegShadow(PIEMRECOMPILERSTATE pReNative,
1853 uint32_t off, uint8_t idxHstReg);
1854#endif
1855
1856
1857#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1858DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
1859DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
1860 bool fPreferVolatile = true);
1861DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpForGuestSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
1862 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1863 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz,
1864 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
1865 bool fNoVolatileRegs = false);
1866DECLHIDDEN(void) iemNativeSimdRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg) RT_NOEXCEPT;
1867DECLHIDDEN(void) iemNativeSimdRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstSimdRegs) RT_NOEXCEPT;
1868DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1869 IEMNATIVEGSTSIMDREG enmGstSimdReg);
1870DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadSimdRegWithGstShadowSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1871 uint8_t idxHstSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg,
1872 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1873#endif
1874
1875DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType);
1876DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue);
1877DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar);
1878DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType);
1879DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue);
1880DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocAssign(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t cbType, uint8_t idxVarOther);
1881DECL_HIDDEN_THROW(void) iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1882DECL_HIDDEN_THROW(void) iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue);
1883DECL_HIDDEN_THROW(void) iemNativeVarSetKindToGstRegRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1884 IEMNATIVEGSTREGREF enmRegClass, uint8_t idxReg);
1885DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1886DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1887 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1888#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1889DECL_HIDDEN_THROW(uint8_t) iemNativeVarSimdRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
1890 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
1891#endif
1892DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
1893 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
1894DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1895 uint32_t fHstRegsNotToSave);
1896DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1897 uint32_t fHstRegsNotToSave);
1898DECLHIDDEN(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
1899DECLHIDDEN(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars);
1900
1901DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1902 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
1903#ifdef VBOX_STRICT
1904DECL_HIDDEN_THROW(uint32_t) iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg);
1905DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg,
1906 IEMNATIVEGSTREG enmGstReg);
1907# ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1908DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestSimdRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxSimdReg,
1909 IEMNATIVEGSTSIMDREG enmGstSimdReg,
1910 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
1911# endif
1912DECL_HIDDEN_THROW(uint32_t) iemNativeEmitExecFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fExec);
1913#endif
1914#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
1915DECL_HIDDEN_THROW(uint32_t) iemNativeEmitEFlagsSkippingCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fEflNeeded);
1916#endif
1917DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
1918DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs, bool fFlushPendingWrites = true);
1919DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
1920 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
1921 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
1922DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
1923 PCIEMTHRDEDCALLENTRY pCallEntry);
1924IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(iemNativeLivenessFunc_ThreadedCall);
1925DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLeaGprByGstRegRef(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxGprDst,
1926 IEMNATIVEGSTREGREF enmClass, uint8_t idxRegInClass);
1927
1928
1929IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr));
1930IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu));
1931IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseNm,(PVMCPUCC pVCpu));
1932IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseUd,(PVMCPUCC pVCpu));
1933IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseMf,(PVMCPUCC pVCpu));
1934IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseXf,(PVMCPUCC pVCpu));
1935IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseDe,(PVMCPUCC pVCpu));
1936IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpObsoleteTb,(PVMCPUCC pVCpu));
1937IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpNeedCsLimChecking,(PVMCPUCC pVCpu));
1938IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpCheckBranchMiss,(PVMCPUCC pVCpu));
1939IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseAvxRelated,(PVMCPUCC pVCpu));
1940IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseSseRelated,(PVMCPUCC pVCpu));
1941IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseSseAvxFpRelated,(PVMCPUCC pVCpu));
1942
1943IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1944IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1945IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1946IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1947IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1948IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1949IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1950IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1951IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1952IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
1953#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1954IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
1955IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
1956IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
1957IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst));
1958IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst));
1959#endif
1960IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint8_t u8Value));
1961IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint16_t u16Value));
1962IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint32_t u32Value));
1963IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint64_t u64Value));
1964#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1965IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src));
1966IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src));
1967IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src));
1968IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src));
1969#endif
1970IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1971IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1972IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1973IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1974IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1975IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1976IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1977
1978IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1979IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1980IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1981IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1982IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1983IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1984IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1985IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1986IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1987IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
1988#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1989IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
1990IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
1991IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
1992IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst));
1993IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst));
1994#endif
1995IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t u8Value));
1996IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
1997IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
1998IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
1999#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2000IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src));
2001IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src));
2002IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src));
2003IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src));
2004#endif
2005IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
2006IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2007IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2008IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
2009IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFlatFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2010IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFlatFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2011IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFlatFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2012
2013IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2014IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2015IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2016IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2017IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2018IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2019IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2020IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2021IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2022IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2023IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2024IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2025IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2026IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2027IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2028IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2029IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2030IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2031IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2032IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2033IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2034IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2035
2036IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2037IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2038IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2039IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemFlatMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2040IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2041IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2042IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2043IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemFlatMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2044IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2045IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2046IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2047IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemFlatMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2048IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2049IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2050IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2051IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemFlatMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2052IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemFlatMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2053IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemFlatMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2054IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2055IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2056IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2057IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemFlatMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2058
2059IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapAtomic,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2060IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRw,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2061IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapWo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2062IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2063
2064
2065/**
2066 * Info about shadowed guest register values.
2067 * @see IEMNATIVEGSTREG
2068 */
2069typedef struct IEMANTIVEGSTREGINFO
2070{
2071 /** Offset in VMCPU. */
2072 uint32_t off;
2073 /** The field size. */
2074 uint8_t cb;
2075 /** Name (for logging). */
2076 const char *pszName;
2077} IEMANTIVEGSTREGINFO;
2078extern DECL_HIDDEN_DATA(IEMANTIVEGSTREGINFO const) g_aGstShadowInfo[];
2079extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
2080extern DECL_HIDDEN_DATA(int32_t const) g_aoffIemNativeCallStackArgBpDisp[];
2081extern DECL_HIDDEN_DATA(uint32_t const) g_afIemNativeCallRegs[];
2082extern DECL_HIDDEN_DATA(uint8_t const) g_aidxIemNativeCallRegs[];
2083
2084
2085
2086/**
2087 * Ensures that there is sufficient space in the instruction output buffer.
2088 *
2089 * This will reallocate the buffer if needed and allowed.
2090 *
2091 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
2092 * allocation size.
2093 *
2094 * @returns Pointer to the instruction output buffer on success; throws VBox
2095 * status code on failure, so no need to check it.
2096 * @param pReNative The native recompile state.
2097 * @param off Current instruction offset. Works safely for UINT32_MAX
2098 * as well.
2099 * @param cInstrReq Number of instruction about to be added. It's okay to
2100 * overestimate this a bit.
2101 */
2102DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
2103iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
2104{
2105 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
2106 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
2107 {
2108#ifdef VBOX_STRICT
2109 pReNative->offInstrBufChecked = offChecked;
2110#endif
2111 return pReNative->pInstrBuf;
2112 }
2113 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
2114}
2115
2116/**
2117 * Checks that we didn't exceed the space requested in the last
2118 * iemNativeInstrBufEnsure() call.
2119 */
2120#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
2121 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
2122 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
2123
2124/**
2125 * Checks that a variable index is valid.
2126 */
2127#ifdef IEMNATIVE_VAR_IDX_MAGIC
2128# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
2129 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
2130 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2131 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))), \
2132 ("%s=%#x\n", #a_idxVar, a_idxVar))
2133#else
2134# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
2135 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2136 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
2137#endif
2138
2139/**
2140 * Checks that a variable index is valid and that the variable is assigned the
2141 * correct argument number.
2142 * This also adds a RT_NOREF of a_idxVar.
2143 */
2144#ifdef IEMNATIVE_VAR_IDX_MAGIC
2145# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
2146 RT_NOREF_PV(a_idxVar); \
2147 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
2148 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2149 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))) \
2150 && (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].uArgNo == (a_uArgNo), \
2151 ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
2152 (a_pReNative)->Core.aVars[RT_MIN(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar), \
2153 RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, \
2154 a_uArgNo)); \
2155 } while (0)
2156#else
2157# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
2158 RT_NOREF_PV(a_idxVar); \
2159 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2160 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
2161 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
2162 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
2163 (a_pReNative)->Core.aVars[RT_MIN(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
2164 } while (0)
2165#endif
2166
2167
2168/**
2169 * Checks that a variable has the expected size.
2170 */
2171#define IEMNATIVE_ASSERT_VAR_SIZE(a_pReNative, a_idxVar, a_cbVar) \
2172 AssertMsg((a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar), \
2173 ("%s=%#x: cbVar=%#x, expected %#x!\n", #a_idxVar, a_idxVar, \
2174 (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar, (a_cbVar)))
2175
2176
2177/**
2178 * Calculates the stack address of a variable as a [r]BP displacement value.
2179 */
2180DECL_FORCE_INLINE(int32_t)
2181iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
2182{
2183 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
2184 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
2185}
2186
2187
2188/**
2189 * Releases the variable's register.
2190 *
2191 * The register must have been previously acquired calling
2192 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
2193 * iemNativeVarRegisterSetAndAcquire().
2194 */
2195DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
2196{
2197 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2198 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired);
2199 pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired = false;
2200}
2201
2202
2203#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2204DECL_INLINE_THROW(void) iemNativeVarSimdRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
2205{
2206 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fSimdReg);
2207 iemNativeVarRegisterRelease(pReNative, idxVar);
2208}
2209#endif
2210
2211
2212/**
2213 * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask.
2214 *
2215 * @returns The flush mask.
2216 * @param fCImpl The IEM_CIMPL_F_XXX flags.
2217 * @param fGstShwFlush The starting flush mask.
2218 */
2219DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush)
2220{
2221 if (fCImpl & IEM_CIMPL_F_BRANCH_FAR)
2222 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS)
2223 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS)
2224 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS);
2225 if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR)
2226 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP)
2227 | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS)
2228 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS)
2229 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS);
2230 else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK)
2231 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP);
2232 if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW))
2233 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
2234 return fGstShwFlush;
2235}
2236
2237
2238/** Number of hidden arguments for CIMPL calls.
2239 * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */
2240#if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
2241# define IEM_CIMPL_HIDDEN_ARGS 3
2242#else
2243# define IEM_CIMPL_HIDDEN_ARGS 2
2244#endif
2245
2246
2247#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2248/** Number of hidden arguments for SSE_AIMPL calls. */
2249# define IEM_SSE_AIMPL_HIDDEN_ARGS 1
2250/** Number of hidden arguments for AVX_AIMPL calls. */
2251# define IEM_AVX_AIMPL_HIDDEN_ARGS 1
2252#endif
2253
2254
2255#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
2256
2257# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2258/**
2259 * Helper for iemNativeLivenessGetStateByGstReg.
2260 *
2261 * @returns IEMLIVENESS_STATE_XXX
2262 * @param fMergedStateExp2 This is the RT_BIT_32() of each sub-state
2263 * ORed together.
2264 */
2265DECL_FORCE_INLINE(uint32_t)
2266iemNativeLivenessMergeExpandedEFlagsState(uint32_t fMergedStateExp2)
2267{
2268 /* INPUT trumps anything else. */
2269 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_INPUT))
2270 return IEMLIVENESS_STATE_INPUT;
2271
2272 /* CLOBBERED trumps XCPT_OR_CALL and UNUSED. */
2273 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_CLOBBERED))
2274 {
2275 /* If not all sub-fields are clobbered they must be considered INPUT. */
2276 if (fMergedStateExp2 & (RT_BIT_32(IEMLIVENESS_STATE_UNUSED) | RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL)))
2277 return IEMLIVENESS_STATE_INPUT;
2278 return IEMLIVENESS_STATE_CLOBBERED;
2279 }
2280
2281 /* XCPT_OR_CALL trumps UNUSED. */
2282 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL))
2283 return IEMLIVENESS_STATE_XCPT_OR_CALL;
2284
2285 return IEMLIVENESS_STATE_UNUSED;
2286}
2287# endif /* !IEMLIVENESS_EXTENDED_LAYOUT */
2288
2289
2290DECL_FORCE_INLINE(uint32_t)
2291iemNativeLivenessGetStateByGstRegEx(PCIEMLIVENESSENTRY pLivenessEntry, unsigned enmGstRegEx)
2292{
2293# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2294 return ((pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
2295 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2);
2296# else
2297 return ( (pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
2298 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2)
2299 | (((pLivenessEntry->Bit2.bm64 >> enmGstRegEx) << 2) & 4)
2300 | (((pLivenessEntry->Bit3.bm64 >> enmGstRegEx) << 3) & 8);
2301# endif
2302}
2303
2304
2305DECL_FORCE_INLINE(uint32_t)
2306iemNativeLivenessGetStateByGstReg(PCIEMLIVENESSENTRY pLivenessEntry, IEMNATIVEGSTREG enmGstReg)
2307{
2308 uint32_t uRet = iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, (unsigned)enmGstReg);
2309 if (enmGstReg == kIemNativeGstReg_EFlags)
2310 {
2311 /* Merge the eflags states to one. */
2312# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2313 uRet = RT_BIT_32(uRet);
2314 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflCf | (pLivenessEntry->Bit1.fEflCf << 1));
2315 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflPf | (pLivenessEntry->Bit1.fEflPf << 1));
2316 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflAf | (pLivenessEntry->Bit1.fEflAf << 1));
2317 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflZf | (pLivenessEntry->Bit1.fEflZf << 1));
2318 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflSf | (pLivenessEntry->Bit1.fEflSf << 1));
2319 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflOf | (pLivenessEntry->Bit1.fEflOf << 1));
2320 uRet = iemNativeLivenessMergeExpandedEFlagsState(uRet);
2321# else
2322 AssertCompile(IEMLIVENESSBIT_IDX_EFL_OTHER == (unsigned)kIemNativeGstReg_EFlags);
2323 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_CF);
2324 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_PF);
2325 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_AF);
2326 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_ZF);
2327 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_SF);
2328 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_OF);
2329# endif
2330 }
2331 return uRet;
2332}
2333
2334
2335# ifdef VBOX_STRICT
2336/** For assertions only - caller checks that idxCurCall isn't zero. */
2337DECL_FORCE_INLINE(uint32_t)
2338iemNativeLivenessGetPrevStateByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg)
2339{
2340 return iemNativeLivenessGetStateByGstReg(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg);
2341}
2342# endif /* VBOX_STRICT */
2343
2344#endif /* IEMNATIVE_WITH_LIVENESS_ANALYSIS */
2345
2346
2347/**
2348 * Gets the number of hidden arguments for an expected IEM_MC_CALL statement.
2349 */
2350DECL_FORCE_INLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative)
2351{
2352 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL)
2353 return IEM_CIMPL_HIDDEN_ARGS;
2354 if (pReNative->fCImpl & (IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE | IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE))
2355 return 1;
2356 return 0;
2357}
2358
2359
2360DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg,
2361 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2362{
2363 pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
2364
2365 pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat;
2366 pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
2367 pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
2368 return (uint8_t)idxReg;
2369}
2370
2371
2372
2373/*********************************************************************************************************************************
2374* Register Allocator (GPR) *
2375*********************************************************************************************************************************/
2376
2377/**
2378 * Marks host register @a idxHstReg as containing a shadow copy of guest
2379 * register @a enmGstReg.
2380 *
2381 * ASSUMES that caller has made sure @a enmGstReg is not associated with any
2382 * host register before calling.
2383 */
2384DECL_FORCE_INLINE(void)
2385iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2386{
2387 Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)));
2388 Assert(!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
2389 Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End);
2390
2391 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg;
2392 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg); /** @todo why? not OR? */
2393 pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg);
2394 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
2395#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2396 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2397 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg);
2398#else
2399 RT_NOREF(off);
2400#endif
2401}
2402
2403
2404/**
2405 * Clear any guest register shadow claims from @a idxHstReg.
2406 *
2407 * The register does not need to be shadowing any guest registers.
2408 */
2409DECL_FORCE_INLINE(void)
2410iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off)
2411{
2412 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2413 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2414 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2415 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
2416 == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
2417#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2418 Assert(!(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & pReNative->Core.bmGstRegShadowDirty));
2419#endif
2420
2421#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2422 uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2423 if (fGstRegs)
2424 {
2425 Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End));
2426 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2427 while (fGstRegs)
2428 {
2429 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2430 fGstRegs &= ~RT_BIT_64(iGstReg);
2431 iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg);
2432 }
2433 }
2434#else
2435 RT_NOREF(off);
2436#endif
2437
2438 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2439 pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2440 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
2441}
2442
2443
2444/**
2445 * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg
2446 * and global overview flags.
2447 */
2448DECL_FORCE_INLINE(void)
2449iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2450{
2451 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2452 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2453 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2454 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2455 Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg));
2456 Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg));
2457 Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
2458#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2459 Assert(!(pReNative->Core.bmGstRegShadowDirty & RT_BIT_64(enmGstReg)));
2460#endif
2461
2462#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2463 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2464 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg);
2465#else
2466 RT_NOREF(off);
2467#endif
2468
2469 uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2470 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
2471 if (!fGstRegShadowsNew)
2472 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2473 pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg);
2474}
2475
2476
2477#if 0 /* unused */
2478/**
2479 * Clear any guest register shadow claim for @a enmGstReg.
2480 */
2481DECL_FORCE_INLINE(void)
2482iemNativeRegClearGstRegShadowingByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2483{
2484 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2485 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2486 {
2487 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs));
2488 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2489 }
2490}
2491#endif
2492
2493
2494/**
2495 * Clear any guest register shadow claim for @a enmGstReg and mark @a idxHstRegNew
2496 * as the new shadow of it.
2497 *
2498 * Unlike the other guest reg shadow helpers, this does the logging for you.
2499 * However, it is the liveness state is not asserted here, the caller must do
2500 * that.
2501 */
2502DECL_FORCE_INLINE(void)
2503iemNativeRegClearAndMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstRegNew,
2504 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2505{
2506 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2507 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
2508 {
2509 uint8_t const idxHstRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg];
2510 Assert(idxHstRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs));
2511 if (idxHstRegOld == idxHstRegNew)
2512 return;
2513 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s (from %s)\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2514 g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxHstRegOld]));
2515 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
2516 }
2517 else
2518 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s\n", g_apszIemNativeHstRegNames[idxHstRegNew],
2519 g_aGstShadowInfo[enmGstReg].pszName));
2520 iemNativeRegMarkAsGstRegShadow(pReNative, idxHstRegNew, enmGstReg, off);
2521}
2522
2523
2524/**
2525 * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom
2526 * to @a idxRegTo.
2527 */
2528DECL_FORCE_INLINE(void)
2529iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo,
2530 IEMNATIVEGSTREG enmGstReg, uint32_t off)
2531{
2532 Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg));
2533 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] == idxRegFrom);
2534 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)
2535 == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows
2536 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2537 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows)
2538 == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows);
2539 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom))
2540 == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows));
2541
2542 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg);
2543 pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2544 if (!fGstRegShadowsFrom)
2545 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom);
2546 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo);
2547 pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg);
2548 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo;
2549#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2550 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2551 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom);
2552#else
2553 RT_NOREF(off);
2554#endif
2555}
2556
2557
2558/**
2559 * Flushes any delayed guest register writes.
2560 *
2561 * This must be called prior to calling CImpl functions and any helpers that use
2562 * the guest state (like raising exceptions) and such.
2563 *
2564 * This optimization has not yet been implemented. The first target would be
2565 * RIP updates, since these are the most common ones.
2566 *
2567 * @note This function does not flush any shadowing information for guest
2568 * registers. This needs to be done by the caller if it wishes to do so.
2569 */
2570DECL_INLINE_THROW(uint32_t)
2571iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept = 0,
2572 uint64_t fGstSimdShwExcept = 0)
2573{
2574#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2575 uint64_t const fWritebackPc = ~fGstShwExcept & RT_BIT_64(kIemNativeGstReg_Pc);
2576#else
2577 uint64_t const fWritebackPc = 0;
2578#endif
2579#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2580 uint64_t const bmGstRegShadowDirty = pReNative->Core.bmGstRegShadowDirty & ~fGstShwExcept;
2581#else
2582 uint64_t const bmGstRegShadowDirty = 0;
2583#endif
2584#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2585 uint64_t const bmGstSimdRegShadowDirty = ( pReNative->Core.bmGstSimdRegShadowDirtyLo128
2586 | pReNative->Core.bmGstSimdRegShadowDirtyHi128)
2587 & ~fGstSimdShwExcept;
2588#else
2589 uint64_t const bmGstSimdRegShadowDirty = 0;
2590#endif
2591 if (bmGstRegShadowDirty | bmGstSimdRegShadowDirty | fWritebackPc)
2592 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fGstSimdShwExcept);
2593
2594 return off;
2595}
2596
2597
2598
2599/*********************************************************************************************************************************
2600* SIMD register allocator (largely code duplication of the GPR allocator for now but might diverge) *
2601*********************************************************************************************************************************/
2602
2603#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2604
2605DECL_FORCE_INLINE(uint8_t)
2606iemNativeSimdRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdReg,
2607 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2608{
2609 pReNative->Core.bmHstSimdRegs |= RT_BIT_32(idxSimdReg);
2610
2611 pReNative->Core.aHstSimdRegs[idxSimdReg].enmWhat = enmWhat;
2612 pReNative->Core.aHstSimdRegs[idxSimdReg].idxVar = idxVar;
2613 pReNative->Core.aHstSimdRegs[idxSimdReg].fGstRegShadows = 0;
2614 return idxSimdReg;
2615}
2616
2617
2618/**
2619 * Marks host SIMD register @a idxHstSimdReg as containing a shadow copy of guest
2620 * SIMD register @a enmGstSimdReg.
2621 *
2622 * ASSUMES that caller has made sure @a enmGstSimdReg is not associated with any
2623 * host register before calling.
2624 */
2625DECL_FORCE_INLINE(void)
2626iemNativeSimdRegMarkAsGstSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg,
2627 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2628{
2629 Assert(!(pReNative->Core.bmGstSimdRegShadows & RT_BIT_64(enmGstSimdReg)));
2630 Assert(!pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows);
2631 Assert((unsigned)enmGstSimdReg < (unsigned)kIemNativeGstSimdReg_End);
2632
2633 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxHstSimdReg;
2634 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2635 pReNative->Core.bmGstSimdRegShadows |= RT_BIT_64(enmGstSimdReg);
2636 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxHstSimdReg);
2637#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2638 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2639 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxHstSimdReg);
2640#else
2641 RT_NOREF(off);
2642#endif
2643}
2644
2645
2646/**
2647 * Transfers the guest SIMD register shadow claims of @a enmGstSimdReg from @a idxSimdRegFrom
2648 * to @a idxSimdRegTo.
2649 */
2650DECL_FORCE_INLINE(void)
2651iemNativeSimdRegTransferGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdRegFrom, uint8_t idxSimdRegTo,
2652 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
2653{
2654 Assert(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & RT_BIT_64(enmGstSimdReg));
2655 Assert(pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] == idxSimdRegFrom);
2656 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows)
2657 == pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows
2658 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2659 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows)
2660 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows);
2661 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxSimdRegFrom))
2662 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows));
2663 Assert( pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded
2664 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].enmLoaded);
2665
2666 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstSimdReg);
2667 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows = fGstRegShadowsFrom;
2668 if (!fGstRegShadowsFrom)
2669 {
2670 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxSimdRegFrom);
2671 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2672 }
2673 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxSimdRegTo);
2674 pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
2675 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxSimdRegTo;
2676#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2677 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2678 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxSimdRegTo, idxSimdRegFrom);
2679#else
2680 RT_NOREF(off);
2681#endif
2682}
2683
2684
2685/**
2686 * Clear any guest register shadow claims from @a idxHstSimdReg.
2687 *
2688 * The register does not need to be shadowing any guest registers.
2689 */
2690DECL_FORCE_INLINE(void)
2691iemNativeSimdRegClearGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, uint32_t off)
2692{
2693 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows)
2694 == pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows
2695 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstSimdReg_End));
2696 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxHstSimdReg))
2697 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows));
2698 Assert( !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyLo128)
2699 && !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyHi128));
2700
2701#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2702 uint64_t fGstRegs = pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2703 if (fGstRegs)
2704 {
2705 Assert(fGstRegs < RT_BIT_64(kIemNativeGstSimdReg_End));
2706 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2707 while (fGstRegs)
2708 {
2709 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2710 fGstRegs &= ~RT_BIT_64(iGstReg);
2711 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, (IEMNATIVEGSTSIMDREG)iGstReg, UINT8_MAX, idxHstSimdReg);
2712 }
2713 }
2714#else
2715 RT_NOREF(off);
2716#endif
2717
2718 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxHstSimdReg);
2719 pReNative->Core.bmGstSimdRegShadows &= ~pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
2720 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows = 0;
2721 pReNative->Core.aHstSimdRegs[idxHstSimdReg].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
2722}
2723
2724#endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */
2725
2726
2727#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2728/**
2729 * Emits code to update the guest RIP value by adding the current offset since the start of the last RIP update.
2730 */
2731DECL_INLINE_THROW(uint32_t) iemNativeEmitPcWriteback(PIEMRECOMPILERSTATE pReNative, uint32_t off)
2732{
2733 if (pReNative->Core.offPc)
2734 return iemNativeEmitPcWritebackSlow(pReNative, off);
2735 return off;
2736}
2737#endif /* IEMNATIVE_WITH_DELAYED_PC_UPDATING */
2738
2739
2740#ifdef IEMNATIVE_WITH_RECOMPILER_PROLOGUE_SINGLETON
2741/** @note iemNativeTbEntry returns VBOXSTRICTRC, but we don't declare it as
2742 * it saves us the trouble of a hidden parameter on MSC/amd64. */
2743# ifdef RT_ARCH_AMD64
2744extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, uintptr_t pfnTbBody));
2745# elif defined(RT_ARCH_ARM64)
2746extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, PCPUMCTX pCpumCtx, uintptr_t pfnTbBody));
2747# endif
2748#endif
2749
2750#ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
2751extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeFpCtrlRegRestore, (uint64_t u64RegFpCtrl));
2752#endif
2753
2754#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
2755
2756/** @} */
2757
2758#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
2759
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette