VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 106457

Last change on this file since 106457 was 106453, checked in by vboxsync, 7 months ago

VMM/IEM: Eliminated the IEMNATIVE_WITH_SIMD_REG_ALLOCATOR define. Fixed bug in iemNativeEmitMemFetchStoreDataCommon where a SIMD register was masked in calls to iemNativeVarSaveVolatileRegsPreHlpCall and friends. Fixed theoretical loop-forever bugs in iemNativeSimdRegAllocFindFree & iemNativeRegAllocFindFree. bugref:10720

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 162.9 KB
Line 
1/* $Id: IEMN8veRecompiler.h 106453 2024-10-17 13:54:35Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40#include <iprt/assertcompile.h> /* for RT_IN_ASSEMBLER mode */
41
42/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
43 * Enables generating internal debug info for better TB disassembly dumping. */
44#if defined(DEBUG) || defined(DOXYGEN_RUNNING) || 0
45# define IEMNATIVE_WITH_TB_DEBUG_INFO
46#endif
47
48/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
49 * Enables liveness analysis. */
50#if 1 || defined(DOXYGEN_RUNNING)
51# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
52#endif
53
54/** @def IEMNATIVE_WITH_EFLAGS_SKIPPING
55 * Enables skipping EFLAGS calculations/updating based on liveness info. */
56#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || defined(DOXYGEN_RUNNING)
57# define IEMNATIVE_WITH_EFLAGS_SKIPPING
58#endif
59
60/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING
61 * Enables strict consistency checks around EFLAGS skipping.
62 * @note Only defined when IEMNATIVE_WITH_EFLAGS_SKIPPING is also defined. */
63#ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING
64# ifdef VBOX_STRICT
65# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
66# endif
67#elif defined(DOXYGEN_RUNNING)
68# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
69#endif
70
71/** @def IEMNATIVE_WITH_EFLAGS_POSTPONING
72 * Enables delaying EFLAGS calculations/updating to conditional code paths
73 * that are (hopefully) not taken so frequently.
74 *
75 * This can only help with case where there is an conditional
76 * call/exception/tbexit that needs the flag, but in the default code stream the
77 * flag will be clobbered. Useful for TlbMiss scenarios and sequences of memory
78 * based instructions clobbering status flags. */
79#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || defined(DOXYGEN_RUNNING)
80# if 1 || defined(DOXYGEN_RUNNING)
81# define IEMNATIVE_WITH_EFLAGS_POSTPONING
82# endif
83#endif
84#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
85# ifndef IEMNATIVE_WITH_EFLAGS_SKIPPING
86# error "IEMNATIVE_WITH_EFLAGS_POSTPONING requires IEMNATIVE_WITH_EFLAGS_SKIPPING at present"
87# endif
88#endif
89
90/** @def IEMLIVENESS_EXTENDED_LAYOUT
91 * Enables the extended liveness data layout. */
92#if defined(IEMNATIVE_WITH_EFLAGS_POSTPONING) || defined(DOXYGEN_RUNNING) || 0
93# define IEMLIVENESS_EXTENDED_LAYOUT
94#endif
95
96
97#ifdef VBOX_WITH_STATISTICS
98/** Always count instructions for now. */
99# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
100#endif
101
102
103/** @name Stack Frame Layout
104 *
105 * @{ */
106/** The size of the area for stack variables and spills and stuff.
107 * @note This limit is duplicated in the python script(s). We add 0x40 for
108 * alignment padding. */
109#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
110/** Number of 64-bit variable slots (0x100 / 8 = 32. */
111#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
112AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
113
114#ifdef RT_ARCH_AMD64
115/** An stack alignment adjustment (between non-volatile register pushes and
116 * the stack variable area, so the latter better aligned). */
117# define IEMNATIVE_FRAME_ALIGN_SIZE 8
118
119/** Number of stack arguments slots for calls made from the frame. */
120# ifdef RT_OS_WINDOWS
121# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
122# else
123# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
124# endif
125/** Number of any shadow arguments (spill area) for calls we make. */
126# ifdef RT_OS_WINDOWS
127# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
128# else
129# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
130# endif
131
132/** Frame pointer (RBP) relative offset of the last push. */
133# ifdef RT_OS_WINDOWS
134# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
135# else
136# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
137# endif
138/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
139 * address for it). */
140# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
141/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
142# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
143/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
144# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
145# ifdef RT_OS_WINDOWS
146/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
147# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
148/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
149# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
150# endif
151
152# ifdef RT_OS_WINDOWS
153/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
154# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
155/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
156# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
157/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
158# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
159/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
160# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
161# endif
162
163#elif RT_ARCH_ARM64
164/** No alignment padding needed for arm64. */
165# define IEMNATIVE_FRAME_ALIGN_SIZE 0
166/** No stack argument slots, got 8 registers for arguments will suffice. */
167# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
168/** There are no argument spill area. */
169# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
170
171/** Number of saved registers at the top of our stack frame.
172 * This includes the return address and old frame pointer, so x19 thru x30. */
173# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
174/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
175# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
176
177/** Frame pointer (BP) relative offset of the last push. */
178# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
179
180/** Frame pointer (BP) relative offset of the stack variable area (the lowest
181 * address for it). */
182# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
183
184#else
185# error "port me"
186#endif
187/** @} */
188
189
190/** @name Fixed Register Allocation(s)
191 * @{ */
192/** @def IEMNATIVE_REG_FIXED_PVMCPU
193 * The number of the register holding the pVCpu pointer. */
194/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
195 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
196 * @note This not available on AMD64, only ARM64. */
197/** @def IEMNATIVE_REG_FIXED_TMP0
198 * Dedicated temporary register.
199 * @note This has extremely short lifetime, must be used with great care to make
200 * sure any calling code or code being called is making use of it.
201 * It will definitely not survive a call or anything of that nature.
202 * @todo replace this by a register allocator and content tracker. */
203/** @def IEMNATIVE_REG_FIXED_MASK
204 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
205 * architecture. */
206/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
207 * Mask SIMD registers with fixes assignments, either by us or dictated by the CPU/OS
208 * architecture. */
209/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
210 * Dedicated temporary SIMD register. */
211#if defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING) /* arm64 goes first because of doxygen */
212# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
213# define IEMNATIVE_REG_FIXED_PVMCPU_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PVMCPU)
214# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
215# define IEMNATIVE_REG_FIXED_PCPUMCTX_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PCPUMCTX)
216# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
217# if defined(IEMNATIVE_WITH_DELAYED_PC_UPDATING) && 0 /* debug the updating with a shadow RIP. */
218# define IEMNATIVE_REG_FIXED_TMP1 ARMV8_A64_REG_X16
219# define IEMNATIVE_REG_FIXED_PC_DBG ARMV8_A64_REG_X26
220# define IEMNATIVE_REG_FIXED_MASK_ADD ( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1) \
221 | RT_BIT_32(IEMNATIVE_REG_FIXED_PC_DBG))
222# else
223# define IEMNATIVE_REG_FIXED_MASK_ADD 0
224# endif
225# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
226 | RT_BIT_32(ARMV8_A64_REG_LR) \
227 | RT_BIT_32(ARMV8_A64_REG_BP) \
228 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
229 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
230 | RT_BIT_32(ARMV8_A64_REG_X18) \
231 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
232 | IEMNATIVE_REG_FIXED_MASK_ADD)
233
234# define IEMNATIVE_SIMD_REG_FIXED_TMP0 ARMV8_A64_REG_Q30
235# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS)
236# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(ARMV8_A64_REG_Q30)
237# else
238/** @note
239 * ARM64 has 32 registers, but they are only 128-bit wide. So, in order to
240 * support emulating 256-bit registers we pair two real registers statically to
241 * one virtual for now, leaving us with only 16 256-bit registers. We always
242 * pair v0 with v1, v2 with v3, etc. so we mark the higher register as fixed and
243 * the register allocator assumes that it will be always free when the lower is
244 * picked.
245 *
246 * Also ARM64 declares the low 64-bit of v8-v15 as callee saved, so we don't
247 * touch them in order to avoid having to save and restore them in the
248 * prologue/epilogue.
249 */
250# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xff00) \
251 | RT_BIT_32(ARMV8_A64_REG_Q31) \
252 | RT_BIT_32(ARMV8_A64_REG_Q30) \
253 | RT_BIT_32(ARMV8_A64_REG_Q29) \
254 | RT_BIT_32(ARMV8_A64_REG_Q27) \
255 | RT_BIT_32(ARMV8_A64_REG_Q25) \
256 | RT_BIT_32(ARMV8_A64_REG_Q23) \
257 | RT_BIT_32(ARMV8_A64_REG_Q21) \
258 | RT_BIT_32(ARMV8_A64_REG_Q19) \
259 | RT_BIT_32(ARMV8_A64_REG_Q17) \
260 | RT_BIT_32(ARMV8_A64_REG_Q15) \
261 | RT_BIT_32(ARMV8_A64_REG_Q13) \
262 | RT_BIT_32(ARMV8_A64_REG_Q11) \
263 | RT_BIT_32(ARMV8_A64_REG_Q9) \
264 | RT_BIT_32(ARMV8_A64_REG_Q7) \
265 | RT_BIT_32(ARMV8_A64_REG_Q5) \
266 | RT_BIT_32(ARMV8_A64_REG_Q3) \
267 | RT_BIT_32(ARMV8_A64_REG_Q1))
268# endif
269
270#elif defined(RT_ARCH_AMD64)
271# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
272# define IEMNATIVE_REG_FIXED_PVMCPU_ASM xBX
273# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
274# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
275 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
276 | RT_BIT_32(X86_GREG_xSP) \
277 | RT_BIT_32(X86_GREG_xBP) )
278
279# define IEMNATIVE_SIMD_REG_FIXED_TMP0 5 /* xmm5/ymm5 */
280# ifndef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
281# ifndef _MSC_VER
282# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
283# endif
284# endif
285# ifdef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
286# define IEMNATIVE_SIMD_REG_FIXED_MASK (RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
287# else
288/** @note On Windows/AMD64 xmm6 through xmm15 are marked as callee saved. */
289# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xffc0) \
290 | RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
291# endif
292
293#else
294# error "port me"
295#endif
296/** @} */
297
298/** @name Call related registers.
299 * @{ */
300/** @def IEMNATIVE_CALL_RET_GREG
301 * The return value register. */
302/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
303 * Number of arguments in registers. */
304/** @def IEMNATIVE_CALL_ARG0_GREG
305 * The general purpose register carrying argument \#0. */
306/** @def IEMNATIVE_CALL_ARG1_GREG
307 * The general purpose register carrying argument \#1. */
308/** @def IEMNATIVE_CALL_ARG2_GREG
309 * The general purpose register carrying argument \#2. */
310/** @def IEMNATIVE_CALL_ARG3_GREG
311 * The general purpose register carrying argument \#3. */
312/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
313 * Mask of registers the callee will not save and may trash. */
314#ifdef RT_ARCH_AMD64
315# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
316
317# ifdef RT_OS_WINDOWS
318# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
319# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
320# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
321# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
322# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
323# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
324 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
325 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
326 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
327# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
328 | RT_BIT_32(X86_GREG_xCX) \
329 | RT_BIT_32(X86_GREG_xDX) \
330 | RT_BIT_32(X86_GREG_x8) \
331 | RT_BIT_32(X86_GREG_x9) \
332 | RT_BIT_32(X86_GREG_x10) \
333 | RT_BIT_32(X86_GREG_x11) )
334/* xmm0 - xmm5 are marked as volatile. */
335# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0x3f))
336
337# else /* !RT_OS_WINDOWS */
338# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
339# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
340# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
341# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
342# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
343# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
344# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
345# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
346 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
347 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
348 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
349 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
350 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
351# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
352 | RT_BIT_32(X86_GREG_xCX) \
353 | RT_BIT_32(X86_GREG_xDX) \
354 | RT_BIT_32(X86_GREG_xDI) \
355 | RT_BIT_32(X86_GREG_xSI) \
356 | RT_BIT_32(X86_GREG_x8) \
357 | RT_BIT_32(X86_GREG_x9) \
358 | RT_BIT_32(X86_GREG_x10) \
359 | RT_BIT_32(X86_GREG_x11) )
360/* xmm0 - xmm15 are marked as volatile. */
361# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffff))
362# endif /* !RT_OS_WINDOWS */
363
364#elif defined(RT_ARCH_ARM64)
365# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
366# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
367# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
368# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
369# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
370# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
371# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
372# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
373# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
374# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
375# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
376 | RT_BIT_32(ARMV8_A64_REG_X1) \
377 | RT_BIT_32(ARMV8_A64_REG_X2) \
378 | RT_BIT_32(ARMV8_A64_REG_X3) \
379 | RT_BIT_32(ARMV8_A64_REG_X4) \
380 | RT_BIT_32(ARMV8_A64_REG_X5) \
381 | RT_BIT_32(ARMV8_A64_REG_X6) \
382 | RT_BIT_32(ARMV8_A64_REG_X7) )
383# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
384 | RT_BIT_32(ARMV8_A64_REG_X1) \
385 | RT_BIT_32(ARMV8_A64_REG_X2) \
386 | RT_BIT_32(ARMV8_A64_REG_X3) \
387 | RT_BIT_32(ARMV8_A64_REG_X4) \
388 | RT_BIT_32(ARMV8_A64_REG_X5) \
389 | RT_BIT_32(ARMV8_A64_REG_X6) \
390 | RT_BIT_32(ARMV8_A64_REG_X7) \
391 | RT_BIT_32(ARMV8_A64_REG_X8) \
392 | RT_BIT_32(ARMV8_A64_REG_X9) \
393 | RT_BIT_32(ARMV8_A64_REG_X10) \
394 | RT_BIT_32(ARMV8_A64_REG_X11) \
395 | RT_BIT_32(ARMV8_A64_REG_X12) \
396 | RT_BIT_32(ARMV8_A64_REG_X13) \
397 | RT_BIT_32(ARMV8_A64_REG_X14) \
398 | RT_BIT_32(ARMV8_A64_REG_X15) \
399 | RT_BIT_32(ARMV8_A64_REG_X16) \
400 | RT_BIT_32(ARMV8_A64_REG_X17) )
401/* The low 64 bits of v8 - v15 marked as callee saved but the rest is volatile,
402 * so to simplify our life a bit we just mark everything as volatile. */
403# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK UINT32_C(0xffffffff)
404
405#endif
406
407/** This is the maximum argument count we'll ever be needing. */
408#define IEMNATIVE_CALL_MAX_ARG_COUNT 7
409#ifdef RT_OS_WINDOWS
410# ifdef VBOXSTRICTRC_STRICT_ENABLED
411# undef IEMNATIVE_CALL_MAX_ARG_COUNT
412# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
413# endif
414#endif
415
416/** @def IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK
417 * Variant of IEMNATIVE_CALL_VOLATILE_GREG_MASK that excludes
418 * IEMNATIVE_REG_FIXED_TMP0 on hosts that uses it. */
419#ifdef IEMNATIVE_REG_FIXED_TMP0
420# ifdef IEMNATIVE_REG_FIXED_TMP1
421# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK ( IEMNATIVE_CALL_VOLATILE_GREG_MASK \
422 & ~( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
423 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1)))
424# else
425# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK (IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0))
426# endif
427#else
428# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK IEMNATIVE_CALL_VOLATILE_GREG_MASK
429#endif
430
431/** @def IEMNATIVE_CALL_NONVOLATILE_GREG_MASK
432 * The allocatable non-volatile general purpose register set. */
433#define IEMNATIVE_CALL_NONVOLATILE_GREG_MASK \
434 (~IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~IEMNATIVE_REG_FIXED_MASK & IEMNATIVE_HST_GREG_MASK)
435/** @} */
436
437
438/** @def IEMNATIVE_HST_GREG_COUNT
439 * Number of host general purpose registers we tracker. */
440/** @def IEMNATIVE_HST_GREG_MASK
441 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
442 * inverted register masks and such to get down to a correct set of regs. */
443/** @def IEMNATIVE_HST_SIMD_REG_COUNT
444 * Number of host SIMD registers we track. */
445/** @def IEMNATIVE_HST_SIMD_REG_MASK
446 * Mask corresponding to IEMNATIVE_HST_SIMD_REG_COUNT that can be applied to
447 * inverted register masks and such to get down to a correct set of regs. */
448#ifdef RT_ARCH_AMD64
449# define IEMNATIVE_HST_GREG_COUNT 16
450# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
451
452# define IEMNATIVE_HST_SIMD_REG_COUNT 16
453# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_C(0xffff)
454
455#elif defined(RT_ARCH_ARM64)
456# define IEMNATIVE_HST_GREG_COUNT 32
457# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
458
459# define IEMNATIVE_HST_SIMD_REG_COUNT 32
460# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_MAX
461
462#else
463# error "Port me!"
464#endif
465
466
467#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
468
469
470/** Native code generator label types. */
471typedef enum
472{
473 kIemNativeLabelType_Invalid = 0,
474 /** @name Exit reasons - Labels w/o data, only once instance per TB.
475 *
476 * The labels requiring register inputs are documented.
477 *
478 * @note Jumps to these requires instructions that are capable of spanning the
479 * max TB length.
480 * @{
481 */
482 /* Simple labels comes first for indexing reasons. RaiseXx is order by the exception's numerical value(s). */
483 kIemNativeLabelType_RaiseDe, /**< Raise (throw) X86_XCPT_DE (00h). */
484 kIemNativeLabelType_RaiseUd, /**< Raise (throw) X86_XCPT_UD (06h). */
485 kIemNativeLabelType_RaiseSseRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to cr0 & cr4. */
486 kIemNativeLabelType_RaiseAvxRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to xcr0, cr0 & cr4. */
487 kIemNativeLabelType_RaiseSseAvxFpRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_XF according to c4. */
488 kIemNativeLabelType_RaiseNm, /**< Raise (throw) X86_XCPT_NM (07h). */
489 kIemNativeLabelType_RaiseGp0, /**< Raise (throw) X86_XCPT_GP (0dh) w/ errcd=0. */
490 kIemNativeLabelType_RaiseMf, /**< Raise (throw) X86_XCPT_MF (10h). */
491 kIemNativeLabelType_RaiseXf, /**< Raise (throw) X86_XCPT_XF (13h). */
492 kIemNativeLabelType_ObsoleteTb, /**< Calls iemNativeHlpObsoleteTb (no inputs). */
493 kIemNativeLabelType_NeedCsLimChecking, /**< Calls iemNativeHlpNeedCsLimChecking (no inputs). */
494 kIemNativeLabelType_CheckBranchMiss, /**< Calls iemNativeHlpCheckBranchMiss (no inputs). */
495 kIemNativeLabelType_LastSimple = kIemNativeLabelType_CheckBranchMiss,
496
497 /* Manually defined labels: */
498 /**< Returns with VINF_SUCCESS, no inputs. */
499 kIemNativeLabelType_ReturnSuccess,
500 /** Returns with VINF_IEM_REEXEC_FINISH_WITH_FLAGS, no inputs. */
501 kIemNativeLabelType_ReturnWithFlags,
502 /** Returns with VINF_IEM_REEXEC_BREAK, no inputs. */
503 kIemNativeLabelType_ReturnBreak,
504 /** Returns with VINF_IEM_REEXEC_BREAK_FF, no inputs. */
505 kIemNativeLabelType_ReturnBreakFF,
506 /** The last TB exit label that doesn't have any input registers. */
507 kIemNativeLabelType_LastTbExitWithoutInputs = kIemNativeLabelType_ReturnBreakFF,
508
509 /** Argument registers 1, 2 & 3 are set up. */
510 kIemNativeLabelType_ReturnBreakViaLookup,
511 /** Argument registers 1, 2 & 3 are set up. */
512 kIemNativeLabelType_ReturnBreakViaLookupWithIrq,
513 /** Argument registers 1 & 2 are set up. */
514 kIemNativeLabelType_ReturnBreakViaLookupWithTlb,
515 /** Argument registers 1 & 2 are set up. */
516 kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq,
517 /** Return register holds the RC and the instruction number is in CL/RCX
518 * on amd64 and the 2rd argument register elsewhere. */
519 kIemNativeLabelType_NonZeroRetOrPassUp,
520
521 /** The last fixup for branches that can span almost the whole TB length.
522 * @note Whether kIemNativeLabelType_Return needs to be one of these is
523 * a bit questionable, since nobody jumps to it except other tail code. */
524 kIemNativeLabelType_LastWholeTbBranch = kIemNativeLabelType_NonZeroRetOrPassUp,
525 /** The last fixup for branches that exits the TB. */
526 kIemNativeLabelType_LastTbExit = kIemNativeLabelType_NonZeroRetOrPassUp,
527 /** @} */
528
529 /** Loop-jump target. */
530 kIemNativeLabelType_LoopJumpTarget,
531
532 /*
533 * Labels with data, potentially multiple instances per TB:
534 *
535 * These are localized labels, so no fixed jump type restrictions here.
536 */
537 kIemNativeLabelType_FirstWithMultipleInstances,
538 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
539 kIemNativeLabelType_Else,
540 kIemNativeLabelType_Endif,
541 kIemNativeLabelType_CheckIrq,
542 kIemNativeLabelType_TlbLookup,
543 kIemNativeLabelType_TlbMiss,
544 kIemNativeLabelType_TlbDone,
545 kIemNativeLabelType_End
546} IEMNATIVELABELTYPE;
547
548#define IEMNATIVELABELTYPE_IS_EXIT_REASON(a_enmLabel) \
549 ((a_enmLabel) <= kIemNativeLabelType_LastTbExit && (a_enmLabel) > kIemNativeLabelType_Invalid)
550
551#define IEMNATIVELABELTYPE_IS_EXIT_WITHOUT_INPUTS(a_enmLabel) \
552 ((a_enmLabel) <= kIemNativeLabelType_LastTbExitWithoutInputs && (a_enmLabel) > kIemNativeLabelType_Invalid)
553
554/**
555 * Get the mask of input registers for an TB exit label.
556 * This will return zero for any non-exit lable.
557 */
558#ifdef RT_ARCH_AMD64
559# define IEMNATIVELABELTYPE_GET_INPUT_REG_MASK(a_enmLabel) \
560 ( (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookup \
561 || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithIrq \
562 ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
563 : (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlb \
564 || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq \
565 ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
566 : (a_enmLabel) == kIemNativeLabelType_NonZeroRetOrPassUp \
567 ? RT_BIT_32(IEMNATIVE_CALL_RET_GREG) | RT_BIT_32(X86_GREG_xCX) /* <-- the difference */ \
568 : 0)
569# else
570# define IEMNATIVELABELTYPE_GET_INPUT_REG_MASK(a_enmLabel) \
571 ( (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookup \
572 || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithIrq \
573 ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
574 : (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlb \
575 || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq \
576 ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
577 : (a_enmLabel) == kIemNativeLabelType_NonZeroRetOrPassUp \
578 ? RT_BIT_32(IEMNATIVE_CALL_RET_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
579 : 0)
580#endif
581
582
583/** Native code generator label definition. */
584typedef struct IEMNATIVELABEL
585{
586 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
587 * the epilog. */
588 uint32_t off;
589 /** The type of label (IEMNATIVELABELTYPE). */
590 uint16_t enmType;
591 /** Additional label data, type specific. */
592 uint16_t uData;
593} IEMNATIVELABEL;
594/** Pointer to a label. */
595typedef IEMNATIVELABEL *PIEMNATIVELABEL;
596
597
598
599/** Native code generator fixup types. */
600typedef enum
601{
602 kIemNativeFixupType_Invalid = 0,
603#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
604 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
605 kIemNativeFixupType_Rel32,
606#elif defined(RT_ARCH_ARM64)
607 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
608 kIemNativeFixupType_RelImm26At0,
609 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
610 kIemNativeFixupType_RelImm19At5,
611 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
612 kIemNativeFixupType_RelImm14At5,
613#endif
614 kIemNativeFixupType_End
615} IEMNATIVEFIXUPTYPE;
616
617/** Native code generator fixup. */
618typedef struct IEMNATIVEFIXUP
619{
620 /** Code offset of the fixup location. */
621 uint32_t off;
622 /** The IEMNATIVELABEL this is a fixup for. */
623 uint16_t idxLabel;
624 /** The fixup type (IEMNATIVEFIXUPTYPE). */
625 uint8_t enmType;
626 /** Addend or other data. */
627 int8_t offAddend;
628} IEMNATIVEFIXUP;
629/** Pointer to a native code generator fixup. */
630typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
631
632
633
634/** Native code generator fixup to per chunk TB tail code. */
635typedef struct IEMNATIVEEXITFIXUP
636{
637 /** Code offset of the fixup location. */
638 uint32_t off;
639 /** The exit reason. */
640 IEMNATIVELABELTYPE enmExitReason;
641} IEMNATIVEEXITFIXUP;
642/** Pointer to a native code generator TB exit fixup. */
643typedef IEMNATIVEEXITFIXUP *PIEMNATIVEEXITFIXUP;
644
645/**
646 * Per executable memory chunk context with addresses for common code.
647 */
648typedef struct IEMNATIVEPERCHUNKCTX
649{
650 /** Pointers to the exit labels */
651 PIEMNATIVEINSTR apExitLabels[kIemNativeLabelType_LastTbExit + 1];
652} IEMNATIVEPERCHUNKCTX;
653/** Pointer to per-chunk recompiler context. */
654typedef IEMNATIVEPERCHUNKCTX *PIEMNATIVEPERCHUNKCTX;
655/** Pointer to const per-chunk recompiler context. */
656typedef const IEMNATIVEPERCHUNKCTX *PCIEMNATIVEPERCHUNKCTX;
657
658
659
660/**
661 * One bit of the state.
662 *
663 * Each register state takes up two bits. We keep the two bits in two separate
664 * 64-bit words to simplify applying them to the guest shadow register mask in
665 * the register allocator.
666 */
667typedef union IEMLIVENESSBIT
668{
669 uint64_t bm64;
670 RT_GCC_EXTENSION struct
671 { /* bit no */
672 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
673 uint64_t fCr0 : 1; /**< 0x10 / 16: */
674 uint64_t fCr4 : 1; /**< 0x11 / 17: */
675 uint64_t fFcw : 1; /**< 0x12 / 18: */
676 uint64_t fFsw : 1; /**< 0x13 / 19: */
677 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
678 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
679 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
680 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
681 uint64_t fXcr0 : 1; /**< 0x2c / 44: */
682 uint64_t fMxCsr : 1; /**< 0x2d / 45: */
683 uint64_t fEflOther : 1; /**< 0x2e / 46: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
684 uint64_t fEflCf : 1; /**< 0x2f / 47: Carry flag (X86_EFL_CF / 0). */
685 uint64_t fEflPf : 1; /**< 0x30 / 48: Parity flag (X86_EFL_PF / 2). */
686 uint64_t fEflAf : 1; /**< 0x31 / 59: Auxilary carry flag (X86_EFL_AF / 4). */
687 uint64_t fEflZf : 1; /**< 0x32 / 50: Zero flag (X86_EFL_ZF / 6). */
688 uint64_t fEflSf : 1; /**< 0x33 / 51: Signed flag (X86_EFL_SF / 7). */
689 uint64_t fEflOf : 1; /**< 0x34 / 52: Overflow flag (X86_EFL_OF / 12). */
690 uint64_t fUnusedPc : 1; /**< 0x35 / 53: (PC in ) */
691 uint64_t uUnused : 10; /* 0x36 / 54 -> 0x40/64 */
692 };
693} IEMLIVENESSBIT;
694AssertCompileSize(IEMLIVENESSBIT, 8);
695
696#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
697#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
698#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
699#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
700#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
701#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
702#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
703#define IEMLIVENESSBIT_IDX_EFL_COUNT 7
704
705
706/**
707 * A liveness state entry.
708 *
709 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
710 * Once we add a SSE register shadowing, we'll add another 64-bit element for
711 * that.
712 */
713typedef union IEMLIVENESSENTRY
714{
715#ifndef IEMLIVENESS_EXTENDED_LAYOUT
716 uint64_t bm64[16 / 8];
717 uint16_t bm32[16 / 4];
718 uint16_t bm16[16 / 2];
719 uint8_t bm8[ 16 / 1];
720 IEMLIVENESSBIT aBits[2];
721#else
722 uint64_t bm64[32 / 8];
723 uint16_t bm32[32 / 4];
724 uint16_t bm16[32 / 2];
725 uint8_t bm8[ 32 / 1];
726 IEMLIVENESSBIT aBits[4];
727#endif
728 RT_GCC_EXTENSION struct
729 {
730 /** Bit \#0 of the register states. */
731 IEMLIVENESSBIT Bit0;
732 /** Bit \#1 of the register states. */
733 IEMLIVENESSBIT Bit1;
734#ifdef IEMLIVENESS_EXTENDED_LAYOUT
735 /** Bit \#2 of the register states. */
736 IEMLIVENESSBIT Bit2;
737 /** Bit \#3 of the register states. */
738 IEMLIVENESSBIT Bit3;
739#endif
740 };
741} IEMLIVENESSENTRY;
742#ifndef IEMLIVENESS_EXTENDED_LAYOUT
743AssertCompileSize(IEMLIVENESSENTRY, 16);
744#else
745AssertCompileSize(IEMLIVENESSENTRY, 32);
746#endif
747/** Pointer to a liveness state entry. */
748typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
749/** Pointer to a const liveness state entry. */
750typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
751
752/** @name 64-bit value masks for IEMLIVENESSENTRY.
753 * @{ */ /* 0xzzzzyyyyxxxxwwww */
754#define IEMLIVENESSBIT_MASK UINT64_C(0x001fffffffffffff)
755
756#ifndef IEMLIVENESS_EXTENDED_LAYOUT
757# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
758# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
759
760# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
761# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
762#endif
763
764#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x001fc00000000000)
765#define IEMLIVENESSBIT_STATUS_EFL_MASK UINT64_C(0x001f800000000000)
766
767#ifndef IEMLIVENESS_EXTENDED_LAYOUT
768# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
769# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
770#endif
771/** @} */
772
773
774/** @name The liveness state for a register.
775 *
776 * The state values have been picked to with state accumulation in mind (what
777 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
778 * performance critical work done with the values.
779 *
780 * This is a compressed state that only requires 2 bits per register.
781 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
782 * 1. the incoming state from the following call,
783 * 2. the outgoing state for this call,
784 * 3. mask of the entries set in the 2nd.
785 *
786 * The mask entry (3rd one above) will be used both when updating the outgoing
787 * state and when merging in incoming state for registers not touched by the
788 * current call.
789 *
790 *
791 * Extended Layout:
792 *
793 * The extended layout variation differs from the above as it records the
794 * different register accesses as individual bits, and it is currently used for
795 * the delayed EFLAGS calculation experiments. The latter means that
796 * calls/tb-exits and potential calls/exceptions/tb-exits are recorded
797 * separately so the latter can be checked for in combination with clobbering.
798 *
799 * @{ */
800#ifndef IEMLIVENESS_EXTENDED_LAYOUT
801/** The register will be clobbered and the current value thrown away.
802 *
803 * When this is applied to the state (2) we'll simply be AND'ing it with the
804 * (old) mask (3) and adding the register to the mask. This way we'll
805 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
806 * IEMLIVENESS_STATE_INPUT states. */
807# define IEMLIVENESS_STATE_CLOBBERED 0
808/** The register is unused in the remainder of the TB.
809 *
810 * This is an initial state and can not be set by any of the
811 * iemNativeLivenessFunc_xxxx callbacks. */
812# define IEMLIVENESS_STATE_UNUSED 1
813/** The register value is required in a potential call or exception.
814 *
815 * This means that the register value must be calculated and is best written to
816 * the state, but that any shadowing registers can be flushed thereafter as it's
817 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
818 *
819 * It is typically applied across the board, but we preserve incoming
820 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
821 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
822 * 1. r0 = old & ~mask;
823 * 2. r0 = t1 & (t1 >> 1);
824 * 3. state |= r0 | 0b10;
825 * 4. mask = ~0;
826 */
827# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
828/** The register value is used as input.
829 *
830 * This means that the register value must be calculated and it is best to keep
831 * it in a register. It does not need to be writtent out as such. This is the
832 * highest priority state.
833 *
834 * Whether the call modifies the register or not isn't relevant to earlier
835 * calls, so that's not recorded.
836 *
837 * When applying this state we just or in the value in the outgoing state and
838 * mask. */
839# define IEMLIVENESS_STATE_INPUT 3
840/** Mask of the state bits. */
841# define IEMLIVENESS_STATE_MASK 3
842/** The number of bits per state. */
843# define IEMLIVENESS_STATE_BIT_COUNT 2
844
845/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state.
846 * @note only used in assertions. */
847# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
848/** Check if we're expecting read accesses to a register with the given (previous) liveness state.
849 * @note only used in assertions. */
850# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
851/** Check if a register clobbering is expected given the (previous) liveness state.
852 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
853 * include INPUT if the register is used in more than one place.
854 * @note only used in assertions. */
855# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
856
857/** Check if all status flags are going to be clobbered and doesn't need
858 * calculating in the current step.
859 * @param a_pCurEntry The current liveness entry.
860 * @note Used by actual code. */
861# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
862 ( (((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_STATUS_EFL_MASK) == 0 )
863
864/***
865 * Construct a mask of what will be clobbered and never used.
866 *
867 * This is mainly used with IEMLIVENESSBIT_STATUS_EFL_MASK to avoid
868 * unnecessary EFLAGS calculations.
869 *
870 * @param a_pCurEntry The current liveness entry.
871 * @note Used by actual code.
872 */
873# define IEMLIVENESS_STATE_GET_WILL_BE_CLOBBERED_SET(a_pCurEntry) \
874 ( ~((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_MASK )
875
876/** Construct a mask of the guest registers in the UNUSED and XCPT_OR_CALL
877 * states, as these are no longer needed.
878 * @param a_pCurEntry The current liveness entry.
879 * @note Used by actual code. */
880AssertCompile(IEMLIVENESS_STATE_UNUSED == 1 && IEMLIVENESS_STATE_XCPT_OR_CALL == 2);
881# define IEMLIVENESS_STATE_GET_CAN_BE_FREED_SET(a_pCurEntry) \
882 ( (a_pCurEntry)->Bit0.bm64 ^ (a_pCurEntry)->Bit1.bm64 )
883
884
885#else /* IEMLIVENESS_EXTENDED_LAYOUT */
886/** The register is not used any more. */
887# define IEMLIVENESS_STATE_UNUSED 0
888/** Flag: The register is required in a potential call or/and exception. */
889# define IEMLIVENESS_STATE_POTENTIAL_CALL 1
890# define IEMLIVENESS_BIT_POTENTIAL_CALL 0
891/** Flag: The register is read. */
892# define IEMLIVENESS_STATE_READ 2
893# define IEMLIVENESS_BIT_READ 1
894/** Flag: The register is written. */
895# define IEMLIVENESS_STATE_WRITE 4
896# define IEMLIVENESS_BIT_WRITE 2
897/** Flag: Unconditional call. */
898# define IEMLIVENESS_STATE_CALL 8
899# define IEMLIVENESS_BIT_CALL 3
900
901# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
902 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
903# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
904# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
905
906# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
907 ( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & IEMLIVENESSBIT_STATUS_EFL_MASK) == IEMLIVENESSBIT_STATUS_EFL_MASK \
908 && !( ( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 \
909 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \
910 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_CALL].bm64) \
911 & IEMLIVENESSBIT_STATUS_EFL_MASK) )
912
913/** Construct a mask of the registers not in the read or write state.
914 * @note We could skips writes, if they aren't from us, as this is just a hack
915 * to prevent trashing registers that have just been written or will be
916 * written when we retire the current instruction.
917 * @param a_pCurEntry The current liveness entry.
918 * @note Used by actual code. */
919# define IEMLIVENESS_STATE_GET_CAN_BE_FREED_SET(a_pCurEntry) \
920 ( ~(a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \
921 & ~(a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 \
922 & IEMLIVENESSBIT_MASK )
923
924/***
925 * Construct a mask of what will be clobbered and never used.
926 *
927 * This is mainly used with IEMLIVENESSBIT_STATUS_EFL_MASK to avoid
928 * unnecessary EFLAGS calculations.
929 *
930 * @param a_pCurEntry The current liveness entry.
931 * @note Used by actual code.
932 */
933# define IEMLIVENESS_STATE_GET_WILL_BE_CLOBBERED_SET(a_pCurEntry) \
934 ( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 \
935 & ~( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 \
936 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \
937 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_CALL].bm64) )
938
939/**
940 * Construct a mask of what (EFLAGS) which can be postponed.
941 *
942 * The postponement is for the avoiding EFLAGS status bits calculations in the
943 * primary code stream whenever possible, and instead only do these in the TLB
944 * load and TB exit code paths which shouldn't be traveled quite as often.
945 * A requirement, though, is that the status bits will be clobbered later in the
946 * TB.
947 *
948 * User need to apply IEMLIVENESSBIT_STATUS_EFL_MASK if appropriate/necessary.
949 *
950 * @param a_pCurEntry The current liveness entry.
951 * @note Used by actual code.
952 */
953# define IEMLIVENESS_STATE_GET_CAN_BE_POSTPONED_SET(a_pCurEntry) \
954 ( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 \
955 & (a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 \
956 & ~( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \
957 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_CALL].bm64) )
958
959#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
960/** @} */
961
962/** @name Liveness helpers for builtin functions and similar.
963 *
964 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
965 * own set of manipulator macros for those.
966 *
967 * @{ */
968/** Initializing the state as all unused. */
969#ifndef IEMLIVENESS_EXTENDED_LAYOUT
970# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
971 do { \
972 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
973 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
974 } while (0)
975#else
976# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
977 do { \
978 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = 0; \
979 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
980 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
981 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = 0; \
982 } while (0)
983#endif
984
985/** Initializing the outgoing state with a potential xcpt or call state.
986 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT.
987 *
988 * @note Must invoke IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL when done!
989 */
990#ifndef IEMLIVENESS_EXTENDED_LAYOUT
991# define IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
992 do { \
993 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
994 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
995 } while (0)
996#else
997# define IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
998 do { \
999 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = IEMLIVENESSBIT_MASK; \
1000 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
1001 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
1002 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = 0; \
1003 } while (0)
1004#endif
1005
1006/** Completes IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL after applying any
1007 * other state modifications.
1008 */
1009#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1010# define IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) ((void)0)
1011#else
1012# define IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
1013 do { \
1014 uint64_t const fInhMask = ~( (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL].bm64 \
1015 | (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE].bm64); \
1016 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 & fInhMask; \
1017 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64 & fInhMask; \
1018 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & fInhMask; \
1019 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_CALL].bm64 & fInhMask; \
1020 } while (0)
1021#endif
1022
1023/** Initializing the outgoing state with an unconditional call state.
1024 * This should only really be used alone. */
1025#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1026# define IEM_LIVENESS_RAW_INIT_WITH_CALL(a_pOutgoing, a_pIncoming) \
1027 do { \
1028 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
1029 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
1030 } while (0)
1031#else
1032# define IEM_LIVENESS_RAW_INIT_WITH_CALL(a_pOutgoing, a_pIncoming) \
1033 do { \
1034 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = IEMLIVENESSBIT_MASK; \
1035 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = 0; \
1036 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
1037 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
1038 RT_NOREF(a_pIncoming); \
1039 } while (0)
1040#endif
1041
1042#if 0 /* unused */
1043/** Initializing the outgoing state with an unconditional call state as well as
1044 * an potential call/exception preceeding it.
1045 * This should only really be used alone. */
1046#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1047# define IEM_LIVENESS_RAW_INIT_WITH_CALL_AND_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
1048 do { \
1049 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
1050 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
1051 } while (0)
1052#else
1053# define IEM_LIVENESS_RAW_INIT_WITH_CALL_AND_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
1054 do { \
1055 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = IEMLIVENESSBIT_MASK; \
1056 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = IEMLIVENESSBIT_MASK; \
1057 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
1058 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
1059 } while (0)
1060#endif
1061#endif
1062
1063/** Adds a segment base register as input to the outgoing state. */
1064#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1065# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
1066 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
1067 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
1068 } while (0)
1069#else
1070# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
1071 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
1072 } while (0)
1073#endif
1074
1075/** Adds a segment attribute register as input to the outgoing state. */
1076#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1077# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
1078 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
1079 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
1080 } while (0)
1081#else
1082# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
1083 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
1084 } while (0)
1085#endif
1086
1087/** Adds a segment limit register as input to the outgoing state. */
1088#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1089# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
1090 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
1091 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
1092 } while (0)
1093#else
1094# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
1095 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
1096 } while (0)
1097#endif
1098
1099/** Adds a segment limit register as input to the outgoing state. */
1100#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1101# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
1102 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
1103 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
1104 } while (0)
1105#else
1106# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
1107 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
1108 } while (0)
1109#endif
1110/** @} */
1111
1112/** @def IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY
1113 * Debug assertion that the required flags are available and not incorrectly skipped.
1114 */
1115#ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING
1116# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY(a_pReNative, a_fEflNeeded) \
1117 AssertMsg(!((a_pReNative)->fSkippingEFlags & (a_fEflNeeded)), \
1118 ("%#x & %#x -> %#x\n", (a_pReNative)->fSkippingEFlags, \
1119 a_fEflNeeded, (a_pReNative)->fSkippingEFlags & (a_fEflNeeded) ))
1120#else
1121# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY(a_pReNative, a_fEflNeeded) ((void)0)
1122#endif
1123
1124/** @def IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY
1125 * Debug assertion that the required flags are available and not incorrectly postponed.
1126 */
1127#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1128# define IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY(a_pReNative, a_fEflNeeded) \
1129 AssertMsg(!((a_pReNative)->PostponedEfl.fEFlags & (a_fEflNeeded)), \
1130 ("%#x & %#x -> %#x\n", (a_pReNative)->PostponedEfl.fEFlags, \
1131 a_fEflNeeded, (a_pReNative)->PostponedEfl.fEFlags & (a_fEflNeeded) ))
1132#else
1133# define IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY(a_pReNative, a_fEflNeeded) ((void)0)
1134#endif
1135
1136/** @def IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING
1137 * Debug assertion that the required flags are available and not incorrectly
1138 * skipped or postponed.
1139 */
1140#if defined(IEMNATIVE_WITH_EFLAGS_SKIPPING) && defined(IEMNATIVE_WITH_EFLAGS_POSTPONING)
1141# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) \
1142 AssertMsg(!(((a_pReNative)->fSkippingEFlags | (a_pReNative)->PostponedEfl.fEFlags) & (a_fEflNeeded)), \
1143 ("(%#x | %#x) & %#x -> %#x\n", (a_pReNative)->fSkippingEFlags, (a_pReNative)->PostponedEfl.fEFlags, \
1144 a_fEflNeeded, ((a_pReNative)->fSkippingEFlags | (a_pReNative)->PostponedEfl.fEFlags) & (a_fEflNeeded) ))
1145#elif defined(IEMNATIVE_WITH_EFLAGS_SKIPPING)
1146# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) \
1147 IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY(a_pReNative, a_fEflNeeded)
1148#elif defined(IEMNATIVE_WITH_EFLAGS_POSTPONING) \
1149# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) \
1150 IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY(a_pReNative, a_fEflNeeded)
1151#else
1152# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) ((void)0)
1153#endif
1154
1155/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK
1156 * Checks that the EFLAGS bits specified by @a a_fEflNeeded are actually
1157 * calculated and up to date. This is to double check that we haven't skipped
1158 * EFLAGS calculations when we actually need them. NOP in non-strict builds.
1159 * @note has to be placed in
1160 */
1161#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
1162# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { \
1163 (a_off) = iemNativeEmitEFlagsSkippingCheck(a_pReNative, a_off, a_fEflNeeded); \
1164 } while (0)
1165#else
1166# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { } while (0)
1167#endif
1168
1169
1170/** @def IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS
1171 * Number of extra instructions to allocate for each TB exit to account for
1172 * postponed EFLAGS calculations.
1173 */
1174#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1175# ifdef RT_ARCH_AMD64
1176# ifdef VBOX_STRICT
1177# define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 64
1178# else
1179# define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 32
1180# endif
1181# elif defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
1182# ifdef VBOX_STRICT
1183# define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 48
1184# else
1185# define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 32
1186# endif
1187# else
1188# error "port me"
1189# endif
1190#else
1191# define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 0
1192#endif
1193
1194/** @def IEMNATIVE_CLEAR_POSTPONED_EFLAGS
1195 * Helper macro function for calling iemNativeClearPostponedEFlags() when
1196 * IEMNATIVE_WITH_EFLAGS_POSTPONING is enabled.
1197 */
1198#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1199# define IEMNATIVE_CLEAR_POSTPONED_EFLAGS(a_pReNative, a_fEflClobbered) iemNativeClearPostponedEFlags<a_fEflClobbered>(a_pReNative)
1200#else
1201# define IEMNATIVE_CLEAR_POSTPONED_EFLAGS(a_pReNative, a_fEflClobbered) ((void)0)
1202#endif
1203
1204/** @def IEMNATIVE_HAS_POSTPONED_EFLAGS_CALCS
1205 * Macro for testing whether there are currently any postponed EFLAGS calcs w/o
1206 * needing to \#ifdef the check.
1207 */
1208#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1209# define IEMNATIVE_HAS_POSTPONED_EFLAGS_CALCS(a_pReNative) ((a_pReNative)->PostponedEfl.fEFlags != 0)
1210#else
1211# define IEMNATIVE_HAS_POSTPONED_EFLAGS_CALCS(a_pReNative) false
1212#endif
1213
1214
1215/**
1216 * Translation block debug info entry type.
1217 */
1218typedef enum IEMTBDBGENTRYTYPE
1219{
1220 kIemTbDbgEntryType_Invalid = 0,
1221 /** The entry is for marking a native code position.
1222 * Entries following this all apply to this position. */
1223 kIemTbDbgEntryType_NativeOffset,
1224 /** The entry is for a new guest instruction. */
1225 kIemTbDbgEntryType_GuestInstruction,
1226 /** Marks the start of a threaded call. */
1227 kIemTbDbgEntryType_ThreadedCall,
1228 /** Marks the location of a label. */
1229 kIemTbDbgEntryType_Label,
1230 /** Info about a host register shadowing a guest register. */
1231 kIemTbDbgEntryType_GuestRegShadowing,
1232 /** Info about a host SIMD register shadowing a guest SIMD register. */
1233 kIemTbDbgEntryType_GuestSimdRegShadowing,
1234#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1235 /** Info about a delayed RIP update. */
1236 kIemTbDbgEntryType_DelayedPcUpdate,
1237#endif
1238 /** Info about a shadowed guest register becoming dirty. */
1239 kIemTbDbgEntryType_GuestRegDirty,
1240 /** Info about register writeback/flush oepration. */
1241 kIemTbDbgEntryType_GuestRegWriteback,
1242#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1243 /** Info about a delayed EFLAGS calculation. */
1244 kIemTbDbgEntryType_PostponedEFlagsCalc,
1245#endif
1246 kIemTbDbgEntryType_End
1247} IEMTBDBGENTRYTYPE;
1248
1249/**
1250 * Translation block debug info entry.
1251 */
1252typedef union IEMTBDBGENTRY
1253{
1254 /** Plain 32-bit view. */
1255 uint32_t u;
1256
1257 /** Generic view for getting at the type field. */
1258 struct
1259 {
1260 /** IEMTBDBGENTRYTYPE */
1261 uint32_t uType : 4;
1262 uint32_t uTypeSpecific : 28;
1263 } Gen;
1264
1265 struct
1266 {
1267 /** kIemTbDbgEntryType_ThreadedCall1. */
1268 uint32_t uType : 4;
1269 /** Native code offset. */
1270 uint32_t offNative : 28;
1271 } NativeOffset;
1272
1273 struct
1274 {
1275 /** kIemTbDbgEntryType_GuestInstruction. */
1276 uint32_t uType : 4;
1277 uint32_t uUnused : 4;
1278 /** The IEM_F_XXX flags. */
1279 uint32_t fExec : 24;
1280 } GuestInstruction;
1281
1282 struct
1283 {
1284 /* kIemTbDbgEntryType_ThreadedCall. */
1285 uint32_t uType : 4;
1286 /** Set if the call was recompiled to native code, clear if just calling
1287 * threaded function. */
1288 uint32_t fRecompiled : 1;
1289 uint32_t uUnused : 11;
1290 /** The threaded call number (IEMTHREADEDFUNCS). */
1291 uint32_t enmCall : 16;
1292 } ThreadedCall;
1293
1294 struct
1295 {
1296 /* kIemTbDbgEntryType_Label. */
1297 uint32_t uType : 4;
1298 uint32_t uUnused : 4;
1299 /** The label type (IEMNATIVELABELTYPE). */
1300 uint32_t enmLabel : 8;
1301 /** The label data. */
1302 uint32_t uData : 16;
1303 } Label;
1304
1305 struct
1306 {
1307 /* kIemTbDbgEntryType_GuestRegShadowing. */
1308 uint32_t uType : 4;
1309 uint32_t uUnused : 4;
1310 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1311 uint32_t idxGstReg : 8;
1312 /** The host new register number, UINT8_MAX if dropped. */
1313 uint32_t idxHstReg : 8;
1314 /** The previous host register number, UINT8_MAX if new. */
1315 uint32_t idxHstRegPrev : 8;
1316 } GuestRegShadowing;
1317
1318 struct
1319 {
1320 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1321 uint32_t uType : 4;
1322 uint32_t uUnused : 4;
1323 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1324 uint32_t idxGstSimdReg : 8;
1325 /** The host new register number, UINT8_MAX if dropped. */
1326 uint32_t idxHstSimdReg : 8;
1327 /** The previous host register number, UINT8_MAX if new. */
1328 uint32_t idxHstSimdRegPrev : 8;
1329 } GuestSimdRegShadowing;
1330
1331#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1332 struct
1333 {
1334 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1335 uint32_t uType : 4;
1336 /** Number of instructions skipped. */
1337 uint32_t cInstrSkipped : 8;
1338 /* The instruction offset added to the program counter. */
1339 int32_t offPc : 20;
1340 } DelayedPcUpdate;
1341#endif
1342
1343 struct
1344 {
1345 /* kIemTbDbgEntryType_GuestRegDirty. */
1346 uint32_t uType : 4;
1347 uint32_t uUnused : 11;
1348 /** Flag whether this is about a SIMD (true) or general (false) register. */
1349 uint32_t fSimdReg : 1;
1350 /** The guest register index being marked as dirty. */
1351 uint32_t idxGstReg : 8;
1352 /** The host register number this register is shadowed in .*/
1353 uint32_t idxHstReg : 8;
1354 } GuestRegDirty;
1355
1356 struct
1357 {
1358 /* kIemTbDbgEntryType_GuestRegWriteback. */
1359 uint32_t uType : 4;
1360 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1361 uint32_t fSimdReg : 1;
1362 /** The mask shift. */
1363 uint32_t cShift : 2;
1364 /** The guest register mask being written back. */
1365 uint32_t fGstReg : 25;
1366 } GuestRegWriteback;
1367
1368#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1369 struct
1370 {
1371 /* kIemTbDbgEntryType_PostponedEFlagsCalc. */
1372 uint32_t uType : 4;
1373 /** The EFLAGS operation (IEMNATIVE_POSTPONED_EFL_OP_T). */
1374 uint32_t enmOp : 4;
1375 /** The mask shift. */
1376 uint32_t cOpBits : 8;
1377 /** The emit instance number (0-based). */
1378 uint32_t idxEmit : 8;
1379 /** Unused. */
1380 uint32_t uUnused : 8;
1381 } PostponedEflCalc;
1382#endif
1383} IEMTBDBGENTRY;
1384AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1385/** Pointer to a debug info entry. */
1386typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1387/** Pointer to a const debug info entry. */
1388typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1389
1390/**
1391 * Translation block debug info.
1392 */
1393typedef struct IEMTBDBG
1394{
1395 /** This is the flat PC corresponding to IEMTB::GCPhysPc. */
1396 RTGCPTR FlatPc;
1397 /** Number of entries in aEntries. */
1398 uint32_t cEntries;
1399 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1400 uint32_t offNativeLast;
1401 /** Debug info entries. */
1402 RT_FLEXIBLE_ARRAY_EXTENSION
1403 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1404} IEMTBDBG;
1405/** Pointer to TB debug info. */
1406typedef IEMTBDBG *PIEMTBDBG;
1407/** Pointer to const TB debug info. */
1408typedef IEMTBDBG const *PCIEMTBDBG;
1409
1410/**
1411 * Guest registers that can be shadowed in GPRs.
1412 *
1413 * This runs parallel to the liveness state (IEMLIVENESSBIT, ++). The EFlags
1414 * must be placed last, as the liveness state tracks it as 7 subcomponents and
1415 * we don't want to waste space here.
1416 *
1417 * @note Make sure to update IEMLIVENESSBIT, IEMLIVENESSBIT_ALL_EFL_MASK and
1418 * friends as well as IEMAllN8veLiveness.cpp.
1419 */
1420typedef enum IEMNATIVEGSTREG : uint8_t
1421{
1422 kIemNativeGstReg_GprFirst = 0,
1423 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
1424 kIemNativeGstReg_Cr0,
1425 kIemNativeGstReg_Cr4,
1426 kIemNativeGstReg_FpuFcw,
1427 kIemNativeGstReg_FpuFsw,
1428 kIemNativeGstReg_SegBaseFirst,
1429 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
1430 kIemNativeGstReg_SegAttribFirst,
1431 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
1432 kIemNativeGstReg_SegLimitFirst,
1433 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
1434 kIemNativeGstReg_SegSelFirst,
1435 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
1436 kIemNativeGstReg_Xcr0,
1437 kIemNativeGstReg_MxCsr,
1438 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags. */
1439 /* 6 entry gap for liveness EFlags subdivisions. */
1440 kIemNativeGstReg_Pc = kIemNativeGstReg_EFlags + 7,
1441 kIemNativeGstReg_End
1442} IEMNATIVEGSTREG;
1443AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
1444AssertCompile((UINT64_C(0x7f) << kIemNativeGstReg_EFlags) == IEMLIVENESSBIT_ALL_EFL_MASK);
1445AssertCompile(RT_BIT_64(kIemNativeGstReg_Pc) - UINT64_C(1) == IEMLIVENESSBIT_MASK);
1446
1447/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
1448 * @{ */
1449#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
1450#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
1451#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
1452#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
1453#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
1454/** @} */
1455
1456
1457/**
1458 * Guest registers that can be shadowed in host SIMD registers.
1459 *
1460 * @todo r=aeichner Liveness tracking
1461 * @todo r=aeichner Given that we can only track xmm/ymm here does this actually make sense?
1462 */
1463typedef enum IEMNATIVEGSTSIMDREG : uint8_t
1464{
1465 kIemNativeGstSimdReg_SimdRegFirst = 0,
1466 kIemNativeGstSimdReg_SimdRegLast = kIemNativeGstSimdReg_SimdRegFirst + 15,
1467 kIemNativeGstSimdReg_End
1468} IEMNATIVEGSTSIMDREG;
1469
1470/** @name Helpers for converting register numbers to IEMNATIVEGSTSIMDREG values.
1471 * @{ */
1472#define IEMNATIVEGSTSIMDREG_SIMD(a_iSimdReg) ((IEMNATIVEGSTSIMDREG)(kIemNativeGstSimdReg_SimdRegFirst + (a_iSimdReg)))
1473/** @} */
1474
1475/**
1476 * The Load/store size for a SIMD guest register.
1477 */
1478typedef enum IEMNATIVEGSTSIMDREGLDSTSZ : uint8_t
1479{
1480 /** Invalid size. */
1481 kIemNativeGstSimdRegLdStSz_Invalid = 0,
1482 /** Loads the low 128-bit of a guest SIMD register. */
1483 kIemNativeGstSimdRegLdStSz_Low128,
1484 /** Loads the high 128-bit of a guest SIMD register. */
1485 kIemNativeGstSimdRegLdStSz_High128,
1486 /** Loads the whole 256-bits of a guest SIMD register. */
1487 kIemNativeGstSimdRegLdStSz_256,
1488 /** End value. */
1489 kIemNativeGstSimdRegLdStSz_End
1490} IEMNATIVEGSTSIMDREGLDSTSZ;
1491
1492
1493/**
1494 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
1495 */
1496typedef enum IEMNATIVEGSTREGUSE
1497{
1498 /** The usage is read-only, the register holding the guest register
1499 * shadow copy will not be modified by the caller. */
1500 kIemNativeGstRegUse_ReadOnly = 0,
1501 /** The caller will update the guest register (think: PC += cbInstr).
1502 * The guest shadow copy will follow the returned register. */
1503 kIemNativeGstRegUse_ForUpdate,
1504 /** The call will put an entirely new value in the guest register, so
1505 * if new register is allocate it will be returned uninitialized. */
1506 kIemNativeGstRegUse_ForFullWrite,
1507 /** The caller will use the guest register value as input in a calculation
1508 * and the host register will be modified.
1509 * This means that the returned host register will not be marked as a shadow
1510 * copy of the guest register. */
1511 kIemNativeGstRegUse_Calculation
1512} IEMNATIVEGSTREGUSE;
1513
1514/**
1515 * Guest registers (classes) that can be referenced.
1516 */
1517typedef enum IEMNATIVEGSTREGREF : uint8_t
1518{
1519 kIemNativeGstRegRef_Invalid = 0,
1520 kIemNativeGstRegRef_Gpr,
1521 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
1522 kIemNativeGstRegRef_EFlags,
1523 kIemNativeGstRegRef_MxCsr,
1524 kIemNativeGstRegRef_FpuReg,
1525 kIemNativeGstRegRef_MReg,
1526 kIemNativeGstRegRef_XReg,
1527 kIemNativeGstRegRef_X87,
1528 kIemNativeGstRegRef_XState,
1529 //kIemNativeGstRegRef_YReg, - doesn't work.
1530 kIemNativeGstRegRef_End
1531} IEMNATIVEGSTREGREF;
1532
1533
1534/** Variable kinds. */
1535typedef enum IEMNATIVEVARKIND : uint8_t
1536{
1537 /** Customary invalid zero value. */
1538 kIemNativeVarKind_Invalid = 0,
1539 /** This is either in a register or on the stack. */
1540 kIemNativeVarKind_Stack,
1541 /** Immediate value - loaded into register when needed, or can live on the
1542 * stack if referenced (in theory). */
1543 kIemNativeVarKind_Immediate,
1544 /** Variable reference - loaded into register when needed, never stack. */
1545 kIemNativeVarKind_VarRef,
1546 /** Guest register reference - loaded into register when needed, never stack. */
1547 kIemNativeVarKind_GstRegRef,
1548 /** End of valid values. */
1549 kIemNativeVarKind_End
1550} IEMNATIVEVARKIND;
1551
1552
1553/** Variable or argument. */
1554typedef struct IEMNATIVEVAR
1555{
1556 /** The kind of variable. */
1557 IEMNATIVEVARKIND enmKind;
1558 /** The variable size in bytes. */
1559 uint8_t cbVar;
1560 /** The first stack slot (uint64_t), except for immediate and references
1561 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
1562 * has a stack slot it has been initialized and has a value. Unused variables
1563 * has neither a stack slot nor a host register assignment. */
1564 uint8_t idxStackSlot;
1565 /** The host register allocated for the variable, UINT8_MAX if not. */
1566 uint8_t idxReg;
1567 /** The argument number if argument, UINT8_MAX if regular variable. */
1568 uint8_t uArgNo;
1569 /** If referenced, the index (unpacked) of the variable referencing this one,
1570 * otherwise UINT8_MAX. A referenced variable must only be placed on the stack
1571 * and must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
1572 uint8_t idxReferrerVar;
1573 /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not.
1574 * @todo not sure what this really is for... */
1575 IEMNATIVEGSTREG enmGstReg;
1576 /** Flag whether this variable is held in a SIMD register (only supported for 128-bit and 256-bit variables),
1577 * only valid when idxReg is not UINT8_MAX. */
1578 bool fSimdReg : 1;
1579 /** Set if the registered is currently used exclusively, false if the
1580 * variable is idle and the register can be grabbed. */
1581 bool fRegAcquired : 1;
1582
1583 union
1584 {
1585 /** kIemNativeVarKind_Immediate: The immediate value. */
1586 uint64_t uValue;
1587 /** kIemNativeVarKind_VarRef: The index (unpacked) of the variable being referenced. */
1588 uint8_t idxRefVar;
1589 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
1590 struct
1591 {
1592 /** The class of register. */
1593 IEMNATIVEGSTREGREF enmClass;
1594 /** Index within the class. */
1595 uint8_t idx;
1596 } GstRegRef;
1597 } u;
1598} IEMNATIVEVAR;
1599/** Pointer to a variable or argument. */
1600typedef IEMNATIVEVAR *PIEMNATIVEVAR;
1601/** Pointer to a const variable or argument. */
1602typedef IEMNATIVEVAR const *PCIEMNATIVEVAR;
1603
1604/** What is being kept in a host register. */
1605typedef enum IEMNATIVEWHAT : uint8_t
1606{
1607 /** The traditional invalid zero value. */
1608 kIemNativeWhat_Invalid = 0,
1609 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
1610 kIemNativeWhat_Var,
1611 /** Temporary register, this is typically freed when a MC completes. */
1612 kIemNativeWhat_Tmp,
1613 /** Call argument w/o a variable mapping. This is free (via
1614 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
1615 kIemNativeWhat_Arg,
1616 /** Return status code.
1617 * @todo not sure if we need this... */
1618 kIemNativeWhat_rc,
1619 /** The fixed pVCpu (PVMCPUCC) register.
1620 * @todo consider offsetting this on amd64 to use negative offsets to access
1621 * more members using 8-byte disp. */
1622 kIemNativeWhat_pVCpuFixed,
1623 /** The fixed pCtx (PCPUMCTX) register.
1624 * @todo consider offsetting this on amd64 to use negative offsets to access
1625 * more members using 8-byte disp. */
1626 kIemNativeWhat_pCtxFixed,
1627 /** Fixed temporary register. */
1628 kIemNativeWhat_FixedTmp,
1629#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1630 /** Shadow RIP for the delayed RIP updating debugging. */
1631 kIemNativeWhat_PcShadow,
1632#endif
1633 /** Register reserved by the CPU or OS architecture. */
1634 kIemNativeWhat_FixedReserved,
1635 /** End of valid values. */
1636 kIemNativeWhat_End
1637} IEMNATIVEWHAT;
1638
1639/**
1640 * Host general register entry.
1641 *
1642 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
1643 *
1644 * @todo Track immediate values in host registers similarlly to how we track the
1645 * guest register shadow copies. For it to be real helpful, though,
1646 * we probably need to know which will be reused and put them into
1647 * non-volatile registers, otherwise it's going to be more or less
1648 * restricted to an instruction or two.
1649 */
1650typedef struct IEMNATIVEHSTREG
1651{
1652 /** Set of guest registers this one shadows.
1653 *
1654 * Using a bitmap here so we can designate the same host register as a copy
1655 * for more than one guest register. This is expected to be useful in
1656 * situations where one value is copied to several registers in a sequence.
1657 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1658 * sequence we'd want to let this register follow to be a copy of and there
1659 * will always be places where we'd be picking the wrong one.
1660 */
1661 uint64_t fGstRegShadows;
1662 /** What is being kept in this register. */
1663 IEMNATIVEWHAT enmWhat;
1664 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1665 uint8_t idxVar;
1666 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
1667 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
1668 * that scope. */
1669 uint8_t idxStackSlot;
1670 /** Alignment padding. */
1671 uint8_t abAlign[5];
1672} IEMNATIVEHSTREG;
1673
1674
1675/**
1676 * Host SIMD register entry - this tracks a virtual 256-bit register split into two 128-bit
1677 * halves, on architectures where there is no 256-bit register available this entry will track
1678 * two adjacent 128-bit host registers.
1679 *
1680 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstSimdRegs.
1681 */
1682typedef struct IEMNATIVEHSTSIMDREG
1683{
1684 /** Set of guest registers this one shadows.
1685 *
1686 * Using a bitmap here so we can designate the same host register as a copy
1687 * for more than one guest register. This is expected to be useful in
1688 * situations where one value is copied to several registers in a sequence.
1689 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1690 * sequence we'd want to let this register follow to be a copy of and there
1691 * will always be places where we'd be picking the wrong one.
1692 */
1693 uint64_t fGstRegShadows;
1694 /** What is being kept in this register. */
1695 IEMNATIVEWHAT enmWhat;
1696 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1697 uint8_t idxVar;
1698 /** Flag what is currently loaded, low 128-bits, high 128-bits or complete 256-bits. */
1699 IEMNATIVEGSTSIMDREGLDSTSZ enmLoaded;
1700 /** Alignment padding. */
1701 uint8_t abAlign[5];
1702} IEMNATIVEHSTSIMDREG;
1703
1704
1705/**
1706 * Core state for the native recompiler, that is, things that needs careful
1707 * handling when dealing with branches.
1708 */
1709typedef struct IEMNATIVECORESTATE
1710{
1711 /** Allocation bitmap for aHstRegs. */
1712 uint32_t bmHstRegs;
1713
1714 /** Bitmap marking which host register contains guest register shadow copies.
1715 * This is used during register allocation to try preserve copies. */
1716 uint32_t bmHstRegsWithGstShadow;
1717 /** Bitmap marking valid entries in aidxGstRegShadows. */
1718 uint64_t bmGstRegShadows;
1719#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1720 /** Bitmap marking the shadowed guest register as dirty and needing writeback when flushing. */
1721 uint64_t bmGstRegShadowDirty;
1722#endif
1723
1724#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1725 /** The current instruction offset in bytes from when the guest program counter
1726 * was updated last. Used for delaying the write to the guest context program counter
1727 * as long as possible. */
1728 int64_t offPc;
1729# ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
1730 /** Set after we've loaded PC into uPcUpdatingDebug at the first update. */
1731 bool fDebugPcInitialized;
1732# endif
1733#endif
1734
1735 /** Allocation bitmap for aHstSimdRegs. */
1736 uint32_t bmHstSimdRegs;
1737
1738 /** Bitmap marking which host SIMD register contains guest SIMD register shadow copies.
1739 * This is used during register allocation to try preserve copies. */
1740 uint32_t bmHstSimdRegsWithGstShadow;
1741 /** Bitmap marking valid entries in aidxSimdGstRegShadows. */
1742 uint64_t bmGstSimdRegShadows;
1743 /** Bitmap marking whether the low 128-bit of the shadowed guest register are dirty and need writeback. */
1744 uint64_t bmGstSimdRegShadowDirtyLo128;
1745 /** Bitmap marking whether the high 128-bit of the shadowed guest register are dirty and need writeback. */
1746 uint64_t bmGstSimdRegShadowDirtyHi128;
1747
1748 union
1749 {
1750 /** Index of variable (unpacked) arguments, UINT8_MAX if not valid. */
1751 uint8_t aidxArgVars[8];
1752 /** For more efficient resetting. */
1753 uint64_t u64ArgVars;
1754 };
1755
1756 /** Allocation bitmap for the stack. */
1757 uint32_t bmStack;
1758 /** Allocation bitmap for aVars. */
1759 uint32_t bmVars;
1760
1761 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
1762 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
1763 * (A shadow copy of a guest register can only be held in a one host register,
1764 * there are no duplicate copies or ambiguities like that). */
1765 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
1766 /** Maps a guest SIMD register to a host SIMD register (index by IEMNATIVEGSTSIMDREG).
1767 * Entries are only valid if the corresponding bit in bmGstSimdRegShadows is set.
1768 * (A shadow copy of a guest register can only be held in a one host register,
1769 * there are no duplicate copies or ambiguities like that). */
1770 uint8_t aidxGstSimdRegShadows[kIemNativeGstSimdReg_End];
1771
1772 /** Host register allocation tracking. */
1773 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
1774 /** Host SIMD register allocation tracking. */
1775 IEMNATIVEHSTSIMDREG aHstSimdRegs[IEMNATIVE_HST_SIMD_REG_COUNT];
1776
1777 /** Variables and arguments. */
1778 IEMNATIVEVAR aVars[9];
1779} IEMNATIVECORESTATE;
1780/** Pointer to core state. */
1781typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
1782/** Pointer to const core state. */
1783typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
1784
1785/** @def IEMNATIVE_VAR_IDX_UNPACK
1786 * @returns Index into IEMNATIVECORESTATE::aVars.
1787 * @param a_idxVar Variable index w/ magic (in strict builds).
1788 */
1789/** @def IEMNATIVE_VAR_IDX_PACK
1790 * @returns Variable index w/ magic (in strict builds).
1791 * @param a_idxVar Index into IEMNATIVECORESTATE::aVars.
1792 */
1793#ifdef VBOX_STRICT
1794# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) ((a_idxVar) & IEMNATIVE_VAR_IDX_MASK)
1795# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) ((a_idxVar) | IEMNATIVE_VAR_IDX_MAGIC)
1796# define IEMNATIVE_VAR_IDX_MAGIC UINT8_C(0xd0)
1797# define IEMNATIVE_VAR_IDX_MAGIC_MASK UINT8_C(0xf0)
1798# define IEMNATIVE_VAR_IDX_MASK UINT8_C(0x0f)
1799#else
1800# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) (a_idxVar)
1801# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) (a_idxVar)
1802#endif
1803
1804
1805/** Clear the dirty state of the given guest SIMD register. */
1806#define IEMNATIVE_SIMD_REG_STATE_CLR_DIRTY(a_pReNative, a_iSimdReg) \
1807 do { \
1808 (a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 &= ~RT_BIT_64(a_iSimdReg); \
1809 (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 &= ~RT_BIT_64(a_iSimdReg); \
1810 } while (0)
1811
1812/** Returns whether the low 128-bits of the given guest SIMD register are dirty. */
1813#define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1814 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 & RT_BIT_64(a_iSimdReg))
1815/** Returns whether the high 128-bits of the given guest SIMD register are dirty. */
1816#define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1817 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 & RT_BIT_64(a_iSimdReg))
1818/** Returns whether the given guest SIMD register is dirty. */
1819#define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_U256(a_pReNative, a_iSimdReg) \
1820 RT_BOOL(((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 | (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128) & RT_BIT_64(a_iSimdReg))
1821
1822/** Set the low 128-bits of the given guest SIMD register to the dirty state. */
1823#define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1824 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 |= RT_BIT_64(a_iSimdReg))
1825/** Set the high 128-bits of the given guest SIMD register to the dirty state. */
1826#define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1827 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 |= RT_BIT_64(a_iSimdReg))
1828
1829/** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1830#define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_DEVICE_NOT_AVAILABLE RT_BIT_32(0)
1831 /** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1832#define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_WAIT_DEVICE_NOT_AVAILABLE RT_BIT_32(1)
1833/** Flag for indicating that IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() has emitted code in the current TB. */
1834#define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_SSE RT_BIT_32(2)
1835/** Flag for indicating that IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() has emitted code in the current TB. */
1836#define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_AVX RT_BIT_32(3)
1837# ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
1838/** Flag indicating that the guest MXCSR was synced to the host floating point control register. */
1839# define IEMNATIVE_SIMD_HOST_FP_CTRL_REG_SYNCED RT_BIT_32(4)
1840/** Flag indicating whether the host floating point control register was saved before overwriting it. */
1841# define IEMNATIVE_SIMD_HOST_FP_CTRL_REG_SAVED RT_BIT_32(5)
1842#endif
1843
1844
1845#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1846typedef enum IEMNATIVE_POSTPONED_EFL_OP_T : uint8_t
1847{
1848 kIemNativePostponedEflOp_Invalid = 0,
1849 /** Logical operation.
1850 * Operands: result register.
1851 * @note This clears OF, CF and (undefined) AF, thus no need for inputs. */
1852 kIemNativePostponedEflOp_Logical,
1853 kIemNativePostponedEflOp_End
1854} IEMNATIVE_POSTPONED_EFL_OP_T;
1855#endif /* IEMNATIVE_WITH_EFLAGS_POSTPONING */
1856
1857/**
1858 * Conditional stack entry.
1859 */
1860typedef struct IEMNATIVECOND
1861{
1862 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
1863 bool fInElse;
1864 union
1865 {
1866 RT_GCC_EXTENSION struct
1867 {
1868 /** Set if the if-block unconditionally exited the TB. */
1869 bool fIfExitTb;
1870 /** Set if the else-block unconditionally exited the TB. */
1871 bool fElseExitTb;
1872 };
1873 /** Indexed by fInElse. */
1874 bool afExitTb[2];
1875 };
1876 bool afPadding[5];
1877 /** The label for the IEM_MC_ELSE. */
1878 uint32_t idxLabelElse;
1879 /** The label for the IEM_MC_ENDIF. */
1880 uint32_t idxLabelEndIf;
1881 /** The initial state snapshot as the if-block starts executing. */
1882 IEMNATIVECORESTATE InitialState;
1883 /** The state snapshot at the end of the if-block. */
1884 IEMNATIVECORESTATE IfFinalState;
1885} IEMNATIVECOND;
1886/** Pointer to a condition stack entry. */
1887typedef IEMNATIVECOND *PIEMNATIVECOND;
1888
1889
1890/**
1891 * Native recompiler state.
1892 */
1893typedef struct IEMRECOMPILERSTATE
1894{
1895 /** Size of the buffer that pbNativeRecompileBufR3 points to in
1896 * IEMNATIVEINSTR units. */
1897 uint32_t cInstrBufAlloc;
1898#ifdef VBOX_STRICT
1899 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
1900 uint32_t offInstrBufChecked;
1901#else
1902 uint32_t uPadding1; /* We don't keep track of the size here... */
1903#endif
1904 /** Fixed temporary code buffer for native recompilation. */
1905 PIEMNATIVEINSTR pInstrBuf;
1906
1907 /** Bitmaps with the label types used. */
1908 uint64_t bmLabelTypes;
1909 /** Actual number of labels in paLabels. */
1910 uint32_t cLabels;
1911 /** Max number of entries allowed in paLabels before reallocating it. */
1912 uint32_t cLabelsAlloc;
1913 /** Labels defined while recompiling (referenced by fixups). */
1914 PIEMNATIVELABEL paLabels;
1915 /** Array with indexes of unique labels (uData always 0). */
1916 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
1917
1918 /** Actual number of fixups paFixups. */
1919 uint32_t cFixups;
1920 /** Max number of entries allowed in paFixups before reallocating it. */
1921 uint32_t cFixupsAlloc;
1922 /** Buffer used by the recompiler for recording fixups when generating code. */
1923 PIEMNATIVEFIXUP paFixups;
1924
1925 /** Actual number of fixups in paTbExitFixups. */
1926 uint32_t cTbExitFixups;
1927 /** Max number of entries allowed in paTbExitFixups before reallocating it. */
1928 uint32_t cTbExitFixupsAlloc;
1929 /** Buffer used by the recompiler for recording fixups when generating code. */
1930 PIEMNATIVEEXITFIXUP paTbExitFixups;
1931
1932#if defined(IEMNATIVE_WITH_TB_DEBUG_INFO) || defined(VBOX_WITH_STATISTICS)
1933 /** Statistics: The idxInstr+1 value at the last PC update. */
1934 uint8_t idxInstrPlusOneOfLastPcUpdate;
1935#endif
1936
1937#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1938 /** Number of debug info entries allocated for pDbgInfo. */
1939 uint32_t cDbgInfoAlloc;
1940 /** Debug info. */
1941 PIEMTBDBG pDbgInfo;
1942#endif
1943
1944#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1945 /** The current call index (liveness array and threaded calls in TB). */
1946 uint32_t idxCurCall;
1947 /** Number of liveness entries allocated. */
1948 uint32_t cLivenessEntriesAlloc;
1949 /** Liveness entries for all the calls in the TB begin recompiled.
1950 * The entry for idxCurCall contains the info for what the next call will
1951 * require wrt registers. (Which means the last entry is the initial liveness
1952 * state.) */
1953 PIEMLIVENESSENTRY paLivenessEntries;
1954#endif
1955
1956 /** The translation block being recompiled. */
1957 PCIEMTB pTbOrg;
1958 /** The VMCPU structure of the EMT. */
1959 PVMCPUCC pVCpu;
1960
1961 /** Condition sequence number (for generating unique labels). */
1962 uint16_t uCondSeqNo;
1963 /** Check IRQ sequence number (for generating unique labels). */
1964 uint16_t uCheckIrqSeqNo;
1965 /** TLB load sequence number (for generating unique labels). */
1966 uint16_t uTlbSeqNo;
1967 /** The current condition stack depth (aCondStack). */
1968 uint8_t cCondDepth;
1969
1970 /** The argument count + hidden regs from the IEM_MC_BEGIN_EX statement. */
1971 uint8_t cArgsX;
1972 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1973 uint32_t fCImpl;
1974 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1975 uint32_t fMc;
1976 /** The expected IEMCPU::fExec value for the current call/instruction. */
1977 uint32_t fExec;
1978 /** IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_XXX flags for exception flags
1979 * we only emit once per TB (or when the cr0/cr4/xcr0 register changes).
1980 *
1981 * This is an optimization because these control registers can only be changed from
1982 * by calling a C helper we can catch. Should reduce the number of instructions in a TB
1983 * consisting of multiple SIMD instructions.
1984 */
1985 uint32_t fSimdRaiseXcptChecksEmitted;
1986 /** The call number of the last CheckIrq, UINT32_MAX if not seen. */
1987 uint32_t idxLastCheckIrqCallNo;
1988#ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING
1989 uint32_t fSkippingEFlags;
1990#endif
1991#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1992 struct
1993 {
1994 /** EFLAGS status bits that we're currently postponing the calculcation of. */
1995 uint32_t fEFlags;
1996 /** The postponed EFLAGS status bits calculation operation. */
1997 IEMNATIVE_POSTPONED_EFL_OP_T enmOp;
1998 /** The bit-width of the postponed EFLAGS calculation. */
1999 uint8_t cOpBits;
2000 /** Host register holding result or first source for the delayed operation,
2001 * UINT8_MAX if not in use. */
2002 uint8_t idxReg1;
2003 /** Host register holding second source for the delayed operation,
2004 * UINT8_MAX if not in use. */
2005 uint8_t idxReg2;
2006# if defined(VBOX_WITH_STATISTICS) || defined(IEMNATIVE_WITH_TB_DEBUG_INFO)
2007 /** Number of times the delayed calculation was emitted. */
2008 uint8_t cEmits;
2009# endif
2010 } PostponedEfl;
2011#endif
2012
2013 /** Core state requiring care with branches. */
2014 IEMNATIVECORESTATE Core;
2015
2016 /** The condition nesting stack. */
2017 IEMNATIVECOND aCondStack[2];
2018
2019#ifndef IEM_WITH_THROW_CATCH
2020 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
2021 * for recompilation error handling. */
2022 jmp_buf JmpBuf;
2023#endif
2024} IEMRECOMPILERSTATE;
2025/** Pointer to a native recompiler state. */
2026typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
2027
2028
2029/** @def IEMNATIVE_TRY_SETJMP
2030 * Wrapper around setjmp / try, hiding all the ugly differences.
2031 *
2032 * @note Use with extreme care as this is a fragile macro.
2033 * @param a_pReNative The native recompile state.
2034 * @param a_rcTarget The variable that should receive the status code in case
2035 * of a longjmp/throw.
2036 */
2037/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
2038 * Start wrapper for catch / setjmp-else.
2039 *
2040 * This will set up a scope.
2041 *
2042 * @note Use with extreme care as this is a fragile macro.
2043 * @param a_pReNative The native recompile state.
2044 * @param a_rcTarget The variable that should receive the status code in case
2045 * of a longjmp/throw.
2046 */
2047/** @def IEMNATIVE_CATCH_LONGJMP_END
2048 * End wrapper for catch / setjmp-else.
2049 *
2050 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
2051 * up the state.
2052 *
2053 * @note Use with extreme care as this is a fragile macro.
2054 * @param a_pReNative The native recompile state.
2055 */
2056/** @def IEMNATIVE_DO_LONGJMP
2057 *
2058 * Wrapper around longjmp / throw.
2059 *
2060 * @param a_pReNative The native recompile state.
2061 * @param a_rc The status code jump back with / throw.
2062 */
2063#ifdef IEM_WITH_THROW_CATCH
2064# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
2065 a_rcTarget = VINF_SUCCESS; \
2066 try
2067# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
2068 catch (int rcThrown) \
2069 { \
2070 a_rcTarget = rcThrown
2071# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
2072 } \
2073 ((void)0)
2074# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
2075#else /* !IEM_WITH_THROW_CATCH */
2076# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
2077 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
2078# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
2079 else \
2080 { \
2081 ((void)0)
2082# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
2083 }
2084# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
2085#endif /* !IEM_WITH_THROW_CATCH */
2086
2087
2088/**
2089 * Native recompiler worker for a threaded function.
2090 *
2091 * @returns New code buffer offset; throws VBox status code in case of a failure.
2092 * @param pReNative The native recompiler state.
2093 * @param off The current code buffer offset.
2094 * @param pCallEntry The threaded call entry.
2095 *
2096 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
2097 */
2098typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
2099/** Pointer to a native recompiler worker for a threaded function. */
2100typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
2101
2102/** Defines a native recompiler worker for a threaded function.
2103 * @see FNIEMNATIVERECOMPFUNC */
2104#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
2105 IEM_DECL_MSC_GUARD_IGNORE uint32_t VBOXCALL \
2106 a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
2107
2108/** Prototypes a native recompiler function for a threaded function.
2109 * @see FNIEMNATIVERECOMPFUNC */
2110#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
2111
2112
2113/**
2114 * Native recompiler liveness analysis worker for a threaded function.
2115 *
2116 * @param pCallEntry The threaded call entry.
2117 * @param pIncoming The incoming liveness state entry.
2118 * @param pOutgoing The outgoing liveness state entry.
2119 */
2120typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
2121 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
2122/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
2123typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
2124
2125/** Defines a native recompiler liveness analysis worker for a threaded function.
2126 * @see FNIEMNATIVELIVENESSFUNC */
2127#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
2128 IEM_DECL_MSC_GUARD_IGNORE DECLCALLBACK(void) \
2129 a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
2130
2131/** Prototypes a native recompiler liveness analysis function for a threaded function.
2132 * @see FNIEMNATIVELIVENESSFUNC */
2133#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
2134
2135
2136/** Define a native recompiler helper function, safe to call from the TB code. */
2137#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
2138 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
2139/** Prototype a native recompiler helper function, safe to call from the TB code. */
2140#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
2141 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
2142/** Pointer typedef a native recompiler helper function, safe to call from the TB code. */
2143#define IEM_DECL_NATIVE_HLP_PTR(a_RetType, a_Name, a_ArgList) \
2144 a_RetType (VBOXCALL *a_Name) a_ArgList
2145
2146
2147#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2148DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off);
2149DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg,
2150 uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX);
2151DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestSimdRegShadowing(PIEMRECOMPILERSTATE pReNative,
2152 IEMNATIVEGSTSIMDREG enmGstSimdReg,
2153 uint8_t idxHstSimdReg = UINT8_MAX,
2154 uint8_t idxHstSimdRegPrev = UINT8_MAX);
2155DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegDirty(PIEMRECOMPILERSTATE pReNative, bool fSimdReg,
2156 uint8_t idxGstReg, uint8_t idxHstReg);
2157DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegWriteback(PIEMRECOMPILERSTATE pReNative, bool fSimdReg,
2158 uint64_t fGstReg);
2159DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddDelayedPcUpdate(PIEMRECOMPILERSTATE pReNative,
2160 uint64_t offPc, uint32_t cInstrSkipped);
2161# ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
2162DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddPostponedEFlagsCalc(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2163 IEMNATIVE_POSTPONED_EFL_OP_T enmOp, uint8_t cOpBits,
2164 uint8_t idxInstance);
2165# endif
2166#endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
2167
2168DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
2169 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
2170DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
2171DECLHIDDEN(uint32_t) iemNativeLabelFind(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
2172 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0) RT_NOEXCEPT;
2173DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
2174 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
2175DECL_HIDDEN_THROW(void) iemNativeAddTbExitFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere,
2176 IEMNATIVELABELTYPE enmExitReason);
2177DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
2178
2179DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff);
2180DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpPreferNonVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff);
2181DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask);
2182DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpExPreferNonVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask);
2183DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm);
2184
2185DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegReadOnly(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2186DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegUpdate(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2187DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegFullWrite(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2188DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegCalculation(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2189DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegReadOnlyNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2190DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegUpdateNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2191DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegFullWriteNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2192DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegCalculationNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2193
2194#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) && defined(VBOX_STRICT)
2195DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsReadOnly(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2196 uint64_t fRead, uint64_t fWrite = 0, uint64_t fPotentialCall = 0);
2197DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsForUpdate(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2198 uint64_t fRead, uint64_t fWrite = 0, uint64_t fPotentialCall = 0);
2199#endif
2200
2201DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2202 IEMNATIVEGSTREG enmGstReg);
2203#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) && defined(VBOX_STRICT)
2204DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2205 uint64_t fRead, uint64_t fWrite = 0);
2206#else
2207DECL_FORCE_INLINE_THROW(uint8_t)
2208iemNativeRegAllocTmpForGuestEFlagsIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2209 uint64_t fRead, uint64_t fWrite = 0)
2210{
2211 RT_NOREF(fRead, fWrite);
2212 return iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(pReNative, poff, kIemNativeGstReg_EFlags);
2213}
2214#endif
2215
2216DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
2217DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
2218#if (defined(IPRT_INCLUDED_x86_h) && defined(RT_ARCH_AMD64)) || (defined(IPRT_INCLUDED_armv8_h) && defined(RT_ARCH_ARM64))
2219DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
2220 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK);
2221DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
2222 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK);
2223#endif
2224DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
2225DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
2226DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
2227DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
2228DECLHIDDEN(void) iemNativeSimdRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, bool fFlushShadows) RT_NOEXCEPT;
2229#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2230DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushDirtyGuestByHostSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg);
2231#endif
2232DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
2233DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
2234 uint32_t fKeepVars = 0);
2235DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
2236DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
2237DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2238 uint32_t fHstRegsActiveShadows);
2239#ifdef VBOX_STRICT
2240DECLHIDDEN(void) iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative);
2241#endif
2242DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWritesSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept,
2243 uint64_t fGstSimdShwExcept);
2244#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2245# ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
2246DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcDebugCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off);
2247DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcDebugCheckWithReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxPcReg);
2248# endif
2249DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcWritebackSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off);
2250#endif
2251#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2252DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVEGSTREG enmGstReg);
2253DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWriteEx(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2254 PIEMNATIVECORESTATE pCore, IEMNATIVEGSTREG enmGstReg);
2255DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuest(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2256 uint64_t fFlushGstReg = UINT64_MAX);
2257DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuestByHostRegShadow(PIEMRECOMPILERSTATE pReNative,
2258 uint32_t off, uint8_t idxHstReg);
2259#endif
2260
2261
2262DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
2263DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
2264 bool fPreferVolatile = true);
2265DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpForGuestSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2266 IEMNATIVEGSTSIMDREG enmGstSimdReg,
2267 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz,
2268 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
2269 bool fNoVolatileRegs = false);
2270DECLHIDDEN(void) iemNativeSimdRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg) RT_NOEXCEPT;
2271DECLHIDDEN(void) iemNativeSimdRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstSimdRegs) RT_NOEXCEPT;
2272DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2273 IEMNATIVEGSTSIMDREG enmGstSimdReg);
2274DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadSimdRegWithGstShadowSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2275 uint8_t idxHstSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg,
2276 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
2277
2278DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType);
2279DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue);
2280DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar);
2281DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType);
2282DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue);
2283DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocAssign(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t cbType, uint8_t idxVarOther);
2284DECL_HIDDEN_THROW(void) iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
2285DECL_HIDDEN_THROW(void) iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue);
2286DECL_HIDDEN_THROW(void) iemNativeVarSetKindToGstRegRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
2287 IEMNATIVEGSTREGREF enmRegClass, uint8_t idxReg);
2288DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
2289DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireSlow(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff);
2290DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireWithPrefSlow(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
2291 uint32_t *poff, uint8_t idxRegPref);
2292DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireInitedSlow(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff);
2293DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireInitedWithPrefSlow(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
2294 uint32_t *poff, uint8_t idxRegPref);
2295DECL_HIDDEN_THROW(uint8_t) iemNativeVarSimdRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
2296 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
2297DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
2298 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
2299DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2300 uint32_t fHstGprNotToSave);
2301DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2302 uint32_t fHstGprNotToSave);
2303DECLHIDDEN(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
2304DECLHIDDEN(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars);
2305
2306DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2307 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
2308DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowRegEx(PIEMNATIVEINSTR pCodeBuf, uint32_t off,
2309 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
2310#ifdef VBOX_STRICT
2311DECL_HIDDEN_THROW(uint32_t) iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg);
2312DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg,
2313 IEMNATIVEGSTREG enmGstReg);
2314DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheckEx(PIEMRECOMPILERSTATE pReNative, PIEMNATIVEINSTR pCodeBuf,
2315 uint32_t off, uint8_t idxReg, IEMNATIVEGSTREG enmGstReg);
2316DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestSimdRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxSimdReg,
2317 IEMNATIVEGSTSIMDREG enmGstSimdReg,
2318 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
2319DECL_HIDDEN_THROW(uint32_t) iemNativeEmitExecFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fExec);
2320#endif
2321#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
2322DECL_HIDDEN_THROW(uint32_t) iemNativeEmitEFlagsSkippingCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fEflNeeded);
2323#endif
2324DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
2325DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs, bool fFlushPendingWrites = true);
2326DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
2327 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
2328 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
2329DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2330 PCIEMTHRDEDCALLENTRY pCallEntry);
2331IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(iemNativeLivenessFunc_ThreadedCall);
2332DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLeaGprByGstRegRef(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxGprDst,
2333 IEMNATIVEGSTREGREF enmClass, uint8_t idxRegInClass);
2334
2335
2336IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr));
2337IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu));
2338IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseNm,(PVMCPUCC pVCpu));
2339IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseUd,(PVMCPUCC pVCpu));
2340IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseMf,(PVMCPUCC pVCpu));
2341IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseXf,(PVMCPUCC pVCpu));
2342IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseDe,(PVMCPUCC pVCpu));
2343IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpObsoleteTb,(PVMCPUCC pVCpu));
2344IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpNeedCsLimChecking,(PVMCPUCC pVCpu));
2345IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpCheckBranchMiss,(PVMCPUCC pVCpu));
2346IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseAvxRelated,(PVMCPUCC pVCpu));
2347IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseSseRelated,(PVMCPUCC pVCpu));
2348IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseSseAvxFpRelated,(PVMCPUCC pVCpu));
2349
2350IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2351IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2352IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2353IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2354IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2355IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2356IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2357IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2358IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2359IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2360IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
2361IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
2362IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
2363IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst));
2364IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst));
2365IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint8_t u8Value));
2366IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint16_t u16Value));
2367IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint32_t u32Value));
2368IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint64_t u64Value));
2369IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src));
2370IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src));
2371IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src));
2372IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src));
2373IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
2374IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2375IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2376IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
2377IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2378IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2379IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2380
2381IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2382IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2383IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2384IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2385IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2386IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2387IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2388IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2389IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2390IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2391IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
2392IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
2393IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
2394IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst));
2395IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst));
2396IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t u8Value));
2397IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
2398IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2399IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
2400IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src));
2401IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src));
2402IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src));
2403IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src));
2404IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
2405IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2406IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2407IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
2408IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFlatFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2409IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFlatFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2410IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFlatFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2411
2412IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2413IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2414IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2415IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2416IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2417IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2418IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2419IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2420IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2421IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2422IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2423IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2424IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2425IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2426IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2427IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2428IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2429IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2430IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2431IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2432IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2433IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2434
2435IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2436IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2437IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2438IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemFlatMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2439IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2440IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2441IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2442IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemFlatMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2443IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2444IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2445IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2446IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemFlatMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2447IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2448IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2449IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2450IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemFlatMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2451IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemFlatMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2452IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemFlatMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2453IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2454IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2455IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2456IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemFlatMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2457
2458IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapAtomic,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2459IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRw,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2460IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapWo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2461IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2462
2463
2464/**
2465 * Info about shadowed guest register values.
2466 * @see IEMNATIVEGSTREG
2467 */
2468typedef struct IEMANTIVEGSTREGINFO
2469{
2470 /** Offset in VMCPU. */
2471 uint32_t off;
2472 /** The field size. */
2473 uint8_t cb;
2474 /** Name (for logging). */
2475 const char *pszName;
2476} IEMANTIVEGSTREGINFO;
2477extern DECL_HIDDEN_DATA(IEMANTIVEGSTREGINFO const) g_aGstShadowInfo[];
2478extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
2479extern DECL_HIDDEN_DATA(int32_t const) g_aoffIemNativeCallStackArgBpDisp[];
2480extern DECL_HIDDEN_DATA(uint32_t const) g_afIemNativeCallRegs[];
2481extern DECL_HIDDEN_DATA(uint8_t const) g_aidxIemNativeCallRegs[];
2482
2483
2484
2485/**
2486 * Ensures that there is sufficient space in the instruction output buffer.
2487 *
2488 * This will reallocate the buffer if needed and allowed.
2489 *
2490 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
2491 * allocation size.
2492 *
2493 * @returns Pointer to the instruction output buffer on success; throws VBox
2494 * status code on failure, so no need to check it.
2495 * @param pReNative The native recompile state.
2496 * @param off Current instruction offset. Works safely for UINT32_MAX
2497 * as well.
2498 * @param cInstrReq Number of instruction about to be added. It's okay to
2499 * overestimate this a bit.
2500 */
2501DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
2502iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
2503{
2504 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
2505 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
2506 {
2507#ifdef VBOX_STRICT
2508 pReNative->offInstrBufChecked = offChecked;
2509#endif
2510 return pReNative->pInstrBuf;
2511 }
2512 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
2513}
2514
2515/**
2516 * Checks that we didn't exceed the space requested in the last
2517 * iemNativeInstrBufEnsure() call.
2518 */
2519#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
2520 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
2521 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
2522
2523/**
2524 * Checks that a variable index is valid.
2525 */
2526#ifdef IEMNATIVE_VAR_IDX_MAGIC
2527# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
2528 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
2529 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2530 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))), \
2531 ("%s=%#x\n", #a_idxVar, a_idxVar))
2532#else
2533# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
2534 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2535 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
2536#endif
2537
2538/**
2539 * Checks that a variable index is valid and that the variable is assigned the
2540 * correct argument number.
2541 * This also adds a RT_NOREF of a_idxVar.
2542 */
2543#ifdef IEMNATIVE_VAR_IDX_MAGIC
2544# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
2545 RT_NOREF_PV(a_idxVar); \
2546 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
2547 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2548 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))) \
2549 && (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].uArgNo == (a_uArgNo), \
2550 ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
2551 (a_pReNative)->Core.aVars[RT_MIN(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar), \
2552 RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, \
2553 a_uArgNo)); \
2554 } while (0)
2555#else
2556# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
2557 RT_NOREF_PV(a_idxVar); \
2558 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2559 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
2560 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
2561 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
2562 (a_pReNative)->Core.aVars[RT_MIN(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
2563 } while (0)
2564#endif
2565
2566
2567/**
2568 * Checks that a variable has the expected size.
2569 */
2570#define IEMNATIVE_ASSERT_VAR_SIZE(a_pReNative, a_idxVar, a_cbVar) \
2571 AssertMsg((a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar), \
2572 ("%s=%#x: cbVar=%#x, expected %#x!\n", #a_idxVar, a_idxVar, \
2573 (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar, (a_cbVar)))
2574
2575
2576/**
2577 * Calculates the stack address of a variable as a [r]BP displacement value.
2578 */
2579DECL_FORCE_INLINE(int32_t)
2580iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
2581{
2582 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
2583 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
2584}
2585
2586
2587/**
2588 * Releases the variable's register.
2589 *
2590 * The register must have been previously acquired calling
2591 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
2592 * iemNativeVarRegisterSetAndAcquire().
2593 */
2594DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
2595{
2596 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2597 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired);
2598 pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired = false;
2599}
2600
2601
2602DECL_INLINE_THROW(void) iemNativeVarSimdRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
2603{
2604 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fSimdReg);
2605 iemNativeVarRegisterRelease(pReNative, idxVar);
2606}
2607
2608
2609/**
2610 * Makes sure variable @a idxVar has a register assigned to it and that it stays
2611 * fixed till we call iemNativeVarRegisterRelease.
2612 *
2613 * @returns The host register number.
2614 * @param pReNative The recompiler state.
2615 * @param idxVar The variable.
2616 * @param poff Pointer to the instruction buffer offset.
2617 * In case a register needs to be freed up or the value
2618 * loaded off the stack.
2619 * @note Must not modify the host status flags!
2620 */
2621DECL_INLINE_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff)
2622{
2623 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2624 PIEMNATIVEVAR const pVar = &pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)];
2625 Assert(pVar->cbVar <= 8);
2626 Assert(!pVar->fRegAcquired);
2627 uint8_t const idxReg = pVar->idxReg;
2628 if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
2629 {
2630 Assert( pVar->enmKind > kIemNativeVarKind_Invalid
2631 && pVar->enmKind < kIemNativeVarKind_End);
2632 pVar->fRegAcquired = true;
2633 return idxReg;
2634 }
2635 return iemNativeVarRegisterAcquireSlow(pReNative, idxVar, poff);
2636}
2637
2638
2639/**
2640 * Makes sure variable @a idxVar has a register assigned to it and that it stays
2641 * fixed till we call iemNativeVarRegisterRelease.
2642 *
2643 * @returns The host register number.
2644 * @param pReNative The recompiler state.
2645 * @param idxVar The variable.
2646 * @param poff Pointer to the instruction buffer offset.
2647 * In case a register needs to be freed up or the value
2648 * loaded off the stack.
2649 * @param idxRegPref Preferred register number.
2650 * @note Must not modify the host status flags!
2651 */
2652DECL_INLINE_THROW(uint8_t)
2653iemNativeVarRegisterAcquireWithPref(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff, uint8_t idxRegPref)
2654{
2655 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2656 PIEMNATIVEVAR const pVar = &pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)];
2657 Assert(pVar->cbVar <= 8);
2658 Assert(!pVar->fRegAcquired);
2659 Assert(idxRegPref < RT_ELEMENTS(pReNative->Core.aHstRegs));
2660 uint8_t const idxReg = pVar->idxReg;
2661 if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
2662 {
2663 Assert( pVar->enmKind > kIemNativeVarKind_Invalid
2664 && pVar->enmKind < kIemNativeVarKind_End);
2665 pVar->fRegAcquired = true;
2666 return idxReg;
2667 }
2668 return iemNativeVarRegisterAcquireWithPrefSlow(pReNative, idxVar, poff, idxRegPref);
2669}
2670
2671
2672/**
2673 * Makes sure variable @a idxVar has a register assigned to it and that it stays
2674 * fixed till we call iemNativeVarRegisterRelease.
2675 *
2676 * The variable must be initialized or VERR_IEM_VAR_NOT_INITIALIZED will be
2677 * thrown.
2678 *
2679 * @returns The host register number.
2680 * @param pReNative The recompiler state.
2681 * @param idxVar The variable.
2682 * @param poff Pointer to the instruction buffer offset.
2683 * In case a register needs to be freed up or the value
2684 * loaded off the stack.
2685 * @note Must not modify the host status flags!
2686 */
2687DECL_INLINE_THROW(uint8_t) iemNativeVarRegisterAcquireInited(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff)
2688{
2689 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2690 PIEMNATIVEVAR const pVar = &pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)];
2691 Assert(pVar->cbVar <= 8);
2692 Assert(!pVar->fRegAcquired);
2693 uint8_t const idxReg = pVar->idxReg;
2694 if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
2695 {
2696 Assert( pVar->enmKind > kIemNativeVarKind_Invalid
2697 && pVar->enmKind < kIemNativeVarKind_End);
2698 pVar->fRegAcquired = true;
2699 return idxReg;
2700 }
2701 return iemNativeVarRegisterAcquireInitedSlow(pReNative, idxVar, poff);
2702}
2703
2704
2705/**
2706 * Makes sure variable @a idxVar has a register assigned to it and that it stays
2707 * fixed till we call iemNativeVarRegisterRelease.
2708 *
2709 * The variable must be initialized or VERR_IEM_VAR_NOT_INITIALIZED will be
2710 * thrown.
2711 *
2712 * @returns The host register number.
2713 * @param pReNative The recompiler state.
2714 * @param idxVar The variable.
2715 * @param poff Pointer to the instruction buffer offset.
2716 * In case a register needs to be freed up or the value
2717 * loaded off the stack.
2718 * @param idxRegPref Preferred register number.
2719 * @note Must not modify the host status flags!
2720 */
2721DECL_INLINE_THROW(uint8_t)
2722iemNativeVarRegisterAcquireInitedWithPref(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff, uint8_t idxRegPref)
2723{
2724 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2725 PIEMNATIVEVAR const pVar = &pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)];
2726 Assert(pVar->cbVar <= 8);
2727 Assert(!pVar->fRegAcquired);
2728 Assert(idxRegPref < RT_ELEMENTS(pReNative->Core.aHstRegs));
2729 uint8_t const idxReg = pVar->idxReg;
2730 if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
2731 {
2732 Assert( pVar->enmKind > kIemNativeVarKind_Invalid
2733 && pVar->enmKind < kIemNativeVarKind_End);
2734 pVar->fRegAcquired = true;
2735 return idxReg;
2736 }
2737 return iemNativeVarRegisterAcquireInitedWithPrefSlow(pReNative, idxVar, poff, idxRegPref);
2738}
2739
2740
2741/**
2742 * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask.
2743 *
2744 * @returns The flush mask.
2745 * @param fCImpl The IEM_CIMPL_F_XXX flags.
2746 * @param fGstShwFlush The starting flush mask.
2747 */
2748DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush)
2749{
2750 if (fCImpl & IEM_CIMPL_F_BRANCH_FAR)
2751 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS)
2752 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS)
2753 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS);
2754 if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR)
2755 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP)
2756 | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS)
2757 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS)
2758 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS);
2759 else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK)
2760 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP);
2761 if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW))
2762 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
2763 return fGstShwFlush;
2764}
2765
2766
2767/** Number of hidden arguments for CIMPL calls.
2768 * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */
2769#if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
2770# define IEM_CIMPL_HIDDEN_ARGS 3
2771#else
2772# define IEM_CIMPL_HIDDEN_ARGS 2
2773#endif
2774
2775
2776/** Number of hidden arguments for SSE_AIMPL calls. */
2777#define IEM_SSE_AIMPL_HIDDEN_ARGS 1
2778/** Number of hidden arguments for AVX_AIMPL calls. */
2779#define IEM_AVX_AIMPL_HIDDEN_ARGS 1
2780
2781
2782#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
2783
2784# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2785/**
2786 * Helper for iemNativeLivenessGetStateByGstReg.
2787 *
2788 * @returns IEMLIVENESS_STATE_XXX
2789 * @param fMergedStateExp2 This is the RT_BIT_32() of each sub-state
2790 * ORed together.
2791 */
2792DECL_FORCE_INLINE(uint32_t)
2793iemNativeLivenessMergeExpandedEFlagsState(uint32_t fMergedStateExp2)
2794{
2795 /* INPUT trumps anything else. */
2796 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_INPUT))
2797 return IEMLIVENESS_STATE_INPUT;
2798
2799 /* CLOBBERED trumps XCPT_OR_CALL and UNUSED. */
2800 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_CLOBBERED))
2801 {
2802 /* If not all sub-fields are clobbered they must be considered INPUT. */
2803 if (fMergedStateExp2 & (RT_BIT_32(IEMLIVENESS_STATE_UNUSED) | RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL)))
2804 return IEMLIVENESS_STATE_INPUT;
2805 return IEMLIVENESS_STATE_CLOBBERED;
2806 }
2807
2808 /* XCPT_OR_CALL trumps UNUSED. */
2809 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL))
2810 return IEMLIVENESS_STATE_XCPT_OR_CALL;
2811
2812 return IEMLIVENESS_STATE_UNUSED;
2813}
2814# endif /* !IEMLIVENESS_EXTENDED_LAYOUT */
2815
2816
2817DECL_FORCE_INLINE(uint32_t)
2818iemNativeLivenessGetStateByGstRegEx(PCIEMLIVENESSENTRY pLivenessEntry, unsigned enmGstRegEx)
2819{
2820# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2821 return ((pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
2822 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2);
2823# else
2824 return ( (pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
2825 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2)
2826 | (((pLivenessEntry->Bit2.bm64 >> enmGstRegEx) << 2) & 4)
2827 | (((pLivenessEntry->Bit3.bm64 >> enmGstRegEx) << 3) & 8);
2828# endif
2829}
2830
2831
2832DECL_FORCE_INLINE(uint32_t)
2833iemNativeLivenessGetStateByGstReg(PCIEMLIVENESSENTRY pLivenessEntry, IEMNATIVEGSTREG enmGstReg)
2834{
2835 uint32_t uRet = iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, (unsigned)enmGstReg);
2836 if (enmGstReg == kIemNativeGstReg_EFlags)
2837 {
2838 /* Merge the eflags states to one. */
2839# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2840 uRet = RT_BIT_32(uRet);
2841 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflCf | (pLivenessEntry->Bit1.fEflCf << 1));
2842 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflPf | (pLivenessEntry->Bit1.fEflPf << 1));
2843 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflAf | (pLivenessEntry->Bit1.fEflAf << 1));
2844 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflZf | (pLivenessEntry->Bit1.fEflZf << 1));
2845 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflSf | (pLivenessEntry->Bit1.fEflSf << 1));
2846 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflOf | (pLivenessEntry->Bit1.fEflOf << 1));
2847 uRet = iemNativeLivenessMergeExpandedEFlagsState(uRet);
2848# else
2849 AssertCompile(IEMLIVENESSBIT_IDX_EFL_OTHER == (unsigned)kIemNativeGstReg_EFlags);
2850 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_CF);
2851 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_PF);
2852 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_AF);
2853 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_ZF);
2854 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_SF);
2855 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_OF);
2856# endif
2857 }
2858 return uRet;
2859}
2860
2861# ifdef VBOX_STRICT
2862
2863/** For assertions only - caller checks that idxCurCall isn't zero. */
2864DECL_FORCE_INLINE(uint32_t)
2865iemNativeLivenessGetPrevStateByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg)
2866{
2867 return iemNativeLivenessGetStateByGstReg(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg);
2868}
2869
2870
2871/** For assertions only - caller checks that idxCurCall isn't zero. */
2872DECL_FORCE_INLINE(uint32_t)
2873iemNativeLivenessGetPrevStateByGstRegEx(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg)
2874{
2875 return iemNativeLivenessGetStateByGstRegEx(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg);
2876}
2877
2878# endif /* VBOX_STRICT */
2879#endif /* IEMNATIVE_WITH_LIVENESS_ANALYSIS */
2880
2881
2882/**
2883 * Gets the number of hidden arguments for an expected IEM_MC_CALL statement.
2884 */
2885DECL_FORCE_INLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative)
2886{
2887 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL)
2888 return IEM_CIMPL_HIDDEN_ARGS;
2889 if (pReNative->fCImpl & (IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE | IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE))
2890 return 1;
2891 return 0;
2892}
2893
2894
2895DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg,
2896 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2897{
2898 pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
2899
2900 pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat;
2901 pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
2902 pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
2903 return (uint8_t)idxReg;
2904}
2905
2906
2907
2908/*********************************************************************************************************************************
2909* Register Allocator (GPR) *
2910*********************************************************************************************************************************/
2911
2912#ifdef RT_ARCH_ARM64
2913# include <iprt/armv8.h>
2914#endif
2915
2916
2917/**
2918 * Marks host register @a idxHstReg as containing a shadow copy of guest
2919 * register @a enmGstReg.
2920 *
2921 * ASSUMES that caller has made sure @a enmGstReg is not associated with any
2922 * host register before calling.
2923 */
2924DECL_FORCE_INLINE(void)
2925iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2926{
2927 Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)));
2928 Assert(!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
2929 Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End);
2930
2931 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg;
2932 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg); /** @todo why? not OR? */
2933 pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg);
2934 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
2935#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2936 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2937 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg);
2938#else
2939 RT_NOREF(off);
2940#endif
2941}
2942
2943
2944/**
2945 * Clear any guest register shadow claims from @a idxHstReg.
2946 *
2947 * The register does not need to be shadowing any guest registers.
2948 */
2949DECL_FORCE_INLINE(void)
2950iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off)
2951{
2952 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2953 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2954 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2955 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
2956 == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
2957#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2958 Assert(!(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & pReNative->Core.bmGstRegShadowDirty));
2959#endif
2960
2961#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2962 uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2963 if (fGstRegs)
2964 {
2965 Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End));
2966 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2967 while (fGstRegs)
2968 {
2969 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2970 fGstRegs &= ~RT_BIT_64(iGstReg);
2971 iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg);
2972 }
2973 }
2974#else
2975 RT_NOREF(off);
2976#endif
2977
2978 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
2979 pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2980 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
2981}
2982
2983
2984/**
2985 * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg
2986 * and global overview flags.
2987 */
2988DECL_FORCE_INLINE(void)
2989iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2990{
2991 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2992 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2993 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2994 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2995 Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg));
2996 Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg));
2997 Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
2998#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2999 Assert(!(pReNative->Core.bmGstRegShadowDirty & RT_BIT_64(enmGstReg)));
3000#endif
3001
3002#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
3003 iemNativeDbgInfoAddNativeOffset(pReNative, off);
3004 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg);
3005#else
3006 RT_NOREF(off);
3007#endif
3008
3009 uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg);
3010 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
3011 if (!fGstRegShadowsNew)
3012 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
3013 pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg);
3014}
3015
3016
3017#if 0 /* unused */
3018/**
3019 * Clear any guest register shadow claim for @a enmGstReg.
3020 */
3021DECL_FORCE_INLINE(void)
3022iemNativeRegClearGstRegShadowingByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint32_t off)
3023{
3024 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
3025 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
3026 {
3027 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs));
3028 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
3029 }
3030}
3031#endif
3032
3033
3034/**
3035 * Clear any guest register shadow claim for @a enmGstReg and mark @a idxHstRegNew
3036 * as the new shadow of it.
3037 *
3038 * Unlike the other guest reg shadow helpers, this does the logging for you.
3039 * However, it is the liveness state is not asserted here, the caller must do
3040 * that.
3041 */
3042DECL_FORCE_INLINE(void)
3043iemNativeRegClearAndMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstRegNew,
3044 IEMNATIVEGSTREG enmGstReg, uint32_t off)
3045{
3046 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
3047 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
3048 {
3049 uint8_t const idxHstRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg];
3050 Assert(idxHstRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs));
3051 if (idxHstRegOld == idxHstRegNew)
3052 return;
3053 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s (from %s)\n", g_apszIemNativeHstRegNames[idxHstRegNew],
3054 g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxHstRegOld]));
3055 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
3056 }
3057 else
3058 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s\n", g_apszIemNativeHstRegNames[idxHstRegNew],
3059 g_aGstShadowInfo[enmGstReg].pszName));
3060 iemNativeRegMarkAsGstRegShadow(pReNative, idxHstRegNew, enmGstReg, off);
3061}
3062
3063
3064/**
3065 * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom
3066 * to @a idxRegTo.
3067 */
3068DECL_FORCE_INLINE(void)
3069iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo,
3070 IEMNATIVEGSTREG enmGstReg, uint32_t off)
3071{
3072 Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg));
3073 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] == idxRegFrom);
3074 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)
3075 == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows
3076 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
3077 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows)
3078 == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows);
3079 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom))
3080 == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows));
3081
3082 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg);
3083 pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom;
3084 if (!fGstRegShadowsFrom)
3085 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom);
3086 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo);
3087 pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg);
3088 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo;
3089#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
3090 iemNativeDbgInfoAddNativeOffset(pReNative, off);
3091 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom);
3092#else
3093 RT_NOREF(off);
3094#endif
3095}
3096
3097
3098/**
3099 * Flushes any delayed guest register writes.
3100 *
3101 * This must be called prior to calling CImpl functions and any helpers that use
3102 * the guest state (like raising exceptions) and such.
3103 *
3104 * This optimization has not yet been implemented. The first target would be
3105 * RIP updates, since these are the most common ones.
3106 *
3107 * @note This function does not flush any shadowing information for guest
3108 * registers. This needs to be done by the caller if it wishes to do so.
3109 */
3110DECL_INLINE_THROW(uint32_t)
3111iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept = 0,
3112 uint64_t fGstSimdShwExcept = 0)
3113{
3114#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
3115 uint64_t const fWritebackPc = ~fGstShwExcept & RT_BIT_64(kIemNativeGstReg_Pc);
3116#else
3117 uint64_t const fWritebackPc = 0;
3118#endif
3119#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
3120 uint64_t const bmGstRegShadowDirty = pReNative->Core.bmGstRegShadowDirty & ~fGstShwExcept;
3121#else
3122 uint64_t const bmGstRegShadowDirty = 0;
3123#endif
3124 uint64_t const bmGstSimdRegShadowDirty = ( pReNative->Core.bmGstSimdRegShadowDirtyLo128
3125 | pReNative->Core.bmGstSimdRegShadowDirtyHi128)
3126 & ~fGstSimdShwExcept;
3127 if (bmGstRegShadowDirty | bmGstSimdRegShadowDirty | fWritebackPc)
3128 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fGstSimdShwExcept);
3129
3130 return off;
3131}
3132
3133
3134/**
3135 * Allocates a temporary host general purpose register for keeping a guest
3136 * register value.
3137 *
3138 * Since we may already have a register holding the guest register value,
3139 * code will be emitted to do the loading if that's not the case. Code may also
3140 * be emitted if we have to free up a register to satify the request.
3141 *
3142 * @returns The host register number; throws VBox status code on failure, so no
3143 * need to check the return value.
3144 * @param pReNative The native recompile state.
3145 * @param poff Pointer to the variable with the code buffer
3146 * position. This will be update if we need to move a
3147 * variable from register to stack in order to satisfy
3148 * the request.
3149 * @param enmGstReg The guest register that will is to be updated.
3150 * @param enmIntendedUse How the caller will be using the host register.
3151 * @param fNoVolatileRegs Set if no volatile register allowed, clear if any
3152 * register is okay (default). The ASSUMPTION here is
3153 * that the caller has already flushed all volatile
3154 * registers, so this is only applied if we allocate a
3155 * new register.
3156 * @sa iemNativeRegAllocTmpForGuestEFlags
3157 * iemNativeRegAllocTmpForGuestRegIfAlreadyPresent
3158 * iemNativeRegAllocTmpForGuestRegInt
3159 */
3160DECL_FORCE_INLINE_THROW(uint8_t)
3161iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg,
3162 IEMNATIVEGSTREGUSE const enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
3163 bool const fNoVolatileRegs = false)
3164{
3165 if (enmIntendedUse == kIemNativeGstRegUse_ReadOnly)
3166 return !fNoVolatileRegs
3167 ? iemNativeRegAllocTmpForGuestRegReadOnly(pReNative, poff, enmGstReg)
3168 : iemNativeRegAllocTmpForGuestRegReadOnlyNoVolatile(pReNative, poff, enmGstReg);
3169 if (enmIntendedUse == kIemNativeGstRegUse_ForUpdate)
3170 return !fNoVolatileRegs
3171 ? iemNativeRegAllocTmpForGuestRegUpdate(pReNative, poff, enmGstReg)
3172 : iemNativeRegAllocTmpForGuestRegUpdateNoVolatile(pReNative, poff, enmGstReg);
3173 if (enmIntendedUse == kIemNativeGstRegUse_ForFullWrite)
3174 return !fNoVolatileRegs
3175 ? iemNativeRegAllocTmpForGuestRegFullWrite(pReNative, poff, enmGstReg)
3176 : iemNativeRegAllocTmpForGuestRegFullWriteNoVolatile(pReNative, poff, enmGstReg);
3177 Assert(enmIntendedUse == kIemNativeGstRegUse_Calculation);
3178 return !fNoVolatileRegs
3179 ? iemNativeRegAllocTmpForGuestRegCalculation(pReNative, poff, enmGstReg)
3180 : iemNativeRegAllocTmpForGuestRegCalculationNoVolatile(pReNative, poff, enmGstReg);
3181}
3182
3183#if !defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || !defined(VBOX_STRICT)
3184
3185DECL_FORCE_INLINE_THROW(uint8_t)
3186iemNativeRegAllocTmpForGuestEFlagsReadOnly(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t fRead,
3187 uint64_t fWrite = 0, uint64_t fPotentialCall = 0)
3188{
3189 RT_NOREF(fRead, fWrite, fPotentialCall);
3190 return iemNativeRegAllocTmpForGuestRegReadOnly(pReNative, poff, kIemNativeGstReg_EFlags);
3191}
3192
3193DECL_FORCE_INLINE_THROW(uint8_t)
3194iemNativeRegAllocTmpForGuestEFlagsForUpdate(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t fRead,
3195 uint64_t fWrite = 0, uint64_t fPotentialCall = 0)
3196{
3197 RT_NOREF(fRead, fWrite, fPotentialCall);
3198 return iemNativeRegAllocTmpForGuestRegUpdate(pReNative, poff, kIemNativeGstReg_EFlags);
3199}
3200
3201#endif
3202
3203
3204
3205/*********************************************************************************************************************************
3206* SIMD register allocator (largely code duplication of the GPR allocator for now but might diverge) *
3207*********************************************************************************************************************************/
3208
3209DECL_FORCE_INLINE(uint8_t)
3210iemNativeSimdRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdReg,
3211 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
3212{
3213 pReNative->Core.bmHstSimdRegs |= RT_BIT_32(idxSimdReg);
3214
3215 pReNative->Core.aHstSimdRegs[idxSimdReg].enmWhat = enmWhat;
3216 pReNative->Core.aHstSimdRegs[idxSimdReg].idxVar = idxVar;
3217 pReNative->Core.aHstSimdRegs[idxSimdReg].fGstRegShadows = 0;
3218 return idxSimdReg;
3219}
3220
3221
3222/**
3223 * Marks host SIMD register @a idxHstSimdReg as containing a shadow copy of guest
3224 * SIMD register @a enmGstSimdReg.
3225 *
3226 * ASSUMES that caller has made sure @a enmGstSimdReg is not associated with any
3227 * host register before calling.
3228 */
3229DECL_FORCE_INLINE(void)
3230iemNativeSimdRegMarkAsGstSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg,
3231 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
3232{
3233 Assert(!(pReNative->Core.bmGstSimdRegShadows & RT_BIT_64(enmGstSimdReg)));
3234 Assert(!pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows);
3235 Assert((unsigned)enmGstSimdReg < (unsigned)kIemNativeGstSimdReg_End);
3236
3237 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxHstSimdReg;
3238 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
3239 pReNative->Core.bmGstSimdRegShadows |= RT_BIT_64(enmGstSimdReg);
3240 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxHstSimdReg);
3241#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
3242 iemNativeDbgInfoAddNativeOffset(pReNative, off);
3243 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxHstSimdReg);
3244#else
3245 RT_NOREF(off);
3246#endif
3247}
3248
3249
3250/**
3251 * Transfers the guest SIMD register shadow claims of @a enmGstSimdReg from @a idxSimdRegFrom
3252 * to @a idxSimdRegTo.
3253 */
3254DECL_FORCE_INLINE(void)
3255iemNativeSimdRegTransferGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdRegFrom, uint8_t idxSimdRegTo,
3256 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
3257{
3258 Assert(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & RT_BIT_64(enmGstSimdReg));
3259 Assert(pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] == idxSimdRegFrom);
3260 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows)
3261 == pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows
3262 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstReg_End));
3263 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows)
3264 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows);
3265 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxSimdRegFrom))
3266 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows));
3267 Assert( pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded
3268 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].enmLoaded);
3269
3270 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstSimdReg);
3271 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows = fGstRegShadowsFrom;
3272 if (!fGstRegShadowsFrom)
3273 {
3274 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxSimdRegFrom);
3275 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
3276 }
3277 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxSimdRegTo);
3278 pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
3279 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxSimdRegTo;
3280#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
3281 iemNativeDbgInfoAddNativeOffset(pReNative, off);
3282 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxSimdRegTo, idxSimdRegFrom);
3283#else
3284 RT_NOREF(off);
3285#endif
3286}
3287
3288
3289/**
3290 * Clear any guest register shadow claims from @a idxHstSimdReg.
3291 *
3292 * The register does not need to be shadowing any guest registers.
3293 */
3294DECL_FORCE_INLINE(void)
3295iemNativeSimdRegClearGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, uint32_t off)
3296{
3297 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows)
3298 == pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows
3299 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstSimdReg_End));
3300 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxHstSimdReg))
3301 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows));
3302 Assert( !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyLo128)
3303 && !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyHi128));
3304
3305#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
3306 uint64_t fGstRegs = pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
3307 if (fGstRegs)
3308 {
3309 Assert(fGstRegs < RT_BIT_64(kIemNativeGstSimdReg_End));
3310 iemNativeDbgInfoAddNativeOffset(pReNative, off);
3311 while (fGstRegs)
3312 {
3313 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
3314 fGstRegs &= ~RT_BIT_64(iGstReg);
3315 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, (IEMNATIVEGSTSIMDREG)iGstReg, UINT8_MAX, idxHstSimdReg);
3316 }
3317 }
3318#else
3319 RT_NOREF(off);
3320#endif
3321
3322 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxHstSimdReg);
3323 pReNative->Core.bmGstSimdRegShadows &= ~pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
3324 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows = 0;
3325 pReNative->Core.aHstSimdRegs[idxHstSimdReg].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
3326}
3327
3328
3329
3330#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
3331/**
3332 * Emits code to update the guest RIP value by adding the current offset since the start of the last RIP update.
3333 */
3334DECL_INLINE_THROW(uint32_t) iemNativeEmitPcWriteback(PIEMRECOMPILERSTATE pReNative, uint32_t off)
3335{
3336 if (pReNative->Core.offPc)
3337 return iemNativeEmitPcWritebackSlow(pReNative, off);
3338 return off;
3339}
3340#endif /* IEMNATIVE_WITH_DELAYED_PC_UPDATING */
3341
3342
3343/** @note iemNativeTbEntry returns VBOXSTRICTRC, but we don't declare it as
3344 * it saves us the trouble of a hidden parameter on MSC/amd64. */
3345#ifdef RT_ARCH_AMD64
3346extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, uintptr_t pfnTbBody));
3347#elif defined(RT_ARCH_ARM64)
3348extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, PCPUMCTX pCpumCtx, uintptr_t pfnTbBody));
3349#endif
3350
3351#ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
3352extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeFpCtrlRegRestore, (uint64_t u64RegFpCtrl));
3353#endif
3354
3355#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
3356
3357/** @} */
3358
3359#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
3360
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette