VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompilerTlbLookup.h@ 103265

Last change on this file since 103265 was 102856, checked in by vboxsync, 11 months ago

VMM/IEM: Implemented the second of two code TLB lookups. bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 37.9 KB
Line 
1/* $Id: IEMN8veRecompilerTlbLookup.h 102856 2024-01-12 11:45:10Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler TLB Lookup Code Emitter.
4 */
5
6/*
7 * Copyright (C) 2023-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompilerTlbLookup_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompilerTlbLookup_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#include "IEMN8veRecompiler.h"
35#include "IEMN8veRecompilerEmit.h"
36
37
38/** @defgroup grp_iem_n8ve_re_tlblookup Native Recompiler TLB Lookup Code Emitter
39 * @ingroup grp_iem_n8ve_re
40 * @{
41 */
42
43/*
44 * TLB Lookup config.
45 */
46#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_ARM64)
47# define IEMNATIVE_WITH_TLB_LOOKUP
48#endif
49#ifdef IEMNATIVE_WITH_TLB_LOOKUP
50# define IEMNATIVE_WITH_TLB_LOOKUP_FETCH
51#endif
52#ifdef IEMNATIVE_WITH_TLB_LOOKUP
53# define IEMNATIVE_WITH_TLB_LOOKUP_STORE
54#endif
55#ifdef IEMNATIVE_WITH_TLB_LOOKUP
56# define IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
57#endif
58#ifdef IEMNATIVE_WITH_TLB_LOOKUP
59# define IEMNATIVE_WITH_TLB_LOOKUP_PUSH
60#endif
61#ifdef IEMNATIVE_WITH_TLB_LOOKUP
62# define IEMNATIVE_WITH_TLB_LOOKUP_POP
63#endif
64
65
66/**
67 * This must be instantiate *before* branching off to the lookup code,
68 * so that register spilling and whatnot happens for everyone.
69 */
70typedef struct IEMNATIVEEMITTLBSTATE
71{
72 bool const fSkip;
73 uint8_t const idxRegPtrHlp; /**< We don't support immediate variables with register assignment, so this a tmp reg alloc. */
74 uint8_t const idxRegPtr;
75 uint8_t const idxRegSegBase;
76 uint8_t const idxRegSegLimit;
77 uint8_t const idxRegSegAttrib;
78 uint8_t const idxReg1;
79 uint8_t const idxReg2;
80#if defined(RT_ARCH_ARM64)
81 uint8_t const idxReg3;
82#endif
83 uint64_t const uAbsPtr;
84
85 IEMNATIVEEMITTLBSTATE(PIEMRECOMPILERSTATE a_pReNative, uint32_t *a_poff, uint8_t a_idxVarGCPtrMem,
86 uint8_t a_iSegReg, uint8_t a_cbMem, uint8_t a_offDisp = 0)
87#ifdef IEMNATIVE_WITH_TLB_LOOKUP
88 /* 32-bit and 64-bit wraparound will require special handling, so skip these for absolute addresses. */
89 : fSkip( a_pReNative->Core.aVars[a_idxVarGCPtrMem].enmKind == kIemNativeVarKind_Immediate
90 && ( (a_pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) != IEMMODE_64BIT
91 ? (uint64_t)(UINT32_MAX - a_cbMem - a_offDisp)
92 : (uint64_t)(UINT64_MAX - a_cbMem - a_offDisp))
93 < a_pReNative->Core.aVars[a_idxVarGCPtrMem].u.uValue)
94#else
95 : fSkip(true)
96#endif
97#if defined(RT_ARCH_AMD64) /* got good immediate encoding, otherwise we just load the address in a reg immediately. */
98 , idxRegPtrHlp(UINT8_MAX)
99#else
100 , idxRegPtrHlp( a_pReNative->Core.aVars[a_idxVarGCPtrMem].enmKind != kIemNativeVarKind_Immediate
101 || fSkip
102 ? UINT8_MAX
103 : iemNativeRegAllocTmpImm(a_pReNative, a_poff, a_pReNative->Core.aVars[a_idxVarGCPtrMem].u.uValue) )
104#endif
105 , idxRegPtr(a_pReNative->Core.aVars[a_idxVarGCPtrMem].enmKind != kIemNativeVarKind_Immediate && !fSkip
106 ? iemNativeVarRegisterAcquire(a_pReNative, a_idxVarGCPtrMem, a_poff,
107 true /*fInitialized*/, IEMNATIVE_CALL_ARG2_GREG)
108 : idxRegPtrHlp)
109 , idxRegSegBase(a_iSegReg == UINT8_MAX || fSkip
110 ? UINT8_MAX
111 : iemNativeRegAllocTmpForGuestReg(a_pReNative, a_poff, IEMNATIVEGSTREG_SEG_BASE(a_iSegReg)))
112 , idxRegSegLimit((a_iSegReg == UINT8_MAX || (a_pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT) || fSkip
113 ? UINT8_MAX
114 : iemNativeRegAllocTmpForGuestReg(a_pReNative, a_poff, IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg)))
115 , idxRegSegAttrib((a_iSegReg == UINT8_MAX || (a_pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT) || fSkip
116 ? UINT8_MAX
117 : iemNativeRegAllocTmpForGuestReg(a_pReNative, a_poff, IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg)))
118 , idxReg1(!fSkip ? iemNativeRegAllocTmp(a_pReNative, a_poff) : UINT8_MAX)
119 , idxReg2(!fSkip ? iemNativeRegAllocTmp(a_pReNative, a_poff) : UINT8_MAX)
120#if defined(RT_ARCH_ARM64)
121 , idxReg3(!fSkip ? iemNativeRegAllocTmp(a_pReNative, a_poff) : UINT8_MAX)
122#endif
123 , uAbsPtr( a_pReNative->Core.aVars[a_idxVarGCPtrMem].enmKind != kIemNativeVarKind_Immediate || fSkip
124 ? UINT64_MAX
125 : a_pReNative->Core.aVars[a_idxVarGCPtrMem].u.uValue)
126
127 {
128 RT_NOREF(a_cbMem, a_offDisp);
129 }
130
131 /* Alternative constructor for PUSH and POP where we don't have a GCPtrMem
132 variable, only a register derived from the guest RSP. */
133 IEMNATIVEEMITTLBSTATE(PIEMRECOMPILERSTATE a_pReNative, uint8_t a_idxRegPtr, uint32_t *a_poff,
134 uint8_t a_iSegReg, uint8_t a_cbMem)
135#ifdef IEMNATIVE_WITH_TLB_LOOKUP
136 : fSkip(false)
137#else
138 : fSkip(true)
139#endif
140 , idxRegPtrHlp(UINT8_MAX)
141 , idxRegPtr(a_idxRegPtr)
142 , idxRegSegBase(a_iSegReg == UINT8_MAX || fSkip
143 ? UINT8_MAX
144 : iemNativeRegAllocTmpForGuestReg(a_pReNative, a_poff, IEMNATIVEGSTREG_SEG_BASE(a_iSegReg)))
145 , idxRegSegLimit((a_iSegReg == UINT8_MAX || (a_pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT) || fSkip
146 ? UINT8_MAX
147 : iemNativeRegAllocTmpForGuestReg(a_pReNative, a_poff, IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg)))
148 , idxRegSegAttrib((a_iSegReg == UINT8_MAX || (a_pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT) || fSkip
149 ? UINT8_MAX
150 : iemNativeRegAllocTmpForGuestReg(a_pReNative, a_poff, IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg)))
151 , idxReg1(!fSkip ? iemNativeRegAllocTmp(a_pReNative, a_poff) : UINT8_MAX)
152 , idxReg2(!fSkip ? iemNativeRegAllocTmp(a_pReNative, a_poff) : UINT8_MAX)
153#if defined(RT_ARCH_ARM64)
154 , idxReg3(!fSkip ? iemNativeRegAllocTmp(a_pReNative, a_poff) : UINT8_MAX)
155#endif
156 , uAbsPtr(UINT64_MAX)
157
158 {
159 RT_NOREF_PV(a_cbMem);
160 }
161
162 /* Alternative constructor for the code TLB lookups where we implictly use RIP
163 variable, only a register derived from the guest RSP. */
164 IEMNATIVEEMITTLBSTATE(PIEMRECOMPILERSTATE a_pReNative, bool a_fFlat, uint32_t *a_poff)
165#ifdef IEMNATIVE_WITH_TLB_LOOKUP
166 : fSkip(false)
167#else
168 : fSkip(true)
169#endif
170 , idxRegPtrHlp(UINT8_MAX)
171 , idxRegPtr(iemNativeRegAllocTmpForGuestReg(a_pReNative, a_poff, kIemNativeGstReg_Pc))
172 , idxRegSegBase(a_fFlat || fSkip
173 ? UINT8_MAX
174 : iemNativeRegAllocTmpForGuestReg(a_pReNative, a_poff, IEMNATIVEGSTREG_SEG_BASE(X86_SREG_CS)))
175 , idxRegSegLimit(/*a_fFlat || fSkip
176 ? UINT8_MAX
177 : iemNativeRegAllocTmpForGuestReg(a_pReNative, a_poff, IEMNATIVEGSTREG_SEG_LIMIT(X86_SREG_CS))*/
178 UINT8_MAX)
179 , idxRegSegAttrib(UINT8_MAX)
180 , idxReg1(!fSkip ? iemNativeRegAllocTmp(a_pReNative, a_poff) : UINT8_MAX)
181 , idxReg2(!fSkip ? iemNativeRegAllocTmp(a_pReNative, a_poff) : UINT8_MAX)
182#if defined(RT_ARCH_ARM64)
183 , idxReg3(!fSkip ? iemNativeRegAllocTmp(a_pReNative, a_poff) : UINT8_MAX)
184#endif
185 , uAbsPtr(UINT64_MAX)
186
187 {
188 }
189
190 void freeRegsAndReleaseVars(PIEMRECOMPILERSTATE a_pReNative, uint8_t idxVarGCPtrMem = UINT8_MAX, bool fIsCode = false) const
191 {
192 if (!fIsCode)
193 {
194 if (idxRegPtr != UINT8_MAX)
195 {
196 if (idxRegPtrHlp == UINT8_MAX)
197 {
198 if (idxVarGCPtrMem != UINT8_MAX)
199 iemNativeVarRegisterRelease(a_pReNative, idxVarGCPtrMem);
200 }
201 else
202 {
203 Assert(idxRegPtrHlp == idxRegPtr);
204 iemNativeRegFreeTmpImm(a_pReNative, idxRegPtrHlp);
205 }
206 }
207 else
208 Assert(idxRegPtrHlp == UINT8_MAX);
209 }
210 else
211 {
212 Assert(idxVarGCPtrMem == UINT8_MAX);
213 Assert(idxRegPtrHlp == UINT8_MAX);
214 iemNativeRegFreeTmp(a_pReNative, idxRegPtr); /* RIP */
215 }
216 if (idxRegSegBase != UINT8_MAX)
217 iemNativeRegFreeTmp(a_pReNative, idxRegSegBase);
218 if (idxRegSegLimit != UINT8_MAX)
219 iemNativeRegFreeTmp(a_pReNative, idxRegSegLimit);
220 if (idxRegSegAttrib != UINT8_MAX)
221 iemNativeRegFreeTmp(a_pReNative, idxRegSegAttrib);
222#if defined(RT_ARCH_ARM64)
223 iemNativeRegFreeTmp(a_pReNative, idxReg3);
224#endif
225 iemNativeRegFreeTmp(a_pReNative, idxReg2);
226 iemNativeRegFreeTmp(a_pReNative, idxReg1);
227
228 }
229
230 uint32_t getRegsNotToSave() const
231 {
232 if (!fSkip)
233 return RT_BIT_32(idxReg1)
234 | RT_BIT_32(idxReg2)
235#if defined(RT_ARCH_ARM64)
236 | RT_BIT_32(idxReg3)
237#endif
238 ;
239 return 0;
240 }
241
242 /** This is only for avoid assertions. */
243 uint32_t getActiveRegsWithShadows(bool fCode = false) const
244 {
245#ifdef VBOX_STRICT
246 if (!fSkip)
247 return (idxRegSegBase != UINT8_MAX ? RT_BIT_32(idxRegSegBase) : 0)
248 | (idxRegSegLimit != UINT8_MAX ? RT_BIT_32(idxRegSegLimit) : 0)
249 | (idxRegSegAttrib != UINT8_MAX ? RT_BIT_32(idxRegSegAttrib) : 0)
250 | (fCode ? RT_BIT_32(idxRegPtr) : 0);
251#else
252 RT_NOREF_PV(fCode);
253#endif
254 return 0;
255 }
256} IEMNATIVEEMITTLBSTATE;
257
258DECLASM(void) iemNativeHlpAsmSafeWrapCheckTlbLookup(void);
259
260
261#ifdef IEMNATIVE_WITH_TLB_LOOKUP
262template<bool const a_fDataTlb, bool const a_fNoReturn = false>
263DECL_INLINE_THROW(uint32_t)
264iemNativeEmitTlbLookup(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVEEMITTLBSTATE const * const pTlbState,
265 uint8_t iSegReg, uint8_t cbMem, uint8_t fAlignMask, uint32_t fAccess,
266 uint32_t idxLabelTlbLookup, uint32_t idxLabelTlbMiss, uint8_t idxRegMemResult,
267 uint8_t offDisp = 0)
268{
269 Assert(!pTlbState->fSkip);
270 uint32_t const offVCpuTlb = a_fDataTlb ? RT_UOFFSETOF(VMCPUCC, iem.s.DataTlb) : RT_UOFFSETOF(VMCPUCC, iem.s.CodeTlb);
271# if defined(RT_ARCH_AMD64)
272 uint8_t * const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 512);
273# elif defined(RT_ARCH_ARM64)
274 uint32_t * const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 64);
275# endif
276
277 /*
278 * The expand down check isn't use all that much, so we emit here to keep
279 * the lookup straighter.
280 */
281 /* check_expand_down: ; complicted! */
282 uint32_t const offCheckExpandDown = off;
283 uint32_t offFixupLimitDone = 0;
284 if (a_fDataTlb && iSegReg != UINT8_MAX && (pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) != IEMMODE_64BIT)
285 {
286off = iemNativeEmitBrkEx(pCodeBuf, off, 1); /** @todo this needs testing */
287 /* cmp seglim, regptr */
288 if (pTlbState->idxRegPtr != UINT8_MAX && offDisp == 0)
289 off = iemNativeEmitCmpGpr32WithGprEx(pCodeBuf, off, pTlbState->idxRegSegLimit, pTlbState->idxRegPtr);
290 else if (pTlbState->idxRegPtr == UINT8_MAX)
291 off = iemNativeEmitCmpGpr32WithImmEx(pCodeBuf, off, pTlbState->idxRegSegLimit,
292 (uint32_t)(pTlbState->uAbsPtr + offDisp));
293 else if (cbMem == 1)
294 off = iemNativeEmitCmpGpr32WithGprEx(pCodeBuf, off, pTlbState->idxRegSegLimit, pTlbState->idxReg2);
295 else
296 { /* use idxRegMemResult to calc the displaced address. */
297 off = iemNativeEmitGpr32EqGprPlusImmEx(pCodeBuf, off, idxRegMemResult, pTlbState->idxRegPtr, offDisp);
298 off = iemNativeEmitCmpGpr32WithGprEx(pCodeBuf, off, pTlbState->idxRegSegLimit, idxRegMemResult);
299 }
300 /* ja tlbmiss */
301 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_nbe);
302
303 /* reg1 = segattr & X86DESCATTR_D (0x4000) */
304 off = iemNativeEmitGpr32EqGprAndImmEx(pCodeBuf, off, pTlbState->idxReg1, pTlbState->idxRegSegAttrib, X86DESCATTR_D);
305 /* xor reg1, X86DESCATTR_D */
306 off = iemNativeEmitXorGpr32ByImmEx(pCodeBuf, off, pTlbState->idxReg1, X86DESCATTR_D);
307 /* shl reg1, 2 (16 - 14) */
308 AssertCompile((X86DESCATTR_D << 2) == UINT32_C(0x10000));
309 off = iemNativeEmitShiftGpr32LeftEx(pCodeBuf, off, pTlbState->idxReg1, 2);
310 /* dec reg1 (=> 0xffff if D=0; 0xffffffff if D=1) */
311 off = iemNativeEmitSubGpr32ImmEx(pCodeBuf, off, pTlbState->idxReg1, 1);
312 /* cmp reg1, reg2 (64-bit) / imm (32-bit) */
313 if (pTlbState->idxRegPtr != UINT8_MAX)
314 off = iemNativeEmitCmpGprWithGprEx(pCodeBuf, off, pTlbState->idxReg1,
315 cbMem > 1 || offDisp != 0 ? pTlbState->idxReg2 : pTlbState->idxRegPtr);
316 else
317 off = iemNativeEmitCmpGpr32WithImmEx(pCodeBuf, off, pTlbState->idxReg1,
318 (uint32_t)(pTlbState->uAbsPtr + offDisp + cbMem - 1)); /* fSkip=true on overflow. */
319 /* jbe tlbmiss */
320 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_be);
321 /* jmp limitdone */
322 offFixupLimitDone = off;
323 off = iemNativeEmitJmpToFixedEx(pCodeBuf, off, off /* ASSUME short jump suffices */);
324 }
325
326 /*
327 * tlblookup:
328 */
329 iemNativeLabelDefine(pReNative, idxLabelTlbLookup, off);
330# if defined(RT_ARCH_ARM64) && 0
331 off = iemNativeEmitBrkEx(pCodeBuf, off, 0);
332# endif
333
334 /*
335 * 1. Segmentation.
336 *
337 * 1a. Check segment limit and attributes if non-flat 32-bit code. This is complicated.
338 *
339 * This can be skipped for code TLB lookups because limit is checked by jmp, call,
340 * ret, and iret prior to making it. It is also checked by the helpers prior to
341 * doing TLB loading.
342 */
343 if (a_fDataTlb && iSegReg != UINT8_MAX && (pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) != IEMMODE_64BIT)
344 {
345 /* Check that we've got a segment loaded and that it allows the access.
346 For write access this means a writable data segment.
347 For read-only accesses this means a readable code segment or any data segment. */
348 if (fAccess & IEM_ACCESS_TYPE_WRITE)
349 {
350 uint32_t const fMustBe1 = X86DESCATTR_P | X86DESCATTR_DT | X86_SEL_TYPE_WRITE;
351 uint32_t const fMustBe0 = X86DESCATTR_UNUSABLE | X86_SEL_TYPE_CODE;
352 /* reg1 = segattrs & (must1|must0) */
353 off = iemNativeEmitGpr32EqGprAndImmEx(pCodeBuf, off, pTlbState->idxReg1,
354 pTlbState->idxRegSegAttrib, fMustBe1 | fMustBe0);
355 /* cmp reg1, must1 */
356 AssertCompile(fMustBe1 <= UINT16_MAX);
357 off = iemNativeEmitCmpGpr32WithImmEx(pCodeBuf, off, pTlbState->idxReg1, fMustBe1);
358 /* jne tlbmiss */
359 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_ne);
360 }
361 else
362 {
363 /* U | !P |!DT |!CD | RW |
364 16 | 8 | 4 | 3 | 1 |
365 -------------------------------
366 0 | 0 | 0 | 0 | 0 | execute-only code segment. - must be excluded
367 0 | 0 | 0 | 0 | 1 | execute-read code segment.
368 0 | 0 | 0 | 1 | 0 | read-only data segment.
369 0 | 0 | 0 | 1 | 1 | read-write data segment. - last valid combination
370 */
371 /* reg1 = segattrs & (relevant attributes) */
372 off = iemNativeEmitGpr32EqGprAndImmEx(pCodeBuf, off, pTlbState->idxReg1, pTlbState->idxRegSegAttrib,
373 X86DESCATTR_UNUSABLE | X86DESCATTR_P | X86DESCATTR_DT
374 | X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE);
375 /* xor reg1, X86DESCATTR_P | X86DESCATTR_DT | X86_SEL_TYPE_CODE ; place C=1 RW=0 at the bottom & limit the range.
376 ; EO-code=0, ER-code=2, RO-data=8, RW-data=10 */
377#ifdef RT_ARCH_ARM64
378 off = iemNativeEmitXorGpr32ByImmEx(pCodeBuf, off, pTlbState->idxReg1, X86DESCATTR_DT | X86_SEL_TYPE_CODE);
379 off = iemNativeEmitXorGpr32ByImmEx(pCodeBuf, off, pTlbState->idxReg1, X86DESCATTR_P);
380#else
381 off = iemNativeEmitXorGpr32ByImmEx(pCodeBuf, off, pTlbState->idxReg1,
382 X86DESCATTR_P | X86DESCATTR_DT | X86_SEL_TYPE_CODE);
383#endif
384 /* sub reg1, X86_SEL_TYPE_WRITE ; EO-code=-2, ER-code=0, RO-data=6, RW-data=8 */
385 off = iemNativeEmitSubGpr32ImmEx(pCodeBuf, off, pTlbState->idxReg1, X86_SEL_TYPE_WRITE /* ER-code */);
386 /* cmp reg1, X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE */
387 AssertCompile(X86_SEL_TYPE_CODE == 8);
388 off = iemNativeEmitCmpGpr32WithImmEx(pCodeBuf, off, pTlbState->idxReg1, X86_SEL_TYPE_CODE);
389 /* ja tlbmiss */
390 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_nbe);
391 }
392
393 /* If we're accessing more than one byte or if we're working with a non-zero offDisp,
394 put the last address we'll be accessing in idxReg2 (64-bit). */
395 if ((cbMem > 1 || offDisp != 0) && pTlbState->idxRegPtr != UINT8_MAX)
396 {
397 if (!offDisp)
398 /* reg2 = regptr + cbMem - 1; 64-bit result so we can fend of wraparounds/overflows. */
399 off = iemNativeEmitGprEqGprPlusImmEx(pCodeBuf, off, pTlbState->idxReg2,/*=*/ pTlbState->idxRegPtr,/*+*/ cbMem - 1);
400 else
401 {
402 /* reg2 = (uint32_t)(regptr + offDisp) + cbMem - 1;. */
403 off = iemNativeEmitGpr32EqGprPlusImmEx(pCodeBuf, off,
404 pTlbState->idxReg2,/*=*/ pTlbState->idxRegPtr,/*+*/ + offDisp);
405 off = iemNativeEmitAddGprImmEx(pCodeBuf, off, pTlbState->idxReg2, cbMem - 1);
406 }
407 }
408
409 /*
410 * Check the limit. If this is a write access, we know that it's a
411 * data segment and includes the expand_down bit. For read-only accesses
412 * we need to check that code/data=0 and expanddown=1 before continuing.
413 */
414 if (fAccess & IEM_ACCESS_TYPE_WRITE)
415 {
416 /* test segattrs, X86_SEL_TYPE_DOWN */
417 AssertCompile(X86_SEL_TYPE_DOWN < 128);
418 off = iemNativeEmitTestAnyBitsInGpr8Ex(pCodeBuf, off, pTlbState->idxRegSegAttrib, X86_SEL_TYPE_DOWN);
419 /* jnz check_expand_down */
420 off = iemNativeEmitJccToFixedEx(pCodeBuf, off, offCheckExpandDown, kIemNativeInstrCond_ne);
421 }
422 else
423 {
424 /* reg1 = segattr & (code | down) */
425 off = iemNativeEmitGpr32EqGprAndImmEx(pCodeBuf, off, pTlbState->idxReg1,
426 pTlbState->idxRegSegAttrib, X86_SEL_TYPE_CODE | X86_SEL_TYPE_DOWN);
427 /* cmp reg1, down */
428 off = iemNativeEmitCmpGpr32WithImmEx(pCodeBuf, off, pTlbState->idxReg1, X86_SEL_TYPE_DOWN);
429 /* je check_expand_down */
430 off = iemNativeEmitJccToFixedEx(pCodeBuf, off, offCheckExpandDown, kIemNativeInstrCond_e);
431 }
432
433 /* expand_up:
434 cmp seglim, regptr/reg2/imm */
435 if (pTlbState->idxRegPtr != UINT8_MAX)
436 off = iemNativeEmitCmpGprWithGprEx(pCodeBuf, off, pTlbState->idxRegSegLimit,
437 cbMem > 1 || offDisp != 0 ? pTlbState->idxReg2 : pTlbState->idxRegPtr);
438 else
439 off = iemNativeEmitCmpGpr32WithImmEx(pCodeBuf, off, pTlbState->idxRegSegLimit,
440 (uint32_t)pTlbState->uAbsPtr + offDisp + cbMem - 1U); /* fSkip=true on overflow. */
441 /* jbe tlbmiss */
442 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_be);
443
444 /* limitdone: */
445 iemNativeFixupFixedJump(pReNative, offFixupLimitDone, off);
446 }
447
448 /* 1b. Add the segment base. We use idxRegMemResult for the ptr register if
449 this step is required or if the address is a constant (simplicity) or
450 if offDisp is non-zero. */
451 uint8_t const idxRegFlatPtr = iSegReg != UINT8_MAX || pTlbState->idxRegPtr == UINT8_MAX || offDisp != 0
452 ? idxRegMemResult : pTlbState->idxRegPtr;
453 if (iSegReg != UINT8_MAX)
454 {
455 Assert(idxRegFlatPtr != pTlbState->idxRegPtr);
456 /* regflat = segbase + regptr/imm */
457 if ((pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT)
458 {
459 Assert(iSegReg >= X86_SREG_FS);
460 if (pTlbState->idxRegPtr != UINT8_MAX)
461 {
462 off = iemNativeEmitGprEqGprPlusGprEx(pCodeBuf, off, idxRegFlatPtr, pTlbState->idxRegSegBase, pTlbState->idxRegPtr);
463 if (offDisp != 0)
464 off = iemNativeEmitAddGprImmEx(pCodeBuf, off, idxRegFlatPtr, offDisp);
465 }
466 else
467 off = iemNativeEmitGprEqGprPlusImmEx(pCodeBuf, off, idxRegFlatPtr, pTlbState->idxRegSegBase,
468 pTlbState->uAbsPtr + offDisp);
469 }
470 else if (pTlbState->idxRegPtr != UINT8_MAX)
471 {
472 off = iemNativeEmitGpr32EqGprPlusGprEx(pCodeBuf, off, idxRegFlatPtr, pTlbState->idxRegSegBase, pTlbState->idxRegPtr);
473 if (offDisp != 0)
474 off = iemNativeEmitAddGpr32ImmEx(pCodeBuf, off, idxRegFlatPtr, offDisp);
475 }
476 else
477 off = iemNativeEmitGpr32EqGprPlusImmEx(pCodeBuf, off, idxRegFlatPtr,
478 pTlbState->idxRegSegBase, (uint32_t)pTlbState->uAbsPtr + offDisp);
479 }
480 else if (pTlbState->idxRegPtr == UINT8_MAX)
481 {
482 if ((pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT)
483 off = iemNativeEmitLoadGprImmEx(pCodeBuf, off, idxRegFlatPtr, pTlbState->uAbsPtr + offDisp);
484 else
485 off = iemNativeEmitLoadGpr32ImmEx(pCodeBuf, off, idxRegFlatPtr, (uint32_t)pTlbState->uAbsPtr + offDisp);
486 }
487 else if (offDisp != 0)
488 {
489 Assert(idxRegFlatPtr != pTlbState->idxRegPtr);
490 if ((pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT)
491 off = iemNativeEmitGprEqGprPlusImmEx(pCodeBuf, off, idxRegFlatPtr, pTlbState->idxRegPtr, offDisp);
492 else
493 off = iemNativeEmitGpr32EqGprPlusImmEx(pCodeBuf, off, idxRegFlatPtr, pTlbState->idxRegPtr, offDisp);
494 }
495 else
496 Assert(idxRegFlatPtr == pTlbState->idxRegPtr);
497
498 /*
499 * 2. Check that the address doesn't cross a page boundrary and doesn't have alignment issues.
500 *
501 * 2a. Alignment check using fAlignMask.
502 */
503 if (fAlignMask)
504 {
505 Assert(RT_IS_POWER_OF_TWO(fAlignMask + 1));
506 Assert(fAlignMask < 128);
507 /* test regflat, fAlignMask */
508 off = iemNativeEmitTestAnyBitsInGpr8Ex(pCodeBuf, off, idxRegFlatPtr, fAlignMask);
509 /* jnz tlbmiss */
510 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_ne);
511 }
512
513 /*
514 * 2b. Check that it's not crossing page a boundrary. This is implicit in
515 * the previous test if the alignment is same or larger than the type.
516 */
517 if (cbMem > fAlignMask + 1)
518 {
519 /* reg1 = regflat & 0xfff */
520 off = iemNativeEmitGpr32EqGprAndImmEx(pCodeBuf, off, pTlbState->idxReg1,/*=*/ idxRegFlatPtr,/*&*/ GUEST_PAGE_OFFSET_MASK);
521 /* cmp reg1, GUEST_PAGE_SIZE - cbMem */
522 off = iemNativeEmitCmpGpr32WithImmEx(pCodeBuf, off, pTlbState->idxReg1, GUEST_PAGE_SIZE);
523 /* ja tlbmiss */
524 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_nbe);
525 }
526
527 /*
528 * 3. TLB lookup.
529 *
530 * 3a. Calculate the TLB tag value (IEMTLB_CALC_TAG).
531 * In 64-bit mode we will also check for non-canonical addresses here.
532 */
533 if ((pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT)
534 {
535# if defined(RT_ARCH_AMD64)
536 /* mov reg1, regflat */
537 off = iemNativeEmitLoadGprFromGprEx(pCodeBuf, off, pTlbState->idxReg1, idxRegFlatPtr);
538 /* rol reg1, 16 */
539 off = iemNativeEmitRotateGprLeftEx(pCodeBuf, off, pTlbState->idxReg1, 16);
540 /** @todo Would 'movsx reg2, word reg1' and working on reg2 in dwords be faster? */
541 /* inc word reg1 */
542 pCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
543 if (pTlbState->idxReg1 >= 8)
544 pCodeBuf[off++] = X86_OP_REX_B;
545 pCodeBuf[off++] = 0xff;
546 pCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, pTlbState->idxReg1 & 7);
547 /* cmp word reg1, 1 */
548 pCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
549 if (pTlbState->idxReg1 >= 8)
550 pCodeBuf[off++] = X86_OP_REX_B;
551 pCodeBuf[off++] = 0x83;
552 pCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 7, pTlbState->idxReg1 & 7);
553 pCodeBuf[off++] = 1;
554 /* ja tlbmiss */
555 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_nbe);
556 /* shr reg1, 16 + GUEST_PAGE_SHIFT */
557 off = iemNativeEmitShiftGprRightEx(pCodeBuf, off, pTlbState->idxReg1, 16 + GUEST_PAGE_SHIFT);
558
559# elif defined(RT_ARCH_ARM64)
560 /* lsr reg1, regflat, #48 */
561 pCodeBuf[off++] = Armv8A64MkInstrLslImm(pTlbState->idxReg1, idxRegFlatPtr, 4);
562 /* add reg1, reg1, #1 */
563 pCodeBuf[off++] = Armv8A64MkInstrAddUImm12(pTlbState->idxReg1, pTlbState->idxReg1, 1, false /*f64Bit*/);
564 /* tst reg1, #0xfffe */
565 Assert(Armv8A64ConvertImmRImmS2Mask32(14, 31) == 0xfffe);
566 pCodeBuf[off++] = Armv8A64MkInstrTstImm(pTlbState->idxReg1, 14, 31, false /*f64Bit*/);
567 /* b.nq tlbmiss */
568 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_ne);
569
570 /* ubfx reg1, regflat, #12, #36 */
571 pCodeBuf[off++] = Armv8A64MkInstrUbfx(pTlbState->idxReg1, idxRegFlatPtr, GUEST_PAGE_SHIFT, 48 - GUEST_PAGE_SHIFT);
572# else
573# error "Port me"
574# endif
575 }
576 else
577 {
578 /* reg1 = (uint32_t)(regflat >> 12) */
579 off = iemNativeEmitGpr32EqGprShiftRightImmEx(pCodeBuf, off, pTlbState->idxReg1, idxRegFlatPtr, GUEST_PAGE_SHIFT);
580 }
581 /* or reg1, [qword pVCpu->iem.s.DataTlb.uTlbRevision] */
582# if defined(RT_ARCH_AMD64)
583 pCodeBuf[off++] = pTlbState->idxReg1 < 8 ? X86_OP_REX_W : X86_OP_REX_W | X86_OP_REX_R;
584 pCodeBuf[off++] = 0x0b; /* OR r64,r/m64 */
585 off = iemNativeEmitGprByVCpuDisp(pCodeBuf, off, pTlbState->idxReg1, offVCpuTlb + RT_UOFFSETOF(IEMTLB, uTlbRevision));
586# else
587 off = iemNativeEmitLoadGprFromVCpuU64Ex(pCodeBuf, off, pTlbState->idxReg3, offVCpuTlb + RT_UOFFSETOF(IEMTLB, uTlbRevision));
588 off = iemNativeEmitOrGprByGprEx(pCodeBuf, off, pTlbState->idxReg1, pTlbState->idxReg3);
589# endif
590
591 /*
592 * 3b. Calc pTlbe.
593 */
594 uint32_t const offTlbEntries = offVCpuTlb + RT_UOFFSETOF(IEMTLB, aEntries);
595# if defined(RT_ARCH_AMD64)
596 /* movzx reg2, byte reg1 */
597 off = iemNativeEmitLoadGprFromGpr8Ex(pCodeBuf, off, pTlbState->idxReg2, pTlbState->idxReg1);
598 /* shl reg2, 5 ; reg2 *= sizeof(IEMTLBENTRY) */
599 AssertCompileSize(IEMTLBENTRY, 32);
600 off = iemNativeEmitShiftGprLeftEx(pCodeBuf, off, pTlbState->idxReg2, 5);
601 /* lea reg2, [pVCpu->iem.s.DataTlb.aEntries + reg2] */
602 AssertCompile(IEMNATIVE_REG_FIXED_PVMCPU < 8);
603 pCodeBuf[off++] = pTlbState->idxReg2 < 8 ? X86_OP_REX_W : X86_OP_REX_W | X86_OP_REX_X | X86_OP_REX_R;
604 pCodeBuf[off++] = 0x8d;
605 pCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM4, pTlbState->idxReg2 & 7, 4 /*SIB*/);
606 pCodeBuf[off++] = X86_SIB_MAKE(IEMNATIVE_REG_FIXED_PVMCPU & 7, pTlbState->idxReg2 & 7, 0);
607 pCodeBuf[off++] = RT_BYTE1(offTlbEntries);
608 pCodeBuf[off++] = RT_BYTE2(offTlbEntries);
609 pCodeBuf[off++] = RT_BYTE3(offTlbEntries);
610 pCodeBuf[off++] = RT_BYTE4(offTlbEntries);
611
612# elif defined(RT_ARCH_ARM64)
613 /* reg2 = (reg1 & 0xff) << 5 */
614 pCodeBuf[off++] = Armv8A64MkInstrUbfiz(pTlbState->idxReg2, pTlbState->idxReg1, 5, 8);
615 /* reg2 += offsetof(VMCPUCC, iem.s.DataTlb.aEntries) */
616 off = iemNativeEmitAddGprImmEx(pCodeBuf, off, pTlbState->idxReg2, offTlbEntries, pTlbState->idxReg3 /*iGprTmp*/);
617 /* reg2 += pVCpu */
618 off = iemNativeEmitAddTwoGprsEx(pCodeBuf, off, pTlbState->idxReg2, IEMNATIVE_REG_FIXED_PVMCPU);
619# else
620# error "Port me"
621# endif
622
623 /*
624 * 3c. Compare the TLBE.uTag with the one from 2a (reg1).
625 */
626# if defined(RT_ARCH_AMD64)
627 /* cmp reg1, [reg2] */
628 pCodeBuf[off++] = X86_OP_REX_W | (pTlbState->idxReg1 < 8 ? 0 : X86_OP_REX_R) | (pTlbState->idxReg2 < 8 ? 0 : X86_OP_REX_B);
629 pCodeBuf[off++] = 0x3b;
630 off = iemNativeEmitGprByGprDisp(pCodeBuf, off, pTlbState->idxReg1, pTlbState->idxReg2, RT_UOFFSETOF(IEMTLBENTRY, uTag));
631# elif defined(RT_ARCH_ARM64)
632 off = iemNativeEmitLoadGprByGprU64Ex(pCodeBuf, off, pTlbState->idxReg3, pTlbState->idxReg2, RT_UOFFSETOF(IEMTLBENTRY, uTag));
633 off = iemNativeEmitCmpGprWithGprEx(pCodeBuf, off, pTlbState->idxReg1, pTlbState->idxReg3);
634# else
635# error "Port me"
636# endif
637 /* jne tlbmiss */
638 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_ne);
639
640 /*
641 * 4. Check TLB page table level access flags and physical page revision #.
642 */
643 /* mov reg1, mask */
644 AssertCompile(IEMTLBE_F_PT_NO_USER == 4);
645 uint64_t const fNoUser = (((pReNative->fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK) + 1) & IEMTLBE_F_PT_NO_USER;
646 uint64_t fTlbe = IEMTLBE_F_PHYS_REV | IEMTLBE_F_NO_MAPPINGR3 | IEMTLBE_F_PG_UNASSIGNED | IEMTLBE_F_PT_NO_ACCESSED
647 | fNoUser;
648 if (fAccess & IEM_ACCESS_TYPE_EXEC)
649 fTlbe |= IEMTLBE_F_PT_NO_EXEC /*| IEMTLBE_F_PG_NO_READ?*/;
650 if (fAccess & IEM_ACCESS_TYPE_READ)
651 fTlbe |= IEMTLBE_F_PG_NO_READ;
652 if (fAccess & IEM_ACCESS_TYPE_WRITE)
653 fTlbe |= IEMTLBE_F_PT_NO_WRITE | IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PT_NO_DIRTY;
654 off = iemNativeEmitLoadGprImmEx(pCodeBuf, off, pTlbState->idxReg1, fTlbe);
655# if defined(RT_ARCH_AMD64)
656 /* and reg1, [reg2->fFlagsAndPhysRev] */
657 pCodeBuf[off++] = X86_OP_REX_W | (pTlbState->idxReg1 < 8 ? 0 : X86_OP_REX_R) | (pTlbState->idxReg2 < 8 ? 0 : X86_OP_REX_B);
658 pCodeBuf[off++] = 0x23;
659 off = iemNativeEmitGprByGprDisp(pCodeBuf, off, pTlbState->idxReg1,
660 pTlbState->idxReg2, RT_UOFFSETOF(IEMTLBENTRY, fFlagsAndPhysRev));
661
662 /* cmp reg1, [pVCpu->iem.s.DataTlb.uTlbPhysRev] */
663 pCodeBuf[off++] = X86_OP_REX_W | (pTlbState->idxReg1 < 8 ? 0 : X86_OP_REX_R);
664 pCodeBuf[off++] = 0x3b;
665 off = iemNativeEmitGprByGprDisp(pCodeBuf, off, pTlbState->idxReg1, IEMNATIVE_REG_FIXED_PVMCPU,
666 offVCpuTlb + RT_UOFFSETOF(IEMTLB, uTlbPhysRev));
667# elif defined(RT_ARCH_ARM64)
668 off = iemNativeEmitLoadGprByGprU64Ex(pCodeBuf, off, pTlbState->idxReg3, pTlbState->idxReg2,
669 RT_UOFFSETOF(IEMTLBENTRY, fFlagsAndPhysRev));
670 pCodeBuf[off++] = Armv8A64MkInstrAnd(pTlbState->idxReg1, pTlbState->idxReg1, pTlbState->idxReg3);
671 off = iemNativeEmitLoadGprFromVCpuU64Ex(pCodeBuf, off, pTlbState->idxReg3, offVCpuTlb + RT_UOFFSETOF(IEMTLB, uTlbPhysRev));
672 off = iemNativeEmitCmpGprWithGprEx(pCodeBuf, off, pTlbState->idxReg1, pTlbState->idxReg3);
673# else
674# error "Port me"
675# endif
676 /* jne tlbmiss */
677 off = iemNativeEmitJccToLabelEx(pReNative, pCodeBuf, off, idxLabelTlbMiss, kIemNativeInstrCond_ne);
678
679 /*
680 * 5. Check that pbMappingR3 isn't NULL (paranoia) and calculate the
681 * resulting pointer.
682 *
683 * For code TLB lookups we have some more work to do here to set various
684 * IEMCPU members and we return a GCPhys address rather than a host pointer.
685 */
686 /* mov reg1, [reg2->pbMappingR3] */
687 off = iemNativeEmitLoadGprByGprU64Ex(pCodeBuf, off, pTlbState->idxReg1, pTlbState->idxReg2,
688 RT_UOFFSETOF(IEMTLBENTRY, pbMappingR3));
689 /* if (!reg1) goto tlbmiss; */
690 /** @todo eliminate the need for this test? */
691 off = iemNativeEmitTestIfGprIsZeroAndJmpToLabelEx(pReNative, pCodeBuf, off, pTlbState->idxReg1,
692 true /*f64Bit*/, idxLabelTlbMiss);
693
694 if (a_fDataTlb)
695 {
696 if (idxRegFlatPtr == idxRegMemResult) /* See step 1b. */
697 {
698 /* and result, 0xfff */
699 off = iemNativeEmitAndGpr32ByImmEx(pCodeBuf, off, idxRegMemResult, GUEST_PAGE_OFFSET_MASK);
700 }
701 else
702 {
703 Assert(idxRegFlatPtr == pTlbState->idxRegPtr);
704 /* result = regflat & 0xfff */
705 off = iemNativeEmitGpr32EqGprAndImmEx(pCodeBuf, off, idxRegMemResult, idxRegFlatPtr, GUEST_PAGE_OFFSET_MASK);
706 }
707
708 /* add result, reg1 */
709 off = iemNativeEmitAddTwoGprsEx(pCodeBuf, off, idxRegMemResult, pTlbState->idxReg1);
710 }
711 else
712 {
713 /*
714 * Code TLB use a la iemOpcodeFetchBytesJmp - keep reg2 pointing to the TLBE.
715 *
716 * Note. We do not need to set offCurInstrStart or offInstrNextByte.
717 */
718# ifdef RT_ARCH_AMD64
719 uint8_t const idxReg3 = UINT8_MAX;
720# else
721 uint8_t const idxReg3 = pTlbState->idxReg3;
722# endif
723 /* Set pbInstrBuf first since we've got it loaded already. */
724 off = iemNativeEmitStoreGprToVCpuU64Ex(pCodeBuf, off, pTlbState->idxReg1,
725 RT_UOFFSETOF(VMCPUCC, iem.s.pbInstrBuf), idxReg3);
726 /* Set uInstrBufPc to (FlatPC & ~GUEST_PAGE_OFFSET_MASK). */
727 off = iemNativeEmitGprEqGprAndImmEx(pCodeBuf, off, pTlbState->idxReg1, idxRegFlatPtr, ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK);
728 off = iemNativeEmitStoreGprToVCpuU64Ex(pCodeBuf, off, pTlbState->idxReg1,
729 RT_UOFFSETOF(VMCPUCC, iem.s.uInstrBufPc), idxReg3);
730 /* Set cbInstrBufTotal to GUEST_PAGE_SIZE. */ /** @todo this is a simplifications. Calc right size using CS.LIM and EIP? */
731 off = iemNativeEmitStoreImmToVCpuU16Ex(pCodeBuf, off, GUEST_PAGE_SIZE, RT_UOFFSETOF(VMCPUCC, iem.s.cbInstrBufTotal),
732 pTlbState->idxReg1, idxReg3);
733 /* Now set GCPhysInstrBuf last as we'll be returning it in idxRegMemResult. */
734 off = iemNativeEmitLoadGprByGprU64Ex(pCodeBuf, off, pTlbState->idxReg1,
735 pTlbState->idxReg2, RT_UOFFSETOF(IEMTLBENTRY, GCPhys));
736 off = iemNativeEmitStoreGprToVCpuU64Ex(pCodeBuf, off, pTlbState->idxReg1,
737 RT_UOFFSETOF(VMCPUCC, iem.s.GCPhysInstrBuf), idxReg3);
738 if (!a_fNoReturn) /* (We skip this for iemNativeEmitBltLoadTlbAfterBranch.) */
739 {
740 /* Set idxRegMemResult. */
741 if (idxRegFlatPtr == idxRegMemResult) /* See step 1b. */
742 off = iemNativeEmitAndGpr32ByImmEx(pCodeBuf, off, idxRegMemResult, GUEST_PAGE_OFFSET_MASK);
743 else
744 off = iemNativeEmitGpr32EqGprAndImmEx(pCodeBuf, off, idxRegMemResult, idxRegFlatPtr, GUEST_PAGE_OFFSET_MASK);
745 off = iemNativeEmitAddTwoGprsEx(pCodeBuf, off, idxRegMemResult, pTlbState->idxReg1);
746 }
747 }
748
749# if 0
750 /*
751 * To verify the result we call a helper function.
752 *
753 * It's like the state logging, so parameters are passed on the stack.
754 * iemNativeHlpAsmSafeWrapCheckTlbLookup(pVCpu, result, addr, seg | (cbMem << 8) | (fAccess << 16))
755 */
756# ifdef RT_ARCH_AMD64
757 if (a_fDataTlb)
758 {
759 /* push seg | (cbMem << 8) | (fAccess << 16) */
760 pCodeBuf[off++] = 0x68;
761 pCodeBuf[off++] = iSegReg;
762 pCodeBuf[off++] = cbMem;
763 pCodeBuf[off++] = RT_BYTE1(fAccess);
764 pCodeBuf[off++] = RT_BYTE2(fAccess);
765 /* push pTlbState->idxRegPtr / immediate address. */
766 if (pTlbState->idxRegPtr != UINT8_MAX)
767 {
768 if (pTlbState->idxRegPtr >= 8)
769 pCodeBuf[off++] = X86_OP_REX_B;
770 pCodeBuf[off++] = 0x50 + (pTlbState->idxRegPtr & 7);
771 }
772 else
773 {
774 off = iemNativeEmitLoadGprImmEx(pCodeBuf, off, pTlbState->idxReg1, pTlbState->uAbsPtr);
775 if (pTlbState->idxReg1 >= 8)
776 pCodeBuf[off++] = X86_OP_REX_B;
777 pCodeBuf[off++] = 0x50 + (pTlbState->idxReg1 & 7);
778 }
779 /* push idxRegMemResult */
780 if (idxRegMemResult >= 8)
781 pCodeBuf[off++] = X86_OP_REX_B;
782 pCodeBuf[off++] = 0x50 + (idxRegMemResult & 7);
783 /* push pVCpu */
784 pCodeBuf[off++] = 0x50 + IEMNATIVE_REG_FIXED_PVMCPU;
785 /* mov reg1, helper */
786 off = iemNativeEmitLoadGprImmEx(pCodeBuf, off, pTlbState->idxReg1, (uintptr_t)iemNativeHlpAsmSafeWrapCheckTlbLookup);
787 /* call [reg1] */
788 pCodeBuf[off++] = X86_OP_REX_W | (pTlbState->idxReg1 < 8 ? 0 : X86_OP_REX_B);
789 pCodeBuf[off++] = 0xff;
790 pCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 2, pTlbState->idxReg1 & 7);
791 /* The stack is cleaned up by helper function. */
792 }
793
794# else
795# error "Port me"
796# endif
797# endif
798
799 IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
800
801 return off;
802}
803#endif /* IEMNATIVE_WITH_TLB_LOOKUP */
804
805
806/** @} */
807
808#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompilerTlbLookup_h */
809
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette