/* $Id: tstIEMAImpl.cpp 107626 2025-01-10 10:08:27Z vboxsync $ */ /** @file * IEM Assembly Instruction Helper Testcase. */ /* * Copyright (C) 2022-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "../include/IEMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tstIEMAImpl.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #define ENTRY_BIN_FIX(a_Name) ENTRY_BIN_FIX_EX(a_Name, 0) #ifdef TSTIEMAIMPL_WITH_GENERATOR # define ENTRY_BIN_FIX_EX(a_Name, a_uExtra) \ { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \ g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */, \ RT_ELEMENTS(g_aFixedTests_ ## a_Name), g_aFixedTests_ ## a_Name } #else # define ENTRY_BIN_FIX_EX(a_Name, a_uExtra) ENTRY_BIN_EX(a_Name, a_uExtra) #endif #define ENTRY_BIN_PFN_CAST(a_Name, a_pfnType) ENTRY_BIN_PFN_CAST_EX(a_Name, a_pfnType, 0) #define ENTRY_BIN_PFN_CAST_EX(a_Name, a_pfnType, a_uExtra) \ { RT_XSTR(a_Name), (a_pfnType)iemAImpl_ ## a_Name, NULL, \ g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ } #define ENTRY_BIN(a_Name) ENTRY_BIN_EX(a_Name, 0) #define ENTRY_BIN_EX(a_Name, a_uExtra) \ { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \ g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ } #define ENTRY_BIN_AVX(a_Name) ENTRY_BIN_AVX_EX(a_Name, 0) #ifndef IEM_WITHOUT_ASSEMBLY # define ENTRY_BIN_AVX_EX(a_Name, a_uExtra) \ { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \ g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ } #else # define ENTRY_BIN_AVX_EX(a_Name, a_uExtra) \ { RT_XSTR(a_Name), iemAImpl_ ## a_Name ## _fallback, NULL, \ g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ } #endif #define ENTRY_BIN_SSE_OPT(a_Name) ENTRY_BIN_SSE_OPT_EX(a_Name, 0) #ifndef IEM_WITHOUT_ASSEMBLY # define ENTRY_BIN_SSE_OPT_EX(a_Name, a_uExtra) \ { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \ g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ } #else # define ENTRY_BIN_SSE_OPT_EX(a_Name, a_uExtra) \ { RT_XSTR(a_Name), iemAImpl_ ## a_Name ## _fallback, NULL, \ g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ } #endif #define ENTRY_BIN_INTEL(a_Name, a_fEflUndef) ENTRY_BIN_INTEL_EX(a_Name, a_fEflUndef, 0) #define ENTRY_BIN_INTEL_EX(a_Name, a_fEflUndef, a_uExtra) \ { RT_XSTR(a_Name) "_intel", iemAImpl_ ## a_Name ## _intel, iemAImpl_ ## a_Name, \ g_abTests_ ## a_Name ## _intel, &g_cbTests_ ## a_Name ## _intel, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_INTEL } #define ENTRY_BIN_AMD(a_Name, a_fEflUndef) ENTRY_BIN_AMD_EX(a_Name, a_fEflUndef, 0) #define ENTRY_BIN_AMD_EX(a_Name, a_fEflUndef, a_uExtra) \ { RT_XSTR(a_Name) "_amd", iemAImpl_ ## a_Name ## _amd, iemAImpl_ ## a_Name, \ g_abTests_ ## a_Name ## _amd, &g_cbTests_ ## a_Name ## _amd, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_AMD } #define ENTRY_BIN_FIX_INTEL(a_Name, a_fEflUndef) ENTRY_BIN_FIX_INTEL_EX(a_Name, a_fEflUndef, 0) #ifdef TSTIEMAIMPL_WITH_GENERATOR # define ENTRY_BIN_FIX_INTEL_EX(a_Name, a_fEflUndef, a_uExtra) \ { RT_XSTR(a_Name) "_intel", iemAImpl_ ## a_Name ## _intel, iemAImpl_ ## a_Name, \ g_abTests_ ## a_Name ## _intel, &g_cbTests_ ## a_Name ## _intel, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_INTEL, \ RT_ELEMENTS(g_aFixedTests_ ## a_Name), g_aFixedTests_ ## a_Name } #else # define ENTRY_BIN_FIX_INTEL_EX(a_Name, a_fEflUndef, a_uExtra) ENTRY_BIN_INTEL_EX(a_Name, a_fEflUndef, a_uExtra) #endif #define ENTRY_BIN_FIX_AMD(a_Name, a_fEflUndef) ENTRY_BIN_FIX_AMD_EX(a_Name, a_fEflUndef, 0) #ifdef TSTIEMAIMPL_WITH_GENERATOR # define ENTRY_BIN_FIX_AMD_EX(a_Name, a_fEflUndef, a_uExtra) \ { RT_XSTR(a_Name) "_amd", iemAImpl_ ## a_Name ## _amd, iemAImpl_ ## a_Name, \ g_abTests_ ## a_Name ## _amd, &g_cbTests_ ## a_Name ## _amd, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_AMD, \ RT_ELEMENTS(g_aFixedTests_ ## a_Name), g_aFixedTests_ ## a_Name } #else # define ENTRY_BIN_FIX_AMD_EX(a_Name, a_fEflUndef, a_uExtra) ENTRY_BIN_AMD_EX(a_Name, a_fEflUndef, a_uExtra) #endif #define TYPEDEF_SUBTEST_TYPE(a_TypeName, a_TestType, a_FunctionPtrType) \ typedef struct a_TypeName \ { \ const char *pszName; \ const a_FunctionPtrType pfn; \ const a_FunctionPtrType pfnNative; \ void const * const pvCompressedTests; \ uint32_t const *pcbCompressedTests; \ uint32_t const uExtra; \ uint8_t const idxCpuEflFlavour; \ uint16_t const cFixedTests; \ a_TestType const * const paFixedTests; \ a_TestType const *paTests; /**< The decompressed info. */ \ uint32_t cTests; /**< The decompressed info. */ \ IEMTESTENTRYINFO Info; \ } a_TypeName #define COUNT_VARIATIONS(a_SubTest) \ (1 + ((a_SubTest).idxCpuEflFlavour == g_idxCpuEflFlavour && (a_SubTest).pfnNative) ) /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ typedef struct IEMBINARYHEADER { char szMagic[16]; uint32_t cbEntry; uint32_t uSvnRev; uint32_t auUnused[6]; char szCpuDesc[80]; } IEMBINARYHEADER; AssertCompileSize(IEMBINARYHEADER, 128); // 01234567890123456 #define IEMBINARYHEADER_MAGIC "IEMAImpl Bin v1" AssertCompile(sizeof(IEMBINARYHEADER_MAGIC) == 16); typedef struct IEMBINARYFOOTER { char szMagic[24]; uint32_t cbEntry; uint32_t cEntries; } IEMBINARYFOOTER; AssertCompileSize(IEMBINARYFOOTER, 32); // 012345678901234567890123 #define IEMBINARYFOOTER_MAGIC "\nIEMAImpl Bin Footer v1" AssertCompile(sizeof(IEMBINARYFOOTER_MAGIC) == 24); /** Fixed part of TYPEDEF_SUBTEST_TYPE and friends. */ typedef struct IEMTESTENTRYINFO { void *pvUncompressed; uint32_t cbUncompressed; const char *pszCpuDesc; uint32_t uSvnRev; } IEMTESTENTRYINFO; #ifdef TSTIEMAIMPL_WITH_GENERATOR typedef struct IEMBINARYOUTPUT { /** The output file. */ RTVFSFILE hVfsFile; /** The stream we write uncompressed binary test data to. */ RTVFSIOSTREAM hVfsUncompressed; /** The number of bytes written (ignoring write failures). */ size_t cbWritten; /** The entry size. */ uint32_t cbEntry; /** Write status. */ int rcWrite; /** Set if NULL. */ bool fNull; /** Set if we wrote a header and should write a footer as well. */ bool fWroteHeader; /** Filename. */ char szFilename[94]; } IEMBINARYOUTPUT; typedef IEMBINARYOUTPUT *PIEMBINARYOUTPUT; #endif /* TSTIEMAIMPL_WITH_GENERATOR */ /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ static RTTEST g_hTest; static uint8_t g_idxCpuEflFlavour = IEMTARGETCPU_EFL_BEHAVIOR_INTEL; #ifdef TSTIEMAIMPL_WITH_GENERATOR static uint32_t g_cZeroDstTests = 2; static uint32_t g_cZeroSrcTests = 4; #endif static uint8_t *g_pu8, *g_pu8Two; static uint16_t *g_pu16, *g_pu16Two; static uint32_t *g_pu32, *g_pu32Two, *g_pfEfl; static uint64_t *g_pu64, *g_pu64Two; static RTUINT128U *g_pu128, *g_pu128Two; static char g_aszBuf[32][256]; static unsigned g_idxBuf = 0; static uint32_t g_cIncludeTestPatterns; static uint32_t g_cExcludeTestPatterns; static const char *g_apszIncludeTestPatterns[64]; static const char *g_apszExcludeTestPatterns[64]; /** Higher value, means longer benchmarking. */ static uint64_t g_cPicoSecBenchmark = 0; static unsigned g_cVerbosity = 0; static bool g_fVerboseSkipping = true; #ifdef TSTIEMAIMPL_WITH_GENERATOR /** The SVN revision (for use in the binary headers). */ static uint32_t g_uSvnRev = 0; /** The CPU description (for use in the binary headers). */ static char g_szCpuDesc[80] = ""; #endif /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static const char *FormatR80(PCRTFLOAT80U pr80); static const char *FormatR64(PCRTFLOAT64U pr64); static const char *FormatR32(PCRTFLOAT32U pr32); /* * Random helpers. */ static uint32_t RandEFlags(void) { uint32_t fEfl = RTRandU32(); return (fEfl & X86_EFL_LIVE_MASK) | X86_EFL_RA1_MASK; } #ifdef TSTIEMAIMPL_WITH_GENERATOR static uint8_t RandU8(void) { return RTRandU32Ex(0, 0xff); } static uint16_t RandU16(void) { return RTRandU32Ex(0, 0xffff); } static uint32_t RandU32(void) { return RTRandU32(); } #endif static uint64_t RandU64(void) { return RTRandU64(); } static RTUINT128U RandU128(void) { RTUINT128U Ret; Ret.s.Hi = RTRandU64(); Ret.s.Lo = RTRandU64(); return Ret; } #ifdef TSTIEMAIMPL_WITH_GENERATOR static uint8_t RandU8Dst(uint32_t iTest) { if (iTest < g_cZeroDstTests) return 0; return RandU8(); } static uint8_t RandU8Src(uint32_t iTest) { if (iTest < g_cZeroSrcTests) return 0; return RandU8(); } static uint16_t RandU16Dst(uint32_t iTest) { if (iTest < g_cZeroDstTests) return 0; return RandU16(); } static uint16_t RandU16Src(uint32_t iTest) { if (iTest < g_cZeroSrcTests) return 0; return RandU16(); } static uint32_t RandU32Dst(uint32_t iTest) { if (iTest < g_cZeroDstTests) return 0; return RandU32(); } static uint32_t RandU32Src(uint32_t iTest) { if (iTest < g_cZeroSrcTests) return 0; return RandU32(); } static uint64_t RandU64Dst(uint32_t iTest) { if (iTest < g_cZeroDstTests) return 0; return RandU64(); } static uint64_t RandU64Src(uint32_t iTest) { if (iTest < g_cZeroSrcTests) return 0; return RandU64(); } /** 2nd operand for and FPU instruction, pairing with RandR80Src1. */ static int16_t RandI16Src2(uint32_t iTest) { if (iTest < 18 * 4) switch (iTest % 4) { case 0: return 0; case 1: return INT16_MAX; case 2: return INT16_MIN; case 3: break; } return (int16_t)RandU16(); } /** 2nd operand for and FPU instruction, pairing with RandR80Src1. */ static int32_t RandI32Src2(uint32_t iTest) { if (iTest < 18 * 4) switch (iTest % 4) { case 0: return 0; case 1: return INT32_MAX; case 2: return INT32_MIN; case 3: break; } return (int32_t)RandU32(); } static int64_t RandI64Src(uint32_t iTest) { RT_NOREF(iTest); return (int64_t)RandU64(); } static uint16_t RandFcw(void) { return RandU16() & ~X86_FCW_ZERO_MASK; } static uint16_t RandFsw(void) { AssertCompile((X86_FSW_C_MASK | X86_FSW_XCPT_ES_MASK | X86_FSW_TOP_MASK | X86_FSW_B) == 0xffff); return RandU16(); } static uint32_t RandMxcsr(void) { return RandU32() & ~X86_MXCSR_ZERO_MASK; } static void SafeR80FractionShift(PRTFLOAT80U pr80, uint8_t cShift) { if (pr80->sj64.uFraction >= RT_BIT_64(cShift)) pr80->sj64.uFraction >>= cShift; else pr80->sj64.uFraction = (cShift % 19) + 1; } static RTFLOAT80U RandR80Ex(uint8_t bType, unsigned cTarget = 80, bool fIntTarget = false) { Assert(cTarget == (!fIntTarget ? 80U : 16U) || cTarget == 64U || cTarget == 32U || (cTarget == 59U && fIntTarget)); RTFLOAT80U r80; r80.au64[0] = RandU64(); r80.au16[4] = RandU16(); /* * Adjust the random stuff according to bType. */ bType &= 0x1f; if (bType == 0 || bType == 1 || bType == 2 || bType == 3) { /* Zero (0), Pseudo-Infinity (1), Infinity (2), Indefinite (3). We only keep fSign here. */ r80.sj64.uExponent = bType == 0 ? 0 : 0x7fff; r80.sj64.uFraction = bType <= 2 ? 0 : RT_BIT_64(62); r80.sj64.fInteger = bType >= 2 ? 1 : 0; AssertMsg(bType != 0 || RTFLOAT80U_IS_ZERO(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(bType != 1 || RTFLOAT80U_IS_PSEUDO_INF(&r80), ("%s\n", FormatR80(&r80))); Assert( bType != 1 || RTFLOAT80U_IS_387_INVALID(&r80)); AssertMsg(bType != 2 || RTFLOAT80U_IS_INF(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(bType != 3 || RTFLOAT80U_IS_INDEFINITE(&r80), ("%s\n", FormatR80(&r80))); } else if (bType == 4 || bType == 5 || bType == 6 || bType == 7) { /* Denormals (4,5) and Pseudo denormals (6,7) */ if (bType & 1) SafeR80FractionShift(&r80, r80.sj64.uExponent % 62); else if (r80.sj64.uFraction == 0 && bType < 6) r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1); r80.sj64.uExponent = 0; r80.sj64.fInteger = bType >= 6; AssertMsg(bType >= 6 || RTFLOAT80U_IS_DENORMAL(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType)); AssertMsg(bType < 6 || RTFLOAT80U_IS_PSEUDO_DENORMAL(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType)); } else if (bType == 8 || bType == 9) { /* Pseudo NaN. */ if (bType & 1) SafeR80FractionShift(&r80, r80.sj64.uExponent % 62); else if (r80.sj64.uFraction == 0 && !r80.sj64.fInteger) r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1); r80.sj64.uExponent = 0x7fff; if (r80.sj64.fInteger) r80.sj64.uFraction |= RT_BIT_64(62); else r80.sj64.uFraction &= ~RT_BIT_64(62); r80.sj64.fInteger = 0; AssertMsg(RTFLOAT80U_IS_PSEUDO_NAN(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType)); AssertMsg(RTFLOAT80U_IS_NAN(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType)); Assert(RTFLOAT80U_IS_387_INVALID(&r80)); } else if (bType == 10 || bType == 11 || bType == 12 || bType == 13) { /* Quiet and signalling NaNs. */ if (bType & 1) SafeR80FractionShift(&r80, r80.sj64.uExponent % 62); else if (r80.sj64.uFraction == 0) r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1); r80.sj64.uExponent = 0x7fff; if (bType < 12) r80.sj64.uFraction |= RT_BIT_64(62); /* quiet */ else r80.sj64.uFraction &= ~RT_BIT_64(62); /* signaling */ r80.sj64.fInteger = 1; AssertMsg(bType >= 12 || RTFLOAT80U_IS_QUIET_NAN(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(bType < 12 || RTFLOAT80U_IS_SIGNALLING_NAN(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(RTFLOAT80U_IS_SIGNALLING_NAN(&r80) || RTFLOAT80U_IS_QUIET_NAN(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(RTFLOAT80U_IS_QUIET_OR_SIGNALLING_NAN(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(RTFLOAT80U_IS_NAN(&r80), ("%s\n", FormatR80(&r80))); } else if (bType == 14 || bType == 15) { /* Unnormals */ if (bType & 1) SafeR80FractionShift(&r80, RandU8() % 62); r80.sj64.fInteger = 0; if (r80.sj64.uExponent == RTFLOAT80U_EXP_MAX || r80.sj64.uExponent == 0) r80.sj64.uExponent = (uint16_t)RTRandU32Ex(1, RTFLOAT80U_EXP_MAX - 1); AssertMsg(RTFLOAT80U_IS_UNNORMAL(&r80), ("%s\n", FormatR80(&r80))); Assert(RTFLOAT80U_IS_387_INVALID(&r80)); } else if (bType < 26) { /* Make sure we have lots of normalized values. */ if (!fIntTarget) { const unsigned uMinExp = cTarget == 64 ? RTFLOAT80U_EXP_BIAS - RTFLOAT64U_EXP_BIAS : cTarget == 32 ? RTFLOAT80U_EXP_BIAS - RTFLOAT32U_EXP_BIAS : 0; const unsigned uMaxExp = cTarget == 64 ? uMinExp + RTFLOAT64U_EXP_MAX : cTarget == 32 ? uMinExp + RTFLOAT32U_EXP_MAX : RTFLOAT80U_EXP_MAX; r80.sj64.fInteger = 1; if (r80.sj64.uExponent <= uMinExp) r80.sj64.uExponent = uMinExp + 1; else if (r80.sj64.uExponent >= uMaxExp) r80.sj64.uExponent = uMaxExp - 1; if (bType == 16) { /* All 1s is useful to testing rounding. Also try trigger special behaviour by sometimes rounding out of range, while we're at it. */ r80.sj64.uFraction = RT_BIT_64(63) - 1; uint8_t bExp = RandU8(); if ((bExp & 3) == 0) r80.sj64.uExponent = uMaxExp - 1; else if ((bExp & 3) == 1) r80.sj64.uExponent = uMinExp + 1; else if ((bExp & 3) == 2) r80.sj64.uExponent = uMinExp - (bExp & 15); /* (small numbers are mapped to subnormal values) */ } } else { /* integer target: */ const unsigned uMinExp = RTFLOAT80U_EXP_BIAS; const unsigned uMaxExp = RTFLOAT80U_EXP_BIAS + cTarget - 2; r80.sj64.fInteger = 1; if (r80.sj64.uExponent < uMinExp) r80.sj64.uExponent = uMinExp; else if (r80.sj64.uExponent > uMaxExp) r80.sj64.uExponent = uMaxExp; if (bType == 16) { /* All 1s is useful to testing rounding. Also try trigger special behaviour by sometimes rounding out of range, while we're at it. */ r80.sj64.uFraction = RT_BIT_64(63) - 1; uint8_t bExp = RandU8(); if ((bExp & 3) == 0) r80.sj64.uExponent = uMaxExp; else if ((bExp & 3) == 1) r80.sj64.uFraction &= ~(RT_BIT_64(cTarget - 1 - r80.sj64.uExponent) - 1); /* no rounding */ } } AssertMsg(RTFLOAT80U_IS_NORMAL(&r80), ("%s\n", FormatR80(&r80))); } return r80; } static RTFLOAT80U RandR80(unsigned cTarget = 80, bool fIntTarget = false) { /* * Make it more likely that we get a good selection of special values. */ return RandR80Ex(RandU8(), cTarget, fIntTarget); } static RTFLOAT80U RandR80Src(uint32_t iTest, unsigned cTarget = 80, bool fIntTarget = false) { /* Make sure we cover all the basic types first before going for random selection: */ if (iTest <= 18) return RandR80Ex(18 - iTest, cTarget, fIntTarget); /* Starting with 3 normals. */ return RandR80(cTarget, fIntTarget); } /** * Helper for RandR80Src1 and RandR80Src2 that converts bType from a 0..11 range * to a 0..17, covering all basic value types. */ static uint8_t RandR80Src12RemapType(uint8_t bType) { switch (bType) { case 0: return 18; /* normal */ case 1: return 16; /* normal extreme rounding */ case 2: return 14; /* unnormal */ case 3: return 12; /* Signalling NaN */ case 4: return 10; /* Quiet NaN */ case 5: return 8; /* PseudoNaN */ case 6: return 6; /* Pseudo Denormal */ case 7: return 4; /* Denormal */ case 8: return 3; /* Indefinite */ case 9: return 2; /* Infinity */ case 10: return 1; /* Pseudo-Infinity */ case 11: return 0; /* Zero */ default: AssertFailedReturn(18); } } /** * This works in tandem with RandR80Src2 to make sure we cover all operand * type mixes first before we venture into regular random testing. * * There are 11 basic variations, when we leave out the five odd ones using * SafeR80FractionShift. Because of the special normalized value targetting at * rounding, we make it an even 12. So 144 combinations for two operands. */ static RTFLOAT80U RandR80Src1(uint32_t iTest, unsigned cPartnerBits = 80, bool fPartnerInt = false) { if (cPartnerBits == 80) { Assert(!fPartnerInt); if (iTest < 12 * 12) return RandR80Ex(RandR80Src12RemapType(iTest / 12)); } else if ((cPartnerBits == 64 || cPartnerBits == 32) && !fPartnerInt) { if (iTest < 12 * 10) return RandR80Ex(RandR80Src12RemapType(iTest / 10)); } else if (iTest < 18 * 4 && fPartnerInt) return RandR80Ex(iTest / 4); return RandR80(); } /** Partner to RandR80Src1. */ static RTFLOAT80U RandR80Src2(uint32_t iTest) { if (iTest < 12 * 12) return RandR80Ex(RandR80Src12RemapType(iTest % 12)); return RandR80(); } static void SafeR64FractionShift(PRTFLOAT64U pr64, uint8_t cShift) { if (pr64->s64.uFraction >= RT_BIT_64(cShift)) pr64->s64.uFraction >>= cShift; else pr64->s64.uFraction = (cShift % 19) + 1; } static RTFLOAT64U RandR64Ex(uint8_t bType) { RTFLOAT64U r64; r64.u = RandU64(); /* * Make it more likely that we get a good selection of special values. * On average 6 out of 16 calls should return a special value. */ bType &= 0xf; if (bType == 0 || bType == 1) { /* 0 or Infinity. We only keep fSign here. */ r64.s.uExponent = bType == 0 ? 0 : 0x7ff; r64.s.uFractionHigh = 0; r64.s.uFractionLow = 0; AssertMsg(bType != 0 || RTFLOAT64U_IS_ZERO(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); AssertMsg(bType != 1 || RTFLOAT64U_IS_INF(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); } else if (bType == 2 || bType == 3) { /* Subnormals */ if (bType == 3) SafeR64FractionShift(&r64, r64.s64.uExponent % 51); else if (r64.s64.uFraction == 0) r64.s64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1); r64.s64.uExponent = 0; AssertMsg(RTFLOAT64U_IS_SUBNORMAL(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); } else if (bType == 4 || bType == 5 || bType == 6 || bType == 7) { /* NaNs */ if (bType & 1) SafeR64FractionShift(&r64, r64.s64.uExponent % 51); else if (r64.s64.uFraction == 0) r64.s64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1); r64.s64.uExponent = 0x7ff; if (bType < 6) r64.s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); /* quiet */ else r64.s64.uFraction &= ~RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); /* signalling */ AssertMsg(bType >= 6 || RTFLOAT64U_IS_QUIET_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); AssertMsg(bType < 6 || RTFLOAT64U_IS_SIGNALLING_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); AssertMsg(RTFLOAT64U_IS_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); } else if (bType < 12) { /* Make sure we have lots of normalized values. */ if (r64.s.uExponent == 0) r64.s.uExponent = 1; else if (r64.s.uExponent == 0x7ff) r64.s.uExponent = 0x7fe; AssertMsg(RTFLOAT64U_IS_NORMAL(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); } return r64; } static RTFLOAT64U RandR64Src(uint32_t iTest) { if (iTest < 16) return RandR64Ex(iTest); return RandR64Ex(RandU8()); } /** Pairing with a 80-bit floating point arg. */ static RTFLOAT64U RandR64Src2(uint32_t iTest) { if (iTest < 12 * 10) return RandR64Ex(9 - iTest % 10); /* start with normal values */ return RandR64Ex(RandU8()); } static void SafeR32FractionShift(PRTFLOAT32U pr32, uint8_t cShift) { if (pr32->s.uFraction >= RT_BIT_32(cShift)) pr32->s.uFraction >>= cShift; else pr32->s.uFraction = (cShift % 19) + 1; } static RTFLOAT32U RandR32Ex(uint8_t bType) { RTFLOAT32U r32; r32.u = RandU32(); /* * Make it more likely that we get a good selection of special values. * On average 6 out of 16 calls should return a special value. */ bType &= 0xf; if (bType == 0 || bType == 1) { /* 0 or Infinity. We only keep fSign here. */ r32.s.uExponent = bType == 0 ? 0 : 0xff; r32.s.uFraction = 0; AssertMsg(bType != 0 || RTFLOAT32U_IS_ZERO(&r32), ("%s\n", FormatR32(&r32))); AssertMsg(bType != 1 || RTFLOAT32U_IS_INF(&r32), ("%s\n", FormatR32(&r32))); } else if (bType == 2 || bType == 3) { /* Subnormals */ if (bType == 3) SafeR32FractionShift(&r32, r32.s.uExponent % 22); else if (r32.s.uFraction == 0) r32.s.uFraction = RTRandU32Ex(1, RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1); r32.s.uExponent = 0; AssertMsg(RTFLOAT32U_IS_SUBNORMAL(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType)); } else if (bType == 4 || bType == 5 || bType == 6 || bType == 7) { /* NaNs */ if (bType & 1) SafeR32FractionShift(&r32, r32.s.uExponent % 22); else if (r32.s.uFraction == 0) r32.s.uFraction = RTRandU32Ex(1, RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1); r32.s.uExponent = 0xff; if (bType < 6) r32.s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); /* quiet */ else r32.s.uFraction &= ~RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); /* signalling */ AssertMsg(bType >= 6 || RTFLOAT32U_IS_QUIET_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType)); AssertMsg(bType < 6 || RTFLOAT32U_IS_SIGNALLING_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType)); AssertMsg(RTFLOAT32U_IS_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType)); } else if (bType < 12) { /* Make sure we have lots of normalized values. */ if (r32.s.uExponent == 0) r32.s.uExponent = 1; else if (r32.s.uExponent == 0xff) r32.s.uExponent = 0xfe; AssertMsg(RTFLOAT32U_IS_NORMAL(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType)); } return r32; } static RTFLOAT32U RandR32Src(uint32_t iTest) { if (iTest < 16) return RandR32Ex(iTest); return RandR32Ex(RandU8()); } /** Pairing with a 80-bit floating point arg. */ static RTFLOAT32U RandR32Src2(uint32_t iTest) { if (iTest < 12 * 10) return RandR32Ex(9 - iTest % 10); /* start with normal values */ return RandR32Ex(RandU8()); } static RTPBCD80U RandD80Src(uint32_t iTest) { if (iTest < 3) { RTPBCD80U d80Zero = RTPBCD80U_INIT_ZERO(!(iTest & 1)); return d80Zero; } if (iTest < 5) { RTPBCD80U d80Ind = RTPBCD80U_INIT_INDEFINITE(); return d80Ind; } RTPBCD80U d80; uint8_t b = RandU8(); d80.s.fSign = b & 1; if ((iTest & 7) >= 6) { /* Illegal */ d80.s.uPad = (iTest & 7) == 7 ? b >> 1 : 0; for (size_t iPair = 0; iPair < RT_ELEMENTS(d80.s.abPairs); iPair++) d80.s.abPairs[iPair] = RandU8(); } else { /* Normal */ d80.s.uPad = 0; for (size_t iPair = 0; iPair < RT_ELEMENTS(d80.s.abPairs); iPair++) { uint8_t const uLo = (uint8_t)RTRandU32Ex(0, 9); uint8_t const uHi = (uint8_t)RTRandU32Ex(0, 9); d80.s.abPairs[iPair] = RTPBCD80U_MAKE_PAIR(uHi, uLo); } } return d80; } # if 0 /* unused */ static const char *GenFormatR80(PCRTFLOAT80U plrd) { if (RTFLOAT80U_IS_ZERO(plrd)) return plrd->s.fSign ? "RTFLOAT80U_INIT_ZERO(1)" : "RTFLOAT80U_INIT_ZERO(0)"; if (RTFLOAT80U_IS_INF(plrd)) return plrd->s.fSign ? "RTFLOAT80U_INIT_INF(1)" : "RTFLOAT80U_INIT_INF(0)"; if (RTFLOAT80U_IS_INDEFINITE(plrd)) return plrd->s.fSign ? "RTFLOAT80U_INIT_IND(1)" : "RTFLOAT80U_INIT_IND(0)"; if (RTFLOAT80U_IS_QUIET_NAN(plrd) && (plrd->s.uMantissa & (RT_BIT_64(62) - 1)) == 1) return plrd->s.fSign ? "RTFLOAT80U_INIT_QNAN(1)" : "RTFLOAT80U_INIT_QNAN(0)"; if (RTFLOAT80U_IS_SIGNALLING_NAN(plrd) && (plrd->s.uMantissa & (RT_BIT_64(62) - 1)) == 1) return plrd->s.fSign ? "RTFLOAT80U_INIT_SNAN(1)" : "RTFLOAT80U_INIT_SNAN(0)"; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT80U_INIT_C(%d,%#RX64,%u)", plrd->s.fSign, plrd->s.uMantissa, plrd->s.uExponent); return pszBuf; } static const char *GenFormatR64(PCRTFLOAT64U prd) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT64U_INIT_C(%d,%#RX64,%u)", prd->s.fSign, RT_MAKE_U64(prd->s.uFractionLow, prd->s.uFractionHigh), prd->s.uExponent); return pszBuf; } static const char *GenFormatR32(PCRTFLOAT32U pr) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT32U_INIT_C(%d,%#RX32,%u)", pr->s.fSign, pr->s.uFraction, pr->s.uExponent); return pszBuf; } static const char *GenFormatD80(PCRTPBCD80U pd80) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; size_t off; if (pd80->s.uPad == 0) off = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTPBCD80U_INIT_C(%d", pd80->s.fSign); else off = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTPBCD80U_INIT_EX_C(%#x,%d", pd80->s.uPad, pd80->s.fSign); size_t iPair = RT_ELEMENTS(pd80->s.abPairs); while (iPair-- > 0) off += RTStrPrintf(&pszBuf[off], sizeof(g_aszBuf[0]) - off, ",%d,%d", RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair]), RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])); pszBuf[off++] = ')'; pszBuf[off++] = '\0'; return pszBuf; } static const char *GenFormatI64(int64_t i64) { if (i64 == INT64_MIN) /* This one is problematic */ return "INT64_MIN"; if (i64 == INT64_MAX) return "INT64_MAX"; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT64_C(%RI64)", i64); return pszBuf; } # if 0 /* unused */ static const char *GenFormatI64(int64_t const *pi64) { return GenFormatI64(*pi64); } # endif static const char *GenFormatI32(int32_t i32) { if (i32 == INT32_MIN) /* This one is problematic */ return "INT32_MIN"; if (i32 == INT32_MAX) return "INT32_MAX"; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT32_C(%RI32)", i32); return pszBuf; } const char *GenFormatI32(int32_t const *pi32) { return GenFormatI32(*pi32); } const char *GenFormatI16(int16_t i16) { if (i16 == INT16_MIN) /* This one is problematic */ return "INT16_MIN"; if (i16 == INT16_MAX) return "INT16_MAX"; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT16_C(%RI16)", i16); return pszBuf; } const char *GenFormatI16(int16_t const *pi16) { return GenFormatI16(*pi16); } static void GenerateHeader(PRTSTREAM pOut, const char *pszCpuDesc, const char *pszCpuType) { /* We want to tag the generated source code with the revision that produced it. */ static char s_szRev[] = "$Revision: 107626 $"; const char *pszRev = RTStrStripL(strchr(s_szRev, ':') + 1); size_t cchRev = 0; while (RT_C_IS_DIGIT(pszRev[cchRev])) cchRev++; RTStrmPrintf(pOut, "/* $Id: tstIEMAImpl.cpp 107626 2025-01-10 10:08:27Z vboxsync $ */\n" "/** @file\n" " * IEM Assembly Instruction Helper Testcase Data%s%s - r%.*s on %s.\n" " */\n" "\n" "/*\n" " * Copyright (C) 2022-" VBOX_C_YEAR " Oracle and/or its affiliates.\n" " *\n" " * This file is part of VirtualBox base platform packages, as\n" " * available from https://www.virtualbox.org.\n" " *\n" " * This program is free software; you can redistribute it and/or\n" " * modify it under the terms of the GNU General Public License\n" " * as published by the Free Software Foundation, in version 3 of the\n" " * License.\n" " *\n" " * This program is distributed in the hope that it will be useful, but\n" " * WITHOUT ANY WARRANTY; without even the implied warranty of\n" " * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\n" " * General Public License for more details.\n" " *\n" " * You should have received a copy of the GNU General Public License\n" " * along with this program; if not, see .\n" " *\n" " * SPDX-License-Identifier: GPL-3.0-only\n" " */\n" "\n" "#include \"tstIEMAImpl.h\"\n" "\n" , pszCpuType ? " " : "", pszCpuType ? pszCpuType : "", cchRev, pszRev, pszCpuDesc); } static PRTSTREAM GenerateOpenWithHdr(const char *pszFilename, const char *pszCpuDesc, const char *pszCpuType) { PRTSTREAM pOut = NULL; int rc = RTStrmOpen(pszFilename, "w", &pOut); if (RT_SUCCESS(rc)) { GenerateHeader(pOut, pszCpuDesc, pszCpuType); return pOut; } RTMsgError("Failed to open %s for writing: %Rrc", pszFilename, rc); return NULL; } static RTEXITCODE GenerateFooterAndClose(PRTSTREAM pOut, const char *pszFilename, RTEXITCODE rcExit) { RTStrmPrintf(pOut, "\n" "/* end of file */\n"); int rc = RTStrmClose(pOut); if (RT_SUCCESS(rc)) return rcExit; return RTMsgErrorExitFailure("RTStrmClose failed on %s: %Rrc", pszFilename, rc); } static void GenerateArrayStart(PRTSTREAM pOut, const char *pszName, const char *pszType) { RTStrmPrintf(pOut, "%s const g_aTests_%s[] =\n{\n", pszType, pszName); } static void GenerateArrayEnd(PRTSTREAM pOut, const char *pszName) { RTStrmPrintf(pOut, "};\n" "uint32_t const g_cTests_%s = RT_ELEMENTS(g_aTests_%s);\n" "\n", pszName, pszName); } # endif /* unused */ static void GenerateBinaryWrite(PIEMBINARYOUTPUT pBinOut, const void *pvData, size_t cbData) { pBinOut->cbWritten += cbData; /* ignore errors - makes entry calculation simpler */ if (RT_SUCCESS_NP(pBinOut->rcWrite)) { pBinOut->rcWrite = RTVfsIoStrmWrite(pBinOut->hVfsUncompressed, pvData, cbData, true /*fBlocking*/, NULL); if (RT_SUCCESS(pBinOut->rcWrite)) return; RTMsgError("Error writing '%s': %Rrc", pBinOut->szFilename, pBinOut->rcWrite); } } static bool GenerateBinaryOpen(PIEMBINARYOUTPUT pBinOut, const char *pszFilenameFmt, const char *pszName, IEMTESTENTRYINFO const *pInfoToPreserve, uint32_t cbEntry) { pBinOut->cbEntry = cbEntry; pBinOut->cbWritten = 0; pBinOut->hVfsFile = NIL_RTVFSFILE; pBinOut->hVfsUncompressed = NIL_RTVFSIOSTREAM; if (pszFilenameFmt) { pBinOut->fNull = false; if (RTStrPrintf2(pBinOut->szFilename, sizeof(pBinOut->szFilename), pszFilenameFmt, pszName) > 0) { RTMsgInfo("GenerateBinaryOpen: %s...\n", pBinOut->szFilename); pBinOut->rcWrite = RTVfsFileOpenNormal(pBinOut->szFilename, RTFILE_O_CREATE_REPLACE | RTFILE_O_WRITE | RTFILE_O_DENY_READWRITE, &pBinOut->hVfsFile); if (RT_SUCCESS(pBinOut->rcWrite)) { RTVFSIOSTREAM hVfsIoFile = RTVfsFileToIoStream(pBinOut->hVfsFile); if (hVfsIoFile != NIL_RTVFSIOSTREAM) { pBinOut->rcWrite = RTZipGzipCompressIoStream(hVfsIoFile, 0 /*fFlags*/, 9, &pBinOut->hVfsUncompressed); RTVfsIoStrmRelease(hVfsIoFile); if (RT_SUCCESS(pBinOut->rcWrite)) { pBinOut->rcWrite = VINF_SUCCESS; pBinOut->fWroteHeader = false; /* Write the header if applicable. */ if ( !pInfoToPreserve || (pInfoToPreserve->uSvnRev != 0 && *pInfoToPreserve->pszCpuDesc)) { IEMBINARYHEADER Hdr; RT_ZERO(Hdr); memcpy(Hdr.szMagic, IEMBINARYHEADER_MAGIC, sizeof(IEMBINARYHEADER_MAGIC)); Hdr.cbEntry = cbEntry; Hdr.uSvnRev = pInfoToPreserve ? pInfoToPreserve->uSvnRev : g_uSvnRev; RTStrCopy(Hdr.szCpuDesc, sizeof(Hdr.szCpuDesc), pInfoToPreserve ? pInfoToPreserve->pszCpuDesc : g_szCpuDesc); GenerateBinaryWrite(pBinOut, &Hdr, sizeof(Hdr)); pBinOut->fWroteHeader = true; } return true; } RTMsgError("RTZipGzipCompressIoStream: %Rrc", pBinOut->rcWrite); } else { RTMsgError("RTVfsFileToIoStream failed!"); pBinOut->rcWrite = VERR_VFS_CHAIN_CAST_FAILED; } RTVfsFileRelease(pBinOut->hVfsFile); RTFileDelete(pBinOut->szFilename); } else RTMsgError("Failed to open '%s' for writing: %Rrc", pBinOut->szFilename, pBinOut->rcWrite); } else { RTMsgError("filename too long: %s + %s", pszFilenameFmt, pszName); pBinOut->rcWrite = VERR_BUFFER_OVERFLOW; } return false; } RTMsgInfo("GenerateBinaryOpen: %s -> /dev/null\n", pszName); pBinOut->rcWrite = VERR_IGNORED; pBinOut->fNull = true; pBinOut->fWroteHeader = false; pBinOut->szFilename[0] = '\0'; return true; } # define GENERATE_BINARY_OPEN(a_pBinOut, a_papszNameFmts, a_Entry) \ GenerateBinaryOpen((a_pBinOut), a_papszNameFmts[(a_Entry).idxCpuEflFlavour], (a_Entry).pszName, \ NULL /*pInfo*/, sizeof((a_Entry).paTests[0])) static bool GenerateBinaryClose(PIEMBINARYOUTPUT pBinOut) { if (!pBinOut->fNull) { /* Write footer if we've written a header. */ if (pBinOut->fWroteHeader) { IEMBINARYFOOTER Ftr; RT_ZERO(Ftr); memcpy(Ftr.szMagic, IEMBINARYFOOTER_MAGIC, sizeof(IEMBINARYFOOTER_MAGIC)); Ftr.cbEntry = pBinOut->cbEntry; Ftr.cEntries = (uint32_t)((pBinOut->cbWritten - sizeof(IEMBINARYHEADER)) / pBinOut->cbEntry); Assert(Ftr.cEntries * pBinOut->cbEntry + sizeof(IEMBINARYHEADER) == pBinOut->cbWritten); GenerateBinaryWrite(pBinOut, &Ftr, sizeof(Ftr)); } /* This is rather jovial about rcWrite. */ int const rc1 = RTVfsIoStrmFlush(pBinOut->hVfsUncompressed); RTVfsIoStrmRelease(pBinOut->hVfsUncompressed); pBinOut->hVfsUncompressed = NIL_RTVFSIOSTREAM; if (RT_FAILURE(rc1)) RTMsgError("Error flushing '%s' (uncompressed stream): %Rrc", pBinOut->szFilename, rc1); int const rc2 = RTVfsFileFlush(pBinOut->hVfsFile); RTVfsFileRelease(pBinOut->hVfsFile); pBinOut->hVfsFile = NIL_RTVFSFILE; if (RT_FAILURE(rc2)) RTMsgError("Error flushing '%s' (compressed file): %Rrc", pBinOut->szFilename, rc2); return RT_SUCCESS(rc2) && RT_SUCCESS(rc1) && RT_SUCCESS(pBinOut->rcWrite); } return true; } /* Helper for DumpAll. */ # define DUMP_ALL_FN(a_FnBaseName, a_aSubTests) \ static RTEXITCODE a_FnBaseName ## DumpAll(const char * const * papszNameFmts) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ AssertReturn(DECOMPRESS_TESTS(a_aSubTests[iFn]), RTEXITCODE_FAILURE); \ IEMBINARYOUTPUT BinOut; \ AssertReturn(GenerateBinaryOpen(&BinOut, papszNameFmts[a_aSubTests[iFn].idxCpuEflFlavour], \ a_aSubTests[iFn].pszName, &a_aSubTests[iFn].Info, \ sizeof(a_aSubTests[iFn].paTests[0])), \ RTEXITCODE_FAILURE); \ GenerateBinaryWrite(&BinOut, a_aSubTests[iFn].paTests, a_aSubTests[iFn].cTests); \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } #endif /* TSTIEMAIMPL_WITH_GENERATOR */ /* * Test helpers. */ static bool IsTestEnabled(const char *pszName) { /* Process excludes first: */ uint32_t i = g_cExcludeTestPatterns; while (i-- > 0) if (RTStrSimplePatternMultiMatch(g_apszExcludeTestPatterns[i], RTSTR_MAX, pszName, RTSTR_MAX, NULL)) return false; /* If no include patterns, everything is included: */ i = g_cIncludeTestPatterns; if (!i) return true; /* Otherwise only tests in the include patters gets tested: */ while (i-- > 0) if (RTStrSimplePatternMultiMatch(g_apszIncludeTestPatterns[i], RTSTR_MAX, pszName, RTSTR_MAX, NULL)) return true; return false; } static bool SubTestAndCheckIfEnabled(const char *pszName) { bool const fEnabled = IsTestEnabled(pszName); if (g_fVerboseSkipping || fEnabled) { RTTestSub(g_hTest, pszName); if (fEnabled) return true; RTTestSkipped(g_hTest, g_cVerbosity > 0 ? "excluded" : NULL); } return false; } /** Decompresses test data before use as required. */ static int DecompressBinaryTest(void const *pvCompressed, uint32_t cbCompressed, size_t cbEntry, const char *pszWhat, void **ppvTests, uint32_t *pcTests, IEMTESTENTRYINFO *pInfo) { /* Don't do it again. */ if (pInfo->pvUncompressed && *ppvTests) return VINF_SUCCESS; /* Open a memory stream for the compressed binary data. */ RTVFSIOSTREAM hVfsIos = NIL_RTVFSIOSTREAM; int rc = RTVfsIoStrmFromBuffer(RTFILE_O_READ, pvCompressed, cbCompressed, &hVfsIos); RTTESTI_CHECK_RC_OK_RET(rc, rc); /* Open a decompressed stream for it. */ RTVFSIOSTREAM hVfsIosDecomp = NIL_RTVFSIOSTREAM; rc = RTZipGzipDecompressIoStream(hVfsIos, RTZIPGZIPDECOMP_F_ALLOW_ZLIB_HDR, &hVfsIosDecomp); RTTESTI_CHECK_RC_OK(rc); if (RT_SUCCESS(rc)) { /* Initial output buffer allocation. */ size_t cbDecompressedAlloc = cbCompressed <= _16M ? (size_t)cbCompressed * 16 : (size_t)cbCompressed * 4; uint8_t *pbDecompressed = (uint8_t *)RTMemAllocZ(cbDecompressedAlloc); if (pbDecompressed) { size_t off = 0; for (;;) { size_t cbRead = 0; rc = RTVfsIoStrmRead(hVfsIosDecomp, &pbDecompressed[off], cbDecompressedAlloc - off, true /*fBlocking*/, &cbRead); if (RT_FAILURE(rc)) break; if (rc == VINF_EOF && cbRead == 0) break; off += cbRead; if (cbDecompressedAlloc < off + 256) { size_t const cbNew = cbDecompressedAlloc < _128M ? cbDecompressedAlloc * 2 : cbDecompressedAlloc + _32M; void * const pvNew = RTMemRealloc(pbDecompressed, cbNew); AssertBreakStmt(pvNew, rc = VERR_NO_MEMORY); cbDecompressedAlloc = cbNew; pbDecompressed = (uint8_t *)pvNew; } } if (RT_SUCCESS(rc)) { size_t const cbUncompressed = off; /* Validate the header and footer if present and subtract them from 'off'. */ IEMBINARYHEADER const *pHdr = NULL; if ( off >= sizeof(IEMTESTENTRYINFO) && memcmp(pbDecompressed, IEMBINARYHEADER_MAGIC, sizeof(IEMBINARYHEADER_MAGIC)) == 0) { pHdr = (IEMBINARYHEADER const *)pbDecompressed; IEMBINARYFOOTER const *pFtr = (IEMBINARYFOOTER const *)&pbDecompressed[off - sizeof(IEMBINARYFOOTER)]; off -= sizeof(*pHdr) + sizeof(*pFtr); rc = VERR_IO_BAD_UNIT; if (pHdr->cbEntry != cbEntry) RTTestIFailed("Test entry size differs for '%s': %#x (header r%u), expected %#zx (uncompressed size %#zx)", pszWhat, pHdr->cbEntry, pHdr->uSvnRev, cbEntry, off + sizeof(*pHdr) + sizeof(*pFtr)); else if (memcmp(pFtr->szMagic, IEMBINARYFOOTER_MAGIC, sizeof(IEMBINARYFOOTER_MAGIC)) != 0) RTTestIFailed("Wrong footer magic for '%s': %.*Rhxs\n", pszWhat, sizeof(pFtr->szMagic), pFtr->szMagic); else if (pFtr->cbEntry != cbEntry) RTTestIFailed("Wrong footer entry size for '%s': %#x, expected %#x\n", pszWhat, pFtr->cbEntry, cbEntry); else if (pFtr->cEntries != off / cbEntry) RTTestIFailed("Wrong footer entry count for '%s': %#x, expected %#x\n", pszWhat, pFtr->cEntries, off / cbEntry); else rc = VINF_SUCCESS; } /* Validate the decompressed size wrt entry size. */ if ((off % cbEntry) != 0 && RT_SUCCESS(rc)) { RTTestIFailed("Uneven decompressed data size for '%s': %#zx vs entry size %#zx -> %#zx", pszWhat, off, cbEntry, off % cbEntry); rc = VERR_IO_BAD_LENGTH; } if (RT_SUCCESS(rc)) { /* * We're good. */ /* Reallocate the block if it's way to big. */ if (cbDecompressedAlloc - cbUncompressed > _512K) { void * const pvNew = RTMemRealloc(pbDecompressed, cbUncompressed); if (pvNew) { pbDecompressed = (uint8_t *)pvNew; if (pHdr) pHdr = (IEMBINARYHEADER const *)pbDecompressed; } } RTMEM_MAY_LEAK(pbDecompressed); /* Fill in the info and other return values. */ pInfo->cbUncompressed = (uint32_t)cbUncompressed; pInfo->pvUncompressed = pbDecompressed; pInfo->pszCpuDesc = pHdr ? pHdr->szCpuDesc : NULL; pInfo->uSvnRev = pHdr ? pHdr->uSvnRev : 0; *pcTests = (uint32_t)(off / cbEntry); *ppvTests = pHdr ? (uint8_t *)(pHdr + 1) : pbDecompressed; pbDecompressed = NULL; rc = VINF_SUCCESS; } } else RTTestIFailed("Failed to decompress binary stream '%s': %Rrc (off=%#zx, cbCompressed=%#x)", pszWhat, rc, off, cbCompressed); RTMemFree(pbDecompressed); } else { RTTestIFailed("Out of memory decompressing test data '%s'", pszWhat); rc = VERR_NO_MEMORY; } RTVfsIoStrmRelease(hVfsIosDecomp); } RTVfsIoStrmRelease(hVfsIos); return rc; } #define DECOMPRESS_TESTS(a_Entry) \ RT_SUCCESS(DecompressBinaryTest((a_Entry).pvCompressedTests, *(a_Entry).pcbCompressedTests, \ sizeof((a_Entry).paTests[0]), (a_Entry).pszName, \ (void **)&(a_Entry).paTests, &(a_Entry).cTests, &(a_Entry).Info)) /** Frees the decompressed test data. */ static void FreeDecompressedTests(void **ppvTests, uint32_t *pcTests, IEMTESTENTRYINFO *pInfo) { RTMemFree(pInfo->pvUncompressed); pInfo->pvUncompressed = NULL; pInfo->cbUncompressed = 0; *ppvTests = NULL; *pcTests = 0; } #define FREE_DECOMPRESSED_TESTS(a_Entry) \ FreeDecompressedTests((void **)&(a_Entry).paTests, &(a_Entry).cTests, &(a_Entry).Info) /** Check if the test is enabled and decompresses test data. */ static int SubTestAndCheckIfEnabledAndDecompress(const char *pszName, void const *pvCompressed, uint32_t cbCompressed, size_t cbEntry, void **ppvTests, uint32_t *pcTests, IEMTESTENTRYINFO *pInfo) { if (SubTestAndCheckIfEnabled(pszName)) { int const rc = DecompressBinaryTest(pvCompressed, cbCompressed, cbEntry, pszName, ppvTests, pcTests, pInfo); if (RT_SUCCESS(rc)) return true; } return false; } #define SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_Entry) \ SubTestAndCheckIfEnabledAndDecompress((a_Entry).pszName, (a_Entry).pvCompressedTests, *(a_Entry).pcbCompressedTests, \ sizeof((a_Entry).paTests[0]), \ (void **)&(a_Entry).paTests, &(a_Entry).cTests, &(a_Entry).Info) static const char *EFlagsDiff(uint32_t fActual, uint32_t fExpected) { if (fActual == fExpected) return ""; uint32_t const fXor = fActual ^ fExpected; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor); static struct { const char *pszName; uint32_t fFlag; } const s_aFlags[] = { #define EFL_ENTRY(a_Flags) { #a_Flags, X86_EFL_ ## a_Flags } EFL_ENTRY(CF), EFL_ENTRY(PF), EFL_ENTRY(AF), EFL_ENTRY(ZF), EFL_ENTRY(SF), EFL_ENTRY(TF), EFL_ENTRY(IF), EFL_ENTRY(DF), EFL_ENTRY(OF), EFL_ENTRY(IOPL), EFL_ENTRY(NT), EFL_ENTRY(RF), EFL_ENTRY(VM), EFL_ENTRY(AC), EFL_ENTRY(VIF), EFL_ENTRY(VIP), EFL_ENTRY(ID), }; for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++) if (s_aFlags[i].fFlag & fXor) cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName); RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, ""); return pszBuf; } static const char *FswDiff(uint16_t fActual, uint16_t fExpected) { if (fActual == fExpected) return ""; uint16_t const fXor = fActual ^ fExpected; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor); static struct { const char *pszName; uint32_t fFlag; } const s_aFlags[] = { #define FSW_ENTRY(a_Flags) { #a_Flags, X86_FSW_ ## a_Flags } FSW_ENTRY(IE), FSW_ENTRY(DE), FSW_ENTRY(ZE), FSW_ENTRY(OE), FSW_ENTRY(UE), FSW_ENTRY(PE), FSW_ENTRY(SF), FSW_ENTRY(ES), FSW_ENTRY(C0), FSW_ENTRY(C1), FSW_ENTRY(C2), FSW_ENTRY(C3), FSW_ENTRY(B), }; for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++) if (s_aFlags[i].fFlag & fXor) cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName); if (fXor & X86_FSW_TOP_MASK) cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "/TOP%u!%u", X86_FSW_TOP_GET(fActual), X86_FSW_TOP_GET(fExpected)); #if 0 /* For debugging fprem & fprem1 */ cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " - Q=%d (vs %d)", X86_FSW_CX_TO_QUOTIENT(fActual), X86_FSW_CX_TO_QUOTIENT(fExpected)); #endif RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, ""); return pszBuf; } static const char *MxcsrDiff(uint32_t fActual, uint32_t fExpected) { if (fActual == fExpected) return ""; uint16_t const fXor = fActual ^ fExpected; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor); static struct { const char *pszName; uint32_t fFlag; } const s_aFlags[] = { #define MXCSR_ENTRY(a_Flags) { #a_Flags, X86_MXCSR_ ## a_Flags } MXCSR_ENTRY(IE), MXCSR_ENTRY(DE), MXCSR_ENTRY(ZE), MXCSR_ENTRY(OE), MXCSR_ENTRY(UE), MXCSR_ENTRY(PE), MXCSR_ENTRY(IM), MXCSR_ENTRY(DM), MXCSR_ENTRY(ZM), MXCSR_ENTRY(OM), MXCSR_ENTRY(UM), MXCSR_ENTRY(PM), MXCSR_ENTRY(DAZ), MXCSR_ENTRY(FZ), #undef MXCSR_ENTRY }; for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++) if (s_aFlags[i].fFlag & fXor) cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName); RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, ""); return pszBuf; } static const char *FormatFcw(uint16_t fFcw) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; const char *pszPC = NULL; /* (msc+gcc are too stupid) */ switch (fFcw & X86_FCW_PC_MASK) { case X86_FCW_PC_24: pszPC = "PC24"; break; case X86_FCW_PC_RSVD: pszPC = "PCRSVD!"; break; case X86_FCW_PC_53: pszPC = "PC53"; break; case X86_FCW_PC_64: pszPC = "PC64"; break; } const char *pszRC = NULL; /* (msc+gcc are too stupid) */ switch (fFcw & X86_FCW_RC_MASK) { case X86_FCW_RC_NEAREST: pszRC = "NEAR"; break; case X86_FCW_RC_DOWN: pszRC = "DOWN"; break; case X86_FCW_RC_UP: pszRC = "UP"; break; case X86_FCW_RC_ZERO: pszRC = "ZERO"; break; } size_t cch = RTStrPrintf(&pszBuf[0], sizeof(g_aszBuf[0]), "%s %s", pszPC, pszRC); static struct { const char *pszName; uint32_t fFlag; } const s_aFlags[] = { #define FCW_ENTRY(a_Flags) { #a_Flags, X86_FCW_ ## a_Flags } FCW_ENTRY(IM), FCW_ENTRY(DM), FCW_ENTRY(ZM), FCW_ENTRY(OM), FCW_ENTRY(UM), FCW_ENTRY(PM), { "6M", 64 }, }; for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++) if (fFcw & s_aFlags[i].fFlag) cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " %s", s_aFlags[i].pszName); RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, ""); return pszBuf; } static const char *FormatMxcsr(uint32_t fMxcsr) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; const char *pszRC = NULL; /* (msc+gcc are too stupid) */ switch (fMxcsr & X86_MXCSR_RC_MASK) { case X86_MXCSR_RC_NEAREST: pszRC = "NEAR"; break; case X86_MXCSR_RC_DOWN: pszRC = "DOWN"; break; case X86_MXCSR_RC_UP: pszRC = "UP"; break; case X86_MXCSR_RC_ZERO: pszRC = "ZERO"; break; } const char *pszDAZ = fMxcsr & X86_MXCSR_DAZ ? " DAZ" : ""; const char *pszFZ = fMxcsr & X86_MXCSR_FZ ? " FZ" : ""; size_t cch = RTStrPrintf(&pszBuf[0], sizeof(g_aszBuf[0]), "%s%s%s", pszRC, pszDAZ, pszFZ); static struct { const char *pszName; uint32_t fFlag; } const s_aFlags[] = { #define MXCSR_ENTRY(a_Flags) { #a_Flags, X86_MXCSR_ ## a_Flags } MXCSR_ENTRY(IE), MXCSR_ENTRY(DE), MXCSR_ENTRY(ZE), MXCSR_ENTRY(OE), MXCSR_ENTRY(UE), MXCSR_ENTRY(PE), MXCSR_ENTRY(IM), MXCSR_ENTRY(DM), MXCSR_ENTRY(ZM), MXCSR_ENTRY(OM), MXCSR_ENTRY(UM), MXCSR_ENTRY(PM), { "6M", 64 }, }; for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++) if (fMxcsr & s_aFlags[i].fFlag) cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " %s", s_aFlags[i].pszName); RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, ""); return pszBuf; } static const char *FormatR80(PCRTFLOAT80U pr80) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatR80(pszBuf, sizeof(g_aszBuf[0]), pr80, 0, 0, RTSTR_F_SPECIAL); return pszBuf; } static const char *FormatR64(PCRTFLOAT64U pr64) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatR64(pszBuf, sizeof(g_aszBuf[0]), pr64, 0, 0, RTSTR_F_SPECIAL); return pszBuf; } static const char *FormatR32(PCRTFLOAT32U pr32) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatR32(pszBuf, sizeof(g_aszBuf[0]), pr32, 0, 0, RTSTR_F_SPECIAL); return pszBuf; } static const char *FormatD80(PCRTPBCD80U pd80) { /* There is only one indefinite endcoding (same as for 80-bit floating point), so get it out of the way first: */ if (RTPBCD80U_IS_INDEFINITE(pd80)) return "Ind"; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; size_t off = 0; pszBuf[off++] = pd80->s.fSign ? '-' : '+'; unsigned cBadDigits = 0; size_t iPair = RT_ELEMENTS(pd80->s.abPairs); while (iPair-- > 0) { static const char s_szDigits[] = "0123456789abcdef"; static const uint8_t s_bBadDigits[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 }; pszBuf[off++] = s_szDigits[RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair])]; pszBuf[off++] = s_szDigits[RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])]; cBadDigits += s_bBadDigits[RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair])] + s_bBadDigits[RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])]; } if (cBadDigits || pd80->s.uPad != 0) off += RTStrPrintf(&pszBuf[off], sizeof(g_aszBuf[0]) - off, "[%u,%#x]", cBadDigits, pd80->s.uPad); pszBuf[off] = '\0'; return pszBuf; } #if 0 static const char *FormatI64(int64_t const *piVal) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatU64(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED); return pszBuf; } #endif static const char *FormatI32(int32_t const *piVal) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatU32(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED); return pszBuf; } static const char *FormatI16(int16_t const *piVal) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatU16(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED); return pszBuf; } static const char *FormatU128(PCRTUINT128U puVal) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatU128(pszBuf, sizeof(g_aszBuf[0]), puVal, 16, 0, 0, RTSTR_F_SPECIAL); return pszBuf; } /* * Binary operations. */ TYPEDEF_SUBTEST_TYPE(BINU8_T, BINU8_TEST_T, PFNIEMAIMPLBINU8); TYPEDEF_SUBTEST_TYPE(BINU16_T, BINU16_TEST_T, PFNIEMAIMPLBINU16); TYPEDEF_SUBTEST_TYPE(BINU32_T, BINU32_TEST_T, PFNIEMAIMPLBINU32); TYPEDEF_SUBTEST_TYPE(BINU64_T, BINU64_TEST_T, PFNIEMAIMPLBINU64); #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) \ static RTEXITCODE BinU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aBinU ## a_cBits); iFn++) \ { \ PFNIEMAIMPLBINU ## a_cBits const pfn = g_aBinU ## a_cBits[iFn].pfnNative \ ? g_aBinU ## a_cBits[iFn].pfnNative : g_aBinU ## a_cBits[iFn].pfn; \ IEMBINARYOUTPUT BinOut; \ if ( g_aBinU ## a_cBits[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \ && g_aBinU ## a_cBits[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \ continue; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aBinU ## a_cBits[iFn]), RTEXITCODE_FAILURE); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_TestType Test; \ Test.fEflIn = RandEFlags(); \ Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \ Test.uDstOut = Test.uDstIn; \ Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \ if (g_aBinU ## a_cBits[iFn].uExtra) \ Test.uSrcIn &= a_cBits - 1; /* Restrict bit index according to operand width */ \ Test.uMisc = 0; \ Test.fEflOut = pfn(Test.fEflIn, &Test.uDstOut, Test.uSrcIn); \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ for (uint32_t iTest = 0; iTest < g_aBinU ## a_cBits[iFn].cFixedTests; iTest++ ) \ { \ a_TestType Test; \ Test.fEflIn = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].fEflIn == UINT32_MAX ? RandEFlags() \ : g_aBinU ## a_cBits[iFn].paFixedTests[iTest].fEflIn; \ Test.uDstIn = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].uDstIn; \ Test.uDstOut = Test.uDstIn; \ Test.uSrcIn = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].uSrcIn; \ Test.uMisc = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].uMisc; \ Test.fEflOut = pfn(Test.fEflIn, &Test.uDstOut, Test.uSrcIn); \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } \ DUMP_ALL_FN(BinU ## a_cBits, g_aBinU ## a_cBits) #else # define GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) #endif /** Based on a quick probe run, guess how long to run the benchmark. */ static uint32_t EstimateIterations(uint32_t cProbeIterations, uint64_t cNsProbe) { uint64_t cPicoSecPerIteration = cNsProbe * 1000 / cProbeIterations; uint64_t cIterations = g_cPicoSecBenchmark / cPicoSecPerIteration; if (cIterations > _2G) return _2G; if (cIterations < _4K) return _4K; return RT_ALIGN_32((uint32_t)cIterations, _4K); } #define TEST_BINARY_OPS(a_cBits, a_uType, a_Fmt, a_TestType, a_aSubTests) \ GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) \ \ static uint64_t BinU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLBINU ## a_cBits pfn, a_TestType const *pEntry) \ { \ uint32_t const fEflIn = pEntry->fEflIn; \ a_uType const uDstIn = pEntry->uDstIn; \ a_uType const uSrcIn = pEntry->uSrcIn; \ cIterations /= 4; \ RTThreadYield(); \ uint64_t const nsStart = RTTimeNanoTS(); \ for (uint32_t i = 0; i < cIterations; i++) \ { \ a_uType uBenchDst = uDstIn; \ pfn(fEflIn, &uBenchDst, uSrcIn); \ \ uBenchDst = uDstIn; \ pfn(fEflIn, &uBenchDst, uSrcIn); \ \ uBenchDst = uDstIn; \ pfn(fEflIn, &uBenchDst, uSrcIn); \ \ uBenchDst = uDstIn; \ pfn(fEflIn, &uBenchDst, uSrcIn); \ } \ return RTTimeNanoTS() - nsStart; \ } \ \ static void BinU ## a_cBits ## Test(void) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ PFNIEMAIMPLBINU ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) { RTTestSkipped(g_hTest, "no tests"); continue; } \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_uType uDst = paTests[iTest].uDstIn; \ uint32_t fEfl = pfn(paTests[iTest].fEflIn, &uDst, paTests[iTest].uSrcIn); \ if ( uDst != paTests[iTest].uDstOut \ || fEfl != paTests[iTest].fEflOut) \ RTTestFailed(g_hTest, "#%u%s: efl=%#08x dst=" a_Fmt " src=" a_Fmt " -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s - %s\n", \ iTest, !iVar ? "" : "/n", paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, \ fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut), \ uDst == paTests[iTest].uDstOut ? "eflags" : fEfl == paTests[iTest].fEflOut ? "dst" : "both"); \ else \ { \ *g_pu ## a_cBits = paTests[iTest].uDstIn; \ fEfl = pfn(paTests[iTest].fEflIn, g_pu ## a_cBits, paTests[iTest].uSrcIn); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \ RTTEST_CHECK(g_hTest, fEfl == paTests[iTest].fEflOut); \ } \ } \ \ /* Benchmark if all succeeded. */ \ if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \ { \ uint32_t const iTest = cTests / 2; \ uint32_t const cIterations = EstimateIterations(_64K, BinU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \ uint64_t const cNsRealRun = BinU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \ RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, \ "%s%s", a_aSubTests[iFn].pszName, iVar ? "-native" : ""); \ } \ \ /* Next variation is native. */ \ pfn = a_aSubTests[iFn].pfnNative; \ } \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } /* * 8-bit binary operations. */ static BINU8_T g_aBinU8[] = { ENTRY_BIN(add_u8), ENTRY_BIN(add_u8_locked), ENTRY_BIN(adc_u8), ENTRY_BIN(adc_u8_locked), ENTRY_BIN(sub_u8), ENTRY_BIN(sub_u8_locked), ENTRY_BIN(sbb_u8), ENTRY_BIN(sbb_u8_locked), ENTRY_BIN(or_u8), ENTRY_BIN(or_u8_locked), ENTRY_BIN(xor_u8), ENTRY_BIN(xor_u8_locked), ENTRY_BIN(and_u8), ENTRY_BIN(and_u8_locked), ENTRY_BIN_PFN_CAST(cmp_u8, PFNIEMAIMPLBINU8), ENTRY_BIN_PFN_CAST(test_u8, PFNIEMAIMPLBINU8), }; TEST_BINARY_OPS(8, uint8_t, "%#04x", BINU8_TEST_T, g_aBinU8) /* * 16-bit binary operations. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR static const BINU16_TEST_T g_aFixedTests_add_u16[] = { /* efl in, efl out, uDstIn, uDstOut, uSrc, uExtra */ { UINT32_MAX, 0, 1, 0, UINT16_MAX, 0 }, }; #endif static BINU16_T g_aBinU16[] = { ENTRY_BIN_FIX(add_u16), ENTRY_BIN(add_u16_locked), ENTRY_BIN(adc_u16), ENTRY_BIN(adc_u16_locked), ENTRY_BIN(sub_u16), ENTRY_BIN(sub_u16_locked), ENTRY_BIN(sbb_u16), ENTRY_BIN(sbb_u16_locked), ENTRY_BIN(or_u16), ENTRY_BIN(or_u16_locked), ENTRY_BIN(xor_u16), ENTRY_BIN(xor_u16_locked), ENTRY_BIN(and_u16), ENTRY_BIN(and_u16_locked), ENTRY_BIN_PFN_CAST(cmp_u16, PFNIEMAIMPLBINU16), ENTRY_BIN_PFN_CAST(test_u16, PFNIEMAIMPLBINU16), ENTRY_BIN_PFN_CAST_EX(bt_u16, PFNIEMAIMPLBINU16, 1), ENTRY_BIN_EX(btc_u16, 1), ENTRY_BIN_EX(btc_u16_locked, 1), ENTRY_BIN_EX(btr_u16, 1), ENTRY_BIN_EX(btr_u16_locked, 1), ENTRY_BIN_EX(bts_u16, 1), ENTRY_BIN_EX(bts_u16_locked, 1), ENTRY_BIN_AMD( bsf_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_INTEL(bsf_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_AMD( bsr_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_INTEL(bsr_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_AMD( imul_two_u16, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), ENTRY_BIN_INTEL(imul_two_u16, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), ENTRY_BIN(arpl), }; TEST_BINARY_OPS(16, uint16_t, "%#06x", BINU16_TEST_T, g_aBinU16) /* * 32-bit binary operations. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR static const BINU32_TEST_T g_aFixedTests_add_u32[] = { /* efl in, efl out, uDstIn, uDstOut, uSrc, uExtra */ { UINT32_MAX, 0, 1, 0, UINT32_MAX, 0 }, }; #endif static BINU32_T g_aBinU32[] = { ENTRY_BIN_FIX(add_u32), ENTRY_BIN(add_u32_locked), ENTRY_BIN(adc_u32), ENTRY_BIN(adc_u32_locked), ENTRY_BIN(sub_u32), ENTRY_BIN(sub_u32_locked), ENTRY_BIN(sbb_u32), ENTRY_BIN(sbb_u32_locked), ENTRY_BIN(or_u32), ENTRY_BIN(or_u32_locked), ENTRY_BIN(xor_u32), ENTRY_BIN(xor_u32_locked), ENTRY_BIN(and_u32), ENTRY_BIN(and_u32_locked), ENTRY_BIN_PFN_CAST(cmp_u32, PFNIEMAIMPLBINU32), ENTRY_BIN_PFN_CAST(test_u32, PFNIEMAIMPLBINU32), ENTRY_BIN_PFN_CAST_EX(bt_u32, PFNIEMAIMPLBINU32, 1), ENTRY_BIN_EX(btc_u32, 1), ENTRY_BIN_EX(btc_u32_locked, 1), ENTRY_BIN_EX(btr_u32, 1), ENTRY_BIN_EX(btr_u32_locked, 1), ENTRY_BIN_EX(bts_u32, 1), ENTRY_BIN_EX(bts_u32_locked, 1), ENTRY_BIN_AMD( bsf_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_INTEL(bsf_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_AMD( bsr_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_INTEL(bsr_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_AMD( imul_two_u32, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), ENTRY_BIN_INTEL(imul_two_u32, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), ENTRY_BIN(adcx_u32), ENTRY_BIN(adox_u32), }; TEST_BINARY_OPS(32, uint32_t, "%#010RX32", BINU32_TEST_T, g_aBinU32) /* * 64-bit binary operations. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR static const BINU64_TEST_T g_aFixedTests_add_u64[] = { /* efl in, efl out, uDstIn, uDstOut, uSrc, uExtra */ { UINT32_MAX, 0, 1, 0, UINT64_MAX, 0 }, }; #endif static BINU64_T g_aBinU64[] = { ENTRY_BIN_FIX(add_u64), ENTRY_BIN(add_u64_locked), ENTRY_BIN(adc_u64), ENTRY_BIN(adc_u64_locked), ENTRY_BIN(sub_u64), ENTRY_BIN(sub_u64_locked), ENTRY_BIN(sbb_u64), ENTRY_BIN(sbb_u64_locked), ENTRY_BIN(or_u64), ENTRY_BIN(or_u64_locked), ENTRY_BIN(xor_u64), ENTRY_BIN(xor_u64_locked), ENTRY_BIN(and_u64), ENTRY_BIN(and_u64_locked), ENTRY_BIN_PFN_CAST(cmp_u64, PFNIEMAIMPLBINU64), ENTRY_BIN_PFN_CAST(test_u64, PFNIEMAIMPLBINU64), ENTRY_BIN_PFN_CAST_EX(bt_u64, PFNIEMAIMPLBINU64, 1), ENTRY_BIN_EX(btc_u64, 1), ENTRY_BIN_EX(btc_u64_locked, 1), ENTRY_BIN_EX(btr_u64, 1), ENTRY_BIN_EX(btr_u64_locked, 1), ENTRY_BIN_EX(bts_u64, 1), ENTRY_BIN_EX(bts_u64_locked, 1), ENTRY_BIN_AMD( bsf_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_INTEL(bsf_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_AMD( bsr_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_INTEL(bsr_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_BIN_AMD( imul_two_u64, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), ENTRY_BIN_INTEL(imul_two_u64, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), ENTRY_BIN(adcx_u64), ENTRY_BIN(adox_u64), /** @todo popcnt */ /** @todo tzcnt */ /** @todo lzcnt */ }; TEST_BINARY_OPS(64, uint64_t, "%#018RX64", BINU64_TEST_T, g_aBinU64) /* * XCHG */ static void XchgTest(void) { if (!SubTestAndCheckIfEnabled("xchg")) return; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU8, (uint8_t *pu8Mem, uint8_t *pu8Reg)); typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU16,(uint16_t *pu16Mem, uint16_t *pu16Reg)); typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU32,(uint32_t *pu32Mem, uint32_t *pu32Reg)); typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU64,(uint64_t *pu64Mem, uint64_t *pu64Reg)); static struct { uint8_t cb; uint64_t fMask; union { uintptr_t pfn; FNIEMAIMPLXCHGU8 *pfnU8; FNIEMAIMPLXCHGU16 *pfnU16; FNIEMAIMPLXCHGU32 *pfnU32; FNIEMAIMPLXCHGU64 *pfnU64; } u; } s_aXchgWorkers[] = { { 1, UINT8_MAX, { (uintptr_t)iemAImpl_xchg_u8_locked } }, { 2, UINT16_MAX, { (uintptr_t)iemAImpl_xchg_u16_locked } }, { 4, UINT32_MAX, { (uintptr_t)iemAImpl_xchg_u32_locked } }, { 8, UINT64_MAX, { (uintptr_t)iemAImpl_xchg_u64_locked } }, { 1, UINT8_MAX, { (uintptr_t)iemAImpl_xchg_u8_unlocked } }, { 2, UINT16_MAX, { (uintptr_t)iemAImpl_xchg_u16_unlocked } }, { 4, UINT32_MAX, { (uintptr_t)iemAImpl_xchg_u32_unlocked } }, { 8, UINT64_MAX, { (uintptr_t)iemAImpl_xchg_u64_unlocked } }, }; for (size_t i = 0; i < RT_ELEMENTS(s_aXchgWorkers); i++) { RTUINT64U uIn1, uIn2, uMem, uDst; uMem.u = uIn1.u = RTRandU64Ex(0, s_aXchgWorkers[i].fMask); uDst.u = uIn2.u = RTRandU64Ex(0, s_aXchgWorkers[i].fMask); if (uIn1.u == uIn2.u) uDst.u = uIn2.u = ~uIn2.u; switch (s_aXchgWorkers[i].cb) { case 1: s_aXchgWorkers[i].u.pfnU8(g_pu8, g_pu8Two); s_aXchgWorkers[i].u.pfnU8(&uMem.au8[0], &uDst.au8[0]); break; case 2: s_aXchgWorkers[i].u.pfnU16(g_pu16, g_pu16Two); s_aXchgWorkers[i].u.pfnU16(&uMem.Words.w0, &uDst.Words.w0); break; case 4: s_aXchgWorkers[i].u.pfnU32(g_pu32, g_pu32Two); s_aXchgWorkers[i].u.pfnU32(&uMem.DWords.dw0, &uDst.DWords.dw0); break; case 8: s_aXchgWorkers[i].u.pfnU64(g_pu64, g_pu64Two); s_aXchgWorkers[i].u.pfnU64(&uMem.u, &uDst.u); break; default: RTTestFailed(g_hTest, "%d\n", s_aXchgWorkers[i].cb); break; } if (uMem.u != uIn2.u || uDst.u != uIn1.u) RTTestFailed(g_hTest, "i=%u: %#RX64, %#RX64 -> %#RX64, %#RX64\n", i, uIn1.u, uIn2.u, uMem.u, uDst.u); } } /* * XADD */ static void XaddTest(void) { #define TEST_XADD(a_cBits, a_Type, a_Fmt) do { \ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXADDU ## a_cBits, (a_Type *, a_Type *, uint32_t *)); \ static struct \ { \ const char * const pszName; \ FNIEMAIMPLXADDU ## a_cBits * const pfn; \ void const * const pvCompressedTests; \ uint32_t const * const pcbCompressedTests; \ BINU ## a_cBits ## _TEST_T const *paTests; \ uint32_t cTests; \ IEMTESTENTRYINFO Info; \ } s_aFuncs[] = \ { \ { "xadd_u" # a_cBits, iemAImpl_xadd_u ## a_cBits, \ g_abTests_add_u ## a_cBits, &g_cbTests_add_u ## a_cBits }, \ { "xadd_u" # a_cBits "8_locked", iemAImpl_xadd_u ## a_cBits ## _locked, \ g_abTests_add_u ## a_cBits, &g_cbTests_add_u ## a_cBits }, \ }; \ for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(s_aFuncs[iFn])) continue; \ BINU ## a_cBits ## _TEST_T const * const paTests = s_aFuncs[iFn].paTests; \ uint32_t const cTests = s_aFuncs[iFn].cTests; \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_Type uSrc = paTests[iTest].uSrcIn; \ *g_pu ## a_cBits = paTests[iTest].uDstIn; \ s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uSrc, &fEfl); \ if ( fEfl != paTests[iTest].fEflOut \ || *g_pu ## a_cBits != paTests[iTest].uDstOut \ || uSrc != paTests[iTest].uDstIn) \ RTTestFailed(g_hTest, "%s/#%u: efl=%#08x dst=" a_Fmt " src=" a_Fmt " -> efl=%#08x dst=" a_Fmt " src=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \ s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, \ fEfl, *g_pu ## a_cBits, uSrc, paTests[iTest].fEflOut, paTests[iTest].uDstOut, paTests[iTest].uDstIn, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \ } \ FREE_DECOMPRESSED_TESTS(s_aFuncs[iFn]); \ } \ } while(0) TEST_XADD(8, uint8_t, "%#04x"); TEST_XADD(16, uint16_t, "%#06x"); TEST_XADD(32, uint32_t, "%#010RX32"); TEST_XADD(64, uint64_t, "%#010RX64"); } /* * CMPXCHG */ static void CmpXchgTest(void) { #define TEST_CMPXCHG(a_cBits, a_Type, a_Fmt) do {\ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHGU ## a_cBits, (a_Type *, a_Type *, a_Type, uint32_t *)); \ static struct \ { \ const char * const pszName; \ FNIEMAIMPLCMPXCHGU ## a_cBits * const pfn; \ PFNIEMAIMPLBINU ## a_cBits const pfnSub; \ void const * const pvCompressedTests; \ uint32_t const * const pcbCompressedTests; \ BINU ## a_cBits ## _TEST_T const *paTests; \ uint32_t cTests; \ IEMTESTENTRYINFO Info; \ } s_aFuncs[] = \ { \ { "cmpxchg_u" # a_cBits, iemAImpl_cmpxchg_u ## a_cBits, iemAImpl_sub_u ## a_cBits, \ g_abTests_cmp_u ## a_cBits, &g_cbTests_cmp_u ## a_cBits }, \ { "cmpxchg_u" # a_cBits "_locked", iemAImpl_cmpxchg_u ## a_cBits ## _locked, iemAImpl_sub_u ## a_cBits, \ g_abTests_cmp_u ## a_cBits, &g_cbTests_cmp_u ## a_cBits }, \ }; \ for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(s_aFuncs[iFn])) continue; \ BINU ## a_cBits ## _TEST_T const * const paTests = s_aFuncs[iFn].paTests; \ uint32_t const cTests = s_aFuncs[iFn].cTests; \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ /* as is (99% likely to be negative). */ \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_Type const uNew = paTests[iTest].uSrcIn + 0x42; \ a_Type uA = paTests[iTest].uDstIn; \ *g_pu ## a_cBits = paTests[iTest].uSrcIn; \ a_Type const uExpect = uA != paTests[iTest].uSrcIn ? paTests[iTest].uSrcIn : uNew; \ s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uA, uNew, &fEfl); \ if ( fEfl != paTests[iTest].fEflOut \ || *g_pu ## a_cBits != uExpect \ || uA != paTests[iTest].uSrcIn) \ RTTestFailed(g_hTest, "%s/#%ua: efl=%#08x dst=" a_Fmt " cmp=" a_Fmt " new=" a_Fmt " -> efl=%#08x dst=" a_Fmt " old=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \ s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uSrcIn, paTests[iTest].uDstIn, \ uNew, fEfl, *g_pu ## a_cBits, uA, paTests[iTest].fEflOut, uExpect, paTests[iTest].uSrcIn, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \ /* positive */ \ uA = paTests[iTest].uDstIn; \ uint32_t fEflExpect = s_aFuncs[iFn].pfnSub(paTests[iTest].fEflIn, &uA, uA); \ fEfl = paTests[iTest].fEflIn; \ uA = paTests[iTest].uDstIn; \ *g_pu ## a_cBits = uA; \ s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uA, uNew, &fEfl); \ if ( fEfl != fEflExpect \ || *g_pu ## a_cBits != uNew \ || uA != paTests[iTest].uDstIn) \ RTTestFailed(g_hTest, "%s/#%ua: efl=%#08x dst=" a_Fmt " cmp=" a_Fmt " new=" a_Fmt " -> efl=%#08x dst=" a_Fmt " old=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \ s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uDstIn, \ uNew, fEfl, *g_pu ## a_cBits, uA, fEflExpect, uNew, paTests[iTest].uDstIn, \ EFlagsDiff(fEfl, fEflExpect)); \ } \ FREE_DECOMPRESSED_TESTS(s_aFuncs[iFn]); \ } \ } while(0) TEST_CMPXCHG(8, uint8_t, "%#04RX8"); TEST_CMPXCHG(16, uint16_t, "%#06x"); TEST_CMPXCHG(32, uint32_t, "%#010RX32"); #if ARCH_BITS != 32 /* calling convension issue, skipping as it's an unsupported host */ TEST_CMPXCHG(64, uint64_t, "%#010RX64"); #endif } typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHG8B,(uint64_t *, PRTUINT64U, PRTUINT64U, uint32_t *)); static uint64_t CmpXchg8bBench(uint32_t cIterations, FNIEMAIMPLCMPXCHG8B *pfn, uint64_t const uDstValue, uint64_t const uOldValue, uint64_t const uNewValue, uint32_t const fEflIn) { cIterations /= 4; RTThreadYield(); uint64_t const nsStart = RTTimeNanoTS(); for (uint32_t i = 0; i < cIterations; i++) { RTUINT64U uA, uB; uint32_t fEfl = fEflIn; uint64_t uDst = uDstValue; uB.u = uNewValue; uA.u = uOldValue; pfn(&uDst, &uA, &uB, &fEfl); fEfl = fEflIn; uDst = uDstValue; uB.u = uNewValue; uA.u = uOldValue; pfn(&uDst, &uA, &uB, &fEfl); fEfl = fEflIn; uDst = uDstValue; uB.u = uNewValue; uA.u = uOldValue; pfn(&uDst, &uA, &uB, &fEfl); fEfl = fEflIn; uDst = uDstValue; uB.u = uNewValue; uA.u = uOldValue; pfn(&uDst, &uA, &uB, &fEfl); } return RTTimeNanoTS() - nsStart; } static void CmpXchg8bTest(void) { static struct { const char *pszName; FNIEMAIMPLCMPXCHG8B *pfn; } const s_aFuncs[] = { { "cmpxchg8b", iemAImpl_cmpxchg8b }, { "cmpxchg8b_locked", iemAImpl_cmpxchg8b_locked }, }; for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) { if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName)) continue; for (uint32_t iTest = 0; iTest < 4; iTest += 2) { uint64_t const uOldValue = RandU64(); uint64_t const uNewValue = RandU64(); /* positive test. */ RTUINT64U uA, uB; uB.u = uNewValue; uA.u = uOldValue; *g_pu64 = uOldValue; uint32_t fEflIn = RandEFlags(); uint32_t fEfl = fEflIn; s_aFuncs[iFn].pfn(g_pu64, &uA, &uB, &fEfl); if ( fEfl != (fEflIn | X86_EFL_ZF) || *g_pu64 != uNewValue || uA.u != uOldValue) RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64 cmp=%#018RX64 new=%#018RX64\n -> efl=%#08x dst=%#018RX64 old=%#018RX64,\n wanted %#08x, %#018RX64, %#018RX64%s\n", iTest, fEflIn, uOldValue, uOldValue, uNewValue, fEfl, *g_pu64, uA.u, (fEflIn | X86_EFL_ZF), uNewValue, uOldValue, EFlagsDiff(fEfl, fEflIn | X86_EFL_ZF)); RTTEST_CHECK(g_hTest, uB.u == uNewValue); /* negative */ uint64_t const uExpect = ~uOldValue; *g_pu64 = uExpect; uA.u = uOldValue; uB.u = uNewValue; fEfl = fEflIn = RandEFlags(); s_aFuncs[iFn].pfn(g_pu64, &uA, &uB, &fEfl); if ( fEfl != (fEflIn & ~X86_EFL_ZF) || *g_pu64 != uExpect || uA.u != uExpect) RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64 cmp=%#018RX64 new=%#018RX64\n -> efl=%#08x dst=%#018RX64 old=%#018RX64,\n wanted %#08x, %#018RX64, %#018RX64%s\n", iTest + 1, fEflIn, uExpect, uOldValue, uNewValue, fEfl, *g_pu64, uA.u, (fEflIn & ~X86_EFL_ZF), uExpect, uExpect, EFlagsDiff(fEfl, fEflIn & ~X86_EFL_ZF)); RTTEST_CHECK(g_hTest, uB.u == uNewValue); if (iTest == 2 && g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) { uint32_t cIterations = EstimateIterations(_64K, CmpXchg8bBench(_64K, s_aFuncs[iFn].pfn, uOldValue, uOldValue, uNewValue, fEflIn)); uint64_t cNsRealRun = CmpXchg8bBench(cIterations, s_aFuncs[iFn].pfn, uOldValue, uOldValue, uNewValue, fEflIn); RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, "%s-positive", s_aFuncs[iFn].pszName); cIterations = EstimateIterations(_64K, CmpXchg8bBench(_64K, s_aFuncs[iFn].pfn, ~uOldValue, uOldValue, uNewValue, fEflIn)); cNsRealRun = CmpXchg8bBench(cIterations, s_aFuncs[iFn].pfn, ~uOldValue, uOldValue, uNewValue, fEflIn); RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, "%s-negative", s_aFuncs[iFn].pszName); } } } } static void CmpXchg16bTest(void) { typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHG16B,(PRTUINT128U, PRTUINT128U, PRTUINT128U, uint32_t *)); static struct { const char *pszName; FNIEMAIMPLCMPXCHG16B *pfn; } const s_aFuncs[] = { { "cmpxchg16b", iemAImpl_cmpxchg16b }, { "cmpxchg16b_locked", iemAImpl_cmpxchg16b_locked }, #if !defined(RT_ARCH_ARM64) { "cmpxchg16b_fallback", iemAImpl_cmpxchg16b_fallback }, #endif }; for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) { if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName)) continue; #if !defined(IEM_WITHOUT_ASSEMBLY) && defined(RT_ARCH_AMD64) if (!(ASMCpuId_ECX(1) & X86_CPUID_FEATURE_ECX_CX16)) { RTTestSkipped(g_hTest, "no hardware cmpxchg16b"); continue; } #endif for (uint32_t iTest = 0; iTest < 4; iTest += 2) { RTUINT128U const uOldValue = RandU128(); RTUINT128U const uNewValue = RandU128(); /* positive test. */ RTUINT128U uA, uB; uB = uNewValue; uA = uOldValue; *g_pu128 = uOldValue; uint32_t fEflIn = RandEFlags(); uint32_t fEfl = fEflIn; s_aFuncs[iFn].pfn(g_pu128, &uA, &uB, &fEfl); if ( fEfl != (fEflIn | X86_EFL_ZF) || g_pu128->s.Lo != uNewValue.s.Lo || g_pu128->s.Hi != uNewValue.s.Hi || uA.s.Lo != uOldValue.s.Lo || uA.s.Hi != uOldValue.s.Hi) RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64'%016RX64 cmp=%#018RX64'%016RX64 new=%#018RX64'%016RX64\n" " -> efl=%#08x dst=%#018RX64'%016RX64 old=%#018RX64'%016RX64,\n" " wanted %#08x, %#018RX64'%016RX64, %#018RX64'%016RX64%s\n", iTest, fEflIn, uOldValue.s.Hi, uOldValue.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, uNewValue.s.Hi, uNewValue.s.Lo, fEfl, g_pu128->s.Hi, g_pu128->s.Lo, uA.s.Hi, uA.s.Lo, (fEflIn | X86_EFL_ZF), uNewValue.s.Hi, uNewValue.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, EFlagsDiff(fEfl, fEflIn | X86_EFL_ZF)); RTTEST_CHECK(g_hTest, uB.s.Lo == uNewValue.s.Lo && uB.s.Hi == uNewValue.s.Hi); /* negative */ RTUINT128U const uExpect = RTUINT128_INIT(~uOldValue.s.Hi, ~uOldValue.s.Lo); *g_pu128 = uExpect; uA = uOldValue; uB = uNewValue; fEfl = fEflIn = RandEFlags(); s_aFuncs[iFn].pfn(g_pu128, &uA, &uB, &fEfl); if ( fEfl != (fEflIn & ~X86_EFL_ZF) || g_pu128->s.Lo != uExpect.s.Lo || g_pu128->s.Hi != uExpect.s.Hi || uA.s.Lo != uExpect.s.Lo || uA.s.Hi != uExpect.s.Hi) RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64'%016RX64 cmp=%#018RX64'%016RX64 new=%#018RX64'%016RX64\n" " -> efl=%#08x dst=%#018RX64'%016RX64 old=%#018RX64'%016RX64,\n" " wanted %#08x, %#018RX64'%016RX64, %#018RX64'%016RX64%s\n", iTest + 1, fEflIn, uExpect.s.Hi, uExpect.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, uNewValue.s.Hi, uNewValue.s.Lo, fEfl, g_pu128->s.Hi, g_pu128->s.Lo, uA.s.Hi, uA.s.Lo, (fEflIn & ~X86_EFL_ZF), uExpect.s.Hi, uExpect.s.Lo, uExpect.s.Hi, uExpect.s.Lo, EFlagsDiff(fEfl, fEflIn & ~X86_EFL_ZF)); RTTEST_CHECK(g_hTest, uB.s.Lo == uNewValue.s.Lo && uB.s.Hi == uNewValue.s.Hi); } } } /* * Double shifts. * * Note! We use BINUxx_TEST_T with the shift value in the uMisc field. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ static RTEXITCODE ShiftDblU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \ && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \ continue; \ IEMBINARYOUTPUT BinOut; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_TestType Test; \ Test.fEflIn = RandEFlags(); \ Test.fEflOut = Test.fEflIn; \ Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \ Test.uDstOut = Test.uDstIn; \ Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \ Test.uMisc = RandU8() & (a_cBits * 4 - 1); /* need to go way beyond the a_cBits limit */ \ a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, Test.uMisc, &Test.fEflOut); \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } \ DUMP_ALL_FN(ShiftDblU ## a_cBits, a_aSubTests) #else # define GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) #endif #define TEST_SHIFT_DBL(a_cBits, a_uType, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLSHIFTDBLU ## a_cBits); \ \ static a_SubTestType a_aSubTests[] = \ { \ ENTRY_BIN_AMD(shld_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \ ENTRY_BIN_INTEL(shld_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \ ENTRY_BIN_AMD(shrd_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \ ENTRY_BIN_INTEL(shrd_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \ }; \ \ GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ \ static uint64_t ShiftDblU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLSHIFTDBLU ## a_cBits pfn, a_TestType const *pEntry) \ { \ uint32_t const fEflIn = pEntry->fEflIn; \ a_uType const uDstIn = pEntry->uDstIn; \ a_uType const uSrcIn = pEntry->uSrcIn; \ a_uType const cShift = pEntry->uMisc; \ cIterations /= 4; \ RTThreadYield(); \ uint64_t const nsStart = RTTimeNanoTS(); \ for (uint32_t i = 0; i < cIterations; i++) \ { \ uint32_t fBenchEfl = fEflIn; \ a_uType uBenchDst = uDstIn; \ pfn(&uBenchDst, uSrcIn, cShift, &fBenchEfl); \ \ fBenchEfl = fEflIn; \ uBenchDst = uDstIn; \ pfn(&uBenchDst, uSrcIn, cShift, &fBenchEfl); \ \ fBenchEfl = fEflIn; \ uBenchDst = uDstIn; \ pfn(&uBenchDst, uSrcIn, cShift, &fBenchEfl); \ \ fBenchEfl = fEflIn; \ uBenchDst = uDstIn; \ pfn(&uBenchDst, uSrcIn, cShift, &fBenchEfl); \ } \ return RTTimeNanoTS() - nsStart; \ } \ \ static void ShiftDblU ## a_cBits ## Test(void) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ PFNIEMAIMPLSHIFTDBLU ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_uType uDst = paTests[iTest].uDstIn; \ pfn(&uDst, paTests[iTest].uSrcIn, paTests[iTest].uMisc, &fEfl); \ if ( uDst != paTests[iTest].uDstOut \ || fEfl != paTests[iTest].fEflOut) \ RTTestFailed(g_hTest, "#%03u%s: efl=%#08x dst=" a_Fmt " src=" a_Fmt " shift=%-2u -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s%s\n", \ iTest, iVar == 0 ? "" : "/n", paTests[iTest].fEflIn, \ paTests[iTest].uDstIn, paTests[iTest].uSrcIn, (unsigned)paTests[iTest].uMisc, \ fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut), uDst == paTests[iTest].uDstOut ? "" : " dst!"); \ else \ { \ *g_pu ## a_cBits = paTests[iTest].uDstIn; \ *g_pfEfl = paTests[iTest].fEflIn; \ pfn(g_pu ## a_cBits, paTests[iTest].uSrcIn, paTests[iTest].uMisc, g_pfEfl); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \ RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \ } \ } \ \ /* Benchmark if all succeeded. */ \ if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \ { \ uint32_t const iTest = cTests / 2; \ uint32_t const cIterations = EstimateIterations(_64K, ShiftDblU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \ uint64_t const cNsRealRun = ShiftDblU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \ RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, \ "%s%s", a_aSubTests[iFn].pszName, iVar ? "-native" : ""); \ } \ \ /* Next variation is native. */ \ pfn = a_aSubTests[iFn].pfnNative; \ } \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } TEST_SHIFT_DBL(16, uint16_t, "%#06RX16", BINU16_TEST_T, SHIFT_DBL_U16_T, g_aShiftDblU16) TEST_SHIFT_DBL(32, uint32_t, "%#010RX32", BINU32_TEST_T, SHIFT_DBL_U32_T, g_aShiftDblU32) TEST_SHIFT_DBL(64, uint64_t, "%#018RX64", BINU64_TEST_T, SHIFT_DBL_U64_T, g_aShiftDblU64) #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE ShiftDblGenerate(uint32_t cTests, const char * const * papszNameFmts) { RTEXITCODE rcExit = ShiftDblU16Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ShiftDblU32Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ShiftDblU64Generate(cTests, papszNameFmts); return rcExit; } static RTEXITCODE ShiftDblDumpAll(const char * const * papszNameFmts) { RTEXITCODE rcExit = ShiftDblU16DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ShiftDblU32DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ShiftDblU64DumpAll(papszNameFmts); return rcExit; } #endif static void ShiftDblTest(void) { ShiftDblU16Test(); ShiftDblU32Test(); ShiftDblU64Test(); } /* * Unary operators. * * Note! We use BINUxx_TEST_T ignoreing uSrcIn and uMisc. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \ static RTEXITCODE UnaryU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aUnaryU ## a_cBits); iFn++) \ { \ IEMBINARYOUTPUT BinOut; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aUnaryU ## a_cBits[iFn]), RTEXITCODE_FAILURE); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_TestType Test; \ Test.fEflIn = RandEFlags(); \ Test.fEflOut = Test.fEflIn; \ Test.uDstIn = RandU ## a_cBits(); \ Test.uDstOut = Test.uDstIn; \ Test.uSrcIn = 0; \ Test.uMisc = 0; \ g_aUnaryU ## a_cBits[iFn].pfn(&Test.uDstOut, &Test.fEflOut); \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } \ DUMP_ALL_FN(UnaryU ## a_cBits, g_aUnaryU ## a_cBits) #else # define GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) #endif #define TEST_UNARY(a_cBits, a_uType, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLUNARYU ## a_cBits); \ static a_SubTestType a_aSubTests[] = \ { \ ENTRY_BIN(inc_u ## a_cBits), \ ENTRY_BIN(inc_u ## a_cBits ## _locked), \ ENTRY_BIN(dec_u ## a_cBits), \ ENTRY_BIN(dec_u ## a_cBits ## _locked), \ ENTRY_BIN(not_u ## a_cBits), \ ENTRY_BIN(not_u ## a_cBits ## _locked), \ ENTRY_BIN(neg_u ## a_cBits), \ ENTRY_BIN(neg_u ## a_cBits ## _locked), \ }; \ \ GEN_UNARY(a_cBits, a_uType, a_Fmt, a_TestType, a_SubTestType) \ \ static uint64_t UnaryU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLUNARYU ## a_cBits pfn, a_TestType const *pEntry) \ { \ uint32_t const fEflIn = pEntry->fEflIn; \ a_uType const uDstIn = pEntry->uDstIn; \ cIterations /= 4; \ RTThreadYield(); \ uint64_t const nsStart = RTTimeNanoTS(); \ for (uint32_t i = 0; i < cIterations; i++) \ { \ uint32_t fBenchEfl = fEflIn; \ a_uType uBenchDst = uDstIn; \ pfn(&uBenchDst, &fBenchEfl); \ \ fBenchEfl = fEflIn; \ uBenchDst = uDstIn; \ pfn(&uBenchDst, &fBenchEfl); \ \ fBenchEfl = fEflIn; \ uBenchDst = uDstIn; \ pfn(&uBenchDst, &fBenchEfl); \ \ fBenchEfl = fEflIn; \ uBenchDst = uDstIn; \ pfn(&uBenchDst, &fBenchEfl); \ } \ return RTTimeNanoTS() - nsStart; \ } \ \ static void UnaryU ## a_cBits ## Test(void) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ PFNIEMAIMPLUNARYU ## a_cBits const pfn = a_aSubTests[iFn].pfn; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_uType uDst = paTests[iTest].uDstIn; \ pfn(&uDst, &fEfl); \ if ( uDst != paTests[iTest].uDstOut \ || fEfl != paTests[iTest].fEflOut) \ RTTestFailed(g_hTest, "#%u: efl=%#08x dst=" a_Fmt " -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s\n", \ iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, \ fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \ else \ { \ *g_pu ## a_cBits = paTests[iTest].uDstIn; \ *g_pfEfl = paTests[iTest].fEflIn; \ pfn(g_pu ## a_cBits, g_pfEfl); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \ RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \ } \ } \ \ if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \ { \ uint32_t const iTest = cTests / 2; \ uint32_t const cIterations = EstimateIterations(_64K, UnaryU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \ uint64_t const cNsRealRun = UnaryU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \ RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, "%s", a_aSubTests[iFn].pszName); \ } \ \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } TEST_UNARY(8, uint8_t, "%#04RX8", BINU8_TEST_T, INT_UNARY_U8_T, g_aUnaryU8) TEST_UNARY(16, uint16_t, "%#06RX16", BINU16_TEST_T, INT_UNARY_U16_T, g_aUnaryU16) TEST_UNARY(32, uint32_t, "%#010RX32", BINU32_TEST_T, INT_UNARY_U32_T, g_aUnaryU32) TEST_UNARY(64, uint64_t, "%#018RX64", BINU64_TEST_T, INT_UNARY_U64_T, g_aUnaryU64) #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE UnaryGenerate(uint32_t cTests, const char * const * papszNameFmts) { RTEXITCODE rcExit = UnaryU8Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = UnaryU16Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = UnaryU32Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = UnaryU64Generate(cTests, papszNameFmts); return rcExit; } static RTEXITCODE UnaryDumpAll(const char * const * papszNameFmts) { RTEXITCODE rcExit = UnaryU8DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = UnaryU16DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = UnaryU32DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = UnaryU64DumpAll(papszNameFmts); return rcExit; } #endif static void UnaryTest(void) { UnaryU8Test(); UnaryU16Test(); UnaryU32Test(); UnaryU64Test(); } /* * Shifts. * * Note! We use BINUxx_TEST_T with the shift count in uMisc and uSrcIn unused. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ static RTEXITCODE ShiftU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \ && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \ continue; \ IEMBINARYOUTPUT BinOut; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_TestType Test; \ Test.fEflIn = RandEFlags(); \ Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \ Test.uDstOut = Test.uDstIn; \ Test.uSrcIn = 0; \ Test.uMisc = RandU8() & (a_cBits * 4 - 1); /* need to go way beyond the a_cBits limit */ \ Test.fEflOut = a_aSubTests[iFn].pfnNative(Test.fEflIn, &Test.uDstOut, Test.uMisc); \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ \ Test.fEflIn = (~Test.fEflIn & X86_EFL_LIVE_MASK) | X86_EFL_RA1_MASK; \ Test.uDstOut = Test.uDstIn; \ Test.fEflOut = a_aSubTests[iFn].pfnNative(Test.fEflIn, &Test.uDstOut, Test.uMisc); \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } \ DUMP_ALL_FN(ShiftU ## a_cBits, a_aSubTests) #else # define GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) #endif #define TEST_SHIFT(a_cBits, a_uType, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLSHIFTU ## a_cBits); \ static a_SubTestType a_aSubTests[] = \ { \ ENTRY_BIN_AMD( rol_u ## a_cBits, X86_EFL_OF), \ ENTRY_BIN_INTEL(rol_u ## a_cBits, X86_EFL_OF), \ ENTRY_BIN_AMD( ror_u ## a_cBits, X86_EFL_OF), \ ENTRY_BIN_INTEL(ror_u ## a_cBits, X86_EFL_OF), \ ENTRY_BIN_AMD( rcl_u ## a_cBits, X86_EFL_OF), \ ENTRY_BIN_INTEL(rcl_u ## a_cBits, X86_EFL_OF), \ ENTRY_BIN_AMD( rcr_u ## a_cBits, X86_EFL_OF), \ ENTRY_BIN_INTEL(rcr_u ## a_cBits, X86_EFL_OF), \ ENTRY_BIN_AMD( shl_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ ENTRY_BIN_INTEL(shl_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ ENTRY_BIN_AMD( shr_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ ENTRY_BIN_INTEL(shr_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ ENTRY_BIN_AMD( sar_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ ENTRY_BIN_INTEL(sar_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ }; \ \ GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ \ static uint64_t ShiftU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLSHIFTU ## a_cBits pfn, a_TestType const *pEntry) \ { \ uint32_t const fEflIn = pEntry->fEflIn; \ a_uType const uDstIn = pEntry->uDstIn; \ a_uType const cShift = pEntry->uMisc; \ cIterations /= 4; \ RTThreadYield(); \ uint64_t const nsStart = RTTimeNanoTS(); \ for (uint32_t i = 0; i < cIterations; i++) \ { \ a_uType uBenchDst = uDstIn; \ pfn(fEflIn, &uBenchDst, cShift); \ \ uBenchDst = uDstIn; \ pfn(fEflIn, &uBenchDst, cShift); \ \ uBenchDst = uDstIn; \ pfn(fEflIn, &uBenchDst, cShift); \ \ uBenchDst = uDstIn; \ pfn(fEflIn, &uBenchDst, cShift); \ } \ return RTTimeNanoTS() - nsStart; \ } \ \ static void ShiftU ## a_cBits ## Test(void) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ PFNIEMAIMPLSHIFTU ## a_cBits pfn = a_aSubTests[iFn].pfn; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_uType uDst = paTests[iTest].uDstIn; \ uint32_t fEflOut = pfn(paTests[iTest].fEflIn, &uDst, paTests[iTest].uMisc); \ if ( uDst != paTests[iTest].uDstOut \ || fEflOut != paTests[iTest].fEflOut ) \ RTTestFailed(g_hTest, "#%u%s: efl=%#08x dst=" a_Fmt " shift=%2u -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s\n", \ iTest, iVar == 0 ? "" : "/n", \ paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uMisc, \ fEflOut, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \ EFlagsDiff(fEflOut, paTests[iTest].fEflOut)); \ else \ { \ *g_pu ## a_cBits = paTests[iTest].uDstIn; \ fEflOut = pfn(paTests[iTest].fEflIn, g_pu ## a_cBits, paTests[iTest].uMisc); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \ RTTEST_CHECK(g_hTest, fEflOut == paTests[iTest].fEflOut); \ } \ } \ \ /* Benchmark if all succeeded. */ \ if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \ { \ uint32_t const iTest = cTests / 2; \ uint32_t const cIterations = EstimateIterations(_64K, ShiftU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \ uint64_t const cNsRealRun = ShiftU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \ RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, \ "%s%s", a_aSubTests[iFn].pszName, iVar ? "-native" : ""); \ } \ \ /* Next variation is native. */ \ pfn = a_aSubTests[iFn].pfnNative; \ } \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } TEST_SHIFT(8, uint8_t, "%#04RX8", BINU8_TEST_T, INT_BINARY_U8_T, g_aShiftU8) TEST_SHIFT(16, uint16_t, "%#06RX16", BINU16_TEST_T, INT_BINARY_U16_T, g_aShiftU16) TEST_SHIFT(32, uint32_t, "%#010RX32", BINU32_TEST_T, INT_BINARY_U32_T, g_aShiftU32) TEST_SHIFT(64, uint64_t, "%#018RX64", BINU64_TEST_T, INT_BINARY_U64_T, g_aShiftU64) #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE ShiftGenerate(uint32_t cTests, const char * const * papszNameFmts) { RTEXITCODE rcExit = ShiftU8Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ShiftU16Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ShiftU32Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ShiftU64Generate(cTests, papszNameFmts); return rcExit; } static RTEXITCODE ShiftDumpAll(const char * const * papszNameFmts) { RTEXITCODE rcExit = ShiftU8DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ShiftU16DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ShiftU32DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = ShiftU64DumpAll(papszNameFmts); return rcExit; } #endif static void ShiftTest(void) { ShiftU8Test(); ShiftU16Test(); ShiftU32Test(); ShiftU64Test(); } /* * Multiplication and division. * * Note! The 8-bit functions has a different format, so we need to duplicate things. * Note! Currently ignoring undefined bits. */ /* U8 */ #ifdef TSTIEMAIMPL_WITH_GENERATOR static const MULDIVU8_TEST_T g_aFixedTests_idiv_u8[] = { /* efl in, efl out, uDstIn, uDstOut, uSrcIn, rc (0 or -1 for actual; -128 for auto) */ { UINT32_MAX, 0, 0x8000, 0, 0xc7, -1 }, /* -32768 / -57 = #DE (574.8771929824...) */ { UINT32_MAX, 0, 0x8000, 0, 0xdd, -128 }, /* -32768 / -35 = #DE (936.2285714285...) */ { UINT32_MAX, 0, 0x7f00, 0, 0x7f, -1 }, /* 0x7f00 / 0x7f = #DE (0x100) */ { UINT32_MAX, 0, 0x3f80, 0, 0x7f, -1 }, /* 0x3F80 / 0x7f = #DE (0x80) */ { UINT32_MAX, 0, 0x3f7f, 0, 0x7f, 0 }, /* 0x3F7F / 0x7f = 127.992125984... */ { UINT32_MAX, 0, 0xc000, 0, 0x80, -1 }, /* -16384 / -128 = #DE (0x80) */ { UINT32_MAX, 0, 0xc001, 0, 0x80, 0 }, /* -16383 / -128 = 127.9921875 */ }; #endif TYPEDEF_SUBTEST_TYPE(INT_MULDIV_U8_T, MULDIVU8_TEST_T, PFNIEMAIMPLMULDIVU8); static INT_MULDIV_U8_T g_aMulDivU8[] = { ENTRY_BIN_AMD_EX(mul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF), ENTRY_BIN_INTEL_EX(mul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), ENTRY_BIN_AMD_EX(imul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF), ENTRY_BIN_INTEL_EX(imul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), ENTRY_BIN_AMD_EX(div_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), ENTRY_BIN_INTEL_EX(div_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), ENTRY_BIN_FIX_AMD_EX(idiv_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), ENTRY_BIN_FIX_INTEL_EX(idiv_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(MulDivU8, g_aMulDivU8) static RTEXITCODE MulDivU8Generate(uint32_t cTests, const char * const * papszNameFmts) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++) { if ( g_aMulDivU8[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE && g_aMulDivU8[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) continue; IEMBINARYOUTPUT BinOut; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aMulDivU8[iFn]), RTEXITCODE_FAILURE); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) { MULDIVU8_TEST_T Test; Test.fEflIn = RandEFlags(); Test.uDstIn = RandU16Dst(iTest); Test.uDstOut = Test.uDstIn; Test.uSrcIn = RandU8Src(iTest); uint32_t const fEflRet = g_aMulDivU8[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, Test.fEflIn); Test.fEflOut = fEflRet ? fEflRet : Test.fEflIn; Test.rc = fEflRet ? 0 : -1; GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); } for (uint32_t iTest = 0; iTest < g_aMulDivU8[iFn].cFixedTests; iTest++) { MULDIVU8_TEST_T Test; Test.fEflIn = g_aMulDivU8[iFn].paFixedTests[iTest].fEflIn == UINT32_MAX ? RandEFlags() : g_aMulDivU8[iFn].paFixedTests[iTest].fEflIn; Test.uDstIn = g_aMulDivU8[iFn].paFixedTests[iTest].uDstIn; Test.uDstOut = Test.uDstIn; Test.uSrcIn = g_aMulDivU8[iFn].paFixedTests[iTest].uSrcIn; uint32_t const fEflRet = g_aMulDivU8[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, Test.fEflIn); Test.fEflOut = fEflRet ? fEflRet : Test.fEflIn; Test.rc = fEflRet ? 0 : -1; if (g_aMulDivU8[iFn].paFixedTests[iTest].rc == 0 || g_aMulDivU8[iFn].paFixedTests[iTest].rc == -1) Test.rc = g_aMulDivU8[iFn].paFixedTests[iTest].rc; GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static uint64_t MulDivU8Bench(uint32_t cIterations, PFNIEMAIMPLMULDIVU8 pfn, MULDIVU8_TEST_T const *pEntry) { uint32_t const fEflIn = pEntry->fEflIn; uint16_t const uDstIn = pEntry->uDstIn; uint8_t const uSrcIn = pEntry->uSrcIn; cIterations /= 4; RTThreadYield(); uint64_t const nsStart = RTTimeNanoTS(); for (uint32_t i = 0; i < cIterations; i++) { uint16_t uBenchDst = uDstIn; pfn(&uBenchDst, uSrcIn, fEflIn); uBenchDst = uDstIn; pfn(&uBenchDst, uSrcIn, fEflIn); uBenchDst = uDstIn; pfn(&uBenchDst, uSrcIn, fEflIn); uBenchDst = uDstIn; pfn(&uBenchDst, uSrcIn, fEflIn); } return RTTimeNanoTS() - nsStart; } static void MulDivU8Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aMulDivU8[iFn])) continue; MULDIVU8_TEST_T const * const paTests = g_aMulDivU8[iFn].paTests; uint32_t const cTests = g_aMulDivU8[iFn].cTests; uint32_t const fEflIgn = g_aMulDivU8[iFn].uExtra; PFNIEMAIMPLMULDIVU8 pfn = g_aMulDivU8[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aMulDivU8[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++ ) { uint16_t uDst = paTests[iTest].uDstIn; uint32_t fEfl = pfn(&uDst, paTests[iTest].uSrcIn, paTests[iTest].fEflIn); int rc = fEfl ? 0 : -1; fEfl = fEfl ? fEfl : paTests[iTest].fEflIn; if ( uDst != paTests[iTest].uDstOut || (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn) || rc != paTests[iTest].rc) RTTestFailed(g_hTest, "#%02u%s: efl=%#08x dst=%#06RX16 src=%#04RX8\n" " %s-> efl=%#08x dst=%#06RX16 rc=%d\n" "%sexpected %#08x %#06RX16 %d%s\n", iTest, iVar ? "/n" : "", paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, iVar ? " " : "", fEfl, uDst, rc, iVar ? " " : "", paTests[iTest].fEflOut, paTests[iTest].uDstOut, paTests[iTest].rc, EFlagsDiff(fEfl | fEflIgn, paTests[iTest].fEflOut | fEflIgn)); else { *g_pu16 = paTests[iTest].uDstIn; fEfl = pfn(g_pu16, paTests[iTest].uSrcIn, paTests[iTest].fEflIn); rc = fEfl ? 0 : -1; fEfl = fEfl ? fEfl : paTests[iTest].fEflIn; RTTEST_CHECK(g_hTest, *g_pu16 == paTests[iTest].uDstOut); RTTEST_CHECK(g_hTest, (fEfl | fEflIgn) == (paTests[iTest].fEflOut | fEflIgn)); RTTEST_CHECK(g_hTest, rc == paTests[iTest].rc); } } /* Benchmark if all succeeded. */ if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) { uint32_t const iTest = cTests / 2; uint32_t const cIterations = EstimateIterations(_64K, MulDivU8Bench(_64K, pfn, &paTests[iTest])); uint64_t const cNsRealRun = MulDivU8Bench(cIterations, pfn, &paTests[iTest]); RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, "%s%s", g_aMulDivU8[iFn].pszName, iVar ? "-native" : ""); } /* Next variation is native. */ pfn = g_aMulDivU8[iFn].pfnNative; } FREE_DECOMPRESSED_TESTS(g_aMulDivU8[iFn]); } } #ifdef TSTIEMAIMPL_WITH_GENERATOR static const MULDIVU16_TEST_T g_aFixedTests_idiv_u16[] = { /* low high */ /* --- eflags ---, -- uDst1 --, -- uDst2 --, */ /* in, out, in , out, in , out, uSrcIn, rc (0 or -1 for actual; -128 for auto) */ { UINT32_MAX, 0, 0x0000, 0, 0x8000, 0, 0xc004, -1 }, /* -2147483648 /-16380 = #DE (131104.00781...) */ { UINT32_MAX, 0, 0xffff, 0, 0x7fff, 0, 0x7fff, -1 }, /* 2147483647 / 32767 = #DE (65538.000030...) */ { UINT32_MAX, 0, 0x8000, 0, 0x3fff, 0, 0x7fff, -1 }, /* 0x3fff8000 / 0x7fff = #DE (0x8000) */ { UINT32_MAX, 0, 0x7fff, 0, 0x3fff, 0, 0x7fff, 0 }, /* 0x3fff7fff / 0x7fff = 32767.99996948... */ { UINT32_MAX, 0, 0x0000, 0, 0xc000, 0, 0x8000, -1 }, /* -1073741824 / -32768 = #DE (0x8000) */ { UINT32_MAX, 0, 0x0001, 0, 0xc000, 0, 0x8000, 0 }, /* -1073741823 / -32768 = 32767.999969482421875 */ }; static const MULDIVU32_TEST_T g_aFixedTests_idiv_u32[] = { /* low high */ /* --- eflags ---, ---- uDst1 ----, ---- uDst2 ----, */ /* in, out, in , out, in , out, uSrcIn, rc (0 or -1 for actual; -128 for auto) */ { UINT32_MAX, 0, 0x00000000, 0, 0x80000000, 0, 0xc0000004, -1 }, { UINT32_MAX, 0, 0xffffffff, 0, 0x7fffffff, 0, 0x7fffffff, -1 }, { UINT32_MAX, 0, 0x80000000, 0, 0x3fffffff, 0, 0x7fffffff, -1 }, { UINT32_MAX, 0, 0x7fffffff, 0, 0x3fffffff, 0, 0x7fffffff, 0 }, { UINT32_MAX, 0, 0x00000000, 0, 0xc0000000, 0, 0x80000000, -1 }, { UINT32_MAX, 0, 0x00000001, 0, 0xc0000000, 0, 0x80000000, 0 }, }; static const MULDIVU64_TEST_T g_aFixedTests_idiv_u64[] = { /* low high */ /* --- eflags ---, -------- uDst1 --------, -------- uDst2 --------, */ /* in, out, in , out, in , out, uSrcIn, rc (0 or -1 for actual; -128 for auto) */ { UINT32_MAX, 0, 0x0000000000000000, 0, 0x8000000000000000, 0, 0xc000000000000004, -1 }, { UINT32_MAX, 0, 0xffffffffffffffff, 0, 0x7fffffffffffffff, 0, 0x7fffffffffffffff, -1 }, { UINT32_MAX, 0, 0x8000000000000000, 0, 0x3fffffffffffffff, 0, 0x7fffffffffffffff, -1 }, { UINT32_MAX, 0, 0x7fffffffffffffff, 0, 0x3fffffffffffffff, 0, 0x7fffffffffffffff, 0 }, { UINT32_MAX, 0, 0x0000000000000000, 0, 0xc000000000000000, 0, 0x8000000000000000, -1 }, { UINT32_MAX, 0, 0x0000000000000001, 0, 0xc000000000000000, 0, 0x8000000000000000, 0 }, }; # define GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ DUMP_ALL_FN(MulDivU ## a_cBits, a_aSubTests) \ static RTEXITCODE MulDivU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \ && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \ continue; \ IEMBINARYOUTPUT BinOut; \ a_TestType Test; \ RT_ZERO(Test); /* 64-bit variant contains alignment padding */ \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ Test.fEflIn = RandEFlags(); \ Test.uDst1In = RandU ## a_cBits ## Dst(iTest); \ Test.uDst1Out = Test.uDst1In; \ Test.uDst2In = RandU ## a_cBits ## Dst(iTest); \ Test.uDst2Out = Test.uDst2In; \ Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \ uint32_t const fEflRet = a_aSubTests[iFn].pfnNative(&Test.uDst1Out, &Test.uDst2Out, Test.uSrcIn, Test.fEflIn); \ Test.fEflOut = fEflRet ? fEflRet : Test.fEflIn; \ Test.rc = fEflRet ? 0 : -1; \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ for (uint32_t iTest = 0; iTest < a_aSubTests[iFn].cFixedTests; iTest++ ) \ { \ Test.fEflIn = a_aSubTests[iFn].paFixedTests[iTest].fEflIn == UINT32_MAX ? RandEFlags() \ : a_aSubTests[iFn].paFixedTests[iTest].fEflIn; \ Test.uDst1In = a_aSubTests[iFn].paFixedTests[iTest].uDst1In; \ Test.uDst1Out = Test.uDst1In; \ Test.uDst2In = a_aSubTests[iFn].paFixedTests[iTest].uDst2In; \ Test.uDst2Out = Test.uDst2In; \ Test.uSrcIn = a_aSubTests[iFn].paFixedTests[iTest].uSrcIn; \ uint32_t const fEflRet = a_aSubTests[iFn].pfnNative(&Test.uDst1Out, &Test.uDst2Out, Test.uSrcIn, Test.fEflIn); \ Test.fEflOut = fEflRet ? fEflRet : Test.fEflIn; \ Test.rc = fEflRet ? 0 : -1; \ if (a_aSubTests[iFn].paFixedTests[iTest].rc == 0 || a_aSubTests[iFn].paFixedTests[iTest].rc == -1) \ Test.rc = a_aSubTests[iFn].paFixedTests[iTest].rc; \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } #else # define GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) #endif #define TEST_MULDIV(a_cBits, a_uType, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLMULDIVU ## a_cBits); \ static a_SubTestType a_aSubTests [] = \ { \ ENTRY_BIN_AMD_EX(mul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \ ENTRY_BIN_INTEL_EX(mul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \ ENTRY_BIN_AMD_EX(imul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \ ENTRY_BIN_INTEL_EX(imul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \ ENTRY_BIN_AMD_EX(div_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \ ENTRY_BIN_INTEL_EX(div_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \ ENTRY_BIN_FIX_AMD_EX(idiv_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \ ENTRY_BIN_FIX_INTEL_EX(idiv_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \ }; \ \ GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ \ static uint64_t MulDivU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLMULDIVU ## a_cBits pfn, a_TestType const *pEntry) \ { \ uint32_t const fEflIn = pEntry->fEflIn; \ a_uType const uDst1In = pEntry->uDst1In; \ a_uType const uDst2In = pEntry->uDst2In; \ a_uType const uSrcIn = pEntry->uSrcIn; \ cIterations /= 4; \ RTThreadYield(); \ uint64_t const nsStart = RTTimeNanoTS(); \ for (uint32_t i = 0; i < cIterations; i++) \ { \ a_uType uBenchDst1 = uDst1In; \ a_uType uBenchDst2 = uDst2In; \ pfn(&uBenchDst1, &uBenchDst2, uSrcIn, fEflIn); \ \ uBenchDst1 = uDst1In; \ uBenchDst2 = uDst2In; \ pfn(&uBenchDst1, &uBenchDst2, uSrcIn, fEflIn); \ \ uBenchDst1 = uDst1In; \ uBenchDst2 = uDst2In; \ pfn(&uBenchDst1, &uBenchDst2, uSrcIn, fEflIn); \ \ uBenchDst1 = uDst1In; \ uBenchDst2 = uDst2In; \ pfn(&uBenchDst1, &uBenchDst2, uSrcIn, fEflIn); \ } \ return RTTimeNanoTS() - nsStart; \ } \ \ static void MulDivU ## a_cBits ## Test(void) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ uint32_t const fEflIgn = a_aSubTests[iFn].uExtra; \ PFNIEMAIMPLMULDIVU ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_uType uDst1 = paTests[iTest].uDst1In; \ a_uType uDst2 = paTests[iTest].uDst2In; \ uint32_t fEfl = pfn(&uDst1, &uDst2, paTests[iTest].uSrcIn, paTests[iTest].fEflIn); \ int rc = fEfl ? 0 : -1; \ fEfl = fEfl ? fEfl : paTests[iTest].fEflIn; \ if ( uDst1 != paTests[iTest].uDst1Out \ || uDst2 != paTests[iTest].uDst2Out \ || (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn)\ || rc != paTests[iTest].rc) \ RTTestFailed(g_hTest, "#%04u%s: efl=%#010x dst1=" a_Fmt " dst2=" a_Fmt " src=" a_Fmt "\n" \ " -> efl=%#010x dst1=" a_Fmt " dst2=" a_Fmt " rc=%d\n" \ " expected %#010x " a_Fmt " " a_Fmt " %d%s -%s%s%s\n", \ iTest, iVar == 0 ? " " : "/n", \ paTests[iTest].fEflIn, paTests[iTest].uDst1In, paTests[iTest].uDst2In, paTests[iTest].uSrcIn, \ fEfl, uDst1, uDst2, rc, \ paTests[iTest].fEflOut, paTests[iTest].uDst1Out, paTests[iTest].uDst2Out, paTests[iTest].rc, \ EFlagsDiff(fEfl | fEflIgn, paTests[iTest].fEflOut | fEflIgn), \ uDst1 != paTests[iTest].uDst1Out ? " dst1" : "", uDst2 != paTests[iTest].uDst2Out ? " dst2" : "", \ (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn) ? " eflags" : ""); \ else \ { \ *g_pu ## a_cBits = paTests[iTest].uDst1In; \ *g_pu ## a_cBits ## Two = paTests[iTest].uDst2In; \ fEfl = pfn(g_pu ## a_cBits, g_pu ## a_cBits ## Two, paTests[iTest].uSrcIn, paTests[iTest].fEflIn); \ rc = fEfl ? 0 : -1; \ fEfl = fEfl ? fEfl : paTests[iTest].fEflIn; \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDst1Out); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits ## Two == paTests[iTest].uDst2Out); \ RTTEST_CHECK(g_hTest, (fEfl | fEflIgn) == (paTests[iTest].fEflOut | fEflIgn)); \ RTTEST_CHECK(g_hTest, rc == paTests[iTest].rc); \ } \ } \ \ /* Benchmark if all succeeded. */ \ if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \ { \ uint32_t const iTest = cTests / 2; \ uint32_t const cIterations = EstimateIterations(_64K, MulDivU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \ uint64_t const cNsRealRun = MulDivU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \ RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, \ "%s%s", a_aSubTests[iFn].pszName, iVar ? "-native" : ""); \ } \ \ /* Next variation is native. */ \ pfn = a_aSubTests[iFn].pfnNative; \ } \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } //1068553096 = 0x3FB0D388 (1068553096) TEST_MULDIV(16, uint16_t, "%#06RX16", MULDIVU16_TEST_T, INT_MULDIV_U16_T, g_aMulDivU16) TEST_MULDIV(32, uint32_t, "%#010RX32", MULDIVU32_TEST_T, INT_MULDIV_U32_T, g_aMulDivU32) TEST_MULDIV(64, uint64_t, "%#018RX64", MULDIVU64_TEST_T, INT_MULDIV_U64_T, g_aMulDivU64) #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE MulDivGenerate(uint32_t cTests, const char * const * papszNameFmts) { RTEXITCODE rcExit = MulDivU8Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = MulDivU16Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = MulDivU32Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = MulDivU64Generate(cTests, papszNameFmts); return rcExit; } static RTEXITCODE MulDivDumpAll(const char * const * papszNameFmts) { RTEXITCODE rcExit = MulDivU8DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = MulDivU16DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = MulDivU32DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = MulDivU64DumpAll(papszNameFmts); return rcExit; } #endif static void MulDivTest(void) { MulDivU8Test(); MulDivU16Test(); MulDivU32Test(); MulDivU64Test(); } /* * BSWAP */ static void BswapTest(void) { if (SubTestAndCheckIfEnabled("bswap_u16")) { *g_pu32 = UINT32_C(0x12345678); iemAImpl_bswap_u16(g_pu32); #if 0 RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0x12347856), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32)); #else RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0x12340000), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32)); #endif *g_pu32 = UINT32_C(0xffff1122); iemAImpl_bswap_u16(g_pu32); #if 0 RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0xffff2211), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32)); #else RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0xffff0000), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32)); #endif } if (SubTestAndCheckIfEnabled("bswap_u32")) { *g_pu32 = UINT32_C(0x12345678); iemAImpl_bswap_u32(g_pu32); RTTEST_CHECK(g_hTest, *g_pu32 == UINT32_C(0x78563412)); } if (SubTestAndCheckIfEnabled("bswap_u64")) { *g_pu64 = UINT64_C(0x0123456789abcdef); iemAImpl_bswap_u64(g_pu64); RTTEST_CHECK(g_hTest, *g_pu64 == UINT64_C(0xefcdab8967452301)); } } /********************************************************************************************************************************* * Floating point (x87 style) * *********************************************************************************************************************************/ /* * FPU constant loading. */ TYPEDEF_SUBTEST_TYPE(FPU_LD_CONST_T, FPU_LD_CONST_TEST_T, PFNIEMAIMPLFPUR80LDCONST); static FPU_LD_CONST_T g_aFpuLdConst[] = { ENTRY_BIN(fld1), ENTRY_BIN(fldl2t), ENTRY_BIN(fldl2e), ENTRY_BIN(fldpi), ENTRY_BIN(fldlg2), ENTRY_BIN(fldln2), ENTRY_BIN(fldz), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE FpuLdConstGenerate(uint32_t cTests, const char * const *papszNameFmts) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++) { IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuLdConst[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests; iTest += 4) { State.FCW = RandFcw(); State.FSW = RandFsw(); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) { IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); g_aFpuLdConst[iFn].pfn(&State, &Res); FPU_LD_CONST_TEST_T const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result }; GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } DUMP_ALL_FN(FpuLdConst, g_aFpuLdConst) #endif static void FpuLdConstTest(void) { /* * Inputs: * - FSW: C0, C1, C2, C3 * - FCW: Exception masks, Precision control, Rounding control. * * C1 set to 1 on stack overflow, zero otherwise. C0, C2, and C3 are "undefined". */ X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuLdConst[iFn])) continue; FPU_LD_CONST_TEST_T const *paTests = g_aFpuLdConst[iFn].paTests; uint32_t const cTests = g_aFpuLdConst[iFn].cTests; PFNIEMAIMPLFPUR80LDCONST pfn = g_aFpuLdConst[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuLdConst[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res); if ( Res.FSW != paTests[iTest].fFswOut || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) RTTestFailed(g_hTest, "#%u%s: fcw=%#06x fsw=%#06x -> fsw=%#06x %s, expected %#06x %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, Res.FSW, FormatR80(&Res.r80Result), paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), FswDiff(Res.FSW, paTests[iTest].fFswOut), !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); } pfn = g_aFpuLdConst[iFn].pfnNative; } FREE_DECOMPRESSED_TESTS(g_aFpuLdConst[iFn]); } } /* * Load floating point values from memory. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) \ static RTEXITCODE FpuLdR ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ IEMBINARYOUTPUT BinOut; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ State.FCW = RandFcw(); \ State.FSW = RandFsw(); \ a_rdTypeIn InVal = RandR ## a_cBits ## Src(iTest); \ \ for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \ { \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); \ a_aSubTests[iFn].pfn(&State, &Res, &InVal); \ a_TestType const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result, InVal }; \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } \ DUMP_ALL_FN(FpuLdR ## a_cBits, a_aSubTests) #else # define GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) #endif #define TEST_FPU_LOAD(a_cBits, a_rdTypeIn, a_SubTestType, a_aSubTests, a_TestType) \ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROM ## a_cBits,(PCX86FXSTATE, PIEMFPURESULT, PC ## a_rdTypeIn)); \ typedef FNIEMAIMPLFPULDR80FROM ## a_cBits *PFNIEMAIMPLFPULDR80FROM ## a_cBits; \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPULDR80FROM ## a_cBits); \ \ static a_SubTestType a_aSubTests[] = \ { \ ENTRY_BIN(RT_CONCAT(fld_r80_from_r,a_cBits)) \ }; \ GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) \ \ static void FpuLdR ## a_cBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ PFNIEMAIMPLFPULDR80FROM ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ a_rdTypeIn const InVal = paTests[iTest].InVal; \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ pfn(&State, &Res, &InVal); \ if ( Res.FSW != paTests[iTest].fFswOut \ || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) \ RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=%s\n" \ "%s -> fsw=%#06x %s\n" \ "%s expected %#06x %s%s%s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \ FormatR ## a_cBits(&paTests[iTest].InVal), \ iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \ iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), \ FswDiff(Res.FSW, paTests[iTest].fFswOut), \ !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", \ FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } TEST_FPU_LOAD(80, RTFLOAT80U, FPU_LD_R80_T, g_aFpuLdR80, FPU_R80_IN_TEST_T) TEST_FPU_LOAD(64, RTFLOAT64U, FPU_LD_R64_T, g_aFpuLdR64, FPU_R64_IN_TEST_T) TEST_FPU_LOAD(32, RTFLOAT32U, FPU_LD_R32_T, g_aFpuLdR32, FPU_R32_IN_TEST_T) #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE FpuLdMemGenerate(uint32_t cTests, const char * const *papszNameFmts) { RTEXITCODE rcExit = FpuLdR80Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuLdR64Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuLdR32Generate(cTests, papszNameFmts); return rcExit; } static RTEXITCODE FpuLdMemDumpAll(const char * const *papszNameFmts) { RTEXITCODE rcExit = FpuLdR80DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuLdR64DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuLdR32DumpAll(papszNameFmts); return rcExit; } #endif static void FpuLdMemTest(void) { FpuLdR80Test(); FpuLdR64Test(); FpuLdR32Test(); } /* * Load integer values from memory. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) \ static RTEXITCODE FpuLdI ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ IEMBINARYOUTPUT BinOut; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ State.FCW = RandFcw(); \ State.FSW = RandFsw(); \ a_iTypeIn InVal = (a_iTypeIn)RandU ## a_cBits ## Src(iTest); \ \ for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \ { \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); \ a_aSubTests[iFn].pfn(&State, &Res, &InVal); \ a_TestType const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result }; \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } \ DUMP_ALL_FN(FpuLdI ## a_cBits, a_aSubTests) #else # define GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) #endif #define TEST_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_SubTestType, a_aSubTests, a_TestType) \ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROMI ## a_cBits,(PCX86FXSTATE, PIEMFPURESULT, a_iTypeIn const *)); \ typedef FNIEMAIMPLFPULDR80FROMI ## a_cBits *PFNIEMAIMPLFPULDR80FROMI ## a_cBits; \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPULDR80FROMI ## a_cBits); \ \ static a_SubTestType a_aSubTests[] = \ { \ ENTRY_BIN(RT_CONCAT(fild_r80_from_i,a_cBits)) \ }; \ GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) \ \ static void FpuLdI ## a_cBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ PFNIEMAIMPLFPULDR80FROMI ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ a_iTypeIn const iInVal = paTests[iTest].iInVal; \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ pfn(&State, &Res, &iInVal); \ if ( Res.FSW != paTests[iTest].fFswOut \ || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) \ RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=" a_szFmtIn "\n" \ "%s -> fsw=%#06x %s\n" \ "%s expected %#06x %s%s%s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, paTests[iTest].iInVal, \ iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \ iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), \ FswDiff(Res.FSW, paTests[iTest].fFswOut), \ !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", \ FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } TEST_FPU_LOAD_INT(64, int64_t, "%RI64", FPU_LD_I64_T, g_aFpuLdU64, FPU_I64_IN_TEST_T) TEST_FPU_LOAD_INT(32, int32_t, "%RI32", FPU_LD_I32_T, g_aFpuLdU32, FPU_I32_IN_TEST_T) TEST_FPU_LOAD_INT(16, int16_t, "%RI16", FPU_LD_I16_T, g_aFpuLdU16, FPU_I16_IN_TEST_T) #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE FpuLdIntGenerate(uint32_t cTests, const char * const *papszNameFmts) { RTEXITCODE rcExit = FpuLdI64Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuLdI32Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuLdI16Generate(cTests, papszNameFmts); return rcExit; } static RTEXITCODE FpuLdIntDumpAll(const char * const *papszNameFmts) { RTEXITCODE rcExit = FpuLdI64DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuLdI32DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuLdI16DumpAll(papszNameFmts); return rcExit; } #endif static void FpuLdIntTest(void) { FpuLdI64Test(); FpuLdI32Test(); FpuLdI16Test(); } /* * Load binary coded decimal values from memory. */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROMD80,(PCX86FXSTATE, PIEMFPURESULT, PCRTPBCD80U)); typedef FNIEMAIMPLFPULDR80FROMD80 *PFNIEMAIMPLFPULDR80FROMD80; TYPEDEF_SUBTEST_TYPE(FPU_LD_D80_T, FPU_D80_IN_TEST_T, PFNIEMAIMPLFPULDR80FROMD80); static FPU_LD_D80_T g_aFpuLdD80[] = { ENTRY_BIN(fld_r80_from_d80) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE FpuLdD80Generate(uint32_t cTests, const char * const *papszNameFmts) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++) { IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuLdD80[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests; iTest++) { State.FCW = RandFcw(); State.FSW = RandFsw(); RTPBCD80U InVal = RandD80Src(iTest); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) { IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); g_aFpuLdD80[iFn].pfn(&State, &Res, &InVal); FPU_D80_IN_TEST_T const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result, InVal }; GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } DUMP_ALL_FN(FpuLdD80, g_aFpuLdD80) #endif static void FpuLdD80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuLdD80[iFn])) continue; FPU_D80_IN_TEST_T const * const paTests = g_aFpuLdD80[iFn].paTests; uint32_t const cTests = g_aFpuLdD80[iFn].cTests; PFNIEMAIMPLFPULDR80FROMD80 pfn = g_aFpuLdD80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuLdD80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTPBCD80U const InVal = paTests[iTest].InVal; State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res, &InVal); if ( Res.FSW != paTests[iTest].fFswOut || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=%s\n" "%s -> fsw=%#06x %s\n" "%s expected %#06x %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatD80(&paTests[iTest].InVal), iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), FswDiff(Res.FSW, paTests[iTest].fFswOut), !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); } pfn = g_aFpuLdD80[iFn].pfnNative; } FREE_DECOMPRESSED_TESTS(g_aFpuLdD80[iFn]); } } /* * Store values floating point values to memory. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR static const RTFLOAT80U g_aFpuStR32Specials[] = { RTFLOAT80U_INIT_C(0, 0xffffff8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */ RTFLOAT80U_INIT_C(1, 0xffffff8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */ RTFLOAT80U_INIT_C(0, 0xfffffe8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding */ RTFLOAT80U_INIT_C(1, 0xfffffe8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding */ }; static const RTFLOAT80U g_aFpuStR64Specials[] = { RTFLOAT80U_INIT_C(0, 0xfffffffffffffc00, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */ RTFLOAT80U_INIT_C(1, 0xfffffffffffffc00, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */ RTFLOAT80U_INIT_C(0, 0xfffffffffffff400, RTFLOAT80U_EXP_BIAS), /* near rounding */ RTFLOAT80U_INIT_C(1, 0xfffffffffffff400, RTFLOAT80U_EXP_BIAS), /* near rounding */ RTFLOAT80U_INIT_C(0, 0xd0b9e6fdda887400, 687 + RTFLOAT80U_EXP_BIAS), /* random example for this */ }; static const RTFLOAT80U g_aFpuStR80Specials[] = { RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* placeholder */ }; # define GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) \ static RTEXITCODE FpuStR ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \ { \ uint32_t const cTotalTests = cTests + RT_ELEMENTS(g_aFpuStR ## a_cBits ## Specials); \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ IEMBINARYOUTPUT BinOut; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \ for (uint32_t iTest = 0; iTest < cTotalTests; iTest++) \ { \ uint16_t const fFcw = RandFcw(); \ State.FSW = RandFsw(); \ RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, a_cBits) \ : g_aFpuStR ## a_cBits ## Specials[iTest - cTests]; \ \ for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \ { \ /* PC doesn't influence these, so leave as is. */ \ AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); \ for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) \ { \ uint16_t uFswOut = 0; \ a_rdType OutVal; \ RT_ZERO(OutVal); \ memset(&OutVal, 0xfe, sizeof(OutVal)); \ State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) \ | (iRounding << X86_FCW_RC_SHIFT); \ /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ \ State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; \ a_aSubTests[iFn].pfn(&State, &uFswOut, &OutVal, &InVal); \ a_TestType const Test = { State.FCW, State.FSW, uFswOut, InVal, OutVal }; \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ } \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } \ DUMP_ALL_FN(FpuStR ## a_cBits, a_aSubTests) #else # define GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) #endif #define TEST_FPU_STORE(a_cBits, a_rdType, a_SubTestType, a_aSubTests, a_TestType) \ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOR ## a_cBits,(PCX86FXSTATE, uint16_t *, \ PRTFLOAT ## a_cBits ## U, PCRTFLOAT80U)); \ typedef FNIEMAIMPLFPUSTR80TOR ## a_cBits *PFNIEMAIMPLFPUSTR80TOR ## a_cBits; \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPUSTR80TOR ## a_cBits); \ \ static a_SubTestType a_aSubTests[] = \ { \ ENTRY_BIN(RT_CONCAT(fst_r80_to_r,a_cBits)) \ }; \ GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) \ \ static void FpuStR ## a_cBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ PFNIEMAIMPLFPUSTR80TOR ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ RTFLOAT80U const InVal = paTests[iTest].InVal; \ uint16_t uFswOut = 0; \ a_rdType OutVal; \ RT_ZERO(OutVal); \ memset(&OutVal, 0xfe, sizeof(OutVal)); \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ pfn(&State, &uFswOut, &OutVal, &InVal); \ if ( uFswOut != paTests[iTest].fFswOut \ || !RTFLOAT ## a_cBits ## U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal)) \ RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" \ "%s -> fsw=%#06x %s\n" \ "%s expected %#06x %s%s%s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \ FormatR80(&paTests[iTest].InVal), \ iVar ? " " : "", uFswOut, FormatR ## a_cBits(&OutVal), \ iVar ? " " : "", paTests[iTest].fFswOut, FormatR ## a_cBits(&paTests[iTest].OutVal), \ FswDiff(uFswOut, paTests[iTest].fFswOut), \ !RTFLOAT ## a_cBits ## U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal) ? " - val" : "", \ FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } TEST_FPU_STORE(80, RTFLOAT80U, FPU_ST_R80_T, g_aFpuStR80, FPU_ST_R80_TEST_T) TEST_FPU_STORE(64, RTFLOAT64U, FPU_ST_R64_T, g_aFpuStR64, FPU_ST_R64_TEST_T) TEST_FPU_STORE(32, RTFLOAT32U, FPU_ST_R32_T, g_aFpuStR32, FPU_ST_R32_TEST_T) #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE FpuStMemGenerate(uint32_t cTests, const char * const *papszNameFmts) { RTEXITCODE rcExit = FpuStR80Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuStR64Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuStR32Generate(cTests, papszNameFmts); return rcExit; } static RTEXITCODE FpuStMemDumpAll(const char * const *papszNameFmts) { RTEXITCODE rcExit = FpuStR80DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuStR64DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuStR32DumpAll(papszNameFmts); return rcExit; } #endif static void FpuStMemTest(void) { FpuStR80Test(); FpuStR64Test(); FpuStR32Test(); } /* * Store integer values to memory or register. */ TYPEDEF_SUBTEST_TYPE(FPU_ST_I16_T, FPU_ST_I16_TEST_T, PFNIEMAIMPLFPUSTR80TOI16); TYPEDEF_SUBTEST_TYPE(FPU_ST_I32_T, FPU_ST_I32_TEST_T, PFNIEMAIMPLFPUSTR80TOI32); TYPEDEF_SUBTEST_TYPE(FPU_ST_I64_T, FPU_ST_I64_TEST_T, PFNIEMAIMPLFPUSTR80TOI64); static FPU_ST_I16_T g_aFpuStI16[] = { ENTRY_BIN(fist_r80_to_i16), ENTRY_BIN_AMD( fistt_r80_to_i16, 0), ENTRY_BIN_INTEL(fistt_r80_to_i16, 0), }; static FPU_ST_I32_T g_aFpuStI32[] = { ENTRY_BIN(fist_r80_to_i32), ENTRY_BIN(fistt_r80_to_i32), }; static FPU_ST_I64_T g_aFpuStI64[] = { ENTRY_BIN(fist_r80_to_i64), ENTRY_BIN(fistt_r80_to_i64), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static const RTFLOAT80U g_aFpuStI16Specials[] = /* 16-bit variant borrows properties from the 32-bit one, thus all this stuff. */ { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 13 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 13 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000080000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000080000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000100000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000100000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000200000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000200000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000400000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000400000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000800000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000800000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000ffffffffffff, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8001000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8001000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffff800000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffff000000000000, 14 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */ RTFLOAT80U_INIT_C(0, 0xfffe000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xffff800000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xffff000000000000, 14 + RTFLOAT80U_EXP_BIAS), /* min */ RTFLOAT80U_INIT_C(1, 0xfffe000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 15 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 15 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 16 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 17 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 20 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 24 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 28 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000ffffffffffff, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000ffffffffffff, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8001000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8001000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 32 + RTFLOAT80U_EXP_BIAS), }; static const RTFLOAT80U g_aFpuStI32Specials[] = { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */ RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), /* min */ RTFLOAT80U_INIT_C(0, 0xffffffff80000000, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */ RTFLOAT80U_INIT_C(1, 0xffffffff80000000, 30 + RTFLOAT80U_EXP_BIAS), /* min */ RTFLOAT80U_INIT_C(0, 0xffffffff00000000, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */ RTFLOAT80U_INIT_C(1, 0xffffffff00000000, 30 + RTFLOAT80U_EXP_BIAS), /* min */ RTFLOAT80U_INIT_C(0, 0xfffffffe00000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffe00000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS), }; static const RTFLOAT80U g_aFpuStI64Specials[] = { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 61 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, 61 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, 62 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */ RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, 62 + RTFLOAT80U_EXP_BIAS), /* min */ RTFLOAT80U_INIT_C(0, 0xfffffffffffffffe, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffffe, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000001, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000001, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000002, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000002, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 63 + RTFLOAT80U_EXP_BIAS), }; # define GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) \ static RTEXITCODE FpuStI ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ PFNIEMAIMPLFPUSTR80TOI ## a_cBits const pfn = a_aSubTests[iFn].pfnNative \ ? a_aSubTests[iFn].pfnNative : a_aSubTests[iFn].pfn; \ if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \ && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \ continue; \ \ IEMBINARYOUTPUT BinOut; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \ uint32_t const cTotalTests = cTests + RT_ELEMENTS(g_aFpuStI ## a_cBits ## Specials); \ for (uint32_t iTest = 0; iTest < cTotalTests; iTest++) \ { \ uint16_t const fFcw = RandFcw(); \ State.FSW = RandFsw(); \ RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, a_cBits, true) \ : g_aFpuStI ## a_cBits ## Specials[iTest - cTests]; \ \ for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \ { \ /* PC doesn't influence these, so leave as is. */ \ AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); \ for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) \ { \ uint16_t uFswOut = 0; \ a_iType iOutVal = ~(a_iType)2; \ State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) \ | (iRounding << X86_FCW_RC_SHIFT); \ /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ \ State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; \ pfn(&State, &uFswOut, &iOutVal, &InVal); \ a_TestType const Test = { State.FCW, State.FSW, uFswOut, InVal, iOutVal }; \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ } \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } \ DUMP_ALL_FN(FpuStI ## a_cBits, a_aSubTests) #else # define GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) #endif #define TEST_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_SubTestType, a_aSubTests, a_TestType) \ GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) \ \ static void FpuStI ## a_cBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ PFNIEMAIMPLFPUSTR80TOI ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ RTFLOAT80U const InVal = paTests[iTest].InVal; \ uint16_t uFswOut = 0; \ a_iType iOutVal = ~(a_iType)2; \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ pfn(&State, &uFswOut, &iOutVal, &InVal); \ if ( uFswOut != paTests[iTest].fFswOut \ || iOutVal != paTests[iTest].iOutVal) \ RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" \ "%s -> fsw=%#06x " a_szFmt "\n" \ "%s expected %#06x " a_szFmt "%s%s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \ FormatR80(&paTests[iTest].InVal), \ iVar ? " " : "", uFswOut, iOutVal, \ iVar ? " " : "", paTests[iTest].fFswOut, paTests[iTest].iOutVal, \ FswDiff(uFswOut, paTests[iTest].fFswOut), \ iOutVal != paTests[iTest].iOutVal ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } //fistt_r80_to_i16 diffs for AMD, of course :-) TEST_FPU_STORE_INT(64, int64_t, "%RI64", FPU_ST_I64_T, g_aFpuStI64, FPU_ST_I64_TEST_T) TEST_FPU_STORE_INT(32, int32_t, "%RI32", FPU_ST_I32_T, g_aFpuStI32, FPU_ST_I32_TEST_T) TEST_FPU_STORE_INT(16, int16_t, "%RI16", FPU_ST_I16_T, g_aFpuStI16, FPU_ST_I16_TEST_T) #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE FpuStIntGenerate(uint32_t cTests, const char * const *papszNameFmts) { RTEXITCODE rcExit = FpuStI64Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuStI32Generate(cTests, papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuStI16Generate(cTests, papszNameFmts); return rcExit; } static RTEXITCODE FpuStIntDumpAll(const char * const *papszNameFmts) { RTEXITCODE rcExit = FpuStI64DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuStI32DumpAll(papszNameFmts); if (rcExit == RTEXITCODE_SUCCESS) rcExit = FpuStI16DumpAll(papszNameFmts); return rcExit; } #endif static void FpuStIntTest(void) { FpuStI64Test(); FpuStI32Test(); FpuStI16Test(); } /* * Store as packed BCD value (memory). */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOD80,(PCX86FXSTATE, uint16_t *, PRTPBCD80U, PCRTFLOAT80U)); typedef FNIEMAIMPLFPUSTR80TOD80 *PFNIEMAIMPLFPUSTR80TOD80; TYPEDEF_SUBTEST_TYPE(FPU_ST_D80_T, FPU_ST_D80_TEST_T, PFNIEMAIMPLFPUSTR80TOD80); static FPU_ST_D80_T g_aFpuStD80[] = { ENTRY_BIN(fst_r80_to_d80), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE FpuStD80Generate(uint32_t cTests, const char * const *papszNameFmts) { static RTFLOAT80U const s_aSpecials[] = { RTFLOAT80U_INIT_C(0, 0xde0b6b3a763fffe0, RTFLOAT80U_EXP_BIAS + 59), /* 1 below max */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a763fffe0, RTFLOAT80U_EXP_BIAS + 59), /* 1 above min */ RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff0, RTFLOAT80U_EXP_BIAS + 59), /* exact max */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff0, RTFLOAT80U_EXP_BIAS + 59), /* exact min */ RTFLOAT80U_INIT_C(0, 0xde0b6b3a763fffff, RTFLOAT80U_EXP_BIAS + 59), /* max & all rounded off bits set */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a763fffff, RTFLOAT80U_EXP_BIAS + 59), /* min & all rounded off bits set */ RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff8, RTFLOAT80U_EXP_BIAS + 59), /* max & some rounded off bits set */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff8, RTFLOAT80U_EXP_BIAS + 59), /* min & some rounded off bits set */ RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff1, RTFLOAT80U_EXP_BIAS + 59), /* max & some other rounded off bits set */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff1, RTFLOAT80U_EXP_BIAS + 59), /* min & some other rounded off bits set */ RTFLOAT80U_INIT_C(0, 0xde0b6b3a76400000, RTFLOAT80U_EXP_BIAS + 59), /* 1 above max */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a76400000, RTFLOAT80U_EXP_BIAS + 59), /* 1 below min */ }; X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++) { IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuStD80[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, 59, true) : s_aSpecials[iTest - cTests]; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) { /* PC doesn't influence these, so leave as is. */ AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) { uint16_t uFswOut = 0; RTPBCD80U OutVal = RTPBCD80U_INIT_ZERO(0); State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) | (iRounding << X86_FCW_RC_SHIFT); /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; g_aFpuStD80[iFn].pfn(&State, &uFswOut, &OutVal, &InVal); FPU_ST_D80_TEST_T const Test = { State.FCW, State.FSW, uFswOut, InVal, OutVal }; GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } DUMP_ALL_FN(FpuStD80, g_aFpuStD80) #endif static void FpuStD80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuStD80[iFn])) continue; FPU_ST_D80_TEST_T const * const paTests = g_aFpuStD80[iFn].paTests; uint32_t const cTests = g_aFpuStD80[iFn].cTests; PFNIEMAIMPLFPUSTR80TOD80 pfn = g_aFpuStD80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuStD80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT80U const InVal = paTests[iTest].InVal; uint16_t uFswOut = 0; RTPBCD80U OutVal = RTPBCD80U_INIT_ZERO(0); State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; pfn(&State, &uFswOut, &OutVal, &InVal); if ( uFswOut != paTests[iTest].fFswOut || !RTPBCD80U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal)) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" "%s -> fsw=%#06x %s\n" "%s expected %#06x %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal), iVar ? " " : "", uFswOut, FormatD80(&OutVal), iVar ? " " : "", paTests[iTest].fFswOut, FormatD80(&paTests[iTest].OutVal), FswDiff(uFswOut, paTests[iTest].fFswOut), RTPBCD80U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal) ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); } pfn = g_aFpuStD80[iFn].pfnNative; } FREE_DECOMPRESSED_TESTS(g_aFpuStD80[iFn]); } } /********************************************************************************************************************************* * x87 FPU Binary Operations * *********************************************************************************************************************************/ /* * Binary FPU operations on two 80-bit floating point values. */ TYPEDEF_SUBTEST_TYPE(FPU_BINARY_R80_T, FPU_BINARY_R80_TEST_T, PFNIEMAIMPLFPUR80); enum { kFpuBinaryHint_fprem = 1, }; static FPU_BINARY_R80_T g_aFpuBinaryR80[] = { ENTRY_BIN(fadd_r80_by_r80), ENTRY_BIN(fsub_r80_by_r80), ENTRY_BIN(fsubr_r80_by_r80), ENTRY_BIN(fmul_r80_by_r80), ENTRY_BIN(fdiv_r80_by_r80), ENTRY_BIN(fdivr_r80_by_r80), ENTRY_BIN_EX(fprem_r80_by_r80, kFpuBinaryHint_fprem), ENTRY_BIN_EX(fprem1_r80_by_r80, kFpuBinaryHint_fprem), ENTRY_BIN(fscale_r80_by_r80), ENTRY_BIN_AMD( fpatan_r80_by_r80, 0), // C1 and rounding differs on AMD ENTRY_BIN_INTEL(fpatan_r80_by_r80, 0), // C1 and rounding differs on AMD ENTRY_BIN_AMD( fyl2x_r80_by_r80, 0), // C1 and rounding differs on AMD ENTRY_BIN_INTEL(fyl2x_r80_by_r80, 0), // C1 and rounding differs on AMD ENTRY_BIN_AMD( fyl2xp1_r80_by_r80, 0), // C1 and rounding differs on AMD ENTRY_BIN_INTEL(fyl2xp1_r80_by_r80, 0), // C1 and rounding differs on AMD }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE FpuBinaryR80Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT80U Val1, Val2; } const s_aSpecials[] = { { RTFLOAT80U_INIT_C(1, 0xdd762f07f2e80eef, 30142), /* causes weird overflows with DOWN and NEAR rounding. */ RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) }, { RTFLOAT80U_INIT_ZERO(0), /* causes weird overflows with UP and NEAR rounding when precision is lower than 64. */ RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) }, { RTFLOAT80U_INIT_ZERO(0), /* minus variant */ RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) }, { RTFLOAT80U_INIT_C(0, 0xcef238bb9a0afd86, 577 + RTFLOAT80U_EXP_BIAS), /* for fprem and fprem1, max sequence length */ RTFLOAT80U_INIT_C(0, 0xf11684ec0beaad94, 1 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, -13396 + RTFLOAT80U_EXP_BIAS), /* for fdiv. We missed PE. */ RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, 16383 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS), /* for fprem/fprem1 */ RTFLOAT80U_INIT_C(0, 0xe000000000000000, 0 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS), /* for fprem/fprem1 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) }, /* fscale: This may seriously increase the exponent, and it turns out overflow and underflow behaviour changes once RTFLOAT80U_EXP_BIAS_ADJUST is exceeded. */ { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^64 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 6 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1024 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 10 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^4096 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 12 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^16384 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 49150 */ { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(0, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57342 - within 10980XE range */ { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24577 */ RTFLOAT80U_INIT_C(0, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57343 - outside 10980XE range, behaviour changes! */ { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^32768 - result is within range on 10980XE */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 15 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 65534 */ { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^65536 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 16 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1048576 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 20 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^16777216 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 24 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1), /* for fscale: min * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(1, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -24575 - within 10980XE range */ { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1), /* for fscale: max * 2^-24577 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(1, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -24576 - outside 10980XE range, behaviour changes! */ /* fscale: Negative variants for the essentials of the above. */ { RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(0, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57342 - within 10980XE range */ { RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24577 */ RTFLOAT80U_INIT_C(0, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57343 - outside 10980XE range, behaviour changes! */ { RTFLOAT80U_INIT_C(1, 0x8000000000000000, 1), /* for fscale: min * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(1, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -57342 - within 10980XE range */ { RTFLOAT80U_INIT_C(1, 0x8000000000000000, 1), /* for fscale: max * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(1, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -57343 - outside 10980XE range, behaviour changes! */ /* fscale: Some fun with denormals and pseudo-denormals. */ { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), /* for fscale: max * 2^-4 */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), /* for fscale: max * 2^+1 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), RTFLOAT80U_INIT_ZERO(0) }, /* for fscale: max * 2^+0 */ { RTFLOAT80U_INIT_C(0, 0x0000000000000008, 0), /* for fscale: max * 2^-4 => underflow */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), RTFLOAT80U_INIT_ZERO(0) }, /* pseudo-normal number * 2^+0. */ { RTFLOAT80U_INIT_C(1, 0x8005000300020001, 0), RTFLOAT80U_INIT_ZERO(0) }, /* pseudo-normal number * 2^+0. */ { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^-4 */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^+0 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^+1 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS) }, }; X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormalPairs = (cTests - 144) / 4; uint32_t cMinTargetRangeInputs = cMinNormalPairs / 2; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++) { PFNIEMAIMPLFPUR80 const pfn = g_aFpuBinaryR80[iFn].pfnNative ? g_aFpuBinaryR80[iFn].pfnNative : g_aFpuBinaryR80[iFn].pfn; if ( g_aFpuBinaryR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE && g_aFpuBinaryR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) continue; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuBinaryR80[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; uint32_t cTargetRangeInputs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { RTFLOAT80U InVal1 = iTest < cTests ? RandR80Src1(iTest) : s_aSpecials[iTest - cTests].Val1; RTFLOAT80U InVal2 = iTest < cTests ? RandR80Src2(iTest) : s_aSpecials[iTest - cTests].Val2; bool fTargetRange = false; if (RTFLOAT80U_IS_NORMAL(&InVal1) && RTFLOAT80U_IS_NORMAL(&InVal2)) { cNormalInputPairs++; if ( g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem && (uint32_t)InVal1.s.uExponent - (uint32_t)InVal2.s.uExponent - (uint32_t)64 <= (uint32_t)512) cTargetRangeInputs += fTargetRange = true; else if (cTargetRangeInputs < cMinTargetRangeInputs && iTest < cTests) if (g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem) { /* The aim is two values with an exponent difference between 64 and 640 so we can do the whole sequence. */ InVal2.s.uExponent = RTRandU32Ex(1, RTFLOAT80U_EXP_MAX - 66); InVal1.s.uExponent = RTRandU32Ex(InVal2.s.uExponent + 64, RT_MIN(InVal2.s.uExponent + 512, RTFLOAT80U_EXP_MAX - 1)); cTargetRangeInputs += fTargetRange = true; } } else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint16_t const fFcwExtra = 0; uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) { State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) | (iRounding << X86_FCW_RC_SHIFT) | (iPrecision << X86_FCW_PC_SHIFT) | X86_FCW_MASK_ALL; IEMFPURESULT ResM = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &ResM, &InVal1, &InVal2); FPU_BINARY_R80_TEST_T const TestM = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResM.FSW, InVal1, InVal2, ResM.r80Result }; GenerateBinaryWrite(&BinOut, &TestM, sizeof(TestM)); State.FCW = State.FCW & ~X86_FCW_MASK_ALL; IEMFPURESULT ResU = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &ResU, &InVal1, &InVal2); FPU_BINARY_R80_TEST_T const TestU = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResU.FSW, InVal1, InVal2, ResU.r80Result }; GenerateBinaryWrite(&BinOut, &TestU, sizeof(TestU)); uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF; if (fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULT Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res1, &InVal1, &InVal2); FPU_BINARY_R80_TEST_T const Test1 = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res1.FSW, InVal1, InVal2, Res1.r80Result }; GenerateBinaryWrite(&BinOut, &Test1, sizeof(Test1)); if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK)) { fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK; State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULT Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res2, &InVal1, &InVal2); FPU_BINARY_R80_TEST_T const Test2 = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res2.FSW, InVal1, InVal2, Res2.r80Result }; GenerateBinaryWrite(&BinOut, &Test2, sizeof(Test2)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1) if (fUnmasked & fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked); IEMFPURESULT Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res3, &InVal1, &InVal2); FPU_BINARY_R80_TEST_T const Test3 = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res3.FSW, InVal1, InVal2, Res3.r80Result }; GenerateBinaryWrite(&BinOut, &Test3, sizeof(Test3)); } } /* If the values are in range and caused no exceptions, do the whole series of partial reminders till we get the non-partial one or run into an exception. */ if (fTargetRange && fXcpt == 0 && g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem) { IEMFPURESULT ResPrev = ResM; for (unsigned i = 0; i < 32 && (ResPrev.FSW & (X86_FSW_C2 | X86_FSW_XCPT_MASK)) == X86_FSW_C2; i++) { State.FCW = State.FCW | X86_FCW_MASK_ALL; State.FSW = ResPrev.FSW; IEMFPURESULT ResSeq = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &ResSeq, &ResPrev.r80Result, &InVal2); FPU_BINARY_R80_TEST_T const TestSeq = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResSeq.FSW, ResPrev.r80Result, InVal2, ResSeq.r80Result }; GenerateBinaryWrite(&BinOut, &TestSeq, sizeof(TestSeq)); ResPrev = ResSeq; } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } DUMP_ALL_FN(FpuBinaryR80, g_aFpuBinaryR80) #endif static void FpuBinaryR80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuBinaryR80[iFn])) continue; FPU_BINARY_R80_TEST_T const * const paTests = g_aFpuBinaryR80[iFn].paTests; uint32_t const cTests = g_aFpuBinaryR80[iFn].cTests; PFNIEMAIMPLFPUR80 pfn = g_aFpuBinaryR80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuBinaryR80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT80U const InVal1 = paTests[iTest].InVal1; RTFLOAT80U const InVal2 = paTests[iTest].InVal2; IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; pfn(&State, &Res, &InVal1, &InVal2); if ( Res.FSW != paTests[iTest].fFswOut || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal)) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" "%s -> fsw=%#06x %s\n" "%s expected %#06x %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal1), FormatR80(&paTests[iTest].InVal2), iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal), FswDiff(Res.FSW, paTests[iTest].fFswOut), !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); } pfn = g_aFpuBinaryR80[iFn].pfnNative; } FREE_DECOMPRESSED_TESTS(g_aFpuBinaryR80[iFn]); } } /* * Binary FPU operations on one 80-bit floating point value and one 64-bit or 32-bit one. */ #define int64_t_IS_NORMAL(a) 1 #define int32_t_IS_NORMAL(a) 1 #define int16_t_IS_NORMAL(a) 1 #ifdef TSTIEMAIMPL_WITH_GENERATOR static struct { RTFLOAT80U Val1; RTFLOAT64U Val2; } const s_aFpuBinaryR64Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT64U_INIT_C(0, 0xfeeeeddddcccc, RTFLOAT64U_EXP_BIAS) }, /* whatever */ }; static struct { RTFLOAT80U Val1; RTFLOAT32U Val2; } const s_aFpuBinaryR32Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT32U_INIT_C(0, 0x7fffee, RTFLOAT32U_EXP_BIAS) }, /* whatever */ }; static struct { RTFLOAT80U Val1; int32_t Val2; } const s_aFpuBinaryI32Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT32_MAX }, /* whatever */ }; static struct { RTFLOAT80U Val1; int16_t Val2; } const s_aFpuBinaryI16Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT16_MAX }, /* whatever */ }; # define GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \ static RTEXITCODE FpuBinary ## a_UpBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \ { \ cTests = RT_MAX(160, cTests); /* there are 144 standard input variations for r80 by r80 */ \ \ X86FXSTATE State; \ RT_ZERO(State); \ uint32_t cMinNormalPairs = (cTests - 144) / 4; \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ IEMBINARYOUTPUT BinOut; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \ uint32_t cNormalInputPairs = 0; \ for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinary ## a_UpBits ## Specials); iTest += 1) \ { \ RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest, a_cBits, a_fIntType) \ : s_aFpuBinary ## a_UpBits ## Specials[iTest - cTests].Val1; \ a_Type2 const InVal2 = iTest < cTests ? Rand ## a_UpBits ## Src2(iTest) \ : s_aFpuBinary ## a_UpBits ## Specials[iTest - cTests].Val2; \ if (RTFLOAT80U_IS_NORMAL(&InVal1) && a_Type2 ## _IS_NORMAL(&InVal2)) \ cNormalInputPairs++; \ else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) \ { \ iTest -= 1; \ continue; \ } \ \ uint16_t const fFcw = RandFcw(); \ State.FSW = RandFsw(); \ \ for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \ { \ for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) \ { \ for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) \ { \ State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) \ | (iRounding << X86_FCW_RC_SHIFT) \ | (iPrecision << X86_FCW_PC_SHIFT) \ | iMask; \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ a_aSubTests[iFn].pfn(&State, &Res, &InVal1, &InVal2); \ a_TestType const Test = { State.FCW, State.FSW, Res.FSW, InVal1, InVal2, Res.r80Result }; \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ } \ } \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } \ DUMP_ALL_FN(FpuBinary ## a_UpBits, a_aSubTests) #else # define GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) #endif #define TEST_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_I, a_Type2, a_SubTestType, a_aSubTests, a_TestType) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPU ## a_UpBits); \ \ static a_SubTestType a_aSubTests[] = \ { \ ENTRY_BIN(RT_CONCAT4(f, a_I, add_r80_by_, a_LoBits)), \ ENTRY_BIN(RT_CONCAT4(f, a_I, mul_r80_by_, a_LoBits)), \ ENTRY_BIN(RT_CONCAT4(f, a_I, sub_r80_by_, a_LoBits)), \ ENTRY_BIN(RT_CONCAT4(f, a_I, subr_r80_by_, a_LoBits)), \ ENTRY_BIN(RT_CONCAT4(f, a_I, div_r80_by_, a_LoBits)), \ ENTRY_BIN(RT_CONCAT4(f, a_I, divr_r80_by_, a_LoBits)), \ }; \ \ GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \ \ static void FpuBinary ## a_UpBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ PFNIEMAIMPLFPU ## a_UpBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ RTFLOAT80U const InVal1 = paTests[iTest].InVal1; \ a_Type2 const InVal2 = paTests[iTest].InVal2; \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ pfn(&State, &Res, &InVal1, &InVal2); \ if ( Res.FSW != paTests[iTest].fFswOut \ || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal)) \ RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" \ "%s -> fsw=%#06x %s\n" \ "%s expected %#06x %s%s%s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \ FormatR80(&paTests[iTest].InVal1), Format ## a_UpBits(&paTests[iTest].InVal2), \ iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \ iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal), \ FswDiff(Res.FSW, paTests[iTest].fFswOut), \ !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "", \ FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } TEST_FPU_BINARY_SMALL(0, 64, r64, R64, RT_NOTHING, RTFLOAT64U, FPU_BINARY_R64_T, g_aFpuBinaryR64, FPU_BINARY_R64_TEST_T) TEST_FPU_BINARY_SMALL(0, 32, r32, R32, RT_NOTHING, RTFLOAT32U, FPU_BINARY_R32_T, g_aFpuBinaryR32, FPU_BINARY_R32_TEST_T) TEST_FPU_BINARY_SMALL(1, 32, i32, I32, i, int32_t, FPU_BINARY_I32_T, g_aFpuBinaryI32, FPU_BINARY_I32_TEST_T) TEST_FPU_BINARY_SMALL(1, 16, i16, I16, i, int16_t, FPU_BINARY_I16_T, g_aFpuBinaryI16, FPU_BINARY_I16_TEST_T) /* * Binary operations on 80-, 64- and 32-bit floating point only affecting FSW. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR static struct { RTFLOAT80U Val1, Val2; } const s_aFpuBinaryFswR80Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS) }, /* whatever */ }; static struct { RTFLOAT80U Val1; RTFLOAT64U Val2; } const s_aFpuBinaryFswR64Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT64U_INIT_C(0, 0xfeeeeddddcccc, RTFLOAT64U_EXP_BIAS) }, /* whatever */ }; static struct { RTFLOAT80U Val1; RTFLOAT32U Val2; } const s_aFpuBinaryFswR32Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT32U_INIT_C(0, 0x7fffee, RTFLOAT32U_EXP_BIAS) }, /* whatever */ }; static struct { RTFLOAT80U Val1; int32_t Val2; } const s_aFpuBinaryFswI32Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT32_MAX }, /* whatever */ }; static struct { RTFLOAT80U Val1; int16_t Val2; } const s_aFpuBinaryFswI16Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT16_MAX }, /* whatever */ }; # define GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \ static RTEXITCODE FpuBinaryFsw ## a_UpBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \ { \ cTests = RT_MAX(160, cTests); /* there are 144 standard input variations for r80 by r80 */ \ \ X86FXSTATE State; \ RT_ZERO(State); \ uint32_t cMinNormalPairs = (cTests - 144) / 4; \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ IEMBINARYOUTPUT BinOut; \ AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \ uint32_t cNormalInputPairs = 0; \ for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinaryFsw ## a_UpBits ## Specials); iTest += 1) \ { \ RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest, a_cBits, a_fIntType) \ : s_aFpuBinaryFsw ## a_UpBits ## Specials[iTest - cTests].Val1; \ a_Type2 const InVal2 = iTest < cTests ? Rand ## a_UpBits ## Src2(iTest) \ : s_aFpuBinaryFsw ## a_UpBits ## Specials[iTest - cTests].Val2; \ if (RTFLOAT80U_IS_NORMAL(&InVal1) && a_Type2 ## _IS_NORMAL(&InVal2)) \ cNormalInputPairs++; \ else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) \ { \ iTest -= 1; \ continue; \ } \ \ uint16_t const fFcw = RandFcw(); \ State.FSW = RandFsw(); \ \ /* Guess these aren't affected by precision or rounding, so just flip the exception mask. */ \ for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) \ { \ State.FCW = (fFcw & ~(X86_FCW_MASK_ALL)) | iMask; \ uint16_t fFswOut = 0; \ a_aSubTests[iFn].pfn(&State, &fFswOut, &InVal1, &InVal2); \ a_TestType const Test = { State.FCW, State.FSW, fFswOut, InVal1, InVal2 }; \ GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \ } \ } \ AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \ } \ return RTEXITCODE_SUCCESS; \ } \ DUMP_ALL_FN(FpuBinaryFsw ## a_UpBits, a_aSubTests) #else # define GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) #endif #define TEST_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_SubTestType, a_aSubTests, a_TestType, ...) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPU ## a_UpBits ## FSW); \ \ static a_SubTestType a_aSubTests[] = \ { \ __VA_ARGS__ \ }; \ \ GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \ \ static void FpuBinaryFsw ## a_UpBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \ continue; \ \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = a_aSubTests[iFn].cTests; \ PFNIEMAIMPLFPU ## a_UpBits ## FSW pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ uint16_t fFswOut = 0; \ RTFLOAT80U const InVal1 = paTests[iTest].InVal1; \ a_Type2 const InVal2 = paTests[iTest].InVal2; \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ pfn(&State, &fFswOut, &InVal1, &InVal2); \ if (fFswOut != paTests[iTest].fFswOut) \ RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" \ "%s -> fsw=%#06x\n" \ "%s expected %#06x %s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \ FormatR80(&paTests[iTest].InVal1), Format ## a_UpBits(&paTests[iTest].InVal2), \ iVar ? " " : "", fFswOut, \ iVar ? " " : "", paTests[iTest].fFswOut, \ FswDiff(fFswOut, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \ } \ } TEST_FPU_BINARY_FSW(0, 80, R80, RTFLOAT80U, FPU_BINARY_FSW_R80_T, g_aFpuBinaryFswR80, FPU_BINARY_R80_TEST_T, ENTRY_BIN(fcom_r80_by_r80), ENTRY_BIN(fucom_r80_by_r80)) TEST_FPU_BINARY_FSW(0, 64, R64, RTFLOAT64U, FPU_BINARY_FSW_R64_T, g_aFpuBinaryFswR64, FPU_BINARY_R64_TEST_T, ENTRY_BIN(fcom_r80_by_r64)) TEST_FPU_BINARY_FSW(0, 32, R32, RTFLOAT32U, FPU_BINARY_FSW_R32_T, g_aFpuBinaryFswR32, FPU_BINARY_R32_TEST_T, ENTRY_BIN(fcom_r80_by_r32)) TEST_FPU_BINARY_FSW(1, 32, I32, int32_t, FPU_BINARY_FSW_I32_T, g_aFpuBinaryFswI32, FPU_BINARY_I32_TEST_T, ENTRY_BIN(ficom_r80_by_i32)) TEST_FPU_BINARY_FSW(1, 16, I16, int16_t, FPU_BINARY_FSW_I16_T, g_aFpuBinaryFswI16, FPU_BINARY_I16_TEST_T, ENTRY_BIN(ficom_r80_by_i16)) /* * Binary operations on 80-bit floating point that effects only EFLAGS and possibly FSW. */ TYPEDEF_SUBTEST_TYPE(FPU_BINARY_EFL_R80_T, FPU_BINARY_EFL_R80_TEST_T, PFNIEMAIMPLFPUR80EFL); static FPU_BINARY_EFL_R80_T g_aFpuBinaryEflR80[] = { ENTRY_BIN(fcomi_r80_by_r80), ENTRY_BIN(fucomi_r80_by_r80), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static struct { RTFLOAT80U Val1, Val2; } const s_aFpuBinaryEflR80Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS) }, /* whatever */ }; static RTEXITCODE FpuBinaryEflR80Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(160, cTests); /* there are 144 standard input variations */ X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++) { IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuBinaryEflR80[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinaryEflR80Specials); iTest += 1) { RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest) : s_aFpuBinaryEflR80Specials[iTest - cTests].Val1; RTFLOAT80U const InVal2 = iTest < cTests ? RandR80Src2(iTest) : s_aFpuBinaryEflR80Specials[iTest - cTests].Val2; if (RTFLOAT80U_IS_NORMAL(&InVal1) && RTFLOAT80U_IS_NORMAL(&InVal2)) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); /* Guess these aren't affected by precision or rounding, so just flip the exception mask. */ for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) { State.FCW = (fFcw & ~(X86_FCW_MASK_ALL)) | iMask; uint16_t uFswOut = 0; uint32_t fEflOut = g_aFpuBinaryEflR80[iFn].pfn(&State, &uFswOut, &InVal1, &InVal2); FPU_BINARY_EFL_R80_TEST_T const Test = { State.FCW, State.FSW, uFswOut, InVal1, InVal2, fEflOut, }; GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } DUMP_ALL_FN(FpuBinaryEflR80, g_aFpuBinaryEflR80) #endif /*TSTIEMAIMPL_WITH_GENERATOR*/ static void FpuBinaryEflR80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuBinaryEflR80[iFn])) continue; FPU_BINARY_EFL_R80_TEST_T const * const paTests = g_aFpuBinaryEflR80[iFn].paTests; uint32_t const cTests = g_aFpuBinaryEflR80[iFn].cTests; PFNIEMAIMPLFPUR80EFL pfn = g_aFpuBinaryEflR80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuBinaryEflR80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT80U const InVal1 = paTests[iTest].InVal1; RTFLOAT80U const InVal2 = paTests[iTest].InVal2; State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; uint16_t uFswOut = 0; uint32_t fEflOut = pfn(&State, &uFswOut, &InVal1, &InVal2); if ( uFswOut != paTests[iTest].fFswOut || fEflOut != paTests[iTest].fEflOut) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" "%s -> fsw=%#06x efl=%#08x\n" "%s expected %#06x %#08x %s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal1), FormatR80(&paTests[iTest].InVal2), iVar ? " " : "", uFswOut, fEflOut, iVar ? " " : "", paTests[iTest].fFswOut, paTests[iTest].fEflOut, FswDiff(uFswOut, paTests[iTest].fFswOut), EFlagsDiff(fEflOut, paTests[iTest].fEflOut), FormatFcw(paTests[iTest].fFcw)); } pfn = g_aFpuBinaryEflR80[iFn].pfnNative; } FREE_DECOMPRESSED_TESTS(g_aFpuBinaryEflR80[iFn]); } } /********************************************************************************************************************************* * x87 FPU Unary Operations * *********************************************************************************************************************************/ /* * Unary FPU operations on one 80-bit floating point value. * * Note! The FCW reserved bit 7 is used to indicate whether a test may produce * a rounding error or not. */ TYPEDEF_SUBTEST_TYPE(FPU_UNARY_R80_T, FPU_UNARY_R80_TEST_T, PFNIEMAIMPLFPUR80UNARY); enum { kUnary_Accurate = 0, kUnary_Accurate_Trigonometry /*probably not accurate, but need impl to know*/, kUnary_Rounding_F2xm1 }; static FPU_UNARY_R80_T g_aFpuUnaryR80[] = { ENTRY_BIN_EX( fabs_r80, kUnary_Accurate), ENTRY_BIN_EX( fchs_r80, kUnary_Accurate), ENTRY_BIN_AMD_EX( f2xm1_r80, 0, kUnary_Accurate), // C1 differs for -1m0x3fb263cc2c331e15^-2654 (different ln2 constant?) ENTRY_BIN_INTEL_EX(f2xm1_r80, 0, kUnary_Rounding_F2xm1), ENTRY_BIN_EX( fsqrt_r80, kUnary_Accurate), ENTRY_BIN_EX( frndint_r80, kUnary_Accurate), ENTRY_BIN_AMD_EX( fsin_r80, 0, kUnary_Accurate_Trigonometry), // value & C1 differences for pseudo denormals and others (e.g. -1m0x2b1e5683cbca5725^-3485) ENTRY_BIN_INTEL_EX(fsin_r80, 0, kUnary_Accurate_Trigonometry), ENTRY_BIN_AMD_EX( fcos_r80, 0, kUnary_Accurate_Trigonometry), // value & C1 differences ENTRY_BIN_INTEL_EX(fcos_r80, 0, kUnary_Accurate_Trigonometry), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static bool FpuUnaryR80MayHaveRoundingError(PCRTFLOAT80U pr80Val, int enmKind) { if ( enmKind == kUnary_Rounding_F2xm1 && RTFLOAT80U_IS_NORMAL(pr80Val) && pr80Val->s.uExponent < RTFLOAT80U_EXP_BIAS && pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS - 69) return true; return false; } DUMP_ALL_FN(FpuUnaryR80, g_aFpuUnaryR80) static RTEXITCODE FpuUnaryR80Generate(uint32_t cTests, const char * const *papszNameFmts) { static RTFLOAT80U const s_aSpecials[] = { RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS - 1), /* 0.5 (for f2xm1) */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, RTFLOAT80U_EXP_BIAS - 1), /* -0.5 (for f2xm1) */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* 1.0 (for f2xm1) */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* -1.0 (for f2xm1) */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0), /* +1.0^-16382 */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, 0), /* -1.0^-16382 */ RTFLOAT80U_INIT_C(0, 0xc000000000000000, 0), /* +1.1^-16382 */ RTFLOAT80U_INIT_C(1, 0xc000000000000000, 0), /* -1.1^-16382 */ RTFLOAT80U_INIT_C(0, 0xc000100000000000, 0), /* +1.1xxx1^-16382 */ RTFLOAT80U_INIT_C(1, 0xc000100000000000, 0), /* -1.1xxx1^-16382 */ }; X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormals = cTests / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++) { PFNIEMAIMPLFPUR80UNARY const pfn = g_aFpuUnaryR80[iFn].pfnNative ? g_aFpuUnaryR80[iFn].pfnNative : g_aFpuUnaryR80[iFn].pfn; if ( g_aFpuUnaryR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE && g_aFpuUnaryR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) continue; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuUnaryR80[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputs = 0; uint32_t cTargetRangeInputs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { RTFLOAT80U InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests]; if (RTFLOAT80U_IS_NORMAL(&InVal)) { if (g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1) { unsigned uTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? RTFLOAT80U_EXP_BIAS /* 2^0..2^-69 */ : RTFLOAT80U_EXP_BIAS + 63 + 1 /* 2^64..2^-64 */; unsigned cTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? 69 : 63*2 + 2; if (InVal.s.uExponent <= uTargetExp && InVal.s.uExponent >= uTargetExp - cTargetExp) cTargetRangeInputs++; else if (cTargetRangeInputs < cMinNormals / 2 && iTest + cMinNormals / 2 >= cTests && iTest < cTests) { InVal.s.uExponent = RTRandU32Ex(uTargetExp - cTargetExp, uTargetExp); cTargetRangeInputs++; } } cNormalInputs++; } else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests) { iTest -= 1; continue; } uint16_t const fFcwExtra = FpuUnaryR80MayHaveRoundingError(&InVal, g_aFpuUnaryR80[iFn].uExtra) ? 0x80 : 0; uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) { State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) | (iRounding << X86_FCW_RC_SHIFT) | (iPrecision << X86_FCW_PC_SHIFT) | X86_FCW_MASK_ALL; IEMFPURESULT ResM = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &ResM, &InVal); FPU_UNARY_R80_TEST_T const TestM = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResM.FSW, InVal, ResM.r80Result }; GenerateBinaryWrite(&BinOut, &TestM, sizeof(TestM)); State.FCW = State.FCW & ~X86_FCW_MASK_ALL; IEMFPURESULT ResU = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &ResU, &InVal); FPU_UNARY_R80_TEST_T const TestU = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResU.FSW, InVal, ResU.r80Result }; GenerateBinaryWrite(&BinOut, &TestU, sizeof(TestU)); uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF; if (fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULT Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res1, &InVal); FPU_UNARY_R80_TEST_T const Test1 = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res1.FSW, InVal, Res1.r80Result }; GenerateBinaryWrite(&BinOut, &Test1, sizeof(Test1)); if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK)) { fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK; State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULT Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res2, &InVal); FPU_UNARY_R80_TEST_T const Test2 = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res2.FSW, InVal, Res2.r80Result }; GenerateBinaryWrite(&BinOut, &Test2, sizeof(Test2)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1) if (fUnmasked & fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked); IEMFPURESULT Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res3, &InVal); FPU_UNARY_R80_TEST_T const Test3 = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res3.FSW, InVal, Res3.r80Result }; GenerateBinaryWrite(&BinOut, &Test3, sizeof(Test3)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static bool FpuIsEqualFcwMaybeIgnoreRoundErr(uint16_t fFcw1, uint16_t fFcw2, bool fRndErrOk, bool *pfRndErr) { if (fFcw1 == fFcw2) return true; if (fRndErrOk && (fFcw1 & ~X86_FSW_C1) == (fFcw2 & ~X86_FSW_C1)) { *pfRndErr = true; return true; } return false; } static bool FpuIsEqualR80MaybeIgnoreRoundErr(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, bool fRndErrOk, bool *pfRndErr) { if (RTFLOAT80U_ARE_IDENTICAL(pr80Val1, pr80Val2)) return true; if ( fRndErrOk && pr80Val1->s.fSign == pr80Val2->s.fSign) { if ( ( pr80Val1->s.uExponent == pr80Val2->s.uExponent && ( pr80Val1->s.uMantissa > pr80Val2->s.uMantissa ? pr80Val1->s.uMantissa - pr80Val2->s.uMantissa == 1 : pr80Val2->s.uMantissa - pr80Val1->s.uMantissa == 1)) || ( pr80Val1->s.uExponent + 1 == pr80Val2->s.uExponent && pr80Val1->s.uMantissa == UINT64_MAX && pr80Val2->s.uMantissa == RT_BIT_64(63)) || ( pr80Val1->s.uExponent == pr80Val2->s.uExponent + 1 && pr80Val2->s.uMantissa == UINT64_MAX && pr80Val1->s.uMantissa == RT_BIT_64(63)) ) { *pfRndErr = true; return true; } } return false; } static void FpuUnaryR80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuUnaryR80[iFn])) continue; FPU_UNARY_R80_TEST_T const * const paTests = g_aFpuUnaryR80[iFn].paTests; uint32_t const cTests = g_aFpuUnaryR80[iFn].cTests; PFNIEMAIMPLFPUR80UNARY pfn = g_aFpuUnaryR80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryR80[iFn]); uint32_t cRndErrs = 0; uint32_t cPossibleRndErrs = 0; if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT80U const InVal = paTests[iTest].InVal; IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; bool const fRndErrOk = RT_BOOL(paTests[iTest].fFcw & 0x80); State.FCW = paTests[iTest].fFcw & ~(uint16_t)0x80; State.FSW = paTests[iTest].fFswIn; pfn(&State, &Res, &InVal); bool fRndErr = false; if ( !FpuIsEqualFcwMaybeIgnoreRoundErr(Res.FSW, paTests[iTest].fFswOut, fRndErrOk, &fRndErr) || !FpuIsEqualR80MaybeIgnoreRoundErr(&Res.r80Result, &paTests[iTest].OutVal, fRndErrOk, &fRndErr)) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" "%s -> fsw=%#06x %s\n" "%s expected %#06x %s%s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal), iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal), FswDiff(Res.FSW, paTests[iTest].fFswOut), !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "", fRndErrOk ? " - rounding errors ok" : "", FormatFcw(paTests[iTest].fFcw)); cRndErrs += fRndErr; cPossibleRndErrs += fRndErrOk; } pfn = g_aFpuUnaryR80[iFn].pfnNative; } if (cPossibleRndErrs > 0) RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "rounding errors: %u out of %u\n", cRndErrs, cPossibleRndErrs); FREE_DECOMPRESSED_TESTS(g_aFpuUnaryR80[iFn]); } } /* * Unary FPU operations on one 80-bit floating point value, but only affects the FSW. */ TYPEDEF_SUBTEST_TYPE(FPU_UNARY_FSW_R80_T, FPU_UNARY_R80_TEST_T, PFNIEMAIMPLFPUR80UNARYFSW); static FPU_UNARY_FSW_R80_T g_aFpuUnaryFswR80[] = { ENTRY_BIN(ftst_r80), ENTRY_BIN_EX(fxam_r80, 1), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE FpuUnaryFswR80Generate(uint32_t cTests, const char * const *papszNameFmts) { static RTFLOAT80U const s_aSpecials[] = { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), /* whatever */ }; X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormals = cTests / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++) { bool const fIsFxam = g_aFpuUnaryFswR80[iFn].uExtra == 1; PFNIEMAIMPLFPUR80UNARYFSW const pfn = g_aFpuUnaryFswR80[iFn].pfnNative ? g_aFpuUnaryFswR80[iFn].pfnNative : g_aFpuUnaryFswR80[iFn].pfn; if ( g_aFpuUnaryFswR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE && g_aFpuUnaryFswR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) continue; State.FTW = 0; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuUnaryFswR80[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests]; if (RTFLOAT80U_IS_NORMAL(&InVal)) cNormalInputs++; else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests) { iTest -= 1; continue; } uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); if (!fIsFxam) { for (uint16_t iRounding = 0; iRounding < 4; iRounding++) { for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) { for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) { State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) | (iRounding << X86_FCW_RC_SHIFT) | (iPrecision << X86_FCW_PC_SHIFT) | iMask; uint16_t fFswOut = 0; pfn(&State, &fFswOut, &InVal); FPU_UNARY_R80_TEST_T const Test = { State.FCW, State.FSW, fFswOut, InVal }; GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); } } } } else { uint16_t fFswOut = 0; uint16_t const fEmpty = RTRandU32Ex(0, 3) == 3 ? 0x80 : 0; /* Using MBZ bit 7 in FCW to indicate empty tag value. */ State.FTW = !fEmpty ? 1 << X86_FSW_TOP_GET(State.FSW) : 0; State.FCW = fFcw; pfn(&State, &fFswOut, &InVal); FPU_UNARY_R80_TEST_T const Test = { (uint16_t)(fFcw | fEmpty), State.FSW, fFswOut, InVal }; GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } DUMP_ALL_FN(FpuUnaryFswR80, g_aFpuUnaryFswR80) #endif static void FpuUnaryFswR80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuUnaryFswR80[iFn])) continue; FPU_UNARY_R80_TEST_T const * const paTests = g_aFpuUnaryFswR80[iFn].paTests; uint32_t const cTests = g_aFpuUnaryFswR80[iFn].cTests; PFNIEMAIMPLFPUR80UNARYFSW pfn = g_aFpuUnaryFswR80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryFswR80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT80U const InVal = paTests[iTest].InVal; uint16_t fFswOut = 0; State.FSW = paTests[iTest].fFswIn; State.FCW = paTests[iTest].fFcw & ~(uint16_t)0x80; /* see generator code */ State.FTW = paTests[iTest].fFcw & 0x80 ? 0 : 1 << X86_FSW_TOP_GET(paTests[iTest].fFswIn); pfn(&State, &fFswOut, &InVal); if (fFswOut != paTests[iTest].fFswOut) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" "%s -> fsw=%#06x\n" "%s expected %#06x %s (%s%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal), iVar ? " " : "", fFswOut, iVar ? " " : "", paTests[iTest].fFswOut, FswDiff(fFswOut, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw), paTests[iTest].fFcw & 0x80 ? " empty" : ""); } pfn = g_aFpuUnaryFswR80[iFn].pfnNative; } FREE_DECOMPRESSED_TESTS(g_aFpuUnaryFswR80[iFn]); } } /* * Unary FPU operations on one 80-bit floating point value, but with two outputs. */ TYPEDEF_SUBTEST_TYPE(FPU_UNARY_TWO_R80_T, FPU_UNARY_TWO_R80_TEST_T, PFNIEMAIMPLFPUR80UNARYTWO); static FPU_UNARY_TWO_R80_T g_aFpuUnaryTwoR80[] = { ENTRY_BIN(fxtract_r80_r80), ENTRY_BIN_AMD( fptan_r80_r80, 0), // rounding differences ENTRY_BIN_INTEL(fptan_r80_r80, 0), ENTRY_BIN_AMD( fsincos_r80_r80, 0), // C1 differences & value differences (e.g. -1m0x235cf2f580244a27^-1696) ENTRY_BIN_INTEL(fsincos_r80_r80, 0), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static RTEXITCODE FpuUnaryTwoR80Generate(uint32_t cTests, const char * const *papszNameFmts) { static RTFLOAT80U const s_aSpecials[] = { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), /* whatever */ }; X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormals = cTests / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++) { PFNIEMAIMPLFPUR80UNARYTWO const pfn = g_aFpuUnaryTwoR80[iFn].pfnNative ? g_aFpuUnaryTwoR80[iFn].pfnNative : g_aFpuUnaryTwoR80[iFn].pfn; if ( g_aFpuUnaryTwoR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE && g_aFpuUnaryTwoR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) continue; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuUnaryTwoR80[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputs = 0; uint32_t cTargetRangeInputs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { RTFLOAT80U InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests]; if (RTFLOAT80U_IS_NORMAL(&InVal)) { if (iFn != 0) { unsigned uTargetExp = RTFLOAT80U_EXP_BIAS + 63 + 1 /* 2^64..2^-64 */; unsigned cTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? 69 : 63*2 + 2; if (InVal.s.uExponent <= uTargetExp && InVal.s.uExponent >= uTargetExp - cTargetExp) cTargetRangeInputs++; else if (cTargetRangeInputs < cMinNormals / 2 && iTest + cMinNormals / 2 >= cTests && iTest < cTests) { InVal.s.uExponent = RTRandU32Ex(uTargetExp - cTargetExp, uTargetExp); cTargetRangeInputs++; } } cNormalInputs++; } else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests) { iTest -= 1; continue; } uint16_t const fFcwExtra = 0; /* for rounding error indication */ uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) { State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) | (iRounding << X86_FCW_RC_SHIFT) | (iPrecision << X86_FCW_PC_SHIFT) | X86_FCW_MASK_ALL; IEMFPURESULTTWO ResM = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; pfn(&State, &ResM, &InVal); FPU_UNARY_TWO_R80_TEST_T const TestM = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResM.FSW, InVal, ResM.r80Result1, ResM.r80Result2 }; GenerateBinaryWrite(&BinOut, &TestM, sizeof(TestM)); State.FCW = State.FCW & ~X86_FCW_MASK_ALL; IEMFPURESULTTWO ResU = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; pfn(&State, &ResU, &InVal); FPU_UNARY_TWO_R80_TEST_T const TestU = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResU.FSW, InVal, ResU.r80Result1, ResU.r80Result2 }; GenerateBinaryWrite(&BinOut, &TestU, sizeof(TestU)); uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF; if (fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULTTWO Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; pfn(&State, &Res1, &InVal); FPU_UNARY_TWO_R80_TEST_T const Test1 = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res1.FSW, InVal, Res1.r80Result1, Res1.r80Result2 }; GenerateBinaryWrite(&BinOut, &Test1, sizeof(Test1)); if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK)) { fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK; State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULTTWO Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; pfn(&State, &Res2, &InVal); FPU_UNARY_TWO_R80_TEST_T const Test2 = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res2.FSW, InVal, Res2.r80Result1, Res2.r80Result2 }; GenerateBinaryWrite(&BinOut, &Test2, sizeof(Test2)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1) if (fUnmasked & fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked); IEMFPURESULTTWO Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; pfn(&State, &Res3, &InVal); FPU_UNARY_TWO_R80_TEST_T const Test3 = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res3.FSW, InVal, Res3.r80Result1, Res3.r80Result2 }; GenerateBinaryWrite(&BinOut, &Test3, sizeof(Test3)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } DUMP_ALL_FN(FpuUnaryTwoR80, g_aFpuUnaryTwoR80) #endif static void FpuUnaryTwoR80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuUnaryTwoR80[iFn])) continue; FPU_UNARY_TWO_R80_TEST_T const * const paTests = g_aFpuUnaryTwoR80[iFn].paTests; uint32_t const cTests = g_aFpuUnaryTwoR80[iFn].cTests; PFNIEMAIMPLFPUR80UNARYTWO pfn = g_aFpuUnaryTwoR80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryTwoR80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { IEMFPURESULTTWO Res = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; RTFLOAT80U const InVal = paTests[iTest].InVal; State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; pfn(&State, &Res, &InVal); if ( Res.FSW != paTests[iTest].fFswOut || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result1, &paTests[iTest].OutVal1) || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result2, &paTests[iTest].OutVal2) ) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" "%s -> fsw=%#06x %s %s\n" "%s expected %#06x %s %s %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal), iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result1), FormatR80(&Res.r80Result2), iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal1), FormatR80(&paTests[iTest].OutVal2), !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result1, &paTests[iTest].OutVal1) ? " - val1" : "", !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result2, &paTests[iTest].OutVal2) ? " - val2" : "", FswDiff(Res.FSW, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw) ); } pfn = g_aFpuUnaryTwoR80[iFn].pfnNative; } FREE_DECOMPRESSED_TESTS(g_aFpuUnaryTwoR80[iFn]); } } /********************************************************************************************************************************* * SSE floating point Binary Operations * *********************************************************************************************************************************/ /* * Binary SSE operations on packed single precision floating point values. */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R32_T, SSE_BINARY_TEST_T, PFNIEMAIMPLFPSSEF2U128); /** Ugly hack to keep it working after changing function arguments! */ IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_cvtps2pd_u128x,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { RT_NOREF(puSrc1); return iemAImpl_cvtps2pd_u128(uMxCsrIn, pResult, &puSrc2->au64[0]); } static SSE_BINARY_R32_T g_aSseBinaryR32[] = { ENTRY_BIN(addps_u128), ENTRY_BIN(mulps_u128), ENTRY_BIN(subps_u128), ENTRY_BIN(minps_u128), ENTRY_BIN(divps_u128), ENTRY_BIN(maxps_u128), ENTRY_BIN(haddps_u128), ENTRY_BIN(hsubps_u128), ENTRY_BIN(sqrtps_u128), ENTRY_BIN(addsubps_u128), ENTRY_BIN(cvtps2pd_u128x), /* conversion hack */ }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryR32, g_aSseBinaryR32) static RTEXITCODE SseBinaryR32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT32U aVal1[4], aVal2[4]; } const s_aSpecials[] = { { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), }, { RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) } }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32); iFn++) { PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseBinaryR32[iFn].pfnNative ? g_aSseBinaryR32[iFn].pfnNative : g_aSseBinaryR32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR32[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_TEST_T TestData; RT_ZERO(TestData); TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0]; TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1]; TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2]; TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3]; TestData.InVal2.ar32[0] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0]; TestData.InVal2.ar32[1] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[1]; TestData.InVal2.ar32[2] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[2]; TestData.InVal2.ar32[3] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[3]; if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[0]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[1]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[2]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[3])) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; X86XMMREG ResM; RT_ZERO(ResM); uint32_t uMxCsrOutM = pfn(uMxCsrIn, &ResM, &TestData.InVal1, &TestData.InVal2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutM; TestData.OutVal = ResM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; X86XMMREG ResU; RT_ZERO(ResU); uint32_t uMxCsrOutU = pfn(uMxCsrIn, &ResU, &TestData.InVal1, &TestData.InVal2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutU; TestData.OutVal = ResU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; X86XMMREG Res1; RT_ZERO(Res1); uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &Res1, &TestData.InVal1, &TestData.InVal2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut1; TestData.OutVal = Res1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); X86XMMREG Res2; RT_ZERO(Res2); uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &Res2, &TestData.InVal1, &TestData.InVal2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut2; TestData.OutVal = Res2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); X86XMMREG Res3; RT_ZERO(Res3); uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &Res3, &TestData.InVal1, &TestData.InVal2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut3; TestData.OutVal = Res3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryR32Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR32[iFn])) continue; SSE_BINARY_TEST_T const * const paTests = g_aSseBinaryR32[iFn].paTests; uint32_t const cbTests = g_aSseBinaryR32[iFn].cTests; PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseBinaryR32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR32[iFn]); if (!cbTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cbTests / sizeof(paTests[0]); iTest++) { X86XMMREG Res; RT_ZERO(Res); uint32_t uMxCsrOut = pfn(paTests[iTest].fMxcsrIn, &Res, &paTests[iTest].InVal1, &paTests[iTest].InVal2); bool fValsIdentical = RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[0], &paTests[iTest].OutVal.ar32[0]) && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[1], &paTests[iTest].OutVal.ar32[1]) && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[2], &paTests[iTest].OutVal.ar32[2]) && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[3], &paTests[iTest].OutVal.ar32[3]); if ( uMxCsrOut != paTests[iTest].fMxcsrOut || !fValsIdentical) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s'%s'%s'%s\n" "%s -> mxcsr=%#08x %s'%s'%s'%s\n" "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]), FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]), FormatR32(&paTests[iTest].InVal2.ar32[0]), FormatR32(&paTests[iTest].InVal2.ar32[1]), FormatR32(&paTests[iTest].InVal2.ar32[2]), FormatR32(&paTests[iTest].InVal2.ar32[3]), iVar ? " " : "", uMxCsrOut, FormatR32(&Res.ar32[0]), FormatR32(&Res.ar32[1]), FormatR32(&Res.ar32[2]), FormatR32(&Res.ar32[3]), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]), FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]), MxcsrDiff(uMxCsrOut, paTests[iTest].fMxcsrOut), !fValsIdentical ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } pfn = g_aSseBinaryR32[iFn].pfnNative; } FREE_DECOMPRESSED_TESTS(g_aSseBinaryR32[iFn]); } } /* * Binary SSE operations on packed single precision floating point values. */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R64_T, SSE_BINARY_TEST_T, PFNIEMAIMPLFPSSEF2U128); static SSE_BINARY_R64_T g_aSseBinaryR64[] = { ENTRY_BIN(addpd_u128), ENTRY_BIN(mulpd_u128), ENTRY_BIN(subpd_u128), ENTRY_BIN(minpd_u128), ENTRY_BIN(divpd_u128), ENTRY_BIN(maxpd_u128), ENTRY_BIN(haddpd_u128), ENTRY_BIN(hsubpd_u128), ENTRY_BIN(sqrtpd_u128), ENTRY_BIN(addsubpd_u128), ENTRY_BIN(cvtpd2ps_u128), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryR64, g_aSseBinaryR32) static RTEXITCODE SseBinaryR64Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT64U aVal1[2], aVal2[2]; } const s_aSpecials[] = { { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) }, { RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1), RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) } }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64); iFn++) { PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseBinaryR64[iFn].pfnNative ? g_aSseBinaryR64[iFn].pfnNative : g_aSseBinaryR64[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR64[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_TEST_T TestData; RT_ZERO(TestData); TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0]; TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0]; TestData.InVal2.ar64[0] = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0]; TestData.InVal2.ar64[1] = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0]; if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[1])) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; X86XMMREG ResM; RT_ZERO(ResM); uint32_t uMxCsrOutM = pfn(uMxCsrIn, &ResM, &TestData.InVal1, &TestData.InVal2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutM; TestData.OutVal = ResM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; X86XMMREG ResU; RT_ZERO(ResU); uint32_t uMxCsrOutU = pfn(uMxCsrIn, &ResU, &TestData.InVal1, &TestData.InVal2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutU; TestData.OutVal = ResU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; X86XMMREG Res1; RT_ZERO(Res1); uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &Res1, &TestData.InVal1, &TestData.InVal2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut1; TestData.OutVal = Res1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); X86XMMREG Res2; RT_ZERO(Res2); uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &Res2, &TestData.InVal1, &TestData.InVal2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut2; TestData.OutVal = Res2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); X86XMMREG Res3; RT_ZERO(Res3); uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &Res3, &TestData.InVal1, &TestData.InVal2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut3; TestData.OutVal = Res3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryR64Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR64[iFn])) continue; SSE_BINARY_TEST_T const * const paTests = g_aSseBinaryR64[iFn].paTests; uint32_t const cTests = g_aSseBinaryR64[iFn].cTests; PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseBinaryR64[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR64[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { X86XMMREG Res; RT_ZERO(Res); uint32_t uMxCsrIn = paTests[iTest].fMxcsrIn; uint32_t uMxCsrOut = pfn(uMxCsrIn, &Res, &paTests[iTest].InVal1, &paTests[iTest].InVal2); if ( uMxCsrOut != paTests[iTest].fMxcsrOut || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0]) || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1])) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s'%s\n" "%s -> mxcsr=%#08x %s'%s\n" "%s expected %#08x %s'%s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]), FormatR64(&paTests[iTest].InVal2.ar64[0]), FormatR64(&paTests[iTest].InVal2.ar64[1]), iVar ? " " : "", uMxCsrOut, FormatR64(&Res.ar64[0]), FormatR64(&Res.ar64[1]), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]), MxcsrDiff(uMxCsrOut, paTests[iTest].fMxcsrOut), ( !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0]) || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1])) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } pfn = g_aSseBinaryR64[iFn].pfnNative; } FREE_DECOMPRESSED_TESTS(g_aSseBinaryR64[iFn]); } } /* * Binary SSE operations on packed single precision floating point values. */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_U128_R32_T, SSE_BINARY_U128_R32_TEST_T, PFNIEMAIMPLFPSSEF2U128R32); static SSE_BINARY_U128_R32_T g_aSseBinaryU128R32[] = { ENTRY_BIN(addss_u128_r32), ENTRY_BIN(mulss_u128_r32), ENTRY_BIN(subss_u128_r32), ENTRY_BIN(minss_u128_r32), ENTRY_BIN(divss_u128_r32), ENTRY_BIN(maxss_u128_r32), ENTRY_BIN(cvtss2sd_u128_r32), ENTRY_BIN(sqrtss_u128_r32), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryU128R32, g_aSseBinaryU128R32) static RTEXITCODE SseBinaryU128R32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT32U aVal1[4], Val2; } const s_aSpecials[] = { { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), }, RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R32); iFn++) { PFNIEMAIMPLFPSSEF2U128R32 const pfn = g_aSseBinaryU128R32[iFn].pfnNative ? g_aSseBinaryU128R32[iFn].pfnNative : g_aSseBinaryU128R32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryU128R32[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_U128_R32_TEST_T TestData; RT_ZERO(TestData); TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0]; TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1]; TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2]; TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3]; TestData.r32Val2 = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].Val2; if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3]) && RTFLOAT32U_IS_NORMAL(&TestData.r32Val2)) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; X86XMMREG ResM; RT_ZERO(ResM); uint32_t uMxCsrOutM = pfn(uMxCsrIn, &ResM, &TestData.InVal1, &TestData.r32Val2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutM; TestData.OutVal = ResM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; X86XMMREG ResU; RT_ZERO(ResU); uint32_t uMxCsrOutU = pfn(uMxCsrIn, &ResU, &TestData.InVal1, &TestData.r32Val2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutU; TestData.OutVal = ResU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; X86XMMREG Res1; RT_ZERO(Res1); uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &Res1, &TestData.InVal1, &TestData.r32Val2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut1; TestData.OutVal = Res1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); X86XMMREG Res2; RT_ZERO(Res2); uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &Res2, &TestData.InVal1, &TestData.r32Val2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut2; TestData.OutVal = Res2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); X86XMMREG Res3; RT_ZERO(Res3); uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &Res3, &TestData.InVal1, &TestData.r32Val2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut3; TestData.OutVal = Res3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryU128R32Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryU128R32[iFn])) continue; SSE_BINARY_U128_R32_TEST_T const * const paTests = g_aSseBinaryU128R32[iFn].paTests; uint32_t const cTests = g_aSseBinaryU128R32[iFn].cTests; PFNIEMAIMPLFPSSEF2U128R32 pfn = g_aSseBinaryU128R32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryU128R32[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { X86XMMREG Res; RT_ZERO(Res); uint32_t uMxCsrIn = paTests[iTest].fMxcsrIn; uint32_t uMxCsrOut = pfn(uMxCsrIn, &Res, &paTests[iTest].InVal1, &paTests[iTest].r32Val2); bool fValsIdentical = RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[0], &paTests[iTest].OutVal.ar32[0]) && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[1], &paTests[iTest].OutVal.ar32[1]) && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[2], &paTests[iTest].OutVal.ar32[2]) && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[3], &paTests[iTest].OutVal.ar32[3]); if ( uMxCsrOut != paTests[iTest].fMxcsrOut || !fValsIdentical) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s\n" "%s -> mxcsr=%#08x %s'%s'%s'%s\n" "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]), FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]), FormatR32(&paTests[iTest].r32Val2), iVar ? " " : "", uMxCsrOut, FormatR32(&Res.ar32[0]), FormatR32(&Res.ar32[1]), FormatR32(&Res.ar32[2]), FormatR32(&Res.ar32[3]), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]), FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]), MxcsrDiff(uMxCsrOut, paTests[iTest].fMxcsrOut), !fValsIdentical ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } } FREE_DECOMPRESSED_TESTS(g_aSseBinaryU128R32[iFn]); } } /* * Binary SSE operations on packed single precision floating point values (xxxsd xmm1, r/m64). */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_U128_R64_T, SSE_BINARY_U128_R64_TEST_T, PFNIEMAIMPLFPSSEF2U128R64); static SSE_BINARY_U128_R64_T g_aSseBinaryU128R64[] = { ENTRY_BIN(addsd_u128_r64), ENTRY_BIN(mulsd_u128_r64), ENTRY_BIN(subsd_u128_r64), ENTRY_BIN(minsd_u128_r64), ENTRY_BIN(divsd_u128_r64), ENTRY_BIN(maxsd_u128_r64), ENTRY_BIN(cvtsd2ss_u128_r64), ENTRY_BIN(sqrtsd_u128_r64), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryU128R64, g_aSseBinaryU128R64) static RTEXITCODE SseBinaryU128R64Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT64U aVal1[2], Val2; } const s_aSpecials[] = { { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) }, RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R64); iFn++) { PFNIEMAIMPLFPSSEF2U128R64 const pfn = g_aSseBinaryU128R64[iFn].pfnNative ? g_aSseBinaryU128R64[iFn].pfnNative : g_aSseBinaryU128R64[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryU128R64[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_U128_R64_TEST_T TestData; RT_ZERO(TestData); TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0]; TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1]; TestData.r64Val2 = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].Val2; if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1]) && RTFLOAT64U_IS_NORMAL(&TestData.r64Val2)) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t uMxCsrOutM = pfn(uMxCsrIn, &TestData.OutVal, &TestData.InVal1, &TestData.r64Val2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t uMxCsrOutU = pfn(uMxCsrIn, &TestData.OutVal, &TestData.InVal1, &TestData.r64Val2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.InVal1, &TestData.r64Val2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.InVal1, &TestData.r64Val2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.InVal1, &TestData.r64Val2); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryU128R64Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R64); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryU128R64[iFn])) continue; SSE_BINARY_U128_R64_TEST_T const * const paTests = g_aSseBinaryU128R64[iFn].paTests; uint32_t const cTests = g_aSseBinaryU128R64[iFn].cTests; PFNIEMAIMPLFPSSEF2U128R64 pfn = g_aSseBinaryU128R64[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryU128R64[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { X86XMMREG Res; RT_ZERO(Res); uint32_t uMxCsrIn = paTests[iTest].fMxcsrIn; uint32_t uMxCsrOut = pfn(uMxCsrIn, &Res, &paTests[iTest].InVal1, &paTests[iTest].r64Val2); if ( uMxCsrOut != paTests[iTest].fMxcsrOut || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0]) || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1])) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s\n" "%s -> mxcsr=%#08x %s'%s\n" "%s expected %#08x %s'%s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]), FormatR64(&paTests[iTest].r64Val2), iVar ? " " : "", uMxCsrOut, FormatR64(&Res.ar64[0]), FormatR64(&Res.ar64[1]), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]), MxcsrDiff(uMxCsrOut, paTests[iTest].fMxcsrOut), ( !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0]) || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1])) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } } FREE_DECOMPRESSED_TESTS(g_aSseBinaryU128R64[iFn]); } } /* * SSE operations converting single double-precision floating point values to signed double-word integers (cvttsd2si and friends). */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I32_R64_T, SSE_BINARY_I32_R64_TEST_T, PFNIEMAIMPLSSEF2I32U64); static SSE_BINARY_I32_R64_T g_aSseBinaryI32R64[] = { ENTRY_BIN(cvttsd2si_i32_r64), ENTRY_BIN(cvtsd2si_i32_r64), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryI32R64, g_aSseBinaryI32R64) static RTEXITCODE SseBinaryI32R64Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT64U Val; } const s_aSpecials[] = { { RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R64); iFn++) { PFNIEMAIMPLSSEF2I32U64 const pfn = g_aSseBinaryI32R64[iFn].pfnNative ? g_aSseBinaryI32R64[iFn].pfnNative : g_aSseBinaryI32R64[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryI32R64[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_I32_R64_TEST_T TestData; RT_ZERO(TestData); TestData.r64ValIn = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val; if (RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn)) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM; int32_t i32OutM; fMxcsrM = pfn(uMxCsrIn, &i32OutM, &TestData.r64ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.i32ValOut = i32OutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU; int32_t i32OutU; fMxcsrU = pfn(uMxCsrIn, &i32OutU, &TestData.r64ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.i32ValOut = i32OutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1; int32_t i32Out1; fMxcsr1 = pfn(uMxCsrIn, &i32Out1, &TestData.r64ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.i32ValOut = i32Out1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2; int32_t i32Out2; fMxcsr2 = pfn(uMxCsrIn, &i32Out2, &TestData.r64ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.i32ValOut = i32Out2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3; int32_t i32Out3; fMxcsr3 = pfn(uMxCsrIn, &i32Out3, &TestData.r64ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.i32ValOut = i32Out3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryI32R64Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R64); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI32R64[iFn])) continue; SSE_BINARY_I32_R64_TEST_T const * const paTests = g_aSseBinaryI32R64[iFn].paTests; uint32_t const cTests = g_aSseBinaryI32R64[iFn].cTests; PFNIEMAIMPLSSEF2I32U64 pfn = g_aSseBinaryI32R64[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI32R64[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { int32_t i32Dst = 0; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &i32Dst, &paTests[iTest].r64ValIn.u); if ( fMxcsr != paTests[iTest].fMxcsrOut || i32Dst != paTests[iTest].i32ValOut) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n" "%s -> mxcsr=%#08x %RI32\n" "%s expected %#08x %RI32%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR64(&paTests[iTest].r64ValIn), iVar ? " " : "", fMxcsr, i32Dst, iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i32ValOut, MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), i32Dst != paTests[iTest].i32ValOut ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } } FREE_DECOMPRESSED_TESTS(g_aSseBinaryI32R64[iFn]); } } /* * SSE operations converting single double-precision floating point values to signed quad-word integers (cvttsd2si and friends). */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I64_R64_T, SSE_BINARY_I64_R64_TEST_T, PFNIEMAIMPLSSEF2I64U64); static SSE_BINARY_I64_R64_T g_aSseBinaryI64R64[] = { ENTRY_BIN(cvttsd2si_i64_r64), ENTRY_BIN(cvtsd2si_i64_r64), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryI64R64, g_aSseBinaryI64R64) static RTEXITCODE SseBinaryI64R64Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT64U Val; } const s_aSpecials[] = { { RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R64); iFn++) { PFNIEMAIMPLSSEF2I64U64 const pfn = g_aSseBinaryI64R64[iFn].pfnNative ? g_aSseBinaryI64R64[iFn].pfnNative : g_aSseBinaryI64R64[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryI64R64[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_I64_R64_TEST_T TestData; RT_ZERO(TestData); TestData.r64ValIn = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val; if (RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn)) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM; int64_t i64OutM; fMxcsrM = pfn(uMxCsrIn, &i64OutM, &TestData.r64ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.i64ValOut = i64OutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU; int64_t i64OutU; fMxcsrU =pfn(uMxCsrIn, &i64OutU, &TestData.r64ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.i64ValOut = i64OutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1; int64_t i64Out1; fMxcsr1 = pfn(uMxCsrIn, &i64Out1, &TestData.r64ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.i64ValOut = i64Out1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2; int64_t i64Out2; fMxcsr2 = pfn(uMxCsrIn, &i64Out2, &TestData.r64ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.i64ValOut = i64Out2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3; int64_t i64Out3; fMxcsr3 = pfn(uMxCsrIn, &i64Out3, &TestData.r64ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.i64ValOut = i64Out3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryI64R64Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R64); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI64R64[iFn])) continue; SSE_BINARY_I64_R64_TEST_T const * const paTests = g_aSseBinaryI64R64[iFn].paTests; uint32_t const cTests = g_aSseBinaryI64R64[iFn].cTests; PFNIEMAIMPLSSEF2I64U64 pfn = g_aSseBinaryI64R64[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI32R64[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { int64_t i64Dst = 0; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &i64Dst, &paTests[iTest].r64ValIn.u); if ( fMxcsr != paTests[iTest].fMxcsrOut || i64Dst != paTests[iTest].i64ValOut) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n" "%s -> mxcsr=%#08x %RI64\n" "%s expected %#08x %RI64%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR64(&paTests[iTest].r64ValIn), iVar ? " " : "", fMxcsr, i64Dst, iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i64ValOut, MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), i64Dst != paTests[iTest].i64ValOut ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } } FREE_DECOMPRESSED_TESTS(g_aSseBinaryI64R64[iFn]); } } /* * SSE operations converting single single-precision floating point values to signed double-word integers (cvttss2si and friends). */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I32_R32_T, SSE_BINARY_I32_R32_TEST_T, PFNIEMAIMPLSSEF2I32U32); static SSE_BINARY_I32_R32_T g_aSseBinaryI32R32[] = { ENTRY_BIN(cvttss2si_i32_r32), ENTRY_BIN(cvtss2si_i32_r32), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryI32R32, g_aSseBinaryI32R32) static RTEXITCODE SseBinaryI32R32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT32U Val; } const s_aSpecials[] = { { RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R32); iFn++) { PFNIEMAIMPLSSEF2I32U32 const pfn = g_aSseBinaryI32R32[iFn].pfnNative ? g_aSseBinaryI32R32[iFn].pfnNative : g_aSseBinaryI32R32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryI32R32[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_I32_R32_TEST_T TestData; RT_ZERO(TestData); TestData.r32ValIn = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val; if (RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn)) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM; int32_t i32OutM; fMxcsrM = pfn(uMxCsrIn, &i32OutM, &TestData.r32ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.i32ValOut = i32OutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU; int32_t i32OutU; fMxcsrU = pfn(uMxCsrIn, &i32OutU, &TestData.r32ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.i32ValOut = i32OutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1; int32_t i32Out1; fMxcsr1 = pfn(uMxCsrIn, &i32Out1, &TestData.r32ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.i32ValOut = i32Out1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2; int32_t i32Out2; fMxcsr2 = pfn(uMxCsrIn, &i32Out2, &TestData.r32ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.i32ValOut = i32Out2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3; int32_t i32Out3; fMxcsr3 = pfn(uMxCsrIn, &i32Out3, &TestData.r32ValIn.u); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.i32ValOut = i32Out3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryI32R32Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI32R32[iFn])) continue; SSE_BINARY_I32_R32_TEST_T const * const paTests = g_aSseBinaryI32R32[iFn].paTests; uint32_t const cTests = g_aSseBinaryI32R32[iFn].cTests; PFNIEMAIMPLSSEF2I32U32 pfn = g_aSseBinaryI32R32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI32R32[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { int32_t i32Dst = 0; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &i32Dst, &paTests[iTest].r32ValIn.u); if ( fMxcsr != paTests[iTest].fMxcsrOut || i32Dst != paTests[iTest].i32ValOut) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n" "%s -> mxcsr=%#08x %RI32\n" "%s expected %#08x %RI32%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR32(&paTests[iTest].r32ValIn), iVar ? " " : "", fMxcsr, i32Dst, iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i32ValOut, MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), i32Dst != paTests[iTest].i32ValOut ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } } FREE_DECOMPRESSED_TESTS(g_aSseBinaryI32R32[iFn]); } } /* * SSE operations converting single single-precision floating point values to signed quad-word integers (cvttss2si and friends). */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I64_R32_T, SSE_BINARY_I64_R32_TEST_T, PFNIEMAIMPLSSEF2I64U32); static SSE_BINARY_I64_R32_T g_aSseBinaryI64R32[] = { ENTRY_BIN(cvttss2si_i64_r32), ENTRY_BIN(cvtss2si_i64_r32), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryI64R32, g_aSseBinaryI64R32) static RTEXITCODE SseBinaryI64R32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT32U Val; } const s_aSpecials[] = { { RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) }, /** @todo More specials. */ }; X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R32); iFn++) { PFNIEMAIMPLSSEF2I64U32 const pfn = g_aSseBinaryI64R32[iFn].pfnNative ? g_aSseBinaryI64R32[iFn].pfnNative : g_aSseBinaryI64R32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryI64R32[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_I64_R32_TEST_T TestData; RT_ZERO(TestData); TestData.r32ValIn = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val; if (RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn)) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM; int64_t i64OutM; fMxcsrM = pfn(uMxCsrIn, &i64OutM, &TestData.r32ValIn.u); TestData.fMxcsrIn = State.MXCSR; TestData.fMxcsrOut = fMxcsrM; TestData.i64ValOut = i64OutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU; int64_t i64OutU; fMxcsrU = pfn(uMxCsrIn, &i64OutU, &TestData.r32ValIn.u); TestData.fMxcsrIn = State.MXCSR; TestData.fMxcsrOut = fMxcsrU; TestData.i64ValOut = i64OutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1; int64_t i64Out1; fMxcsr1 = pfn(uMxCsrIn, &i64Out1, &TestData.r32ValIn.u); TestData.fMxcsrIn = State.MXCSR; TestData.fMxcsrOut = fMxcsr1; TestData.i64ValOut = i64Out1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2; int64_t i64Out2; fMxcsr2 = pfn(uMxCsrIn, &i64Out2, &TestData.r32ValIn.u); TestData.fMxcsrIn = State.MXCSR; TestData.fMxcsrOut = fMxcsr2; TestData.i64ValOut = i64Out2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3; int64_t i64Out3; fMxcsr3 = pfn(uMxCsrIn, &i64Out3, &TestData.r32ValIn.u); TestData.fMxcsrIn = State.MXCSR; TestData.fMxcsrOut = fMxcsr3; TestData.i64ValOut = i64Out3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryI64R32Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI64R32[iFn])) continue; SSE_BINARY_I64_R32_TEST_T const * const paTests = g_aSseBinaryI64R32[iFn].paTests; uint32_t const cTests = g_aSseBinaryI64R32[iFn].cTests; PFNIEMAIMPLSSEF2I64U32 pfn = g_aSseBinaryI64R32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI64R32[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { int64_t i64Dst = 0; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &i64Dst, &paTests[iTest].r32ValIn.u); if ( fMxcsr != paTests[iTest].fMxcsrOut || i64Dst != paTests[iTest].i64ValOut) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n" "%s -> mxcsr=%#08x %RI64\n" "%s expected %#08x %RI64%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR32(&paTests[iTest].r32ValIn), iVar ? " " : "", fMxcsr, i64Dst, iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i64ValOut, MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), i64Dst != paTests[iTest].i64ValOut ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } } FREE_DECOMPRESSED_TESTS(g_aSseBinaryI64R32[iFn]); } } /* * SSE operations converting single signed double-word integers to double-precision floating point values (probably only cvtsi2sd). */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R64_I32_T, SSE_BINARY_R64_I32_TEST_T, PFNIEMAIMPLSSEF2R64I32); static SSE_BINARY_R64_I32_T g_aSseBinaryR64I32[] = { ENTRY_BIN(cvtsi2sd_r64_i32) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryR64I32, g_aSseBinaryR64I32) static RTEXITCODE SseBinaryR64I32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static int32_t const s_aSpecials[] = { INT32_MIN, INT32_MAX, /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I32); iFn++) { PFNIEMAIMPLSSEF2R64I32 const pfn = g_aSseBinaryR64I32[iFn].pfnNative ? g_aSseBinaryR64I32[iFn].pfnNative : g_aSseBinaryR64I32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR64I32[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_R64_I32_TEST_T TestData; RT_ZERO(TestData); TestData.i32ValIn = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests]; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM; RTFLOAT64U r64OutM; fMxcsrM = pfn(uMxCsrIn, &r64OutM, &TestData.i32ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.r64ValOut = r64OutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU; RTFLOAT64U r64OutU; fMxcsrU = pfn(uMxCsrIn, &r64OutU, &TestData.i32ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.r64ValOut = r64OutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1; RTFLOAT64U r64Out1; fMxcsr1 = pfn(uMxCsrIn, &r64Out1, &TestData.i32ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.r64ValOut = r64Out1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2; RTFLOAT64U r64Out2; fMxcsr2 = pfn(uMxCsrIn, &r64Out2, &TestData.i32ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.r64ValOut = r64Out2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3; RTFLOAT64U r64Out3; fMxcsr3 = pfn(uMxCsrIn, &r64Out3, &TestData.i32ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.r64ValOut = r64Out3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryR64I32Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR64I32[iFn])) continue; SSE_BINARY_R64_I32_TEST_T const * const paTests = g_aSseBinaryR64I32[iFn].paTests; uint32_t const cTests = g_aSseBinaryR64I32[iFn].cTests; PFNIEMAIMPLSSEF2R64I32 pfn = g_aSseBinaryR64I32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR64I32[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT64U r64Dst; RT_ZERO(r64Dst); uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &r64Dst, &paTests[iTest].i32ValIn); if ( fMxcsr != paTests[iTest].fMxcsrOut || !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut)) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32\n" "%s -> mxcsr=%#08x %s\n" "%s expected %#08x %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, &paTests[iTest].i32ValIn, iVar ? " " : "", fMxcsr, FormatR64(&r64Dst), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR64(&paTests[iTest].r64ValOut), MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } } FREE_DECOMPRESSED_TESTS(g_aSseBinaryR64I32[iFn]); } } /* * SSE operations converting single signed quad-word integers to double-precision floating point values (probably only cvtsi2sd). */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R64_I64_T, SSE_BINARY_R64_I64_TEST_T, PFNIEMAIMPLSSEF2R64I64); static SSE_BINARY_R64_I64_T g_aSseBinaryR64I64[] = { ENTRY_BIN(cvtsi2sd_r64_i64), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryR64I64, g_aSseBinaryR64I64) static RTEXITCODE SseBinaryR64I64Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static int64_t const s_aSpecials[] = { INT64_MIN, INT64_MAX /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I64); iFn++) { PFNIEMAIMPLSSEF2R64I64 const pfn = g_aSseBinaryR64I64[iFn].pfnNative ? g_aSseBinaryR64I64[iFn].pfnNative : g_aSseBinaryR64I64[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR64I64[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_R64_I64_TEST_T TestData; RT_ZERO(TestData); TestData.i64ValIn = iTest < cTests ? RandI64Src(iTest) : s_aSpecials[iTest - cTests]; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM; RTFLOAT64U r64OutM; fMxcsrM = pfn(uMxCsrIn, &r64OutM, &TestData.i64ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.r64ValOut = r64OutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU; RTFLOAT64U r64OutU; fMxcsrU = pfn(uMxCsrIn, &r64OutU, &TestData.i64ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.r64ValOut = r64OutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1; RTFLOAT64U r64Out1; fMxcsr1 = pfn(uMxCsrIn, &r64Out1, &TestData.i64ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.r64ValOut = r64Out1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2; RTFLOAT64U r64Out2; fMxcsr2 = pfn(uMxCsrIn, &r64Out2, &TestData.i64ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.r64ValOut = r64Out2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3; RTFLOAT64U r64Out3; fMxcsr3 = pfn(uMxCsrIn, &r64Out3, &TestData.i64ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.r64ValOut = r64Out3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryR64I64Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I64); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR64I64[iFn])) continue; SSE_BINARY_R64_I64_TEST_T const * const paTests = g_aSseBinaryR64I64[iFn].paTests; uint32_t const cTests = g_aSseBinaryR64I64[iFn].cTests; PFNIEMAIMPLSSEF2R64I64 pfn = g_aSseBinaryR64I64[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR64I64[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT64U r64Dst; RT_ZERO(r64Dst); uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &r64Dst, &paTests[iTest].i64ValIn); if ( fMxcsr != paTests[iTest].fMxcsrOut || !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut)) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI64\n" "%s -> mxcsr=%#08x %s\n" "%s expected %#08x %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, &paTests[iTest].i64ValIn, iVar ? " " : "", fMxcsr, FormatR64(&r64Dst), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR64(&paTests[iTest].r64ValOut), MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } } FREE_DECOMPRESSED_TESTS(g_aSseBinaryR64I64[iFn]); } } /* * SSE operations converting single signed double-word integers to single-precision floating point values (probably only cvtsi2ss). */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R32_I32_T, SSE_BINARY_R32_I32_TEST_T, PFNIEMAIMPLSSEF2R32I32); static SSE_BINARY_R32_I32_T g_aSseBinaryR32I32[] = { ENTRY_BIN(cvtsi2ss_r32_i32), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryR32I32, g_aSseBinaryR32I32) static RTEXITCODE SseBinaryR32I32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static int32_t const s_aSpecials[] = { INT32_MIN, INT32_MAX, /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I32); iFn++) { PFNIEMAIMPLSSEF2R32I32 const pfn = g_aSseBinaryR32I32[iFn].pfnNative ? g_aSseBinaryR32I32[iFn].pfnNative : g_aSseBinaryR32I32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR32I32[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_R32_I32_TEST_T TestData; RT_ZERO(TestData); TestData.i32ValIn = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests]; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM; RTFLOAT32U r32OutM; fMxcsrM = pfn(uMxCsrIn, &r32OutM, &TestData.i32ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.r32ValOut = r32OutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU; RTFLOAT32U r32OutU; fMxcsrU = pfn(uMxCsrIn, &r32OutU, &TestData.i32ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.r32ValOut = r32OutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1; RTFLOAT32U r32Out1; fMxcsr1 = pfn(uMxCsrIn, &r32Out1, &TestData.i32ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.r32ValOut = r32Out1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2; RTFLOAT32U r32Out2; fMxcsr2 = pfn(uMxCsrIn, &r32Out2, &TestData.i32ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.r32ValOut = r32Out2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3; RTFLOAT32U r32Out3; fMxcsr3 = pfn(uMxCsrIn, &r32Out3, &TestData.i32ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.r32ValOut = r32Out3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryR32I32Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR32I32[iFn])) continue; SSE_BINARY_R32_I32_TEST_T const * const paTests = g_aSseBinaryR32I32[iFn].paTests; uint32_t const cTests = g_aSseBinaryR32I32[iFn].cTests; PFNIEMAIMPLSSEF2R32I32 pfn = g_aSseBinaryR32I32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR32I32[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT32U r32Dst; RT_ZERO(r32Dst); uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &r32Dst, &paTests[iTest].i32ValIn); if ( fMxcsr != paTests[iTest].fMxcsrOut || !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut)) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32\n" "%s -> mxcsr=%#08x %RI32\n" "%s expected %#08x %RI32%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, &paTests[iTest].i32ValIn, iVar ? " " : "", fMxcsr, FormatR32(&r32Dst), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR32(&paTests[iTest].r32ValOut), MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } } FREE_DECOMPRESSED_TESTS(g_aSseBinaryR32I32[iFn]); } } /* * SSE operations converting single signed quad-word integers to single-precision floating point values (probably only cvtsi2ss). */ TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R32_I64_T, SSE_BINARY_R32_I64_TEST_T, PFNIEMAIMPLSSEF2R32I64); static SSE_BINARY_R32_I64_T g_aSseBinaryR32I64[] = { ENTRY_BIN(cvtsi2ss_r32_i64), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseBinaryR32I64, g_aSseBinaryR32I64) static RTEXITCODE SseBinaryR32I64Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static int64_t const s_aSpecials[] = { INT64_MIN, INT64_MAX /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I64); iFn++) { PFNIEMAIMPLSSEF2R32I64 const pfn = g_aSseBinaryR32I64[iFn].pfnNative ? g_aSseBinaryR32I64[iFn].pfnNative : g_aSseBinaryR32I64[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR32I64[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_BINARY_R32_I64_TEST_T TestData; RT_ZERO(TestData); TestData.i64ValIn = iTest < cTests ? RandI64Src(iTest) : s_aSpecials[iTest - cTests]; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM; RTFLOAT32U r32OutM; fMxcsrM = pfn(uMxCsrIn, &r32OutM, &TestData.i64ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.r32ValOut = r32OutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU; RTFLOAT32U r32OutU; fMxcsrU = pfn(uMxCsrIn, &r32OutU, &TestData.i64ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.r32ValOut = r32OutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1; RTFLOAT32U r32Out1; fMxcsr1 = pfn(uMxCsrIn, &r32Out1, &TestData.i64ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.r32ValOut = r32Out1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2; RTFLOAT32U r32Out2; fMxcsr2 = pfn(uMxCsrIn, &r32Out2, &TestData.i64ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.r32ValOut = r32Out2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3; RTFLOAT32U r32Out3; fMxcsr3 = pfn(uMxCsrIn, &r32Out3, &TestData.i64ValIn); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.r32ValOut = r32Out3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseBinaryR32I64Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I64); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR32I64[iFn])) continue; SSE_BINARY_R32_I64_TEST_T const * const paTests = g_aSseBinaryR32I64[iFn].paTests; uint32_t const cTests = g_aSseBinaryR32I64[iFn].cTests; PFNIEMAIMPLSSEF2R32I64 pfn = g_aSseBinaryR32I64[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR32I64[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT32U r32Dst; RT_ZERO(r32Dst); uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &r32Dst, &paTests[iTest].i64ValIn); if ( fMxcsr != paTests[iTest].fMxcsrOut || !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut)) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI64\n" "%s -> mxcsr=%#08x %RI32\n" "%s expected %#08x %RI32%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, &paTests[iTest].i64ValIn, iVar ? " " : "", fMxcsr, FormatR32(&r32Dst), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR32(&paTests[iTest].r32ValOut), MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn) ); } } FREE_DECOMPRESSED_TESTS(g_aSseBinaryR32I64[iFn]); } } /* * Compare SSE operations on single single-precision floating point values - outputting only EFLAGS. */ TYPEDEF_SUBTEST_TYPE(SSE_COMPARE_EFL_R32_R32_T, SSE_COMPARE_EFL_R32_R32_TEST_T, PFNIEMAIMPLF2EFLMXCSRR32R32); static SSE_COMPARE_EFL_R32_R32_T g_aSseCompareEflR32R32[] = { ENTRY_BIN(ucomiss_u128), ENTRY_BIN(comiss_u128), ENTRY_BIN_AVX(vucomiss_u128), ENTRY_BIN_AVX(vcomiss_u128), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseCompareEflR32R32, g_aSseCompareEflR32R32) static RTEXITCODE SseCompareEflR32R32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT32U Val1, Val2; } const s_aSpecials[] = { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) }, { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(1) }, { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(0) }, { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) }, { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) }, { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(1) }, { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(0) }, { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR32R32); iFn++) { PFNIEMAIMPLF2EFLMXCSRR32R32 const pfn = g_aSseCompareEflR32R32[iFn].pfnNative ? g_aSseCompareEflR32R32[iFn].pfnNative : g_aSseCompareEflR32R32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseCompareEflR32R32[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_COMPARE_EFL_R32_R32_TEST_T TestData; RT_ZERO(TestData); TestData.r32ValIn1 = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1; TestData.r32ValIn2 = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2; if ( RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn1) && RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn2)) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; uint32_t const fEFlags = RandEFlags(); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM = fMxcsrIn; uint32_t fEFlagsM = fEFlags; fMxcsrM = pfn(fMxcsrIn, &fEFlagsM, TestData.r32ValIn1, TestData.r32ValIn2); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.fEflIn = fEFlags; TestData.fEflOut = fEFlagsM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); fMxcsrIn &= ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU = fMxcsrIn; uint32_t fEFlagsU = fEFlags; fMxcsrU = pfn(fMxcsrIn, &fEFlagsU, TestData.r32ValIn1, TestData.r32ValIn2); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.fEflIn = fEFlags; TestData.fEflOut = fEFlagsU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1 = fMxcsrIn; uint32_t fEFlags1 = fEFlags; fMxcsr1 = pfn(fMxcsrIn, &fEFlags1, TestData.r32ValIn1, TestData.r32ValIn2); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.fEflIn = fEFlags; TestData.fEflOut = fEFlags1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2 = fMxcsrIn; uint32_t fEFlags2 = fEFlags; fMxcsr2 = pfn(fMxcsrIn, &fEFlags2, TestData.r32ValIn1, TestData.r32ValIn2); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.fEflIn = fEFlags; TestData.fEflOut = fEFlags2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3 = fMxcsrIn; uint32_t fEFlags3 = fEFlags; fMxcsr3 = pfn(fMxcsrIn, &fEFlags3, TestData.r32ValIn1, TestData.r32ValIn2); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.fEflIn = fEFlags; TestData.fEflOut = fEFlags3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseCompareEflR32R32Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR32R32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareEflR32R32[iFn])) continue; SSE_COMPARE_EFL_R32_R32_TEST_T const * const paTests = g_aSseCompareEflR32R32[iFn].paTests; uint32_t const cTests = g_aSseCompareEflR32R32[iFn].cTests; PFNIEMAIMPLF2EFLMXCSRR32R32 pfn = g_aSseCompareEflR32R32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareEflR32R32[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { uint32_t fEFlags = paTests[iTest].fEflIn; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &fEFlags, paTests[iTest].r32ValIn1, paTests[iTest].r32ValIn2); if ( fMxcsr != paTests[iTest].fMxcsrOut || fEFlags != paTests[iTest].fEflOut) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x efl=%#08x in1=%s in2=%s\n" "%s -> mxcsr=%#08x %#08x\n" "%s expected %#08x %#08x%s (%s) (EFL: %s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, paTests[iTest].fEflIn, FormatR32(&paTests[iTest].r32ValIn1), FormatR32(&paTests[iTest].r32ValIn2), iVar ? " " : "", fMxcsr, fEFlags, iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].fEflOut, MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), FormatMxcsr(paTests[iTest].fMxcsrIn), EFlagsDiff(fEFlags, paTests[iTest].fEflOut)); } } FREE_DECOMPRESSED_TESTS(g_aSseCompareEflR32R32[iFn]); } } /* * Compare SSE operations on single single-precision floating point values - outputting only EFLAGS. */ TYPEDEF_SUBTEST_TYPE(SSE_COMPARE_EFL_R64_R64_T, SSE_COMPARE_EFL_R64_R64_TEST_T, PFNIEMAIMPLF2EFLMXCSRR64R64); static SSE_COMPARE_EFL_R64_R64_T g_aSseCompareEflR64R64[] = { ENTRY_BIN(ucomisd_u128), ENTRY_BIN(comisd_u128), ENTRY_BIN_AVX(vucomisd_u128), ENTRY_BIN_AVX(vcomisd_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseCompareEflR64R64, g_aSseCompareEflR64R64) static RTEXITCODE SseCompareEflR64R64Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT64U Val1, Val2; } const s_aSpecials[] = { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) }, { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(1) }, { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(0) }, { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) }, { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) }, { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(1) }, { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(0) }, { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR64R64); iFn++) { PFNIEMAIMPLF2EFLMXCSRR64R64 const pfn = g_aSseCompareEflR64R64[iFn].pfnNative ? g_aSseCompareEflR64R64[iFn].pfnNative : g_aSseCompareEflR64R64[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseCompareEflR64R64[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_COMPARE_EFL_R64_R64_TEST_T TestData; RT_ZERO(TestData); TestData.r64ValIn1 = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val1; TestData.r64ValIn2 = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val2; if ( RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn1) && RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn2)) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; uint32_t const fEFlags = RandEFlags(); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM = fMxcsrIn; uint32_t fEFlagsM = fEFlags; fMxcsrM = pfn(fMxcsrIn, &fEFlagsM, TestData.r64ValIn1, TestData.r64ValIn2); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.fEflIn = fEFlags; TestData.fEflOut = fEFlagsM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); fMxcsrIn &= ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU = fMxcsrIn; uint32_t fEFlagsU = fEFlags; fMxcsrU = pfn(fMxcsrIn, &fEFlagsU, TestData.r64ValIn1, TestData.r64ValIn2); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.fEflIn = fEFlags; TestData.fEflOut = fEFlagsU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1 = fMxcsrIn; uint32_t fEFlags1 = fEFlags; fMxcsr1 = pfn(fMxcsrIn, &fEFlags1, TestData.r64ValIn1, TestData.r64ValIn2); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.fEflIn = fEFlags; TestData.fEflOut = fEFlags1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2 = fMxcsrIn; uint32_t fEFlags2 = fEFlags; fMxcsr2 = pfn(fMxcsrIn, &fEFlags2, TestData.r64ValIn1, TestData.r64ValIn2); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.fEflIn = fEFlags; TestData.fEflOut = fEFlags2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3 = fMxcsrIn; uint32_t fEFlags3 = fEFlags; fMxcsr3 = pfn(fMxcsrIn, &fEFlags3, TestData.r64ValIn1, TestData.r64ValIn2); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.fEflIn = fEFlags; TestData.fEflOut = fEFlags3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseCompareEflR64R64Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR64R64); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareEflR64R64[iFn])) continue; SSE_COMPARE_EFL_R64_R64_TEST_T const * const paTests = g_aSseCompareEflR64R64[iFn].paTests; uint32_t const cTests = g_aSseCompareEflR64R64[iFn].cTests; PFNIEMAIMPLF2EFLMXCSRR64R64 pfn = g_aSseCompareEflR64R64[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareEflR64R64[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { uint32_t fEFlags = paTests[iTest].fEflIn; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &fEFlags, paTests[iTest].r64ValIn1, paTests[iTest].r64ValIn2); if ( fMxcsr != paTests[iTest].fMxcsrOut || fEFlags != paTests[iTest].fEflOut) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x efl=%#08x in1=%s in2=%s\n" "%s -> mxcsr=%#08x %#08x\n" "%s expected %#08x %#08x%s (%s) (EFL: %s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, paTests[iTest].fEflIn, FormatR64(&paTests[iTest].r64ValIn1), FormatR64(&paTests[iTest].r64ValIn2), iVar ? " " : "", fMxcsr, fEFlags, iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].fEflOut, MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), FormatMxcsr(paTests[iTest].fMxcsrIn), EFlagsDiff(fEFlags, paTests[iTest].fEflOut)); } } FREE_DECOMPRESSED_TESTS(g_aSseCompareEflR64R64[iFn]); } } /* * Compare SSE operations on packed and single single-precision floating point values - outputting a mask. */ /** Maximum immediate to try to keep the testdata size under control (at least a little bit)- */ #define SSE_COMPARE_F2_XMM_IMM8_MAX 0x1f TYPEDEF_SUBTEST_TYPE(SSE_COMPARE_F3_XMM_IMM8_T, SSE_COMPARE_F3_XMM_IMM8_TEST_T, PFNIEMAIMPLMEDIAF3XMMIMM8); static SSE_COMPARE_F3_XMM_IMM8_T g_aSseCompareF3XmmR32Imm8[] = { ENTRY_BIN(cmpps_u128), ENTRY_BIN(cmpss_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseCompareF3XmmR32Imm8, g_aSseCompareF3XmmR32Imm8) static RTEXITCODE SseCompareF3XmmR32Imm8Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT32U Val1, Val2; } const s_aSpecials[] = { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) }, { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(1) }, { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(0) }, { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) }, { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) }, { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(1) }, { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(0) }, { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF3XmmR32Imm8); iFn++) { PFNIEMAIMPLMEDIAF3XMMIMM8 const pfn = g_aSseCompareF3XmmR32Imm8[iFn].pfnNative ? g_aSseCompareF3XmmR32Imm8[iFn].pfnNative : g_aSseCompareF3XmmR32Imm8[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseCompareF3XmmR32Imm8[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_COMPARE_F3_XMM_IMM8_TEST_T TestData; RT_ZERO(TestData); TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1; TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1; TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1; TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1; TestData.InVal2.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2; TestData.InVal2.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2; TestData.InVal2.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2; TestData.InVal2.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2; if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[0]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[1]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[2]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[3])) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } IEMMEDIAF2XMMSRC Src; Src.uSrc1 = TestData.InVal1; Src.uSrc2 = TestData.InVal2; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint8_t bImm = 0; bImm <= SSE_COMPARE_F2_XMM_IMM8_MAX; bImm++) for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; X86XMMREG ResM; uint32_t fMxcsrM = pfn(fMxcsrIn, &ResM, &Src, bImm); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.bImm = bImm; TestData.OutVal = ResM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); fMxcsrIn &= ~X86_MXCSR_XCPT_MASK; X86XMMREG ResU; uint32_t fMxcsrU = pfn(fMxcsrIn, &ResU, &Src, bImm); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.bImm = bImm; TestData.OutVal = ResU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; X86XMMREG Res1; uint32_t fMxcsr1 = pfn(fMxcsrIn, &Res1, &Src, bImm); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.bImm = bImm; TestData.OutVal = Res1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); X86XMMREG Res2; uint32_t fMxcsr2 = pfn(fMxcsrIn, &Res2, &Src, bImm); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.bImm = bImm; TestData.OutVal = Res2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); X86XMMREG Res3; uint32_t fMxcsr3 = pfn(fMxcsrIn, &Res3, &Src, bImm); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.bImm = bImm; TestData.OutVal = Res3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseCompareF3XmmR32Imm8Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF3XmmR32Imm8); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareF3XmmR32Imm8[iFn])) continue; SSE_COMPARE_F3_XMM_IMM8_TEST_T const * const paTests = g_aSseCompareF3XmmR32Imm8[iFn].paTests; uint32_t const cTests = g_aSseCompareF3XmmR32Imm8[iFn].cTests; PFNIEMAIMPLMEDIAF3XMMIMM8 pfn = g_aSseCompareF3XmmR32Imm8[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareF3XmmR32Imm8[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { IEMMEDIAF2XMMSRC Src; X86XMMREG ValOut; Src.uSrc1 = paTests[iTest].InVal1; Src.uSrc2 = paTests[iTest].InVal2; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut, &Src, paTests[iTest].bImm); if ( fMxcsr != paTests[iTest].fMxcsrOut || ValOut.au32[0] != paTests[iTest].OutVal.au32[0] || ValOut.au32[1] != paTests[iTest].OutVal.au32[1] || ValOut.au32[2] != paTests[iTest].OutVal.au32[2] || ValOut.au32[3] != paTests[iTest].OutVal.au32[3]) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s'%s'%s'%s imm8=%x\n" "%s -> mxcsr=%#08x %RX32'%RX32'%RX32'%RX32\n" "%s expected %#08x %RX32'%RX32'%RX32'%RX32%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]), FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]), FormatR32(&paTests[iTest].InVal2.ar32[0]), FormatR32(&paTests[iTest].InVal2.ar32[1]), FormatR32(&paTests[iTest].InVal2.ar32[2]), FormatR32(&paTests[iTest].InVal2.ar32[3]), paTests[iTest].bImm, iVar ? " " : "", fMxcsr, ValOut.au32[0], ValOut.au32[1], ValOut.au32[2], ValOut.au32[3], iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].OutVal.au32[0], paTests[iTest].OutVal.au32[1], paTests[iTest].OutVal.au32[2], paTests[iTest].OutVal.au32[3], MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), ( ValOut.au32[0] != paTests[iTest].OutVal.au32[0] || ValOut.au32[1] != paTests[iTest].OutVal.au32[1] || ValOut.au32[2] != paTests[iTest].OutVal.au32[2] || ValOut.au32[3] != paTests[iTest].OutVal.au32[3]) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn)); } } FREE_DECOMPRESSED_TESTS(g_aSseCompareF3XmmR32Imm8[iFn]); } } /* * Compare SSE operations on packed and single double-precision floating point values - outputting a mask. */ static SSE_COMPARE_F3_XMM_IMM8_T g_aSseCompareF3XmmR64Imm8[] = { ENTRY_BIN(cmppd_u128), ENTRY_BIN(cmpsd_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseCompareF3XmmR64Imm8, g_aSseCompareF3XmmR64Imm8) static RTEXITCODE SseCompareF3XmmR64Imm8Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT64U Val1, Val2; } const s_aSpecials[] = { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) }, { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(1) }, { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(0) }, { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) }, { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) }, { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(1) }, { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(0) }, { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) }, /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF3XmmR64Imm8); iFn++) { PFNIEMAIMPLMEDIAF3XMMIMM8 const pfn = g_aSseCompareF3XmmR64Imm8[iFn].pfnNative ? g_aSseCompareF3XmmR64Imm8[iFn].pfnNative : g_aSseCompareF3XmmR64Imm8[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseCompareF3XmmR64Imm8[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_COMPARE_F3_XMM_IMM8_TEST_T TestData; RT_ZERO(TestData); TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val1; TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val1; TestData.InVal2.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val2; TestData.InVal2.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val2; if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[1])) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } IEMMEDIAF2XMMSRC Src; Src.uSrc1 = TestData.InVal1; Src.uSrc2 = TestData.InVal2; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint8_t bImm = 0; bImm <= SSE_COMPARE_F2_XMM_IMM8_MAX; bImm++) for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; X86XMMREG ResM; uint32_t fMxcsrM = pfn(fMxcsrIn, &ResM, &Src, bImm); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.bImm = bImm; TestData.OutVal = ResM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); fMxcsrIn &= ~X86_MXCSR_XCPT_MASK; X86XMMREG ResU; uint32_t fMxcsrU = pfn(fMxcsrIn, &ResU, &Src, bImm); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.bImm = bImm; TestData.OutVal = ResU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; X86XMMREG Res1; uint32_t fMxcsr1 = pfn(fMxcsrIn, &Res1, &Src, bImm); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.bImm = bImm; TestData.OutVal = Res1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); X86XMMREG Res2; uint32_t fMxcsr2 = pfn(fMxcsrIn, &Res2, &Src, bImm); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.bImm = bImm; TestData.OutVal = Res2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); X86XMMREG Res3; uint32_t fMxcsr3 = pfn(fMxcsrIn, &Res3, &Src, bImm); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.bImm = bImm; TestData.OutVal = Res3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseCompareF3XmmR64Imm8Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF3XmmR64Imm8); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareF3XmmR64Imm8[iFn])) continue; SSE_COMPARE_F3_XMM_IMM8_TEST_T const * const paTests = g_aSseCompareF3XmmR64Imm8[iFn].paTests; uint32_t const cTests = g_aSseCompareF3XmmR64Imm8[iFn].cTests; PFNIEMAIMPLMEDIAF3XMMIMM8 pfn = g_aSseCompareF3XmmR64Imm8[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareF3XmmR64Imm8[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { IEMMEDIAF2XMMSRC Src; X86XMMREG ValOut; Src.uSrc1 = paTests[iTest].InVal1; Src.uSrc2 = paTests[iTest].InVal2; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut, &Src, paTests[iTest].bImm); if ( fMxcsr != paTests[iTest].fMxcsrOut || ValOut.au64[0] != paTests[iTest].OutVal.au64[0] || ValOut.au64[1] != paTests[iTest].OutVal.au64[1]) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s'%s imm8=%x\n" "%s -> mxcsr=%#08x %RX64'%RX64\n" "%s expected %#08x %RX64'%RX64%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]), FormatR64(&paTests[iTest].InVal2.ar64[0]), FormatR64(&paTests[iTest].InVal2.ar64[1]), paTests[iTest].bImm, iVar ? " " : "", fMxcsr, ValOut.au64[0], ValOut.au64[1], iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].OutVal.au64[0], paTests[iTest].OutVal.au64[1], MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), ( ValOut.au64[0] != paTests[iTest].OutVal.au64[0] || ValOut.au64[1] != paTests[iTest].OutVal.au64[1]) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn)); } } FREE_DECOMPRESSED_TESTS(g_aSseCompareF3XmmR64Imm8[iFn]); } } /* * Convert SSE operations converting signed double-words to single-precision floating point values. */ TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_XMM_T, SSE_CONVERT_XMM_TEST_T, PFNIEMAIMPLFPSSEF2U128); static SSE_CONVERT_XMM_T g_aSseConvertXmmI32R32[] = { ENTRY_BIN(cvtdq2ps_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseConvertXmmI32R32, g_aSseConvertXmmI32R32) static RTEXITCODE SseConvertXmmI32R32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static int32_t const s_aSpecials[] = { INT32_MIN, INT32_MIN / 2, 0, INT32_MAX / 2, INT32_MAX, (int32_t)0x80000000 /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R32); iFn++) { PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmI32R32[iFn].pfnNative ? g_aSseConvertXmmI32R32[iFn].pfnNative : g_aSseConvertXmmI32R32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmI32R32[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData); TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests]; TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests]; TestData.InVal.ai32[2] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests]; TestData.InVal.ai32[3] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests]; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t uMxCsrOutM = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t uMxCsrOutU = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseConvertXmmI32R32Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmI32R32[iFn])) continue; SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmI32R32[iFn].paTests; uint32_t const cTests = g_aSseConvertXmmI32R32[iFn].cTests; PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmI32R32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmI32R32[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { X86XMMREG Res; RT_ZERO(Res); uint32_t fMxCsr = pfn(paTests[iTest].fMxcsrIn, &Res, &Res, &paTests[iTest].InVal); if ( fMxCsr != paTests[iTest].fMxcsrOut || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[0], &paTests[iTest].OutVal.ar32[0]) || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[1], &paTests[iTest].OutVal.ar32[1]) || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[2], &paTests[iTest].OutVal.ar32[2]) || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[3], &paTests[iTest].OutVal.ar32[3])) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32'%RI32'%RI32 \n" "%s -> mxcsr=%#08x %s'%s'%s'%s\n" "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1], paTests[iTest].InVal.ai32[2], paTests[iTest].InVal.ai32[3], iVar ? " " : "", fMxCsr, FormatR32(&Res.ar32[0]), FormatR32(&Res.ar32[1]), FormatR32(&Res.ar32[2]), FormatR32(&Res.ar32[3]), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]), FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]), MxcsrDiff(fMxCsr, paTests[iTest].fMxcsrOut), ( !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[0], &paTests[iTest].OutVal.ar32[0]) || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[1], &paTests[iTest].OutVal.ar32[1]) || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[2], &paTests[iTest].OutVal.ar32[2]) || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[3], &paTests[iTest].OutVal.ar32[3])) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn)); } } FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmI32R32[iFn]); } } /* * Convert SSE operations converting signed double-words to single-precision floating point values. */ static SSE_CONVERT_XMM_T g_aSseConvertXmmR32I32[] = { ENTRY_BIN(cvtps2dq_u128), ENTRY_BIN(cvttps2dq_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseConvertXmmR32I32, g_aSseConvertXmmR32I32) static RTEXITCODE SseConvertXmmR32I32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT32U aVal1[4]; } const s_aSpecials[] = { { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) } }, { { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) } }, { { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) } }, { { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) } } /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32I32); iFn++) { PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmR32I32[iFn].pfnNative ? g_aSseConvertXmmR32I32[iFn].pfnNative : g_aSseConvertXmmR32I32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmR32I32[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData); TestData.InVal.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0]; TestData.InVal.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1]; TestData.InVal.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2]; TestData.InVal.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3]; if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[0]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[1]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[2]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[3])) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t uMxCsrOutM = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t uMxCsrOutU = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseConvertXmmR32I32Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32I32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR32I32[iFn])) continue; SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmR32I32[iFn].paTests; uint32_t const cTests = g_aSseConvertXmmR32I32[iFn].cTests; PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmR32I32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR32I32[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { X86XMMREG Res; RT_ZERO(Res); uint32_t fMxCsr = pfn(paTests[iTest].fMxcsrIn, &Res, &Res, &paTests[iTest].InVal); if ( fMxCsr != paTests[iTest].fMxcsrOut || Res.ai32[0] != paTests[iTest].OutVal.ai32[0] || Res.ai32[1] != paTests[iTest].OutVal.ai32[1] || Res.ai32[2] != paTests[iTest].OutVal.ai32[2] || Res.ai32[3] != paTests[iTest].OutVal.ai32[3]) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s \n" "%s -> mxcsr=%#08x %RI32'%RI32'%RI32'%RI32\n" "%s expected %#08x %RI32'%RI32'%RI32'%RI32%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR32(&paTests[iTest].InVal.ar32[0]), FormatR32(&paTests[iTest].InVal.ar32[1]), FormatR32(&paTests[iTest].InVal.ar32[2]), FormatR32(&paTests[iTest].InVal.ar32[3]), iVar ? " " : "", fMxCsr, Res.ai32[0], Res.ai32[1], Res.ai32[2], Res.ai32[3], iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1], paTests[iTest].OutVal.ai32[2], paTests[iTest].OutVal.ai32[3], MxcsrDiff(fMxCsr, paTests[iTest].fMxcsrOut), ( Res.ai32[0] != paTests[iTest].OutVal.ai32[0] || Res.ai32[1] != paTests[iTest].OutVal.ai32[1] || Res.ai32[2] != paTests[iTest].OutVal.ai32[2] || Res.ai32[3] != paTests[iTest].OutVal.ai32[3]) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn)); } } FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmR32I32[iFn]); } } /* * Convert SSE operations converting signed double-words to double-precision floating point values. */ static SSE_CONVERT_XMM_T g_aSseConvertXmmI32R64[] = { ENTRY_BIN(cvtdq2pd_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseConvertXmmI32R64, g_aSseConvertXmmI32R64) static RTEXITCODE SseConvertXmmI32R64Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static int32_t const s_aSpecials[] = { INT32_MIN, INT32_MIN / 2, 0, INT32_MAX / 2, INT32_MAX, (int32_t)0x80000000 /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R64); iFn++) { PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmI32R64[iFn].pfnNative ? g_aSseConvertXmmI32R64[iFn].pfnNative : g_aSseConvertXmmI32R64[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmI32R64[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData); TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests]; TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests]; TestData.InVal.ai32[2] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests]; TestData.InVal.ai32[3] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests]; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t uMxCsrOutM = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t uMxCsrOutU = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseConvertXmmI32R64Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R64); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmI32R64[iFn])) continue; SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmI32R64[iFn].paTests; uint32_t const cTests = g_aSseConvertXmmI32R64[iFn].cTests; PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmI32R64[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmI32R64[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { X86XMMREG Res; RT_ZERO(Res); uint32_t fMxCsr = pfn(paTests[iTest].fMxcsrIn, &Res, &Res, &paTests[iTest].InVal); if ( fMxCsr != paTests[iTest].fMxcsrOut || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0]) || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1])) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32'%RI32'%RI32 \n" "%s -> mxcsr=%#08x %s'%s\n" "%s expected %#08x %s'%s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1], paTests[iTest].InVal.ai32[2], paTests[iTest].InVal.ai32[3], iVar ? " " : "", fMxCsr, FormatR64(&Res.ar64[0]), FormatR64(&Res.ar64[1]), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]), MxcsrDiff(fMxCsr, paTests[iTest].fMxcsrOut), ( !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0]) || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1])) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn)); } } FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmI32R64[iFn]); } } /* * Convert SSE operations converting signed double-words to double-precision floating point values. */ static SSE_CONVERT_XMM_T g_aSseConvertXmmR64I32[] = { ENTRY_BIN(cvtpd2dq_u128), ENTRY_BIN(cvttpd2dq_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseConvertXmmR64I32, g_aSseConvertXmmR64I32) static RTEXITCODE SseConvertXmmR64I32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT64U aVal1[2]; } const s_aSpecials[] = { { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) } }, { { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) } }, { { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) } }, { { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) } } /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64I32); iFn++) { PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmR64I32[iFn].pfnNative ? g_aSseConvertXmmR64I32[iFn].pfnNative : g_aSseConvertXmmR64I32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmR64I32[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData); TestData.InVal.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0]; TestData.InVal.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1]; if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[1])) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t uMxCsrOutM = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK; uint32_t uMxCsrOutU = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOutU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS; uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal); TestData.fMxcsrIn = uMxCsrIn; TestData.fMxcsrOut = uMxCsrOut3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseConvertXmmR64I32Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64I32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR64I32[iFn])) continue; SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmR64I32[iFn].paTests; uint32_t const cTests = g_aSseConvertXmmR64I32[iFn].cTests; PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmR64I32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR64I32[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { X86XMMREG Res; RT_ZERO(Res); uint32_t fMxCsr = pfn(paTests[iTest].fMxcsrIn, &Res, &Res, &paTests[iTest].InVal); if ( fMxCsr != paTests[iTest].fMxcsrOut || Res.ai32[0] != paTests[iTest].OutVal.ai32[0] || Res.ai32[1] != paTests[iTest].OutVal.ai32[1] || Res.ai32[2] != paTests[iTest].OutVal.ai32[2] || Res.ai32[3] != paTests[iTest].OutVal.ai32[3]) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s \n" "%s -> mxcsr=%#08x %RI32'%RI32'%RI32'%RI32\n" "%s expected %#08x %RI32'%RI32'%RI32'%RI32%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR64(&paTests[iTest].InVal.ar64[0]), FormatR64(&paTests[iTest].InVal.ar64[1]), iVar ? " " : "", fMxCsr, Res.ai32[0], Res.ai32[1], Res.ai32[2], Res.ai32[3], iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1], paTests[iTest].OutVal.ai32[2], paTests[iTest].OutVal.ai32[3], MxcsrDiff(fMxCsr, paTests[iTest].fMxcsrOut), ( Res.ai32[0] != paTests[iTest].OutVal.ai32[0] || Res.ai32[1] != paTests[iTest].OutVal.ai32[1] || Res.ai32[2] != paTests[iTest].OutVal.ai32[2] || Res.ai32[3] != paTests[iTest].OutVal.ai32[3]) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn)); } } FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmR64I32[iFn]); } } /* * Convert SSE operations converting double-precision floating point values to signed double-word values. */ TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_MM_XMM_T, SSE_CONVERT_MM_XMM_TEST_T, PFNIEMAIMPLMXCSRU64U128); static SSE_CONVERT_MM_XMM_T g_aSseConvertMmXmm[] = { ENTRY_BIN(cvtpd2pi_u128), ENTRY_BIN(cvttpd2pi_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseConvertMmXmm, g_aSseConvertMmXmm) static RTEXITCODE SseConvertMmXmmGenerate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT64U aVal1[2]; } const s_aSpecials[] = { { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) } }, { { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) } }, { { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) } }, { { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) } } /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmXmm); iFn++) { PFNIEMAIMPLMXCSRU64U128 const pfn = g_aSseConvertMmXmm[iFn].pfnNative ? g_aSseConvertMmXmm[iFn].pfnNative : g_aSseConvertMmXmm[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertMmXmm[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_CONVERT_MM_XMM_TEST_T TestData; RT_ZERO(TestData); TestData.InVal.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0]; TestData.InVal.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1]; if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[1])) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint64_t u64ResM; uint32_t fMxcsrM = pfn(fMxcsrIn, &u64ResM, &TestData.InVal); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.OutVal.u = u64ResM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); fMxcsrIn &= ~X86_MXCSR_XCPT_MASK; uint64_t u64ResU; uint32_t fMxcsrU = pfn(fMxcsrIn, &u64ResU, &TestData.InVal); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.OutVal.u = u64ResU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint64_t u64Res1; uint32_t fMxcsr1 = pfn(fMxcsrIn, &u64Res1, &TestData.InVal); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.OutVal.u = u64Res1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint64_t u64Res2; uint32_t fMxcsr2 = pfn(fMxcsrIn, &u64Res2, &TestData.InVal); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.OutVal.u = u64Res2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint64_t u64Res3; uint32_t fMxcsr3 = pfn(fMxcsrIn, &u64Res3, &TestData.InVal); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.OutVal.u = u64Res3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseConvertMmXmmTest(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmXmm); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertMmXmm[iFn])) continue; SSE_CONVERT_MM_XMM_TEST_T const * const paTests = g_aSseConvertMmXmm[iFn].paTests; uint32_t const cTests = g_aSseConvertMmXmm[iFn].cTests; PFNIEMAIMPLMXCSRU64U128 pfn = g_aSseConvertMmXmm[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertMmXmm[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTUINT64U ValOut; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut.u, &paTests[iTest].InVal); if ( fMxcsr != paTests[iTest].fMxcsrOut || ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0] || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1]) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s\n" "%s -> mxcsr=%#08x %RI32'%RI32\n" "%s expected %#08x %RI32'%RI32%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR64(&paTests[iTest].InVal.ar64[0]), FormatR64(&paTests[iTest].InVal.ar64[1]), iVar ? " " : "", fMxcsr, ValOut.ai32[0], ValOut.ai32[1], iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1], MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), ( ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0] || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1]) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn)); } } FREE_DECOMPRESSED_TESTS(g_aSseConvertMmXmm[iFn]); } } /* * Convert SSE operations converting signed double-word values to double precision floating-point values (probably only cvtpi2pd). */ TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_XMM_R64_MM_T, SSE_CONVERT_XMM_MM_TEST_T, PFNIEMAIMPLMXCSRU128U64); static SSE_CONVERT_XMM_R64_MM_T g_aSseConvertXmmR64Mm[] = { ENTRY_BIN(cvtpi2pd_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseConvertXmmR64Mm, g_aSseConvertXmmR64Mm) static RTEXITCODE SseConvertXmmR64MmGenerate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { int32_t aVal[2]; } const s_aSpecials[] = { { { INT32_MIN, INT32_MIN } }, { { INT32_MAX, INT32_MAX } } /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64Mm); iFn++) { PFNIEMAIMPLMXCSRU128U64 const pfn = g_aSseConvertXmmR64Mm[iFn].pfnNative ? g_aSseConvertXmmR64Mm[iFn].pfnNative : g_aSseConvertXmmR64Mm[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmR64Mm[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_CONVERT_XMM_MM_TEST_T TestData; RT_ZERO(TestData); TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[0]; TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[1]; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); fMxcsrIn &= ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseConvertXmmR64MmTest(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64Mm); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR64Mm[iFn])) continue; SSE_CONVERT_XMM_MM_TEST_T const * const paTests = g_aSseConvertXmmR64Mm[iFn].paTests; uint32_t const cTests = g_aSseConvertXmmR64Mm[iFn].cTests; PFNIEMAIMPLMXCSRU128U64 pfn = g_aSseConvertXmmR64Mm[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR64Mm[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { X86XMMREG ValOut; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut, paTests[iTest].InVal.u); if ( fMxcsr != paTests[iTest].fMxcsrOut || !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[0], &paTests[iTest].OutVal.ar64[0]) || !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[1], &paTests[iTest].OutVal.ar64[1])) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32\n" "%s -> mxcsr=%#08x %s'%s\n" "%s expected %#08x %s'%s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1], iVar ? " " : "", fMxcsr, FormatR64(&ValOut.ar64[0]), FormatR64(&ValOut.ar64[1]), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]), MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), ( !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[0], &paTests[iTest].OutVal.ar64[0]) || !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[1], &paTests[iTest].OutVal.ar64[1])) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn)); } } FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmR64Mm[iFn]); } } /* * Convert SSE operations converting signed double-word values to double precision floating-point values (probably only cvtpi2pd). */ TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_XMM_R32_MM_T, SSE_CONVERT_XMM_MM_TEST_T, PFNIEMAIMPLMXCSRU128U64); static SSE_CONVERT_XMM_R32_MM_T g_aSseConvertXmmR32Mm[] = { ENTRY_BIN(cvtpi2ps_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseConvertXmmR32Mm, g_aSseConvertXmmR32Mm) static RTEXITCODE SseConvertXmmR32MmGenerate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { int32_t aVal[2]; } const s_aSpecials[] = { { { INT32_MIN, INT32_MIN } }, { { INT32_MAX, INT32_MAX } } /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32Mm); iFn++) { PFNIEMAIMPLMXCSRU128U64 const pfn = g_aSseConvertXmmR32Mm[iFn].pfnNative ? g_aSseConvertXmmR32Mm[iFn].pfnNative : g_aSseConvertXmmR32Mm[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmR32Mm[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_CONVERT_XMM_MM_TEST_T TestData; RT_ZERO(TestData); TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[0]; TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[1]; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint32_t fMxcsrM = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); fMxcsrIn &= ~X86_MXCSR_XCPT_MASK; uint32_t fMxcsrU = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint32_t fMxcsr1 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr2 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint32_t fMxcsr3 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseConvertXmmR32MmTest(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32Mm); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR32Mm[iFn])) continue; SSE_CONVERT_XMM_MM_TEST_T const * const paTests = g_aSseConvertXmmR32Mm[iFn].paTests; uint32_t const cTests = g_aSseConvertXmmR32Mm[iFn].cTests; PFNIEMAIMPLMXCSRU128U64 pfn = g_aSseConvertXmmR32Mm[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR32Mm[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { X86XMMREG ValOut; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut, paTests[iTest].InVal.u); if ( fMxcsr != paTests[iTest].fMxcsrOut || !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[0], &paTests[iTest].OutVal.ar32[0]) || !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[1], &paTests[iTest].OutVal.ar32[1])) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32\n" "%s -> mxcsr=%#08x %s'%s\n" "%s expected %#08x %s'%s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1], iVar ? " " : "", fMxcsr, FormatR32(&ValOut.ar32[0]), FormatR32(&ValOut.ar32[1]), iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]), MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), ( !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[0], &paTests[iTest].OutVal.ar32[0]) || !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[1], &paTests[iTest].OutVal.ar32[1])) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn)); } } FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmR32Mm[iFn]); } } /* * Convert SSE operations converting single-precision floating point values to signed double-word values. */ TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_MM_I32_XMM_R32_T, SSE_CONVERT_MM_R32_TEST_T, PFNIEMAIMPLMXCSRU64U64); static SSE_CONVERT_MM_I32_XMM_R32_T g_aSseConvertMmI32XmmR32[] = { ENTRY_BIN(cvtps2pi_u128), ENTRY_BIN(cvttps2pi_u128) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseConvertMmI32XmmR32, g_aSseConvertMmI32XmmR32) static RTEXITCODE SseConvertMmI32XmmR32Generate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT32U aVal1[2]; } const s_aSpecials[] = { { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) } }, { { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) } }, { { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) } }, { { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) } } /** @todo More specials. */ }; uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmI32XmmR32); iFn++) { PFNIEMAIMPLMXCSRU64U64 const pfn = g_aSseConvertMmI32XmmR32[iFn].pfnNative ? g_aSseConvertMmI32XmmR32[iFn].pfnNative : g_aSseConvertMmI32XmmR32[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertMmI32XmmR32[iFn]), RTEXITCODE_FAILURE); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_CONVERT_MM_R32_TEST_T TestData; RT_ZERO(TestData); TestData.ar32InVal[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0]; TestData.ar32InVal[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1]; if ( RTFLOAT32U_IS_NORMAL(&TestData.ar32InVal[0]) && RTFLOAT32U_IS_NORMAL(&TestData.ar32InVal[1])) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } RTFLOAT64U TestVal; TestVal.au32[0] = TestData.ar32InVal[0].u; TestVal.au32[1] = TestData.ar32InVal[1].u; uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint8_t iDaz = 0; iDaz < 2; iDaz++) for (uint8_t iFz = 0; iFz < 2; iFz++) { uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK) | (iRounding << X86_MXCSR_RC_SHIFT) | (iDaz ? X86_MXCSR_DAZ : 0) | (iFz ? X86_MXCSR_FZ : 0) | X86_MXCSR_XCPT_MASK; uint64_t u64ResM; uint32_t fMxcsrM = pfn(fMxcsrIn, &u64ResM, TestVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrM; TestData.OutVal.u = u64ResM; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); fMxcsrIn &= ~X86_MXCSR_XCPT_MASK; uint64_t u64ResU; uint32_t fMxcsrU = pfn(fMxcsrIn, &u64ResU, TestVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsrU; TestData.OutVal.u = u64ResU; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS; if (fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt; uint64_t u64Res1; uint32_t fMxcsr1 = pfn(fMxcsrIn, &u64Res1, TestVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr1; TestData.OutVal.u = u64Res1; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS)) { fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS; fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT); uint64_t u64Res2; uint32_t fMxcsr2 = pfn(fMxcsrIn, &u64Res2, TestVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr2; TestData.OutVal.u = u64Res2; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1) if (fUnmasked & fXcpt) { fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT); uint64_t u64Res3; uint32_t fMxcsr3 = pfn(fMxcsrIn, &u64Res3, TestVal.u); TestData.fMxcsrIn = fMxcsrIn; TestData.fMxcsrOut = fMxcsr3; TestData.OutVal.u = u64Res3; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseConvertMmI32XmmR32Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmI32XmmR32); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertMmI32XmmR32[iFn])) continue; SSE_CONVERT_MM_R32_TEST_T const * const paTests = g_aSseConvertMmI32XmmR32[iFn].paTests; uint32_t const cTests = g_aSseConvertMmI32XmmR32[iFn].cTests; PFNIEMAIMPLMXCSRU64U64 pfn = g_aSseConvertMmI32XmmR32[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertMmI32XmmR32[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTUINT64U ValOut; RTUINT64U ValIn; ValIn.au32[0] = paTests[iTest].ar32InVal[0].u; ValIn.au32[1] = paTests[iTest].ar32InVal[1].u; uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut.u, ValIn.u); if ( fMxcsr != paTests[iTest].fMxcsrOut || ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0] || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1]) RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s \n" "%s -> mxcsr=%#08x %RI32'%RI32\n" "%s expected %#08x %RI32'%RI32%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, FormatR32(&paTests[iTest].ar32InVal[0]), FormatR32(&paTests[iTest].ar32InVal[1]), iVar ? " " : "", fMxcsr, ValOut.ai32[0], ValOut.ai32[1], iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1], MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut), ( ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0] || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1]) ? " - val" : "", FormatMxcsr(paTests[iTest].fMxcsrIn)); } } FREE_DECOMPRESSED_TESTS(g_aSseConvertMmI32XmmR32[iFn]); } } /* * SSE 4.2 pcmpxstrx instructions. */ TYPEDEF_SUBTEST_TYPE(SSE_PCMPISTRI_T, SSE_PCMPISTRI_TEST_T, PFNIEMAIMPLPCMPISTRIU128IMM8); static SSE_PCMPISTRI_T g_aSsePcmpistri[] = { ENTRY_BIN_SSE_OPT(pcmpistri_u128), ENTRY_BIN_SSE_OPT(vpcmpistri_u128), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseComparePcmpistri, g_aSsePcmpistri) static RTEXITCODE SseComparePcmpistriGenerate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] = { { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) }, /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistri); iFn++) { PFNIEMAIMPLPCMPISTRIU128IMM8 const pfn = g_aSsePcmpistri[iFn].pfnNative ? g_aSsePcmpistri[iFn].pfnNative : g_aSsePcmpistri[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSsePcmpistri[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_PCMPISTRI_TEST_T TestData; RT_ZERO(TestData); TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1; TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2; uint32_t const fEFlagsIn = RandEFlags(); for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++) { uint32_t fEFlagsOut = fEFlagsIn; TestData.u32EcxOut = pfn(&fEFlagsOut, &TestData.InVal1.uXmm, &TestData.InVal2.uXmm, (uint8_t)u16Imm); TestData.fEFlagsIn = fEFlagsIn; TestData.fEFlagsOut = fEFlagsOut; TestData.bImm = (uint8_t)u16Imm; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } /* Repeat the test with the input value being the same. */ for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++) { uint32_t fEFlagsOut = fEFlagsIn; TestData.u32EcxOut = pfn(&fEFlagsOut, &TestData.InVal1.uXmm, &TestData.InVal2.uXmm, (uint8_t)u16Imm); TestData.fEFlagsIn = fEFlagsIn; TestData.fEFlagsOut = fEFlagsOut; TestData.bImm = (uint8_t)u16Imm; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseComparePcmpistriTest(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistri); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpistri[iFn])) continue; SSE_PCMPISTRI_TEST_T const * const paTests = g_aSsePcmpistri[iFn].paTests; uint32_t const cTests = g_aSsePcmpistri[iFn].cTests; PFNIEMAIMPLPCMPISTRIU128IMM8 pfn = g_aSsePcmpistri[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpistri[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { uint32_t fEFlags = paTests[iTest].fEFlagsIn; uint32_t u32EcxOut = pfn(&fEFlags, &paTests[iTest].InVal1.uXmm, &paTests[iTest].InVal2.uXmm, paTests[iTest].bImm); if ( fEFlags != paTests[iTest].fEFlagsOut || u32EcxOut != paTests[iTest].u32EcxOut) RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s in2=%s bImm=%#x\n" "%s -> efl=%#08x %RU32\n" "%s expected %#08x %RU32%s%s\n", iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn, FormatU128(&paTests[iTest].InVal1.uXmm), FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].bImm, iVar ? " " : "", fEFlags, u32EcxOut, iVar ? " " : "", paTests[iTest].fEFlagsOut, paTests[iTest].u32EcxOut, EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut), (u32EcxOut != paTests[iTest].u32EcxOut) ? " - val" : ""); } } FREE_DECOMPRESSED_TESTS(g_aSsePcmpistri[iFn]); } } TYPEDEF_SUBTEST_TYPE(SSE_PCMPISTRM_T, SSE_PCMPISTRM_TEST_T, PFNIEMAIMPLPCMPISTRMU128IMM8); static SSE_PCMPISTRM_T g_aSsePcmpistrm[] = { ENTRY_BIN_SSE_OPT(pcmpistrm_u128), ENTRY_BIN_SSE_OPT(vpcmpistrm_u128), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseComparePcmpistrm, g_aSsePcmpistrm) static RTEXITCODE SseComparePcmpistrmGenerate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] = { { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) }, /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistrm); iFn++) { PFNIEMAIMPLPCMPISTRMU128IMM8 const pfn = g_aSsePcmpistrm[iFn].pfnNative ? g_aSsePcmpistrm[iFn].pfnNative : g_aSsePcmpistrm[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSsePcmpistrm[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_PCMPISTRM_TEST_T TestData; RT_ZERO(TestData); TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1; TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2; IEMPCMPISTRXSRC TestVal; TestVal.uSrc1 = TestData.InVal1.uXmm; TestVal.uSrc2 = TestData.InVal2.uXmm; uint32_t const fEFlagsIn = RandEFlags(); for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++) { uint32_t fEFlagsOut = fEFlagsIn; pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm); TestData.fEFlagsIn = fEFlagsIn; TestData.fEFlagsOut = fEFlagsOut; TestData.bImm = (uint8_t)u16Imm; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } /* Repeat the test with the input value being the same. */ TestData.InVal2.uXmm = TestData.InVal1.uXmm; TestVal.uSrc1 = TestData.InVal1.uXmm; TestVal.uSrc2 = TestData.InVal2.uXmm; for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++) { uint32_t fEFlagsOut = fEFlagsIn; pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm); TestData.fEFlagsIn = fEFlagsIn; TestData.fEFlagsOut = fEFlagsOut; TestData.bImm = (uint8_t)u16Imm; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseComparePcmpistrmTest(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistrm); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpistrm[iFn])) continue; SSE_PCMPISTRM_TEST_T const * const paTests = g_aSsePcmpistrm[iFn].paTests; uint32_t const cTests = g_aSsePcmpistrm[iFn].cTests; PFNIEMAIMPLPCMPISTRMU128IMM8 pfn = g_aSsePcmpistrm[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpistrm[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { IEMPCMPISTRXSRC TestVal; TestVal.uSrc1 = paTests[iTest].InVal1.uXmm; TestVal.uSrc2 = paTests[iTest].InVal2.uXmm; uint32_t fEFlags = paTests[iTest].fEFlagsIn; RTUINT128U OutVal; pfn(&OutVal, &fEFlags, &TestVal, paTests[iTest].bImm); if ( fEFlags != paTests[iTest].fEFlagsOut || OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo) RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s in2=%s bImm=%#x\n" "%s -> efl=%#08x %s\n" "%s expected %#08x %s%s%s\n", iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn, FormatU128(&paTests[iTest].InVal1.uXmm), FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].bImm, iVar ? " " : "", fEFlags, FormatU128(&OutVal), iVar ? " " : "", paTests[iTest].fEFlagsOut, FormatU128(&paTests[iTest].OutVal.uXmm), EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut), ( OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo) ? " - val" : ""); } } FREE_DECOMPRESSED_TESTS(g_aSsePcmpistrm[iFn]); } } TYPEDEF_SUBTEST_TYPE(SSE_PCMPESTRI_T, SSE_PCMPESTRI_TEST_T, PFNIEMAIMPLPCMPESTRIU128IMM8); static SSE_PCMPESTRI_T g_aSsePcmpestri[] = { ENTRY_BIN_SSE_OPT(pcmpestri_u128), ENTRY_BIN_SSE_OPT(vpcmpestri_u128), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseComparePcmpestri, g_aSsePcmpestri) static RTEXITCODE SseComparePcmpestriGenerate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] = { { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) }, /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestri); iFn++) { PFNIEMAIMPLPCMPESTRIU128IMM8 const pfn = g_aSsePcmpestri[iFn].pfnNative ? g_aSsePcmpestri[iFn].pfnNative : g_aSsePcmpestri[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSsePcmpestri[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_PCMPESTRI_TEST_T TestData; RT_ZERO(TestData); TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1; TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2; for (int64_t i64Rax = -20; i64Rax < 20; i64Rax += 20) for (int64_t i64Rdx = -20; i64Rdx < 20; i64Rdx += 20) { TestData.u64Rax = (uint64_t)i64Rax; TestData.u64Rdx = (uint64_t)i64Rdx; IEMPCMPESTRXSRC TestVal; TestVal.uSrc1 = TestData.InVal1.uXmm; TestVal.uSrc2 = TestData.InVal2.uXmm; TestVal.u64Rax = TestData.u64Rax; TestVal.u64Rdx = TestData.u64Rdx; uint32_t const fEFlagsIn = RandEFlags(); for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++) { uint32_t fEFlagsOut = fEFlagsIn; pfn(&TestData.u32EcxOut, &fEFlagsOut, &TestVal, (uint8_t)u16Imm); TestData.fEFlagsIn = fEFlagsIn; TestData.fEFlagsOut = fEFlagsOut; TestData.bImm = (uint8_t)u16Imm; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } /* Repeat the test with the input value being the same. */ TestData.InVal2.uXmm = TestData.InVal1.uXmm; TestVal.uSrc1 = TestData.InVal1.uXmm; TestVal.uSrc2 = TestData.InVal2.uXmm; for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++) { uint32_t fEFlagsOut = fEFlagsIn; pfn(&TestData.u32EcxOut, &fEFlagsOut, &TestVal, (uint8_t)u16Imm); TestData.fEFlagsIn = fEFlagsIn; TestData.fEFlagsOut = fEFlagsOut; TestData.bImm = (uint8_t)u16Imm; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseComparePcmpestriTest(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestri); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpestri[iFn])) continue; SSE_PCMPESTRI_TEST_T const * const paTests = g_aSsePcmpestri[iFn].paTests; uint32_t const cTests = g_aSsePcmpestri[iFn].cTests; PFNIEMAIMPLPCMPESTRIU128IMM8 pfn = g_aSsePcmpestri[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpestri[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { IEMPCMPESTRXSRC TestVal; TestVal.uSrc1 = paTests[iTest].InVal1.uXmm; TestVal.uSrc2 = paTests[iTest].InVal2.uXmm; TestVal.u64Rax = paTests[iTest].u64Rax; TestVal.u64Rdx = paTests[iTest].u64Rdx; uint32_t fEFlags = paTests[iTest].fEFlagsIn; uint32_t u32EcxOut = 0; pfn(&u32EcxOut, &fEFlags, &TestVal, paTests[iTest].bImm); if ( fEFlags != paTests[iTest].fEFlagsOut || u32EcxOut != paTests[iTest].u32EcxOut) RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s rax1=%RI64 in2=%s rdx2=%RI64 bImm=%#x\n" "%s -> efl=%#08x %RU32\n" "%s expected %#08x %RU32%s%s\n", iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn, FormatU128(&paTests[iTest].InVal1.uXmm), paTests[iTest].u64Rax, FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].u64Rdx, paTests[iTest].bImm, iVar ? " " : "", fEFlags, u32EcxOut, iVar ? " " : "", paTests[iTest].fEFlagsOut, paTests[iTest].u32EcxOut, EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut), (u32EcxOut != paTests[iTest].u32EcxOut) ? " - val" : ""); } } FREE_DECOMPRESSED_TESTS(g_aSsePcmpestri[iFn]); } } TYPEDEF_SUBTEST_TYPE(SSE_PCMPESTRM_T, SSE_PCMPESTRM_TEST_T, PFNIEMAIMPLPCMPESTRMU128IMM8); static SSE_PCMPESTRM_T g_aSsePcmpestrm[] = { ENTRY_BIN_SSE_OPT(pcmpestrm_u128), ENTRY_BIN_SSE_OPT(vpcmpestrm_u128), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR DUMP_ALL_FN(SseComparePcmpestrm, g_aSsePcmpestrm) static RTEXITCODE SseComparePcmpestrmGenerate(uint32_t cTests, const char * const *papszNameFmts) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] = { { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) }, /** @todo More specials. */ }; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestrm); iFn++) { PFNIEMAIMPLPCMPESTRMU128IMM8 const pfn = g_aSsePcmpestrm[iFn].pfnNative ? g_aSsePcmpestrm[iFn].pfnNative : g_aSsePcmpestrm[iFn].pfn; IEMBINARYOUTPUT BinOut; AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSsePcmpestrm[iFn]), RTEXITCODE_FAILURE); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { SSE_PCMPESTRM_TEST_T TestData; RT_ZERO(TestData); TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1; TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2; for (int64_t i64Rax = -20; i64Rax < 20; i64Rax += 20) for (int64_t i64Rdx = -20; i64Rdx < 20; i64Rdx += 20) { TestData.u64Rax = (uint64_t)i64Rax; TestData.u64Rdx = (uint64_t)i64Rdx; IEMPCMPESTRXSRC TestVal; TestVal.uSrc1 = TestData.InVal1.uXmm; TestVal.uSrc2 = TestData.InVal2.uXmm; TestVal.u64Rax = TestData.u64Rax; TestVal.u64Rdx = TestData.u64Rdx; uint32_t const fEFlagsIn = RandEFlags(); for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++) { uint32_t fEFlagsOut = fEFlagsIn; pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm); TestData.fEFlagsIn = fEFlagsIn; TestData.fEFlagsOut = fEFlagsOut; TestData.bImm = (uint8_t)u16Imm; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } /* Repeat the test with the input value being the same. */ TestData.InVal2.uXmm = TestData.InVal1.uXmm; TestVal.uSrc1 = TestData.InVal1.uXmm; TestVal.uSrc2 = TestData.InVal2.uXmm; for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++) { uint32_t fEFlagsOut = fEFlagsIn; pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm); TestData.fEFlagsIn = fEFlagsIn; TestData.fEFlagsOut = fEFlagsOut; TestData.bImm = (uint8_t)u16Imm; GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData)); } } } AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); } return RTEXITCODE_SUCCESS; } #endif static void SseComparePcmpestrmTest(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestrm); iFn++) { if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpestrm[iFn])) continue; SSE_PCMPESTRM_TEST_T const * const paTests = g_aSsePcmpestrm[iFn].paTests; uint32_t const cTests = g_aSsePcmpestrm[iFn].cTests; PFNIEMAIMPLPCMPESTRMU128IMM8 pfn = g_aSsePcmpestrm[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpestrm[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { IEMPCMPESTRXSRC TestVal; TestVal.uSrc1 = paTests[iTest].InVal1.uXmm; TestVal.uSrc2 = paTests[iTest].InVal2.uXmm; TestVal.u64Rax = paTests[iTest].u64Rax; TestVal.u64Rdx = paTests[iTest].u64Rdx; uint32_t fEFlags = paTests[iTest].fEFlagsIn; RTUINT128U OutVal; pfn(&OutVal, &fEFlags, &TestVal, paTests[iTest].bImm); if ( fEFlags != paTests[iTest].fEFlagsOut || OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo) RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s rax1=%RI64 in2=%s rdx2=%RI64 bImm=%#x\n" "%s -> efl=%#08x %s\n" "%s expected %#08x %s%s%s\n", iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn, FormatU128(&paTests[iTest].InVal1.uXmm), paTests[iTest].u64Rax, FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].u64Rdx, paTests[iTest].bImm, iVar ? " " : "", fEFlags, FormatU128(&OutVal), iVar ? " " : "", paTests[iTest].fEFlagsOut, FormatU128(&paTests[iTest].OutVal.uXmm), EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut), ( OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo) ? " - val" : ""); } } FREE_DECOMPRESSED_TESTS(g_aSsePcmpestrm[iFn]); } } int main(int argc, char **argv) { int rc = RTR3InitExe(argc, &argv, 0); if (RT_FAILURE(rc)) return RTMsgInitFailure(rc); /* * Determin the host CPU. * If not using the IEMAllAImpl.asm code, this will be set to Intel. */ #if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY) g_idxCpuEflFlavour = ASMIsAmdCpu() || ASMIsHygonCpu() ? IEMTARGETCPU_EFL_BEHAVIOR_AMD : IEMTARGETCPU_EFL_BEHAVIOR_INTEL; #else g_idxCpuEflFlavour = IEMTARGETCPU_EFL_BEHAVIOR_INTEL; #endif /* * Parse arguments. */ enum { kModeNotSet, kModeTest, kModeGenerate, kModeDump } enmMode = kModeNotSet; #define CATEGORY_INT RT_BIT_32(0) #define CATEGORY_FPU_LD_ST RT_BIT_32(1) #define CATEGORY_FPU_BINARY_1 RT_BIT_32(2) #define CATEGORY_FPU_BINARY_2 RT_BIT_32(3) #define CATEGORY_FPU_OTHER RT_BIT_32(4) #define CATEGORY_SSE_FP_BINARY RT_BIT_32(5) #define CATEGORY_SSE_FP_OTHER RT_BIT_32(6) #define CATEGORY_SSE_PCMPXSTRX RT_BIT_32(7) uint32_t fCategories = UINT32_MAX; bool fCpuData = true; bool fCommonData = true; uint32_t const cDefaultTests = 96; uint32_t cTests = cDefaultTests; RTGETOPTDEF const s_aOptions[] = { // mode: { "--generate", 'g', RTGETOPT_REQ_NOTHING }, { "--dump", 'G', RTGETOPT_REQ_NOTHING }, { "--test", 't', RTGETOPT_REQ_NOTHING }, { "--benchmark", 'b', RTGETOPT_REQ_NOTHING }, // test selection (both) { "--all", 'a', RTGETOPT_REQ_NOTHING }, { "--none", 'z', RTGETOPT_REQ_NOTHING }, { "--zap", 'z', RTGETOPT_REQ_NOTHING }, { "--fpu-ld-st", 'F', RTGETOPT_REQ_NOTHING }, /* FPU stuff is upper case */ { "--fpu-load-store", 'F', RTGETOPT_REQ_NOTHING }, { "--fpu-binary-1", 'B', RTGETOPT_REQ_NOTHING }, { "--fpu-binary-2", 'P', RTGETOPT_REQ_NOTHING }, { "--fpu-other", 'O', RTGETOPT_REQ_NOTHING }, { "--sse-fp-binary", 'S', RTGETOPT_REQ_NOTHING }, { "--sse-fp-other", 'T', RTGETOPT_REQ_NOTHING }, { "--sse-pcmpxstrx", 'C', RTGETOPT_REQ_NOTHING }, { "--int", 'i', RTGETOPT_REQ_NOTHING }, { "--include", 'I', RTGETOPT_REQ_STRING }, { "--exclude", 'X', RTGETOPT_REQ_STRING }, // generation parameters { "--common", 'm', RTGETOPT_REQ_NOTHING }, { "--cpu", 'c', RTGETOPT_REQ_NOTHING }, { "--number-of-tests", 'n', RTGETOPT_REQ_UINT32 }, { "--verbose", 'v', RTGETOPT_REQ_NOTHING }, { "--quiet", 'q', RTGETOPT_REQ_NOTHING }, { "--quiet-skipping", 'Q', RTGETOPT_REQ_NOTHING }, }; RTGETOPTSTATE State; rc = RTGetOptInit(&State, argc, argv, s_aOptions, RT_ELEMENTS(s_aOptions), 1, 0); AssertRCReturn(rc, RTEXITCODE_FAILURE); RTGETOPTUNION ValueUnion; while ((rc = RTGetOpt(&State, &ValueUnion))) { switch (rc) { case 'g': enmMode = kModeGenerate; g_cPicoSecBenchmark = 0; break; case 'G': enmMode = kModeDump; g_cPicoSecBenchmark = 0; break; case 't': enmMode = kModeTest; g_cPicoSecBenchmark = 0; break; case 'b': enmMode = kModeTest; g_cPicoSecBenchmark += RT_NS_1SEC / 2 * UINT64_C(1000); /* half a second in pico seconds */ break; case 'a': fCpuData = true; fCommonData = true; fCategories = UINT32_MAX; break; case 'z': fCpuData = false; fCommonData = false; fCategories = 0; break; case 'F': fCategories |= CATEGORY_FPU_LD_ST; break; case 'O': fCategories |= CATEGORY_FPU_OTHER; break; case 'B': fCategories |= CATEGORY_FPU_BINARY_1; break; case 'P': fCategories |= CATEGORY_FPU_BINARY_2; break; case 'S': fCategories |= CATEGORY_SSE_FP_BINARY; break; case 'T': fCategories |= CATEGORY_SSE_FP_OTHER; break; case 'C': fCategories |= CATEGORY_SSE_PCMPXSTRX; break; case 'i': fCategories |= CATEGORY_INT; break; case 'I': if (g_cIncludeTestPatterns >= RT_ELEMENTS(g_apszIncludeTestPatterns)) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Too many include patterns (max %zu)", RT_ELEMENTS(g_apszIncludeTestPatterns)); g_apszIncludeTestPatterns[g_cIncludeTestPatterns++] = ValueUnion.psz; break; case 'X': if (g_cExcludeTestPatterns >= RT_ELEMENTS(g_apszExcludeTestPatterns)) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Too many exclude patterns (max %zu)", RT_ELEMENTS(g_apszExcludeTestPatterns)); g_apszExcludeTestPatterns[g_cExcludeTestPatterns++] = ValueUnion.psz; break; case 'm': fCommonData = true; break; case 'c': fCpuData = true; break; case 'n': cTests = ValueUnion.u32; break; case 'q': g_cVerbosity = 0; break; case 'v': g_cVerbosity++; break; case 'Q': g_fVerboseSkipping = false; break; case 'h': RTPrintf("usage: %Rbn <-g|-t> [options]\n" "\n" "Mode:\n" " -g, --generate\n" " Generate test data.\n" " -t, --test\n" " Execute tests.\n" " -b, --benchmark\n" " Execute tests and do 1/2 seconds of benchmarking.\n" " Repeating the option increases the benchmark duration by 0.5 seconds.\n" "\n" "Test selection (both modes):\n" " -a, --all\n" " Enable all tests and generated test data. (default)\n" " -z, --zap, --none\n" " Disable all tests and test data types.\n" " -i, --int\n" " Enable non-FPU tests.\n" " -F, --fpu-ld-st\n" " Enable FPU load and store tests.\n" " -B, --fpu-binary-1\n" " Enable FPU binary 80-bit FP tests.\n" " -P, --fpu-binary-2\n" " Enable FPU binary 64- and 32-bit FP tests.\n" " -O, --fpu-other\n" " Enable FPU binary 64- and 32-bit FP tests.\n" " -S, --sse-fp-binary\n" " Enable SSE binary 64- and 32-bit FP tests.\n" " -T, --sse-fp-other\n" " Enable misc SSE 64- and 32-bit FP tests.\n" " -C, --sse-pcmpxstrx\n" " Enable SSE pcmpxstrx tests.\n" " -I,--include=\n" " Enable tests matching the given pattern.\n" " -X,--exclude=\n" " Skip tests matching the given pattern (overrides --include).\n" "\n" "Generation:\n" " -m, --common\n" " Enable generating common test data.\n" " -c, --only-cpu\n" " Enable generating CPU specific test data.\n" " -n, --number-of-test \n" " Number of tests to generate. Default: %u\n" "\n" "Other:\n" " -v, --verbose\n" " -q, --quiet\n" " Noise level. Default: --quiet\n" " -Q, --quiet-skipping\n" " Don't display skipped tests.\n" "\n" "Tip! When working on a single instruction, use the the -I and -Q options to\n" " restrict the testing: %Rbn -tiQI \"shr_*\"\n" , argv[0], cDefaultTests, argv[0]); return RTEXITCODE_SUCCESS; default: return RTGetOptPrintError(rc, &ValueUnion); } } static const struct { uint32_t fCategory; void (*pfnTest)(void); #ifdef TSTIEMAIMPL_WITH_GENERATOR const char *pszFilenameFmt; RTEXITCODE (*pfnGenerate)(uint32_t cTests, const char * const *papszNameFmts); RTEXITCODE (*pfnDumpAll)(const char * const *papszNameFmts); uint32_t cMinTests; # define GROUP_ENTRY(a_fCategory, a_BaseNm, a_szFilenameFmt, a_cMinTests) \ { a_fCategory, a_BaseNm ## Test, a_szFilenameFmt, a_BaseNm ## Generate, a_BaseNm ## DumpAll, a_cMinTests } #else # define GROUP_ENTRY(a_fCategory, a_BaseNm, a_szFilenameFmt, a_cMinTests) \ { a_fCategory, a_BaseNm ## Test } #endif #define GROUP_ENTRY_MANUAL(a_fCategory, a_BaseNm) \ { a_fCategory, a_BaseNm ## Test } } s_aGroups[] = { GROUP_ENTRY(CATEGORY_INT, BinU8, "tstIEMAImplDataInt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_INT, BinU16, "tstIEMAImplDataInt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_INT, BinU32, "tstIEMAImplDataInt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_INT, BinU64, "tstIEMAImplDataInt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_INT, ShiftDbl, "tstIEMAImplDataInt-%s.bin.gz", 128), GROUP_ENTRY(CATEGORY_INT, Unary, "tstIEMAImplDataInt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_INT, Shift, "tstIEMAImplDataInt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_INT, MulDiv, "tstIEMAImplDataInt-%s.bin.gz", 0), GROUP_ENTRY_MANUAL(CATEGORY_INT, Xchg), GROUP_ENTRY_MANUAL(CATEGORY_INT, Xadd), GROUP_ENTRY_MANUAL(CATEGORY_INT, CmpXchg), GROUP_ENTRY_MANUAL(CATEGORY_INT, CmpXchg8b), GROUP_ENTRY_MANUAL(CATEGORY_INT, CmpXchg16b), GROUP_ENTRY_MANUAL(CATEGORY_INT, Bswap), GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuLdConst, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuLdInt, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuLdD80, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuLdMem, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 384), /* needs better coverage */ GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuStInt, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuStD80, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuStMem, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 384), /* needs better coverage */ GROUP_ENTRY(CATEGORY_FPU_BINARY_1, FpuBinaryR80, "tstIEMAImplDataFpuBinary1-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_BINARY_1, FpuBinaryFswR80, "tstIEMAImplDataFpuBinary1-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_BINARY_1, FpuBinaryEflR80, "tstIEMAImplDataFpuBinary1-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryR64, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryR32, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryI32, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryI16, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryFswR64, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryFswR32, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryFswI32, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryFswI16, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_OTHER, FpuUnaryR80, "tstIEMAImplDataFpuOther-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_OTHER, FpuUnaryFswR80, "tstIEMAImplDataFpuOther-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_FPU_OTHER, FpuUnaryTwoR80, "tstIEMAImplDataFpuOther-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryU128R32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryU128R64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryI32R64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryI64R64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryI32R32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryI64R32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR64I32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR64I64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR32I32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR32I64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseCompareEflR32R32, "tstIEMAImplDataSseCompare-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseCompareEflR64R64, "tstIEMAImplDataSseCompare-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseCompareF3XmmR32Imm8, "tstIEMAImplDataSseCompare-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseCompareF3XmmR64Imm8, "tstIEMAImplDataSseCompare-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmI32R32, "tstIEMAImplDataSseConvert-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmR32I32, "tstIEMAImplDataSseConvert-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmI32R64, "tstIEMAImplDataSseConvert-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmR64I32, "tstIEMAImplDataSseConvert-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertMmXmm, "tstIEMAImplDataSseConvert-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmR32Mm, "tstIEMAImplDataSseConvert-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmR64Mm, "tstIEMAImplDataSseConvert-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertMmI32XmmR32, "tstIEMAImplDataSseConvert-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_PCMPXSTRX, SseComparePcmpistri, "tstIEMAImplDataSsePcmpxstrx-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_PCMPXSTRX, SseComparePcmpistrm, "tstIEMAImplDataSsePcmpxstrx-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_PCMPXSTRX, SseComparePcmpestri, "tstIEMAImplDataSsePcmpxstrx-%s.bin.gz", 0), GROUP_ENTRY(CATEGORY_SSE_PCMPXSTRX, SseComparePcmpestrm, "tstIEMAImplDataSsePcmpxstrx-%s.bin.gz", 0), }; /* * Generate data? */ if (enmMode == kModeGenerate) { #ifdef TSTIEMAIMPL_WITH_GENERATOR if (cTests == 0) cTests = cDefaultTests; g_cZeroDstTests = RT_MIN(cTests / 16, 32); g_cZeroSrcTests = g_cZeroDstTests * 2; uint32_t const uBuildRev = RTBldCfgRevision(); RTMpGetDescription(NIL_RTCPUID, g_szCpuDesc, sizeof(g_szCpuDesc)); /* For the revision, use the highest for this file and VBoxRT. */ static const char s_szRev[] = "$Revision: 107626 $"; const char *pszRev = s_szRev; while (*pszRev && !RT_C_IS_DIGIT(*pszRev)) pszRev++; g_uSvnRev = RTStrToUInt32(pszRev); g_uSvnRev = RT_MAX(g_uSvnRev, uBuildRev); /* Loop thru the groups and call the generate for any that's enabled. */ for (size_t i = 0; i < RT_ELEMENTS(s_aGroups); i++) if ((s_aGroups[i].fCategory & fCategories) && s_aGroups[i].pfnGenerate) { const char * const apszNameFmts[] = { /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? s_aGroups[i].pszFilenameFmt : NULL, /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? s_aGroups[i].pszFilenameFmt : NULL, /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? s_aGroups[i].pszFilenameFmt : NULL, }; RTEXITCODE rcExit = s_aGroups[i].pfnGenerate(RT_MAX(cTests, s_aGroups[i].cMinTests), apszNameFmts); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; } return RTEXITCODE_SUCCESS; #else return RTMsgErrorExitFailure("Test data generator not compiled in!"); #endif } /* * Dump tables (used for the conversion, mostly useless now). */ if (enmMode == kModeDump) { #ifdef TSTIEMAIMPL_WITH_GENERATOR /* Loop thru the groups and call the generate for any that's enabled. */ for (size_t i = 0; i < RT_ELEMENTS(s_aGroups); i++) if ((s_aGroups[i].fCategory & fCategories) && s_aGroups[i].pfnDumpAll) { const char * const apszNameFmts[] = { /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? s_aGroups[i].pszFilenameFmt : NULL, /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? s_aGroups[i].pszFilenameFmt : NULL, /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? s_aGroups[i].pszFilenameFmt : NULL, }; RTEXITCODE rcExit = s_aGroups[i].pfnGenerate(RT_MAX(cTests, s_aGroups[i].cMinTests), apszNameFmts); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; } return RTEXITCODE_SUCCESS; #else return RTMsgErrorExitFailure("Test data generator not compiled in!"); #endif } /* * Do testing. Currrently disabled by default as data needs to be checked * on both intel and AMD systems first. */ rc = RTTestCreate("tstIEMAImpl", &g_hTest); AssertRCReturn(rc, RTEXITCODE_FAILURE); if (enmMode == kModeTest) { RTTestBanner(g_hTest); /* Allocate guarded memory for use in the tests. */ #define ALLOC_GUARDED_VAR(a_puVar) do { \ rc = RTTestGuardedAlloc(g_hTest, sizeof(*a_puVar), sizeof(*a_puVar), false /*fHead*/, (void **)&a_puVar); \ if (RT_FAILURE(rc)) RTTestFailed(g_hTest, "Failed to allocate guarded mem: " #a_puVar); \ } while (0) ALLOC_GUARDED_VAR(g_pu8); ALLOC_GUARDED_VAR(g_pu16); ALLOC_GUARDED_VAR(g_pu32); ALLOC_GUARDED_VAR(g_pu64); ALLOC_GUARDED_VAR(g_pu128); ALLOC_GUARDED_VAR(g_pu8Two); ALLOC_GUARDED_VAR(g_pu16Two); ALLOC_GUARDED_VAR(g_pu32Two); ALLOC_GUARDED_VAR(g_pu64Two); ALLOC_GUARDED_VAR(g_pu128Two); ALLOC_GUARDED_VAR(g_pfEfl); if (RTTestErrorCount(g_hTest) == 0) { /* Loop thru the groups and call test function for anything that's enabled. */ for (size_t i = 0; i < RT_ELEMENTS(s_aGroups); i++) if ((s_aGroups[i].fCategory & fCategories)) s_aGroups[i].pfnTest(); } return RTTestSummaryAndDestroy(g_hTest); } return RTTestSkipAndDestroy(g_hTest, "unfinished testcase"); }