1 | /* $Id: tstIEMAImpl.cpp 103064 2024-01-25 14:41:25Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM Assembly Instruction Helper Testcase.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2022-2023 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /*********************************************************************************************************************************
|
---|
30 | * Header Files *
|
---|
31 | *********************************************************************************************************************************/
|
---|
32 | #include "../include/IEMInternal.h"
|
---|
33 |
|
---|
34 | #include <iprt/errcore.h>
|
---|
35 | #include <VBox/log.h>
|
---|
36 | #include <iprt/assert.h>
|
---|
37 | #include <iprt/ctype.h>
|
---|
38 | #include <iprt/err.h>
|
---|
39 | #include <iprt/getopt.h>
|
---|
40 | #include <iprt/initterm.h>
|
---|
41 | #include <iprt/file.h>
|
---|
42 | #include <iprt/mem.h>
|
---|
43 | #include <iprt/message.h>
|
---|
44 | #include <iprt/mp.h>
|
---|
45 | #include <iprt/rand.h>
|
---|
46 | #include <iprt/stream.h>
|
---|
47 | #include <iprt/string.h>
|
---|
48 | #include <iprt/test.h>
|
---|
49 | #include <iprt/time.h>
|
---|
50 | #include <iprt/thread.h>
|
---|
51 | #include <iprt/vfs.h>
|
---|
52 | #include <iprt/zip.h>
|
---|
53 | #include <VBox/version.h>
|
---|
54 |
|
---|
55 | #include "tstIEMAImpl.h"
|
---|
56 |
|
---|
57 |
|
---|
58 | /*********************************************************************************************************************************
|
---|
59 | * Defined Constants And Macros *
|
---|
60 | *********************************************************************************************************************************/
|
---|
61 | #define ENTRY_BIN_FIX(a_Name) ENTRY_BIN_FIX_EX(a_Name, 0)
|
---|
62 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
63 | # define ENTRY_BIN_FIX_EX(a_Name, a_uExtra) \
|
---|
64 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \
|
---|
65 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
66 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */, \
|
---|
67 | RT_ELEMENTS(g_aFixedTests_ ## a_Name), g_aFixedTests_ ## a_Name }
|
---|
68 | #else
|
---|
69 | # define ENTRY_BIN_FIX_EX(a_Name, a_uExtra) ENTRY_BIN_EX(a_Name, a_uExtra)
|
---|
70 | #endif
|
---|
71 |
|
---|
72 | #define ENTRY_BIN_PFN_CAST(a_Name, a_pfnType) ENTRY_BIN_PFN_CAST_EX(a_Name, a_pfnType, 0)
|
---|
73 | #define ENTRY_BIN_PFN_CAST_EX(a_Name, a_pfnType, a_uExtra) \
|
---|
74 | { RT_XSTR(a_Name), (a_pfnType)iemAImpl_ ## a_Name, NULL, \
|
---|
75 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
76 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
77 |
|
---|
78 | #define ENTRY_BIN(a_Name) ENTRY_BIN_EX(a_Name, 0)
|
---|
79 | #define ENTRY_BIN_EX(a_Name, a_uExtra) \
|
---|
80 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \
|
---|
81 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
82 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
83 |
|
---|
84 | #define ENTRY_BIN_AVX(a_Name) ENTRY_BIN_AVX_EX(a_Name, 0)
|
---|
85 | #ifndef IEM_WITHOUT_ASSEMBLY
|
---|
86 | # define ENTRY_BIN_AVX_EX(a_Name, a_uExtra) \
|
---|
87 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \
|
---|
88 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
89 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
90 | #else
|
---|
91 | # define ENTRY_BIN_AVX_EX(a_Name, a_uExtra) \
|
---|
92 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name ## _fallback, NULL, \
|
---|
93 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
94 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
95 | #endif
|
---|
96 |
|
---|
97 | #define ENTRY_BIN_SSE_OPT(a_Name) ENTRY_BIN_SSE_OPT_EX(a_Name, 0)
|
---|
98 | #ifndef IEM_WITHOUT_ASSEMBLY
|
---|
99 | # define ENTRY_BIN_SSE_OPT_EX(a_Name, a_uExtra) \
|
---|
100 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \
|
---|
101 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
102 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
103 | #else
|
---|
104 | # define ENTRY_BIN_SSE_OPT_EX(a_Name, a_uExtra) \
|
---|
105 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name ## _fallback, NULL, \
|
---|
106 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
107 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
108 | #endif
|
---|
109 |
|
---|
110 | #define ENTRY_BIN_INTEL(a_Name, a_fEflUndef) ENTRY_BIN_INTEL_EX(a_Name, a_fEflUndef, 0)
|
---|
111 | #define ENTRY_BIN_INTEL_EX(a_Name, a_fEflUndef, a_uExtra) \
|
---|
112 | { RT_XSTR(a_Name) "_intel", iemAImpl_ ## a_Name ## _intel, iemAImpl_ ## a_Name, \
|
---|
113 | g_abTests_ ## a_Name ## _intel, &g_cbTests_ ## a_Name ## _intel, \
|
---|
114 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_INTEL }
|
---|
115 |
|
---|
116 | #define ENTRY_BIN_AMD(a_Name, a_fEflUndef) ENTRY_BIN_AMD_EX(a_Name, a_fEflUndef, 0)
|
---|
117 | #define ENTRY_BIN_AMD_EX(a_Name, a_fEflUndef, a_uExtra) \
|
---|
118 | { RT_XSTR(a_Name) "_amd", iemAImpl_ ## a_Name ## _amd, iemAImpl_ ## a_Name, \
|
---|
119 | g_abTests_ ## a_Name ## _amd, &g_cbTests_ ## a_Name ## _amd, \
|
---|
120 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_AMD }
|
---|
121 |
|
---|
122 | #define TYPEDEF_SUBTEST_TYPE(a_TypeName, a_TestType, a_FunctionPtrType) \
|
---|
123 | typedef struct a_TypeName \
|
---|
124 | { \
|
---|
125 | const char *pszName; \
|
---|
126 | const a_FunctionPtrType pfn; \
|
---|
127 | const a_FunctionPtrType pfnNative; \
|
---|
128 | void const * const pvCompressedTests; \
|
---|
129 | uint32_t const *pcbCompressedTests; \
|
---|
130 | uint32_t const uExtra; \
|
---|
131 | uint8_t const idxCpuEflFlavour; \
|
---|
132 | uint16_t const cFixedTests; \
|
---|
133 | a_TestType const * const paFixedTests; \
|
---|
134 | a_TestType const *paTests; /**< The decompressed info. */ \
|
---|
135 | uint32_t cTests; /**< The decompressed info. */ \
|
---|
136 | } a_TypeName
|
---|
137 |
|
---|
138 | #define COUNT_VARIATIONS(a_SubTest) \
|
---|
139 | (1 + ((a_SubTest).idxCpuEflFlavour == g_idxCpuEflFlavour && (a_SubTest).pfnNative) )
|
---|
140 |
|
---|
141 |
|
---|
142 | /*********************************************************************************************************************************
|
---|
143 | * Structures and Typedefs *
|
---|
144 | *********************************************************************************************************************************/
|
---|
145 | typedef struct IEMBINARYOUTPUT
|
---|
146 | {
|
---|
147 | /** The output file. */
|
---|
148 | RTVFSFILE hVfsFile;
|
---|
149 | /** The stream we write uncompressed binary test data to. */
|
---|
150 | RTVFSIOSTREAM hVfsUncompressed;
|
---|
151 | /** Write status. */
|
---|
152 | int rcWrite;
|
---|
153 | /** Set if NULL. */
|
---|
154 | bool fNull;
|
---|
155 | /** Filename. */
|
---|
156 | char szFilename[79];
|
---|
157 | } IEMBINARYOUTPUT;
|
---|
158 | typedef IEMBINARYOUTPUT *PIEMBINARYOUTPUT;
|
---|
159 |
|
---|
160 |
|
---|
161 | /*********************************************************************************************************************************
|
---|
162 | * Global Variables *
|
---|
163 | *********************************************************************************************************************************/
|
---|
164 | static RTTEST g_hTest;
|
---|
165 | static uint8_t g_idxCpuEflFlavour = IEMTARGETCPU_EFL_BEHAVIOR_INTEL;
|
---|
166 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
167 | static uint32_t g_cZeroDstTests = 2;
|
---|
168 | static uint32_t g_cZeroSrcTests = 4;
|
---|
169 | #endif
|
---|
170 | static uint8_t *g_pu8, *g_pu8Two;
|
---|
171 | static uint16_t *g_pu16, *g_pu16Two;
|
---|
172 | static uint32_t *g_pu32, *g_pu32Two, *g_pfEfl;
|
---|
173 | static uint64_t *g_pu64, *g_pu64Two;
|
---|
174 | static RTUINT128U *g_pu128, *g_pu128Two;
|
---|
175 |
|
---|
176 | static char g_aszBuf[32][256];
|
---|
177 | static unsigned g_idxBuf = 0;
|
---|
178 |
|
---|
179 | static uint32_t g_cIncludeTestPatterns;
|
---|
180 | static uint32_t g_cExcludeTestPatterns;
|
---|
181 | static const char *g_apszIncludeTestPatterns[64];
|
---|
182 | static const char *g_apszExcludeTestPatterns[64];
|
---|
183 |
|
---|
184 | /** Higher value, means longer benchmarking. */
|
---|
185 | static uint64_t g_cPicoSecBenchmark = 0;
|
---|
186 |
|
---|
187 | static unsigned g_cVerbosity = 0;
|
---|
188 |
|
---|
189 |
|
---|
190 | /*********************************************************************************************************************************
|
---|
191 | * Internal Functions *
|
---|
192 | *********************************************************************************************************************************/
|
---|
193 | static const char *FormatR80(PCRTFLOAT80U pr80);
|
---|
194 | static const char *FormatR64(PCRTFLOAT64U pr64);
|
---|
195 | static const char *FormatR32(PCRTFLOAT32U pr32);
|
---|
196 |
|
---|
197 |
|
---|
198 | /*
|
---|
199 | * Random helpers.
|
---|
200 | */
|
---|
201 |
|
---|
202 | static uint32_t RandEFlags(void)
|
---|
203 | {
|
---|
204 | uint32_t fEfl = RTRandU32();
|
---|
205 | return (fEfl & X86_EFL_LIVE_MASK) | X86_EFL_RA1_MASK;
|
---|
206 | }
|
---|
207 |
|
---|
208 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
209 |
|
---|
210 | static uint8_t RandU8(void)
|
---|
211 | {
|
---|
212 | return RTRandU32Ex(0, 0xff);
|
---|
213 | }
|
---|
214 |
|
---|
215 |
|
---|
216 | static uint16_t RandU16(void)
|
---|
217 | {
|
---|
218 | return RTRandU32Ex(0, 0xffff);
|
---|
219 | }
|
---|
220 |
|
---|
221 |
|
---|
222 | static uint32_t RandU32(void)
|
---|
223 | {
|
---|
224 | return RTRandU32();
|
---|
225 | }
|
---|
226 |
|
---|
227 | #endif
|
---|
228 |
|
---|
229 | static uint64_t RandU64(void)
|
---|
230 | {
|
---|
231 | return RTRandU64();
|
---|
232 | }
|
---|
233 |
|
---|
234 |
|
---|
235 | static RTUINT128U RandU128(void)
|
---|
236 | {
|
---|
237 | RTUINT128U Ret;
|
---|
238 | Ret.s.Hi = RTRandU64();
|
---|
239 | Ret.s.Lo = RTRandU64();
|
---|
240 | return Ret;
|
---|
241 | }
|
---|
242 |
|
---|
243 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
244 |
|
---|
245 | static uint8_t RandU8Dst(uint32_t iTest)
|
---|
246 | {
|
---|
247 | if (iTest < g_cZeroDstTests)
|
---|
248 | return 0;
|
---|
249 | return RandU8();
|
---|
250 | }
|
---|
251 |
|
---|
252 |
|
---|
253 | static uint8_t RandU8Src(uint32_t iTest)
|
---|
254 | {
|
---|
255 | if (iTest < g_cZeroSrcTests)
|
---|
256 | return 0;
|
---|
257 | return RandU8();
|
---|
258 | }
|
---|
259 |
|
---|
260 |
|
---|
261 | static uint16_t RandU16Dst(uint32_t iTest)
|
---|
262 | {
|
---|
263 | if (iTest < g_cZeroDstTests)
|
---|
264 | return 0;
|
---|
265 | return RandU16();
|
---|
266 | }
|
---|
267 |
|
---|
268 |
|
---|
269 | static uint16_t RandU16Src(uint32_t iTest)
|
---|
270 | {
|
---|
271 | if (iTest < g_cZeroSrcTests)
|
---|
272 | return 0;
|
---|
273 | return RandU16();
|
---|
274 | }
|
---|
275 |
|
---|
276 |
|
---|
277 | static uint32_t RandU32Dst(uint32_t iTest)
|
---|
278 | {
|
---|
279 | if (iTest < g_cZeroDstTests)
|
---|
280 | return 0;
|
---|
281 | return RandU32();
|
---|
282 | }
|
---|
283 |
|
---|
284 |
|
---|
285 | static uint32_t RandU32Src(uint32_t iTest)
|
---|
286 | {
|
---|
287 | if (iTest < g_cZeroSrcTests)
|
---|
288 | return 0;
|
---|
289 | return RandU32();
|
---|
290 | }
|
---|
291 |
|
---|
292 |
|
---|
293 | static uint64_t RandU64Dst(uint32_t iTest)
|
---|
294 | {
|
---|
295 | if (iTest < g_cZeroDstTests)
|
---|
296 | return 0;
|
---|
297 | return RandU64();
|
---|
298 | }
|
---|
299 |
|
---|
300 |
|
---|
301 | static uint64_t RandU64Src(uint32_t iTest)
|
---|
302 | {
|
---|
303 | if (iTest < g_cZeroSrcTests)
|
---|
304 | return 0;
|
---|
305 | return RandU64();
|
---|
306 | }
|
---|
307 |
|
---|
308 |
|
---|
309 | /** 2nd operand for and FPU instruction, pairing with RandR80Src1. */
|
---|
310 | static int16_t RandI16Src2(uint32_t iTest)
|
---|
311 | {
|
---|
312 | if (iTest < 18 * 4)
|
---|
313 | switch (iTest % 4)
|
---|
314 | {
|
---|
315 | case 0: return 0;
|
---|
316 | case 1: return INT16_MAX;
|
---|
317 | case 2: return INT16_MIN;
|
---|
318 | case 3: break;
|
---|
319 | }
|
---|
320 | return (int16_t)RandU16();
|
---|
321 | }
|
---|
322 |
|
---|
323 |
|
---|
324 | /** 2nd operand for and FPU instruction, pairing with RandR80Src1. */
|
---|
325 | static int32_t RandI32Src2(uint32_t iTest)
|
---|
326 | {
|
---|
327 | if (iTest < 18 * 4)
|
---|
328 | switch (iTest % 4)
|
---|
329 | {
|
---|
330 | case 0: return 0;
|
---|
331 | case 1: return INT32_MAX;
|
---|
332 | case 2: return INT32_MIN;
|
---|
333 | case 3: break;
|
---|
334 | }
|
---|
335 | return (int32_t)RandU32();
|
---|
336 | }
|
---|
337 |
|
---|
338 |
|
---|
339 | static int64_t RandI64Src(uint32_t iTest)
|
---|
340 | {
|
---|
341 | RT_NOREF(iTest);
|
---|
342 | return (int64_t)RandU64();
|
---|
343 | }
|
---|
344 |
|
---|
345 |
|
---|
346 | static uint16_t RandFcw(void)
|
---|
347 | {
|
---|
348 | return RandU16() & ~X86_FCW_ZERO_MASK;
|
---|
349 | }
|
---|
350 |
|
---|
351 |
|
---|
352 | static uint16_t RandFsw(void)
|
---|
353 | {
|
---|
354 | AssertCompile((X86_FSW_C_MASK | X86_FSW_XCPT_ES_MASK | X86_FSW_TOP_MASK | X86_FSW_B) == 0xffff);
|
---|
355 | return RandU16();
|
---|
356 | }
|
---|
357 |
|
---|
358 |
|
---|
359 | static uint32_t RandMxcsr(void)
|
---|
360 | {
|
---|
361 | return RandU32() & ~X86_MXCSR_ZERO_MASK;
|
---|
362 | }
|
---|
363 |
|
---|
364 |
|
---|
365 | static void SafeR80FractionShift(PRTFLOAT80U pr80, uint8_t cShift)
|
---|
366 | {
|
---|
367 | if (pr80->sj64.uFraction >= RT_BIT_64(cShift))
|
---|
368 | pr80->sj64.uFraction >>= cShift;
|
---|
369 | else
|
---|
370 | pr80->sj64.uFraction = (cShift % 19) + 1;
|
---|
371 | }
|
---|
372 |
|
---|
373 |
|
---|
374 |
|
---|
375 | static RTFLOAT80U RandR80Ex(uint8_t bType, unsigned cTarget = 80, bool fIntTarget = false)
|
---|
376 | {
|
---|
377 | Assert(cTarget == (!fIntTarget ? 80U : 16U) || cTarget == 64U || cTarget == 32U || (cTarget == 59U && fIntTarget));
|
---|
378 |
|
---|
379 | RTFLOAT80U r80;
|
---|
380 | r80.au64[0] = RandU64();
|
---|
381 | r80.au16[4] = RandU16();
|
---|
382 |
|
---|
383 | /*
|
---|
384 | * Adjust the random stuff according to bType.
|
---|
385 | */
|
---|
386 | bType &= 0x1f;
|
---|
387 | if (bType == 0 || bType == 1 || bType == 2 || bType == 3)
|
---|
388 | {
|
---|
389 | /* Zero (0), Pseudo-Infinity (1), Infinity (2), Indefinite (3). We only keep fSign here. */
|
---|
390 | r80.sj64.uExponent = bType == 0 ? 0 : 0x7fff;
|
---|
391 | r80.sj64.uFraction = bType <= 2 ? 0 : RT_BIT_64(62);
|
---|
392 | r80.sj64.fInteger = bType >= 2 ? 1 : 0;
|
---|
393 | AssertMsg(bType != 0 || RTFLOAT80U_IS_ZERO(&r80), ("%s\n", FormatR80(&r80)));
|
---|
394 | AssertMsg(bType != 1 || RTFLOAT80U_IS_PSEUDO_INF(&r80), ("%s\n", FormatR80(&r80)));
|
---|
395 | Assert( bType != 1 || RTFLOAT80U_IS_387_INVALID(&r80));
|
---|
396 | AssertMsg(bType != 2 || RTFLOAT80U_IS_INF(&r80), ("%s\n", FormatR80(&r80)));
|
---|
397 | AssertMsg(bType != 3 || RTFLOAT80U_IS_INDEFINITE(&r80), ("%s\n", FormatR80(&r80)));
|
---|
398 | }
|
---|
399 | else if (bType == 4 || bType == 5 || bType == 6 || bType == 7)
|
---|
400 | {
|
---|
401 | /* Denormals (4,5) and Pseudo denormals (6,7) */
|
---|
402 | if (bType & 1)
|
---|
403 | SafeR80FractionShift(&r80, r80.sj64.uExponent % 62);
|
---|
404 | else if (r80.sj64.uFraction == 0 && bType < 6)
|
---|
405 | r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1);
|
---|
406 | r80.sj64.uExponent = 0;
|
---|
407 | r80.sj64.fInteger = bType >= 6;
|
---|
408 | AssertMsg(bType >= 6 || RTFLOAT80U_IS_DENORMAL(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
409 | AssertMsg(bType < 6 || RTFLOAT80U_IS_PSEUDO_DENORMAL(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
410 | }
|
---|
411 | else if (bType == 8 || bType == 9)
|
---|
412 | {
|
---|
413 | /* Pseudo NaN. */
|
---|
414 | if (bType & 1)
|
---|
415 | SafeR80FractionShift(&r80, r80.sj64.uExponent % 62);
|
---|
416 | else if (r80.sj64.uFraction == 0 && !r80.sj64.fInteger)
|
---|
417 | r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1);
|
---|
418 | r80.sj64.uExponent = 0x7fff;
|
---|
419 | if (r80.sj64.fInteger)
|
---|
420 | r80.sj64.uFraction |= RT_BIT_64(62);
|
---|
421 | else
|
---|
422 | r80.sj64.uFraction &= ~RT_BIT_64(62);
|
---|
423 | r80.sj64.fInteger = 0;
|
---|
424 | AssertMsg(RTFLOAT80U_IS_PSEUDO_NAN(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
425 | AssertMsg(RTFLOAT80U_IS_NAN(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
426 | Assert(RTFLOAT80U_IS_387_INVALID(&r80));
|
---|
427 | }
|
---|
428 | else if (bType == 10 || bType == 11 || bType == 12 || bType == 13)
|
---|
429 | {
|
---|
430 | /* Quiet and signalling NaNs. */
|
---|
431 | if (bType & 1)
|
---|
432 | SafeR80FractionShift(&r80, r80.sj64.uExponent % 62);
|
---|
433 | else if (r80.sj64.uFraction == 0)
|
---|
434 | r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1);
|
---|
435 | r80.sj64.uExponent = 0x7fff;
|
---|
436 | if (bType < 12)
|
---|
437 | r80.sj64.uFraction |= RT_BIT_64(62); /* quiet */
|
---|
438 | else
|
---|
439 | r80.sj64.uFraction &= ~RT_BIT_64(62); /* signaling */
|
---|
440 | r80.sj64.fInteger = 1;
|
---|
441 | AssertMsg(bType >= 12 || RTFLOAT80U_IS_QUIET_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
442 | AssertMsg(bType < 12 || RTFLOAT80U_IS_SIGNALLING_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
443 | AssertMsg(RTFLOAT80U_IS_SIGNALLING_NAN(&r80) || RTFLOAT80U_IS_QUIET_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
444 | AssertMsg(RTFLOAT80U_IS_QUIET_OR_SIGNALLING_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
445 | AssertMsg(RTFLOAT80U_IS_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
446 | }
|
---|
447 | else if (bType == 14 || bType == 15)
|
---|
448 | {
|
---|
449 | /* Unnormals */
|
---|
450 | if (bType & 1)
|
---|
451 | SafeR80FractionShift(&r80, RandU8() % 62);
|
---|
452 | r80.sj64.fInteger = 0;
|
---|
453 | if (r80.sj64.uExponent == RTFLOAT80U_EXP_MAX || r80.sj64.uExponent == 0)
|
---|
454 | r80.sj64.uExponent = (uint16_t)RTRandU32Ex(1, RTFLOAT80U_EXP_MAX - 1);
|
---|
455 | AssertMsg(RTFLOAT80U_IS_UNNORMAL(&r80), ("%s\n", FormatR80(&r80)));
|
---|
456 | Assert(RTFLOAT80U_IS_387_INVALID(&r80));
|
---|
457 | }
|
---|
458 | else if (bType < 26)
|
---|
459 | {
|
---|
460 | /* Make sure we have lots of normalized values. */
|
---|
461 | if (!fIntTarget)
|
---|
462 | {
|
---|
463 | const unsigned uMinExp = cTarget == 64 ? RTFLOAT80U_EXP_BIAS - RTFLOAT64U_EXP_BIAS
|
---|
464 | : cTarget == 32 ? RTFLOAT80U_EXP_BIAS - RTFLOAT32U_EXP_BIAS : 0;
|
---|
465 | const unsigned uMaxExp = cTarget == 64 ? uMinExp + RTFLOAT64U_EXP_MAX
|
---|
466 | : cTarget == 32 ? uMinExp + RTFLOAT32U_EXP_MAX : RTFLOAT80U_EXP_MAX;
|
---|
467 | r80.sj64.fInteger = 1;
|
---|
468 | if (r80.sj64.uExponent <= uMinExp)
|
---|
469 | r80.sj64.uExponent = uMinExp + 1;
|
---|
470 | else if (r80.sj64.uExponent >= uMaxExp)
|
---|
471 | r80.sj64.uExponent = uMaxExp - 1;
|
---|
472 |
|
---|
473 | if (bType == 16)
|
---|
474 | { /* All 1s is useful to testing rounding. Also try trigger special
|
---|
475 | behaviour by sometimes rounding out of range, while we're at it. */
|
---|
476 | r80.sj64.uFraction = RT_BIT_64(63) - 1;
|
---|
477 | uint8_t bExp = RandU8();
|
---|
478 | if ((bExp & 3) == 0)
|
---|
479 | r80.sj64.uExponent = uMaxExp - 1;
|
---|
480 | else if ((bExp & 3) == 1)
|
---|
481 | r80.sj64.uExponent = uMinExp + 1;
|
---|
482 | else if ((bExp & 3) == 2)
|
---|
483 | r80.sj64.uExponent = uMinExp - (bExp & 15); /* (small numbers are mapped to subnormal values) */
|
---|
484 | }
|
---|
485 | }
|
---|
486 | else
|
---|
487 | {
|
---|
488 | /* integer target: */
|
---|
489 | const unsigned uMinExp = RTFLOAT80U_EXP_BIAS;
|
---|
490 | const unsigned uMaxExp = RTFLOAT80U_EXP_BIAS + cTarget - 2;
|
---|
491 | r80.sj64.fInteger = 1;
|
---|
492 | if (r80.sj64.uExponent < uMinExp)
|
---|
493 | r80.sj64.uExponent = uMinExp;
|
---|
494 | else if (r80.sj64.uExponent > uMaxExp)
|
---|
495 | r80.sj64.uExponent = uMaxExp;
|
---|
496 |
|
---|
497 | if (bType == 16)
|
---|
498 | { /* All 1s is useful to testing rounding. Also try trigger special
|
---|
499 | behaviour by sometimes rounding out of range, while we're at it. */
|
---|
500 | r80.sj64.uFraction = RT_BIT_64(63) - 1;
|
---|
501 | uint8_t bExp = RandU8();
|
---|
502 | if ((bExp & 3) == 0)
|
---|
503 | r80.sj64.uExponent = uMaxExp;
|
---|
504 | else if ((bExp & 3) == 1)
|
---|
505 | r80.sj64.uFraction &= ~(RT_BIT_64(cTarget - 1 - r80.sj64.uExponent) - 1); /* no rounding */
|
---|
506 | }
|
---|
507 | }
|
---|
508 |
|
---|
509 | AssertMsg(RTFLOAT80U_IS_NORMAL(&r80), ("%s\n", FormatR80(&r80)));
|
---|
510 | }
|
---|
511 | return r80;
|
---|
512 | }
|
---|
513 |
|
---|
514 |
|
---|
515 | static RTFLOAT80U RandR80(unsigned cTarget = 80, bool fIntTarget = false)
|
---|
516 | {
|
---|
517 | /*
|
---|
518 | * Make it more likely that we get a good selection of special values.
|
---|
519 | */
|
---|
520 | return RandR80Ex(RandU8(), cTarget, fIntTarget);
|
---|
521 |
|
---|
522 | }
|
---|
523 |
|
---|
524 |
|
---|
525 | static RTFLOAT80U RandR80Src(uint32_t iTest, unsigned cTarget = 80, bool fIntTarget = false)
|
---|
526 | {
|
---|
527 | /* Make sure we cover all the basic types first before going for random selection: */
|
---|
528 | if (iTest <= 18)
|
---|
529 | return RandR80Ex(18 - iTest, cTarget, fIntTarget); /* Starting with 3 normals. */
|
---|
530 | return RandR80(cTarget, fIntTarget);
|
---|
531 | }
|
---|
532 |
|
---|
533 |
|
---|
534 | /**
|
---|
535 | * Helper for RandR80Src1 and RandR80Src2 that converts bType from a 0..11 range
|
---|
536 | * to a 0..17, covering all basic value types.
|
---|
537 | */
|
---|
538 | static uint8_t RandR80Src12RemapType(uint8_t bType)
|
---|
539 | {
|
---|
540 | switch (bType)
|
---|
541 | {
|
---|
542 | case 0: return 18; /* normal */
|
---|
543 | case 1: return 16; /* normal extreme rounding */
|
---|
544 | case 2: return 14; /* unnormal */
|
---|
545 | case 3: return 12; /* Signalling NaN */
|
---|
546 | case 4: return 10; /* Quiet NaN */
|
---|
547 | case 5: return 8; /* PseudoNaN */
|
---|
548 | case 6: return 6; /* Pseudo Denormal */
|
---|
549 | case 7: return 4; /* Denormal */
|
---|
550 | case 8: return 3; /* Indefinite */
|
---|
551 | case 9: return 2; /* Infinity */
|
---|
552 | case 10: return 1; /* Pseudo-Infinity */
|
---|
553 | case 11: return 0; /* Zero */
|
---|
554 | default: AssertFailedReturn(18);
|
---|
555 | }
|
---|
556 | }
|
---|
557 |
|
---|
558 |
|
---|
559 | /**
|
---|
560 | * This works in tandem with RandR80Src2 to make sure we cover all operand
|
---|
561 | * type mixes first before we venture into regular random testing.
|
---|
562 | *
|
---|
563 | * There are 11 basic variations, when we leave out the five odd ones using
|
---|
564 | * SafeR80FractionShift. Because of the special normalized value targetting at
|
---|
565 | * rounding, we make it an even 12. So 144 combinations for two operands.
|
---|
566 | */
|
---|
567 | static RTFLOAT80U RandR80Src1(uint32_t iTest, unsigned cPartnerBits = 80, bool fPartnerInt = false)
|
---|
568 | {
|
---|
569 | if (cPartnerBits == 80)
|
---|
570 | {
|
---|
571 | Assert(!fPartnerInt);
|
---|
572 | if (iTest < 12 * 12)
|
---|
573 | return RandR80Ex(RandR80Src12RemapType(iTest / 12));
|
---|
574 | }
|
---|
575 | else if ((cPartnerBits == 64 || cPartnerBits == 32) && !fPartnerInt)
|
---|
576 | {
|
---|
577 | if (iTest < 12 * 10)
|
---|
578 | return RandR80Ex(RandR80Src12RemapType(iTest / 10));
|
---|
579 | }
|
---|
580 | else if (iTest < 18 * 4 && fPartnerInt)
|
---|
581 | return RandR80Ex(iTest / 4);
|
---|
582 | return RandR80();
|
---|
583 | }
|
---|
584 |
|
---|
585 |
|
---|
586 | /** Partner to RandR80Src1. */
|
---|
587 | static RTFLOAT80U RandR80Src2(uint32_t iTest)
|
---|
588 | {
|
---|
589 | if (iTest < 12 * 12)
|
---|
590 | return RandR80Ex(RandR80Src12RemapType(iTest % 12));
|
---|
591 | return RandR80();
|
---|
592 | }
|
---|
593 |
|
---|
594 |
|
---|
595 | static void SafeR64FractionShift(PRTFLOAT64U pr64, uint8_t cShift)
|
---|
596 | {
|
---|
597 | if (pr64->s64.uFraction >= RT_BIT_64(cShift))
|
---|
598 | pr64->s64.uFraction >>= cShift;
|
---|
599 | else
|
---|
600 | pr64->s64.uFraction = (cShift % 19) + 1;
|
---|
601 | }
|
---|
602 |
|
---|
603 |
|
---|
604 | static RTFLOAT64U RandR64Ex(uint8_t bType)
|
---|
605 | {
|
---|
606 | RTFLOAT64U r64;
|
---|
607 | r64.u = RandU64();
|
---|
608 |
|
---|
609 | /*
|
---|
610 | * Make it more likely that we get a good selection of special values.
|
---|
611 | * On average 6 out of 16 calls should return a special value.
|
---|
612 | */
|
---|
613 | bType &= 0xf;
|
---|
614 | if (bType == 0 || bType == 1)
|
---|
615 | {
|
---|
616 | /* 0 or Infinity. We only keep fSign here. */
|
---|
617 | r64.s.uExponent = bType == 0 ? 0 : 0x7ff;
|
---|
618 | r64.s.uFractionHigh = 0;
|
---|
619 | r64.s.uFractionLow = 0;
|
---|
620 | AssertMsg(bType != 0 || RTFLOAT64U_IS_ZERO(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
621 | AssertMsg(bType != 1 || RTFLOAT64U_IS_INF(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
622 | }
|
---|
623 | else if (bType == 2 || bType == 3)
|
---|
624 | {
|
---|
625 | /* Subnormals */
|
---|
626 | if (bType == 3)
|
---|
627 | SafeR64FractionShift(&r64, r64.s64.uExponent % 51);
|
---|
628 | else if (r64.s64.uFraction == 0)
|
---|
629 | r64.s64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1);
|
---|
630 | r64.s64.uExponent = 0;
|
---|
631 | AssertMsg(RTFLOAT64U_IS_SUBNORMAL(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
632 | }
|
---|
633 | else if (bType == 4 || bType == 5 || bType == 6 || bType == 7)
|
---|
634 | {
|
---|
635 | /* NaNs */
|
---|
636 | if (bType & 1)
|
---|
637 | SafeR64FractionShift(&r64, r64.s64.uExponent % 51);
|
---|
638 | else if (r64.s64.uFraction == 0)
|
---|
639 | r64.s64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1);
|
---|
640 | r64.s64.uExponent = 0x7ff;
|
---|
641 | if (bType < 6)
|
---|
642 | r64.s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); /* quiet */
|
---|
643 | else
|
---|
644 | r64.s64.uFraction &= ~RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); /* signalling */
|
---|
645 | AssertMsg(bType >= 6 || RTFLOAT64U_IS_QUIET_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
646 | AssertMsg(bType < 6 || RTFLOAT64U_IS_SIGNALLING_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
647 | AssertMsg(RTFLOAT64U_IS_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
648 | }
|
---|
649 | else if (bType < 12)
|
---|
650 | {
|
---|
651 | /* Make sure we have lots of normalized values. */
|
---|
652 | if (r64.s.uExponent == 0)
|
---|
653 | r64.s.uExponent = 1;
|
---|
654 | else if (r64.s.uExponent == 0x7ff)
|
---|
655 | r64.s.uExponent = 0x7fe;
|
---|
656 | AssertMsg(RTFLOAT64U_IS_NORMAL(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
657 | }
|
---|
658 | return r64;
|
---|
659 | }
|
---|
660 |
|
---|
661 |
|
---|
662 | static RTFLOAT64U RandR64Src(uint32_t iTest)
|
---|
663 | {
|
---|
664 | if (iTest < 16)
|
---|
665 | return RandR64Ex(iTest);
|
---|
666 | return RandR64Ex(RandU8());
|
---|
667 | }
|
---|
668 |
|
---|
669 |
|
---|
670 | /** Pairing with a 80-bit floating point arg. */
|
---|
671 | static RTFLOAT64U RandR64Src2(uint32_t iTest)
|
---|
672 | {
|
---|
673 | if (iTest < 12 * 10)
|
---|
674 | return RandR64Ex(9 - iTest % 10); /* start with normal values */
|
---|
675 | return RandR64Ex(RandU8());
|
---|
676 | }
|
---|
677 |
|
---|
678 |
|
---|
679 | static void SafeR32FractionShift(PRTFLOAT32U pr32, uint8_t cShift)
|
---|
680 | {
|
---|
681 | if (pr32->s.uFraction >= RT_BIT_32(cShift))
|
---|
682 | pr32->s.uFraction >>= cShift;
|
---|
683 | else
|
---|
684 | pr32->s.uFraction = (cShift % 19) + 1;
|
---|
685 | }
|
---|
686 |
|
---|
687 |
|
---|
688 | static RTFLOAT32U RandR32Ex(uint8_t bType)
|
---|
689 | {
|
---|
690 | RTFLOAT32U r32;
|
---|
691 | r32.u = RandU32();
|
---|
692 |
|
---|
693 | /*
|
---|
694 | * Make it more likely that we get a good selection of special values.
|
---|
695 | * On average 6 out of 16 calls should return a special value.
|
---|
696 | */
|
---|
697 | bType &= 0xf;
|
---|
698 | if (bType == 0 || bType == 1)
|
---|
699 | {
|
---|
700 | /* 0 or Infinity. We only keep fSign here. */
|
---|
701 | r32.s.uExponent = bType == 0 ? 0 : 0xff;
|
---|
702 | r32.s.uFraction = 0;
|
---|
703 | AssertMsg(bType != 0 || RTFLOAT32U_IS_ZERO(&r32), ("%s\n", FormatR32(&r32)));
|
---|
704 | AssertMsg(bType != 1 || RTFLOAT32U_IS_INF(&r32), ("%s\n", FormatR32(&r32)));
|
---|
705 | }
|
---|
706 | else if (bType == 2 || bType == 3)
|
---|
707 | {
|
---|
708 | /* Subnormals */
|
---|
709 | if (bType == 3)
|
---|
710 | SafeR32FractionShift(&r32, r32.s.uExponent % 22);
|
---|
711 | else if (r32.s.uFraction == 0)
|
---|
712 | r32.s.uFraction = RTRandU32Ex(1, RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1);
|
---|
713 | r32.s.uExponent = 0;
|
---|
714 | AssertMsg(RTFLOAT32U_IS_SUBNORMAL(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
715 | }
|
---|
716 | else if (bType == 4 || bType == 5 || bType == 6 || bType == 7)
|
---|
717 | {
|
---|
718 | /* NaNs */
|
---|
719 | if (bType & 1)
|
---|
720 | SafeR32FractionShift(&r32, r32.s.uExponent % 22);
|
---|
721 | else if (r32.s.uFraction == 0)
|
---|
722 | r32.s.uFraction = RTRandU32Ex(1, RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1);
|
---|
723 | r32.s.uExponent = 0xff;
|
---|
724 | if (bType < 6)
|
---|
725 | r32.s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); /* quiet */
|
---|
726 | else
|
---|
727 | r32.s.uFraction &= ~RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); /* signalling */
|
---|
728 | AssertMsg(bType >= 6 || RTFLOAT32U_IS_QUIET_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
729 | AssertMsg(bType < 6 || RTFLOAT32U_IS_SIGNALLING_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
730 | AssertMsg(RTFLOAT32U_IS_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
731 | }
|
---|
732 | else if (bType < 12)
|
---|
733 | {
|
---|
734 | /* Make sure we have lots of normalized values. */
|
---|
735 | if (r32.s.uExponent == 0)
|
---|
736 | r32.s.uExponent = 1;
|
---|
737 | else if (r32.s.uExponent == 0xff)
|
---|
738 | r32.s.uExponent = 0xfe;
|
---|
739 | AssertMsg(RTFLOAT32U_IS_NORMAL(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
740 | }
|
---|
741 | return r32;
|
---|
742 | }
|
---|
743 |
|
---|
744 |
|
---|
745 | static RTFLOAT32U RandR32Src(uint32_t iTest)
|
---|
746 | {
|
---|
747 | if (iTest < 16)
|
---|
748 | return RandR32Ex(iTest);
|
---|
749 | return RandR32Ex(RandU8());
|
---|
750 | }
|
---|
751 |
|
---|
752 |
|
---|
753 | /** Pairing with a 80-bit floating point arg. */
|
---|
754 | static RTFLOAT32U RandR32Src2(uint32_t iTest)
|
---|
755 | {
|
---|
756 | if (iTest < 12 * 10)
|
---|
757 | return RandR32Ex(9 - iTest % 10); /* start with normal values */
|
---|
758 | return RandR32Ex(RandU8());
|
---|
759 | }
|
---|
760 |
|
---|
761 |
|
---|
762 | static RTPBCD80U RandD80Src(uint32_t iTest)
|
---|
763 | {
|
---|
764 | if (iTest < 3)
|
---|
765 | {
|
---|
766 | RTPBCD80U d80Zero = RTPBCD80U_INIT_ZERO(!(iTest & 1));
|
---|
767 | return d80Zero;
|
---|
768 | }
|
---|
769 | if (iTest < 5)
|
---|
770 | {
|
---|
771 | RTPBCD80U d80Ind = RTPBCD80U_INIT_INDEFINITE();
|
---|
772 | return d80Ind;
|
---|
773 | }
|
---|
774 |
|
---|
775 | RTPBCD80U d80;
|
---|
776 | uint8_t b = RandU8();
|
---|
777 | d80.s.fSign = b & 1;
|
---|
778 |
|
---|
779 | if ((iTest & 7) >= 6)
|
---|
780 | {
|
---|
781 | /* Illegal */
|
---|
782 | d80.s.uPad = (iTest & 7) == 7 ? b >> 1 : 0;
|
---|
783 | for (size_t iPair = 0; iPair < RT_ELEMENTS(d80.s.abPairs); iPair++)
|
---|
784 | d80.s.abPairs[iPair] = RandU8();
|
---|
785 | }
|
---|
786 | else
|
---|
787 | {
|
---|
788 | /* Normal */
|
---|
789 | d80.s.uPad = 0;
|
---|
790 | for (size_t iPair = 0; iPair < RT_ELEMENTS(d80.s.abPairs); iPair++)
|
---|
791 | {
|
---|
792 | uint8_t const uLo = (uint8_t)RTRandU32Ex(0, 9);
|
---|
793 | uint8_t const uHi = (uint8_t)RTRandU32Ex(0, 9);
|
---|
794 | d80.s.abPairs[iPair] = RTPBCD80U_MAKE_PAIR(uHi, uLo);
|
---|
795 | }
|
---|
796 | }
|
---|
797 | return d80;
|
---|
798 | }
|
---|
799 |
|
---|
800 |
|
---|
801 | static const char *GenFormatR80(PCRTFLOAT80U plrd)
|
---|
802 | {
|
---|
803 | if (RTFLOAT80U_IS_ZERO(plrd))
|
---|
804 | return plrd->s.fSign ? "RTFLOAT80U_INIT_ZERO(1)" : "RTFLOAT80U_INIT_ZERO(0)";
|
---|
805 | if (RTFLOAT80U_IS_INF(plrd))
|
---|
806 | return plrd->s.fSign ? "RTFLOAT80U_INIT_INF(1)" : "RTFLOAT80U_INIT_INF(0)";
|
---|
807 | if (RTFLOAT80U_IS_INDEFINITE(plrd))
|
---|
808 | return plrd->s.fSign ? "RTFLOAT80U_INIT_IND(1)" : "RTFLOAT80U_INIT_IND(0)";
|
---|
809 | if (RTFLOAT80U_IS_QUIET_NAN(plrd) && (plrd->s.uMantissa & (RT_BIT_64(62) - 1)) == 1)
|
---|
810 | return plrd->s.fSign ? "RTFLOAT80U_INIT_QNAN(1)" : "RTFLOAT80U_INIT_QNAN(0)";
|
---|
811 | if (RTFLOAT80U_IS_SIGNALLING_NAN(plrd) && (plrd->s.uMantissa & (RT_BIT_64(62) - 1)) == 1)
|
---|
812 | return plrd->s.fSign ? "RTFLOAT80U_INIT_SNAN(1)" : "RTFLOAT80U_INIT_SNAN(0)";
|
---|
813 |
|
---|
814 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
815 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT80U_INIT_C(%d,%#RX64,%u)",
|
---|
816 | plrd->s.fSign, plrd->s.uMantissa, plrd->s.uExponent);
|
---|
817 | return pszBuf;
|
---|
818 | }
|
---|
819 |
|
---|
820 | static const char *GenFormatR64(PCRTFLOAT64U prd)
|
---|
821 | {
|
---|
822 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
823 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT64U_INIT_C(%d,%#RX64,%u)",
|
---|
824 | prd->s.fSign, RT_MAKE_U64(prd->s.uFractionLow, prd->s.uFractionHigh), prd->s.uExponent);
|
---|
825 | return pszBuf;
|
---|
826 | }
|
---|
827 |
|
---|
828 |
|
---|
829 | static const char *GenFormatR32(PCRTFLOAT32U pr)
|
---|
830 | {
|
---|
831 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
832 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT32U_INIT_C(%d,%#RX32,%u)", pr->s.fSign, pr->s.uFraction, pr->s.uExponent);
|
---|
833 | return pszBuf;
|
---|
834 | }
|
---|
835 |
|
---|
836 |
|
---|
837 | static const char *GenFormatD80(PCRTPBCD80U pd80)
|
---|
838 | {
|
---|
839 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
840 | size_t off;
|
---|
841 | if (pd80->s.uPad == 0)
|
---|
842 | off = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTPBCD80U_INIT_C(%d", pd80->s.fSign);
|
---|
843 | else
|
---|
844 | off = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTPBCD80U_INIT_EX_C(%#x,%d", pd80->s.uPad, pd80->s.fSign);
|
---|
845 | size_t iPair = RT_ELEMENTS(pd80->s.abPairs);
|
---|
846 | while (iPair-- > 0)
|
---|
847 | off += RTStrPrintf(&pszBuf[off], sizeof(g_aszBuf[0]) - off, ",%d,%d",
|
---|
848 | RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair]),
|
---|
849 | RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair]));
|
---|
850 | pszBuf[off++] = ')';
|
---|
851 | pszBuf[off++] = '\0';
|
---|
852 | return pszBuf;
|
---|
853 | }
|
---|
854 |
|
---|
855 |
|
---|
856 | static const char *GenFormatI64(int64_t i64)
|
---|
857 | {
|
---|
858 | if (i64 == INT64_MIN) /* This one is problematic */
|
---|
859 | return "INT64_MIN";
|
---|
860 | if (i64 == INT64_MAX)
|
---|
861 | return "INT64_MAX";
|
---|
862 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
863 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT64_C(%RI64)", i64);
|
---|
864 | return pszBuf;
|
---|
865 | }
|
---|
866 |
|
---|
867 | #if 0 /* unused */
|
---|
868 | static const char *GenFormatI64(int64_t const *pi64)
|
---|
869 | {
|
---|
870 | return GenFormatI64(*pi64);
|
---|
871 | }
|
---|
872 | #endif
|
---|
873 |
|
---|
874 | static const char *GenFormatI32(int32_t i32)
|
---|
875 | {
|
---|
876 | if (i32 == INT32_MIN) /* This one is problematic */
|
---|
877 | return "INT32_MIN";
|
---|
878 | if (i32 == INT32_MAX)
|
---|
879 | return "INT32_MAX";
|
---|
880 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
881 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT32_C(%RI32)", i32);
|
---|
882 | return pszBuf;
|
---|
883 | }
|
---|
884 |
|
---|
885 |
|
---|
886 | const char *GenFormatI32(int32_t const *pi32)
|
---|
887 | {
|
---|
888 | return GenFormatI32(*pi32);
|
---|
889 | }
|
---|
890 |
|
---|
891 |
|
---|
892 | const char *GenFormatI16(int16_t i16)
|
---|
893 | {
|
---|
894 | if (i16 == INT16_MIN) /* This one is problematic */
|
---|
895 | return "INT16_MIN";
|
---|
896 | if (i16 == INT16_MAX)
|
---|
897 | return "INT16_MAX";
|
---|
898 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
899 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT16_C(%RI16)", i16);
|
---|
900 | return pszBuf;
|
---|
901 | }
|
---|
902 |
|
---|
903 |
|
---|
904 | const char *GenFormatI16(int16_t const *pi16)
|
---|
905 | {
|
---|
906 | return GenFormatI16(*pi16);
|
---|
907 | }
|
---|
908 |
|
---|
909 |
|
---|
910 | static void GenerateHeader(PRTSTREAM pOut, const char *pszCpuDesc, const char *pszCpuType)
|
---|
911 | {
|
---|
912 | /* We want to tag the generated source code with the revision that produced it. */
|
---|
913 | static char s_szRev[] = "$Revision: 103064 $";
|
---|
914 | const char *pszRev = RTStrStripL(strchr(s_szRev, ':') + 1);
|
---|
915 | size_t cchRev = 0;
|
---|
916 | while (RT_C_IS_DIGIT(pszRev[cchRev]))
|
---|
917 | cchRev++;
|
---|
918 |
|
---|
919 | RTStrmPrintf(pOut,
|
---|
920 | "/* $Id: tstIEMAImpl.cpp 103064 2024-01-25 14:41:25Z vboxsync $ */\n"
|
---|
921 | "/** @file\n"
|
---|
922 | " * IEM Assembly Instruction Helper Testcase Data%s%s - r%.*s on %s.\n"
|
---|
923 | " */\n"
|
---|
924 | "\n"
|
---|
925 | "/*\n"
|
---|
926 | " * Copyright (C) 2022-" VBOX_C_YEAR " Oracle and/or its affiliates.\n"
|
---|
927 | " *\n"
|
---|
928 | " * This file is part of VirtualBox base platform packages, as\n"
|
---|
929 | " * available from https://www.virtualbox.org.\n"
|
---|
930 | " *\n"
|
---|
931 | " * This program is free software; you can redistribute it and/or\n"
|
---|
932 | " * modify it under the terms of the GNU General Public License\n"
|
---|
933 | " * as published by the Free Software Foundation, in version 3 of the\n"
|
---|
934 | " * License.\n"
|
---|
935 | " *\n"
|
---|
936 | " * This program is distributed in the hope that it will be useful, but\n"
|
---|
937 | " * WITHOUT ANY WARRANTY; without even the implied warranty of\n"
|
---|
938 | " * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\n"
|
---|
939 | " * General Public License for more details.\n"
|
---|
940 | " *\n"
|
---|
941 | " * You should have received a copy of the GNU General Public License\n"
|
---|
942 | " * along with this program; if not, see <https://www.gnu.org/licenses>.\n"
|
---|
943 | " *\n"
|
---|
944 | " * SPDX-License-Identifier: GPL-3.0-only\n"
|
---|
945 | " */\n"
|
---|
946 | "\n"
|
---|
947 | "#include \"tstIEMAImpl.h\"\n"
|
---|
948 | "\n"
|
---|
949 | ,
|
---|
950 | pszCpuType ? " " : "", pszCpuType ? pszCpuType : "", cchRev, pszRev, pszCpuDesc);
|
---|
951 | }
|
---|
952 |
|
---|
953 |
|
---|
954 | static PRTSTREAM GenerateOpenWithHdr(const char *pszFilename, const char *pszCpuDesc, const char *pszCpuType)
|
---|
955 | {
|
---|
956 | PRTSTREAM pOut = NULL;
|
---|
957 | int rc = RTStrmOpen(pszFilename, "w", &pOut);
|
---|
958 | if (RT_SUCCESS(rc))
|
---|
959 | {
|
---|
960 | GenerateHeader(pOut, pszCpuDesc, pszCpuType);
|
---|
961 | return pOut;
|
---|
962 | }
|
---|
963 | RTMsgError("Failed to open %s for writing: %Rrc", pszFilename, rc);
|
---|
964 | return NULL;
|
---|
965 | }
|
---|
966 |
|
---|
967 |
|
---|
968 | static RTEXITCODE GenerateFooterAndClose(PRTSTREAM pOut, const char *pszFilename, RTEXITCODE rcExit)
|
---|
969 | {
|
---|
970 | RTStrmPrintf(pOut,
|
---|
971 | "\n"
|
---|
972 | "/* end of file */\n");
|
---|
973 | int rc = RTStrmClose(pOut);
|
---|
974 | if (RT_SUCCESS(rc))
|
---|
975 | return rcExit;
|
---|
976 | return RTMsgErrorExitFailure("RTStrmClose failed on %s: %Rrc", pszFilename, rc);
|
---|
977 | }
|
---|
978 |
|
---|
979 |
|
---|
980 | static void GenerateArrayStart(PRTSTREAM pOut, const char *pszName, const char *pszType)
|
---|
981 | {
|
---|
982 | RTStrmPrintf(pOut, "%s const g_aTests_%s[] =\n{\n", pszType, pszName);
|
---|
983 | }
|
---|
984 |
|
---|
985 |
|
---|
986 | static void GenerateArrayEnd(PRTSTREAM pOut, const char *pszName)
|
---|
987 | {
|
---|
988 | RTStrmPrintf(pOut,
|
---|
989 | "};\n"
|
---|
990 | "uint32_t const g_cTests_%s = RT_ELEMENTS(g_aTests_%s);\n"
|
---|
991 | "\n",
|
---|
992 | pszName, pszName);
|
---|
993 | }
|
---|
994 |
|
---|
995 |
|
---|
996 | static bool GenerateBinaryOpen(PIEMBINARYOUTPUT pBinOut, const char *pszFilenameFmt, const char *pszName)
|
---|
997 | {
|
---|
998 | pBinOut->hVfsFile = NIL_RTVFSFILE;
|
---|
999 | pBinOut->hVfsUncompressed = NIL_RTVFSIOSTREAM;
|
---|
1000 | if (pszFilenameFmt)
|
---|
1001 | {
|
---|
1002 | pBinOut->fNull = false;
|
---|
1003 | if (RTStrPrintf2(pBinOut->szFilename, sizeof(pBinOut->szFilename), pszFilenameFmt, pszName) > 0)
|
---|
1004 | {
|
---|
1005 | RTMsgInfo("GenerateBinaryOpen: %s...\n", pBinOut->szFilename);
|
---|
1006 | pBinOut->rcWrite = RTVfsFileOpenNormal(pBinOut->szFilename,
|
---|
1007 | RTFILE_O_CREATE_REPLACE | RTFILE_O_WRITE | RTFILE_O_DENY_READWRITE,
|
---|
1008 | &pBinOut->hVfsFile);
|
---|
1009 | if (RT_SUCCESS(pBinOut->rcWrite))
|
---|
1010 | {
|
---|
1011 | RTVFSIOSTREAM hVfsIoFile = RTVfsFileToIoStream(pBinOut->hVfsFile);
|
---|
1012 | if (hVfsIoFile != NIL_RTVFSIOSTREAM)
|
---|
1013 | {
|
---|
1014 | pBinOut->rcWrite = RTZipGzipCompressIoStream(hVfsIoFile, 0 /*fFlags*/, 9, &pBinOut->hVfsUncompressed);
|
---|
1015 | RTVfsIoStrmRelease(hVfsIoFile);
|
---|
1016 | if (RT_SUCCESS(pBinOut->rcWrite))
|
---|
1017 | {
|
---|
1018 | pBinOut->rcWrite = VINF_SUCCESS;
|
---|
1019 | return true;
|
---|
1020 | }
|
---|
1021 |
|
---|
1022 | RTMsgError("RTZipGzipCompressIoStream: %Rrc", pBinOut->rcWrite);
|
---|
1023 | }
|
---|
1024 | else
|
---|
1025 | {
|
---|
1026 | RTMsgError("RTVfsFileToIoStream failed!");
|
---|
1027 | pBinOut->rcWrite = VERR_VFS_CHAIN_CAST_FAILED;
|
---|
1028 | }
|
---|
1029 | RTVfsFileRelease(pBinOut->hVfsFile);
|
---|
1030 | RTFileDelete(pBinOut->szFilename);
|
---|
1031 | }
|
---|
1032 | else
|
---|
1033 | RTMsgError("Failed to open '%s' for writing: %Rrc", pBinOut->szFilename, pBinOut->rcWrite);
|
---|
1034 | }
|
---|
1035 | else
|
---|
1036 | {
|
---|
1037 | RTMsgError("filename too long: %s + %s", pszFilenameFmt, pszName);
|
---|
1038 | pBinOut->rcWrite = VERR_BUFFER_OVERFLOW;
|
---|
1039 | }
|
---|
1040 | return false;
|
---|
1041 | }
|
---|
1042 | RTMsgInfo("GenerateBinaryOpen: %s -> /dev/null\n", pszName);
|
---|
1043 | pBinOut->rcWrite = VERR_IGNORED;
|
---|
1044 | pBinOut->fNull = true;
|
---|
1045 | pBinOut->szFilename[0] = '\0';
|
---|
1046 | return true;
|
---|
1047 | }
|
---|
1048 |
|
---|
1049 | # define GENERATE_BINARY_OPEN(a_pBinOut, a_papszNameFmts, a_Entry) \
|
---|
1050 | GenerateBinaryOpen((a_pBinOut), a_papszNameFmts[(a_Entry).idxCpuEflFlavour], (a_Entry).pszName)
|
---|
1051 |
|
---|
1052 |
|
---|
1053 | static void GenerateBinaryWrite(PIEMBINARYOUTPUT pBinOut, const void *pvData, size_t cbData)
|
---|
1054 | {
|
---|
1055 | if (RT_SUCCESS_NP(pBinOut->rcWrite))
|
---|
1056 | {
|
---|
1057 | pBinOut->rcWrite = RTVfsIoStrmWrite(pBinOut->hVfsUncompressed, pvData, cbData, true /*fBlocking*/, NULL);
|
---|
1058 | if (RT_SUCCESS(pBinOut->rcWrite))
|
---|
1059 | return;
|
---|
1060 | RTMsgError("Error writing '%s': %Rrc", pBinOut->szFilename, pBinOut->rcWrite);
|
---|
1061 | }
|
---|
1062 | }
|
---|
1063 |
|
---|
1064 |
|
---|
1065 | static bool GenerateBinaryClose(PIEMBINARYOUTPUT pBinOut)
|
---|
1066 | {
|
---|
1067 | if (!pBinOut->fNull)
|
---|
1068 | {
|
---|
1069 | /* This is rather jovial about rcWrite. */
|
---|
1070 | int const rc1 = RTVfsIoStrmFlush(pBinOut->hVfsUncompressed);
|
---|
1071 | RTVfsIoStrmRelease(pBinOut->hVfsUncompressed);
|
---|
1072 | pBinOut->hVfsUncompressed = NIL_RTVFSIOSTREAM;
|
---|
1073 | if (RT_FAILURE(rc1))
|
---|
1074 | RTMsgError("Error flushing '%s' (uncompressed stream): %Rrc", pBinOut->szFilename, rc1);
|
---|
1075 |
|
---|
1076 | int const rc2 = RTVfsFileFlush(pBinOut->hVfsFile);
|
---|
1077 | RTVfsFileRelease(pBinOut->hVfsFile);
|
---|
1078 | pBinOut->hVfsFile = NIL_RTVFSFILE;
|
---|
1079 | if (RT_FAILURE(rc2))
|
---|
1080 | RTMsgError("Error flushing '%s' (compressed file): %Rrc", pBinOut->szFilename, rc2);
|
---|
1081 |
|
---|
1082 | return RT_SUCCESS(rc2) && RT_SUCCESS(rc1) && RT_SUCCESS(pBinOut->rcWrite);
|
---|
1083 | }
|
---|
1084 | return true;
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 | /* Helper for DumpAll. */
|
---|
1088 | # define DUMP_TEST_ENTRY(a_Entry, a_papszNameFmts) \
|
---|
1089 | do { \
|
---|
1090 | AssertReturn(DECOMPRESS_TESTS(a_Entry), RTEXITCODE_FAILURE); \
|
---|
1091 | IEMBINARYOUTPUT BinOut; \
|
---|
1092 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, a_papszNameFmts, (a_Entry)), RTEXITCODE_FAILURE); \
|
---|
1093 | GenerateBinaryWrite(&BinOut, (a_Entry).paTests, (a_Entry).cTests); \
|
---|
1094 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
1095 | } while (0)
|
---|
1096 |
|
---|
1097 | #endif /* TSTIEMAIMPL_WITH_GENERATOR */
|
---|
1098 |
|
---|
1099 |
|
---|
1100 | /*
|
---|
1101 | * Test helpers.
|
---|
1102 | */
|
---|
1103 | static bool IsTestEnabled(const char *pszName)
|
---|
1104 | {
|
---|
1105 | /* Process excludes first: */
|
---|
1106 | uint32_t i = g_cExcludeTestPatterns;
|
---|
1107 | while (i-- > 0)
|
---|
1108 | if (RTStrSimplePatternMultiMatch(g_apszExcludeTestPatterns[i], RTSTR_MAX, pszName, RTSTR_MAX, NULL))
|
---|
1109 | return false;
|
---|
1110 |
|
---|
1111 | /* If no include patterns, everything is included: */
|
---|
1112 | i = g_cIncludeTestPatterns;
|
---|
1113 | if (!i)
|
---|
1114 | return true;
|
---|
1115 |
|
---|
1116 | /* Otherwise only tests in the include patters gets tested: */
|
---|
1117 | while (i-- > 0)
|
---|
1118 | if (RTStrSimplePatternMultiMatch(g_apszIncludeTestPatterns[i], RTSTR_MAX, pszName, RTSTR_MAX, NULL))
|
---|
1119 | return true;
|
---|
1120 |
|
---|
1121 | return false;
|
---|
1122 | }
|
---|
1123 |
|
---|
1124 |
|
---|
1125 | static bool SubTestAndCheckIfEnabled(const char *pszName)
|
---|
1126 | {
|
---|
1127 | RTTestSub(g_hTest, pszName);
|
---|
1128 | if (IsTestEnabled(pszName))
|
---|
1129 | return true;
|
---|
1130 | RTTestSkipped(g_hTest, g_cVerbosity > 0 ? "excluded" : NULL);
|
---|
1131 | return false;
|
---|
1132 | }
|
---|
1133 |
|
---|
1134 |
|
---|
1135 | /** Decompresses test data before use as required. */
|
---|
1136 | static int DecompressBinaryTest(void const *pvCompressed, uint32_t cbCompressed, size_t cbEntry,
|
---|
1137 | void **ppvTests, uint32_t *pcTests)
|
---|
1138 | {
|
---|
1139 | /* Open a memory stream for the compressed binary data. */
|
---|
1140 | RTVFSIOSTREAM hVfsIos = NIL_RTVFSIOSTREAM;
|
---|
1141 | int rc = RTVfsIoStrmFromBuffer(RTFILE_O_READ, pvCompressed, cbCompressed, &hVfsIos);
|
---|
1142 | RTTESTI_CHECK_RC_OK_RET(rc, rc);
|
---|
1143 |
|
---|
1144 | /* Open a decompressed stream for it. */
|
---|
1145 | RTVFSIOSTREAM hVfsIosDecomp = NIL_RTVFSIOSTREAM;
|
---|
1146 | rc = RTZipGzipDecompressIoStream(hVfsIos, RTZIPGZIPDECOMP_F_ALLOW_ZLIB_HDR, &hVfsIosDecomp);
|
---|
1147 | RTTESTI_CHECK_RC_OK(rc);
|
---|
1148 | if (RT_SUCCESS(rc))
|
---|
1149 | {
|
---|
1150 | /* Initial output buffer allocation. */
|
---|
1151 | size_t cbDecompressedAlloc = cbCompressed <= _16M ? (size_t)cbCompressed * 16 : (size_t)cbCompressed * 4;
|
---|
1152 | uint8_t *pbDecompressed = (uint8_t *)RTMemAllocZ(cbDecompressedAlloc);
|
---|
1153 | if (pbDecompressed)
|
---|
1154 | {
|
---|
1155 | size_t off = 0;
|
---|
1156 | for (;;)
|
---|
1157 | {
|
---|
1158 | size_t cbRead = 0;
|
---|
1159 | rc = RTVfsIoStrmRead(hVfsIosDecomp, &pbDecompressed[off], cbDecompressedAlloc - off, true /*fBlocking*/, &cbRead);
|
---|
1160 | if (RT_FAILURE(rc))
|
---|
1161 | break;
|
---|
1162 | if (rc == VINF_EOF && cbRead == 0)
|
---|
1163 | break;
|
---|
1164 | off += cbRead;
|
---|
1165 |
|
---|
1166 | if (cbDecompressedAlloc < off + 256)
|
---|
1167 | {
|
---|
1168 | size_t const cbNew = cbDecompressedAlloc < _128M ? cbDecompressedAlloc * 2 : cbDecompressedAlloc + _32M;
|
---|
1169 | void * const pvNew = RTMemRealloc(pbDecompressed, cbNew);
|
---|
1170 | AssertBreakStmt(pvNew, rc = VERR_NO_MEMORY);
|
---|
1171 | cbDecompressedAlloc = cbNew;
|
---|
1172 | pbDecompressed = (uint8_t *)pvNew;
|
---|
1173 | }
|
---|
1174 | }
|
---|
1175 | if (RT_SUCCESS(rc))
|
---|
1176 | {
|
---|
1177 | if ((off % cbEntry) == 0)
|
---|
1178 | {
|
---|
1179 | if (cbDecompressedAlloc - off > _512K)
|
---|
1180 | {
|
---|
1181 | void * const pvNew = RTMemRealloc(pbDecompressed, off);
|
---|
1182 | if (pvNew)
|
---|
1183 | pbDecompressed = (uint8_t *)pvNew;
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 | /* Done! */
|
---|
1187 | *pcTests = (uint32_t)(off / cbEntry);
|
---|
1188 | *ppvTests = pbDecompressed;
|
---|
1189 | RTMEM_WILL_LEAK(pbDecompressed);
|
---|
1190 |
|
---|
1191 | pbDecompressed = NULL;
|
---|
1192 | rc = VINF_SUCCESS;
|
---|
1193 | }
|
---|
1194 | else
|
---|
1195 | {
|
---|
1196 | RTTestIFailed("Uneven decompressed data size: %#zx vs entry size %#zx -> %#zx", off, cbEntry, off % cbEntry);
|
---|
1197 | rc = VERR_IO_BAD_LENGTH;
|
---|
1198 | }
|
---|
1199 | }
|
---|
1200 | else
|
---|
1201 | RTTestIFailed("Failed to decompress binary stream: %Rrc (off=%#zx, cbCompressed=%#x)", rc, off, cbCompressed);
|
---|
1202 | RTMemFree(pbDecompressed);
|
---|
1203 | }
|
---|
1204 | else
|
---|
1205 | {
|
---|
1206 | RTTestIFailed("Out of memory decompressing test data");
|
---|
1207 | rc = VERR_NO_MEMORY;
|
---|
1208 | }
|
---|
1209 | RTVfsIoStrmRelease(hVfsIosDecomp);
|
---|
1210 | }
|
---|
1211 | RTVfsIoStrmRelease(hVfsIos);
|
---|
1212 | return rc;
|
---|
1213 | }
|
---|
1214 |
|
---|
1215 | #define DECOMPRESS_TESTS(a_Entry) \
|
---|
1216 | RT_SUCCESS(DecompressBinaryTest((a_Entry).pvCompressedTests, *(a_Entry).pcbCompressedTests, sizeof((a_Entry).paTests[0]), \
|
---|
1217 | (void **)&(a_Entry).paTests, &(a_Entry).cTests))
|
---|
1218 |
|
---|
1219 |
|
---|
1220 | /** Decompresses test data before use as required. */
|
---|
1221 | static int SubTestAndCheckIfEnabledAndDecompress(const char *pszName, void const *pvCompressed, uint32_t cbCompressed,
|
---|
1222 | size_t cbEntry, void **ppvTests, uint32_t *pcTests)
|
---|
1223 | {
|
---|
1224 | if (SubTestAndCheckIfEnabled(pszName))
|
---|
1225 | {
|
---|
1226 | int const rc = DecompressBinaryTest(pvCompressed, cbCompressed, cbEntry, ppvTests, pcTests);
|
---|
1227 | if (RT_SUCCESS(rc))
|
---|
1228 | return true;
|
---|
1229 | }
|
---|
1230 | return false;
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | #define SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_Entry) \
|
---|
1234 | SubTestAndCheckIfEnabledAndDecompress((a_Entry).pszName, (a_Entry).pvCompressedTests, *(a_Entry).pcbCompressedTests, \
|
---|
1235 | sizeof((a_Entry).paTests[0]), (void **)&(a_Entry).paTests, &(a_Entry).cTests)
|
---|
1236 |
|
---|
1237 |
|
---|
1238 | static const char *EFlagsDiff(uint32_t fActual, uint32_t fExpected)
|
---|
1239 | {
|
---|
1240 | if (fActual == fExpected)
|
---|
1241 | return "";
|
---|
1242 |
|
---|
1243 | uint32_t const fXor = fActual ^ fExpected;
|
---|
1244 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1245 | size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor);
|
---|
1246 |
|
---|
1247 | static struct
|
---|
1248 | {
|
---|
1249 | const char *pszName;
|
---|
1250 | uint32_t fFlag;
|
---|
1251 | } const s_aFlags[] =
|
---|
1252 | {
|
---|
1253 | #define EFL_ENTRY(a_Flags) { #a_Flags, X86_EFL_ ## a_Flags }
|
---|
1254 | EFL_ENTRY(CF),
|
---|
1255 | EFL_ENTRY(PF),
|
---|
1256 | EFL_ENTRY(AF),
|
---|
1257 | EFL_ENTRY(ZF),
|
---|
1258 | EFL_ENTRY(SF),
|
---|
1259 | EFL_ENTRY(TF),
|
---|
1260 | EFL_ENTRY(IF),
|
---|
1261 | EFL_ENTRY(DF),
|
---|
1262 | EFL_ENTRY(OF),
|
---|
1263 | EFL_ENTRY(IOPL),
|
---|
1264 | EFL_ENTRY(NT),
|
---|
1265 | EFL_ENTRY(RF),
|
---|
1266 | EFL_ENTRY(VM),
|
---|
1267 | EFL_ENTRY(AC),
|
---|
1268 | EFL_ENTRY(VIF),
|
---|
1269 | EFL_ENTRY(VIP),
|
---|
1270 | EFL_ENTRY(ID),
|
---|
1271 | };
|
---|
1272 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1273 | if (s_aFlags[i].fFlag & fXor)
|
---|
1274 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch,
|
---|
1275 | s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName);
|
---|
1276 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1277 | return pszBuf;
|
---|
1278 | }
|
---|
1279 |
|
---|
1280 |
|
---|
1281 | static const char *FswDiff(uint16_t fActual, uint16_t fExpected)
|
---|
1282 | {
|
---|
1283 | if (fActual == fExpected)
|
---|
1284 | return "";
|
---|
1285 |
|
---|
1286 | uint16_t const fXor = fActual ^ fExpected;
|
---|
1287 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1288 | size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor);
|
---|
1289 |
|
---|
1290 | static struct
|
---|
1291 | {
|
---|
1292 | const char *pszName;
|
---|
1293 | uint32_t fFlag;
|
---|
1294 | } const s_aFlags[] =
|
---|
1295 | {
|
---|
1296 | #define FSW_ENTRY(a_Flags) { #a_Flags, X86_FSW_ ## a_Flags }
|
---|
1297 | FSW_ENTRY(IE),
|
---|
1298 | FSW_ENTRY(DE),
|
---|
1299 | FSW_ENTRY(ZE),
|
---|
1300 | FSW_ENTRY(OE),
|
---|
1301 | FSW_ENTRY(UE),
|
---|
1302 | FSW_ENTRY(PE),
|
---|
1303 | FSW_ENTRY(SF),
|
---|
1304 | FSW_ENTRY(ES),
|
---|
1305 | FSW_ENTRY(C0),
|
---|
1306 | FSW_ENTRY(C1),
|
---|
1307 | FSW_ENTRY(C2),
|
---|
1308 | FSW_ENTRY(C3),
|
---|
1309 | FSW_ENTRY(B),
|
---|
1310 | };
|
---|
1311 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1312 | if (s_aFlags[i].fFlag & fXor)
|
---|
1313 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch,
|
---|
1314 | s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName);
|
---|
1315 | if (fXor & X86_FSW_TOP_MASK)
|
---|
1316 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "/TOP%u!%u",
|
---|
1317 | X86_FSW_TOP_GET(fActual), X86_FSW_TOP_GET(fExpected));
|
---|
1318 | #if 0 /* For debugging fprem & fprem1 */
|
---|
1319 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " - Q=%d (vs %d)",
|
---|
1320 | X86_FSW_CX_TO_QUOTIENT(fActual), X86_FSW_CX_TO_QUOTIENT(fExpected));
|
---|
1321 | #endif
|
---|
1322 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1323 | return pszBuf;
|
---|
1324 | }
|
---|
1325 |
|
---|
1326 |
|
---|
1327 | static const char *MxcsrDiff(uint32_t fActual, uint32_t fExpected)
|
---|
1328 | {
|
---|
1329 | if (fActual == fExpected)
|
---|
1330 | return "";
|
---|
1331 |
|
---|
1332 | uint16_t const fXor = fActual ^ fExpected;
|
---|
1333 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1334 | size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor);
|
---|
1335 |
|
---|
1336 | static struct
|
---|
1337 | {
|
---|
1338 | const char *pszName;
|
---|
1339 | uint32_t fFlag;
|
---|
1340 | } const s_aFlags[] =
|
---|
1341 | {
|
---|
1342 | #define MXCSR_ENTRY(a_Flags) { #a_Flags, X86_MXCSR_ ## a_Flags }
|
---|
1343 | MXCSR_ENTRY(IE),
|
---|
1344 | MXCSR_ENTRY(DE),
|
---|
1345 | MXCSR_ENTRY(ZE),
|
---|
1346 | MXCSR_ENTRY(OE),
|
---|
1347 | MXCSR_ENTRY(UE),
|
---|
1348 | MXCSR_ENTRY(PE),
|
---|
1349 |
|
---|
1350 | MXCSR_ENTRY(IM),
|
---|
1351 | MXCSR_ENTRY(DM),
|
---|
1352 | MXCSR_ENTRY(ZM),
|
---|
1353 | MXCSR_ENTRY(OM),
|
---|
1354 | MXCSR_ENTRY(UM),
|
---|
1355 | MXCSR_ENTRY(PM),
|
---|
1356 |
|
---|
1357 | MXCSR_ENTRY(DAZ),
|
---|
1358 | MXCSR_ENTRY(FZ),
|
---|
1359 | #undef MXCSR_ENTRY
|
---|
1360 | };
|
---|
1361 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1362 | if (s_aFlags[i].fFlag & fXor)
|
---|
1363 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch,
|
---|
1364 | s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName);
|
---|
1365 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1366 | return pszBuf;
|
---|
1367 | }
|
---|
1368 |
|
---|
1369 |
|
---|
1370 | static const char *FormatFcw(uint16_t fFcw)
|
---|
1371 | {
|
---|
1372 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1373 |
|
---|
1374 | const char *pszPC = NULL; /* (msc+gcc are too stupid) */
|
---|
1375 | switch (fFcw & X86_FCW_PC_MASK)
|
---|
1376 | {
|
---|
1377 | case X86_FCW_PC_24: pszPC = "PC24"; break;
|
---|
1378 | case X86_FCW_PC_RSVD: pszPC = "PCRSVD!"; break;
|
---|
1379 | case X86_FCW_PC_53: pszPC = "PC53"; break;
|
---|
1380 | case X86_FCW_PC_64: pszPC = "PC64"; break;
|
---|
1381 | }
|
---|
1382 |
|
---|
1383 | const char *pszRC = NULL; /* (msc+gcc are too stupid) */
|
---|
1384 | switch (fFcw & X86_FCW_RC_MASK)
|
---|
1385 | {
|
---|
1386 | case X86_FCW_RC_NEAREST: pszRC = "NEAR"; break;
|
---|
1387 | case X86_FCW_RC_DOWN: pszRC = "DOWN"; break;
|
---|
1388 | case X86_FCW_RC_UP: pszRC = "UP"; break;
|
---|
1389 | case X86_FCW_RC_ZERO: pszRC = "ZERO"; break;
|
---|
1390 | }
|
---|
1391 | size_t cch = RTStrPrintf(&pszBuf[0], sizeof(g_aszBuf[0]), "%s %s", pszPC, pszRC);
|
---|
1392 |
|
---|
1393 | static struct
|
---|
1394 | {
|
---|
1395 | const char *pszName;
|
---|
1396 | uint32_t fFlag;
|
---|
1397 | } const s_aFlags[] =
|
---|
1398 | {
|
---|
1399 | #define FCW_ENTRY(a_Flags) { #a_Flags, X86_FCW_ ## a_Flags }
|
---|
1400 | FCW_ENTRY(IM),
|
---|
1401 | FCW_ENTRY(DM),
|
---|
1402 | FCW_ENTRY(ZM),
|
---|
1403 | FCW_ENTRY(OM),
|
---|
1404 | FCW_ENTRY(UM),
|
---|
1405 | FCW_ENTRY(PM),
|
---|
1406 | { "6M", 64 },
|
---|
1407 | };
|
---|
1408 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1409 | if (fFcw & s_aFlags[i].fFlag)
|
---|
1410 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " %s", s_aFlags[i].pszName);
|
---|
1411 |
|
---|
1412 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1413 | return pszBuf;
|
---|
1414 | }
|
---|
1415 |
|
---|
1416 |
|
---|
1417 | static const char *FormatMxcsr(uint32_t fMxcsr)
|
---|
1418 | {
|
---|
1419 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1420 |
|
---|
1421 | const char *pszRC = NULL; /* (msc+gcc are too stupid) */
|
---|
1422 | switch (fMxcsr & X86_MXCSR_RC_MASK)
|
---|
1423 | {
|
---|
1424 | case X86_MXCSR_RC_NEAREST: pszRC = "NEAR"; break;
|
---|
1425 | case X86_MXCSR_RC_DOWN: pszRC = "DOWN"; break;
|
---|
1426 | case X86_MXCSR_RC_UP: pszRC = "UP"; break;
|
---|
1427 | case X86_MXCSR_RC_ZERO: pszRC = "ZERO"; break;
|
---|
1428 | }
|
---|
1429 |
|
---|
1430 | const char *pszDAZ = fMxcsr & X86_MXCSR_DAZ ? " DAZ" : "";
|
---|
1431 | const char *pszFZ = fMxcsr & X86_MXCSR_FZ ? " FZ" : "";
|
---|
1432 | size_t cch = RTStrPrintf(&pszBuf[0], sizeof(g_aszBuf[0]), "%s%s%s", pszRC, pszDAZ, pszFZ);
|
---|
1433 |
|
---|
1434 | static struct
|
---|
1435 | {
|
---|
1436 | const char *pszName;
|
---|
1437 | uint32_t fFlag;
|
---|
1438 | } const s_aFlags[] =
|
---|
1439 | {
|
---|
1440 | #define MXCSR_ENTRY(a_Flags) { #a_Flags, X86_MXCSR_ ## a_Flags }
|
---|
1441 | MXCSR_ENTRY(IE),
|
---|
1442 | MXCSR_ENTRY(DE),
|
---|
1443 | MXCSR_ENTRY(ZE),
|
---|
1444 | MXCSR_ENTRY(OE),
|
---|
1445 | MXCSR_ENTRY(UE),
|
---|
1446 | MXCSR_ENTRY(PE),
|
---|
1447 |
|
---|
1448 | MXCSR_ENTRY(IM),
|
---|
1449 | MXCSR_ENTRY(DM),
|
---|
1450 | MXCSR_ENTRY(ZM),
|
---|
1451 | MXCSR_ENTRY(OM),
|
---|
1452 | MXCSR_ENTRY(UM),
|
---|
1453 | MXCSR_ENTRY(PM),
|
---|
1454 | { "6M", 64 },
|
---|
1455 | };
|
---|
1456 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1457 | if (fMxcsr & s_aFlags[i].fFlag)
|
---|
1458 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " %s", s_aFlags[i].pszName);
|
---|
1459 |
|
---|
1460 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1461 | return pszBuf;
|
---|
1462 | }
|
---|
1463 |
|
---|
1464 |
|
---|
1465 | static const char *FormatR80(PCRTFLOAT80U pr80)
|
---|
1466 | {
|
---|
1467 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1468 | RTStrFormatR80(pszBuf, sizeof(g_aszBuf[0]), pr80, 0, 0, RTSTR_F_SPECIAL);
|
---|
1469 | return pszBuf;
|
---|
1470 | }
|
---|
1471 |
|
---|
1472 |
|
---|
1473 | static const char *FormatR64(PCRTFLOAT64U pr64)
|
---|
1474 | {
|
---|
1475 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1476 | RTStrFormatR64(pszBuf, sizeof(g_aszBuf[0]), pr64, 0, 0, RTSTR_F_SPECIAL);
|
---|
1477 | return pszBuf;
|
---|
1478 | }
|
---|
1479 |
|
---|
1480 |
|
---|
1481 | static const char *FormatR32(PCRTFLOAT32U pr32)
|
---|
1482 | {
|
---|
1483 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1484 | RTStrFormatR32(pszBuf, sizeof(g_aszBuf[0]), pr32, 0, 0, RTSTR_F_SPECIAL);
|
---|
1485 | return pszBuf;
|
---|
1486 | }
|
---|
1487 |
|
---|
1488 |
|
---|
1489 | static const char *FormatD80(PCRTPBCD80U pd80)
|
---|
1490 | {
|
---|
1491 | /* There is only one indefinite endcoding (same as for 80-bit
|
---|
1492 | floating point), so get it out of the way first: */
|
---|
1493 | if (RTPBCD80U_IS_INDEFINITE(pd80))
|
---|
1494 | return "Ind";
|
---|
1495 |
|
---|
1496 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1497 | size_t off = 0;
|
---|
1498 | pszBuf[off++] = pd80->s.fSign ? '-' : '+';
|
---|
1499 | unsigned cBadDigits = 0;
|
---|
1500 | size_t iPair = RT_ELEMENTS(pd80->s.abPairs);
|
---|
1501 | while (iPair-- > 0)
|
---|
1502 | {
|
---|
1503 | static const char s_szDigits[] = "0123456789abcdef";
|
---|
1504 | static const uint8_t s_bBadDigits[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 };
|
---|
1505 | pszBuf[off++] = s_szDigits[RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair])];
|
---|
1506 | pszBuf[off++] = s_szDigits[RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])];
|
---|
1507 | cBadDigits += s_bBadDigits[RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair])]
|
---|
1508 | + s_bBadDigits[RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])];
|
---|
1509 | }
|
---|
1510 | if (cBadDigits || pd80->s.uPad != 0)
|
---|
1511 | off += RTStrPrintf(&pszBuf[off], sizeof(g_aszBuf[0]) - off, "[%u,%#x]", cBadDigits, pd80->s.uPad);
|
---|
1512 | pszBuf[off] = '\0';
|
---|
1513 | return pszBuf;
|
---|
1514 | }
|
---|
1515 |
|
---|
1516 |
|
---|
1517 | #if 0
|
---|
1518 | static const char *FormatI64(int64_t const *piVal)
|
---|
1519 | {
|
---|
1520 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1521 | RTStrFormatU64(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED);
|
---|
1522 | return pszBuf;
|
---|
1523 | }
|
---|
1524 | #endif
|
---|
1525 |
|
---|
1526 |
|
---|
1527 | static const char *FormatI32(int32_t const *piVal)
|
---|
1528 | {
|
---|
1529 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1530 | RTStrFormatU32(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED);
|
---|
1531 | return pszBuf;
|
---|
1532 | }
|
---|
1533 |
|
---|
1534 |
|
---|
1535 | static const char *FormatI16(int16_t const *piVal)
|
---|
1536 | {
|
---|
1537 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1538 | RTStrFormatU16(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED);
|
---|
1539 | return pszBuf;
|
---|
1540 | }
|
---|
1541 |
|
---|
1542 |
|
---|
1543 | static const char *FormatU128(PCRTUINT128U puVal)
|
---|
1544 | {
|
---|
1545 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1546 | RTStrFormatU128(pszBuf, sizeof(g_aszBuf[0]), puVal, 16, 0, 0, RTSTR_F_SPECIAL);
|
---|
1547 | return pszBuf;
|
---|
1548 | }
|
---|
1549 |
|
---|
1550 |
|
---|
1551 | /*
|
---|
1552 | * Binary operations.
|
---|
1553 | */
|
---|
1554 | TYPEDEF_SUBTEST_TYPE(BINU8_T, BINU8_TEST_T, PFNIEMAIMPLBINU8);
|
---|
1555 | TYPEDEF_SUBTEST_TYPE(BINU16_T, BINU16_TEST_T, PFNIEMAIMPLBINU16);
|
---|
1556 | TYPEDEF_SUBTEST_TYPE(BINU32_T, BINU32_TEST_T, PFNIEMAIMPLBINU32);
|
---|
1557 | TYPEDEF_SUBTEST_TYPE(BINU64_T, BINU64_TEST_T, PFNIEMAIMPLBINU64);
|
---|
1558 |
|
---|
1559 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1560 | # define GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) \
|
---|
1561 | static RTEXITCODE BinU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \
|
---|
1562 | { \
|
---|
1563 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aBinU ## a_cBits); iFn++) \
|
---|
1564 | { \
|
---|
1565 | PFNIEMAIMPLBINU ## a_cBits const pfn = g_aBinU ## a_cBits[iFn].pfnNative \
|
---|
1566 | ? g_aBinU ## a_cBits[iFn].pfnNative : g_aBinU ## a_cBits[iFn].pfn; \
|
---|
1567 | IEMBINARYOUTPUT BinOut; \
|
---|
1568 | if ( g_aBinU ## a_cBits[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
1569 | && g_aBinU ## a_cBits[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
1570 | continue; \
|
---|
1571 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aBinU ## a_cBits[iFn]), RTEXITCODE_FAILURE); \
|
---|
1572 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
1573 | { \
|
---|
1574 | a_TestType Test; \
|
---|
1575 | Test.fEflIn = RandEFlags(); \
|
---|
1576 | Test.fEflOut = Test.fEflIn; \
|
---|
1577 | Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \
|
---|
1578 | Test.uDstOut = Test.uDstIn; \
|
---|
1579 | Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \
|
---|
1580 | if (g_aBinU ## a_cBits[iFn].uExtra) \
|
---|
1581 | Test.uSrcIn &= a_cBits - 1; /* Restrict bit index according to operand width */ \
|
---|
1582 | Test.uMisc = 0; \
|
---|
1583 | pfn(&Test.uDstOut, Test.uSrcIn, &Test.fEflOut); \
|
---|
1584 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
1585 | } \
|
---|
1586 | for (uint32_t iTest = 0; iTest < g_aBinU ## a_cBits[iFn].cFixedTests; iTest++ ) \
|
---|
1587 | { \
|
---|
1588 | a_TestType Test; \
|
---|
1589 | Test.fEflIn = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].fEflIn == UINT32_MAX ? RandEFlags() \
|
---|
1590 | : g_aBinU ## a_cBits[iFn].paFixedTests[iTest].fEflIn; \
|
---|
1591 | Test.fEflOut = Test.fEflIn; \
|
---|
1592 | Test.uDstIn = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].uDstIn; \
|
---|
1593 | Test.uDstOut = Test.uDstIn; \
|
---|
1594 | Test.uSrcIn = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].uSrcIn; \
|
---|
1595 | Test.uMisc = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].uMisc; \
|
---|
1596 | pfn(&Test.uDstOut, Test.uSrcIn, &Test.fEflOut); \
|
---|
1597 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
1598 | } \
|
---|
1599 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
1600 | } \
|
---|
1601 | return RTEXITCODE_SUCCESS; \
|
---|
1602 | } \
|
---|
1603 | /* Temp for conversion. */ \
|
---|
1604 | static RTEXITCODE BinU ## a_cBits ## DumpAll(const char * const * papszNameFmts) \
|
---|
1605 | { \
|
---|
1606 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aBinU ## a_cBits); iFn++) \
|
---|
1607 | DUMP_TEST_ENTRY(g_aBinU ## a_cBits[iFn], papszNameFmts); \
|
---|
1608 | return RTEXITCODE_SUCCESS; \
|
---|
1609 | }
|
---|
1610 |
|
---|
1611 | #else
|
---|
1612 | # define GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType)
|
---|
1613 | #endif
|
---|
1614 |
|
---|
1615 |
|
---|
1616 | /** Based on a quick probe run, guess how long to run the benchmark. */
|
---|
1617 | static uint32_t EstimateIterations(uint32_t cProbeIterations, uint64_t cNsProbe)
|
---|
1618 | {
|
---|
1619 | uint64_t cPicoSecPerIteration = cNsProbe * 1000 / cProbeIterations;
|
---|
1620 | uint64_t cIterations = g_cPicoSecBenchmark / cPicoSecPerIteration;
|
---|
1621 | if (cIterations > _2G)
|
---|
1622 | return _2G;
|
---|
1623 | if (cIterations < _4K)
|
---|
1624 | return _4K;
|
---|
1625 | return RT_ALIGN_32((uint32_t)cIterations, _4K);
|
---|
1626 | }
|
---|
1627 |
|
---|
1628 |
|
---|
1629 | #define TEST_BINARY_OPS(a_cBits, a_uType, a_Fmt, a_TestType, a_aSubTests) \
|
---|
1630 | GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) \
|
---|
1631 | \
|
---|
1632 | static uint64_t BinU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLBINU ## a_cBits pfn, a_TestType const *pEntry) \
|
---|
1633 | { \
|
---|
1634 | uint32_t const fEflIn = pEntry->fEflIn; \
|
---|
1635 | a_uType const uDstIn = pEntry->uDstIn; \
|
---|
1636 | a_uType const uSrcIn = pEntry->uSrcIn; \
|
---|
1637 | cIterations /= 4; \
|
---|
1638 | RTThreadYield(); \
|
---|
1639 | uint64_t const nsStart = RTTimeNanoTS(); \
|
---|
1640 | for (uint32_t i = 0; i < cIterations; i++) \
|
---|
1641 | { \
|
---|
1642 | uint32_t fBenchEfl = fEflIn; \
|
---|
1643 | a_uType uBenchDst = uDstIn; \
|
---|
1644 | pfn(&uBenchDst, uSrcIn, &fBenchEfl); \
|
---|
1645 | \
|
---|
1646 | fBenchEfl = fEflIn; \
|
---|
1647 | uBenchDst = uDstIn; \
|
---|
1648 | pfn(&uBenchDst, uSrcIn, &fBenchEfl); \
|
---|
1649 | \
|
---|
1650 | fBenchEfl = fEflIn; \
|
---|
1651 | uBenchDst = uDstIn; \
|
---|
1652 | pfn(&uBenchDst, uSrcIn, &fBenchEfl); \
|
---|
1653 | \
|
---|
1654 | fBenchEfl = fEflIn; \
|
---|
1655 | uBenchDst = uDstIn; \
|
---|
1656 | pfn(&uBenchDst, uSrcIn, &fBenchEfl); \
|
---|
1657 | } \
|
---|
1658 | return RTTimeNanoTS() - nsStart; \
|
---|
1659 | } \
|
---|
1660 | \
|
---|
1661 | static void BinU ## a_cBits ## Test(void) \
|
---|
1662 | { \
|
---|
1663 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
1664 | { \
|
---|
1665 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
1666 | continue; \
|
---|
1667 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
1668 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
1669 | PFNIEMAIMPLBINU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
1670 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
1671 | if (!cTests) { RTTestSkipped(g_hTest, "no tests"); continue; } \
|
---|
1672 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
1673 | { \
|
---|
1674 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
1675 | { \
|
---|
1676 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
1677 | a_uType uDst = paTests[iTest].uDstIn; \
|
---|
1678 | pfn(&uDst, paTests[iTest].uSrcIn, &fEfl); \
|
---|
1679 | if ( uDst != paTests[iTest].uDstOut \
|
---|
1680 | || fEfl != paTests[iTest].fEflOut ) \
|
---|
1681 | RTTestFailed(g_hTest, "#%u%s: efl=%#08x dst=" a_Fmt " src=" a_Fmt " -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s - %s\n", \
|
---|
1682 | iTest, !iVar ? "" : "/n", paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, \
|
---|
1683 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
1684 | EFlagsDiff(fEfl, paTests[iTest].fEflOut), \
|
---|
1685 | uDst == paTests[iTest].uDstOut ? "eflags" : fEfl == paTests[iTest].fEflOut ? "dst" : "both"); \
|
---|
1686 | else \
|
---|
1687 | { \
|
---|
1688 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
1689 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
1690 | pfn(g_pu ## a_cBits, paTests[iTest].uSrcIn, g_pfEfl); \
|
---|
1691 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
1692 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
1693 | } \
|
---|
1694 | } \
|
---|
1695 | \
|
---|
1696 | /* Benchmark if all succeeded. */ \
|
---|
1697 | if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \
|
---|
1698 | { \
|
---|
1699 | uint32_t const iTest = cTests / 2; \
|
---|
1700 | uint32_t const cIterations = EstimateIterations(_64K, BinU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \
|
---|
1701 | uint64_t const cNsRealRun = BinU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \
|
---|
1702 | RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, \
|
---|
1703 | "%s%s", a_aSubTests[iFn].pszName, iVar ? "-native" : ""); \
|
---|
1704 | } \
|
---|
1705 | \
|
---|
1706 | /* Next variation is native. */ \
|
---|
1707 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
1708 | } \
|
---|
1709 | } \
|
---|
1710 | }
|
---|
1711 |
|
---|
1712 |
|
---|
1713 | /*
|
---|
1714 | * 8-bit binary operations.
|
---|
1715 | */
|
---|
1716 | static BINU8_T g_aBinU8[] =
|
---|
1717 | {
|
---|
1718 | ENTRY_BIN(add_u8),
|
---|
1719 | ENTRY_BIN(add_u8_locked),
|
---|
1720 | ENTRY_BIN(adc_u8),
|
---|
1721 | ENTRY_BIN(adc_u8_locked),
|
---|
1722 | ENTRY_BIN(sub_u8),
|
---|
1723 | ENTRY_BIN(sub_u8_locked),
|
---|
1724 | ENTRY_BIN(sbb_u8),
|
---|
1725 | ENTRY_BIN(sbb_u8_locked),
|
---|
1726 | ENTRY_BIN(or_u8),
|
---|
1727 | ENTRY_BIN(or_u8_locked),
|
---|
1728 | ENTRY_BIN(xor_u8),
|
---|
1729 | ENTRY_BIN(xor_u8_locked),
|
---|
1730 | ENTRY_BIN(and_u8),
|
---|
1731 | ENTRY_BIN(and_u8_locked),
|
---|
1732 | ENTRY_BIN_PFN_CAST(cmp_u8, PFNIEMAIMPLBINU8),
|
---|
1733 | ENTRY_BIN_PFN_CAST(test_u8, PFNIEMAIMPLBINU8),
|
---|
1734 | };
|
---|
1735 | TEST_BINARY_OPS(8, uint8_t, "%#04x", BINU8_TEST_T, g_aBinU8)
|
---|
1736 |
|
---|
1737 |
|
---|
1738 | /*
|
---|
1739 | * 16-bit binary operations.
|
---|
1740 | */
|
---|
1741 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1742 | static const BINU16_TEST_T g_aFixedTests_add_u16[] =
|
---|
1743 | {
|
---|
1744 | /* efl in, efl out, uDstIn, uDstOut, uSrc, uExtra */
|
---|
1745 | { UINT32_MAX, 0, 1, 0, UINT16_MAX, 0 },
|
---|
1746 | };
|
---|
1747 | #endif
|
---|
1748 | static BINU16_T g_aBinU16[] =
|
---|
1749 | {
|
---|
1750 | ENTRY_BIN_FIX(add_u16),
|
---|
1751 | ENTRY_BIN(add_u16_locked),
|
---|
1752 | ENTRY_BIN(adc_u16),
|
---|
1753 | ENTRY_BIN(adc_u16_locked),
|
---|
1754 | ENTRY_BIN(sub_u16),
|
---|
1755 | ENTRY_BIN(sub_u16_locked),
|
---|
1756 | ENTRY_BIN(sbb_u16),
|
---|
1757 | ENTRY_BIN(sbb_u16_locked),
|
---|
1758 | ENTRY_BIN(or_u16),
|
---|
1759 | ENTRY_BIN(or_u16_locked),
|
---|
1760 | ENTRY_BIN(xor_u16),
|
---|
1761 | ENTRY_BIN(xor_u16_locked),
|
---|
1762 | ENTRY_BIN(and_u16),
|
---|
1763 | ENTRY_BIN(and_u16_locked),
|
---|
1764 | ENTRY_BIN_PFN_CAST(cmp_u16, PFNIEMAIMPLBINU16),
|
---|
1765 | ENTRY_BIN_PFN_CAST(test_u16, PFNIEMAIMPLBINU16),
|
---|
1766 | ENTRY_BIN_PFN_CAST_EX(bt_u16, PFNIEMAIMPLBINU16, 1),
|
---|
1767 | ENTRY_BIN_EX(btc_u16, 1),
|
---|
1768 | ENTRY_BIN_EX(btc_u16_locked, 1),
|
---|
1769 | ENTRY_BIN_EX(btr_u16, 1),
|
---|
1770 | ENTRY_BIN_EX(btr_u16_locked, 1),
|
---|
1771 | ENTRY_BIN_EX(bts_u16, 1),
|
---|
1772 | ENTRY_BIN_EX(bts_u16_locked, 1),
|
---|
1773 | ENTRY_BIN_AMD( bsf_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1774 | ENTRY_BIN_INTEL(bsf_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1775 | ENTRY_BIN_AMD( bsr_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1776 | ENTRY_BIN_INTEL(bsr_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1777 | ENTRY_BIN_AMD( imul_two_u16, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1778 | ENTRY_BIN_INTEL(imul_two_u16, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1779 | ENTRY_BIN(arpl),
|
---|
1780 | };
|
---|
1781 | TEST_BINARY_OPS(16, uint16_t, "%#06x", BINU16_TEST_T, g_aBinU16)
|
---|
1782 |
|
---|
1783 |
|
---|
1784 | /*
|
---|
1785 | * 32-bit binary operations.
|
---|
1786 | */
|
---|
1787 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1788 | static const BINU32_TEST_T g_aFixedTests_add_u32[] =
|
---|
1789 | {
|
---|
1790 | /* efl in, efl out, uDstIn, uDstOut, uSrc, uExtra */
|
---|
1791 | { UINT32_MAX, 0, 1, 0, UINT32_MAX, 0 },
|
---|
1792 | };
|
---|
1793 | #endif
|
---|
1794 | static BINU32_T g_aBinU32[] =
|
---|
1795 | {
|
---|
1796 | ENTRY_BIN_FIX(add_u32),
|
---|
1797 | ENTRY_BIN(add_u32_locked),
|
---|
1798 | ENTRY_BIN(adc_u32),
|
---|
1799 | ENTRY_BIN(adc_u32_locked),
|
---|
1800 | ENTRY_BIN(sub_u32),
|
---|
1801 | ENTRY_BIN(sub_u32_locked),
|
---|
1802 | ENTRY_BIN(sbb_u32),
|
---|
1803 | ENTRY_BIN(sbb_u32_locked),
|
---|
1804 | ENTRY_BIN(or_u32),
|
---|
1805 | ENTRY_BIN(or_u32_locked),
|
---|
1806 | ENTRY_BIN(xor_u32),
|
---|
1807 | ENTRY_BIN(xor_u32_locked),
|
---|
1808 | ENTRY_BIN(and_u32),
|
---|
1809 | ENTRY_BIN(and_u32_locked),
|
---|
1810 | ENTRY_BIN_PFN_CAST(cmp_u32, PFNIEMAIMPLBINU32),
|
---|
1811 | ENTRY_BIN_PFN_CAST(test_u32, PFNIEMAIMPLBINU32),
|
---|
1812 | ENTRY_BIN_PFN_CAST_EX(bt_u32, PFNIEMAIMPLBINU32, 1),
|
---|
1813 | ENTRY_BIN_EX(btc_u32, 1),
|
---|
1814 | ENTRY_BIN_EX(btc_u32_locked, 1),
|
---|
1815 | ENTRY_BIN_EX(btr_u32, 1),
|
---|
1816 | ENTRY_BIN_EX(btr_u32_locked, 1),
|
---|
1817 | ENTRY_BIN_EX(bts_u32, 1),
|
---|
1818 | ENTRY_BIN_EX(bts_u32_locked, 1),
|
---|
1819 | ENTRY_BIN_AMD( bsf_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1820 | ENTRY_BIN_INTEL(bsf_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1821 | ENTRY_BIN_AMD( bsr_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1822 | ENTRY_BIN_INTEL(bsr_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1823 | ENTRY_BIN_AMD( imul_two_u32, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1824 | ENTRY_BIN_INTEL(imul_two_u32, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1825 | ENTRY_BIN(adcx_u32),
|
---|
1826 | ENTRY_BIN(adox_u32),
|
---|
1827 | };
|
---|
1828 | TEST_BINARY_OPS(32, uint32_t, "%#010RX32", BINU32_TEST_T, g_aBinU32)
|
---|
1829 |
|
---|
1830 |
|
---|
1831 | /*
|
---|
1832 | * 64-bit binary operations.
|
---|
1833 | */
|
---|
1834 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1835 | static const BINU64_TEST_T g_aFixedTests_add_u64[] =
|
---|
1836 | {
|
---|
1837 | /* efl in, efl out, uDstIn, uDstOut, uSrc, uExtra */
|
---|
1838 | { UINT32_MAX, 0, 1, 0, UINT64_MAX, 0 },
|
---|
1839 | };
|
---|
1840 | #endif
|
---|
1841 | static BINU64_T g_aBinU64[] =
|
---|
1842 | {
|
---|
1843 | ENTRY_BIN_FIX(add_u64),
|
---|
1844 | ENTRY_BIN(add_u64_locked),
|
---|
1845 | ENTRY_BIN(adc_u64),
|
---|
1846 | ENTRY_BIN(adc_u64_locked),
|
---|
1847 | ENTRY_BIN(sub_u64),
|
---|
1848 | ENTRY_BIN(sub_u64_locked),
|
---|
1849 | ENTRY_BIN(sbb_u64),
|
---|
1850 | ENTRY_BIN(sbb_u64_locked),
|
---|
1851 | ENTRY_BIN(or_u64),
|
---|
1852 | ENTRY_BIN(or_u64_locked),
|
---|
1853 | ENTRY_BIN(xor_u64),
|
---|
1854 | ENTRY_BIN(xor_u64_locked),
|
---|
1855 | ENTRY_BIN(and_u64),
|
---|
1856 | ENTRY_BIN(and_u64_locked),
|
---|
1857 | ENTRY_BIN_PFN_CAST(cmp_u64, PFNIEMAIMPLBINU64),
|
---|
1858 | ENTRY_BIN_PFN_CAST(test_u64, PFNIEMAIMPLBINU64),
|
---|
1859 | ENTRY_BIN_PFN_CAST_EX(bt_u64, PFNIEMAIMPLBINU64, 1),
|
---|
1860 | ENTRY_BIN_EX(btc_u64, 1),
|
---|
1861 | ENTRY_BIN_EX(btc_u64_locked, 1),
|
---|
1862 | ENTRY_BIN_EX(btr_u64, 1),
|
---|
1863 | ENTRY_BIN_EX(btr_u64_locked, 1),
|
---|
1864 | ENTRY_BIN_EX(bts_u64, 1),
|
---|
1865 | ENTRY_BIN_EX(bts_u64_locked, 1),
|
---|
1866 | ENTRY_BIN_AMD( bsf_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1867 | ENTRY_BIN_INTEL(bsf_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1868 | ENTRY_BIN_AMD( bsr_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1869 | ENTRY_BIN_INTEL(bsr_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1870 | ENTRY_BIN_AMD( imul_two_u64, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1871 | ENTRY_BIN_INTEL(imul_two_u64, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1872 | ENTRY_BIN(adcx_u64),
|
---|
1873 | ENTRY_BIN(adox_u64),
|
---|
1874 | };
|
---|
1875 | TEST_BINARY_OPS(64, uint64_t, "%#018RX64", BINU64_TEST_T, g_aBinU64)
|
---|
1876 |
|
---|
1877 |
|
---|
1878 | /*
|
---|
1879 | * XCHG
|
---|
1880 | */
|
---|
1881 | static void XchgTest(void)
|
---|
1882 | {
|
---|
1883 | if (!SubTestAndCheckIfEnabled("xchg"))
|
---|
1884 | return;
|
---|
1885 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU8, (uint8_t *pu8Mem, uint8_t *pu8Reg));
|
---|
1886 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU16,(uint16_t *pu16Mem, uint16_t *pu16Reg));
|
---|
1887 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU32,(uint32_t *pu32Mem, uint32_t *pu32Reg));
|
---|
1888 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU64,(uint64_t *pu64Mem, uint64_t *pu64Reg));
|
---|
1889 |
|
---|
1890 | static struct
|
---|
1891 | {
|
---|
1892 | uint8_t cb; uint64_t fMask;
|
---|
1893 | union
|
---|
1894 | {
|
---|
1895 | uintptr_t pfn;
|
---|
1896 | FNIEMAIMPLXCHGU8 *pfnU8;
|
---|
1897 | FNIEMAIMPLXCHGU16 *pfnU16;
|
---|
1898 | FNIEMAIMPLXCHGU32 *pfnU32;
|
---|
1899 | FNIEMAIMPLXCHGU64 *pfnU64;
|
---|
1900 | } u;
|
---|
1901 | }
|
---|
1902 | s_aXchgWorkers[] =
|
---|
1903 | {
|
---|
1904 | { 1, UINT8_MAX, { (uintptr_t)iemAImpl_xchg_u8_locked } },
|
---|
1905 | { 2, UINT16_MAX, { (uintptr_t)iemAImpl_xchg_u16_locked } },
|
---|
1906 | { 4, UINT32_MAX, { (uintptr_t)iemAImpl_xchg_u32_locked } },
|
---|
1907 | { 8, UINT64_MAX, { (uintptr_t)iemAImpl_xchg_u64_locked } },
|
---|
1908 | { 1, UINT8_MAX, { (uintptr_t)iemAImpl_xchg_u8_unlocked } },
|
---|
1909 | { 2, UINT16_MAX, { (uintptr_t)iemAImpl_xchg_u16_unlocked } },
|
---|
1910 | { 4, UINT32_MAX, { (uintptr_t)iemAImpl_xchg_u32_unlocked } },
|
---|
1911 | { 8, UINT64_MAX, { (uintptr_t)iemAImpl_xchg_u64_unlocked } },
|
---|
1912 | };
|
---|
1913 | for (size_t i = 0; i < RT_ELEMENTS(s_aXchgWorkers); i++)
|
---|
1914 | {
|
---|
1915 | RTUINT64U uIn1, uIn2, uMem, uDst;
|
---|
1916 | uMem.u = uIn1.u = RTRandU64Ex(0, s_aXchgWorkers[i].fMask);
|
---|
1917 | uDst.u = uIn2.u = RTRandU64Ex(0, s_aXchgWorkers[i].fMask);
|
---|
1918 | if (uIn1.u == uIn2.u)
|
---|
1919 | uDst.u = uIn2.u = ~uIn2.u;
|
---|
1920 |
|
---|
1921 | switch (s_aXchgWorkers[i].cb)
|
---|
1922 | {
|
---|
1923 | case 1:
|
---|
1924 | s_aXchgWorkers[i].u.pfnU8(g_pu8, g_pu8Two);
|
---|
1925 | s_aXchgWorkers[i].u.pfnU8(&uMem.au8[0], &uDst.au8[0]);
|
---|
1926 | break;
|
---|
1927 | case 2:
|
---|
1928 | s_aXchgWorkers[i].u.pfnU16(g_pu16, g_pu16Two);
|
---|
1929 | s_aXchgWorkers[i].u.pfnU16(&uMem.Words.w0, &uDst.Words.w0);
|
---|
1930 | break;
|
---|
1931 | case 4:
|
---|
1932 | s_aXchgWorkers[i].u.pfnU32(g_pu32, g_pu32Two);
|
---|
1933 | s_aXchgWorkers[i].u.pfnU32(&uMem.DWords.dw0, &uDst.DWords.dw0);
|
---|
1934 | break;
|
---|
1935 | case 8:
|
---|
1936 | s_aXchgWorkers[i].u.pfnU64(g_pu64, g_pu64Two);
|
---|
1937 | s_aXchgWorkers[i].u.pfnU64(&uMem.u, &uDst.u);
|
---|
1938 | break;
|
---|
1939 | default: RTTestFailed(g_hTest, "%d\n", s_aXchgWorkers[i].cb); break;
|
---|
1940 | }
|
---|
1941 |
|
---|
1942 | if (uMem.u != uIn2.u || uDst.u != uIn1.u)
|
---|
1943 | RTTestFailed(g_hTest, "i=%u: %#RX64, %#RX64 -> %#RX64, %#RX64\n", i, uIn1.u, uIn2.u, uMem.u, uDst.u);
|
---|
1944 | }
|
---|
1945 | }
|
---|
1946 |
|
---|
1947 |
|
---|
1948 | /*
|
---|
1949 | * XADD
|
---|
1950 | */
|
---|
1951 | static void XaddTest(void)
|
---|
1952 | {
|
---|
1953 | #define TEST_XADD(a_cBits, a_Type, a_Fmt) do { \
|
---|
1954 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXADDU ## a_cBits, (a_Type *, a_Type *, uint32_t *)); \
|
---|
1955 | static struct \
|
---|
1956 | { \
|
---|
1957 | const char * const pszName; \
|
---|
1958 | FNIEMAIMPLXADDU ## a_cBits * const pfn; \
|
---|
1959 | void const * const pvCompressedTests; \
|
---|
1960 | uint32_t const * const pcbCompressedTests; \
|
---|
1961 | BINU ## a_cBits ## _TEST_T const *paTests; \
|
---|
1962 | uint32_t cTests; \
|
---|
1963 | } s_aFuncs[] = \
|
---|
1964 | { \
|
---|
1965 | { "xadd_u" # a_cBits, iemAImpl_xadd_u ## a_cBits, \
|
---|
1966 | g_abTests_add_u ## a_cBits, &g_cbTests_add_u ## a_cBits }, \
|
---|
1967 | { "xadd_u" # a_cBits "8_locked", iemAImpl_xadd_u ## a_cBits ## _locked, \
|
---|
1968 | g_abTests_add_u ## a_cBits, &g_cbTests_add_u ## a_cBits }, \
|
---|
1969 | }; \
|
---|
1970 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) \
|
---|
1971 | { \
|
---|
1972 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(s_aFuncs[iFn])) continue; \
|
---|
1973 | BINU ## a_cBits ## _TEST_T const * const paTests = s_aFuncs[iFn].paTests; \
|
---|
1974 | uint32_t const cTests = s_aFuncs[iFn].cTests; \
|
---|
1975 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
1976 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
1977 | { \
|
---|
1978 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
1979 | a_Type uSrc = paTests[iTest].uSrcIn; \
|
---|
1980 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
1981 | s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uSrc, &fEfl); \
|
---|
1982 | if ( fEfl != paTests[iTest].fEflOut \
|
---|
1983 | || *g_pu ## a_cBits != paTests[iTest].uDstOut \
|
---|
1984 | || uSrc != paTests[iTest].uDstIn) \
|
---|
1985 | RTTestFailed(g_hTest, "%s/#%u: efl=%#08x dst=" a_Fmt " src=" a_Fmt " -> efl=%#08x dst=" a_Fmt " src=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \
|
---|
1986 | s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, \
|
---|
1987 | fEfl, *g_pu ## a_cBits, uSrc, paTests[iTest].fEflOut, paTests[iTest].uDstOut, paTests[iTest].uDstIn, \
|
---|
1988 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
1989 | } \
|
---|
1990 | } \
|
---|
1991 | } while(0)
|
---|
1992 | TEST_XADD(8, uint8_t, "%#04x");
|
---|
1993 | TEST_XADD(16, uint16_t, "%#06x");
|
---|
1994 | TEST_XADD(32, uint32_t, "%#010RX32");
|
---|
1995 | TEST_XADD(64, uint64_t, "%#010RX64");
|
---|
1996 | }
|
---|
1997 |
|
---|
1998 |
|
---|
1999 | /*
|
---|
2000 | * CMPXCHG
|
---|
2001 | */
|
---|
2002 |
|
---|
2003 | static void CmpXchgTest(void)
|
---|
2004 | {
|
---|
2005 | #define TEST_CMPXCHG(a_cBits, a_Type, a_Fmt) do {\
|
---|
2006 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHGU ## a_cBits, (a_Type *, a_Type *, a_Type, uint32_t *)); \
|
---|
2007 | static struct \
|
---|
2008 | { \
|
---|
2009 | const char * const pszName; \
|
---|
2010 | FNIEMAIMPLCMPXCHGU ## a_cBits * const pfn; \
|
---|
2011 | PFNIEMAIMPLBINU ## a_cBits const pfnSub; \
|
---|
2012 | void const * const pvCompressedTests; \
|
---|
2013 | uint32_t const * const pcbCompressedTests; \
|
---|
2014 | BINU ## a_cBits ## _TEST_T const *paTests; \
|
---|
2015 | uint32_t cTests; \
|
---|
2016 | } s_aFuncs[] = \
|
---|
2017 | { \
|
---|
2018 | { "cmpxchg_u" # a_cBits, iemAImpl_cmpxchg_u ## a_cBits, iemAImpl_sub_u ## a_cBits, \
|
---|
2019 | g_abTests_cmp_u ## a_cBits, &g_cbTests_cmp_u ## a_cBits }, \
|
---|
2020 | { "cmpxchg_u" # a_cBits "_locked", iemAImpl_cmpxchg_u ## a_cBits ## _locked, iemAImpl_sub_u ## a_cBits, \
|
---|
2021 | g_abTests_cmp_u ## a_cBits, &g_cbTests_cmp_u ## a_cBits }, \
|
---|
2022 | }; \
|
---|
2023 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) \
|
---|
2024 | { \
|
---|
2025 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(s_aFuncs[iFn])) continue; \
|
---|
2026 | BINU ## a_cBits ## _TEST_T const * const paTests = s_aFuncs[iFn].paTests; \
|
---|
2027 | uint32_t const cTests = s_aFuncs[iFn].cTests; \
|
---|
2028 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2029 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
2030 | { \
|
---|
2031 | /* as is (99% likely to be negative). */ \
|
---|
2032 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2033 | a_Type const uNew = paTests[iTest].uSrcIn + 0x42; \
|
---|
2034 | a_Type uA = paTests[iTest].uDstIn; \
|
---|
2035 | *g_pu ## a_cBits = paTests[iTest].uSrcIn; \
|
---|
2036 | a_Type const uExpect = uA != paTests[iTest].uSrcIn ? paTests[iTest].uSrcIn : uNew; \
|
---|
2037 | s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uA, uNew, &fEfl); \
|
---|
2038 | if ( fEfl != paTests[iTest].fEflOut \
|
---|
2039 | || *g_pu ## a_cBits != uExpect \
|
---|
2040 | || uA != paTests[iTest].uSrcIn) \
|
---|
2041 | RTTestFailed(g_hTest, "%s/#%ua: efl=%#08x dst=" a_Fmt " cmp=" a_Fmt " new=" a_Fmt " -> efl=%#08x dst=" a_Fmt " old=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \
|
---|
2042 | s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uSrcIn, paTests[iTest].uDstIn, \
|
---|
2043 | uNew, fEfl, *g_pu ## a_cBits, uA, paTests[iTest].fEflOut, uExpect, paTests[iTest].uSrcIn, \
|
---|
2044 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
2045 | /* positive */ \
|
---|
2046 | uint32_t fEflExpect = paTests[iTest].fEflIn; \
|
---|
2047 | uA = paTests[iTest].uDstIn; \
|
---|
2048 | s_aFuncs[iFn].pfnSub(&uA, uA, &fEflExpect); \
|
---|
2049 | fEfl = paTests[iTest].fEflIn; \
|
---|
2050 | uA = paTests[iTest].uDstIn; \
|
---|
2051 | *g_pu ## a_cBits = uA; \
|
---|
2052 | s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uA, uNew, &fEfl); \
|
---|
2053 | if ( fEfl != fEflExpect \
|
---|
2054 | || *g_pu ## a_cBits != uNew \
|
---|
2055 | || uA != paTests[iTest].uDstIn) \
|
---|
2056 | RTTestFailed(g_hTest, "%s/#%ua: efl=%#08x dst=" a_Fmt " cmp=" a_Fmt " new=" a_Fmt " -> efl=%#08x dst=" a_Fmt " old=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \
|
---|
2057 | s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uDstIn, \
|
---|
2058 | uNew, fEfl, *g_pu ## a_cBits, uA, fEflExpect, uNew, paTests[iTest].uDstIn, \
|
---|
2059 | EFlagsDiff(fEfl, fEflExpect)); \
|
---|
2060 | } \
|
---|
2061 | } \
|
---|
2062 | } while(0)
|
---|
2063 | TEST_CMPXCHG(8, uint8_t, "%#04RX8");
|
---|
2064 | TEST_CMPXCHG(16, uint16_t, "%#06x");
|
---|
2065 | TEST_CMPXCHG(32, uint32_t, "%#010RX32");
|
---|
2066 | #if ARCH_BITS != 32 /* calling convension issue, skipping as it's an unsupported host */
|
---|
2067 | TEST_CMPXCHG(64, uint64_t, "%#010RX64");
|
---|
2068 | #endif
|
---|
2069 | }
|
---|
2070 |
|
---|
2071 | static void CmpXchg8bTest(void)
|
---|
2072 | {
|
---|
2073 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHG8B,(uint64_t *, PRTUINT64U, PRTUINT64U, uint32_t *));
|
---|
2074 | static struct
|
---|
2075 | {
|
---|
2076 | const char *pszName;
|
---|
2077 | FNIEMAIMPLCMPXCHG8B *pfn;
|
---|
2078 | } const s_aFuncs[] =
|
---|
2079 | {
|
---|
2080 | { "cmpxchg8b", iemAImpl_cmpxchg8b },
|
---|
2081 | { "cmpxchg8b_locked", iemAImpl_cmpxchg8b_locked },
|
---|
2082 | };
|
---|
2083 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++)
|
---|
2084 | {
|
---|
2085 | if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName))
|
---|
2086 | continue;
|
---|
2087 | for (uint32_t iTest = 0; iTest < 4; iTest += 2)
|
---|
2088 | {
|
---|
2089 | uint64_t const uOldValue = RandU64();
|
---|
2090 | uint64_t const uNewValue = RandU64();
|
---|
2091 |
|
---|
2092 | /* positive test. */
|
---|
2093 | RTUINT64U uA, uB;
|
---|
2094 | uB.u = uNewValue;
|
---|
2095 | uA.u = uOldValue;
|
---|
2096 | *g_pu64 = uOldValue;
|
---|
2097 | uint32_t fEflIn = RandEFlags();
|
---|
2098 | uint32_t fEfl = fEflIn;
|
---|
2099 | s_aFuncs[iFn].pfn(g_pu64, &uA, &uB, &fEfl);
|
---|
2100 | if ( fEfl != (fEflIn | X86_EFL_ZF)
|
---|
2101 | || *g_pu64 != uNewValue
|
---|
2102 | || uA.u != uOldValue)
|
---|
2103 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64 cmp=%#018RX64 new=%#018RX64\n -> efl=%#08x dst=%#018RX64 old=%#018RX64,\n wanted %#08x, %#018RX64, %#018RX64%s\n",
|
---|
2104 | iTest, fEflIn, uOldValue, uOldValue, uNewValue,
|
---|
2105 | fEfl, *g_pu64, uA.u,
|
---|
2106 | (fEflIn | X86_EFL_ZF), uNewValue, uOldValue, EFlagsDiff(fEfl, fEflIn | X86_EFL_ZF));
|
---|
2107 | RTTEST_CHECK(g_hTest, uB.u == uNewValue);
|
---|
2108 |
|
---|
2109 | /* negative */
|
---|
2110 | uint64_t const uExpect = ~uOldValue;
|
---|
2111 | *g_pu64 = uExpect;
|
---|
2112 | uA.u = uOldValue;
|
---|
2113 | uB.u = uNewValue;
|
---|
2114 | fEfl = fEflIn = RandEFlags();
|
---|
2115 | s_aFuncs[iFn].pfn(g_pu64, &uA, &uB, &fEfl);
|
---|
2116 | if ( fEfl != (fEflIn & ~X86_EFL_ZF)
|
---|
2117 | || *g_pu64 != uExpect
|
---|
2118 | || uA.u != uExpect)
|
---|
2119 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64 cmp=%#018RX64 new=%#018RX64\n -> efl=%#08x dst=%#018RX64 old=%#018RX64,\n wanted %#08x, %#018RX64, %#018RX64%s\n",
|
---|
2120 | iTest + 1, fEflIn, uExpect, uOldValue, uNewValue,
|
---|
2121 | fEfl, *g_pu64, uA.u,
|
---|
2122 | (fEflIn & ~X86_EFL_ZF), uExpect, uExpect, EFlagsDiff(fEfl, fEflIn & ~X86_EFL_ZF));
|
---|
2123 | RTTEST_CHECK(g_hTest, uB.u == uNewValue);
|
---|
2124 | }
|
---|
2125 | }
|
---|
2126 | }
|
---|
2127 |
|
---|
2128 | static void CmpXchg16bTest(void)
|
---|
2129 | {
|
---|
2130 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHG16B,(PRTUINT128U, PRTUINT128U, PRTUINT128U, uint32_t *));
|
---|
2131 | static struct
|
---|
2132 | {
|
---|
2133 | const char *pszName;
|
---|
2134 | FNIEMAIMPLCMPXCHG16B *pfn;
|
---|
2135 | } const s_aFuncs[] =
|
---|
2136 | {
|
---|
2137 | { "cmpxchg16b", iemAImpl_cmpxchg16b },
|
---|
2138 | { "cmpxchg16b_locked", iemAImpl_cmpxchg16b_locked },
|
---|
2139 | #if !defined(RT_ARCH_ARM64)
|
---|
2140 | { "cmpxchg16b_fallback", iemAImpl_cmpxchg16b_fallback },
|
---|
2141 | #endif
|
---|
2142 | };
|
---|
2143 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++)
|
---|
2144 | {
|
---|
2145 | if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName))
|
---|
2146 | continue;
|
---|
2147 | #if !defined(IEM_WITHOUT_ASSEMBLY) && defined(RT_ARCH_AMD64)
|
---|
2148 | if (!(ASMCpuId_ECX(1) & X86_CPUID_FEATURE_ECX_CX16))
|
---|
2149 | {
|
---|
2150 | RTTestSkipped(g_hTest, "no hardware cmpxchg16b");
|
---|
2151 | continue;
|
---|
2152 | }
|
---|
2153 | #endif
|
---|
2154 | for (uint32_t iTest = 0; iTest < 4; iTest += 2)
|
---|
2155 | {
|
---|
2156 | RTUINT128U const uOldValue = RandU128();
|
---|
2157 | RTUINT128U const uNewValue = RandU128();
|
---|
2158 |
|
---|
2159 | /* positive test. */
|
---|
2160 | RTUINT128U uA, uB;
|
---|
2161 | uB = uNewValue;
|
---|
2162 | uA = uOldValue;
|
---|
2163 | *g_pu128 = uOldValue;
|
---|
2164 | uint32_t fEflIn = RandEFlags();
|
---|
2165 | uint32_t fEfl = fEflIn;
|
---|
2166 | s_aFuncs[iFn].pfn(g_pu128, &uA, &uB, &fEfl);
|
---|
2167 | if ( fEfl != (fEflIn | X86_EFL_ZF)
|
---|
2168 | || g_pu128->s.Lo != uNewValue.s.Lo
|
---|
2169 | || g_pu128->s.Hi != uNewValue.s.Hi
|
---|
2170 | || uA.s.Lo != uOldValue.s.Lo
|
---|
2171 | || uA.s.Hi != uOldValue.s.Hi)
|
---|
2172 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64'%016RX64 cmp=%#018RX64'%016RX64 new=%#018RX64'%016RX64\n"
|
---|
2173 | " -> efl=%#08x dst=%#018RX64'%016RX64 old=%#018RX64'%016RX64,\n"
|
---|
2174 | " wanted %#08x, %#018RX64'%016RX64, %#018RX64'%016RX64%s\n",
|
---|
2175 | iTest, fEflIn, uOldValue.s.Hi, uOldValue.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, uNewValue.s.Hi, uNewValue.s.Lo,
|
---|
2176 | fEfl, g_pu128->s.Hi, g_pu128->s.Lo, uA.s.Hi, uA.s.Lo,
|
---|
2177 | (fEflIn | X86_EFL_ZF), uNewValue.s.Hi, uNewValue.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo,
|
---|
2178 | EFlagsDiff(fEfl, fEflIn | X86_EFL_ZF));
|
---|
2179 | RTTEST_CHECK(g_hTest, uB.s.Lo == uNewValue.s.Lo && uB.s.Hi == uNewValue.s.Hi);
|
---|
2180 |
|
---|
2181 | /* negative */
|
---|
2182 | RTUINT128U const uExpect = RTUINT128_INIT(~uOldValue.s.Hi, ~uOldValue.s.Lo);
|
---|
2183 | *g_pu128 = uExpect;
|
---|
2184 | uA = uOldValue;
|
---|
2185 | uB = uNewValue;
|
---|
2186 | fEfl = fEflIn = RandEFlags();
|
---|
2187 | s_aFuncs[iFn].pfn(g_pu128, &uA, &uB, &fEfl);
|
---|
2188 | if ( fEfl != (fEflIn & ~X86_EFL_ZF)
|
---|
2189 | || g_pu128->s.Lo != uExpect.s.Lo
|
---|
2190 | || g_pu128->s.Hi != uExpect.s.Hi
|
---|
2191 | || uA.s.Lo != uExpect.s.Lo
|
---|
2192 | || uA.s.Hi != uExpect.s.Hi)
|
---|
2193 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64'%016RX64 cmp=%#018RX64'%016RX64 new=%#018RX64'%016RX64\n"
|
---|
2194 | " -> efl=%#08x dst=%#018RX64'%016RX64 old=%#018RX64'%016RX64,\n"
|
---|
2195 | " wanted %#08x, %#018RX64'%016RX64, %#018RX64'%016RX64%s\n",
|
---|
2196 | iTest + 1, fEflIn, uExpect.s.Hi, uExpect.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, uNewValue.s.Hi, uNewValue.s.Lo,
|
---|
2197 | fEfl, g_pu128->s.Hi, g_pu128->s.Lo, uA.s.Hi, uA.s.Lo,
|
---|
2198 | (fEflIn & ~X86_EFL_ZF), uExpect.s.Hi, uExpect.s.Lo, uExpect.s.Hi, uExpect.s.Lo,
|
---|
2199 | EFlagsDiff(fEfl, fEflIn & ~X86_EFL_ZF));
|
---|
2200 | RTTEST_CHECK(g_hTest, uB.s.Lo == uNewValue.s.Lo && uB.s.Hi == uNewValue.s.Hi);
|
---|
2201 | }
|
---|
2202 | }
|
---|
2203 | }
|
---|
2204 |
|
---|
2205 |
|
---|
2206 | /*
|
---|
2207 | * Double shifts.
|
---|
2208 | *
|
---|
2209 | * Note! We use BINUxx_TEST_T with the shift value in the uMisc field.
|
---|
2210 | */
|
---|
2211 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2212 | # define GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2213 | static RTEXITCODE ShiftDblU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \
|
---|
2214 | { \
|
---|
2215 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2216 | { \
|
---|
2217 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
2218 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
2219 | continue; \
|
---|
2220 | IEMBINARYOUTPUT BinOut; \
|
---|
2221 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
2222 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2223 | { \
|
---|
2224 | a_TestType Test; \
|
---|
2225 | Test.fEflIn = RandEFlags(); \
|
---|
2226 | Test.fEflOut = Test.fEflIn; \
|
---|
2227 | Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \
|
---|
2228 | Test.uDstOut = Test.uDstIn; \
|
---|
2229 | Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \
|
---|
2230 | Test.uMisc = RandU8() & (a_cBits * 4 - 1); /* need to go way beyond the a_cBits limit */ \
|
---|
2231 | a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, Test.uMisc, &Test.fEflOut); \
|
---|
2232 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
2233 | } \
|
---|
2234 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
2235 | } \
|
---|
2236 | return RTEXITCODE_SUCCESS; \
|
---|
2237 | } \
|
---|
2238 | static RTEXITCODE ShiftDblU ## a_cBits ## DumpAll(const char * const * papszNameFmts) \
|
---|
2239 | { \
|
---|
2240 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2241 | DUMP_TEST_ENTRY(a_aSubTests[iFn], papszNameFmts); \
|
---|
2242 | return RTEXITCODE_SUCCESS; \
|
---|
2243 | }
|
---|
2244 |
|
---|
2245 | #else
|
---|
2246 | # define GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests)
|
---|
2247 | #endif
|
---|
2248 |
|
---|
2249 | #define TEST_SHIFT_DBL(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \
|
---|
2250 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLSHIFTDBLU ## a_cBits); \
|
---|
2251 | \
|
---|
2252 | static a_SubTestType a_aSubTests[] = \
|
---|
2253 | { \
|
---|
2254 | ENTRY_BIN_AMD(shld_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
2255 | ENTRY_BIN_INTEL(shld_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
2256 | ENTRY_BIN_AMD(shrd_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
2257 | ENTRY_BIN_INTEL(shrd_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
2258 | }; \
|
---|
2259 | \
|
---|
2260 | GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2261 | \
|
---|
2262 | static void ShiftDblU ## a_cBits ## Test(void) \
|
---|
2263 | { \
|
---|
2264 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2265 | { \
|
---|
2266 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
2267 | continue; \
|
---|
2268 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2269 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
2270 | PFNIEMAIMPLSHIFTDBLU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
2271 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
2272 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2273 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
2274 | { \
|
---|
2275 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2276 | { \
|
---|
2277 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2278 | a_Type uDst = paTests[iTest].uDstIn; \
|
---|
2279 | pfn(&uDst, paTests[iTest].uSrcIn, paTests[iTest].uMisc, &fEfl); \
|
---|
2280 | if ( uDst != paTests[iTest].uDstOut \
|
---|
2281 | || fEfl != paTests[iTest].fEflOut) \
|
---|
2282 | RTTestFailed(g_hTest, "#%03u%s: efl=%#08x dst=" a_Fmt " src=" a_Fmt " shift=%-2u -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s%s\n", \
|
---|
2283 | iTest, iVar == 0 ? "" : "/n", paTests[iTest].fEflIn, \
|
---|
2284 | paTests[iTest].uDstIn, paTests[iTest].uSrcIn, (unsigned)paTests[iTest].uMisc, \
|
---|
2285 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
2286 | EFlagsDiff(fEfl, paTests[iTest].fEflOut), uDst == paTests[iTest].uDstOut ? "" : " dst!"); \
|
---|
2287 | else \
|
---|
2288 | { \
|
---|
2289 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
2290 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
2291 | pfn(g_pu ## a_cBits, paTests[iTest].uSrcIn, paTests[iTest].uMisc, g_pfEfl); \
|
---|
2292 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
2293 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
2294 | } \
|
---|
2295 | } \
|
---|
2296 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
2297 | } \
|
---|
2298 | } \
|
---|
2299 | }
|
---|
2300 | TEST_SHIFT_DBL(16, uint16_t, "%#06RX16", BINU16_TEST_T, SHIFT_DBL_U16_T, g_aShiftDblU16)
|
---|
2301 | TEST_SHIFT_DBL(32, uint32_t, "%#010RX32", BINU32_TEST_T, SHIFT_DBL_U32_T, g_aShiftDblU32)
|
---|
2302 | TEST_SHIFT_DBL(64, uint64_t, "%#018RX64", BINU64_TEST_T, SHIFT_DBL_U64_T, g_aShiftDblU64)
|
---|
2303 |
|
---|
2304 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2305 | static RTEXITCODE ShiftDblGenerate(uint32_t cTests, const char * const * papszNameFmts)
|
---|
2306 | {
|
---|
2307 | RTEXITCODE rcExit = ShiftDblU16Generate(cTests, papszNameFmts);
|
---|
2308 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2309 | rcExit = ShiftDblU32Generate(cTests, papszNameFmts);
|
---|
2310 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2311 | rcExit = ShiftDblU64Generate(cTests, papszNameFmts);
|
---|
2312 | return rcExit;
|
---|
2313 | }
|
---|
2314 |
|
---|
2315 | static RTEXITCODE ShiftDblDumpAll(const char * const * papszNameFmts)
|
---|
2316 | {
|
---|
2317 | RTEXITCODE rcExit = ShiftDblU16DumpAll(papszNameFmts);
|
---|
2318 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2319 | rcExit = ShiftDblU32DumpAll(papszNameFmts);
|
---|
2320 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2321 | rcExit = ShiftDblU64DumpAll(papszNameFmts);
|
---|
2322 | return rcExit;
|
---|
2323 | }
|
---|
2324 | #endif
|
---|
2325 |
|
---|
2326 | static void ShiftDblTest(void)
|
---|
2327 | {
|
---|
2328 | ShiftDblU16Test();
|
---|
2329 | ShiftDblU32Test();
|
---|
2330 | ShiftDblU64Test();
|
---|
2331 | }
|
---|
2332 |
|
---|
2333 |
|
---|
2334 | /*
|
---|
2335 | * Unary operators.
|
---|
2336 | *
|
---|
2337 | * Note! We use BINUxx_TEST_T ignoreing uSrcIn and uMisc.
|
---|
2338 | */
|
---|
2339 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2340 | # define GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \
|
---|
2341 | static RTEXITCODE UnaryU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \
|
---|
2342 | { \
|
---|
2343 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aUnaryU ## a_cBits); iFn++) \
|
---|
2344 | { \
|
---|
2345 | IEMBINARYOUTPUT BinOut; \
|
---|
2346 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aUnaryU ## a_cBits[iFn]), RTEXITCODE_FAILURE); \
|
---|
2347 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2348 | { \
|
---|
2349 | a_TestType Test; \
|
---|
2350 | Test.fEflIn = RandEFlags(); \
|
---|
2351 | Test.fEflOut = Test.fEflIn; \
|
---|
2352 | Test.uDstIn = RandU ## a_cBits(); \
|
---|
2353 | Test.uDstOut = Test.uDstIn; \
|
---|
2354 | Test.uSrcIn = 0; \
|
---|
2355 | Test.uMisc = 0; \
|
---|
2356 | g_aUnaryU ## a_cBits[iFn].pfn(&Test.uDstOut, &Test.fEflOut); \
|
---|
2357 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
2358 | } \
|
---|
2359 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
2360 | } \
|
---|
2361 | return RTEXITCODE_SUCCESS; \
|
---|
2362 | } \
|
---|
2363 | static RTEXITCODE UnaryU ## a_cBits ## DumpAll(const char * const * papszNameFmts) \
|
---|
2364 | { \
|
---|
2365 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aUnaryU ## a_cBits); iFn++) \
|
---|
2366 | DUMP_TEST_ENTRY(g_aUnaryU ## a_cBits[iFn], papszNameFmts); \
|
---|
2367 | return RTEXITCODE_SUCCESS; \
|
---|
2368 | }
|
---|
2369 | #else
|
---|
2370 | # define GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType)
|
---|
2371 | #endif
|
---|
2372 |
|
---|
2373 | #define TEST_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \
|
---|
2374 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLUNARYU ## a_cBits); \
|
---|
2375 | static a_SubTestType g_aUnaryU ## a_cBits [] = \
|
---|
2376 | { \
|
---|
2377 | ENTRY_BIN(inc_u ## a_cBits), \
|
---|
2378 | ENTRY_BIN(inc_u ## a_cBits ## _locked), \
|
---|
2379 | ENTRY_BIN(dec_u ## a_cBits), \
|
---|
2380 | ENTRY_BIN(dec_u ## a_cBits ## _locked), \
|
---|
2381 | ENTRY_BIN(not_u ## a_cBits), \
|
---|
2382 | ENTRY_BIN(not_u ## a_cBits ## _locked), \
|
---|
2383 | ENTRY_BIN(neg_u ## a_cBits), \
|
---|
2384 | ENTRY_BIN(neg_u ## a_cBits ## _locked), \
|
---|
2385 | }; \
|
---|
2386 | \
|
---|
2387 | GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \
|
---|
2388 | \
|
---|
2389 | static void UnaryU ## a_cBits ## Test(void) \
|
---|
2390 | { \
|
---|
2391 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aUnaryU ## a_cBits); iFn++) \
|
---|
2392 | { \
|
---|
2393 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aUnaryU ## a_cBits[iFn])) \
|
---|
2394 | continue; \
|
---|
2395 | a_TestType const * const paTests = g_aUnaryU ## a_cBits[iFn].paTests; \
|
---|
2396 | uint32_t const cTests = g_aUnaryU ## a_cBits[iFn].cTests; \
|
---|
2397 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2398 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2399 | { \
|
---|
2400 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2401 | a_Type uDst = paTests[iTest].uDstIn; \
|
---|
2402 | g_aUnaryU ## a_cBits[iFn].pfn(&uDst, &fEfl); \
|
---|
2403 | if ( uDst != paTests[iTest].uDstOut \
|
---|
2404 | || fEfl != paTests[iTest].fEflOut) \
|
---|
2405 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=" a_Fmt " -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s\n", \
|
---|
2406 | iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, \
|
---|
2407 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
2408 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
2409 | else \
|
---|
2410 | { \
|
---|
2411 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
2412 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
2413 | g_aUnaryU ## a_cBits[iFn].pfn(g_pu ## a_cBits, g_pfEfl); \
|
---|
2414 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
2415 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
2416 | } \
|
---|
2417 | } \
|
---|
2418 | } \
|
---|
2419 | }
|
---|
2420 | TEST_UNARY(8, uint8_t, "%#04RX8", BINU8_TEST_T, INT_UNARY_U8_T)
|
---|
2421 | TEST_UNARY(16, uint16_t, "%#06RX16", BINU16_TEST_T, INT_UNARY_U16_T)
|
---|
2422 | TEST_UNARY(32, uint32_t, "%#010RX32", BINU32_TEST_T, INT_UNARY_U32_T)
|
---|
2423 | TEST_UNARY(64, uint64_t, "%#018RX64", BINU64_TEST_T, INT_UNARY_U64_T)
|
---|
2424 |
|
---|
2425 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2426 | static RTEXITCODE UnaryGenerate(uint32_t cTests, const char * const * papszNameFmts)
|
---|
2427 | {
|
---|
2428 | RTEXITCODE rcExit = UnaryU8Generate(cTests, papszNameFmts);
|
---|
2429 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2430 | rcExit = UnaryU16Generate(cTests, papszNameFmts);
|
---|
2431 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2432 | rcExit = UnaryU32Generate(cTests, papszNameFmts);
|
---|
2433 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2434 | rcExit = UnaryU64Generate(cTests, papszNameFmts);
|
---|
2435 | return rcExit;
|
---|
2436 | }
|
---|
2437 |
|
---|
2438 | static RTEXITCODE UnaryDumpAll(const char * const * papszNameFmts)
|
---|
2439 | {
|
---|
2440 | RTEXITCODE rcExit = UnaryU8DumpAll(papszNameFmts);
|
---|
2441 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2442 | rcExit = UnaryU16DumpAll(papszNameFmts);
|
---|
2443 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2444 | rcExit = UnaryU32DumpAll(papszNameFmts);
|
---|
2445 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2446 | rcExit = UnaryU64DumpAll(papszNameFmts);
|
---|
2447 | return rcExit;
|
---|
2448 | }
|
---|
2449 | #endif
|
---|
2450 |
|
---|
2451 | static void UnaryTest(void)
|
---|
2452 | {
|
---|
2453 | UnaryU8Test();
|
---|
2454 | UnaryU16Test();
|
---|
2455 | UnaryU32Test();
|
---|
2456 | UnaryU64Test();
|
---|
2457 | }
|
---|
2458 |
|
---|
2459 |
|
---|
2460 | /*
|
---|
2461 | * Shifts.
|
---|
2462 | *
|
---|
2463 | * Note! We use BINUxx_TEST_T with the shift count in uMisc and uSrcIn unused.
|
---|
2464 | */
|
---|
2465 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2466 | # define GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2467 | static RTEXITCODE ShiftU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \
|
---|
2468 | { \
|
---|
2469 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2470 | { \
|
---|
2471 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
2472 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
2473 | continue; \
|
---|
2474 | IEMBINARYOUTPUT BinOut; \
|
---|
2475 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
2476 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2477 | { \
|
---|
2478 | a_TestType Test; \
|
---|
2479 | Test.fEflIn = RandEFlags(); \
|
---|
2480 | Test.fEflOut = Test.fEflIn; \
|
---|
2481 | Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \
|
---|
2482 | Test.uDstOut = Test.uDstIn; \
|
---|
2483 | Test.uSrcIn = 0; \
|
---|
2484 | Test.uMisc = RandU8() & (a_cBits * 4 - 1); /* need to go way beyond the a_cBits limit */ \
|
---|
2485 | a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uMisc, &Test.fEflOut); \
|
---|
2486 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
2487 | \
|
---|
2488 | Test.fEflIn = (~Test.fEflIn & X86_EFL_LIVE_MASK) | X86_EFL_RA1_MASK; \
|
---|
2489 | Test.fEflOut = Test.fEflIn; \
|
---|
2490 | Test.uDstOut = Test.uDstIn; \
|
---|
2491 | a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uMisc, &Test.fEflOut); \
|
---|
2492 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
2493 | } \
|
---|
2494 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
2495 | } \
|
---|
2496 | return RTEXITCODE_SUCCESS; \
|
---|
2497 | } \
|
---|
2498 | static RTEXITCODE ShiftU ## a_cBits ## DumpAll(const char * const * papszNameFmts) \
|
---|
2499 | { \
|
---|
2500 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2501 | DUMP_TEST_ENTRY(a_aSubTests[iFn], papszNameFmts); \
|
---|
2502 | return RTEXITCODE_SUCCESS; \
|
---|
2503 | }
|
---|
2504 | #else
|
---|
2505 | # define GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests)
|
---|
2506 | #endif
|
---|
2507 |
|
---|
2508 | #define TEST_SHIFT(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \
|
---|
2509 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLSHIFTU ## a_cBits); \
|
---|
2510 | static a_SubTestType a_aSubTests[] = \
|
---|
2511 | { \
|
---|
2512 | ENTRY_BIN_AMD( rol_u ## a_cBits, X86_EFL_OF), \
|
---|
2513 | ENTRY_BIN_INTEL(rol_u ## a_cBits, X86_EFL_OF), \
|
---|
2514 | ENTRY_BIN_AMD( ror_u ## a_cBits, X86_EFL_OF), \
|
---|
2515 | ENTRY_BIN_INTEL(ror_u ## a_cBits, X86_EFL_OF), \
|
---|
2516 | ENTRY_BIN_AMD( rcl_u ## a_cBits, X86_EFL_OF), \
|
---|
2517 | ENTRY_BIN_INTEL(rcl_u ## a_cBits, X86_EFL_OF), \
|
---|
2518 | ENTRY_BIN_AMD( rcr_u ## a_cBits, X86_EFL_OF), \
|
---|
2519 | ENTRY_BIN_INTEL(rcr_u ## a_cBits, X86_EFL_OF), \
|
---|
2520 | ENTRY_BIN_AMD( shl_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2521 | ENTRY_BIN_INTEL(shl_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2522 | ENTRY_BIN_AMD( shr_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2523 | ENTRY_BIN_INTEL(shr_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2524 | ENTRY_BIN_AMD( sar_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2525 | ENTRY_BIN_INTEL(sar_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2526 | }; \
|
---|
2527 | \
|
---|
2528 | GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2529 | \
|
---|
2530 | static void ShiftU ## a_cBits ## Test(void) \
|
---|
2531 | { \
|
---|
2532 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2533 | { \
|
---|
2534 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
2535 | continue; \
|
---|
2536 | PFNIEMAIMPLSHIFTU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
2537 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2538 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
2539 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
2540 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2541 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
2542 | { \
|
---|
2543 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2544 | { \
|
---|
2545 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2546 | a_Type uDst = paTests[iTest].uDstIn; \
|
---|
2547 | pfn(&uDst, paTests[iTest].uMisc, &fEfl); \
|
---|
2548 | if ( uDst != paTests[iTest].uDstOut \
|
---|
2549 | || fEfl != paTests[iTest].fEflOut ) \
|
---|
2550 | RTTestFailed(g_hTest, "#%u%s: efl=%#08x dst=" a_Fmt " shift=%2u -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s\n", \
|
---|
2551 | iTest, iVar == 0 ? "" : "/n", \
|
---|
2552 | paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uMisc, \
|
---|
2553 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
2554 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
2555 | else \
|
---|
2556 | { \
|
---|
2557 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
2558 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
2559 | pfn(g_pu ## a_cBits, paTests[iTest].uMisc, g_pfEfl); \
|
---|
2560 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
2561 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
2562 | } \
|
---|
2563 | } \
|
---|
2564 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
2565 | } \
|
---|
2566 | } \
|
---|
2567 | }
|
---|
2568 | TEST_SHIFT(8, uint8_t, "%#04RX8", BINU8_TEST_T, INT_BINARY_U8_T, g_aShiftU8)
|
---|
2569 | TEST_SHIFT(16, uint16_t, "%#06RX16", BINU16_TEST_T, INT_BINARY_U16_T, g_aShiftU16)
|
---|
2570 | TEST_SHIFT(32, uint32_t, "%#010RX32", BINU32_TEST_T, INT_BINARY_U32_T, g_aShiftU32)
|
---|
2571 | TEST_SHIFT(64, uint64_t, "%#018RX64", BINU64_TEST_T, INT_BINARY_U64_T, g_aShiftU64)
|
---|
2572 |
|
---|
2573 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2574 | static RTEXITCODE ShiftGenerate(uint32_t cTests, const char * const * papszNameFmts)
|
---|
2575 | {
|
---|
2576 | RTEXITCODE rcExit = ShiftU8Generate(cTests, papszNameFmts);
|
---|
2577 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2578 | rcExit = ShiftU16Generate(cTests, papszNameFmts);
|
---|
2579 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2580 | rcExit = ShiftU32Generate(cTests, papszNameFmts);
|
---|
2581 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2582 | rcExit = ShiftU64Generate(cTests, papszNameFmts);
|
---|
2583 | return rcExit;
|
---|
2584 | }
|
---|
2585 |
|
---|
2586 | static RTEXITCODE ShiftDumpAll(const char * const * papszNameFmts)
|
---|
2587 | {
|
---|
2588 | RTEXITCODE rcExit = ShiftU8DumpAll(papszNameFmts);
|
---|
2589 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2590 | rcExit = ShiftU16DumpAll(papszNameFmts);
|
---|
2591 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2592 | rcExit = ShiftU32DumpAll(papszNameFmts);
|
---|
2593 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2594 | rcExit = ShiftU64DumpAll(papszNameFmts);
|
---|
2595 | return rcExit;
|
---|
2596 | }
|
---|
2597 | #endif
|
---|
2598 |
|
---|
2599 | static void ShiftTest(void)
|
---|
2600 | {
|
---|
2601 | ShiftU8Test();
|
---|
2602 | ShiftU16Test();
|
---|
2603 | ShiftU32Test();
|
---|
2604 | ShiftU64Test();
|
---|
2605 | }
|
---|
2606 |
|
---|
2607 |
|
---|
2608 | /*
|
---|
2609 | * Multiplication and division.
|
---|
2610 | *
|
---|
2611 | * Note! The 8-bit functions has a different format, so we need to duplicate things.
|
---|
2612 | * Note! Currently ignoring undefined bits.
|
---|
2613 | */
|
---|
2614 |
|
---|
2615 | /* U8 */
|
---|
2616 | TYPEDEF_SUBTEST_TYPE(INT_MULDIV_U8_T, MULDIVU8_TEST_T, PFNIEMAIMPLMULDIVU8);
|
---|
2617 | static INT_MULDIV_U8_T g_aMulDivU8[] =
|
---|
2618 | {
|
---|
2619 | ENTRY_BIN_AMD_EX(mul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF,
|
---|
2620 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF),
|
---|
2621 | ENTRY_BIN_INTEL_EX(mul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0),
|
---|
2622 | ENTRY_BIN_AMD_EX(imul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF,
|
---|
2623 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF),
|
---|
2624 | ENTRY_BIN_INTEL_EX(imul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0),
|
---|
2625 | ENTRY_BIN_AMD_EX(div_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2626 | ENTRY_BIN_INTEL_EX(div_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2627 | ENTRY_BIN_AMD_EX(idiv_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2628 | ENTRY_BIN_INTEL_EX(idiv_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2629 | };
|
---|
2630 |
|
---|
2631 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2632 | static RTEXITCODE MulDivU8Generate(uint32_t cTests, const char * const * papszNameFmts)
|
---|
2633 | {
|
---|
2634 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++)
|
---|
2635 | {
|
---|
2636 | if ( g_aMulDivU8[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
2637 | && g_aMulDivU8[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
2638 | continue;
|
---|
2639 | IEMBINARYOUTPUT BinOut; \
|
---|
2640 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aMulDivU8[iFn]), RTEXITCODE_FAILURE); \
|
---|
2641 | for (uint32_t iTest = 0; iTest < cTests; iTest++ )
|
---|
2642 | {
|
---|
2643 | MULDIVU8_TEST_T Test;
|
---|
2644 | Test.fEflIn = RandEFlags();
|
---|
2645 | Test.fEflOut = Test.fEflIn;
|
---|
2646 | Test.uDstIn = RandU16Dst(iTest);
|
---|
2647 | Test.uDstOut = Test.uDstIn;
|
---|
2648 | Test.uSrcIn = RandU8Src(iTest);
|
---|
2649 | Test.rc = g_aMulDivU8[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, &Test.fEflOut);
|
---|
2650 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
2651 | }
|
---|
2652 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
2653 | }
|
---|
2654 | return RTEXITCODE_SUCCESS;
|
---|
2655 | }
|
---|
2656 | static RTEXITCODE MulDivU8DumpAll(const char * const * papszNameFmts)
|
---|
2657 | {
|
---|
2658 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++)
|
---|
2659 | DUMP_TEST_ENTRY(g_aMulDivU8[iFn], papszNameFmts);
|
---|
2660 | return RTEXITCODE_SUCCESS;
|
---|
2661 | }
|
---|
2662 | #endif
|
---|
2663 |
|
---|
2664 | static void MulDivU8Test(void)
|
---|
2665 | {
|
---|
2666 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++)
|
---|
2667 | {
|
---|
2668 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aMulDivU8[iFn])) \
|
---|
2669 | continue; \
|
---|
2670 | MULDIVU8_TEST_T const * const paTests = g_aMulDivU8[iFn].paTests;
|
---|
2671 | uint32_t const cTests = g_aMulDivU8[iFn].cTests;
|
---|
2672 | uint32_t const fEflIgn = g_aMulDivU8[iFn].uExtra;
|
---|
2673 | PFNIEMAIMPLMULDIVU8 pfn = g_aMulDivU8[iFn].pfn;
|
---|
2674 | uint32_t const cVars = COUNT_VARIATIONS(g_aMulDivU8[iFn]); \
|
---|
2675 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
2676 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
2677 | {
|
---|
2678 | for (uint32_t iTest = 0; iTest < cTests; iTest++ )
|
---|
2679 | {
|
---|
2680 | uint32_t fEfl = paTests[iTest].fEflIn;
|
---|
2681 | uint16_t uDst = paTests[iTest].uDstIn;
|
---|
2682 | int rc = g_aMulDivU8[iFn].pfn(&uDst, paTests[iTest].uSrcIn, &fEfl);
|
---|
2683 | if ( uDst != paTests[iTest].uDstOut
|
---|
2684 | || (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn)
|
---|
2685 | || rc != paTests[iTest].rc)
|
---|
2686 | RTTestFailed(g_hTest, "#%02u%s: efl=%#08x dst=%#06RX16 src=%#04RX8\n"
|
---|
2687 | " %s-> efl=%#08x dst=%#06RX16 rc=%d\n"
|
---|
2688 | "%sexpected %#08x %#06RX16 %d%s\n",
|
---|
2689 | iTest, iVar ? "/n" : "", paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn,
|
---|
2690 | iVar ? " " : "", fEfl, uDst, rc,
|
---|
2691 | iVar ? " " : "", paTests[iTest].fEflOut, paTests[iTest].uDstOut, paTests[iTest].rc,
|
---|
2692 | EFlagsDiff(fEfl | fEflIgn, paTests[iTest].fEflOut | fEflIgn));
|
---|
2693 | else
|
---|
2694 | {
|
---|
2695 | *g_pu16 = paTests[iTest].uDstIn;
|
---|
2696 | *g_pfEfl = paTests[iTest].fEflIn;
|
---|
2697 | rc = g_aMulDivU8[iFn].pfn(g_pu16, paTests[iTest].uSrcIn, g_pfEfl);
|
---|
2698 | RTTEST_CHECK(g_hTest, *g_pu16 == paTests[iTest].uDstOut);
|
---|
2699 | RTTEST_CHECK(g_hTest, (*g_pfEfl | fEflIgn) == (paTests[iTest].fEflOut | fEflIgn));
|
---|
2700 | RTTEST_CHECK(g_hTest, rc == paTests[iTest].rc);
|
---|
2701 | }
|
---|
2702 | }
|
---|
2703 | pfn = g_aMulDivU8[iFn].pfnNative;
|
---|
2704 | }
|
---|
2705 | }
|
---|
2706 | }
|
---|
2707 |
|
---|
2708 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2709 | # define GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2710 | static RTEXITCODE MulDivU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \
|
---|
2711 | { \
|
---|
2712 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2713 | { \
|
---|
2714 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
2715 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
2716 | continue; \
|
---|
2717 | IEMBINARYOUTPUT BinOut; \
|
---|
2718 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
2719 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2720 | { \
|
---|
2721 | a_TestType Test; \
|
---|
2722 | Test.fEflIn = RandEFlags(); \
|
---|
2723 | Test.fEflOut = Test.fEflIn; \
|
---|
2724 | Test.uDst1In = RandU ## a_cBits ## Dst(iTest); \
|
---|
2725 | Test.uDst1Out = Test.uDst1In; \
|
---|
2726 | Test.uDst2In = RandU ## a_cBits ## Dst(iTest); \
|
---|
2727 | Test.uDst2Out = Test.uDst2In; \
|
---|
2728 | Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \
|
---|
2729 | Test.rc = a_aSubTests[iFn].pfnNative(&Test.uDst1Out, &Test.uDst2Out, Test.uSrcIn, &Test.fEflOut); \
|
---|
2730 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
2731 | } \
|
---|
2732 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
2733 | } \
|
---|
2734 | return RTEXITCODE_SUCCESS; \
|
---|
2735 | } \
|
---|
2736 | static RTEXITCODE MulDivU ## a_cBits ## DumpAll(const char * const * papszNameFmts) \
|
---|
2737 | { \
|
---|
2738 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2739 | DUMP_TEST_ENTRY(a_aSubTests[iFn], papszNameFmts); \
|
---|
2740 | return RTEXITCODE_SUCCESS; \
|
---|
2741 | }
|
---|
2742 |
|
---|
2743 | #else
|
---|
2744 | # define GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests)
|
---|
2745 | #endif
|
---|
2746 |
|
---|
2747 | #define TEST_MULDIV(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \
|
---|
2748 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLMULDIVU ## a_cBits); \
|
---|
2749 | static a_SubTestType a_aSubTests [] = \
|
---|
2750 | { \
|
---|
2751 | ENTRY_BIN_AMD_EX(mul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
2752 | ENTRY_BIN_INTEL_EX(mul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
2753 | ENTRY_BIN_AMD_EX(imul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
2754 | ENTRY_BIN_INTEL_EX(imul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
2755 | ENTRY_BIN_AMD_EX(div_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
2756 | ENTRY_BIN_INTEL_EX(div_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
2757 | ENTRY_BIN_AMD_EX(idiv_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
2758 | ENTRY_BIN_INTEL_EX(idiv_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
2759 | }; \
|
---|
2760 | \
|
---|
2761 | GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2762 | \
|
---|
2763 | static void MulDivU ## a_cBits ## Test(void) \
|
---|
2764 | { \
|
---|
2765 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2766 | { \
|
---|
2767 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
2768 | continue; \
|
---|
2769 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2770 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
2771 | uint32_t const fEflIgn = a_aSubTests[iFn].uExtra; \
|
---|
2772 | PFNIEMAIMPLMULDIVU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
2773 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
2774 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2775 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
2776 | { \
|
---|
2777 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2778 | { \
|
---|
2779 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2780 | a_Type uDst1 = paTests[iTest].uDst1In; \
|
---|
2781 | a_Type uDst2 = paTests[iTest].uDst2In; \
|
---|
2782 | int rc = pfn(&uDst1, &uDst2, paTests[iTest].uSrcIn, &fEfl); \
|
---|
2783 | if ( uDst1 != paTests[iTest].uDst1Out \
|
---|
2784 | || uDst2 != paTests[iTest].uDst2Out \
|
---|
2785 | || (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn)\
|
---|
2786 | || rc != paTests[iTest].rc) \
|
---|
2787 | RTTestFailed(g_hTest, "#%02u%s: efl=%#08x dst1=" a_Fmt " dst2=" a_Fmt " src=" a_Fmt "\n" \
|
---|
2788 | " -> efl=%#08x dst1=" a_Fmt " dst2=" a_Fmt " rc=%d\n" \
|
---|
2789 | "expected %#08x " a_Fmt " " a_Fmt " %d%s -%s%s%s\n", \
|
---|
2790 | iTest, iVar == 0 ? "" : "/n", \
|
---|
2791 | paTests[iTest].fEflIn, paTests[iTest].uDst1In, paTests[iTest].uDst2In, paTests[iTest].uSrcIn, \
|
---|
2792 | fEfl, uDst1, uDst2, rc, \
|
---|
2793 | paTests[iTest].fEflOut, paTests[iTest].uDst1Out, paTests[iTest].uDst2Out, paTests[iTest].rc, \
|
---|
2794 | EFlagsDiff(fEfl | fEflIgn, paTests[iTest].fEflOut | fEflIgn), \
|
---|
2795 | uDst1 != paTests[iTest].uDst1Out ? " dst1" : "", uDst2 != paTests[iTest].uDst2Out ? " dst2" : "", \
|
---|
2796 | (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn) ? " eflags" : ""); \
|
---|
2797 | else \
|
---|
2798 | { \
|
---|
2799 | *g_pu ## a_cBits = paTests[iTest].uDst1In; \
|
---|
2800 | *g_pu ## a_cBits ## Two = paTests[iTest].uDst2In; \
|
---|
2801 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
2802 | rc = pfn(g_pu ## a_cBits, g_pu ## a_cBits ## Two, paTests[iTest].uSrcIn, g_pfEfl); \
|
---|
2803 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDst1Out); \
|
---|
2804 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits ## Two == paTests[iTest].uDst2Out); \
|
---|
2805 | RTTEST_CHECK(g_hTest, (*g_pfEfl | fEflIgn) == (paTests[iTest].fEflOut | fEflIgn)); \
|
---|
2806 | RTTEST_CHECK(g_hTest, rc == paTests[iTest].rc); \
|
---|
2807 | } \
|
---|
2808 | } \
|
---|
2809 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
2810 | } \
|
---|
2811 | } \
|
---|
2812 | }
|
---|
2813 | TEST_MULDIV(16, uint16_t, "%#06RX16", MULDIVU16_TEST_T, INT_MULDIV_U16_T, g_aMulDivU16)
|
---|
2814 | TEST_MULDIV(32, uint32_t, "%#010RX32", MULDIVU32_TEST_T, INT_MULDIV_U32_T, g_aMulDivU32)
|
---|
2815 | TEST_MULDIV(64, uint64_t, "%#018RX64", MULDIVU64_TEST_T, INT_MULDIV_U64_T, g_aMulDivU64)
|
---|
2816 |
|
---|
2817 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2818 | static RTEXITCODE MulDivGenerate(uint32_t cTests, const char * const * papszNameFmts)
|
---|
2819 | {
|
---|
2820 | RTEXITCODE rcExit = MulDivU8Generate(cTests, papszNameFmts);
|
---|
2821 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2822 | rcExit = MulDivU16Generate(cTests, papszNameFmts);
|
---|
2823 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2824 | rcExit = MulDivU32Generate(cTests, papszNameFmts);
|
---|
2825 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2826 | rcExit = MulDivU64Generate(cTests, papszNameFmts);
|
---|
2827 | return rcExit;
|
---|
2828 | }
|
---|
2829 |
|
---|
2830 | static RTEXITCODE MulDivDumpAll(const char * const * papszNameFmts)
|
---|
2831 | {
|
---|
2832 | RTEXITCODE rcExit = MulDivU8DumpAll(papszNameFmts);
|
---|
2833 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2834 | rcExit = MulDivU16DumpAll(papszNameFmts);
|
---|
2835 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2836 | rcExit = MulDivU32DumpAll(papszNameFmts);
|
---|
2837 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2838 | rcExit = MulDivU64DumpAll(papszNameFmts);
|
---|
2839 | return rcExit;
|
---|
2840 | }
|
---|
2841 | #endif
|
---|
2842 |
|
---|
2843 | static void MulDivTest(void)
|
---|
2844 | {
|
---|
2845 | MulDivU8Test();
|
---|
2846 | MulDivU16Test();
|
---|
2847 | MulDivU32Test();
|
---|
2848 | MulDivU64Test();
|
---|
2849 | }
|
---|
2850 |
|
---|
2851 |
|
---|
2852 | /*
|
---|
2853 | * BSWAP
|
---|
2854 | */
|
---|
2855 | static void BswapTest(void)
|
---|
2856 | {
|
---|
2857 | if (SubTestAndCheckIfEnabled("bswap_u16"))
|
---|
2858 | {
|
---|
2859 | *g_pu32 = UINT32_C(0x12345678);
|
---|
2860 | iemAImpl_bswap_u16(g_pu32);
|
---|
2861 | #if 0
|
---|
2862 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0x12347856), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
2863 | #else
|
---|
2864 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0x12340000), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
2865 | #endif
|
---|
2866 | *g_pu32 = UINT32_C(0xffff1122);
|
---|
2867 | iemAImpl_bswap_u16(g_pu32);
|
---|
2868 | #if 0
|
---|
2869 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0xffff2211), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
2870 | #else
|
---|
2871 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0xffff0000), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
2872 | #endif
|
---|
2873 | }
|
---|
2874 |
|
---|
2875 | if (SubTestAndCheckIfEnabled("bswap_u32"))
|
---|
2876 | {
|
---|
2877 | *g_pu32 = UINT32_C(0x12345678);
|
---|
2878 | iemAImpl_bswap_u32(g_pu32);
|
---|
2879 | RTTEST_CHECK(g_hTest, *g_pu32 == UINT32_C(0x78563412));
|
---|
2880 | }
|
---|
2881 |
|
---|
2882 | if (SubTestAndCheckIfEnabled("bswap_u64"))
|
---|
2883 | {
|
---|
2884 | *g_pu64 = UINT64_C(0x0123456789abcdef);
|
---|
2885 | iemAImpl_bswap_u64(g_pu64);
|
---|
2886 | RTTEST_CHECK(g_hTest, *g_pu64 == UINT64_C(0xefcdab8967452301));
|
---|
2887 | }
|
---|
2888 | }
|
---|
2889 |
|
---|
2890 |
|
---|
2891 |
|
---|
2892 | /*********************************************************************************************************************************
|
---|
2893 | * Floating point (x87 style) *
|
---|
2894 | *********************************************************************************************************************************/
|
---|
2895 |
|
---|
2896 | /*
|
---|
2897 | * FPU constant loading.
|
---|
2898 | */
|
---|
2899 | TYPEDEF_SUBTEST_TYPE(FPU_LD_CONST_T, FPU_LD_CONST_TEST_T, PFNIEMAIMPLFPUR80LDCONST);
|
---|
2900 |
|
---|
2901 | static FPU_LD_CONST_T g_aFpuLdConst[] =
|
---|
2902 | {
|
---|
2903 | ENTRY_BIN(fld1),
|
---|
2904 | ENTRY_BIN(fldl2t),
|
---|
2905 | ENTRY_BIN(fldl2e),
|
---|
2906 | ENTRY_BIN(fldpi),
|
---|
2907 | ENTRY_BIN(fldlg2),
|
---|
2908 | ENTRY_BIN(fldln2),
|
---|
2909 | ENTRY_BIN(fldz),
|
---|
2910 | };
|
---|
2911 |
|
---|
2912 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2913 | static RTEXITCODE FpuLdConstGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
2914 | {
|
---|
2915 | X86FXSTATE State;
|
---|
2916 | RT_ZERO(State);
|
---|
2917 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++)
|
---|
2918 | {
|
---|
2919 | IEMBINARYOUTPUT BinOut;
|
---|
2920 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuLdConst[iFn]), RTEXITCODE_FAILURE);
|
---|
2921 | for (uint32_t iTest = 0; iTest < cTests; iTest += 4)
|
---|
2922 | {
|
---|
2923 | State.FCW = RandFcw();
|
---|
2924 | State.FSW = RandFsw();
|
---|
2925 |
|
---|
2926 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
2927 | {
|
---|
2928 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
2929 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT);
|
---|
2930 | g_aFpuLdConst[iFn].pfn(&State, &Res);
|
---|
2931 | FPU_LD_CONST_TEST_T const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result };
|
---|
2932 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
2933 | }
|
---|
2934 | }
|
---|
2935 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
2936 | }
|
---|
2937 | return RTEXITCODE_SUCCESS;
|
---|
2938 | }
|
---|
2939 |
|
---|
2940 | static RTEXITCODE FpuLdConstDumpAll(const char * const *papszNameFmts)
|
---|
2941 | {
|
---|
2942 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++)
|
---|
2943 | DUMP_TEST_ENTRY(g_aFpuLdConst[iFn], papszNameFmts);
|
---|
2944 | return RTEXITCODE_SUCCESS;
|
---|
2945 | }
|
---|
2946 | #endif
|
---|
2947 |
|
---|
2948 | static void FpuLoadConstTest(void)
|
---|
2949 | {
|
---|
2950 | /*
|
---|
2951 | * Inputs:
|
---|
2952 | * - FSW: C0, C1, C2, C3
|
---|
2953 | * - FCW: Exception masks, Precision control, Rounding control.
|
---|
2954 | *
|
---|
2955 | * C1 set to 1 on stack overflow, zero otherwise. C0, C2, and C3 are "undefined".
|
---|
2956 | */
|
---|
2957 | X86FXSTATE State;
|
---|
2958 | RT_ZERO(State);
|
---|
2959 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++)
|
---|
2960 | {
|
---|
2961 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuLdConst[iFn]))
|
---|
2962 | continue;
|
---|
2963 |
|
---|
2964 | FPU_LD_CONST_TEST_T const *paTests = g_aFpuLdConst[iFn].paTests;
|
---|
2965 | uint32_t const cTests = g_aFpuLdConst[iFn].cTests;
|
---|
2966 | PFNIEMAIMPLFPUR80LDCONST pfn = g_aFpuLdConst[iFn].pfn;
|
---|
2967 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuLdConst[iFn]); \
|
---|
2968 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
2969 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
2970 | {
|
---|
2971 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
2972 | {
|
---|
2973 | State.FCW = paTests[iTest].fFcw;
|
---|
2974 | State.FSW = paTests[iTest].fFswIn;
|
---|
2975 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
2976 | pfn(&State, &Res);
|
---|
2977 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
2978 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult))
|
---|
2979 | RTTestFailed(g_hTest, "#%u%s: fcw=%#06x fsw=%#06x -> fsw=%#06x %s, expected %#06x %s%s%s (%s)\n",
|
---|
2980 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
2981 | Res.FSW, FormatR80(&Res.r80Result),
|
---|
2982 | paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult),
|
---|
2983 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
2984 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "",
|
---|
2985 | FormatFcw(paTests[iTest].fFcw) );
|
---|
2986 | }
|
---|
2987 | pfn = g_aFpuLdConst[iFn].pfnNative;
|
---|
2988 | }
|
---|
2989 | }
|
---|
2990 | }
|
---|
2991 |
|
---|
2992 |
|
---|
2993 | /*
|
---|
2994 | * Load floating point values from memory.
|
---|
2995 | */
|
---|
2996 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2997 | # define GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) \
|
---|
2998 | static RTEXITCODE FpuLdR ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
2999 | { \
|
---|
3000 | X86FXSTATE State; \
|
---|
3001 | RT_ZERO(State); \
|
---|
3002 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3003 | { \
|
---|
3004 | IEMBINARYOUTPUT BinOut; \
|
---|
3005 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
3006 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3007 | { \
|
---|
3008 | State.FCW = RandFcw(); \
|
---|
3009 | State.FSW = RandFsw(); \
|
---|
3010 | a_rdTypeIn InVal = RandR ## a_cBits ## Src(iTest); \
|
---|
3011 | \
|
---|
3012 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
3013 | { \
|
---|
3014 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
3015 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
3016 | a_aSubTests[iFn].pfn(&State, &Res, &InVal); \
|
---|
3017 | a_TestType const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result, InVal }; \
|
---|
3018 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
3019 | } \
|
---|
3020 | } \
|
---|
3021 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
3022 | } \
|
---|
3023 | return RTEXITCODE_SUCCESS; \
|
---|
3024 | } \
|
---|
3025 | static RTEXITCODE FpuLdR ## a_cBits ## DumpAll(const char * const *papszNameFmts) \
|
---|
3026 | { \
|
---|
3027 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3028 | DUMP_TEST_ENTRY(a_aSubTests[iFn], papszNameFmts); \
|
---|
3029 | return RTEXITCODE_SUCCESS; \
|
---|
3030 | }
|
---|
3031 | #else
|
---|
3032 | # define GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType)
|
---|
3033 | #endif
|
---|
3034 |
|
---|
3035 | #define TEST_FPU_LOAD(a_cBits, a_rdTypeIn, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
3036 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROM ## a_cBits,(PCX86FXSTATE, PIEMFPURESULT, PC ## a_rdTypeIn)); \
|
---|
3037 | typedef FNIEMAIMPLFPULDR80FROM ## a_cBits *PFNIEMAIMPLFPULDR80FROM ## a_cBits; \
|
---|
3038 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPULDR80FROM ## a_cBits); \
|
---|
3039 | \
|
---|
3040 | static a_SubTestType a_aSubTests[] = \
|
---|
3041 | { \
|
---|
3042 | ENTRY_BIN(RT_CONCAT(fld_r80_from_r,a_cBits)) \
|
---|
3043 | }; \
|
---|
3044 | GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) \
|
---|
3045 | \
|
---|
3046 | static void FpuLdR ## a_cBits ## Test(void) \
|
---|
3047 | { \
|
---|
3048 | X86FXSTATE State; \
|
---|
3049 | RT_ZERO(State); \
|
---|
3050 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3051 | { \
|
---|
3052 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
3053 | continue; \
|
---|
3054 | \
|
---|
3055 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3056 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
3057 | PFNIEMAIMPLFPULDR80FROM ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
3058 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3059 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3060 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3061 | { \
|
---|
3062 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3063 | { \
|
---|
3064 | a_rdTypeIn const InVal = paTests[iTest].InVal; \
|
---|
3065 | State.FCW = paTests[iTest].fFcw; \
|
---|
3066 | State.FSW = paTests[iTest].fFswIn; \
|
---|
3067 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
3068 | pfn(&State, &Res, &InVal); \
|
---|
3069 | if ( Res.FSW != paTests[iTest].fFswOut \
|
---|
3070 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) \
|
---|
3071 | RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=%s\n" \
|
---|
3072 | "%s -> fsw=%#06x %s\n" \
|
---|
3073 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
3074 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
3075 | FormatR ## a_cBits(&paTests[iTest].InVal), \
|
---|
3076 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \
|
---|
3077 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), \
|
---|
3078 | FswDiff(Res.FSW, paTests[iTest].fFswOut), \
|
---|
3079 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", \
|
---|
3080 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
3081 | } \
|
---|
3082 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3083 | } \
|
---|
3084 | } \
|
---|
3085 | }
|
---|
3086 |
|
---|
3087 | TEST_FPU_LOAD(80, RTFLOAT80U, FPU_LD_R80_T, g_aFpuLdR80, FPU_R80_IN_TEST_T)
|
---|
3088 | TEST_FPU_LOAD(64, RTFLOAT64U, FPU_LD_R64_T, g_aFpuLdR64, FPU_R64_IN_TEST_T)
|
---|
3089 | TEST_FPU_LOAD(32, RTFLOAT32U, FPU_LD_R32_T, g_aFpuLdR32, FPU_R32_IN_TEST_T)
|
---|
3090 |
|
---|
3091 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3092 | static RTEXITCODE FpuLdMemGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3093 | {
|
---|
3094 | RTEXITCODE rcExit = FpuLdR80Generate(cTests, papszNameFmts);
|
---|
3095 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3096 | rcExit = FpuLdR64Generate(cTests, papszNameFmts);
|
---|
3097 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3098 | rcExit = FpuLdR32Generate(cTests, papszNameFmts);
|
---|
3099 | return rcExit;
|
---|
3100 | }
|
---|
3101 |
|
---|
3102 | static RTEXITCODE FpuLdMemDumpAll(const char * const *papszNameFmts)
|
---|
3103 | {
|
---|
3104 | RTEXITCODE rcExit = FpuLdR80DumpAll(papszNameFmts);
|
---|
3105 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3106 | rcExit = FpuLdR64DumpAll(papszNameFmts);
|
---|
3107 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3108 | rcExit = FpuLdR32DumpAll(papszNameFmts);
|
---|
3109 | return rcExit;
|
---|
3110 | }
|
---|
3111 | #endif
|
---|
3112 |
|
---|
3113 | static void FpuLdMemTest(void)
|
---|
3114 | {
|
---|
3115 | FpuLdR80Test();
|
---|
3116 | FpuLdR64Test();
|
---|
3117 | FpuLdR32Test();
|
---|
3118 | }
|
---|
3119 |
|
---|
3120 |
|
---|
3121 | /*
|
---|
3122 | * Load integer values from memory.
|
---|
3123 | */
|
---|
3124 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3125 | # define GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) \
|
---|
3126 | static RTEXITCODE FpuLdI ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
3127 | { \
|
---|
3128 | X86FXSTATE State; \
|
---|
3129 | RT_ZERO(State); \
|
---|
3130 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3131 | { \
|
---|
3132 | IEMBINARYOUTPUT BinOut; \
|
---|
3133 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
3134 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3135 | { \
|
---|
3136 | State.FCW = RandFcw(); \
|
---|
3137 | State.FSW = RandFsw(); \
|
---|
3138 | a_iTypeIn InVal = (a_iTypeIn)RandU ## a_cBits ## Src(iTest); \
|
---|
3139 | \
|
---|
3140 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
3141 | { \
|
---|
3142 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
3143 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
3144 | a_aSubTests[iFn].pfn(&State, &Res, &InVal); \
|
---|
3145 | a_TestType const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result }; \
|
---|
3146 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
3147 | } \
|
---|
3148 | } \
|
---|
3149 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
3150 | } \
|
---|
3151 | return RTEXITCODE_SUCCESS; \
|
---|
3152 | } \
|
---|
3153 | static RTEXITCODE FpuLdI ## a_cBits ## DumpAll(const char * const *papszNameFmts) \
|
---|
3154 | { \
|
---|
3155 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3156 | DUMP_TEST_ENTRY(a_aSubTests[iFn], papszNameFmts); \
|
---|
3157 | return RTEXITCODE_SUCCESS; \
|
---|
3158 | }
|
---|
3159 | #else
|
---|
3160 | # define GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType)
|
---|
3161 | #endif
|
---|
3162 |
|
---|
3163 | #define TEST_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
3164 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROMI ## a_cBits,(PCX86FXSTATE, PIEMFPURESULT, a_iTypeIn const *)); \
|
---|
3165 | typedef FNIEMAIMPLFPULDR80FROMI ## a_cBits *PFNIEMAIMPLFPULDR80FROMI ## a_cBits; \
|
---|
3166 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPULDR80FROMI ## a_cBits); \
|
---|
3167 | \
|
---|
3168 | static a_SubTestType a_aSubTests[] = \
|
---|
3169 | { \
|
---|
3170 | ENTRY_BIN(RT_CONCAT(fild_r80_from_i,a_cBits)) \
|
---|
3171 | }; \
|
---|
3172 | GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) \
|
---|
3173 | \
|
---|
3174 | static void FpuLdI ## a_cBits ## Test(void) \
|
---|
3175 | { \
|
---|
3176 | X86FXSTATE State; \
|
---|
3177 | RT_ZERO(State); \
|
---|
3178 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3179 | { \
|
---|
3180 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
3181 | continue; \
|
---|
3182 | \
|
---|
3183 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3184 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
3185 | PFNIEMAIMPLFPULDR80FROMI ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
3186 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3187 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3188 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3189 | { \
|
---|
3190 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3191 | { \
|
---|
3192 | a_iTypeIn const iInVal = paTests[iTest].iInVal; \
|
---|
3193 | State.FCW = paTests[iTest].fFcw; \
|
---|
3194 | State.FSW = paTests[iTest].fFswIn; \
|
---|
3195 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
3196 | pfn(&State, &Res, &iInVal); \
|
---|
3197 | if ( Res.FSW != paTests[iTest].fFswOut \
|
---|
3198 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) \
|
---|
3199 | RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=" a_szFmtIn "\n" \
|
---|
3200 | "%s -> fsw=%#06x %s\n" \
|
---|
3201 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
3202 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, paTests[iTest].iInVal, \
|
---|
3203 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \
|
---|
3204 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), \
|
---|
3205 | FswDiff(Res.FSW, paTests[iTest].fFswOut), \
|
---|
3206 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", \
|
---|
3207 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
3208 | } \
|
---|
3209 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3210 | } \
|
---|
3211 | } \
|
---|
3212 | }
|
---|
3213 |
|
---|
3214 | TEST_FPU_LOAD_INT(64, int64_t, "%RI64", FPU_LD_I64_T, g_aFpuLdU64, FPU_I64_IN_TEST_T)
|
---|
3215 | TEST_FPU_LOAD_INT(32, int32_t, "%RI32", FPU_LD_I32_T, g_aFpuLdU32, FPU_I32_IN_TEST_T)
|
---|
3216 | TEST_FPU_LOAD_INT(16, int16_t, "%RI16", FPU_LD_I16_T, g_aFpuLdU16, FPU_I16_IN_TEST_T)
|
---|
3217 |
|
---|
3218 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3219 | static RTEXITCODE FpuLdIntGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3220 | {
|
---|
3221 | RTEXITCODE rcExit = FpuLdI64Generate(cTests, papszNameFmts);
|
---|
3222 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3223 | rcExit = FpuLdI32Generate(cTests, papszNameFmts);
|
---|
3224 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3225 | rcExit = FpuLdI16Generate(cTests, papszNameFmts);
|
---|
3226 | return rcExit;
|
---|
3227 | }
|
---|
3228 |
|
---|
3229 | static RTEXITCODE FpuLdIntDumpAll(const char * const *papszNameFmts)
|
---|
3230 | {
|
---|
3231 | RTEXITCODE rcExit = FpuLdI64DumpAll(papszNameFmts);
|
---|
3232 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3233 | rcExit = FpuLdI32DumpAll(papszNameFmts);
|
---|
3234 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3235 | rcExit = FpuLdI16DumpAll(papszNameFmts);
|
---|
3236 | return rcExit;
|
---|
3237 | }
|
---|
3238 | #endif
|
---|
3239 |
|
---|
3240 | static void FpuLdIntTest(void)
|
---|
3241 | {
|
---|
3242 | FpuLdI64Test();
|
---|
3243 | FpuLdI32Test();
|
---|
3244 | FpuLdI16Test();
|
---|
3245 | }
|
---|
3246 |
|
---|
3247 |
|
---|
3248 | /*
|
---|
3249 | * Load binary coded decimal values from memory.
|
---|
3250 | */
|
---|
3251 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROMD80,(PCX86FXSTATE, PIEMFPURESULT, PCRTPBCD80U));
|
---|
3252 | typedef FNIEMAIMPLFPULDR80FROMD80 *PFNIEMAIMPLFPULDR80FROMD80;
|
---|
3253 | TYPEDEF_SUBTEST_TYPE(FPU_LD_D80_T, FPU_D80_IN_TEST_T, PFNIEMAIMPLFPULDR80FROMD80);
|
---|
3254 |
|
---|
3255 | static FPU_LD_D80_T g_aFpuLdD80[] =
|
---|
3256 | {
|
---|
3257 | ENTRY_BIN(fld_r80_from_d80)
|
---|
3258 | };
|
---|
3259 |
|
---|
3260 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3261 | static RTEXITCODE FpuLdD80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3262 | {
|
---|
3263 | X86FXSTATE State;
|
---|
3264 | RT_ZERO(State);
|
---|
3265 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++)
|
---|
3266 | {
|
---|
3267 | IEMBINARYOUTPUT BinOut;
|
---|
3268 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuLdD80[iFn]), RTEXITCODE_FAILURE);
|
---|
3269 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
3270 | {
|
---|
3271 | State.FCW = RandFcw();
|
---|
3272 | State.FSW = RandFsw();
|
---|
3273 | RTPBCD80U InVal = RandD80Src(iTest);
|
---|
3274 |
|
---|
3275 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
3276 | {
|
---|
3277 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3278 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT);
|
---|
3279 | g_aFpuLdD80[iFn].pfn(&State, &Res, &InVal);
|
---|
3280 | FPU_D80_IN_TEST_T const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result, InVal };
|
---|
3281 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
3282 | }
|
---|
3283 | }
|
---|
3284 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
3285 | }
|
---|
3286 | return RTEXITCODE_SUCCESS;
|
---|
3287 | }
|
---|
3288 | static RTEXITCODE FpuLdD80DumpAll(const char * const *papszNameFmts)
|
---|
3289 | {
|
---|
3290 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++)
|
---|
3291 | DUMP_TEST_ENTRY(g_aFpuLdD80[iFn], papszNameFmts);
|
---|
3292 | return RTEXITCODE_SUCCESS;
|
---|
3293 | }
|
---|
3294 | #endif
|
---|
3295 |
|
---|
3296 | static void FpuLdD80Test(void)
|
---|
3297 | {
|
---|
3298 | X86FXSTATE State;
|
---|
3299 | RT_ZERO(State);
|
---|
3300 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++)
|
---|
3301 | {
|
---|
3302 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuLdD80[iFn]))
|
---|
3303 | continue;
|
---|
3304 |
|
---|
3305 | FPU_D80_IN_TEST_T const * const paTests = g_aFpuLdD80[iFn].paTests;
|
---|
3306 | uint32_t const cTests = g_aFpuLdD80[iFn].cTests;
|
---|
3307 | PFNIEMAIMPLFPULDR80FROMD80 pfn = g_aFpuLdD80[iFn].pfn;
|
---|
3308 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuLdD80[iFn]);
|
---|
3309 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
3310 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
3311 | {
|
---|
3312 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
3313 | {
|
---|
3314 | RTPBCD80U const InVal = paTests[iTest].InVal;
|
---|
3315 | State.FCW = paTests[iTest].fFcw;
|
---|
3316 | State.FSW = paTests[iTest].fFswIn;
|
---|
3317 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3318 | pfn(&State, &Res, &InVal);
|
---|
3319 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
3320 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult))
|
---|
3321 | RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
3322 | "%s -> fsw=%#06x %s\n"
|
---|
3323 | "%s expected %#06x %s%s%s (%s)\n",
|
---|
3324 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
3325 | FormatD80(&paTests[iTest].InVal),
|
---|
3326 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result),
|
---|
3327 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult),
|
---|
3328 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
3329 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "",
|
---|
3330 | FormatFcw(paTests[iTest].fFcw) );
|
---|
3331 | }
|
---|
3332 | pfn = g_aFpuLdD80[iFn].pfnNative;
|
---|
3333 | }
|
---|
3334 | }
|
---|
3335 | }
|
---|
3336 |
|
---|
3337 |
|
---|
3338 | /*
|
---|
3339 | * Store values floating point values to memory.
|
---|
3340 | */
|
---|
3341 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3342 | static const RTFLOAT80U g_aFpuStR32Specials[] =
|
---|
3343 | {
|
---|
3344 | RTFLOAT80U_INIT_C(0, 0xffffff8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
3345 | RTFLOAT80U_INIT_C(1, 0xffffff8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
3346 | RTFLOAT80U_INIT_C(0, 0xfffffe8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
3347 | RTFLOAT80U_INIT_C(1, 0xfffffe8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
3348 | };
|
---|
3349 | static const RTFLOAT80U g_aFpuStR64Specials[] =
|
---|
3350 | {
|
---|
3351 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffc00, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
3352 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffc00, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
3353 | RTFLOAT80U_INIT_C(0, 0xfffffffffffff400, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
3354 | RTFLOAT80U_INIT_C(1, 0xfffffffffffff400, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
3355 | RTFLOAT80U_INIT_C(0, 0xd0b9e6fdda887400, 687 + RTFLOAT80U_EXP_BIAS), /* random example for this */
|
---|
3356 | };
|
---|
3357 | static const RTFLOAT80U g_aFpuStR80Specials[] =
|
---|
3358 | {
|
---|
3359 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* placeholder */
|
---|
3360 | };
|
---|
3361 | # define GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) \
|
---|
3362 | static RTEXITCODE FpuStR ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
3363 | { \
|
---|
3364 | uint32_t const cTotalTests = cTests + RT_ELEMENTS(g_aFpuStR ## a_cBits ## Specials); \
|
---|
3365 | X86FXSTATE State; \
|
---|
3366 | RT_ZERO(State); \
|
---|
3367 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3368 | { \
|
---|
3369 | IEMBINARYOUTPUT BinOut; \
|
---|
3370 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
3371 | for (uint32_t iTest = 0; iTest < cTotalTests; iTest++) \
|
---|
3372 | { \
|
---|
3373 | uint16_t const fFcw = RandFcw(); \
|
---|
3374 | State.FSW = RandFsw(); \
|
---|
3375 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, a_cBits) \
|
---|
3376 | : g_aFpuStR ## a_cBits ## Specials[iTest - cTests]; \
|
---|
3377 | \
|
---|
3378 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
3379 | { \
|
---|
3380 | /* PC doesn't influence these, so leave as is. */ \
|
---|
3381 | AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); \
|
---|
3382 | for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) \
|
---|
3383 | { \
|
---|
3384 | uint16_t uFswOut = 0; \
|
---|
3385 | a_rdType OutVal; \
|
---|
3386 | RT_ZERO(OutVal); \
|
---|
3387 | memset(&OutVal, 0xfe, sizeof(OutVal)); \
|
---|
3388 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) \
|
---|
3389 | | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
3390 | /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ \
|
---|
3391 | State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; \
|
---|
3392 | a_aSubTests[iFn].pfn(&State, &uFswOut, &OutVal, &InVal); \
|
---|
3393 | a_TestType const Test = { State.FCW, State.FSW, uFswOut, InVal, OutVal }; \
|
---|
3394 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
3395 | } \
|
---|
3396 | } \
|
---|
3397 | } \
|
---|
3398 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
3399 | } \
|
---|
3400 | return RTEXITCODE_SUCCESS; \
|
---|
3401 | } \
|
---|
3402 | static RTEXITCODE FpuStR ## a_cBits ## DumpAll(const char * const *papszNameFmts) \
|
---|
3403 | { \
|
---|
3404 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3405 | DUMP_TEST_ENTRY(a_aSubTests[iFn], papszNameFmts); \
|
---|
3406 | return RTEXITCODE_SUCCESS; \
|
---|
3407 | }
|
---|
3408 | #else
|
---|
3409 | # define GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType)
|
---|
3410 | #endif
|
---|
3411 |
|
---|
3412 | #define TEST_FPU_STORE(a_cBits, a_rdType, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
3413 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOR ## a_cBits,(PCX86FXSTATE, uint16_t *, \
|
---|
3414 | PRTFLOAT ## a_cBits ## U, PCRTFLOAT80U)); \
|
---|
3415 | typedef FNIEMAIMPLFPUSTR80TOR ## a_cBits *PFNIEMAIMPLFPUSTR80TOR ## a_cBits; \
|
---|
3416 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPUSTR80TOR ## a_cBits); \
|
---|
3417 | \
|
---|
3418 | static a_SubTestType a_aSubTests[] = \
|
---|
3419 | { \
|
---|
3420 | ENTRY_BIN(RT_CONCAT(fst_r80_to_r,a_cBits)) \
|
---|
3421 | }; \
|
---|
3422 | GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) \
|
---|
3423 | \
|
---|
3424 | static void FpuStR ## a_cBits ## Test(void) \
|
---|
3425 | { \
|
---|
3426 | X86FXSTATE State; \
|
---|
3427 | RT_ZERO(State); \
|
---|
3428 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3429 | { \
|
---|
3430 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
3431 | continue; \
|
---|
3432 | \
|
---|
3433 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3434 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
3435 | PFNIEMAIMPLFPUSTR80TOR ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
3436 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3437 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3438 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3439 | { \
|
---|
3440 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3441 | { \
|
---|
3442 | RTFLOAT80U const InVal = paTests[iTest].InVal; \
|
---|
3443 | uint16_t uFswOut = 0; \
|
---|
3444 | a_rdType OutVal; \
|
---|
3445 | RT_ZERO(OutVal); \
|
---|
3446 | memset(&OutVal, 0xfe, sizeof(OutVal)); \
|
---|
3447 | State.FCW = paTests[iTest].fFcw; \
|
---|
3448 | State.FSW = paTests[iTest].fFswIn; \
|
---|
3449 | pfn(&State, &uFswOut, &OutVal, &InVal); \
|
---|
3450 | if ( uFswOut != paTests[iTest].fFswOut \
|
---|
3451 | || !RTFLOAT ## a_cBits ## U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal)) \
|
---|
3452 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" \
|
---|
3453 | "%s -> fsw=%#06x %s\n" \
|
---|
3454 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
3455 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
3456 | FormatR80(&paTests[iTest].InVal), \
|
---|
3457 | iVar ? " " : "", uFswOut, FormatR ## a_cBits(&OutVal), \
|
---|
3458 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR ## a_cBits(&paTests[iTest].OutVal), \
|
---|
3459 | FswDiff(uFswOut, paTests[iTest].fFswOut), \
|
---|
3460 | !RTFLOAT ## a_cBits ## U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal) ? " - val" : "", \
|
---|
3461 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
3462 | } \
|
---|
3463 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3464 | } \
|
---|
3465 | } \
|
---|
3466 | }
|
---|
3467 |
|
---|
3468 | TEST_FPU_STORE(80, RTFLOAT80U, FPU_ST_R80_T, g_aFpuStR80, FPU_ST_R80_TEST_T)
|
---|
3469 | TEST_FPU_STORE(64, RTFLOAT64U, FPU_ST_R64_T, g_aFpuStR64, FPU_ST_R64_TEST_T)
|
---|
3470 | TEST_FPU_STORE(32, RTFLOAT32U, FPU_ST_R32_T, g_aFpuStR32, FPU_ST_R32_TEST_T)
|
---|
3471 |
|
---|
3472 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3473 | static RTEXITCODE FpuStMemGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3474 | {
|
---|
3475 | RTEXITCODE rcExit = FpuStR80Generate(cTests, papszNameFmts);
|
---|
3476 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3477 | rcExit = FpuStR64Generate(cTests, papszNameFmts);
|
---|
3478 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3479 | rcExit = FpuStR32Generate(cTests, papszNameFmts);
|
---|
3480 | return rcExit;
|
---|
3481 | }
|
---|
3482 |
|
---|
3483 | static RTEXITCODE FpuStMemDumpAll(const char * const *papszNameFmts)
|
---|
3484 | {
|
---|
3485 | RTEXITCODE rcExit = FpuStR80DumpAll(papszNameFmts);
|
---|
3486 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3487 | rcExit = FpuStR64DumpAll(papszNameFmts);
|
---|
3488 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3489 | rcExit = FpuStR32DumpAll(papszNameFmts);
|
---|
3490 | return rcExit;
|
---|
3491 | }
|
---|
3492 | #endif
|
---|
3493 |
|
---|
3494 | static void FpuStMemTest(void)
|
---|
3495 | {
|
---|
3496 | FpuStR80Test();
|
---|
3497 | FpuStR64Test();
|
---|
3498 | FpuStR32Test();
|
---|
3499 | }
|
---|
3500 |
|
---|
3501 |
|
---|
3502 | /*
|
---|
3503 | * Store integer values to memory or register.
|
---|
3504 | */
|
---|
3505 | TYPEDEF_SUBTEST_TYPE(FPU_ST_I16_T, FPU_ST_I16_TEST_T, PFNIEMAIMPLFPUSTR80TOI16);
|
---|
3506 | TYPEDEF_SUBTEST_TYPE(FPU_ST_I32_T, FPU_ST_I32_TEST_T, PFNIEMAIMPLFPUSTR80TOI32);
|
---|
3507 | TYPEDEF_SUBTEST_TYPE(FPU_ST_I64_T, FPU_ST_I64_TEST_T, PFNIEMAIMPLFPUSTR80TOI64);
|
---|
3508 |
|
---|
3509 | static FPU_ST_I16_T g_aFpuStI16[] =
|
---|
3510 | {
|
---|
3511 | ENTRY_BIN(fist_r80_to_i16),
|
---|
3512 | ENTRY_BIN_AMD( fistt_r80_to_i16, 0),
|
---|
3513 | ENTRY_BIN_INTEL(fistt_r80_to_i16, 0),
|
---|
3514 | };
|
---|
3515 | static FPU_ST_I32_T g_aFpuStI32[] =
|
---|
3516 | {
|
---|
3517 | ENTRY_BIN(fist_r80_to_i32),
|
---|
3518 | ENTRY_BIN(fistt_r80_to_i32),
|
---|
3519 | };
|
---|
3520 | static FPU_ST_I64_T g_aFpuStI64[] =
|
---|
3521 | {
|
---|
3522 | ENTRY_BIN(fist_r80_to_i64),
|
---|
3523 | ENTRY_BIN(fistt_r80_to_i64),
|
---|
3524 | };
|
---|
3525 |
|
---|
3526 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3527 | static const RTFLOAT80U g_aFpuStI16Specials[] = /* 16-bit variant borrows properties from the 32-bit one, thus all this stuff. */
|
---|
3528 | {
|
---|
3529 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 13 + RTFLOAT80U_EXP_BIAS),
|
---|
3530 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 13 + RTFLOAT80U_EXP_BIAS),
|
---|
3531 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3532 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3533 | RTFLOAT80U_INIT_C(0, 0x8000080000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3534 | RTFLOAT80U_INIT_C(1, 0x8000080000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3535 | RTFLOAT80U_INIT_C(0, 0x8000100000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3536 | RTFLOAT80U_INIT_C(1, 0x8000100000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3537 | RTFLOAT80U_INIT_C(0, 0x8000200000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3538 | RTFLOAT80U_INIT_C(1, 0x8000200000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3539 | RTFLOAT80U_INIT_C(0, 0x8000400000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3540 | RTFLOAT80U_INIT_C(1, 0x8000400000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3541 | RTFLOAT80U_INIT_C(0, 0x8000800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3542 | RTFLOAT80U_INIT_C(1, 0x8000800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3543 | RTFLOAT80U_INIT_C(1, 0x8000ffffffffffff, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3544 | RTFLOAT80U_INIT_C(0, 0x8001000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3545 | RTFLOAT80U_INIT_C(1, 0x8001000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3546 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3547 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3548 | RTFLOAT80U_INIT_C(0, 0xffff800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3549 | RTFLOAT80U_INIT_C(0, 0xffff000000000000, 14 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
3550 | RTFLOAT80U_INIT_C(0, 0xfffe000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3551 | RTFLOAT80U_INIT_C(1, 0xffff800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3552 | RTFLOAT80U_INIT_C(1, 0xffff000000000000, 14 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
3553 | RTFLOAT80U_INIT_C(1, 0xfffe000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
3554 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 15 + RTFLOAT80U_EXP_BIAS),
|
---|
3555 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 15 + RTFLOAT80U_EXP_BIAS),
|
---|
3556 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 16 + RTFLOAT80U_EXP_BIAS),
|
---|
3557 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 17 + RTFLOAT80U_EXP_BIAS),
|
---|
3558 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 20 + RTFLOAT80U_EXP_BIAS),
|
---|
3559 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 24 + RTFLOAT80U_EXP_BIAS),
|
---|
3560 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 28 + RTFLOAT80U_EXP_BIAS),
|
---|
3561 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
3562 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
3563 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
3564 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
3565 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3566 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3567 | RTFLOAT80U_INIT_C(0, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3568 | RTFLOAT80U_INIT_C(1, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3569 | RTFLOAT80U_INIT_C(0, 0x8000ffffffffffff, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3570 | RTFLOAT80U_INIT_C(1, 0x8000ffffffffffff, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3571 | RTFLOAT80U_INIT_C(0, 0x8001000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3572 | RTFLOAT80U_INIT_C(1, 0x8001000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3573 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3574 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3575 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 32 + RTFLOAT80U_EXP_BIAS),
|
---|
3576 | };
|
---|
3577 | static const RTFLOAT80U g_aFpuStI32Specials[] =
|
---|
3578 | {
|
---|
3579 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
3580 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
3581 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
3582 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
3583 | RTFLOAT80U_INIT_C(0, 0xffffffff80000000, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
3584 | RTFLOAT80U_INIT_C(1, 0xffffffff80000000, 30 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
3585 | RTFLOAT80U_INIT_C(0, 0xffffffff00000000, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
3586 | RTFLOAT80U_INIT_C(1, 0xffffffff00000000, 30 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
3587 | RTFLOAT80U_INIT_C(0, 0xfffffffe00000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
3588 | RTFLOAT80U_INIT_C(1, 0xfffffffe00000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
3589 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3590 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3591 | RTFLOAT80U_INIT_C(0, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3592 | RTFLOAT80U_INIT_C(1, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3593 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3594 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3595 | };
|
---|
3596 | static const RTFLOAT80U g_aFpuStI64Specials[] =
|
---|
3597 | {
|
---|
3598 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 61 + RTFLOAT80U_EXP_BIAS),
|
---|
3599 | RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, 61 + RTFLOAT80U_EXP_BIAS),
|
---|
3600 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3601 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3602 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3603 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3604 | RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, 62 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
3605 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, 62 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
3606 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffffe, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3607 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffffe, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3608 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3609 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3610 | RTFLOAT80U_INIT_C(0, 0x8000000000000001, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3611 | RTFLOAT80U_INIT_C(1, 0x8000000000000001, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3612 | RTFLOAT80U_INIT_C(0, 0x8000000000000002, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3613 | RTFLOAT80U_INIT_C(1, 0x8000000000000002, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3614 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3615 | };
|
---|
3616 |
|
---|
3617 | # define GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) \
|
---|
3618 | static RTEXITCODE FpuStI ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
3619 | { \
|
---|
3620 | X86FXSTATE State; \
|
---|
3621 | RT_ZERO(State); \
|
---|
3622 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3623 | { \
|
---|
3624 | PFNIEMAIMPLFPUSTR80TOI ## a_cBits const pfn = a_aSubTests[iFn].pfnNative \
|
---|
3625 | ? a_aSubTests[iFn].pfnNative : a_aSubTests[iFn].pfn; \
|
---|
3626 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
3627 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
3628 | continue; \
|
---|
3629 | \
|
---|
3630 | IEMBINARYOUTPUT BinOut; \
|
---|
3631 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
3632 | uint32_t const cTotalTests = cTests + RT_ELEMENTS(g_aFpuStI ## a_cBits ## Specials); \
|
---|
3633 | for (uint32_t iTest = 0; iTest < cTotalTests; iTest++) \
|
---|
3634 | { \
|
---|
3635 | uint16_t const fFcw = RandFcw(); \
|
---|
3636 | State.FSW = RandFsw(); \
|
---|
3637 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, a_cBits, true) \
|
---|
3638 | : g_aFpuStI ## a_cBits ## Specials[iTest - cTests]; \
|
---|
3639 | \
|
---|
3640 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
3641 | { \
|
---|
3642 | /* PC doesn't influence these, so leave as is. */ \
|
---|
3643 | AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); \
|
---|
3644 | for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) \
|
---|
3645 | { \
|
---|
3646 | uint16_t uFswOut = 0; \
|
---|
3647 | a_iType iOutVal = ~(a_iType)2; \
|
---|
3648 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) \
|
---|
3649 | | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
3650 | /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ \
|
---|
3651 | State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; \
|
---|
3652 | pfn(&State, &uFswOut, &iOutVal, &InVal); \
|
---|
3653 | a_TestType const Test = { State.FCW, State.FSW, uFswOut, InVal, iOutVal }; \
|
---|
3654 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
3655 | } \
|
---|
3656 | } \
|
---|
3657 | } \
|
---|
3658 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
3659 | } \
|
---|
3660 | return RTEXITCODE_SUCCESS; \
|
---|
3661 | } \
|
---|
3662 | static RTEXITCODE FpuStI ## a_cBits ## DumpAll(const char * const *papszNameFmts) \
|
---|
3663 | { \
|
---|
3664 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3665 | DUMP_TEST_ENTRY(a_aSubTests[iFn], papszNameFmts); \
|
---|
3666 | return RTEXITCODE_SUCCESS; \
|
---|
3667 | }
|
---|
3668 | #else
|
---|
3669 | # define GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType)
|
---|
3670 | #endif
|
---|
3671 |
|
---|
3672 | #define TEST_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
3673 | GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) \
|
---|
3674 | \
|
---|
3675 | static void FpuStI ## a_cBits ## Test(void) \
|
---|
3676 | { \
|
---|
3677 | X86FXSTATE State; \
|
---|
3678 | RT_ZERO(State); \
|
---|
3679 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3680 | { \
|
---|
3681 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
3682 | continue; \
|
---|
3683 | \
|
---|
3684 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3685 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
3686 | PFNIEMAIMPLFPUSTR80TOI ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
3687 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3688 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3689 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3690 | { \
|
---|
3691 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3692 | { \
|
---|
3693 | RTFLOAT80U const InVal = paTests[iTest].InVal; \
|
---|
3694 | uint16_t uFswOut = 0; \
|
---|
3695 | a_iType iOutVal = ~(a_iType)2; \
|
---|
3696 | State.FCW = paTests[iTest].fFcw; \
|
---|
3697 | State.FSW = paTests[iTest].fFswIn; \
|
---|
3698 | pfn(&State, &uFswOut, &iOutVal, &InVal); \
|
---|
3699 | if ( uFswOut != paTests[iTest].fFswOut \
|
---|
3700 | || iOutVal != paTests[iTest].iOutVal) \
|
---|
3701 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" \
|
---|
3702 | "%s -> fsw=%#06x " a_szFmt "\n" \
|
---|
3703 | "%s expected %#06x " a_szFmt "%s%s (%s)\n", \
|
---|
3704 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
3705 | FormatR80(&paTests[iTest].InVal), \
|
---|
3706 | iVar ? " " : "", uFswOut, iOutVal, \
|
---|
3707 | iVar ? " " : "", paTests[iTest].fFswOut, paTests[iTest].iOutVal, \
|
---|
3708 | FswDiff(uFswOut, paTests[iTest].fFswOut), \
|
---|
3709 | iOutVal != paTests[iTest].iOutVal ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); \
|
---|
3710 | } \
|
---|
3711 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3712 | } \
|
---|
3713 | } \
|
---|
3714 | }
|
---|
3715 |
|
---|
3716 | //fistt_r80_to_i16 diffs for AMD, of course :-)
|
---|
3717 |
|
---|
3718 | TEST_FPU_STORE_INT(64, int64_t, "%RI64", FPU_ST_I64_T, g_aFpuStI64, FPU_ST_I64_TEST_T)
|
---|
3719 | TEST_FPU_STORE_INT(32, int32_t, "%RI32", FPU_ST_I32_T, g_aFpuStI32, FPU_ST_I32_TEST_T)
|
---|
3720 | TEST_FPU_STORE_INT(16, int16_t, "%RI16", FPU_ST_I16_T, g_aFpuStI16, FPU_ST_I16_TEST_T)
|
---|
3721 |
|
---|
3722 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3723 | static RTEXITCODE FpuStIntGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3724 | {
|
---|
3725 | RTEXITCODE rcExit = FpuStI64Generate(cTests, papszNameFmts);
|
---|
3726 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3727 | rcExit = FpuStI32Generate(cTests, papszNameFmts);
|
---|
3728 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3729 | rcExit = FpuStI16Generate(cTests, papszNameFmts);
|
---|
3730 | return rcExit;
|
---|
3731 | }
|
---|
3732 | static RTEXITCODE FpuStIntDumpAll(const char * const *papszNameFmts)
|
---|
3733 | {
|
---|
3734 | RTEXITCODE rcExit = FpuStI64DumpAll(papszNameFmts);
|
---|
3735 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3736 | rcExit = FpuStI32DumpAll(papszNameFmts);
|
---|
3737 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3738 | rcExit = FpuStI16DumpAll(papszNameFmts);
|
---|
3739 | return rcExit;
|
---|
3740 | }
|
---|
3741 | #endif
|
---|
3742 |
|
---|
3743 | static void FpuStIntTest(void)
|
---|
3744 | {
|
---|
3745 | FpuStI64Test();
|
---|
3746 | FpuStI32Test();
|
---|
3747 | FpuStI16Test();
|
---|
3748 | }
|
---|
3749 |
|
---|
3750 |
|
---|
3751 | /*
|
---|
3752 | * Store as packed BCD value (memory).
|
---|
3753 | */
|
---|
3754 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOD80,(PCX86FXSTATE, uint16_t *, PRTPBCD80U, PCRTFLOAT80U));
|
---|
3755 | typedef FNIEMAIMPLFPUSTR80TOD80 *PFNIEMAIMPLFPUSTR80TOD80;
|
---|
3756 | TYPEDEF_SUBTEST_TYPE(FPU_ST_D80_T, FPU_ST_D80_TEST_T, PFNIEMAIMPLFPUSTR80TOD80);
|
---|
3757 |
|
---|
3758 | static FPU_ST_D80_T g_aFpuStD80[] =
|
---|
3759 | {
|
---|
3760 | ENTRY_BIN(fst_r80_to_d80),
|
---|
3761 | };
|
---|
3762 |
|
---|
3763 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3764 | static RTEXITCODE FpuStD80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3765 | {
|
---|
3766 | static RTFLOAT80U const s_aSpecials[] =
|
---|
3767 | {
|
---|
3768 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763fffe0, RTFLOAT80U_EXP_BIAS + 59), /* 1 below max */
|
---|
3769 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763fffe0, RTFLOAT80U_EXP_BIAS + 59), /* 1 above min */
|
---|
3770 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff0, RTFLOAT80U_EXP_BIAS + 59), /* exact max */
|
---|
3771 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff0, RTFLOAT80U_EXP_BIAS + 59), /* exact min */
|
---|
3772 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763fffff, RTFLOAT80U_EXP_BIAS + 59), /* max & all rounded off bits set */
|
---|
3773 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763fffff, RTFLOAT80U_EXP_BIAS + 59), /* min & all rounded off bits set */
|
---|
3774 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff8, RTFLOAT80U_EXP_BIAS + 59), /* max & some rounded off bits set */
|
---|
3775 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff8, RTFLOAT80U_EXP_BIAS + 59), /* min & some rounded off bits set */
|
---|
3776 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff1, RTFLOAT80U_EXP_BIAS + 59), /* max & some other rounded off bits set */
|
---|
3777 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff1, RTFLOAT80U_EXP_BIAS + 59), /* min & some other rounded off bits set */
|
---|
3778 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a76400000, RTFLOAT80U_EXP_BIAS + 59), /* 1 above max */
|
---|
3779 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a76400000, RTFLOAT80U_EXP_BIAS + 59), /* 1 below min */
|
---|
3780 | };
|
---|
3781 |
|
---|
3782 | X86FXSTATE State;
|
---|
3783 | RT_ZERO(State);
|
---|
3784 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++)
|
---|
3785 | {
|
---|
3786 | IEMBINARYOUTPUT BinOut;
|
---|
3787 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuStD80[iFn]), RTEXITCODE_FAILURE);
|
---|
3788 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
3789 | {
|
---|
3790 | uint16_t const fFcw = RandFcw();
|
---|
3791 | State.FSW = RandFsw();
|
---|
3792 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, 59, true) : s_aSpecials[iTest - cTests];
|
---|
3793 |
|
---|
3794 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
3795 | {
|
---|
3796 | /* PC doesn't influence these, so leave as is. */
|
---|
3797 | AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT);
|
---|
3798 | for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/)
|
---|
3799 | {
|
---|
3800 | uint16_t uFswOut = 0;
|
---|
3801 | RTPBCD80U OutVal = RTPBCD80U_INIT_ZERO(0);
|
---|
3802 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM))
|
---|
3803 | | (iRounding << X86_FCW_RC_SHIFT);
|
---|
3804 | /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/
|
---|
3805 | State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT;
|
---|
3806 | g_aFpuStD80[iFn].pfn(&State, &uFswOut, &OutVal, &InVal);
|
---|
3807 | FPU_ST_D80_TEST_T const Test = { State.FCW, State.FSW, uFswOut, InVal, OutVal };
|
---|
3808 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
3809 | }
|
---|
3810 | }
|
---|
3811 | }
|
---|
3812 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
3813 | }
|
---|
3814 | return RTEXITCODE_SUCCESS;
|
---|
3815 | }
|
---|
3816 |
|
---|
3817 | static RTEXITCODE FpuStD80DumpAll(const char * const *papszNameFmts)
|
---|
3818 | {
|
---|
3819 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++)
|
---|
3820 | DUMP_TEST_ENTRY(g_aFpuStD80[iFn], papszNameFmts);
|
---|
3821 | return RTEXITCODE_SUCCESS;
|
---|
3822 | }
|
---|
3823 | #endif
|
---|
3824 |
|
---|
3825 |
|
---|
3826 | static void FpuStD80Test(void)
|
---|
3827 | {
|
---|
3828 | X86FXSTATE State;
|
---|
3829 | RT_ZERO(State);
|
---|
3830 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++)
|
---|
3831 | {
|
---|
3832 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuStD80[iFn]))
|
---|
3833 | continue;
|
---|
3834 |
|
---|
3835 | FPU_ST_D80_TEST_T const * const paTests = g_aFpuStD80[iFn].paTests;
|
---|
3836 | uint32_t const cTests = g_aFpuStD80[iFn].cTests;
|
---|
3837 | PFNIEMAIMPLFPUSTR80TOD80 pfn = g_aFpuStD80[iFn].pfn;
|
---|
3838 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuStD80[iFn]);
|
---|
3839 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
3840 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
3841 | {
|
---|
3842 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
3843 | {
|
---|
3844 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
3845 | uint16_t uFswOut = 0;
|
---|
3846 | RTPBCD80U OutVal = RTPBCD80U_INIT_ZERO(0);
|
---|
3847 | State.FCW = paTests[iTest].fFcw;
|
---|
3848 | State.FSW = paTests[iTest].fFswIn;
|
---|
3849 | pfn(&State, &uFswOut, &OutVal, &InVal);
|
---|
3850 | if ( uFswOut != paTests[iTest].fFswOut
|
---|
3851 | || !RTPBCD80U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal))
|
---|
3852 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
3853 | "%s -> fsw=%#06x %s\n"
|
---|
3854 | "%s expected %#06x %s%s%s (%s)\n",
|
---|
3855 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
3856 | FormatR80(&paTests[iTest].InVal),
|
---|
3857 | iVar ? " " : "", uFswOut, FormatD80(&OutVal),
|
---|
3858 | iVar ? " " : "", paTests[iTest].fFswOut, FormatD80(&paTests[iTest].OutVal),
|
---|
3859 | FswDiff(uFswOut, paTests[iTest].fFswOut),
|
---|
3860 | RTPBCD80U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal) ? " - val" : "",
|
---|
3861 | FormatFcw(paTests[iTest].fFcw) );
|
---|
3862 | }
|
---|
3863 | pfn = g_aFpuStD80[iFn].pfnNative;
|
---|
3864 | }
|
---|
3865 | }
|
---|
3866 | }
|
---|
3867 |
|
---|
3868 |
|
---|
3869 |
|
---|
3870 | /*********************************************************************************************************************************
|
---|
3871 | * x87 FPU Binary Operations *
|
---|
3872 | *********************************************************************************************************************************/
|
---|
3873 |
|
---|
3874 | /*
|
---|
3875 | * Binary FPU operations on two 80-bit floating point values.
|
---|
3876 | */
|
---|
3877 | TYPEDEF_SUBTEST_TYPE(FPU_BINARY_R80_T, FPU_BINARY_R80_TEST_T, PFNIEMAIMPLFPUR80);
|
---|
3878 | enum { kFpuBinaryHint_fprem = 1, };
|
---|
3879 |
|
---|
3880 | static FPU_BINARY_R80_T g_aFpuBinaryR80[] =
|
---|
3881 | {
|
---|
3882 | ENTRY_BIN(fadd_r80_by_r80),
|
---|
3883 | ENTRY_BIN(fsub_r80_by_r80),
|
---|
3884 | ENTRY_BIN(fsubr_r80_by_r80),
|
---|
3885 | ENTRY_BIN(fmul_r80_by_r80),
|
---|
3886 | ENTRY_BIN(fdiv_r80_by_r80),
|
---|
3887 | ENTRY_BIN(fdivr_r80_by_r80),
|
---|
3888 | ENTRY_BIN_EX(fprem_r80_by_r80, kFpuBinaryHint_fprem),
|
---|
3889 | ENTRY_BIN_EX(fprem1_r80_by_r80, kFpuBinaryHint_fprem),
|
---|
3890 | ENTRY_BIN(fscale_r80_by_r80),
|
---|
3891 | ENTRY_BIN_AMD( fpatan_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3892 | ENTRY_BIN_INTEL(fpatan_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3893 | ENTRY_BIN_AMD( fyl2x_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3894 | ENTRY_BIN_INTEL(fyl2x_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3895 | ENTRY_BIN_AMD( fyl2xp1_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3896 | ENTRY_BIN_INTEL(fyl2xp1_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3897 | };
|
---|
3898 |
|
---|
3899 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3900 | static RTEXITCODE FpuBinaryR80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3901 | {
|
---|
3902 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
3903 |
|
---|
3904 | static struct { RTFLOAT80U Val1, Val2; } const s_aSpecials[] =
|
---|
3905 | {
|
---|
3906 | { RTFLOAT80U_INIT_C(1, 0xdd762f07f2e80eef, 30142), /* causes weird overflows with DOWN and NEAR rounding. */
|
---|
3907 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) },
|
---|
3908 | { RTFLOAT80U_INIT_ZERO(0), /* causes weird overflows with UP and NEAR rounding when precision is lower than 64. */
|
---|
3909 | RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) },
|
---|
3910 | { RTFLOAT80U_INIT_ZERO(0), /* minus variant */
|
---|
3911 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) },
|
---|
3912 | { RTFLOAT80U_INIT_C(0, 0xcef238bb9a0afd86, 577 + RTFLOAT80U_EXP_BIAS), /* for fprem and fprem1, max sequence length */
|
---|
3913 | RTFLOAT80U_INIT_C(0, 0xf11684ec0beaad94, 1 + RTFLOAT80U_EXP_BIAS) },
|
---|
3914 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, -13396 + RTFLOAT80U_EXP_BIAS), /* for fdiv. We missed PE. */
|
---|
3915 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, 16383 + RTFLOAT80U_EXP_BIAS) },
|
---|
3916 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS), /* for fprem/fprem1 */
|
---|
3917 | RTFLOAT80U_INIT_C(0, 0xe000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
3918 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS), /* for fprem/fprem1 */
|
---|
3919 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
3920 | /* fscale: This may seriously increase the exponent, and it turns out overflow and underflow behaviour changes
|
---|
3921 | once RTFLOAT80U_EXP_BIAS_ADJUST is exceeded. */
|
---|
3922 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1 */
|
---|
3923 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
3924 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^64 */
|
---|
3925 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 6 + RTFLOAT80U_EXP_BIAS) },
|
---|
3926 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1024 */
|
---|
3927 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 10 + RTFLOAT80U_EXP_BIAS) },
|
---|
3928 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^4096 */
|
---|
3929 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 12 + RTFLOAT80U_EXP_BIAS) },
|
---|
3930 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^16384 */
|
---|
3931 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 49150 */
|
---|
3932 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3933 | RTFLOAT80U_INIT_C(0, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57342 - within 10980XE range */
|
---|
3934 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24577 */
|
---|
3935 | RTFLOAT80U_INIT_C(0, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57343 - outside 10980XE range, behaviour changes! */
|
---|
3936 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^32768 - result is within range on 10980XE */
|
---|
3937 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 15 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 65534 */
|
---|
3938 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^65536 */
|
---|
3939 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 16 + RTFLOAT80U_EXP_BIAS) },
|
---|
3940 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1048576 */
|
---|
3941 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 20 + RTFLOAT80U_EXP_BIAS) },
|
---|
3942 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^16777216 */
|
---|
3943 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 24 + RTFLOAT80U_EXP_BIAS) },
|
---|
3944 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1), /* for fscale: min * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3945 | RTFLOAT80U_INIT_C(1, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -24575 - within 10980XE range */
|
---|
3946 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1), /* for fscale: max * 2^-24577 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3947 | RTFLOAT80U_INIT_C(1, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -24576 - outside 10980XE range, behaviour changes! */
|
---|
3948 | /* fscale: Negative variants for the essentials of the above. */
|
---|
3949 | { RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3950 | RTFLOAT80U_INIT_C(0, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57342 - within 10980XE range */
|
---|
3951 | { RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24577 */
|
---|
3952 | RTFLOAT80U_INIT_C(0, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57343 - outside 10980XE range, behaviour changes! */
|
---|
3953 | { RTFLOAT80U_INIT_C(1, 0x8000000000000000, 1), /* for fscale: min * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3954 | RTFLOAT80U_INIT_C(1, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -57342 - within 10980XE range */
|
---|
3955 | { RTFLOAT80U_INIT_C(1, 0x8000000000000000, 1), /* for fscale: max * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3956 | RTFLOAT80U_INIT_C(1, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -57343 - outside 10980XE range, behaviour changes! */
|
---|
3957 | /* fscale: Some fun with denormals and pseudo-denormals. */
|
---|
3958 | { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), /* for fscale: max * 2^-4 */
|
---|
3959 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) },
|
---|
3960 | { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), /* for fscale: max * 2^+1 */
|
---|
3961 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
3962 | { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), RTFLOAT80U_INIT_ZERO(0) }, /* for fscale: max * 2^+0 */
|
---|
3963 | { RTFLOAT80U_INIT_C(0, 0x0000000000000008, 0), /* for fscale: max * 2^-4 => underflow */
|
---|
3964 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) },
|
---|
3965 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), RTFLOAT80U_INIT_ZERO(0) }, /* pseudo-normal number * 2^+0. */
|
---|
3966 | { RTFLOAT80U_INIT_C(1, 0x8005000300020001, 0), RTFLOAT80U_INIT_ZERO(0) }, /* pseudo-normal number * 2^+0. */
|
---|
3967 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^-4 */
|
---|
3968 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) },
|
---|
3969 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^+0 */
|
---|
3970 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
3971 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^+1 */
|
---|
3972 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS) },
|
---|
3973 | };
|
---|
3974 |
|
---|
3975 | X86FXSTATE State;
|
---|
3976 | RT_ZERO(State);
|
---|
3977 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
3978 | uint32_t cMinTargetRangeInputs = cMinNormalPairs / 2;
|
---|
3979 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++)
|
---|
3980 | {
|
---|
3981 | PFNIEMAIMPLFPUR80 const pfn = g_aFpuBinaryR80[iFn].pfnNative ? g_aFpuBinaryR80[iFn].pfnNative : g_aFpuBinaryR80[iFn].pfn;
|
---|
3982 | if ( g_aFpuBinaryR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
3983 | && g_aFpuBinaryR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
3984 | continue;
|
---|
3985 |
|
---|
3986 | IEMBINARYOUTPUT BinOut;
|
---|
3987 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuBinaryR80[iFn]), RTEXITCODE_FAILURE);
|
---|
3988 | uint32_t cNormalInputPairs = 0;
|
---|
3989 | uint32_t cTargetRangeInputs = 0;
|
---|
3990 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
3991 | {
|
---|
3992 | RTFLOAT80U InVal1 = iTest < cTests ? RandR80Src1(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
3993 | RTFLOAT80U InVal2 = iTest < cTests ? RandR80Src2(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
3994 | bool fTargetRange = false;
|
---|
3995 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && RTFLOAT80U_IS_NORMAL(&InVal2))
|
---|
3996 | {
|
---|
3997 | cNormalInputPairs++;
|
---|
3998 | if ( g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem
|
---|
3999 | && (uint32_t)InVal1.s.uExponent - (uint32_t)InVal2.s.uExponent - (uint32_t)64 <= (uint32_t)512)
|
---|
4000 | cTargetRangeInputs += fTargetRange = true;
|
---|
4001 | else if (cTargetRangeInputs < cMinTargetRangeInputs && iTest < cTests)
|
---|
4002 | if (g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem)
|
---|
4003 | { /* The aim is two values with an exponent difference between 64 and 640 so we can do the whole sequence. */
|
---|
4004 | InVal2.s.uExponent = RTRandU32Ex(1, RTFLOAT80U_EXP_MAX - 66);
|
---|
4005 | InVal1.s.uExponent = RTRandU32Ex(InVal2.s.uExponent + 64, RT_MIN(InVal2.s.uExponent + 512, RTFLOAT80U_EXP_MAX - 1));
|
---|
4006 | cTargetRangeInputs += fTargetRange = true;
|
---|
4007 | }
|
---|
4008 | }
|
---|
4009 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
4010 | {
|
---|
4011 | iTest -= 1;
|
---|
4012 | continue;
|
---|
4013 | }
|
---|
4014 |
|
---|
4015 | uint16_t const fFcwExtra = 0;
|
---|
4016 | uint16_t const fFcw = RandFcw();
|
---|
4017 | State.FSW = RandFsw();
|
---|
4018 |
|
---|
4019 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4020 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
4021 | {
|
---|
4022 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
4023 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
4024 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
4025 | | X86_FCW_MASK_ALL;
|
---|
4026 | IEMFPURESULT ResM = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4027 | pfn(&State, &ResM, &InVal1, &InVal2);
|
---|
4028 | FPU_BINARY_R80_TEST_T const TestM
|
---|
4029 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResM.FSW, InVal1, InVal2, ResM.r80Result };
|
---|
4030 | GenerateBinaryWrite(&BinOut, &TestM, sizeof(TestM));
|
---|
4031 |
|
---|
4032 | State.FCW = State.FCW & ~X86_FCW_MASK_ALL;
|
---|
4033 | IEMFPURESULT ResU = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4034 | pfn(&State, &ResU, &InVal1, &InVal2);
|
---|
4035 | FPU_BINARY_R80_TEST_T const TestU
|
---|
4036 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResU.FSW, InVal1, InVal2, ResU.r80Result };
|
---|
4037 | GenerateBinaryWrite(&BinOut, &TestU, sizeof(TestU));
|
---|
4038 |
|
---|
4039 | uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF;
|
---|
4040 | if (fXcpt)
|
---|
4041 | {
|
---|
4042 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
4043 | IEMFPURESULT Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4044 | pfn(&State, &Res1, &InVal1, &InVal2);
|
---|
4045 | FPU_BINARY_R80_TEST_T const Test1
|
---|
4046 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res1.FSW, InVal1, InVal2, Res1.r80Result };
|
---|
4047 | GenerateBinaryWrite(&BinOut, &Test1, sizeof(Test1));
|
---|
4048 |
|
---|
4049 | if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK))
|
---|
4050 | {
|
---|
4051 | fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK;
|
---|
4052 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
4053 | IEMFPURESULT Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4054 | pfn(&State, &Res2, &InVal1, &InVal2);
|
---|
4055 | FPU_BINARY_R80_TEST_T const Test2
|
---|
4056 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res2.FSW, InVal1, InVal2, Res2.r80Result };
|
---|
4057 | GenerateBinaryWrite(&BinOut, &Test2, sizeof(Test2));
|
---|
4058 | }
|
---|
4059 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
4060 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1)
|
---|
4061 | if (fUnmasked & fXcpt)
|
---|
4062 | {
|
---|
4063 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked);
|
---|
4064 | IEMFPURESULT Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4065 | pfn(&State, &Res3, &InVal1, &InVal2);
|
---|
4066 | FPU_BINARY_R80_TEST_T const Test3
|
---|
4067 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res3.FSW, InVal1, InVal2, Res3.r80Result };
|
---|
4068 | GenerateBinaryWrite(&BinOut, &Test3, sizeof(Test3));
|
---|
4069 | }
|
---|
4070 | }
|
---|
4071 |
|
---|
4072 | /* If the values are in range and caused no exceptions, do the whole series of
|
---|
4073 | partial reminders till we get the non-partial one or run into an exception. */
|
---|
4074 | if (fTargetRange && fXcpt == 0 && g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem)
|
---|
4075 | {
|
---|
4076 | IEMFPURESULT ResPrev = ResM;
|
---|
4077 | for (unsigned i = 0; i < 32 && (ResPrev.FSW & (X86_FSW_C2 | X86_FSW_XCPT_MASK)) == X86_FSW_C2; i++)
|
---|
4078 | {
|
---|
4079 | State.FCW = State.FCW | X86_FCW_MASK_ALL;
|
---|
4080 | State.FSW = ResPrev.FSW;
|
---|
4081 | IEMFPURESULT ResSeq = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4082 | pfn(&State, &ResSeq, &ResPrev.r80Result, &InVal2);
|
---|
4083 | FPU_BINARY_R80_TEST_T const TestSeq
|
---|
4084 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResSeq.FSW, ResPrev.r80Result, InVal2, ResSeq.r80Result };
|
---|
4085 | GenerateBinaryWrite(&BinOut, &TestSeq, sizeof(TestSeq));
|
---|
4086 | ResPrev = ResSeq;
|
---|
4087 | }
|
---|
4088 | }
|
---|
4089 | }
|
---|
4090 | }
|
---|
4091 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
4092 | }
|
---|
4093 | return RTEXITCODE_SUCCESS;
|
---|
4094 | }
|
---|
4095 |
|
---|
4096 | static RTEXITCODE FpuBinaryR80DumpAll(const char * const *papszNameFmts)
|
---|
4097 | {
|
---|
4098 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++)
|
---|
4099 | DUMP_TEST_ENTRY(g_aFpuBinaryR80[iFn], papszNameFmts);
|
---|
4100 | return RTEXITCODE_SUCCESS;
|
---|
4101 | }
|
---|
4102 | #endif
|
---|
4103 |
|
---|
4104 |
|
---|
4105 | static void FpuBinaryR80Test(void)
|
---|
4106 | {
|
---|
4107 | X86FXSTATE State;
|
---|
4108 | RT_ZERO(State);
|
---|
4109 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++)
|
---|
4110 | {
|
---|
4111 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuBinaryR80[iFn]))
|
---|
4112 | continue;
|
---|
4113 |
|
---|
4114 | FPU_BINARY_R80_TEST_T const * const paTests = g_aFpuBinaryR80[iFn].paTests;
|
---|
4115 | uint32_t const cTests = g_aFpuBinaryR80[iFn].cTests;
|
---|
4116 | PFNIEMAIMPLFPUR80 pfn = g_aFpuBinaryR80[iFn].pfn;
|
---|
4117 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuBinaryR80[iFn]);
|
---|
4118 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4119 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4120 | {
|
---|
4121 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
4122 | {
|
---|
4123 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1;
|
---|
4124 | RTFLOAT80U const InVal2 = paTests[iTest].InVal2;
|
---|
4125 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4126 | State.FCW = paTests[iTest].fFcw;
|
---|
4127 | State.FSW = paTests[iTest].fFswIn;
|
---|
4128 | pfn(&State, &Res, &InVal1, &InVal2);
|
---|
4129 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
4130 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal))
|
---|
4131 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n"
|
---|
4132 | "%s -> fsw=%#06x %s\n"
|
---|
4133 | "%s expected %#06x %s%s%s (%s)\n",
|
---|
4134 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
4135 | FormatR80(&paTests[iTest].InVal1), FormatR80(&paTests[iTest].InVal2),
|
---|
4136 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result),
|
---|
4137 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal),
|
---|
4138 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
4139 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "",
|
---|
4140 | FormatFcw(paTests[iTest].fFcw) );
|
---|
4141 | }
|
---|
4142 | pfn = g_aFpuBinaryR80[iFn].pfnNative;
|
---|
4143 | }
|
---|
4144 | }
|
---|
4145 | }
|
---|
4146 |
|
---|
4147 |
|
---|
4148 | /*
|
---|
4149 | * Binary FPU operations on one 80-bit floating point value and one 64-bit or 32-bit one.
|
---|
4150 | */
|
---|
4151 | #define int64_t_IS_NORMAL(a) 1
|
---|
4152 | #define int32_t_IS_NORMAL(a) 1
|
---|
4153 | #define int16_t_IS_NORMAL(a) 1
|
---|
4154 |
|
---|
4155 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4156 | static struct { RTFLOAT80U Val1; RTFLOAT64U Val2; } const s_aFpuBinaryR64Specials[] =
|
---|
4157 | {
|
---|
4158 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4159 | RTFLOAT64U_INIT_C(0, 0xfeeeeddddcccc, RTFLOAT64U_EXP_BIAS) }, /* whatever */
|
---|
4160 | };
|
---|
4161 | static struct { RTFLOAT80U Val1; RTFLOAT32U Val2; } const s_aFpuBinaryR32Specials[] =
|
---|
4162 | {
|
---|
4163 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4164 | RTFLOAT32U_INIT_C(0, 0x7fffee, RTFLOAT32U_EXP_BIAS) }, /* whatever */
|
---|
4165 | };
|
---|
4166 | static struct { RTFLOAT80U Val1; int32_t Val2; } const s_aFpuBinaryI32Specials[] =
|
---|
4167 | {
|
---|
4168 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT32_MAX }, /* whatever */
|
---|
4169 | };
|
---|
4170 | static struct { RTFLOAT80U Val1; int16_t Val2; } const s_aFpuBinaryI16Specials[] =
|
---|
4171 | {
|
---|
4172 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT16_MAX }, /* whatever */
|
---|
4173 | };
|
---|
4174 |
|
---|
4175 | # define GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
4176 | static RTEXITCODE FpuBinary ## a_UpBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
4177 | { \
|
---|
4178 | cTests = RT_MAX(160, cTests); /* there are 144 standard input variations for r80 by r80 */ \
|
---|
4179 | \
|
---|
4180 | X86FXSTATE State; \
|
---|
4181 | RT_ZERO(State); \
|
---|
4182 | uint32_t cMinNormalPairs = (cTests - 144) / 4; \
|
---|
4183 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4184 | { \
|
---|
4185 | IEMBINARYOUTPUT BinOut; \
|
---|
4186 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
4187 | uint32_t cNormalInputPairs = 0; \
|
---|
4188 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinary ## a_UpBits ## Specials); iTest += 1) \
|
---|
4189 | { \
|
---|
4190 | RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest, a_cBits, a_fIntType) \
|
---|
4191 | : s_aFpuBinary ## a_UpBits ## Specials[iTest - cTests].Val1; \
|
---|
4192 | a_Type2 const InVal2 = iTest < cTests ? Rand ## a_UpBits ## Src2(iTest) \
|
---|
4193 | : s_aFpuBinary ## a_UpBits ## Specials[iTest - cTests].Val2; \
|
---|
4194 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && a_Type2 ## _IS_NORMAL(&InVal2)) \
|
---|
4195 | cNormalInputPairs++; \
|
---|
4196 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) \
|
---|
4197 | { \
|
---|
4198 | iTest -= 1; \
|
---|
4199 | continue; \
|
---|
4200 | } \
|
---|
4201 | \
|
---|
4202 | uint16_t const fFcw = RandFcw(); \
|
---|
4203 | State.FSW = RandFsw(); \
|
---|
4204 | \
|
---|
4205 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
4206 | { \
|
---|
4207 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) \
|
---|
4208 | { \
|
---|
4209 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) \
|
---|
4210 | { \
|
---|
4211 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) \
|
---|
4212 | | (iRounding << X86_FCW_RC_SHIFT) \
|
---|
4213 | | (iPrecision << X86_FCW_PC_SHIFT) \
|
---|
4214 | | iMask; \
|
---|
4215 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
4216 | a_aSubTests[iFn].pfn(&State, &Res, &InVal1, &InVal2); \
|
---|
4217 | a_TestType const Test = { State.FCW, State.FSW, Res.FSW, InVal1, InVal2, Res.r80Result }; \
|
---|
4218 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
4219 | } \
|
---|
4220 | } \
|
---|
4221 | } \
|
---|
4222 | } \
|
---|
4223 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
4224 | } \
|
---|
4225 | return RTEXITCODE_SUCCESS; \
|
---|
4226 | } \
|
---|
4227 | static RTEXITCODE FpuBinary ## a_UpBits ## DumpAll(const char * const *papszNameFmts) \
|
---|
4228 | { \
|
---|
4229 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4230 | DUMP_TEST_ENTRY(a_aSubTests[iFn], papszNameFmts); \
|
---|
4231 | return RTEXITCODE_SUCCESS; \
|
---|
4232 | }
|
---|
4233 | #else
|
---|
4234 | # define GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType)
|
---|
4235 | #endif
|
---|
4236 |
|
---|
4237 | #define TEST_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_I, a_Type2, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
4238 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPU ## a_UpBits); \
|
---|
4239 | \
|
---|
4240 | static a_SubTestType a_aSubTests[] = \
|
---|
4241 | { \
|
---|
4242 | ENTRY_BIN(RT_CONCAT4(f, a_I, add_r80_by_, a_LoBits)), \
|
---|
4243 | ENTRY_BIN(RT_CONCAT4(f, a_I, mul_r80_by_, a_LoBits)), \
|
---|
4244 | ENTRY_BIN(RT_CONCAT4(f, a_I, sub_r80_by_, a_LoBits)), \
|
---|
4245 | ENTRY_BIN(RT_CONCAT4(f, a_I, subr_r80_by_, a_LoBits)), \
|
---|
4246 | ENTRY_BIN(RT_CONCAT4(f, a_I, div_r80_by_, a_LoBits)), \
|
---|
4247 | ENTRY_BIN(RT_CONCAT4(f, a_I, divr_r80_by_, a_LoBits)), \
|
---|
4248 | }; \
|
---|
4249 | \
|
---|
4250 | GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
4251 | \
|
---|
4252 | static void FpuBinary ## a_UpBits ## Test(void) \
|
---|
4253 | { \
|
---|
4254 | X86FXSTATE State; \
|
---|
4255 | RT_ZERO(State); \
|
---|
4256 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4257 | { \
|
---|
4258 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
4259 | continue; \
|
---|
4260 | \
|
---|
4261 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
4262 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
4263 | PFNIEMAIMPLFPU ## a_UpBits pfn = a_aSubTests[iFn].pfn; \
|
---|
4264 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
4265 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
4266 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
4267 | { \
|
---|
4268 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
4269 | { \
|
---|
4270 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1; \
|
---|
4271 | a_Type2 const InVal2 = paTests[iTest].InVal2; \
|
---|
4272 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
4273 | State.FCW = paTests[iTest].fFcw; \
|
---|
4274 | State.FSW = paTests[iTest].fFswIn; \
|
---|
4275 | pfn(&State, &Res, &InVal1, &InVal2); \
|
---|
4276 | if ( Res.FSW != paTests[iTest].fFswOut \
|
---|
4277 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal)) \
|
---|
4278 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" \
|
---|
4279 | "%s -> fsw=%#06x %s\n" \
|
---|
4280 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
4281 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
4282 | FormatR80(&paTests[iTest].InVal1), Format ## a_UpBits(&paTests[iTest].InVal2), \
|
---|
4283 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \
|
---|
4284 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal), \
|
---|
4285 | FswDiff(Res.FSW, paTests[iTest].fFswOut), \
|
---|
4286 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "", \
|
---|
4287 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
4288 | } \
|
---|
4289 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
4290 | } \
|
---|
4291 | } \
|
---|
4292 | }
|
---|
4293 |
|
---|
4294 | TEST_FPU_BINARY_SMALL(0, 64, r64, R64, RT_NOTHING, RTFLOAT64U, FPU_BINARY_R64_T, g_aFpuBinaryR64, FPU_BINARY_R64_TEST_T)
|
---|
4295 | TEST_FPU_BINARY_SMALL(0, 32, r32, R32, RT_NOTHING, RTFLOAT32U, FPU_BINARY_R32_T, g_aFpuBinaryR32, FPU_BINARY_R32_TEST_T)
|
---|
4296 | TEST_FPU_BINARY_SMALL(1, 32, i32, I32, i, int32_t, FPU_BINARY_I32_T, g_aFpuBinaryI32, FPU_BINARY_I32_TEST_T)
|
---|
4297 | TEST_FPU_BINARY_SMALL(1, 16, i16, I16, i, int16_t, FPU_BINARY_I16_T, g_aFpuBinaryI16, FPU_BINARY_I16_TEST_T)
|
---|
4298 |
|
---|
4299 |
|
---|
4300 | /*
|
---|
4301 | * Binary operations on 80-, 64- and 32-bit floating point only affecting FSW.
|
---|
4302 | */
|
---|
4303 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4304 | static struct { RTFLOAT80U Val1, Val2; } const s_aFpuBinaryFswR80Specials[] =
|
---|
4305 | {
|
---|
4306 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4307 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS) }, /* whatever */
|
---|
4308 | };
|
---|
4309 | static struct { RTFLOAT80U Val1; RTFLOAT64U Val2; } const s_aFpuBinaryFswR64Specials[] =
|
---|
4310 | {
|
---|
4311 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4312 | RTFLOAT64U_INIT_C(0, 0xfeeeeddddcccc, RTFLOAT64U_EXP_BIAS) }, /* whatever */
|
---|
4313 | };
|
---|
4314 | static struct { RTFLOAT80U Val1; RTFLOAT32U Val2; } const s_aFpuBinaryFswR32Specials[] =
|
---|
4315 | {
|
---|
4316 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4317 | RTFLOAT32U_INIT_C(0, 0x7fffee, RTFLOAT32U_EXP_BIAS) }, /* whatever */
|
---|
4318 | };
|
---|
4319 | static struct { RTFLOAT80U Val1; int32_t Val2; } const s_aFpuBinaryFswI32Specials[] =
|
---|
4320 | {
|
---|
4321 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT32_MAX }, /* whatever */
|
---|
4322 | };
|
---|
4323 | static struct { RTFLOAT80U Val1; int16_t Val2; } const s_aFpuBinaryFswI16Specials[] =
|
---|
4324 | {
|
---|
4325 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT16_MAX }, /* whatever */
|
---|
4326 | };
|
---|
4327 |
|
---|
4328 | # define GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
4329 | static RTEXITCODE FpuBinaryFsw ## a_UpBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
4330 | { \
|
---|
4331 | cTests = RT_MAX(160, cTests); /* there are 144 standard input variations for r80 by r80 */ \
|
---|
4332 | \
|
---|
4333 | X86FXSTATE State; \
|
---|
4334 | RT_ZERO(State); \
|
---|
4335 | uint32_t cMinNormalPairs = (cTests - 144) / 4; \
|
---|
4336 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4337 | { \
|
---|
4338 | IEMBINARYOUTPUT BinOut; \
|
---|
4339 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
4340 | uint32_t cNormalInputPairs = 0; \
|
---|
4341 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinaryFsw ## a_UpBits ## Specials); iTest += 1) \
|
---|
4342 | { \
|
---|
4343 | RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest, a_cBits, a_fIntType) \
|
---|
4344 | : s_aFpuBinaryFsw ## a_UpBits ## Specials[iTest - cTests].Val1; \
|
---|
4345 | a_Type2 const InVal2 = iTest < cTests ? Rand ## a_UpBits ## Src2(iTest) \
|
---|
4346 | : s_aFpuBinaryFsw ## a_UpBits ## Specials[iTest - cTests].Val2; \
|
---|
4347 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && a_Type2 ## _IS_NORMAL(&InVal2)) \
|
---|
4348 | cNormalInputPairs++; \
|
---|
4349 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) \
|
---|
4350 | { \
|
---|
4351 | iTest -= 1; \
|
---|
4352 | continue; \
|
---|
4353 | } \
|
---|
4354 | \
|
---|
4355 | uint16_t const fFcw = RandFcw(); \
|
---|
4356 | State.FSW = RandFsw(); \
|
---|
4357 | \
|
---|
4358 | /* Guess these aren't affected by precision or rounding, so just flip the exception mask. */ \
|
---|
4359 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) \
|
---|
4360 | { \
|
---|
4361 | State.FCW = (fFcw & ~(X86_FCW_MASK_ALL)) | iMask; \
|
---|
4362 | uint16_t fFswOut = 0; \
|
---|
4363 | a_aSubTests[iFn].pfn(&State, &fFswOut, &InVal1, &InVal2); \
|
---|
4364 | a_TestType const Test = { State.FCW, State.FSW, fFswOut, InVal1, InVal2 }; \
|
---|
4365 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
4366 | } \
|
---|
4367 | } \
|
---|
4368 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
4369 | } \
|
---|
4370 | return RTEXITCODE_SUCCESS; \
|
---|
4371 | } \
|
---|
4372 | static RTEXITCODE FpuBinaryFsw ## a_UpBits ## DumpAll(const char * const *papszNameFmts) \
|
---|
4373 | { \
|
---|
4374 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4375 | DUMP_TEST_ENTRY(a_aSubTests[iFn], papszNameFmts); \
|
---|
4376 | return RTEXITCODE_SUCCESS; \
|
---|
4377 | }
|
---|
4378 | #else
|
---|
4379 | # define GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType)
|
---|
4380 | #endif
|
---|
4381 |
|
---|
4382 | #define TEST_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_SubTestType, a_aSubTests, a_TestType, ...) \
|
---|
4383 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPU ## a_UpBits ## FSW); \
|
---|
4384 | \
|
---|
4385 | static a_SubTestType a_aSubTests[] = \
|
---|
4386 | { \
|
---|
4387 | __VA_ARGS__ \
|
---|
4388 | }; \
|
---|
4389 | \
|
---|
4390 | GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
4391 | \
|
---|
4392 | static void FpuBinaryFsw ## a_UpBits ## Test(void) \
|
---|
4393 | { \
|
---|
4394 | X86FXSTATE State; \
|
---|
4395 | RT_ZERO(State); \
|
---|
4396 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4397 | { \
|
---|
4398 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
4399 | continue; \
|
---|
4400 | \
|
---|
4401 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
4402 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
4403 | PFNIEMAIMPLFPU ## a_UpBits ## FSW pfn = a_aSubTests[iFn].pfn; \
|
---|
4404 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
4405 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
4406 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
4407 | { \
|
---|
4408 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
4409 | { \
|
---|
4410 | uint16_t fFswOut = 0; \
|
---|
4411 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1; \
|
---|
4412 | a_Type2 const InVal2 = paTests[iTest].InVal2; \
|
---|
4413 | State.FCW = paTests[iTest].fFcw; \
|
---|
4414 | State.FSW = paTests[iTest].fFswIn; \
|
---|
4415 | pfn(&State, &fFswOut, &InVal1, &InVal2); \
|
---|
4416 | if (fFswOut != paTests[iTest].fFswOut) \
|
---|
4417 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" \
|
---|
4418 | "%s -> fsw=%#06x\n" \
|
---|
4419 | "%s expected %#06x %s (%s)\n", \
|
---|
4420 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
4421 | FormatR80(&paTests[iTest].InVal1), Format ## a_UpBits(&paTests[iTest].InVal2), \
|
---|
4422 | iVar ? " " : "", fFswOut, \
|
---|
4423 | iVar ? " " : "", paTests[iTest].fFswOut, \
|
---|
4424 | FswDiff(fFswOut, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw) ); \
|
---|
4425 | } \
|
---|
4426 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
4427 | } \
|
---|
4428 | } \
|
---|
4429 | }
|
---|
4430 |
|
---|
4431 | TEST_FPU_BINARY_FSW(0, 80, R80, RTFLOAT80U, FPU_BINARY_FSW_R80_T, g_aFpuBinaryFswR80, FPU_BINARY_R80_TEST_T, ENTRY_BIN(fcom_r80_by_r80), ENTRY_BIN(fucom_r80_by_r80))
|
---|
4432 | TEST_FPU_BINARY_FSW(0, 64, R64, RTFLOAT64U, FPU_BINARY_FSW_R64_T, g_aFpuBinaryFswR64, FPU_BINARY_R64_TEST_T, ENTRY_BIN(fcom_r80_by_r64))
|
---|
4433 | TEST_FPU_BINARY_FSW(0, 32, R32, RTFLOAT32U, FPU_BINARY_FSW_R32_T, g_aFpuBinaryFswR32, FPU_BINARY_R32_TEST_T, ENTRY_BIN(fcom_r80_by_r32))
|
---|
4434 | TEST_FPU_BINARY_FSW(1, 32, I32, int32_t, FPU_BINARY_FSW_I32_T, g_aFpuBinaryFswI32, FPU_BINARY_I32_TEST_T, ENTRY_BIN(ficom_r80_by_i32))
|
---|
4435 | TEST_FPU_BINARY_FSW(1, 16, I16, int16_t, FPU_BINARY_FSW_I16_T, g_aFpuBinaryFswI16, FPU_BINARY_I16_TEST_T, ENTRY_BIN(ficom_r80_by_i16))
|
---|
4436 |
|
---|
4437 |
|
---|
4438 | /*
|
---|
4439 | * Binary operations on 80-bit floating point that effects only EFLAGS and possibly FSW.
|
---|
4440 | */
|
---|
4441 | TYPEDEF_SUBTEST_TYPE(FPU_BINARY_EFL_R80_T, FPU_BINARY_EFL_R80_TEST_T, PFNIEMAIMPLFPUR80EFL);
|
---|
4442 |
|
---|
4443 | static FPU_BINARY_EFL_R80_T g_aFpuBinaryEflR80[] =
|
---|
4444 | {
|
---|
4445 | ENTRY_BIN(fcomi_r80_by_r80),
|
---|
4446 | ENTRY_BIN(fucomi_r80_by_r80),
|
---|
4447 | };
|
---|
4448 |
|
---|
4449 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4450 | static struct { RTFLOAT80U Val1, Val2; } const s_aFpuBinaryEflR80Specials[] =
|
---|
4451 | {
|
---|
4452 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4453 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS) }, /* whatever */
|
---|
4454 | };
|
---|
4455 |
|
---|
4456 | static RTEXITCODE FpuBinaryEflR80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
4457 | {
|
---|
4458 | cTests = RT_MAX(160, cTests); /* there are 144 standard input variations */
|
---|
4459 |
|
---|
4460 | X86FXSTATE State;
|
---|
4461 | RT_ZERO(State);
|
---|
4462 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
4463 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++)
|
---|
4464 | {
|
---|
4465 | IEMBINARYOUTPUT BinOut;
|
---|
4466 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuBinaryEflR80[iFn]), RTEXITCODE_FAILURE);
|
---|
4467 | uint32_t cNormalInputPairs = 0;
|
---|
4468 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinaryEflR80Specials); iTest += 1)
|
---|
4469 | {
|
---|
4470 | RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest) : s_aFpuBinaryEflR80Specials[iTest - cTests].Val1;
|
---|
4471 | RTFLOAT80U const InVal2 = iTest < cTests ? RandR80Src2(iTest) : s_aFpuBinaryEflR80Specials[iTest - cTests].Val2;
|
---|
4472 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && RTFLOAT80U_IS_NORMAL(&InVal2))
|
---|
4473 | cNormalInputPairs++;
|
---|
4474 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
4475 | {
|
---|
4476 | iTest -= 1;
|
---|
4477 | continue;
|
---|
4478 | }
|
---|
4479 |
|
---|
4480 | uint16_t const fFcw = RandFcw();
|
---|
4481 | State.FSW = RandFsw();
|
---|
4482 |
|
---|
4483 | /* Guess these aren't affected by precision or rounding, so just flip the exception mask. */
|
---|
4484 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL)
|
---|
4485 | {
|
---|
4486 | State.FCW = (fFcw & ~(X86_FCW_MASK_ALL)) | iMask;
|
---|
4487 | uint16_t uFswOut = 0;
|
---|
4488 | uint32_t fEflOut = g_aFpuBinaryEflR80[iFn].pfn(&State, &uFswOut, &InVal1, &InVal2);
|
---|
4489 | FPU_BINARY_EFL_R80_TEST_T const Test = { State.FCW, State.FSW, uFswOut, InVal1, InVal2, fEflOut, };
|
---|
4490 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
4491 | }
|
---|
4492 | }
|
---|
4493 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
4494 | }
|
---|
4495 | return RTEXITCODE_SUCCESS;
|
---|
4496 | }
|
---|
4497 |
|
---|
4498 | static RTEXITCODE FpuBinaryEflR80DumpAll(const char * const *papszNameFmts)
|
---|
4499 | {
|
---|
4500 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++)
|
---|
4501 | DUMP_TEST_ENTRY(g_aFpuBinaryEflR80[iFn], papszNameFmts);
|
---|
4502 | return RTEXITCODE_SUCCESS;
|
---|
4503 | }
|
---|
4504 | #endif /*TSTIEMAIMPL_WITH_GENERATOR*/
|
---|
4505 |
|
---|
4506 | static void FpuBinaryEflR80Test(void)
|
---|
4507 | {
|
---|
4508 | X86FXSTATE State;
|
---|
4509 | RT_ZERO(State);
|
---|
4510 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++)
|
---|
4511 | {
|
---|
4512 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuBinaryEflR80[iFn]))
|
---|
4513 | continue;
|
---|
4514 |
|
---|
4515 | FPU_BINARY_EFL_R80_TEST_T const * const paTests = g_aFpuBinaryEflR80[iFn].paTests;
|
---|
4516 | uint32_t const cTests = g_aFpuBinaryEflR80[iFn].cTests;
|
---|
4517 | PFNIEMAIMPLFPUR80EFL pfn = g_aFpuBinaryEflR80[iFn].pfn;
|
---|
4518 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuBinaryEflR80[iFn]);
|
---|
4519 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4520 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4521 | {
|
---|
4522 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
4523 | {
|
---|
4524 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1;
|
---|
4525 | RTFLOAT80U const InVal2 = paTests[iTest].InVal2;
|
---|
4526 | State.FCW = paTests[iTest].fFcw;
|
---|
4527 | State.FSW = paTests[iTest].fFswIn;
|
---|
4528 | uint16_t uFswOut = 0;
|
---|
4529 | uint32_t fEflOut = pfn(&State, &uFswOut, &InVal1, &InVal2);
|
---|
4530 | if ( uFswOut != paTests[iTest].fFswOut
|
---|
4531 | || fEflOut != paTests[iTest].fEflOut)
|
---|
4532 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n"
|
---|
4533 | "%s -> fsw=%#06x efl=%#08x\n"
|
---|
4534 | "%s expected %#06x %#08x %s%s (%s)\n",
|
---|
4535 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
4536 | FormatR80(&paTests[iTest].InVal1), FormatR80(&paTests[iTest].InVal2),
|
---|
4537 | iVar ? " " : "", uFswOut, fEflOut,
|
---|
4538 | iVar ? " " : "", paTests[iTest].fFswOut, paTests[iTest].fEflOut,
|
---|
4539 | FswDiff(uFswOut, paTests[iTest].fFswOut), EFlagsDiff(fEflOut, paTests[iTest].fEflOut),
|
---|
4540 | FormatFcw(paTests[iTest].fFcw));
|
---|
4541 | }
|
---|
4542 | pfn = g_aFpuBinaryEflR80[iFn].pfnNative;
|
---|
4543 | }
|
---|
4544 | }
|
---|
4545 | }
|
---|
4546 |
|
---|
4547 |
|
---|
4548 | /*********************************************************************************************************************************
|
---|
4549 | * x87 FPU Unary Operations *
|
---|
4550 | *********************************************************************************************************************************/
|
---|
4551 |
|
---|
4552 | /*
|
---|
4553 | * Unary FPU operations on one 80-bit floating point value.
|
---|
4554 | *
|
---|
4555 | * Note! The FCW reserved bit 7 is used to indicate whether a test may produce
|
---|
4556 | * a rounding error or not.
|
---|
4557 | */
|
---|
4558 | TYPEDEF_SUBTEST_TYPE(FPU_UNARY_R80_T, FPU_UNARY_R80_TEST_T, PFNIEMAIMPLFPUR80UNARY);
|
---|
4559 |
|
---|
4560 | enum { kUnary_Accurate = 0, kUnary_Accurate_Trigonometry /*probably not accurate, but need impl to know*/, kUnary_Rounding_F2xm1 };
|
---|
4561 | static FPU_UNARY_R80_T g_aFpuUnaryR80[] =
|
---|
4562 | {
|
---|
4563 | ENTRY_BIN_EX( fabs_r80, kUnary_Accurate),
|
---|
4564 | ENTRY_BIN_EX( fchs_r80, kUnary_Accurate),
|
---|
4565 | ENTRY_BIN_AMD_EX( f2xm1_r80, 0, kUnary_Accurate), // C1 differs for -1m0x3fb263cc2c331e15^-2654 (different ln2 constant?)
|
---|
4566 | ENTRY_BIN_INTEL_EX(f2xm1_r80, 0, kUnary_Rounding_F2xm1),
|
---|
4567 | ENTRY_BIN_EX( fsqrt_r80, kUnary_Accurate),
|
---|
4568 | ENTRY_BIN_EX( frndint_r80, kUnary_Accurate),
|
---|
4569 | ENTRY_BIN_AMD_EX( fsin_r80, 0, kUnary_Accurate_Trigonometry), // value & C1 differences for pseudo denormals and others (e.g. -1m0x2b1e5683cbca5725^-3485)
|
---|
4570 | ENTRY_BIN_INTEL_EX(fsin_r80, 0, kUnary_Accurate_Trigonometry),
|
---|
4571 | ENTRY_BIN_AMD_EX( fcos_r80, 0, kUnary_Accurate_Trigonometry), // value & C1 differences
|
---|
4572 | ENTRY_BIN_INTEL_EX(fcos_r80, 0, kUnary_Accurate_Trigonometry),
|
---|
4573 | };
|
---|
4574 |
|
---|
4575 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4576 |
|
---|
4577 | static bool FpuUnaryR80MayHaveRoundingError(PCRTFLOAT80U pr80Val, int enmKind)
|
---|
4578 | {
|
---|
4579 | if ( enmKind == kUnary_Rounding_F2xm1
|
---|
4580 | && RTFLOAT80U_IS_NORMAL(pr80Val)
|
---|
4581 | && pr80Val->s.uExponent < RTFLOAT80U_EXP_BIAS
|
---|
4582 | && pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS - 69)
|
---|
4583 | return true;
|
---|
4584 | return false;
|
---|
4585 | }
|
---|
4586 |
|
---|
4587 | static RTEXITCODE FpuUnaryR80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
4588 | {
|
---|
4589 | static RTFLOAT80U const s_aSpecials[] =
|
---|
4590 | {
|
---|
4591 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS - 1), /* 0.5 (for f2xm1) */
|
---|
4592 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, RTFLOAT80U_EXP_BIAS - 1), /* -0.5 (for f2xm1) */
|
---|
4593 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* 1.0 (for f2xm1) */
|
---|
4594 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* -1.0 (for f2xm1) */
|
---|
4595 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0), /* +1.0^-16382 */
|
---|
4596 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 0), /* -1.0^-16382 */
|
---|
4597 | RTFLOAT80U_INIT_C(0, 0xc000000000000000, 0), /* +1.1^-16382 */
|
---|
4598 | RTFLOAT80U_INIT_C(1, 0xc000000000000000, 0), /* -1.1^-16382 */
|
---|
4599 | RTFLOAT80U_INIT_C(0, 0xc000100000000000, 0), /* +1.1xxx1^-16382 */
|
---|
4600 | RTFLOAT80U_INIT_C(1, 0xc000100000000000, 0), /* -1.1xxx1^-16382 */
|
---|
4601 | };
|
---|
4602 | X86FXSTATE State;
|
---|
4603 | RT_ZERO(State);
|
---|
4604 | uint32_t cMinNormals = cTests / 4;
|
---|
4605 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++)
|
---|
4606 | {
|
---|
4607 | PFNIEMAIMPLFPUR80UNARY const pfn = g_aFpuUnaryR80[iFn].pfnNative ? g_aFpuUnaryR80[iFn].pfnNative : g_aFpuUnaryR80[iFn].pfn;
|
---|
4608 | if ( g_aFpuUnaryR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
4609 | && g_aFpuUnaryR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
4610 | continue;
|
---|
4611 |
|
---|
4612 | IEMBINARYOUTPUT BinOut;
|
---|
4613 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuUnaryR80[iFn]), RTEXITCODE_FAILURE);
|
---|
4614 | uint32_t cNormalInputs = 0;
|
---|
4615 | uint32_t cTargetRangeInputs = 0;
|
---|
4616 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
4617 | {
|
---|
4618 | RTFLOAT80U InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
4619 | if (RTFLOAT80U_IS_NORMAL(&InVal))
|
---|
4620 | {
|
---|
4621 | if (g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1)
|
---|
4622 | {
|
---|
4623 | unsigned uTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1
|
---|
4624 | ? RTFLOAT80U_EXP_BIAS /* 2^0..2^-69 */ : RTFLOAT80U_EXP_BIAS + 63 + 1 /* 2^64..2^-64 */;
|
---|
4625 | unsigned cTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? 69 : 63*2 + 2;
|
---|
4626 | if (InVal.s.uExponent <= uTargetExp && InVal.s.uExponent >= uTargetExp - cTargetExp)
|
---|
4627 | cTargetRangeInputs++;
|
---|
4628 | else if (cTargetRangeInputs < cMinNormals / 2 && iTest + cMinNormals / 2 >= cTests && iTest < cTests)
|
---|
4629 | {
|
---|
4630 | InVal.s.uExponent = RTRandU32Ex(uTargetExp - cTargetExp, uTargetExp);
|
---|
4631 | cTargetRangeInputs++;
|
---|
4632 | }
|
---|
4633 | }
|
---|
4634 | cNormalInputs++;
|
---|
4635 | }
|
---|
4636 | else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests)
|
---|
4637 | {
|
---|
4638 | iTest -= 1;
|
---|
4639 | continue;
|
---|
4640 | }
|
---|
4641 |
|
---|
4642 | uint16_t const fFcwExtra = FpuUnaryR80MayHaveRoundingError(&InVal, g_aFpuUnaryR80[iFn].uExtra) ? 0x80 : 0;
|
---|
4643 | uint16_t const fFcw = RandFcw();
|
---|
4644 | State.FSW = RandFsw();
|
---|
4645 |
|
---|
4646 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4647 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
4648 | {
|
---|
4649 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
4650 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
4651 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
4652 | | X86_FCW_MASK_ALL;
|
---|
4653 | IEMFPURESULT ResM = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4654 | pfn(&State, &ResM, &InVal);
|
---|
4655 | FPU_UNARY_R80_TEST_T const TestM
|
---|
4656 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResM.FSW, InVal, ResM.r80Result };
|
---|
4657 | GenerateBinaryWrite(&BinOut, &TestM, sizeof(TestM));
|
---|
4658 |
|
---|
4659 | State.FCW = State.FCW & ~X86_FCW_MASK_ALL;
|
---|
4660 | IEMFPURESULT ResU = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4661 | pfn(&State, &ResU, &InVal);
|
---|
4662 | FPU_UNARY_R80_TEST_T const TestU
|
---|
4663 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResU.FSW, InVal, ResU.r80Result };
|
---|
4664 | GenerateBinaryWrite(&BinOut, &TestU, sizeof(TestU));
|
---|
4665 |
|
---|
4666 | uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF;
|
---|
4667 | if (fXcpt)
|
---|
4668 | {
|
---|
4669 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
4670 | IEMFPURESULT Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4671 | pfn(&State, &Res1, &InVal);
|
---|
4672 | FPU_UNARY_R80_TEST_T const Test1
|
---|
4673 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res1.FSW, InVal, Res1.r80Result };
|
---|
4674 | GenerateBinaryWrite(&BinOut, &Test1, sizeof(Test1));
|
---|
4675 | if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK))
|
---|
4676 | {
|
---|
4677 | fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK;
|
---|
4678 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
4679 | IEMFPURESULT Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4680 | pfn(&State, &Res2, &InVal);
|
---|
4681 | FPU_UNARY_R80_TEST_T const Test2
|
---|
4682 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res2.FSW, InVal, Res2.r80Result };
|
---|
4683 | GenerateBinaryWrite(&BinOut, &Test2, sizeof(Test2));
|
---|
4684 | }
|
---|
4685 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
4686 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1)
|
---|
4687 | if (fUnmasked & fXcpt)
|
---|
4688 | {
|
---|
4689 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked);
|
---|
4690 | IEMFPURESULT Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4691 | pfn(&State, &Res3, &InVal);
|
---|
4692 | FPU_UNARY_R80_TEST_T const Test3
|
---|
4693 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res3.FSW, InVal, Res3.r80Result };
|
---|
4694 | GenerateBinaryWrite(&BinOut, &Test3, sizeof(Test3));
|
---|
4695 | }
|
---|
4696 | }
|
---|
4697 | }
|
---|
4698 | }
|
---|
4699 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
4700 | }
|
---|
4701 | return RTEXITCODE_SUCCESS;
|
---|
4702 | }
|
---|
4703 |
|
---|
4704 | static RTEXITCODE FpuUnaryR80DumpAll(const char * const *papszNameFmts)
|
---|
4705 | {
|
---|
4706 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++)
|
---|
4707 | DUMP_TEST_ENTRY(g_aFpuUnaryR80[iFn], papszNameFmts);
|
---|
4708 | return RTEXITCODE_SUCCESS;
|
---|
4709 | }
|
---|
4710 | #endif
|
---|
4711 |
|
---|
4712 | static bool FpuIsEqualFcwMaybeIgnoreRoundErr(uint16_t fFcw1, uint16_t fFcw2, bool fRndErrOk, bool *pfRndErr)
|
---|
4713 | {
|
---|
4714 | if (fFcw1 == fFcw2)
|
---|
4715 | return true;
|
---|
4716 | if (fRndErrOk && (fFcw1 & ~X86_FSW_C1) == (fFcw2 & ~X86_FSW_C1))
|
---|
4717 | {
|
---|
4718 | *pfRndErr = true;
|
---|
4719 | return true;
|
---|
4720 | }
|
---|
4721 | return false;
|
---|
4722 | }
|
---|
4723 |
|
---|
4724 | static bool FpuIsEqualR80MaybeIgnoreRoundErr(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, bool fRndErrOk, bool *pfRndErr)
|
---|
4725 | {
|
---|
4726 | if (RTFLOAT80U_ARE_IDENTICAL(pr80Val1, pr80Val2))
|
---|
4727 | return true;
|
---|
4728 | if ( fRndErrOk
|
---|
4729 | && pr80Val1->s.fSign == pr80Val2->s.fSign)
|
---|
4730 | {
|
---|
4731 | if ( ( pr80Val1->s.uExponent == pr80Val2->s.uExponent
|
---|
4732 | && ( pr80Val1->s.uMantissa > pr80Val2->s.uMantissa
|
---|
4733 | ? pr80Val1->s.uMantissa - pr80Val2->s.uMantissa == 1
|
---|
4734 | : pr80Val2->s.uMantissa - pr80Val1->s.uMantissa == 1))
|
---|
4735 | ||
|
---|
4736 | ( pr80Val1->s.uExponent + 1 == pr80Val2->s.uExponent
|
---|
4737 | && pr80Val1->s.uMantissa == UINT64_MAX
|
---|
4738 | && pr80Val2->s.uMantissa == RT_BIT_64(63))
|
---|
4739 | ||
|
---|
4740 | ( pr80Val1->s.uExponent == pr80Val2->s.uExponent + 1
|
---|
4741 | && pr80Val2->s.uMantissa == UINT64_MAX
|
---|
4742 | && pr80Val1->s.uMantissa == RT_BIT_64(63)) )
|
---|
4743 | {
|
---|
4744 | *pfRndErr = true;
|
---|
4745 | return true;
|
---|
4746 | }
|
---|
4747 | }
|
---|
4748 | return false;
|
---|
4749 | }
|
---|
4750 |
|
---|
4751 |
|
---|
4752 | static void FpuUnaryR80Test(void)
|
---|
4753 | {
|
---|
4754 | X86FXSTATE State;
|
---|
4755 | RT_ZERO(State);
|
---|
4756 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++)
|
---|
4757 | {
|
---|
4758 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuUnaryR80[iFn]))
|
---|
4759 | continue;
|
---|
4760 |
|
---|
4761 | FPU_UNARY_R80_TEST_T const * const paTests = g_aFpuUnaryR80[iFn].paTests;
|
---|
4762 | uint32_t const cTests = g_aFpuUnaryR80[iFn].cTests;
|
---|
4763 | PFNIEMAIMPLFPUR80UNARY pfn = g_aFpuUnaryR80[iFn].pfn;
|
---|
4764 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryR80[iFn]);
|
---|
4765 | uint32_t cRndErrs = 0;
|
---|
4766 | uint32_t cPossibleRndErrs = 0;
|
---|
4767 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4768 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4769 | {
|
---|
4770 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
4771 | {
|
---|
4772 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
4773 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4774 | bool const fRndErrOk = RT_BOOL(paTests[iTest].fFcw & 0x80);
|
---|
4775 | State.FCW = paTests[iTest].fFcw & ~(uint16_t)0x80;
|
---|
4776 | State.FSW = paTests[iTest].fFswIn;
|
---|
4777 | pfn(&State, &Res, &InVal);
|
---|
4778 | bool fRndErr = false;
|
---|
4779 | if ( !FpuIsEqualFcwMaybeIgnoreRoundErr(Res.FSW, paTests[iTest].fFswOut, fRndErrOk, &fRndErr)
|
---|
4780 | || !FpuIsEqualR80MaybeIgnoreRoundErr(&Res.r80Result, &paTests[iTest].OutVal, fRndErrOk, &fRndErr))
|
---|
4781 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
4782 | "%s -> fsw=%#06x %s\n"
|
---|
4783 | "%s expected %#06x %s%s%s%s (%s)\n",
|
---|
4784 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
4785 | FormatR80(&paTests[iTest].InVal),
|
---|
4786 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result),
|
---|
4787 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal),
|
---|
4788 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
4789 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "",
|
---|
4790 | fRndErrOk ? " - rounding errors ok" : "", FormatFcw(paTests[iTest].fFcw));
|
---|
4791 | cRndErrs += fRndErr;
|
---|
4792 | cPossibleRndErrs += fRndErrOk;
|
---|
4793 | }
|
---|
4794 | pfn = g_aFpuUnaryR80[iFn].pfnNative;
|
---|
4795 | }
|
---|
4796 | if (cPossibleRndErrs > 0)
|
---|
4797 | RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "rounding errors: %u out of %u\n", cRndErrs, cPossibleRndErrs);
|
---|
4798 | }
|
---|
4799 | }
|
---|
4800 |
|
---|
4801 |
|
---|
4802 | /*
|
---|
4803 | * Unary FPU operations on one 80-bit floating point value, but only affects the FSW.
|
---|
4804 | */
|
---|
4805 | TYPEDEF_SUBTEST_TYPE(FPU_UNARY_FSW_R80_T, FPU_UNARY_R80_TEST_T, PFNIEMAIMPLFPUR80UNARYFSW);
|
---|
4806 |
|
---|
4807 | static FPU_UNARY_FSW_R80_T g_aFpuUnaryFswR80[] =
|
---|
4808 | {
|
---|
4809 | ENTRY_BIN(ftst_r80),
|
---|
4810 | ENTRY_BIN_EX(fxam_r80, 1),
|
---|
4811 | };
|
---|
4812 |
|
---|
4813 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4814 | static RTEXITCODE FpuUnaryFswR80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
4815 | {
|
---|
4816 | static RTFLOAT80U const s_aSpecials[] =
|
---|
4817 | {
|
---|
4818 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), /* whatever */
|
---|
4819 | };
|
---|
4820 |
|
---|
4821 | X86FXSTATE State;
|
---|
4822 | RT_ZERO(State);
|
---|
4823 | uint32_t cMinNormals = cTests / 4;
|
---|
4824 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++)
|
---|
4825 | {
|
---|
4826 | bool const fIsFxam = g_aFpuUnaryFswR80[iFn].uExtra == 1;
|
---|
4827 | PFNIEMAIMPLFPUR80UNARYFSW const pfn = g_aFpuUnaryFswR80[iFn].pfnNative ? g_aFpuUnaryFswR80[iFn].pfnNative : g_aFpuUnaryFswR80[iFn].pfn;
|
---|
4828 | if ( g_aFpuUnaryFswR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
4829 | && g_aFpuUnaryFswR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
4830 | continue;
|
---|
4831 | State.FTW = 0;
|
---|
4832 |
|
---|
4833 | IEMBINARYOUTPUT BinOut;
|
---|
4834 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuUnaryFswR80[iFn]), RTEXITCODE_FAILURE);
|
---|
4835 | uint32_t cNormalInputs = 0;
|
---|
4836 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
4837 | {
|
---|
4838 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
4839 | if (RTFLOAT80U_IS_NORMAL(&InVal))
|
---|
4840 | cNormalInputs++;
|
---|
4841 | else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests)
|
---|
4842 | {
|
---|
4843 | iTest -= 1;
|
---|
4844 | continue;
|
---|
4845 | }
|
---|
4846 |
|
---|
4847 | uint16_t const fFcw = RandFcw();
|
---|
4848 | State.FSW = RandFsw();
|
---|
4849 | if (!fIsFxam)
|
---|
4850 | {
|
---|
4851 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4852 | {
|
---|
4853 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
4854 | {
|
---|
4855 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL)
|
---|
4856 | {
|
---|
4857 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
4858 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
4859 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
4860 | | iMask;
|
---|
4861 | uint16_t fFswOut = 0;
|
---|
4862 | pfn(&State, &fFswOut, &InVal);
|
---|
4863 | FPU_UNARY_R80_TEST_T const Test = { State.FCW, State.FSW, fFswOut, InVal };
|
---|
4864 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
4865 | }
|
---|
4866 | }
|
---|
4867 | }
|
---|
4868 | }
|
---|
4869 | else
|
---|
4870 | {
|
---|
4871 | uint16_t fFswOut = 0;
|
---|
4872 | uint16_t const fEmpty = RTRandU32Ex(0, 3) == 3 ? 0x80 : 0; /* Using MBZ bit 7 in FCW to indicate empty tag value. */
|
---|
4873 | State.FTW = !fEmpty ? 1 << X86_FSW_TOP_GET(State.FSW) : 0;
|
---|
4874 | State.FCW = fFcw;
|
---|
4875 | pfn(&State, &fFswOut, &InVal);
|
---|
4876 | FPU_UNARY_R80_TEST_T const Test = { (uint16_t)(fFcw | fEmpty), State.FSW, fFswOut, InVal };
|
---|
4877 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
4878 | }
|
---|
4879 | }
|
---|
4880 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
4881 | }
|
---|
4882 | return RTEXITCODE_SUCCESS;
|
---|
4883 | }
|
---|
4884 |
|
---|
4885 | static RTEXITCODE FpuUnaryFswR80DumpAll(const char * const *papszNameFmts)
|
---|
4886 | {
|
---|
4887 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++)
|
---|
4888 | DUMP_TEST_ENTRY(g_aFpuUnaryFswR80[iFn], papszNameFmts);
|
---|
4889 | return RTEXITCODE_SUCCESS;
|
---|
4890 | }
|
---|
4891 | #endif
|
---|
4892 |
|
---|
4893 |
|
---|
4894 | static void FpuUnaryFswR80Test(void)
|
---|
4895 | {
|
---|
4896 | X86FXSTATE State;
|
---|
4897 | RT_ZERO(State);
|
---|
4898 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++)
|
---|
4899 | {
|
---|
4900 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuUnaryFswR80[iFn]))
|
---|
4901 | continue;
|
---|
4902 |
|
---|
4903 | FPU_UNARY_R80_TEST_T const * const paTests = g_aFpuUnaryFswR80[iFn].paTests;
|
---|
4904 | uint32_t const cTests = g_aFpuUnaryFswR80[iFn].cTests;
|
---|
4905 | PFNIEMAIMPLFPUR80UNARYFSW pfn = g_aFpuUnaryFswR80[iFn].pfn;
|
---|
4906 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryFswR80[iFn]);
|
---|
4907 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4908 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4909 | {
|
---|
4910 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
4911 | {
|
---|
4912 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
4913 | uint16_t fFswOut = 0;
|
---|
4914 | State.FSW = paTests[iTest].fFswIn;
|
---|
4915 | State.FCW = paTests[iTest].fFcw & ~(uint16_t)0x80; /* see generator code */
|
---|
4916 | State.FTW = paTests[iTest].fFcw & 0x80 ? 0 : 1 << X86_FSW_TOP_GET(paTests[iTest].fFswIn);
|
---|
4917 | pfn(&State, &fFswOut, &InVal);
|
---|
4918 | if (fFswOut != paTests[iTest].fFswOut)
|
---|
4919 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
4920 | "%s -> fsw=%#06x\n"
|
---|
4921 | "%s expected %#06x %s (%s%s)\n",
|
---|
4922 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
4923 | FormatR80(&paTests[iTest].InVal),
|
---|
4924 | iVar ? " " : "", fFswOut,
|
---|
4925 | iVar ? " " : "", paTests[iTest].fFswOut,
|
---|
4926 | FswDiff(fFswOut, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw),
|
---|
4927 | paTests[iTest].fFcw & 0x80 ? " empty" : "");
|
---|
4928 | }
|
---|
4929 | pfn = g_aFpuUnaryFswR80[iFn].pfnNative;
|
---|
4930 | }
|
---|
4931 | }
|
---|
4932 | }
|
---|
4933 |
|
---|
4934 | /*
|
---|
4935 | * Unary FPU operations on one 80-bit floating point value, but with two outputs.
|
---|
4936 | */
|
---|
4937 | TYPEDEF_SUBTEST_TYPE(FPU_UNARY_TWO_R80_T, FPU_UNARY_TWO_R80_TEST_T, PFNIEMAIMPLFPUR80UNARYTWO);
|
---|
4938 |
|
---|
4939 | static FPU_UNARY_TWO_R80_T g_aFpuUnaryTwoR80[] =
|
---|
4940 | {
|
---|
4941 | ENTRY_BIN(fxtract_r80_r80),
|
---|
4942 | ENTRY_BIN_AMD( fptan_r80_r80, 0), // rounding differences
|
---|
4943 | ENTRY_BIN_INTEL(fptan_r80_r80, 0),
|
---|
4944 | ENTRY_BIN_AMD( fsincos_r80_r80, 0), // C1 differences & value differences (e.g. -1m0x235cf2f580244a27^-1696)
|
---|
4945 | ENTRY_BIN_INTEL(fsincos_r80_r80, 0),
|
---|
4946 | };
|
---|
4947 |
|
---|
4948 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4949 | static RTEXITCODE FpuUnaryTwoR80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
4950 | {
|
---|
4951 | static RTFLOAT80U const s_aSpecials[] =
|
---|
4952 | {
|
---|
4953 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), /* whatever */
|
---|
4954 | };
|
---|
4955 |
|
---|
4956 | X86FXSTATE State;
|
---|
4957 | RT_ZERO(State);
|
---|
4958 | uint32_t cMinNormals = cTests / 4;
|
---|
4959 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++)
|
---|
4960 | {
|
---|
4961 | PFNIEMAIMPLFPUR80UNARYTWO const pfn = g_aFpuUnaryTwoR80[iFn].pfnNative ? g_aFpuUnaryTwoR80[iFn].pfnNative : g_aFpuUnaryTwoR80[iFn].pfn;
|
---|
4962 | if ( g_aFpuUnaryTwoR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
4963 | && g_aFpuUnaryTwoR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
4964 | continue;
|
---|
4965 |
|
---|
4966 | IEMBINARYOUTPUT BinOut;
|
---|
4967 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuUnaryTwoR80[iFn]), RTEXITCODE_FAILURE);
|
---|
4968 | uint32_t cNormalInputs = 0;
|
---|
4969 | uint32_t cTargetRangeInputs = 0;
|
---|
4970 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
4971 | {
|
---|
4972 | RTFLOAT80U InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
4973 | if (RTFLOAT80U_IS_NORMAL(&InVal))
|
---|
4974 | {
|
---|
4975 | if (iFn != 0)
|
---|
4976 | {
|
---|
4977 | unsigned uTargetExp = RTFLOAT80U_EXP_BIAS + 63 + 1 /* 2^64..2^-64 */;
|
---|
4978 | unsigned cTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? 69 : 63*2 + 2;
|
---|
4979 | if (InVal.s.uExponent <= uTargetExp && InVal.s.uExponent >= uTargetExp - cTargetExp)
|
---|
4980 | cTargetRangeInputs++;
|
---|
4981 | else if (cTargetRangeInputs < cMinNormals / 2 && iTest + cMinNormals / 2 >= cTests && iTest < cTests)
|
---|
4982 | {
|
---|
4983 | InVal.s.uExponent = RTRandU32Ex(uTargetExp - cTargetExp, uTargetExp);
|
---|
4984 | cTargetRangeInputs++;
|
---|
4985 | }
|
---|
4986 | }
|
---|
4987 | cNormalInputs++;
|
---|
4988 | }
|
---|
4989 | else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests)
|
---|
4990 | {
|
---|
4991 | iTest -= 1;
|
---|
4992 | continue;
|
---|
4993 | }
|
---|
4994 |
|
---|
4995 | uint16_t const fFcwExtra = 0; /* for rounding error indication */
|
---|
4996 | uint16_t const fFcw = RandFcw();
|
---|
4997 | State.FSW = RandFsw();
|
---|
4998 |
|
---|
4999 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5000 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
5001 | {
|
---|
5002 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
5003 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
5004 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
5005 | | X86_FCW_MASK_ALL;
|
---|
5006 | IEMFPURESULTTWO ResM = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5007 | pfn(&State, &ResM, &InVal);
|
---|
5008 | FPU_UNARY_TWO_R80_TEST_T const TestM
|
---|
5009 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResM.FSW, InVal, ResM.r80Result1, ResM.r80Result2 };
|
---|
5010 | GenerateBinaryWrite(&BinOut, &TestM, sizeof(TestM));
|
---|
5011 |
|
---|
5012 | State.FCW = State.FCW & ~X86_FCW_MASK_ALL;
|
---|
5013 | IEMFPURESULTTWO ResU = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5014 | pfn(&State, &ResU, &InVal);
|
---|
5015 | FPU_UNARY_TWO_R80_TEST_T const TestU
|
---|
5016 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResU.FSW, InVal, ResU.r80Result1, ResU.r80Result2 };
|
---|
5017 | GenerateBinaryWrite(&BinOut, &TestU, sizeof(TestU));
|
---|
5018 |
|
---|
5019 | uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF;
|
---|
5020 | if (fXcpt)
|
---|
5021 | {
|
---|
5022 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
5023 | IEMFPURESULTTWO Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5024 | pfn(&State, &Res1, &InVal);
|
---|
5025 | FPU_UNARY_TWO_R80_TEST_T const Test1
|
---|
5026 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res1.FSW, InVal, Res1.r80Result1, Res1.r80Result2 };
|
---|
5027 | GenerateBinaryWrite(&BinOut, &Test1, sizeof(Test1));
|
---|
5028 |
|
---|
5029 | if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK))
|
---|
5030 | {
|
---|
5031 | fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK;
|
---|
5032 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
5033 | IEMFPURESULTTWO Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5034 | pfn(&State, &Res2, &InVal);
|
---|
5035 | FPU_UNARY_TWO_R80_TEST_T const Test2
|
---|
5036 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res2.FSW, InVal, Res2.r80Result1, Res2.r80Result2 };
|
---|
5037 | GenerateBinaryWrite(&BinOut, &Test2, sizeof(Test2));
|
---|
5038 | }
|
---|
5039 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5040 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1)
|
---|
5041 | if (fUnmasked & fXcpt)
|
---|
5042 | {
|
---|
5043 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked);
|
---|
5044 | IEMFPURESULTTWO Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5045 | pfn(&State, &Res3, &InVal);
|
---|
5046 | FPU_UNARY_TWO_R80_TEST_T const Test3
|
---|
5047 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res3.FSW, InVal, Res3.r80Result1, Res3.r80Result2 };
|
---|
5048 | GenerateBinaryWrite(&BinOut, &Test3, sizeof(Test3));
|
---|
5049 | }
|
---|
5050 | }
|
---|
5051 | }
|
---|
5052 | }
|
---|
5053 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5054 | }
|
---|
5055 | return RTEXITCODE_SUCCESS;
|
---|
5056 | }
|
---|
5057 |
|
---|
5058 | static RTEXITCODE FpuUnaryTwoR80DumpAll(const char * const *papszNameFmts)
|
---|
5059 | {
|
---|
5060 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++)
|
---|
5061 | DUMP_TEST_ENTRY(g_aFpuUnaryTwoR80[iFn], papszNameFmts);
|
---|
5062 | return RTEXITCODE_SUCCESS;
|
---|
5063 | }
|
---|
5064 | #endif
|
---|
5065 |
|
---|
5066 |
|
---|
5067 | static void FpuUnaryTwoR80Test(void)
|
---|
5068 | {
|
---|
5069 | X86FXSTATE State;
|
---|
5070 | RT_ZERO(State);
|
---|
5071 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++)
|
---|
5072 | {
|
---|
5073 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuUnaryTwoR80[iFn]))
|
---|
5074 | continue;
|
---|
5075 |
|
---|
5076 | FPU_UNARY_TWO_R80_TEST_T const * const paTests = g_aFpuUnaryTwoR80[iFn].paTests;
|
---|
5077 | uint32_t const cTests = g_aFpuUnaryTwoR80[iFn].cTests;
|
---|
5078 | PFNIEMAIMPLFPUR80UNARYTWO pfn = g_aFpuUnaryTwoR80[iFn].pfn;
|
---|
5079 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryTwoR80[iFn]);
|
---|
5080 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5081 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5082 | {
|
---|
5083 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
5084 | {
|
---|
5085 | IEMFPURESULTTWO Res = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5086 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
5087 | State.FCW = paTests[iTest].fFcw;
|
---|
5088 | State.FSW = paTests[iTest].fFswIn;
|
---|
5089 | pfn(&State, &Res, &InVal);
|
---|
5090 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
5091 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result1, &paTests[iTest].OutVal1)
|
---|
5092 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result2, &paTests[iTest].OutVal2) )
|
---|
5093 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
5094 | "%s -> fsw=%#06x %s %s\n"
|
---|
5095 | "%s expected %#06x %s %s %s%s%s (%s)\n",
|
---|
5096 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
5097 | FormatR80(&paTests[iTest].InVal),
|
---|
5098 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result1), FormatR80(&Res.r80Result2),
|
---|
5099 | iVar ? " " : "", paTests[iTest].fFswOut,
|
---|
5100 | FormatR80(&paTests[iTest].OutVal1), FormatR80(&paTests[iTest].OutVal2),
|
---|
5101 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result1, &paTests[iTest].OutVal1) ? " - val1" : "",
|
---|
5102 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result2, &paTests[iTest].OutVal2) ? " - val2" : "",
|
---|
5103 | FswDiff(Res.FSW, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw) );
|
---|
5104 | }
|
---|
5105 | pfn = g_aFpuUnaryTwoR80[iFn].pfnNative;
|
---|
5106 | }
|
---|
5107 | }
|
---|
5108 | }
|
---|
5109 |
|
---|
5110 |
|
---|
5111 | /*********************************************************************************************************************************
|
---|
5112 | * SSE floating point Binary Operations *
|
---|
5113 | *********************************************************************************************************************************/
|
---|
5114 |
|
---|
5115 | /*
|
---|
5116 | * Binary SSE operations on packed single precision floating point values.
|
---|
5117 | */
|
---|
5118 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R32_T, SSE_BINARY_TEST_T, PFNIEMAIMPLFPSSEF2U128);
|
---|
5119 |
|
---|
5120 | static SSE_BINARY_R32_T g_aSseBinaryR32[] =
|
---|
5121 | {
|
---|
5122 | ENTRY_BIN(addps_u128),
|
---|
5123 | ENTRY_BIN(mulps_u128),
|
---|
5124 | ENTRY_BIN(subps_u128),
|
---|
5125 | ENTRY_BIN(minps_u128),
|
---|
5126 | ENTRY_BIN(divps_u128),
|
---|
5127 | ENTRY_BIN(maxps_u128),
|
---|
5128 | ENTRY_BIN(haddps_u128),
|
---|
5129 | ENTRY_BIN(hsubps_u128),
|
---|
5130 | ENTRY_BIN(sqrtps_u128),
|
---|
5131 | ENTRY_BIN(addsubps_u128),
|
---|
5132 | ENTRY_BIN(cvtps2pd_u128),
|
---|
5133 | };
|
---|
5134 |
|
---|
5135 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5136 | static RTEXITCODE SseBinaryR32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
5137 | {
|
---|
5138 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
5139 |
|
---|
5140 | static struct { RTFLOAT32U aVal1[4], aVal2[4]; } const s_aSpecials[] =
|
---|
5141 | {
|
---|
5142 | { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), },
|
---|
5143 | { RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) } },
|
---|
5144 | /** @todo More specials. */
|
---|
5145 | };
|
---|
5146 |
|
---|
5147 | X86FXSTATE State;
|
---|
5148 | RT_ZERO(State);
|
---|
5149 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
5150 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32); iFn++)
|
---|
5151 | {
|
---|
5152 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseBinaryR32[iFn].pfnNative ? g_aSseBinaryR32[iFn].pfnNative : g_aSseBinaryR32[iFn].pfn;
|
---|
5153 |
|
---|
5154 | IEMBINARYOUTPUT BinOut;
|
---|
5155 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryR32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
5156 |
|
---|
5157 | uint32_t cNormalInputPairs = 0;
|
---|
5158 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5159 | {
|
---|
5160 | SSE_BINARY_TEST_T TestData; RT_ZERO(TestData);
|
---|
5161 |
|
---|
5162 | TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
5163 | TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
5164 | TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2];
|
---|
5165 | TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3];
|
---|
5166 |
|
---|
5167 | TestData.InVal2.ar32[0] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0];
|
---|
5168 | TestData.InVal2.ar32[1] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[1];
|
---|
5169 | TestData.InVal2.ar32[2] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[2];
|
---|
5170 | TestData.InVal2.ar32[3] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[3];
|
---|
5171 |
|
---|
5172 | if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[0])
|
---|
5173 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[1])
|
---|
5174 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[2])
|
---|
5175 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[3]))
|
---|
5176 | cNormalInputPairs++;
|
---|
5177 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
5178 | {
|
---|
5179 | iTest -= 1;
|
---|
5180 | continue;
|
---|
5181 | }
|
---|
5182 |
|
---|
5183 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
5184 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5185 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
5186 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
5187 | {
|
---|
5188 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
5189 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
5190 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
5191 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
5192 | | X86_MXCSR_XCPT_MASK;
|
---|
5193 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
5194 | pfn(&State, &ResM, &TestData.InVal1, &TestData.InVal2);
|
---|
5195 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5196 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
5197 | TestData.OutVal = ResM.uResult;
|
---|
5198 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5199 |
|
---|
5200 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
5201 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
5202 | pfn(&State, &ResU, &TestData.InVal1, &TestData.InVal2);
|
---|
5203 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5204 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
5205 | TestData.OutVal = ResU.uResult;
|
---|
5206 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5207 |
|
---|
5208 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
5209 | if (fXcpt)
|
---|
5210 | {
|
---|
5211 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
5212 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
5213 | pfn(&State, &Res1, &TestData.InVal1, &TestData.InVal2);
|
---|
5214 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5215 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
5216 | TestData.OutVal = Res1.uResult;
|
---|
5217 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5218 |
|
---|
5219 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
5220 | {
|
---|
5221 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
5222 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5223 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
5224 | pfn(&State, &Res2, &TestData.InVal1, &TestData.InVal2);
|
---|
5225 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5226 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
5227 | TestData.OutVal = Res2.uResult;
|
---|
5228 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5229 | }
|
---|
5230 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5231 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
5232 | if (fUnmasked & fXcpt)
|
---|
5233 | {
|
---|
5234 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5235 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
5236 | pfn(&State, &Res3, &TestData.InVal1, &TestData.InVal2);
|
---|
5237 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5238 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
5239 | TestData.OutVal = Res3.uResult;
|
---|
5240 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5241 | }
|
---|
5242 | }
|
---|
5243 | }
|
---|
5244 | }
|
---|
5245 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5246 | }
|
---|
5247 |
|
---|
5248 | return RTEXITCODE_SUCCESS;
|
---|
5249 | }
|
---|
5250 | #endif
|
---|
5251 |
|
---|
5252 | static void SseBinaryR32Test(void)
|
---|
5253 | {
|
---|
5254 | X86FXSTATE State;
|
---|
5255 | RT_ZERO(State);
|
---|
5256 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32); iFn++)
|
---|
5257 | {
|
---|
5258 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR32[iFn]))
|
---|
5259 | continue;
|
---|
5260 |
|
---|
5261 | SSE_BINARY_TEST_T const * const paTests = g_aSseBinaryR32[iFn].paTests;
|
---|
5262 | uint32_t const cbTests = g_aSseBinaryR32[iFn].cTests;
|
---|
5263 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseBinaryR32[iFn].pfn;
|
---|
5264 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR32[iFn]);
|
---|
5265 | if (!cbTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5266 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5267 | {
|
---|
5268 | for (uint32_t iTest = 0; iTest < cbTests / sizeof(paTests[0]); iTest++)
|
---|
5269 | {
|
---|
5270 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
5271 |
|
---|
5272 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
5273 | pfn(&State, &Res, &paTests[iTest].InVal1, &paTests[iTest].InVal2);
|
---|
5274 | bool fValsIdentical = RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
5275 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[1], &paTests[iTest].OutVal.ar32[1])
|
---|
5276 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[2], &paTests[iTest].OutVal.ar32[2])
|
---|
5277 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[3], &paTests[iTest].OutVal.ar32[3]);
|
---|
5278 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
5279 | || !fValsIdentical)
|
---|
5280 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s'%s'%s'%s\n"
|
---|
5281 | "%s -> mxcsr=%#08x %s'%s'%s'%s\n"
|
---|
5282 | "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n",
|
---|
5283 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
5284 | FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]),
|
---|
5285 | FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]),
|
---|
5286 | FormatR32(&paTests[iTest].InVal2.ar32[0]), FormatR32(&paTests[iTest].InVal2.ar32[1]),
|
---|
5287 | FormatR32(&paTests[iTest].InVal2.ar32[2]), FormatR32(&paTests[iTest].InVal2.ar32[3]),
|
---|
5288 | iVar ? " " : "", Res.MXCSR,
|
---|
5289 | FormatR32(&Res.uResult.ar32[0]), FormatR32(&Res.uResult.ar32[1]),
|
---|
5290 | FormatR32(&Res.uResult.ar32[2]), FormatR32(&Res.uResult.ar32[3]),
|
---|
5291 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
5292 | FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]),
|
---|
5293 | FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]),
|
---|
5294 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
5295 | !fValsIdentical ? " - val" : "",
|
---|
5296 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
5297 | }
|
---|
5298 | pfn = g_aSseBinaryR32[iFn].pfnNative;
|
---|
5299 | }
|
---|
5300 | }
|
---|
5301 | }
|
---|
5302 |
|
---|
5303 |
|
---|
5304 | /*
|
---|
5305 | * Binary SSE operations on packed single precision floating point values.
|
---|
5306 | */
|
---|
5307 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R64_T, SSE_BINARY_TEST_T, PFNIEMAIMPLFPSSEF2U128);
|
---|
5308 |
|
---|
5309 | static SSE_BINARY_R64_T g_aSseBinaryR64[] =
|
---|
5310 | {
|
---|
5311 | ENTRY_BIN(addpd_u128),
|
---|
5312 | ENTRY_BIN(mulpd_u128),
|
---|
5313 | ENTRY_BIN(subpd_u128),
|
---|
5314 | ENTRY_BIN(minpd_u128),
|
---|
5315 | ENTRY_BIN(divpd_u128),
|
---|
5316 | ENTRY_BIN(maxpd_u128),
|
---|
5317 | ENTRY_BIN(haddpd_u128),
|
---|
5318 | ENTRY_BIN(hsubpd_u128),
|
---|
5319 | ENTRY_BIN(sqrtpd_u128),
|
---|
5320 | ENTRY_BIN(addsubpd_u128),
|
---|
5321 | ENTRY_BIN(cvtpd2ps_u128),
|
---|
5322 | };
|
---|
5323 |
|
---|
5324 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5325 | static RTEXITCODE SseBinaryR64Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
5326 | {
|
---|
5327 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
5328 |
|
---|
5329 | static struct { RTFLOAT64U aVal1[2], aVal2[2]; } const s_aSpecials[] =
|
---|
5330 | {
|
---|
5331 | { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) },
|
---|
5332 | { RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1), RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) } },
|
---|
5333 | /** @todo More specials. */
|
---|
5334 | };
|
---|
5335 |
|
---|
5336 | X86FXSTATE State;
|
---|
5337 | RT_ZERO(State);
|
---|
5338 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
5339 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64); iFn++)
|
---|
5340 | {
|
---|
5341 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseBinaryR64[iFn].pfnNative ? g_aSseBinaryR64[iFn].pfnNative : g_aSseBinaryR64[iFn].pfn;
|
---|
5342 |
|
---|
5343 | IEMBINARYOUTPUT BinOut;
|
---|
5344 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryR64[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
5345 |
|
---|
5346 | uint32_t cNormalInputPairs = 0;
|
---|
5347 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5348 | {
|
---|
5349 | SSE_BINARY_TEST_T TestData; RT_ZERO(TestData);
|
---|
5350 |
|
---|
5351 | TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
5352 | TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
5353 | TestData.InVal2.ar64[0] = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0];
|
---|
5354 | TestData.InVal2.ar64[1] = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0];
|
---|
5355 |
|
---|
5356 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1])
|
---|
5357 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[1]))
|
---|
5358 | cNormalInputPairs++;
|
---|
5359 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
5360 | {
|
---|
5361 | iTest -= 1;
|
---|
5362 | continue;
|
---|
5363 | }
|
---|
5364 |
|
---|
5365 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
5366 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5367 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
5368 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
5369 | {
|
---|
5370 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
5371 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
5372 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
5373 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
5374 | | X86_MXCSR_XCPT_MASK;
|
---|
5375 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
5376 | pfn(&State, &ResM, &TestData.InVal1, &TestData.InVal2);
|
---|
5377 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5378 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
5379 | TestData.OutVal = ResM.uResult;
|
---|
5380 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5381 |
|
---|
5382 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
5383 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
5384 | pfn(&State, &ResU, &TestData.InVal1, &TestData.InVal2);
|
---|
5385 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5386 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
5387 | TestData.OutVal = ResU.uResult;
|
---|
5388 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5389 |
|
---|
5390 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
5391 | if (fXcpt)
|
---|
5392 | {
|
---|
5393 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
5394 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
5395 | pfn(&State, &Res1, &TestData.InVal1, &TestData.InVal2);
|
---|
5396 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5397 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
5398 | TestData.OutVal = Res1.uResult;
|
---|
5399 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5400 |
|
---|
5401 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
5402 | {
|
---|
5403 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
5404 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5405 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
5406 | pfn(&State, &Res2, &TestData.InVal1, &TestData.InVal2);
|
---|
5407 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5408 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
5409 | TestData.OutVal = Res2.uResult;
|
---|
5410 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5411 | }
|
---|
5412 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5413 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
5414 | if (fUnmasked & fXcpt)
|
---|
5415 | {
|
---|
5416 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5417 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
5418 | pfn(&State, &Res3, &TestData.InVal1, &TestData.InVal2);
|
---|
5419 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5420 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
5421 | TestData.OutVal = Res3.uResult;
|
---|
5422 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5423 | }
|
---|
5424 | }
|
---|
5425 | }
|
---|
5426 | }
|
---|
5427 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5428 | }
|
---|
5429 |
|
---|
5430 | return RTEXITCODE_SUCCESS;
|
---|
5431 | }
|
---|
5432 | #endif
|
---|
5433 |
|
---|
5434 |
|
---|
5435 | static void SseBinaryR64Test(void)
|
---|
5436 | {
|
---|
5437 | X86FXSTATE State;
|
---|
5438 | RT_ZERO(State);
|
---|
5439 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64); iFn++)
|
---|
5440 | {
|
---|
5441 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR64[iFn]))
|
---|
5442 | continue;
|
---|
5443 |
|
---|
5444 | SSE_BINARY_TEST_T const * const paTests = g_aSseBinaryR64[iFn].paTests;
|
---|
5445 | uint32_t const cTests = g_aSseBinaryR64[iFn].cTests;
|
---|
5446 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseBinaryR64[iFn].pfn;
|
---|
5447 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR64[iFn]);
|
---|
5448 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5449 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5450 | {
|
---|
5451 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
5452 | {
|
---|
5453 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
5454 |
|
---|
5455 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
5456 | pfn(&State, &Res, &paTests[iTest].InVal1, &paTests[iTest].InVal2);
|
---|
5457 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
5458 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
5459 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
5460 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s'%s\n"
|
---|
5461 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
5462 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
5463 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
5464 | FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]),
|
---|
5465 | FormatR64(&paTests[iTest].InVal2.ar64[0]), FormatR64(&paTests[iTest].InVal2.ar64[1]),
|
---|
5466 | iVar ? " " : "", Res.MXCSR,
|
---|
5467 | FormatR64(&Res.uResult.ar64[0]), FormatR64(&Res.uResult.ar64[1]),
|
---|
5468 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
5469 | FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]),
|
---|
5470 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
5471 | ( !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
5472 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
5473 | ? " - val" : "",
|
---|
5474 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
5475 | }
|
---|
5476 | pfn = g_aSseBinaryR64[iFn].pfnNative;
|
---|
5477 | }
|
---|
5478 | }
|
---|
5479 | }
|
---|
5480 |
|
---|
5481 |
|
---|
5482 | /*
|
---|
5483 | * Binary SSE operations on packed single precision floating point values.
|
---|
5484 | */
|
---|
5485 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_U128_R32_T, SSE_BINARY_U128_R32_TEST_T, PFNIEMAIMPLFPSSEF2U128R32);
|
---|
5486 |
|
---|
5487 | static SSE_BINARY_U128_R32_T g_aSseBinaryU128R32[] =
|
---|
5488 | {
|
---|
5489 | ENTRY_BIN(addss_u128_r32),
|
---|
5490 | ENTRY_BIN(mulss_u128_r32),
|
---|
5491 | ENTRY_BIN(subss_u128_r32),
|
---|
5492 | ENTRY_BIN(minss_u128_r32),
|
---|
5493 | ENTRY_BIN(divss_u128_r32),
|
---|
5494 | ENTRY_BIN(maxss_u128_r32),
|
---|
5495 | ENTRY_BIN(cvtss2sd_u128_r32),
|
---|
5496 | ENTRY_BIN(sqrtss_u128_r32),
|
---|
5497 | };
|
---|
5498 |
|
---|
5499 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5500 | static RTEXITCODE SseBinaryU128R32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
5501 | {
|
---|
5502 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
5503 |
|
---|
5504 | static struct { RTFLOAT32U aVal1[4], Val2; } const s_aSpecials[] =
|
---|
5505 | {
|
---|
5506 | { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), }, RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) },
|
---|
5507 | /** @todo More specials. */
|
---|
5508 | };
|
---|
5509 |
|
---|
5510 | X86FXSTATE State;
|
---|
5511 | RT_ZERO(State);
|
---|
5512 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
5513 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R32); iFn++)
|
---|
5514 | {
|
---|
5515 | PFNIEMAIMPLFPSSEF2U128R32 const pfn = g_aSseBinaryU128R32[iFn].pfnNative ? g_aSseBinaryU128R32[iFn].pfnNative : g_aSseBinaryU128R32[iFn].pfn;
|
---|
5516 |
|
---|
5517 | IEMBINARYOUTPUT BinOut;
|
---|
5518 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryU128R32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
5519 |
|
---|
5520 | uint32_t cNormalInputPairs = 0;
|
---|
5521 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5522 | {
|
---|
5523 | SSE_BINARY_U128_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
5524 |
|
---|
5525 | TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
5526 | TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
5527 | TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2];
|
---|
5528 | TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3];
|
---|
5529 |
|
---|
5530 | TestData.r32Val2 = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
5531 |
|
---|
5532 | if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0])
|
---|
5533 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1])
|
---|
5534 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2])
|
---|
5535 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3])
|
---|
5536 | && RTFLOAT32U_IS_NORMAL(&TestData.r32Val2))
|
---|
5537 | cNormalInputPairs++;
|
---|
5538 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
5539 | {
|
---|
5540 | iTest -= 1;
|
---|
5541 | continue;
|
---|
5542 | }
|
---|
5543 |
|
---|
5544 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
5545 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5546 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
5547 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
5548 | {
|
---|
5549 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
5550 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
5551 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
5552 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
5553 | | X86_MXCSR_XCPT_MASK;
|
---|
5554 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
5555 | pfn(&State, &ResM, &TestData.InVal1, &TestData.r32Val2);
|
---|
5556 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5557 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
5558 | TestData.OutVal = ResM.uResult;
|
---|
5559 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5560 |
|
---|
5561 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
5562 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
5563 | pfn(&State, &ResU, &TestData.InVal1, &TestData.r32Val2);
|
---|
5564 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5565 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
5566 | TestData.OutVal = ResU.uResult;
|
---|
5567 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5568 |
|
---|
5569 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
5570 | if (fXcpt)
|
---|
5571 | {
|
---|
5572 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
5573 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
5574 | pfn(&State, &Res1, &TestData.InVal1, &TestData.r32Val2);
|
---|
5575 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5576 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
5577 | TestData.OutVal = Res1.uResult;
|
---|
5578 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5579 |
|
---|
5580 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
5581 | {
|
---|
5582 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
5583 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5584 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
5585 | pfn(&State, &Res2, &TestData.InVal1, &TestData.r32Val2);
|
---|
5586 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5587 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
5588 | TestData.OutVal = Res2.uResult;
|
---|
5589 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5590 | }
|
---|
5591 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5592 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
5593 | if (fUnmasked & fXcpt)
|
---|
5594 | {
|
---|
5595 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5596 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
5597 | pfn(&State, &Res3, &TestData.InVal1, &TestData.r32Val2);
|
---|
5598 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5599 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
5600 | TestData.OutVal = Res3.uResult;
|
---|
5601 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5602 | }
|
---|
5603 | }
|
---|
5604 | }
|
---|
5605 | }
|
---|
5606 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5607 | }
|
---|
5608 |
|
---|
5609 | return RTEXITCODE_SUCCESS;
|
---|
5610 | }
|
---|
5611 | #endif
|
---|
5612 |
|
---|
5613 | static void SseBinaryU128R32Test(void)
|
---|
5614 | {
|
---|
5615 | X86FXSTATE State;
|
---|
5616 | RT_ZERO(State);
|
---|
5617 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R32); iFn++)
|
---|
5618 | {
|
---|
5619 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryU128R32[iFn]))
|
---|
5620 | continue;
|
---|
5621 |
|
---|
5622 | SSE_BINARY_U128_R32_TEST_T const * const paTests = g_aSseBinaryU128R32[iFn].paTests;
|
---|
5623 | uint32_t const cTests = g_aSseBinaryU128R32[iFn].cTests;
|
---|
5624 | PFNIEMAIMPLFPSSEF2U128R32 pfn = g_aSseBinaryU128R32[iFn].pfn;
|
---|
5625 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryU128R32[iFn]);
|
---|
5626 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5627 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5628 | {
|
---|
5629 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
5630 | {
|
---|
5631 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
5632 |
|
---|
5633 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
5634 | pfn(&State, &Res, &paTests[iTest].InVal1, &paTests[iTest].r32Val2);
|
---|
5635 | bool fValsIdentical = RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
5636 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[1], &paTests[iTest].OutVal.ar32[1])
|
---|
5637 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[2], &paTests[iTest].OutVal.ar32[2])
|
---|
5638 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[3], &paTests[iTest].OutVal.ar32[3]);
|
---|
5639 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
5640 | || !fValsIdentical)
|
---|
5641 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s\n"
|
---|
5642 | "%s -> mxcsr=%#08x %s'%s'%s'%s\n"
|
---|
5643 | "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n",
|
---|
5644 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
5645 | FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]),
|
---|
5646 | FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]),
|
---|
5647 | FormatR32(&paTests[iTest].r32Val2),
|
---|
5648 | iVar ? " " : "", Res.MXCSR,
|
---|
5649 | FormatR32(&Res.uResult.ar32[0]), FormatR32(&Res.uResult.ar32[1]),
|
---|
5650 | FormatR32(&Res.uResult.ar32[2]), FormatR32(&Res.uResult.ar32[3]),
|
---|
5651 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
5652 | FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]),
|
---|
5653 | FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]),
|
---|
5654 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
5655 | !fValsIdentical ? " - val" : "",
|
---|
5656 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
5657 | }
|
---|
5658 | }
|
---|
5659 | }
|
---|
5660 | }
|
---|
5661 |
|
---|
5662 |
|
---|
5663 | /*
|
---|
5664 | * Binary SSE operations on packed single precision floating point values (xxxsd xmm1, r/m64).
|
---|
5665 | */
|
---|
5666 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_U128_R64_T, SSE_BINARY_U128_R64_TEST_T, PFNIEMAIMPLFPSSEF2U128R64);
|
---|
5667 |
|
---|
5668 | static SSE_BINARY_U128_R64_T g_aSseBinaryU128R64[] =
|
---|
5669 | {
|
---|
5670 | ENTRY_BIN(addsd_u128_r64),
|
---|
5671 | ENTRY_BIN(mulsd_u128_r64),
|
---|
5672 | ENTRY_BIN(subsd_u128_r64),
|
---|
5673 | ENTRY_BIN(minsd_u128_r64),
|
---|
5674 | ENTRY_BIN(divsd_u128_r64),
|
---|
5675 | ENTRY_BIN(maxsd_u128_r64),
|
---|
5676 | ENTRY_BIN(cvtsd2ss_u128_r64),
|
---|
5677 | ENTRY_BIN(sqrtsd_u128_r64),
|
---|
5678 | };
|
---|
5679 |
|
---|
5680 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5681 | static RTEXITCODE SseBinaryU128R64Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
5682 | {
|
---|
5683 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
5684 |
|
---|
5685 | static struct { RTFLOAT64U aVal1[2], Val2; } const s_aSpecials[] =
|
---|
5686 | {
|
---|
5687 | { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) }, RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) },
|
---|
5688 | /** @todo More specials. */
|
---|
5689 | };
|
---|
5690 |
|
---|
5691 | X86FXSTATE State;
|
---|
5692 | RT_ZERO(State);
|
---|
5693 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
5694 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R64); iFn++)
|
---|
5695 | {
|
---|
5696 | PFNIEMAIMPLFPSSEF2U128R64 const pfn = g_aSseBinaryU128R64[iFn].pfnNative ? g_aSseBinaryU128R64[iFn].pfnNative : g_aSseBinaryU128R64[iFn].pfn;
|
---|
5697 |
|
---|
5698 | IEMBINARYOUTPUT BinOut;
|
---|
5699 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryU128R64[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
5700 |
|
---|
5701 | uint32_t cNormalInputPairs = 0;
|
---|
5702 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5703 | {
|
---|
5704 | SSE_BINARY_U128_R64_TEST_T TestData; RT_ZERO(TestData);
|
---|
5705 |
|
---|
5706 | TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
5707 | TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
5708 | TestData.r64Val2 = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
5709 |
|
---|
5710 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1])
|
---|
5711 | && RTFLOAT64U_IS_NORMAL(&TestData.r64Val2))
|
---|
5712 | cNormalInputPairs++;
|
---|
5713 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
5714 | {
|
---|
5715 | iTest -= 1;
|
---|
5716 | continue;
|
---|
5717 | }
|
---|
5718 |
|
---|
5719 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
5720 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5721 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
5722 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
5723 | {
|
---|
5724 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
5725 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
5726 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
5727 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
5728 | | X86_MXCSR_XCPT_MASK;
|
---|
5729 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
5730 | pfn(&State, &ResM, &TestData.InVal1, &TestData.r64Val2);
|
---|
5731 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5732 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
5733 | TestData.OutVal = ResM.uResult;
|
---|
5734 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5735 |
|
---|
5736 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
5737 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
5738 | pfn(&State, &ResU, &TestData.InVal1, &TestData.r64Val2);
|
---|
5739 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5740 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
5741 | TestData.OutVal = ResU.uResult;
|
---|
5742 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5743 |
|
---|
5744 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
5745 | if (fXcpt)
|
---|
5746 | {
|
---|
5747 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
5748 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
5749 | pfn(&State, &Res1, &TestData.InVal1, &TestData.r64Val2);
|
---|
5750 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5751 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
5752 | TestData.OutVal = Res1.uResult;
|
---|
5753 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5754 |
|
---|
5755 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
5756 | {
|
---|
5757 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
5758 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5759 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
5760 | pfn(&State, &Res2, &TestData.InVal1, &TestData.r64Val2);
|
---|
5761 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5762 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
5763 | TestData.OutVal = Res2.uResult;
|
---|
5764 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5765 | }
|
---|
5766 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5767 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
5768 | if (fUnmasked & fXcpt)
|
---|
5769 | {
|
---|
5770 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5771 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
5772 | pfn(&State, &Res3, &TestData.InVal1, &TestData.r64Val2);
|
---|
5773 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5774 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
5775 | TestData.OutVal = Res3.uResult;
|
---|
5776 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5777 | }
|
---|
5778 | }
|
---|
5779 | }
|
---|
5780 | }
|
---|
5781 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5782 | }
|
---|
5783 |
|
---|
5784 | return RTEXITCODE_SUCCESS;
|
---|
5785 | }
|
---|
5786 | #endif
|
---|
5787 |
|
---|
5788 |
|
---|
5789 | static void SseBinaryU128R64Test(void)
|
---|
5790 | {
|
---|
5791 | X86FXSTATE State;
|
---|
5792 | RT_ZERO(State);
|
---|
5793 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R64); iFn++)
|
---|
5794 | {
|
---|
5795 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryU128R64[iFn]))
|
---|
5796 | continue;
|
---|
5797 |
|
---|
5798 | SSE_BINARY_U128_R64_TEST_T const * const paTests = g_aSseBinaryU128R64[iFn].paTests;
|
---|
5799 | uint32_t const cTests = g_aSseBinaryU128R64[iFn].cTests;
|
---|
5800 | PFNIEMAIMPLFPSSEF2U128R64 pfn = g_aSseBinaryU128R64[iFn].pfn;
|
---|
5801 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryU128R64[iFn]);
|
---|
5802 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5803 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5804 | {
|
---|
5805 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
5806 | {
|
---|
5807 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
5808 |
|
---|
5809 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
5810 | pfn(&State, &Res, &paTests[iTest].InVal1, &paTests[iTest].r64Val2);
|
---|
5811 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
5812 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
5813 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
5814 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s\n"
|
---|
5815 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
5816 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
5817 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
5818 | FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]),
|
---|
5819 | FormatR64(&paTests[iTest].r64Val2),
|
---|
5820 | iVar ? " " : "", Res.MXCSR,
|
---|
5821 | FormatR64(&Res.uResult.ar64[0]), FormatR64(&Res.uResult.ar64[1]),
|
---|
5822 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
5823 | FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]),
|
---|
5824 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
5825 | ( !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
5826 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
5827 | ? " - val" : "",
|
---|
5828 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
5829 | }
|
---|
5830 | }
|
---|
5831 | }
|
---|
5832 | }
|
---|
5833 |
|
---|
5834 |
|
---|
5835 | /*
|
---|
5836 | * SSE operations converting single double-precision floating point values to signed double-word integers (cvttsd2si and friends).
|
---|
5837 | */
|
---|
5838 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I32_R64_T, SSE_BINARY_I32_R64_TEST_T, PFNIEMAIMPLSSEF2I32U64);
|
---|
5839 |
|
---|
5840 | static SSE_BINARY_I32_R64_T g_aSseBinaryI32R64[] =
|
---|
5841 | {
|
---|
5842 | ENTRY_BIN(cvttsd2si_i32_r64),
|
---|
5843 | ENTRY_BIN(cvtsd2si_i32_r64),
|
---|
5844 | };
|
---|
5845 |
|
---|
5846 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5847 | static RTEXITCODE SseBinaryI32R64Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
5848 | {
|
---|
5849 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
5850 |
|
---|
5851 | static struct { RTFLOAT64U Val; } const s_aSpecials[] =
|
---|
5852 | {
|
---|
5853 | { RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) },
|
---|
5854 | /** @todo More specials. */
|
---|
5855 | };
|
---|
5856 |
|
---|
5857 | X86FXSTATE State;
|
---|
5858 | RT_ZERO(State);
|
---|
5859 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
5860 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R64); iFn++)
|
---|
5861 | {
|
---|
5862 | PFNIEMAIMPLSSEF2I32U64 const pfn = g_aSseBinaryI32R64[iFn].pfnNative ? g_aSseBinaryI32R64[iFn].pfnNative : g_aSseBinaryI32R64[iFn].pfn;
|
---|
5863 |
|
---|
5864 | IEMBINARYOUTPUT BinOut;
|
---|
5865 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryI32R64[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
5866 |
|
---|
5867 | uint32_t cNormalInputPairs = 0;
|
---|
5868 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5869 | {
|
---|
5870 | SSE_BINARY_I32_R64_TEST_T TestData; RT_ZERO(TestData);
|
---|
5871 |
|
---|
5872 | TestData.r64ValIn = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val;
|
---|
5873 |
|
---|
5874 | if (RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn))
|
---|
5875 | cNormalInputPairs++;
|
---|
5876 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
5877 | {
|
---|
5878 | iTest -= 1;
|
---|
5879 | continue;
|
---|
5880 | }
|
---|
5881 |
|
---|
5882 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
5883 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5884 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
5885 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
5886 | {
|
---|
5887 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
5888 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
5889 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
5890 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
5891 | | X86_MXCSR_XCPT_MASK;
|
---|
5892 | uint32_t fMxcsrM; int32_t i32OutM;
|
---|
5893 | pfn(&State, &fMxcsrM, &i32OutM, &TestData.r64ValIn.u);
|
---|
5894 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5895 | TestData.fMxcsrOut = fMxcsrM;
|
---|
5896 | TestData.i32ValOut = i32OutM;
|
---|
5897 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5898 |
|
---|
5899 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
5900 | uint32_t fMxcsrU; int32_t i32OutU;
|
---|
5901 | pfn(&State, &fMxcsrU, &i32OutU, &TestData.r64ValIn.u);
|
---|
5902 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5903 | TestData.fMxcsrOut = fMxcsrU;
|
---|
5904 | TestData.i32ValOut = i32OutU;
|
---|
5905 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5906 |
|
---|
5907 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
5908 | if (fXcpt)
|
---|
5909 | {
|
---|
5910 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
5911 | uint32_t fMxcsr1; int32_t i32Out1;
|
---|
5912 | pfn(&State, &fMxcsr1, &i32Out1, &TestData.r64ValIn.u);
|
---|
5913 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5914 | TestData.fMxcsrOut = fMxcsr1;
|
---|
5915 | TestData.i32ValOut = i32Out1;
|
---|
5916 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5917 |
|
---|
5918 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
5919 | {
|
---|
5920 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
5921 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5922 | uint32_t fMxcsr2; int32_t i32Out2;
|
---|
5923 | pfn(&State, &fMxcsr2, &i32Out2, &TestData.r64ValIn.u);
|
---|
5924 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5925 | TestData.fMxcsrOut = fMxcsr2;
|
---|
5926 | TestData.i32ValOut = i32Out2;
|
---|
5927 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5928 | }
|
---|
5929 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5930 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
5931 | if (fUnmasked & fXcpt)
|
---|
5932 | {
|
---|
5933 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5934 | uint32_t fMxcsr3; int32_t i32Out3;
|
---|
5935 | pfn(&State, &fMxcsr3, &i32Out3, &TestData.r64ValIn.u);
|
---|
5936 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5937 | TestData.fMxcsrOut = fMxcsr3;
|
---|
5938 | TestData.i32ValOut = i32Out3;
|
---|
5939 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5940 | }
|
---|
5941 | }
|
---|
5942 | }
|
---|
5943 | }
|
---|
5944 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5945 | }
|
---|
5946 |
|
---|
5947 | return RTEXITCODE_SUCCESS;
|
---|
5948 | }
|
---|
5949 | #endif
|
---|
5950 |
|
---|
5951 |
|
---|
5952 | static void SseBinaryI32R64Test(void)
|
---|
5953 | {
|
---|
5954 | X86FXSTATE State;
|
---|
5955 | RT_ZERO(State);
|
---|
5956 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R64); iFn++)
|
---|
5957 | {
|
---|
5958 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI32R64[iFn]))
|
---|
5959 | continue;
|
---|
5960 |
|
---|
5961 | SSE_BINARY_I32_R64_TEST_T const * const paTests = g_aSseBinaryI32R64[iFn].paTests;
|
---|
5962 | uint32_t const cTests = g_aSseBinaryI32R64[iFn].cTests;
|
---|
5963 | PFNIEMAIMPLSSEF2I32U64 pfn = g_aSseBinaryI32R64[iFn].pfn;
|
---|
5964 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI32R64[iFn]);
|
---|
5965 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5966 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5967 | {
|
---|
5968 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
5969 | {
|
---|
5970 | uint32_t fMxcsr = 0;
|
---|
5971 | int32_t i32Dst = 0;
|
---|
5972 |
|
---|
5973 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
5974 | pfn(&State, &fMxcsr, &i32Dst, &paTests[iTest].r64ValIn.u);
|
---|
5975 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
5976 | || i32Dst != paTests[iTest].i32ValOut)
|
---|
5977 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n"
|
---|
5978 | "%s -> mxcsr=%#08x %RI32\n"
|
---|
5979 | "%s expected %#08x %RI32%s%s (%s)\n",
|
---|
5980 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
5981 | FormatR64(&paTests[iTest].r64ValIn),
|
---|
5982 | iVar ? " " : "", fMxcsr, i32Dst,
|
---|
5983 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i32ValOut,
|
---|
5984 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
5985 | i32Dst != paTests[iTest].i32ValOut
|
---|
5986 | ? " - val" : "",
|
---|
5987 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
5988 | }
|
---|
5989 | }
|
---|
5990 | }
|
---|
5991 | }
|
---|
5992 |
|
---|
5993 |
|
---|
5994 | /*
|
---|
5995 | * SSE operations converting single double-precision floating point values to signed quad-word integers (cvttsd2si and friends).
|
---|
5996 | */
|
---|
5997 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I64_R64_T, SSE_BINARY_I64_R64_TEST_T, PFNIEMAIMPLSSEF2I64U64);
|
---|
5998 |
|
---|
5999 | static SSE_BINARY_I64_R64_T g_aSseBinaryI64R64[] =
|
---|
6000 | {
|
---|
6001 | ENTRY_BIN(cvttsd2si_i64_r64),
|
---|
6002 | ENTRY_BIN(cvtsd2si_i64_r64),
|
---|
6003 | };
|
---|
6004 |
|
---|
6005 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6006 | static RTEXITCODE SseBinaryI64R64Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
6007 | {
|
---|
6008 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6009 |
|
---|
6010 | static struct { RTFLOAT64U Val; } const s_aSpecials[] =
|
---|
6011 | {
|
---|
6012 | { RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) },
|
---|
6013 | /** @todo More specials. */
|
---|
6014 | };
|
---|
6015 |
|
---|
6016 | X86FXSTATE State;
|
---|
6017 | RT_ZERO(State);
|
---|
6018 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
6019 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R64); iFn++)
|
---|
6020 | {
|
---|
6021 | PFNIEMAIMPLSSEF2I64U64 const pfn = g_aSseBinaryI64R64[iFn].pfnNative ? g_aSseBinaryI64R64[iFn].pfnNative : g_aSseBinaryI64R64[iFn].pfn;
|
---|
6022 |
|
---|
6023 | IEMBINARYOUTPUT BinOut;
|
---|
6024 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryI64R64[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
6025 |
|
---|
6026 | uint32_t cNormalInputPairs = 0;
|
---|
6027 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6028 | {
|
---|
6029 | SSE_BINARY_I64_R64_TEST_T TestData; RT_ZERO(TestData);
|
---|
6030 |
|
---|
6031 | TestData.r64ValIn = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val;
|
---|
6032 |
|
---|
6033 | if (RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn))
|
---|
6034 | cNormalInputPairs++;
|
---|
6035 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
6036 | {
|
---|
6037 | iTest -= 1;
|
---|
6038 | continue;
|
---|
6039 | }
|
---|
6040 |
|
---|
6041 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6042 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6043 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6044 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6045 | {
|
---|
6046 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6047 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6048 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6049 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6050 | | X86_MXCSR_XCPT_MASK;
|
---|
6051 | uint32_t fMxcsrM; int64_t i64OutM;
|
---|
6052 | pfn(&State, &fMxcsrM, &i64OutM, &TestData.r64ValIn.u);
|
---|
6053 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6054 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6055 | TestData.i64ValOut = i64OutM;
|
---|
6056 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6057 |
|
---|
6058 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
6059 | uint32_t fMxcsrU; int64_t i64OutU;
|
---|
6060 | pfn(&State, &fMxcsrU, &i64OutU, &TestData.r64ValIn.u);
|
---|
6061 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6062 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6063 | TestData.i64ValOut = i64OutU;
|
---|
6064 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6065 |
|
---|
6066 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6067 | if (fXcpt)
|
---|
6068 | {
|
---|
6069 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6070 | uint32_t fMxcsr1; int64_t i64Out1;
|
---|
6071 | pfn(&State, &fMxcsr1, &i64Out1, &TestData.r64ValIn.u);
|
---|
6072 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6073 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6074 | TestData.i64ValOut = i64Out1;
|
---|
6075 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6076 |
|
---|
6077 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6078 | {
|
---|
6079 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6080 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6081 | uint32_t fMxcsr2; int64_t i64Out2;
|
---|
6082 | pfn(&State, &fMxcsr2, &i64Out2, &TestData.r64ValIn.u);
|
---|
6083 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6084 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6085 | TestData.i64ValOut = i64Out2;
|
---|
6086 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6087 | }
|
---|
6088 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6089 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6090 | if (fUnmasked & fXcpt)
|
---|
6091 | {
|
---|
6092 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6093 | uint32_t fMxcsr3; int64_t i64Out3;
|
---|
6094 | pfn(&State, &fMxcsr3, &i64Out3, &TestData.r64ValIn.u);
|
---|
6095 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6096 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6097 | TestData.i64ValOut = i64Out3;
|
---|
6098 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6099 | }
|
---|
6100 | }
|
---|
6101 | }
|
---|
6102 | }
|
---|
6103 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6104 | }
|
---|
6105 |
|
---|
6106 | return RTEXITCODE_SUCCESS;
|
---|
6107 | }
|
---|
6108 | #endif
|
---|
6109 |
|
---|
6110 |
|
---|
6111 | static void SseBinaryI64R64Test(void)
|
---|
6112 | {
|
---|
6113 | X86FXSTATE State;
|
---|
6114 | RT_ZERO(State);
|
---|
6115 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R64); iFn++)
|
---|
6116 | {
|
---|
6117 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI64R64[iFn]))
|
---|
6118 | continue;
|
---|
6119 |
|
---|
6120 | SSE_BINARY_I64_R64_TEST_T const * const paTests = g_aSseBinaryI64R64[iFn].paTests;
|
---|
6121 | uint32_t const cTests = g_aSseBinaryI64R64[iFn].cTests;
|
---|
6122 | PFNIEMAIMPLSSEF2I64U64 pfn = g_aSseBinaryI64R64[iFn].pfn;
|
---|
6123 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI32R64[iFn]);
|
---|
6124 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6125 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6126 | {
|
---|
6127 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6128 | {
|
---|
6129 | uint32_t fMxcsr = 0;
|
---|
6130 | int64_t i64Dst = 0;
|
---|
6131 |
|
---|
6132 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
6133 | pfn(&State, &fMxcsr, &i64Dst, &paTests[iTest].r64ValIn.u);
|
---|
6134 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
6135 | || i64Dst != paTests[iTest].i64ValOut)
|
---|
6136 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n"
|
---|
6137 | "%s -> mxcsr=%#08x %RI64\n"
|
---|
6138 | "%s expected %#08x %RI64%s%s (%s)\n",
|
---|
6139 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6140 | FormatR64(&paTests[iTest].r64ValIn),
|
---|
6141 | iVar ? " " : "", fMxcsr, i64Dst,
|
---|
6142 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i64ValOut,
|
---|
6143 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
6144 | i64Dst != paTests[iTest].i64ValOut
|
---|
6145 | ? " - val" : "",
|
---|
6146 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6147 | }
|
---|
6148 | }
|
---|
6149 | }
|
---|
6150 | }
|
---|
6151 |
|
---|
6152 |
|
---|
6153 | /*
|
---|
6154 | * SSE operations converting single single-precision floating point values to signed double-word integers (cvttss2si and friends).
|
---|
6155 | */
|
---|
6156 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I32_R32_T, SSE_BINARY_I32_R32_TEST_T, PFNIEMAIMPLSSEF2I32U32);
|
---|
6157 |
|
---|
6158 | static SSE_BINARY_I32_R32_T g_aSseBinaryI32R32[] =
|
---|
6159 | {
|
---|
6160 | ENTRY_BIN(cvttss2si_i32_r32),
|
---|
6161 | ENTRY_BIN(cvtss2si_i32_r32),
|
---|
6162 | };
|
---|
6163 |
|
---|
6164 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6165 | static RTEXITCODE SseBinaryI32R32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
6166 | {
|
---|
6167 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6168 |
|
---|
6169 | static struct { RTFLOAT32U Val; } const s_aSpecials[] =
|
---|
6170 | {
|
---|
6171 | { RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) },
|
---|
6172 | /** @todo More specials. */
|
---|
6173 | };
|
---|
6174 |
|
---|
6175 | X86FXSTATE State;
|
---|
6176 | RT_ZERO(State);
|
---|
6177 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
6178 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R32); iFn++)
|
---|
6179 | {
|
---|
6180 | PFNIEMAIMPLSSEF2I32U32 const pfn = g_aSseBinaryI32R32[iFn].pfnNative ? g_aSseBinaryI32R32[iFn].pfnNative : g_aSseBinaryI32R32[iFn].pfn;
|
---|
6181 |
|
---|
6182 | IEMBINARYOUTPUT BinOut;
|
---|
6183 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryI32R32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
6184 |
|
---|
6185 | uint32_t cNormalInputPairs = 0;
|
---|
6186 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6187 | {
|
---|
6188 | SSE_BINARY_I32_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
6189 |
|
---|
6190 | TestData.r32ValIn = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val;
|
---|
6191 |
|
---|
6192 | if (RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn))
|
---|
6193 | cNormalInputPairs++;
|
---|
6194 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
6195 | {
|
---|
6196 | iTest -= 1;
|
---|
6197 | continue;
|
---|
6198 | }
|
---|
6199 |
|
---|
6200 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6201 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6202 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6203 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6204 | {
|
---|
6205 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6206 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6207 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6208 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6209 | | X86_MXCSR_XCPT_MASK;
|
---|
6210 | uint32_t fMxcsrM; int32_t i32OutM;
|
---|
6211 | pfn(&State, &fMxcsrM, &i32OutM, &TestData.r32ValIn.u);
|
---|
6212 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6213 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6214 | TestData.i32ValOut = i32OutM;
|
---|
6215 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6216 |
|
---|
6217 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
6218 | uint32_t fMxcsrU; int32_t i32OutU;
|
---|
6219 | pfn(&State, &fMxcsrU, &i32OutU, &TestData.r32ValIn.u);
|
---|
6220 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6221 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6222 | TestData.i32ValOut = i32OutU;
|
---|
6223 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6224 |
|
---|
6225 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6226 | if (fXcpt)
|
---|
6227 | {
|
---|
6228 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6229 | uint32_t fMxcsr1; int32_t i32Out1;
|
---|
6230 | pfn(&State, &fMxcsr1, &i32Out1, &TestData.r32ValIn.u);
|
---|
6231 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6232 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6233 | TestData.i32ValOut = i32Out1;
|
---|
6234 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6235 |
|
---|
6236 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6237 | {
|
---|
6238 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6239 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6240 | uint32_t fMxcsr2; int32_t i32Out2;
|
---|
6241 | pfn(&State, &fMxcsr2, &i32Out2, &TestData.r32ValIn.u);
|
---|
6242 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6243 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6244 | TestData.i32ValOut = i32Out2;
|
---|
6245 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6246 | }
|
---|
6247 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6248 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6249 | if (fUnmasked & fXcpt)
|
---|
6250 | {
|
---|
6251 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6252 | uint32_t fMxcsr3; int32_t i32Out3;
|
---|
6253 | pfn(&State, &fMxcsr3, &i32Out3, &TestData.r32ValIn.u);
|
---|
6254 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6255 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6256 | TestData.i32ValOut = i32Out3;
|
---|
6257 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6258 | }
|
---|
6259 | }
|
---|
6260 | }
|
---|
6261 | }
|
---|
6262 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6263 | }
|
---|
6264 |
|
---|
6265 | return RTEXITCODE_SUCCESS;
|
---|
6266 | }
|
---|
6267 | #endif
|
---|
6268 |
|
---|
6269 |
|
---|
6270 | static void SseBinaryI32R32Test(void)
|
---|
6271 | {
|
---|
6272 | X86FXSTATE State;
|
---|
6273 | RT_ZERO(State);
|
---|
6274 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R32); iFn++)
|
---|
6275 | {
|
---|
6276 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI32R32[iFn]))
|
---|
6277 | continue;
|
---|
6278 |
|
---|
6279 | SSE_BINARY_I32_R32_TEST_T const * const paTests = g_aSseBinaryI32R32[iFn].paTests;
|
---|
6280 | uint32_t const cTests = g_aSseBinaryI32R32[iFn].cTests;
|
---|
6281 | PFNIEMAIMPLSSEF2I32U32 pfn = g_aSseBinaryI32R32[iFn].pfn;
|
---|
6282 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI32R32[iFn]);
|
---|
6283 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6284 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6285 | {
|
---|
6286 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6287 | {
|
---|
6288 | uint32_t fMxcsr = 0;
|
---|
6289 | int32_t i32Dst = 0;
|
---|
6290 |
|
---|
6291 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
6292 | pfn(&State, &fMxcsr, &i32Dst, &paTests[iTest].r32ValIn.u);
|
---|
6293 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
6294 | || i32Dst != paTests[iTest].i32ValOut)
|
---|
6295 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n"
|
---|
6296 | "%s -> mxcsr=%#08x %RI32\n"
|
---|
6297 | "%s expected %#08x %RI32%s%s (%s)\n",
|
---|
6298 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6299 | FormatR32(&paTests[iTest].r32ValIn),
|
---|
6300 | iVar ? " " : "", fMxcsr, i32Dst,
|
---|
6301 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i32ValOut,
|
---|
6302 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
6303 | i32Dst != paTests[iTest].i32ValOut
|
---|
6304 | ? " - val" : "",
|
---|
6305 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6306 | }
|
---|
6307 | }
|
---|
6308 | }
|
---|
6309 | }
|
---|
6310 |
|
---|
6311 |
|
---|
6312 | /*
|
---|
6313 | * SSE operations converting single single-precision floating point values to signed quad-word integers (cvttss2si and friends).
|
---|
6314 | */
|
---|
6315 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I64_R32_T, SSE_BINARY_I64_R32_TEST_T, PFNIEMAIMPLSSEF2I64U32);
|
---|
6316 |
|
---|
6317 | static SSE_BINARY_I64_R32_T g_aSseBinaryI64R32[] =
|
---|
6318 | {
|
---|
6319 | ENTRY_BIN(cvttss2si_i64_r32),
|
---|
6320 | ENTRY_BIN(cvtss2si_i64_r32),
|
---|
6321 | };
|
---|
6322 |
|
---|
6323 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6324 | static RTEXITCODE SseBinaryI64R32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
6325 | {
|
---|
6326 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6327 |
|
---|
6328 | static struct { RTFLOAT32U Val; } const s_aSpecials[] =
|
---|
6329 | {
|
---|
6330 | { RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) },
|
---|
6331 | /** @todo More specials. */
|
---|
6332 | };
|
---|
6333 |
|
---|
6334 | X86FXSTATE State;
|
---|
6335 | RT_ZERO(State);
|
---|
6336 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
6337 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R32); iFn++)
|
---|
6338 | {
|
---|
6339 | PFNIEMAIMPLSSEF2I64U32 const pfn = g_aSseBinaryI64R32[iFn].pfnNative ? g_aSseBinaryI64R32[iFn].pfnNative : g_aSseBinaryI64R32[iFn].pfn;
|
---|
6340 |
|
---|
6341 | IEMBINARYOUTPUT BinOut;
|
---|
6342 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryI64R32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
6343 |
|
---|
6344 | uint32_t cNormalInputPairs = 0;
|
---|
6345 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6346 | {
|
---|
6347 | SSE_BINARY_I64_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
6348 |
|
---|
6349 | TestData.r32ValIn = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val;
|
---|
6350 |
|
---|
6351 | if (RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn))
|
---|
6352 | cNormalInputPairs++;
|
---|
6353 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
6354 | {
|
---|
6355 | iTest -= 1;
|
---|
6356 | continue;
|
---|
6357 | }
|
---|
6358 |
|
---|
6359 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6360 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6361 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6362 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6363 | {
|
---|
6364 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6365 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6366 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6367 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6368 | | X86_MXCSR_XCPT_MASK;
|
---|
6369 | uint32_t fMxcsrM; int64_t i64OutM;
|
---|
6370 | pfn(&State, &fMxcsrM, &i64OutM, &TestData.r32ValIn.u);
|
---|
6371 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6372 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6373 | TestData.i64ValOut = i64OutM;
|
---|
6374 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6375 |
|
---|
6376 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
6377 | uint32_t fMxcsrU; int64_t i64OutU;
|
---|
6378 | pfn(&State, &fMxcsrU, &i64OutU, &TestData.r32ValIn.u);
|
---|
6379 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6380 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6381 | TestData.i64ValOut = i64OutU;
|
---|
6382 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6383 |
|
---|
6384 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6385 | if (fXcpt)
|
---|
6386 | {
|
---|
6387 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6388 | uint32_t fMxcsr1; int64_t i64Out1;
|
---|
6389 | pfn(&State, &fMxcsr1, &i64Out1, &TestData.r32ValIn.u);
|
---|
6390 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6391 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6392 | TestData.i64ValOut = i64Out1;
|
---|
6393 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6394 |
|
---|
6395 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6396 | {
|
---|
6397 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6398 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6399 | uint32_t fMxcsr2; int64_t i64Out2;
|
---|
6400 | pfn(&State, &fMxcsr2, &i64Out2, &TestData.r32ValIn.u);
|
---|
6401 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6402 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6403 | TestData.i64ValOut = i64Out2;
|
---|
6404 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6405 | }
|
---|
6406 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6407 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6408 | if (fUnmasked & fXcpt)
|
---|
6409 | {
|
---|
6410 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6411 | uint32_t fMxcsr3; int64_t i64Out3;
|
---|
6412 | pfn(&State, &fMxcsr3, &i64Out3, &TestData.r32ValIn.u);
|
---|
6413 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6414 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6415 | TestData.i64ValOut = i64Out3;
|
---|
6416 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6417 | }
|
---|
6418 | }
|
---|
6419 | }
|
---|
6420 | }
|
---|
6421 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6422 | }
|
---|
6423 |
|
---|
6424 | return RTEXITCODE_SUCCESS;
|
---|
6425 | }
|
---|
6426 | #endif
|
---|
6427 |
|
---|
6428 |
|
---|
6429 | static void SseBinaryI64R32Test(void)
|
---|
6430 | {
|
---|
6431 | X86FXSTATE State;
|
---|
6432 | RT_ZERO(State);
|
---|
6433 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R32); iFn++)
|
---|
6434 | {
|
---|
6435 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI64R32[iFn]))
|
---|
6436 | continue;
|
---|
6437 |
|
---|
6438 | SSE_BINARY_I64_R32_TEST_T const * const paTests = g_aSseBinaryI64R32[iFn].paTests;
|
---|
6439 | uint32_t const cTests = g_aSseBinaryI64R32[iFn].cTests;
|
---|
6440 | PFNIEMAIMPLSSEF2I64U32 pfn = g_aSseBinaryI64R32[iFn].pfn;
|
---|
6441 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI64R32[iFn]);
|
---|
6442 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6443 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6444 | {
|
---|
6445 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6446 | {
|
---|
6447 | uint32_t fMxcsr = 0;
|
---|
6448 | int64_t i64Dst = 0;
|
---|
6449 |
|
---|
6450 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
6451 | pfn(&State, &fMxcsr, &i64Dst, &paTests[iTest].r32ValIn.u);
|
---|
6452 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
6453 | || i64Dst != paTests[iTest].i64ValOut)
|
---|
6454 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n"
|
---|
6455 | "%s -> mxcsr=%#08x %RI64\n"
|
---|
6456 | "%s expected %#08x %RI64%s%s (%s)\n",
|
---|
6457 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6458 | FormatR32(&paTests[iTest].r32ValIn),
|
---|
6459 | iVar ? " " : "", fMxcsr, i64Dst,
|
---|
6460 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i64ValOut,
|
---|
6461 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
6462 | i64Dst != paTests[iTest].i64ValOut
|
---|
6463 | ? " - val" : "",
|
---|
6464 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6465 | }
|
---|
6466 | }
|
---|
6467 | }
|
---|
6468 | }
|
---|
6469 |
|
---|
6470 |
|
---|
6471 | /*
|
---|
6472 | * SSE operations converting single signed double-word integers to double-precision floating point values (probably only cvtsi2sd).
|
---|
6473 | */
|
---|
6474 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R64_I32_T, SSE_BINARY_R64_I32_TEST_T, PFNIEMAIMPLSSEF2R64I32);
|
---|
6475 |
|
---|
6476 | static SSE_BINARY_R64_I32_T g_aSseBinaryR64I32[] =
|
---|
6477 | {
|
---|
6478 | ENTRY_BIN(cvtsi2sd_r64_i32)
|
---|
6479 | };
|
---|
6480 |
|
---|
6481 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6482 | static RTEXITCODE SseBinaryR64I32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
6483 | {
|
---|
6484 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6485 |
|
---|
6486 | static int32_t const s_aSpecials[] =
|
---|
6487 | {
|
---|
6488 | INT32_MIN,
|
---|
6489 | INT32_MAX,
|
---|
6490 | /** @todo More specials. */
|
---|
6491 | };
|
---|
6492 |
|
---|
6493 | X86FXSTATE State;
|
---|
6494 | RT_ZERO(State);
|
---|
6495 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I32); iFn++)
|
---|
6496 | {
|
---|
6497 | PFNIEMAIMPLSSEF2R64I32 const pfn = g_aSseBinaryR64I32[iFn].pfnNative ? g_aSseBinaryR64I32[iFn].pfnNative : g_aSseBinaryR64I32[iFn].pfn;
|
---|
6498 |
|
---|
6499 | IEMBINARYOUTPUT BinOut;
|
---|
6500 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryR64I32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
6501 |
|
---|
6502 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6503 | {
|
---|
6504 | SSE_BINARY_R64_I32_TEST_T TestData; RT_ZERO(TestData);
|
---|
6505 |
|
---|
6506 | TestData.i32ValIn = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
6507 |
|
---|
6508 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6509 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6510 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6511 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6512 | {
|
---|
6513 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6514 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6515 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6516 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6517 | | X86_MXCSR_XCPT_MASK;
|
---|
6518 | uint32_t fMxcsrM; RTFLOAT64U r64OutM;
|
---|
6519 | pfn(&State, &fMxcsrM, &r64OutM, &TestData.i32ValIn);
|
---|
6520 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6521 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6522 | TestData.r64ValOut = r64OutM;
|
---|
6523 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6524 |
|
---|
6525 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
6526 | uint32_t fMxcsrU; RTFLOAT64U r64OutU;
|
---|
6527 | pfn(&State, &fMxcsrU, &r64OutU, &TestData.i32ValIn);
|
---|
6528 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6529 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6530 | TestData.r64ValOut = r64OutU;
|
---|
6531 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6532 |
|
---|
6533 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6534 | if (fXcpt)
|
---|
6535 | {
|
---|
6536 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6537 | uint32_t fMxcsr1; RTFLOAT64U r64Out1;
|
---|
6538 | pfn(&State, &fMxcsr1, &r64Out1, &TestData.i32ValIn);
|
---|
6539 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6540 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6541 | TestData.r64ValOut = r64Out1;
|
---|
6542 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6543 |
|
---|
6544 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6545 | {
|
---|
6546 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6547 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6548 | uint32_t fMxcsr2; RTFLOAT64U r64Out2;
|
---|
6549 | pfn(&State, &fMxcsr2, &r64Out2, &TestData.i32ValIn);
|
---|
6550 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6551 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6552 | TestData.r64ValOut = r64Out2;
|
---|
6553 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6554 | }
|
---|
6555 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6556 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6557 | if (fUnmasked & fXcpt)
|
---|
6558 | {
|
---|
6559 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6560 | uint32_t fMxcsr3; RTFLOAT64U r64Out3;
|
---|
6561 | pfn(&State, &fMxcsr3, &r64Out3, &TestData.i32ValIn);
|
---|
6562 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6563 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6564 | TestData.r64ValOut = r64Out3;
|
---|
6565 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6566 | }
|
---|
6567 | }
|
---|
6568 | }
|
---|
6569 | }
|
---|
6570 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6571 | }
|
---|
6572 |
|
---|
6573 | return RTEXITCODE_SUCCESS;
|
---|
6574 | }
|
---|
6575 | #endif
|
---|
6576 |
|
---|
6577 |
|
---|
6578 | static void SseBinaryR64I32Test(void)
|
---|
6579 | {
|
---|
6580 | X86FXSTATE State;
|
---|
6581 | RT_ZERO(State);
|
---|
6582 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I32); iFn++)
|
---|
6583 | {
|
---|
6584 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR64I32[iFn]))
|
---|
6585 | continue;
|
---|
6586 |
|
---|
6587 | SSE_BINARY_R64_I32_TEST_T const * const paTests = g_aSseBinaryR64I32[iFn].paTests;
|
---|
6588 | uint32_t const cTests = g_aSseBinaryR64I32[iFn].cTests;
|
---|
6589 | PFNIEMAIMPLSSEF2R64I32 pfn = g_aSseBinaryR64I32[iFn].pfn;
|
---|
6590 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR64I32[iFn]);
|
---|
6591 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6592 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6593 | {
|
---|
6594 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6595 | {
|
---|
6596 | uint32_t fMxcsr = 0;
|
---|
6597 | RTFLOAT64U r64Dst; RT_ZERO(r64Dst);
|
---|
6598 |
|
---|
6599 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
6600 | pfn(&State, &fMxcsr, &r64Dst, &paTests[iTest].i32ValIn);
|
---|
6601 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
6602 | || !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut))
|
---|
6603 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32\n"
|
---|
6604 | "%s -> mxcsr=%#08x %s\n"
|
---|
6605 | "%s expected %#08x %s%s%s (%s)\n",
|
---|
6606 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6607 | &paTests[iTest].i32ValIn,
|
---|
6608 | iVar ? " " : "", fMxcsr, FormatR64(&r64Dst),
|
---|
6609 | iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR64(&paTests[iTest].r64ValOut),
|
---|
6610 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
6611 | !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut)
|
---|
6612 | ? " - val" : "",
|
---|
6613 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6614 | }
|
---|
6615 | }
|
---|
6616 | }
|
---|
6617 | }
|
---|
6618 |
|
---|
6619 |
|
---|
6620 | /*
|
---|
6621 | * SSE operations converting single signed quad-word integers to double-precision floating point values (probably only cvtsi2sd).
|
---|
6622 | */
|
---|
6623 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R64_I64_T, SSE_BINARY_R64_I64_TEST_T, PFNIEMAIMPLSSEF2R64I64);
|
---|
6624 |
|
---|
6625 | static SSE_BINARY_R64_I64_T g_aSseBinaryR64I64[] =
|
---|
6626 | {
|
---|
6627 | ENTRY_BIN(cvtsi2sd_r64_i64),
|
---|
6628 | };
|
---|
6629 |
|
---|
6630 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6631 | static RTEXITCODE SseBinaryR64I64Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
6632 | {
|
---|
6633 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6634 |
|
---|
6635 | static int64_t const s_aSpecials[] =
|
---|
6636 | {
|
---|
6637 | INT64_MIN,
|
---|
6638 | INT64_MAX
|
---|
6639 | /** @todo More specials. */
|
---|
6640 | };
|
---|
6641 |
|
---|
6642 | X86FXSTATE State;
|
---|
6643 | RT_ZERO(State);
|
---|
6644 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I64); iFn++)
|
---|
6645 | {
|
---|
6646 | PFNIEMAIMPLSSEF2R64I64 const pfn = g_aSseBinaryR64I64[iFn].pfnNative ? g_aSseBinaryR64I64[iFn].pfnNative : g_aSseBinaryR64I64[iFn].pfn;
|
---|
6647 |
|
---|
6648 | IEMBINARYOUTPUT BinOut;
|
---|
6649 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryR64I64[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
6650 |
|
---|
6651 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6652 | {
|
---|
6653 | SSE_BINARY_R64_I64_TEST_T TestData; RT_ZERO(TestData);
|
---|
6654 |
|
---|
6655 | TestData.i64ValIn = iTest < cTests ? RandI64Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
6656 |
|
---|
6657 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6658 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6659 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6660 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6661 | {
|
---|
6662 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6663 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6664 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6665 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6666 | | X86_MXCSR_XCPT_MASK;
|
---|
6667 | uint32_t fMxcsrM; RTFLOAT64U r64OutM;
|
---|
6668 | pfn(&State, &fMxcsrM, &r64OutM, &TestData.i64ValIn);
|
---|
6669 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6670 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6671 | TestData.r64ValOut = r64OutM;
|
---|
6672 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6673 |
|
---|
6674 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
6675 | uint32_t fMxcsrU; RTFLOAT64U r64OutU;
|
---|
6676 | pfn(&State, &fMxcsrU, &r64OutU, &TestData.i64ValIn);
|
---|
6677 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6678 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6679 | TestData.r64ValOut = r64OutU;
|
---|
6680 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6681 |
|
---|
6682 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6683 | if (fXcpt)
|
---|
6684 | {
|
---|
6685 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6686 | uint32_t fMxcsr1; RTFLOAT64U r64Out1;
|
---|
6687 | pfn(&State, &fMxcsr1, &r64Out1, &TestData.i64ValIn);
|
---|
6688 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6689 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6690 | TestData.r64ValOut = r64Out1;
|
---|
6691 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6692 |
|
---|
6693 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6694 | {
|
---|
6695 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6696 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6697 | uint32_t fMxcsr2; RTFLOAT64U r64Out2;
|
---|
6698 | pfn(&State, &fMxcsr2, &r64Out2, &TestData.i64ValIn);
|
---|
6699 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6700 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6701 | TestData.r64ValOut = r64Out2;
|
---|
6702 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6703 | }
|
---|
6704 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6705 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6706 | if (fUnmasked & fXcpt)
|
---|
6707 | {
|
---|
6708 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6709 | uint32_t fMxcsr3; RTFLOAT64U r64Out3;
|
---|
6710 | pfn(&State, &fMxcsr3, &r64Out3, &TestData.i64ValIn);
|
---|
6711 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6712 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6713 | TestData.r64ValOut = r64Out3;
|
---|
6714 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6715 | }
|
---|
6716 | }
|
---|
6717 | }
|
---|
6718 | }
|
---|
6719 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6720 | }
|
---|
6721 |
|
---|
6722 | return RTEXITCODE_SUCCESS;
|
---|
6723 | }
|
---|
6724 | #endif
|
---|
6725 |
|
---|
6726 |
|
---|
6727 | static void SseBinaryR64I64Test(void)
|
---|
6728 | {
|
---|
6729 | X86FXSTATE State;
|
---|
6730 | RT_ZERO(State);
|
---|
6731 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I64); iFn++)
|
---|
6732 | {
|
---|
6733 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR64I64[iFn]))
|
---|
6734 | continue;
|
---|
6735 |
|
---|
6736 | SSE_BINARY_R64_I64_TEST_T const * const paTests = g_aSseBinaryR64I64[iFn].paTests;
|
---|
6737 | uint32_t const cTests = g_aSseBinaryR64I64[iFn].cTests;
|
---|
6738 | PFNIEMAIMPLSSEF2R64I64 pfn = g_aSseBinaryR64I64[iFn].pfn;
|
---|
6739 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR64I64[iFn]);
|
---|
6740 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6741 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6742 | {
|
---|
6743 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6744 | {
|
---|
6745 | uint32_t fMxcsr = 0;
|
---|
6746 | RTFLOAT64U r64Dst; RT_ZERO(r64Dst);
|
---|
6747 |
|
---|
6748 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
6749 | pfn(&State, &fMxcsr, &r64Dst, &paTests[iTest].i64ValIn);
|
---|
6750 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
6751 | || !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut))
|
---|
6752 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI64\n"
|
---|
6753 | "%s -> mxcsr=%#08x %s\n"
|
---|
6754 | "%s expected %#08x %s%s%s (%s)\n",
|
---|
6755 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6756 | &paTests[iTest].i64ValIn,
|
---|
6757 | iVar ? " " : "", fMxcsr, FormatR64(&r64Dst),
|
---|
6758 | iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR64(&paTests[iTest].r64ValOut),
|
---|
6759 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
6760 | !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut)
|
---|
6761 | ? " - val" : "",
|
---|
6762 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6763 | }
|
---|
6764 | }
|
---|
6765 | }
|
---|
6766 | }
|
---|
6767 |
|
---|
6768 |
|
---|
6769 | /*
|
---|
6770 | * SSE operations converting single signed double-word integers to single-precision floating point values (probably only cvtsi2ss).
|
---|
6771 | */
|
---|
6772 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R32_I32_T, SSE_BINARY_R32_I32_TEST_T, PFNIEMAIMPLSSEF2R32I32);
|
---|
6773 |
|
---|
6774 | static SSE_BINARY_R32_I32_T g_aSseBinaryR32I32[] =
|
---|
6775 | {
|
---|
6776 | ENTRY_BIN(cvtsi2ss_r32_i32),
|
---|
6777 | };
|
---|
6778 |
|
---|
6779 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6780 | static RTEXITCODE SseBinaryR32I32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
6781 | {
|
---|
6782 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6783 |
|
---|
6784 | static int32_t const s_aSpecials[] =
|
---|
6785 | {
|
---|
6786 | INT32_MIN,
|
---|
6787 | INT32_MAX,
|
---|
6788 | /** @todo More specials. */
|
---|
6789 | };
|
---|
6790 |
|
---|
6791 | X86FXSTATE State;
|
---|
6792 | RT_ZERO(State);
|
---|
6793 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I32); iFn++)
|
---|
6794 | {
|
---|
6795 | PFNIEMAIMPLSSEF2R32I32 const pfn = g_aSseBinaryR32I32[iFn].pfnNative ? g_aSseBinaryR32I32[iFn].pfnNative : g_aSseBinaryR32I32[iFn].pfn;
|
---|
6796 |
|
---|
6797 | IEMBINARYOUTPUT BinOut;
|
---|
6798 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryR32I32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
6799 |
|
---|
6800 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6801 | {
|
---|
6802 | SSE_BINARY_R32_I32_TEST_T TestData; RT_ZERO(TestData);
|
---|
6803 |
|
---|
6804 | TestData.i32ValIn = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
6805 |
|
---|
6806 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6807 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6808 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6809 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6810 | {
|
---|
6811 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6812 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6813 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6814 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6815 | | X86_MXCSR_XCPT_MASK;
|
---|
6816 | uint32_t fMxcsrM; RTFLOAT32U r32OutM;
|
---|
6817 | pfn(&State, &fMxcsrM, &r32OutM, &TestData.i32ValIn);
|
---|
6818 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6819 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6820 | TestData.r32ValOut = r32OutM;
|
---|
6821 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6822 |
|
---|
6823 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
6824 | uint32_t fMxcsrU; RTFLOAT32U r32OutU;
|
---|
6825 | pfn(&State, &fMxcsrU, &r32OutU, &TestData.i32ValIn);
|
---|
6826 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6827 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6828 | TestData.r32ValOut = r32OutU;
|
---|
6829 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6830 |
|
---|
6831 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6832 | if (fXcpt)
|
---|
6833 | {
|
---|
6834 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6835 | uint32_t fMxcsr1; RTFLOAT32U r32Out1;
|
---|
6836 | pfn(&State, &fMxcsr1, &r32Out1, &TestData.i32ValIn);
|
---|
6837 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6838 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6839 | TestData.r32ValOut = r32Out1;
|
---|
6840 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6841 |
|
---|
6842 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6843 | {
|
---|
6844 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6845 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6846 | uint32_t fMxcsr2; RTFLOAT32U r32Out2;
|
---|
6847 | pfn(&State, &fMxcsr2, &r32Out2, &TestData.i32ValIn);
|
---|
6848 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6849 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6850 | TestData.r32ValOut = r32Out2;
|
---|
6851 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6852 | }
|
---|
6853 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6854 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6855 | if (fUnmasked & fXcpt)
|
---|
6856 | {
|
---|
6857 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6858 | uint32_t fMxcsr3; RTFLOAT32U r32Out3;
|
---|
6859 | pfn(&State, &fMxcsr3, &r32Out3, &TestData.i32ValIn);
|
---|
6860 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6861 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6862 | TestData.r32ValOut = r32Out3;
|
---|
6863 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6864 | }
|
---|
6865 | }
|
---|
6866 | }
|
---|
6867 | }
|
---|
6868 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6869 | }
|
---|
6870 |
|
---|
6871 | return RTEXITCODE_SUCCESS;
|
---|
6872 | }
|
---|
6873 | #endif
|
---|
6874 |
|
---|
6875 |
|
---|
6876 | static void SseBinaryR32I32Test(void)
|
---|
6877 | {
|
---|
6878 | X86FXSTATE State;
|
---|
6879 | RT_ZERO(State);
|
---|
6880 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I32); iFn++)
|
---|
6881 | {
|
---|
6882 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR32I32[iFn]))
|
---|
6883 | continue;
|
---|
6884 |
|
---|
6885 | SSE_BINARY_R32_I32_TEST_T const * const paTests = g_aSseBinaryR32I32[iFn].paTests;
|
---|
6886 | uint32_t const cTests = g_aSseBinaryR32I32[iFn].cTests;
|
---|
6887 | PFNIEMAIMPLSSEF2R32I32 pfn = g_aSseBinaryR32I32[iFn].pfn;
|
---|
6888 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR32I32[iFn]);
|
---|
6889 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6890 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6891 | {
|
---|
6892 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6893 | {
|
---|
6894 | uint32_t fMxcsr = 0;
|
---|
6895 | RTFLOAT32U r32Dst; RT_ZERO(r32Dst);
|
---|
6896 |
|
---|
6897 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
6898 | pfn(&State, &fMxcsr, &r32Dst, &paTests[iTest].i32ValIn);
|
---|
6899 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
6900 | || !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut))
|
---|
6901 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32\n"
|
---|
6902 | "%s -> mxcsr=%#08x %RI32\n"
|
---|
6903 | "%s expected %#08x %RI32%s%s (%s)\n",
|
---|
6904 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6905 | &paTests[iTest].i32ValIn,
|
---|
6906 | iVar ? " " : "", fMxcsr, FormatR32(&r32Dst),
|
---|
6907 | iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR32(&paTests[iTest].r32ValOut),
|
---|
6908 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
6909 | !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut)
|
---|
6910 | ? " - val" : "",
|
---|
6911 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6912 | }
|
---|
6913 | }
|
---|
6914 | }
|
---|
6915 | }
|
---|
6916 |
|
---|
6917 |
|
---|
6918 | /*
|
---|
6919 | * SSE operations converting single signed quad-word integers to single-precision floating point values (probably only cvtsi2ss).
|
---|
6920 | */
|
---|
6921 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R32_I64_T, SSE_BINARY_R32_I64_TEST_T, PFNIEMAIMPLSSEF2R32I64);
|
---|
6922 |
|
---|
6923 | static SSE_BINARY_R32_I64_T g_aSseBinaryR32I64[] =
|
---|
6924 | {
|
---|
6925 | ENTRY_BIN(cvtsi2ss_r32_i64),
|
---|
6926 | };
|
---|
6927 |
|
---|
6928 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6929 | static RTEXITCODE SseBinaryR32I64Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
6930 | {
|
---|
6931 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6932 |
|
---|
6933 | static int64_t const s_aSpecials[] =
|
---|
6934 | {
|
---|
6935 | INT64_MIN,
|
---|
6936 | INT64_MAX
|
---|
6937 | /** @todo More specials. */
|
---|
6938 | };
|
---|
6939 |
|
---|
6940 | X86FXSTATE State;
|
---|
6941 | RT_ZERO(State);
|
---|
6942 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I64); iFn++)
|
---|
6943 | {
|
---|
6944 | PFNIEMAIMPLSSEF2R32I64 const pfn = g_aSseBinaryR32I64[iFn].pfnNative ? g_aSseBinaryR32I64[iFn].pfnNative : g_aSseBinaryR32I64[iFn].pfn;
|
---|
6945 |
|
---|
6946 | IEMBINARYOUTPUT BinOut;
|
---|
6947 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseBinaryR32I64[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
6948 |
|
---|
6949 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6950 | {
|
---|
6951 | SSE_BINARY_R32_I64_TEST_T TestData; RT_ZERO(TestData);
|
---|
6952 |
|
---|
6953 | TestData.i64ValIn = iTest < cTests ? RandI64Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
6954 |
|
---|
6955 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6956 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6957 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6958 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6959 | {
|
---|
6960 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6961 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6962 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6963 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6964 | | X86_MXCSR_XCPT_MASK;
|
---|
6965 | uint32_t fMxcsrM; RTFLOAT32U r32OutM;
|
---|
6966 | pfn(&State, &fMxcsrM, &r32OutM, &TestData.i64ValIn);
|
---|
6967 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6968 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6969 | TestData.r32ValOut = r32OutM;
|
---|
6970 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6971 |
|
---|
6972 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
6973 | uint32_t fMxcsrU; RTFLOAT32U r32OutU;
|
---|
6974 | pfn(&State, &fMxcsrU, &r32OutU, &TestData.i64ValIn);
|
---|
6975 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6976 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6977 | TestData.r32ValOut = r32OutU;
|
---|
6978 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6979 |
|
---|
6980 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6981 | if (fXcpt)
|
---|
6982 | {
|
---|
6983 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6984 | uint32_t fMxcsr1; RTFLOAT32U r32Out1;
|
---|
6985 | pfn(&State, &fMxcsr1, &r32Out1, &TestData.i64ValIn);
|
---|
6986 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6987 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6988 | TestData.r32ValOut = r32Out1;
|
---|
6989 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6990 |
|
---|
6991 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6992 | {
|
---|
6993 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6994 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6995 | uint32_t fMxcsr2; RTFLOAT32U r32Out2;
|
---|
6996 | pfn(&State, &fMxcsr2, &r32Out2, &TestData.i64ValIn);
|
---|
6997 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6998 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6999 | TestData.r32ValOut = r32Out2;
|
---|
7000 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7001 | }
|
---|
7002 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7003 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7004 | if (fUnmasked & fXcpt)
|
---|
7005 | {
|
---|
7006 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7007 | uint32_t fMxcsr3; RTFLOAT32U r32Out3;
|
---|
7008 | pfn(&State, &fMxcsr3, &r32Out3, &TestData.i64ValIn);
|
---|
7009 | TestData.fMxcsrIn = State.MXCSR;
|
---|
7010 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7011 | TestData.r32ValOut = r32Out3;
|
---|
7012 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7013 | }
|
---|
7014 | }
|
---|
7015 | }
|
---|
7016 | }
|
---|
7017 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7018 | }
|
---|
7019 |
|
---|
7020 | return RTEXITCODE_SUCCESS;
|
---|
7021 | }
|
---|
7022 | #endif
|
---|
7023 |
|
---|
7024 |
|
---|
7025 | static void SseBinaryR32I64Test(void)
|
---|
7026 | {
|
---|
7027 | X86FXSTATE State;
|
---|
7028 | RT_ZERO(State);
|
---|
7029 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I64); iFn++)
|
---|
7030 | {
|
---|
7031 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR32I64[iFn]))
|
---|
7032 | continue;
|
---|
7033 |
|
---|
7034 | SSE_BINARY_R32_I64_TEST_T const * const paTests = g_aSseBinaryR32I64[iFn].paTests;
|
---|
7035 | uint32_t const cTests = g_aSseBinaryR32I64[iFn].cTests;
|
---|
7036 | PFNIEMAIMPLSSEF2R32I64 pfn = g_aSseBinaryR32I64[iFn].pfn;
|
---|
7037 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR32I64[iFn]);
|
---|
7038 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7039 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7040 | {
|
---|
7041 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7042 | {
|
---|
7043 | uint32_t fMxcsr = 0;
|
---|
7044 | RTFLOAT32U r32Dst; RT_ZERO(r32Dst);
|
---|
7045 |
|
---|
7046 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
7047 | pfn(&State, &fMxcsr, &r32Dst, &paTests[iTest].i64ValIn);
|
---|
7048 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7049 | || !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut))
|
---|
7050 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI64\n"
|
---|
7051 | "%s -> mxcsr=%#08x %RI32\n"
|
---|
7052 | "%s expected %#08x %RI32%s%s (%s)\n",
|
---|
7053 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
7054 | &paTests[iTest].i64ValIn,
|
---|
7055 | iVar ? " " : "", fMxcsr, FormatR32(&r32Dst),
|
---|
7056 | iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR32(&paTests[iTest].r32ValOut),
|
---|
7057 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7058 | !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut)
|
---|
7059 | ? " - val" : "",
|
---|
7060 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
7061 | }
|
---|
7062 | }
|
---|
7063 | }
|
---|
7064 | }
|
---|
7065 |
|
---|
7066 |
|
---|
7067 | /*
|
---|
7068 | * Compare SSE operations on single single-precision floating point values - outputting only EFLAGS.
|
---|
7069 | */
|
---|
7070 | TYPEDEF_SUBTEST_TYPE(SSE_COMPARE_EFL_R32_R32_T, SSE_COMPARE_EFL_R32_R32_TEST_T, PFNIEMAIMPLF2EFLMXCSR128);
|
---|
7071 |
|
---|
7072 | static SSE_COMPARE_EFL_R32_R32_T g_aSseCompareEflR32R32[] =
|
---|
7073 | {
|
---|
7074 | ENTRY_BIN(ucomiss_u128),
|
---|
7075 | ENTRY_BIN(comiss_u128),
|
---|
7076 | ENTRY_BIN_AVX(vucomiss_u128),
|
---|
7077 | ENTRY_BIN_AVX(vcomiss_u128),
|
---|
7078 | };
|
---|
7079 |
|
---|
7080 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7081 | static RTEXITCODE SseCompareEflR32R32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
7082 | {
|
---|
7083 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7084 |
|
---|
7085 | static struct { RTFLOAT32U Val1, Val2; } const s_aSpecials[] =
|
---|
7086 | {
|
---|
7087 | { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) },
|
---|
7088 | { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(1) },
|
---|
7089 | { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(0) },
|
---|
7090 | { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) },
|
---|
7091 | { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) },
|
---|
7092 | { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(1) },
|
---|
7093 | { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(0) },
|
---|
7094 | { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) },
|
---|
7095 | /** @todo More specials. */
|
---|
7096 | };
|
---|
7097 |
|
---|
7098 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
7099 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR32R32); iFn++)
|
---|
7100 | {
|
---|
7101 | PFNIEMAIMPLF2EFLMXCSR128 const pfn = g_aSseCompareEflR32R32[iFn].pfnNative ? g_aSseCompareEflR32R32[iFn].pfnNative : g_aSseCompareEflR32R32[iFn].pfn;
|
---|
7102 |
|
---|
7103 | IEMBINARYOUTPUT BinOut;
|
---|
7104 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseCompareEflR32R32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
7105 |
|
---|
7106 | uint32_t cNormalInputPairs = 0;
|
---|
7107 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7108 | {
|
---|
7109 | SSE_COMPARE_EFL_R32_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
7110 | X86XMMREG ValIn1; RT_ZERO(ValIn1);
|
---|
7111 | X86XMMREG ValIn2; RT_ZERO(ValIn2);
|
---|
7112 |
|
---|
7113 | TestData.r32ValIn1 = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7114 | TestData.r32ValIn2 = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7115 |
|
---|
7116 | ValIn1.ar32[0] = TestData.r32ValIn1;
|
---|
7117 | ValIn2.ar32[0] = TestData.r32ValIn2;
|
---|
7118 |
|
---|
7119 | if ( RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn1)
|
---|
7120 | && RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn2))
|
---|
7121 | cNormalInputPairs++;
|
---|
7122 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
7123 | {
|
---|
7124 | iTest -= 1;
|
---|
7125 | continue;
|
---|
7126 | }
|
---|
7127 |
|
---|
7128 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7129 | uint32_t const fEFlags = RandEFlags();
|
---|
7130 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7131 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7132 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7133 | {
|
---|
7134 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7135 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7136 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7137 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7138 | | X86_MXCSR_XCPT_MASK;
|
---|
7139 | uint32_t fMxcsrM = fMxcsrIn;
|
---|
7140 | uint32_t fEFlagsM = fEFlags;
|
---|
7141 | pfn(&fMxcsrM, &fEFlagsM, &ValIn1, &ValIn2);
|
---|
7142 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7143 | TestData.fMxcsrOut = fMxcsrM;
|
---|
7144 | TestData.fEflIn = fEFlags;
|
---|
7145 | TestData.fEflOut = fEFlagsM;
|
---|
7146 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7147 |
|
---|
7148 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
7149 | uint32_t fMxcsrU = fMxcsrIn;
|
---|
7150 | uint32_t fEFlagsU = fEFlags;
|
---|
7151 | pfn(&fMxcsrU, &fEFlagsU, &ValIn1, &ValIn2);
|
---|
7152 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7153 | TestData.fMxcsrOut = fMxcsrU;
|
---|
7154 | TestData.fEflIn = fEFlags;
|
---|
7155 | TestData.fEflOut = fEFlagsU;
|
---|
7156 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7157 |
|
---|
7158 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
7159 | if (fXcpt)
|
---|
7160 | {
|
---|
7161 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7162 | uint32_t fMxcsr1 = fMxcsrIn;
|
---|
7163 | uint32_t fEFlags1 = fEFlags;
|
---|
7164 | pfn(&fMxcsr1, &fEFlags1, &ValIn1, &ValIn2);
|
---|
7165 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7166 | TestData.fMxcsrOut = fMxcsr1;
|
---|
7167 | TestData.fEflIn = fEFlags;
|
---|
7168 | TestData.fEflOut = fEFlags1;
|
---|
7169 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7170 |
|
---|
7171 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
7172 | {
|
---|
7173 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
7174 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7175 | uint32_t fMxcsr2 = fMxcsrIn;
|
---|
7176 | uint32_t fEFlags2 = fEFlags;
|
---|
7177 | pfn(&fMxcsr2, &fEFlags2, &ValIn1, &ValIn2);
|
---|
7178 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7179 | TestData.fMxcsrOut = fMxcsr2;
|
---|
7180 | TestData.fEflIn = fEFlags;
|
---|
7181 | TestData.fEflOut = fEFlags2;
|
---|
7182 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7183 | }
|
---|
7184 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7185 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7186 | if (fUnmasked & fXcpt)
|
---|
7187 | {
|
---|
7188 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7189 | uint32_t fMxcsr3 = fMxcsrIn;
|
---|
7190 | uint32_t fEFlags3 = fEFlags;
|
---|
7191 | pfn(&fMxcsr3, &fEFlags3, &ValIn1, &ValIn2);
|
---|
7192 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7193 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7194 | TestData.fEflIn = fEFlags;
|
---|
7195 | TestData.fEflOut = fEFlags3;
|
---|
7196 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7197 | }
|
---|
7198 | }
|
---|
7199 | }
|
---|
7200 | }
|
---|
7201 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7202 | }
|
---|
7203 |
|
---|
7204 | return RTEXITCODE_SUCCESS;
|
---|
7205 | }
|
---|
7206 | #endif
|
---|
7207 |
|
---|
7208 | static void SseCompareEflR32R32Test(void)
|
---|
7209 | {
|
---|
7210 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR32R32); iFn++)
|
---|
7211 | {
|
---|
7212 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareEflR32R32[iFn]))
|
---|
7213 | continue;
|
---|
7214 |
|
---|
7215 | SSE_COMPARE_EFL_R32_R32_TEST_T const * const paTests = g_aSseCompareEflR32R32[iFn].paTests;
|
---|
7216 | uint32_t const cTests = g_aSseCompareEflR32R32[iFn].cTests;
|
---|
7217 | PFNIEMAIMPLF2EFLMXCSR128 pfn = g_aSseCompareEflR32R32[iFn].pfn;
|
---|
7218 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareEflR32R32[iFn]);
|
---|
7219 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7220 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7221 | {
|
---|
7222 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7223 | {
|
---|
7224 | X86XMMREG ValIn1; RT_ZERO(ValIn1);
|
---|
7225 | X86XMMREG ValIn2; RT_ZERO(ValIn2);
|
---|
7226 |
|
---|
7227 | ValIn1.ar32[0] = paTests[iTest].r32ValIn1;
|
---|
7228 | ValIn2.ar32[0] = paTests[iTest].r32ValIn2;
|
---|
7229 | uint32_t fMxcsr = paTests[iTest].fMxcsrIn;
|
---|
7230 | uint32_t fEFlags = paTests[iTest].fEflIn;
|
---|
7231 | pfn(&fMxcsr, &fEFlags, &ValIn1, &ValIn2);
|
---|
7232 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7233 | || fEFlags != paTests[iTest].fEflOut)
|
---|
7234 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x efl=%#08x in1=%s in2=%s\n"
|
---|
7235 | "%s -> mxcsr=%#08x %#08x\n"
|
---|
7236 | "%s expected %#08x %#08x%s (%s) (EFL: %s)\n",
|
---|
7237 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, paTests[iTest].fEflIn,
|
---|
7238 | FormatR32(&paTests[iTest].r32ValIn1), FormatR32(&paTests[iTest].r32ValIn2),
|
---|
7239 | iVar ? " " : "", fMxcsr, fEFlags,
|
---|
7240 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].fEflOut,
|
---|
7241 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7242 | FormatMxcsr(paTests[iTest].fMxcsrIn),
|
---|
7243 | EFlagsDiff(fEFlags, paTests[iTest].fEflOut));
|
---|
7244 | }
|
---|
7245 | }
|
---|
7246 | }
|
---|
7247 | }
|
---|
7248 |
|
---|
7249 |
|
---|
7250 | /*
|
---|
7251 | * Compare SSE operations on single single-precision floating point values - outputting only EFLAGS.
|
---|
7252 | */
|
---|
7253 | TYPEDEF_SUBTEST_TYPE(SSE_COMPARE_EFL_R64_R64_T, SSE_COMPARE_EFL_R64_R64_TEST_T, PFNIEMAIMPLF2EFLMXCSR128);
|
---|
7254 |
|
---|
7255 | static SSE_COMPARE_EFL_R64_R64_T g_aSseCompareEflR64R64[] =
|
---|
7256 | {
|
---|
7257 | ENTRY_BIN(ucomisd_u128),
|
---|
7258 | ENTRY_BIN(comisd_u128),
|
---|
7259 | ENTRY_BIN_AVX(vucomisd_u128),
|
---|
7260 | ENTRY_BIN_AVX(vcomisd_u128)
|
---|
7261 | };
|
---|
7262 |
|
---|
7263 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7264 | static RTEXITCODE SseCompareEflR64R64Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
7265 | {
|
---|
7266 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7267 |
|
---|
7268 | static struct { RTFLOAT64U Val1, Val2; } const s_aSpecials[] =
|
---|
7269 | {
|
---|
7270 | { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) },
|
---|
7271 | { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(1) },
|
---|
7272 | { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(0) },
|
---|
7273 | { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) },
|
---|
7274 | { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) },
|
---|
7275 | { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(1) },
|
---|
7276 | { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(0) },
|
---|
7277 | { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) },
|
---|
7278 | /** @todo More specials. */
|
---|
7279 | };
|
---|
7280 |
|
---|
7281 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
7282 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR64R64); iFn++)
|
---|
7283 | {
|
---|
7284 | PFNIEMAIMPLF2EFLMXCSR128 const pfn = g_aSseCompareEflR64R64[iFn].pfnNative ? g_aSseCompareEflR64R64[iFn].pfnNative : g_aSseCompareEflR64R64[iFn].pfn;
|
---|
7285 |
|
---|
7286 | IEMBINARYOUTPUT BinOut;
|
---|
7287 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseCompareEflR64R64[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
7288 |
|
---|
7289 | uint32_t cNormalInputPairs = 0;
|
---|
7290 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7291 | {
|
---|
7292 | SSE_COMPARE_EFL_R64_R64_TEST_T TestData; RT_ZERO(TestData);
|
---|
7293 | X86XMMREG ValIn1; RT_ZERO(ValIn1);
|
---|
7294 | X86XMMREG ValIn2; RT_ZERO(ValIn2);
|
---|
7295 |
|
---|
7296 | TestData.r64ValIn1 = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7297 | TestData.r64ValIn2 = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7298 |
|
---|
7299 | ValIn1.ar64[0] = TestData.r64ValIn1;
|
---|
7300 | ValIn2.ar64[0] = TestData.r64ValIn2;
|
---|
7301 |
|
---|
7302 | if ( RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn1)
|
---|
7303 | && RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn2))
|
---|
7304 | cNormalInputPairs++;
|
---|
7305 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
7306 | {
|
---|
7307 | iTest -= 1;
|
---|
7308 | continue;
|
---|
7309 | }
|
---|
7310 |
|
---|
7311 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7312 | uint32_t const fEFlags = RandEFlags();
|
---|
7313 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7314 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7315 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7316 | {
|
---|
7317 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7318 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7319 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7320 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7321 | | X86_MXCSR_XCPT_MASK;
|
---|
7322 | uint32_t fMxcsrM = fMxcsrIn;
|
---|
7323 | uint32_t fEFlagsM = fEFlags;
|
---|
7324 | pfn(&fMxcsrM, &fEFlagsM, &ValIn1, &ValIn2);
|
---|
7325 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7326 | TestData.fMxcsrOut = fMxcsrM;
|
---|
7327 | TestData.fEflIn = fEFlags;
|
---|
7328 | TestData.fEflOut = fEFlagsM;
|
---|
7329 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7330 |
|
---|
7331 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
7332 | uint32_t fMxcsrU = fMxcsrIn;
|
---|
7333 | uint32_t fEFlagsU = fEFlags;
|
---|
7334 | pfn(&fMxcsrU, &fEFlagsU, &ValIn1, &ValIn2);
|
---|
7335 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7336 | TestData.fMxcsrOut = fMxcsrU;
|
---|
7337 | TestData.fEflIn = fEFlags;
|
---|
7338 | TestData.fEflOut = fEFlagsU;
|
---|
7339 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7340 |
|
---|
7341 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
7342 | if (fXcpt)
|
---|
7343 | {
|
---|
7344 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7345 | uint32_t fMxcsr1 = fMxcsrIn;
|
---|
7346 | uint32_t fEFlags1 = fEFlags;
|
---|
7347 | pfn(&fMxcsr1, &fEFlags1, &ValIn1, &ValIn2);
|
---|
7348 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7349 | TestData.fMxcsrOut = fMxcsr1;
|
---|
7350 | TestData.fEflIn = fEFlags;
|
---|
7351 | TestData.fEflOut = fEFlags1;
|
---|
7352 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7353 |
|
---|
7354 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
7355 | {
|
---|
7356 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
7357 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7358 | uint32_t fMxcsr2 = fMxcsrIn;
|
---|
7359 | uint32_t fEFlags2 = fEFlags;
|
---|
7360 | pfn(&fMxcsr2, &fEFlags2, &ValIn1, &ValIn2);
|
---|
7361 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7362 | TestData.fMxcsrOut = fMxcsr2;
|
---|
7363 | TestData.fEflIn = fEFlags;
|
---|
7364 | TestData.fEflOut = fEFlags2;
|
---|
7365 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7366 | }
|
---|
7367 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7368 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7369 | if (fUnmasked & fXcpt)
|
---|
7370 | {
|
---|
7371 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7372 | uint32_t fMxcsr3 = fMxcsrIn;
|
---|
7373 | uint32_t fEFlags3 = fEFlags;
|
---|
7374 | pfn(&fMxcsr3, &fEFlags3, &ValIn1, &ValIn2);
|
---|
7375 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7376 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7377 | TestData.fEflIn = fEFlags;
|
---|
7378 | TestData.fEflOut = fEFlags3;
|
---|
7379 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7380 | }
|
---|
7381 | }
|
---|
7382 | }
|
---|
7383 | }
|
---|
7384 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7385 | }
|
---|
7386 |
|
---|
7387 | return RTEXITCODE_SUCCESS;
|
---|
7388 | }
|
---|
7389 | #endif
|
---|
7390 |
|
---|
7391 | static void SseCompareEflR64R64Test(void)
|
---|
7392 | {
|
---|
7393 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR64R64); iFn++)
|
---|
7394 | {
|
---|
7395 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareEflR64R64[iFn]))
|
---|
7396 | continue;
|
---|
7397 |
|
---|
7398 | SSE_COMPARE_EFL_R64_R64_TEST_T const * const paTests = g_aSseCompareEflR64R64[iFn].paTests;
|
---|
7399 | uint32_t const cTests = g_aSseCompareEflR64R64[iFn].cTests;
|
---|
7400 | PFNIEMAIMPLF2EFLMXCSR128 pfn = g_aSseCompareEflR64R64[iFn].pfn;
|
---|
7401 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareEflR64R64[iFn]);
|
---|
7402 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7403 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7404 | {
|
---|
7405 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7406 | {
|
---|
7407 | X86XMMREG ValIn1; RT_ZERO(ValIn1);
|
---|
7408 | X86XMMREG ValIn2; RT_ZERO(ValIn2);
|
---|
7409 |
|
---|
7410 | ValIn1.ar64[0] = paTests[iTest].r64ValIn1;
|
---|
7411 | ValIn2.ar64[0] = paTests[iTest].r64ValIn2;
|
---|
7412 | uint32_t fMxcsr = paTests[iTest].fMxcsrIn;
|
---|
7413 | uint32_t fEFlags = paTests[iTest].fEflIn;
|
---|
7414 | pfn(&fMxcsr, &fEFlags, &ValIn1, &ValIn2);
|
---|
7415 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7416 | || fEFlags != paTests[iTest].fEflOut)
|
---|
7417 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x efl=%#08x in1=%s in2=%s\n"
|
---|
7418 | "%s -> mxcsr=%#08x %#08x\n"
|
---|
7419 | "%s expected %#08x %#08x%s (%s) (EFL: %s)\n",
|
---|
7420 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, paTests[iTest].fEflIn,
|
---|
7421 | FormatR64(&paTests[iTest].r64ValIn1), FormatR64(&paTests[iTest].r64ValIn2),
|
---|
7422 | iVar ? " " : "", fMxcsr, fEFlags,
|
---|
7423 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].fEflOut,
|
---|
7424 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7425 | FormatMxcsr(paTests[iTest].fMxcsrIn),
|
---|
7426 | EFlagsDiff(fEFlags, paTests[iTest].fEflOut));
|
---|
7427 | }
|
---|
7428 | }
|
---|
7429 | }
|
---|
7430 | }
|
---|
7431 |
|
---|
7432 |
|
---|
7433 | /*
|
---|
7434 | * Compare SSE operations on packed and single single-precision floating point values - outputting a mask.
|
---|
7435 | */
|
---|
7436 | /** Maximum immediate to try to keep the testdata size under control (at least a little bit)- */
|
---|
7437 | #define SSE_COMPARE_F2_XMM_IMM8_MAX 0x1f
|
---|
7438 |
|
---|
7439 | TYPEDEF_SUBTEST_TYPE(SSE_COMPARE_F2_XMM_IMM8_T, SSE_COMPARE_F2_XMM_IMM8_TEST_T, PFNIEMAIMPLMXCSRF2XMMIMM8);
|
---|
7440 |
|
---|
7441 | static SSE_COMPARE_F2_XMM_IMM8_T g_aSseCompareF2XmmR32Imm8[] =
|
---|
7442 | {
|
---|
7443 | ENTRY_BIN(cmpps_u128),
|
---|
7444 | ENTRY_BIN(cmpss_u128)
|
---|
7445 | };
|
---|
7446 |
|
---|
7447 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7448 | static RTEXITCODE SseCompareF2XmmR32Imm8Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
7449 | {
|
---|
7450 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7451 |
|
---|
7452 | static struct { RTFLOAT32U Val1, Val2; } const s_aSpecials[] =
|
---|
7453 | {
|
---|
7454 | { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) },
|
---|
7455 | { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(1) },
|
---|
7456 | { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(0) },
|
---|
7457 | { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) },
|
---|
7458 | { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) },
|
---|
7459 | { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(1) },
|
---|
7460 | { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(0) },
|
---|
7461 | { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) },
|
---|
7462 | /** @todo More specials. */
|
---|
7463 | };
|
---|
7464 |
|
---|
7465 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
7466 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF2XmmR32Imm8); iFn++)
|
---|
7467 | {
|
---|
7468 | PFNIEMAIMPLMXCSRF2XMMIMM8 const pfn = g_aSseCompareF2XmmR32Imm8[iFn].pfnNative ? g_aSseCompareF2XmmR32Imm8[iFn].pfnNative : g_aSseCompareF2XmmR32Imm8[iFn].pfn;
|
---|
7469 |
|
---|
7470 | IEMBINARYOUTPUT BinOut;
|
---|
7471 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseCompareF2XmmR32Imm8[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
7472 |
|
---|
7473 | uint32_t cNormalInputPairs = 0;
|
---|
7474 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7475 | {
|
---|
7476 | SSE_COMPARE_F2_XMM_IMM8_TEST_T TestData; RT_ZERO(TestData);
|
---|
7477 |
|
---|
7478 | TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7479 | TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7480 | TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7481 | TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7482 |
|
---|
7483 | TestData.InVal2.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7484 | TestData.InVal2.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7485 | TestData.InVal2.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7486 | TestData.InVal2.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7487 |
|
---|
7488 | if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0])
|
---|
7489 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1])
|
---|
7490 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2])
|
---|
7491 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3])
|
---|
7492 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[0])
|
---|
7493 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[1])
|
---|
7494 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[2])
|
---|
7495 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[3]))
|
---|
7496 | cNormalInputPairs++;
|
---|
7497 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
7498 | {
|
---|
7499 | iTest -= 1;
|
---|
7500 | continue;
|
---|
7501 | }
|
---|
7502 |
|
---|
7503 | IEMMEDIAF2XMMSRC Src;
|
---|
7504 | Src.uSrc1 = TestData.InVal1;
|
---|
7505 | Src.uSrc2 = TestData.InVal2;
|
---|
7506 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7507 | for (uint8_t bImm = 0; bImm <= SSE_COMPARE_F2_XMM_IMM8_MAX; bImm++)
|
---|
7508 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7509 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7510 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7511 | {
|
---|
7512 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7513 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7514 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7515 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7516 | | X86_MXCSR_XCPT_MASK;
|
---|
7517 | uint32_t fMxcsrM = fMxcsrIn;
|
---|
7518 | X86XMMREG ResM;
|
---|
7519 | pfn(&fMxcsrM, &ResM, &Src, bImm);
|
---|
7520 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7521 | TestData.fMxcsrOut = fMxcsrM;
|
---|
7522 | TestData.bImm = bImm;
|
---|
7523 | TestData.OutVal = ResM;
|
---|
7524 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7525 |
|
---|
7526 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
7527 | uint32_t fMxcsrU = fMxcsrIn;
|
---|
7528 | X86XMMREG ResU;
|
---|
7529 | pfn(&fMxcsrU, &ResU, &Src, bImm);
|
---|
7530 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7531 | TestData.fMxcsrOut = fMxcsrU;
|
---|
7532 | TestData.bImm = bImm;
|
---|
7533 | TestData.OutVal = ResU;
|
---|
7534 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7535 |
|
---|
7536 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
7537 | if (fXcpt)
|
---|
7538 | {
|
---|
7539 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7540 | uint32_t fMxcsr1 = fMxcsrIn;
|
---|
7541 | X86XMMREG Res1;
|
---|
7542 | pfn(&fMxcsr1, &Res1, &Src, bImm);
|
---|
7543 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7544 | TestData.fMxcsrOut = fMxcsr1;
|
---|
7545 | TestData.bImm = bImm;
|
---|
7546 | TestData.OutVal = Res1;
|
---|
7547 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7548 |
|
---|
7549 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
7550 | {
|
---|
7551 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
7552 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7553 | uint32_t fMxcsr2 = fMxcsrIn;
|
---|
7554 | X86XMMREG Res2;
|
---|
7555 | pfn(&fMxcsr2, &Res2, &Src, bImm);
|
---|
7556 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7557 | TestData.fMxcsrOut = fMxcsr2;
|
---|
7558 | TestData.bImm = bImm;
|
---|
7559 | TestData.OutVal = Res2;
|
---|
7560 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7561 | }
|
---|
7562 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7563 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7564 | if (fUnmasked & fXcpt)
|
---|
7565 | {
|
---|
7566 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7567 | uint32_t fMxcsr3 = fMxcsrIn;
|
---|
7568 | X86XMMREG Res3;
|
---|
7569 | pfn(&fMxcsr3, &Res3, &Src, bImm);
|
---|
7570 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7571 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7572 | TestData.bImm = bImm;
|
---|
7573 | TestData.OutVal = Res3;
|
---|
7574 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7575 | }
|
---|
7576 | }
|
---|
7577 | }
|
---|
7578 | }
|
---|
7579 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7580 | }
|
---|
7581 |
|
---|
7582 | return RTEXITCODE_SUCCESS;
|
---|
7583 | }
|
---|
7584 | #endif
|
---|
7585 |
|
---|
7586 | static void SseCompareF2XmmR32Imm8Test(void)
|
---|
7587 | {
|
---|
7588 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF2XmmR32Imm8); iFn++)
|
---|
7589 | {
|
---|
7590 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareF2XmmR32Imm8[iFn]))
|
---|
7591 | continue;
|
---|
7592 |
|
---|
7593 | SSE_COMPARE_F2_XMM_IMM8_TEST_T const * const paTests = g_aSseCompareF2XmmR32Imm8[iFn].paTests;
|
---|
7594 | uint32_t const cTests = g_aSseCompareF2XmmR32Imm8[iFn].cTests;
|
---|
7595 | PFNIEMAIMPLMXCSRF2XMMIMM8 pfn = g_aSseCompareF2XmmR32Imm8[iFn].pfn;
|
---|
7596 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareF2XmmR32Imm8[iFn]);
|
---|
7597 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7598 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7599 | {
|
---|
7600 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7601 | {
|
---|
7602 | IEMMEDIAF2XMMSRC Src;
|
---|
7603 | X86XMMREG ValOut;
|
---|
7604 |
|
---|
7605 | Src.uSrc1 = paTests[iTest].InVal1;
|
---|
7606 | Src.uSrc2 = paTests[iTest].InVal2;
|
---|
7607 | uint32_t fMxcsr = paTests[iTest].fMxcsrIn;
|
---|
7608 | pfn(&fMxcsr, &ValOut, &Src, paTests[iTest].bImm);
|
---|
7609 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7610 | || ValOut.au32[0] != paTests[iTest].OutVal.au32[0]
|
---|
7611 | || ValOut.au32[1] != paTests[iTest].OutVal.au32[1]
|
---|
7612 | || ValOut.au32[2] != paTests[iTest].OutVal.au32[2]
|
---|
7613 | || ValOut.au32[3] != paTests[iTest].OutVal.au32[3])
|
---|
7614 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s'%s'%s'%s imm8=%x\n"
|
---|
7615 | "%s -> mxcsr=%#08x %RX32'%RX32'%RX32'%RX32\n"
|
---|
7616 | "%s expected %#08x %RX32'%RX32'%RX32'%RX32%s%s (%s)\n",
|
---|
7617 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
7618 | FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]),
|
---|
7619 | FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]),
|
---|
7620 | FormatR32(&paTests[iTest].InVal2.ar32[0]), FormatR32(&paTests[iTest].InVal2.ar32[1]),
|
---|
7621 | FormatR32(&paTests[iTest].InVal2.ar32[2]), FormatR32(&paTests[iTest].InVal2.ar32[3]),
|
---|
7622 | paTests[iTest].bImm,
|
---|
7623 | iVar ? " " : "", fMxcsr, ValOut.au32[0], ValOut.au32[1], ValOut.au32[2], ValOut.au32[3],
|
---|
7624 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
7625 | paTests[iTest].OutVal.au32[0], paTests[iTest].OutVal.au32[1],
|
---|
7626 | paTests[iTest].OutVal.au32[2], paTests[iTest].OutVal.au32[3],
|
---|
7627 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7628 | ( ValOut.au32[0] != paTests[iTest].OutVal.au32[0]
|
---|
7629 | || ValOut.au32[1] != paTests[iTest].OutVal.au32[1]
|
---|
7630 | || ValOut.au32[2] != paTests[iTest].OutVal.au32[2]
|
---|
7631 | || ValOut.au32[3] != paTests[iTest].OutVal.au32[3])
|
---|
7632 | ? " - val" : "",
|
---|
7633 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
7634 | }
|
---|
7635 | }
|
---|
7636 | }
|
---|
7637 | }
|
---|
7638 |
|
---|
7639 |
|
---|
7640 | /*
|
---|
7641 | * Compare SSE operations on packed and single double-precision floating point values - outputting a mask.
|
---|
7642 | */
|
---|
7643 | static SSE_COMPARE_F2_XMM_IMM8_T g_aSseCompareF2XmmR64Imm8[] =
|
---|
7644 | {
|
---|
7645 | ENTRY_BIN(cmppd_u128),
|
---|
7646 | ENTRY_BIN(cmpsd_u128)
|
---|
7647 | };
|
---|
7648 |
|
---|
7649 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7650 | static RTEXITCODE SseCompareF2XmmR64Imm8Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
7651 | {
|
---|
7652 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7653 |
|
---|
7654 | static struct { RTFLOAT64U Val1, Val2; } const s_aSpecials[] =
|
---|
7655 | {
|
---|
7656 | { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) },
|
---|
7657 | { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(1) },
|
---|
7658 | { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(0) },
|
---|
7659 | { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) },
|
---|
7660 | { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) },
|
---|
7661 | { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(1) },
|
---|
7662 | { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(0) },
|
---|
7663 | { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) },
|
---|
7664 | /** @todo More specials. */
|
---|
7665 | };
|
---|
7666 |
|
---|
7667 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
7668 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF2XmmR64Imm8); iFn++)
|
---|
7669 | {
|
---|
7670 | PFNIEMAIMPLMXCSRF2XMMIMM8 const pfn = g_aSseCompareF2XmmR64Imm8[iFn].pfnNative ? g_aSseCompareF2XmmR64Imm8[iFn].pfnNative : g_aSseCompareF2XmmR64Imm8[iFn].pfn;
|
---|
7671 |
|
---|
7672 | IEMBINARYOUTPUT BinOut;
|
---|
7673 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseCompareF2XmmR64Imm8[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
7674 |
|
---|
7675 | uint32_t cNormalInputPairs = 0;
|
---|
7676 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7677 | {
|
---|
7678 | SSE_COMPARE_F2_XMM_IMM8_TEST_T TestData; RT_ZERO(TestData);
|
---|
7679 |
|
---|
7680 | TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7681 | TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7682 |
|
---|
7683 | TestData.InVal2.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7684 | TestData.InVal2.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7685 |
|
---|
7686 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0])
|
---|
7687 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1])
|
---|
7688 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[0])
|
---|
7689 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[1]))
|
---|
7690 | cNormalInputPairs++;
|
---|
7691 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
7692 | {
|
---|
7693 | iTest -= 1;
|
---|
7694 | continue;
|
---|
7695 | }
|
---|
7696 |
|
---|
7697 | IEMMEDIAF2XMMSRC Src;
|
---|
7698 | Src.uSrc1 = TestData.InVal1;
|
---|
7699 | Src.uSrc2 = TestData.InVal2;
|
---|
7700 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7701 | for (uint8_t bImm = 0; bImm <= SSE_COMPARE_F2_XMM_IMM8_MAX; bImm++)
|
---|
7702 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7703 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7704 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7705 | {
|
---|
7706 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7707 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7708 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7709 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7710 | | X86_MXCSR_XCPT_MASK;
|
---|
7711 | uint32_t fMxcsrM = fMxcsrIn;
|
---|
7712 | X86XMMREG ResM;
|
---|
7713 | pfn(&fMxcsrM, &ResM, &Src, bImm);
|
---|
7714 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7715 | TestData.fMxcsrOut = fMxcsrM;
|
---|
7716 | TestData.bImm = bImm;
|
---|
7717 | TestData.OutVal = ResM;
|
---|
7718 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7719 |
|
---|
7720 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
7721 | uint32_t fMxcsrU = fMxcsrIn;
|
---|
7722 | X86XMMREG ResU;
|
---|
7723 | pfn(&fMxcsrU, &ResU, &Src, bImm);
|
---|
7724 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7725 | TestData.fMxcsrOut = fMxcsrU;
|
---|
7726 | TestData.bImm = bImm;
|
---|
7727 | TestData.OutVal = ResU;
|
---|
7728 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7729 |
|
---|
7730 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
7731 | if (fXcpt)
|
---|
7732 | {
|
---|
7733 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7734 | uint32_t fMxcsr1 = fMxcsrIn;
|
---|
7735 | X86XMMREG Res1;
|
---|
7736 | pfn(&fMxcsr1, &Res1, &Src, bImm);
|
---|
7737 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7738 | TestData.fMxcsrOut = fMxcsr1;
|
---|
7739 | TestData.bImm = bImm;
|
---|
7740 | TestData.OutVal = Res1;
|
---|
7741 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7742 |
|
---|
7743 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
7744 | {
|
---|
7745 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
7746 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7747 | uint32_t fMxcsr2 = fMxcsrIn;
|
---|
7748 | X86XMMREG Res2;
|
---|
7749 | pfn(&fMxcsr2, &Res2, &Src, bImm);
|
---|
7750 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7751 | TestData.fMxcsrOut = fMxcsr2;
|
---|
7752 | TestData.bImm = bImm;
|
---|
7753 | TestData.OutVal = Res2;
|
---|
7754 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7755 | }
|
---|
7756 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7757 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7758 | if (fUnmasked & fXcpt)
|
---|
7759 | {
|
---|
7760 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7761 | uint32_t fMxcsr3 = fMxcsrIn;
|
---|
7762 | X86XMMREG Res3;
|
---|
7763 | pfn(&fMxcsr3, &Res3, &Src, bImm);
|
---|
7764 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7765 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7766 | TestData.bImm = bImm;
|
---|
7767 | TestData.OutVal = Res3;
|
---|
7768 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7769 | }
|
---|
7770 | }
|
---|
7771 | }
|
---|
7772 | }
|
---|
7773 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7774 | }
|
---|
7775 |
|
---|
7776 | return RTEXITCODE_SUCCESS;
|
---|
7777 | }
|
---|
7778 | #endif
|
---|
7779 |
|
---|
7780 | static void SseCompareF2XmmR64Imm8Test(void)
|
---|
7781 | {
|
---|
7782 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF2XmmR64Imm8); iFn++)
|
---|
7783 | {
|
---|
7784 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareF2XmmR64Imm8[iFn]))
|
---|
7785 | continue;
|
---|
7786 |
|
---|
7787 | SSE_COMPARE_F2_XMM_IMM8_TEST_T const * const paTests = g_aSseCompareF2XmmR64Imm8[iFn].paTests;
|
---|
7788 | uint32_t const cTests = g_aSseCompareF2XmmR64Imm8[iFn].cTests;
|
---|
7789 | PFNIEMAIMPLMXCSRF2XMMIMM8 pfn = g_aSseCompareF2XmmR64Imm8[iFn].pfn;
|
---|
7790 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareF2XmmR64Imm8[iFn]);
|
---|
7791 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7792 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7793 | {
|
---|
7794 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7795 | {
|
---|
7796 | IEMMEDIAF2XMMSRC Src;
|
---|
7797 | X86XMMREG ValOut;
|
---|
7798 |
|
---|
7799 | Src.uSrc1 = paTests[iTest].InVal1;
|
---|
7800 | Src.uSrc2 = paTests[iTest].InVal2;
|
---|
7801 | uint32_t fMxcsr = paTests[iTest].fMxcsrIn;
|
---|
7802 | pfn(&fMxcsr, &ValOut, &Src, paTests[iTest].bImm);
|
---|
7803 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7804 | || ValOut.au64[0] != paTests[iTest].OutVal.au64[0]
|
---|
7805 | || ValOut.au64[1] != paTests[iTest].OutVal.au64[1])
|
---|
7806 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s'%s imm8=%x\n"
|
---|
7807 | "%s -> mxcsr=%#08x %RX64'%RX64\n"
|
---|
7808 | "%s expected %#08x %RX64'%RX64%s%s (%s)\n",
|
---|
7809 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
7810 | FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]),
|
---|
7811 | FormatR64(&paTests[iTest].InVal2.ar64[0]), FormatR64(&paTests[iTest].InVal2.ar64[1]),
|
---|
7812 | paTests[iTest].bImm,
|
---|
7813 | iVar ? " " : "", fMxcsr, ValOut.au64[0], ValOut.au64[1],
|
---|
7814 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
7815 | paTests[iTest].OutVal.au64[0], paTests[iTest].OutVal.au64[1],
|
---|
7816 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7817 | ( ValOut.au64[0] != paTests[iTest].OutVal.au64[0]
|
---|
7818 | || ValOut.au64[1] != paTests[iTest].OutVal.au64[1])
|
---|
7819 | ? " - val" : "",
|
---|
7820 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
7821 | }
|
---|
7822 | }
|
---|
7823 | }
|
---|
7824 | }
|
---|
7825 |
|
---|
7826 |
|
---|
7827 | /*
|
---|
7828 | * Convert SSE operations converting signed double-words to single-precision floating point values.
|
---|
7829 | */
|
---|
7830 | TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_XMM_T, SSE_CONVERT_XMM_TEST_T, PFNIEMAIMPLFPSSEF2U128);
|
---|
7831 |
|
---|
7832 | static SSE_CONVERT_XMM_T g_aSseConvertXmmI32R32[] =
|
---|
7833 | {
|
---|
7834 | ENTRY_BIN(cvtdq2ps_u128)
|
---|
7835 | };
|
---|
7836 |
|
---|
7837 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7838 | static RTEXITCODE SseConvertXmmI32R32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
7839 | {
|
---|
7840 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7841 |
|
---|
7842 | static int32_t const s_aSpecials[] =
|
---|
7843 | {
|
---|
7844 | INT32_MIN,
|
---|
7845 | INT32_MIN / 2,
|
---|
7846 | 0,
|
---|
7847 | INT32_MAX / 2,
|
---|
7848 | INT32_MAX,
|
---|
7849 | (int32_t)0x80000000
|
---|
7850 | /** @todo More specials. */
|
---|
7851 | };
|
---|
7852 |
|
---|
7853 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R32); iFn++)
|
---|
7854 | {
|
---|
7855 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmI32R32[iFn].pfnNative ? g_aSseConvertXmmI32R32[iFn].pfnNative : g_aSseConvertXmmI32R32[iFn].pfn;
|
---|
7856 |
|
---|
7857 | IEMBINARYOUTPUT BinOut;
|
---|
7858 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseConvertXmmI32R32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
7859 |
|
---|
7860 | X86FXSTATE State;
|
---|
7861 | RT_ZERO(State);
|
---|
7862 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7863 | {
|
---|
7864 | SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData);
|
---|
7865 |
|
---|
7866 | TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
7867 | TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
7868 | TestData.InVal.ai32[2] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
7869 | TestData.InVal.ai32[3] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
7870 |
|
---|
7871 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7872 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7873 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7874 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7875 | {
|
---|
7876 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7877 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7878 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7879 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7880 | | X86_MXCSR_XCPT_MASK;
|
---|
7881 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
7882 | pfn(&State, &ResM, &ResM.uResult, &TestData.InVal);
|
---|
7883 | TestData.fMxcsrIn = State.MXCSR;
|
---|
7884 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
7885 | TestData.OutVal = ResM.uResult;
|
---|
7886 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7887 |
|
---|
7888 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
7889 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
7890 | pfn(&State, &ResU, &ResU.uResult, &TestData.InVal);
|
---|
7891 | TestData.fMxcsrIn = State.MXCSR;
|
---|
7892 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
7893 | TestData.OutVal = ResU.uResult;
|
---|
7894 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7895 |
|
---|
7896 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
7897 | if (fXcpt)
|
---|
7898 | {
|
---|
7899 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7900 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
7901 | pfn(&State, &Res1, &Res1.uResult, &TestData.InVal);
|
---|
7902 | TestData.fMxcsrIn = State.MXCSR;
|
---|
7903 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
7904 | TestData.OutVal = Res1.uResult;
|
---|
7905 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7906 |
|
---|
7907 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
7908 | {
|
---|
7909 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
7910 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7911 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
7912 | pfn(&State, &Res2, &Res2.uResult, &TestData.InVal);
|
---|
7913 | TestData.fMxcsrIn = State.MXCSR;
|
---|
7914 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
7915 | TestData.OutVal = Res2.uResult;
|
---|
7916 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7917 | }
|
---|
7918 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7919 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7920 | if (fUnmasked & fXcpt)
|
---|
7921 | {
|
---|
7922 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7923 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
7924 | pfn(&State, &Res3, &Res3.uResult, &TestData.InVal);
|
---|
7925 | TestData.fMxcsrIn = State.MXCSR;
|
---|
7926 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
7927 | TestData.OutVal = Res3.uResult;
|
---|
7928 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7929 | }
|
---|
7930 | }
|
---|
7931 | }
|
---|
7932 | }
|
---|
7933 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7934 | }
|
---|
7935 |
|
---|
7936 | return RTEXITCODE_SUCCESS;
|
---|
7937 | }
|
---|
7938 | #endif
|
---|
7939 |
|
---|
7940 | static void SseConvertXmmI32R32Test(void)
|
---|
7941 | {
|
---|
7942 | X86FXSTATE State;
|
---|
7943 | RT_ZERO(State);
|
---|
7944 |
|
---|
7945 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R32); iFn++)
|
---|
7946 | {
|
---|
7947 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmI32R32[iFn]))
|
---|
7948 | continue;
|
---|
7949 |
|
---|
7950 | SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmI32R32[iFn].paTests;
|
---|
7951 | uint32_t const cTests = g_aSseConvertXmmI32R32[iFn].cTests;
|
---|
7952 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmI32R32[iFn].pfn;
|
---|
7953 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmI32R32[iFn]);
|
---|
7954 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7955 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7956 | {
|
---|
7957 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7958 | {
|
---|
7959 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
7960 |
|
---|
7961 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
7962 | pfn(&State, &Res, &Res.uResult, &paTests[iTest].InVal);
|
---|
7963 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
7964 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
7965 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[1], &paTests[iTest].OutVal.ar32[1])
|
---|
7966 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[2], &paTests[iTest].OutVal.ar32[2])
|
---|
7967 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[3], &paTests[iTest].OutVal.ar32[3]))
|
---|
7968 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32'%RI32'%RI32 \n"
|
---|
7969 | "%s -> mxcsr=%#08x %s'%s'%s'%s\n"
|
---|
7970 | "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n",
|
---|
7971 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
7972 | paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1],
|
---|
7973 | paTests[iTest].InVal.ai32[2], paTests[iTest].InVal.ai32[3],
|
---|
7974 | iVar ? " " : "", Res.MXCSR,
|
---|
7975 | FormatR32(&Res.uResult.ar32[0]), FormatR32(&Res.uResult.ar32[1]),
|
---|
7976 | FormatR32(&Res.uResult.ar32[2]), FormatR32(&Res.uResult.ar32[3]),
|
---|
7977 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
7978 | FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]),
|
---|
7979 | FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]),
|
---|
7980 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
7981 | ( !RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
7982 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[1], &paTests[iTest].OutVal.ar32[1])
|
---|
7983 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[2], &paTests[iTest].OutVal.ar32[2])
|
---|
7984 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[3], &paTests[iTest].OutVal.ar32[3]))
|
---|
7985 | ? " - val" : "",
|
---|
7986 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
7987 | }
|
---|
7988 | }
|
---|
7989 | }
|
---|
7990 | }
|
---|
7991 |
|
---|
7992 |
|
---|
7993 | /*
|
---|
7994 | * Convert SSE operations converting signed double-words to single-precision floating point values.
|
---|
7995 | */
|
---|
7996 | static SSE_CONVERT_XMM_T g_aSseConvertXmmR32I32[] =
|
---|
7997 | {
|
---|
7998 | ENTRY_BIN(cvtps2dq_u128),
|
---|
7999 | ENTRY_BIN(cvttps2dq_u128)
|
---|
8000 | };
|
---|
8001 |
|
---|
8002 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8003 | static RTEXITCODE SseConvertXmmR32I32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
8004 | {
|
---|
8005 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8006 |
|
---|
8007 | static struct { RTFLOAT32U aVal1[4]; } const s_aSpecials[] =
|
---|
8008 | {
|
---|
8009 | { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) } },
|
---|
8010 | { { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) } },
|
---|
8011 | { { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) } },
|
---|
8012 | { { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) } }
|
---|
8013 | /** @todo More specials. */
|
---|
8014 | };
|
---|
8015 |
|
---|
8016 | X86FXSTATE State;
|
---|
8017 | RT_ZERO(State);
|
---|
8018 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
8019 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32I32); iFn++)
|
---|
8020 | {
|
---|
8021 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmR32I32[iFn].pfnNative ? g_aSseConvertXmmR32I32[iFn].pfnNative : g_aSseConvertXmmR32I32[iFn].pfn;
|
---|
8022 |
|
---|
8023 | IEMBINARYOUTPUT BinOut;
|
---|
8024 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseConvertXmmR32I32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
8025 |
|
---|
8026 | uint32_t cNormalInputPairs = 0;
|
---|
8027 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8028 | {
|
---|
8029 | SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8030 |
|
---|
8031 | TestData.InVal.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
8032 | TestData.InVal.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
8033 | TestData.InVal.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2];
|
---|
8034 | TestData.InVal.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3];
|
---|
8035 |
|
---|
8036 | if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[0])
|
---|
8037 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[1])
|
---|
8038 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[2])
|
---|
8039 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[3]))
|
---|
8040 | cNormalInputPairs++;
|
---|
8041 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
8042 | {
|
---|
8043 | iTest -= 1;
|
---|
8044 | continue;
|
---|
8045 | }
|
---|
8046 |
|
---|
8047 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8048 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8049 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8050 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8051 | {
|
---|
8052 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8053 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8054 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8055 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8056 | | X86_MXCSR_XCPT_MASK;
|
---|
8057 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
8058 | pfn(&State, &ResM, &ResM.uResult, &TestData.InVal);
|
---|
8059 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8060 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
8061 | TestData.OutVal = ResM.uResult;
|
---|
8062 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8063 |
|
---|
8064 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
8065 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
8066 | pfn(&State, &ResU, &ResU.uResult, &TestData.InVal);
|
---|
8067 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8068 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
8069 | TestData.OutVal = ResU.uResult;
|
---|
8070 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8071 |
|
---|
8072 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
8073 | if (fXcpt)
|
---|
8074 | {
|
---|
8075 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8076 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
8077 | pfn(&State, &Res1, &Res1.uResult, &TestData.InVal);
|
---|
8078 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8079 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
8080 | TestData.OutVal = Res1.uResult;
|
---|
8081 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8082 |
|
---|
8083 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
8084 | {
|
---|
8085 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
8086 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8087 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
8088 | pfn(&State, &Res2, &Res2.uResult, &TestData.InVal);
|
---|
8089 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8090 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
8091 | TestData.OutVal = Res2.uResult;
|
---|
8092 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8093 | }
|
---|
8094 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8095 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8096 | if (fUnmasked & fXcpt)
|
---|
8097 | {
|
---|
8098 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8099 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
8100 | pfn(&State, &Res3, &Res3.uResult, &TestData.InVal);
|
---|
8101 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8102 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
8103 | TestData.OutVal = Res3.uResult;
|
---|
8104 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8105 | }
|
---|
8106 | }
|
---|
8107 | }
|
---|
8108 | }
|
---|
8109 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8110 | }
|
---|
8111 |
|
---|
8112 | return RTEXITCODE_SUCCESS;
|
---|
8113 | }
|
---|
8114 | #endif
|
---|
8115 |
|
---|
8116 | static void SseConvertXmmR32I32Test(void)
|
---|
8117 | {
|
---|
8118 | X86FXSTATE State;
|
---|
8119 | RT_ZERO(State);
|
---|
8120 |
|
---|
8121 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32I32); iFn++)
|
---|
8122 | {
|
---|
8123 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR32I32[iFn]))
|
---|
8124 | continue;
|
---|
8125 |
|
---|
8126 | SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmR32I32[iFn].paTests;
|
---|
8127 | uint32_t const cTests = g_aSseConvertXmmR32I32[iFn].cTests;
|
---|
8128 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmR32I32[iFn].pfn;
|
---|
8129 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR32I32[iFn]);
|
---|
8130 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8131 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8132 | {
|
---|
8133 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8134 | {
|
---|
8135 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
8136 |
|
---|
8137 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
8138 | pfn(&State, &Res, &Res.uResult, &paTests[iTest].InVal);
|
---|
8139 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
8140 | || Res.uResult.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8141 | || Res.uResult.ai32[1] != paTests[iTest].OutVal.ai32[1]
|
---|
8142 | || Res.uResult.ai32[2] != paTests[iTest].OutVal.ai32[2]
|
---|
8143 | || Res.uResult.ai32[3] != paTests[iTest].OutVal.ai32[3])
|
---|
8144 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s \n"
|
---|
8145 | "%s -> mxcsr=%#08x %RI32'%RI32'%RI32'%RI32\n"
|
---|
8146 | "%s expected %#08x %RI32'%RI32'%RI32'%RI32%s%s (%s)\n",
|
---|
8147 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8148 | FormatR32(&paTests[iTest].InVal.ar32[0]), FormatR32(&paTests[iTest].InVal.ar32[1]),
|
---|
8149 | FormatR32(&paTests[iTest].InVal.ar32[2]), FormatR32(&paTests[iTest].InVal.ar32[3]),
|
---|
8150 | iVar ? " " : "", Res.MXCSR,
|
---|
8151 | Res.uResult.ai32[0], Res.uResult.ai32[1],
|
---|
8152 | Res.uResult.ai32[2], Res.uResult.ai32[3],
|
---|
8153 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8154 | paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1],
|
---|
8155 | paTests[iTest].OutVal.ai32[2], paTests[iTest].OutVal.ai32[3],
|
---|
8156 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
8157 | ( Res.uResult.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8158 | || Res.uResult.ai32[1] != paTests[iTest].OutVal.ai32[1]
|
---|
8159 | || Res.uResult.ai32[2] != paTests[iTest].OutVal.ai32[2]
|
---|
8160 | || Res.uResult.ai32[3] != paTests[iTest].OutVal.ai32[3])
|
---|
8161 | ? " - val" : "",
|
---|
8162 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8163 | }
|
---|
8164 | }
|
---|
8165 | }
|
---|
8166 | }
|
---|
8167 |
|
---|
8168 |
|
---|
8169 | /*
|
---|
8170 | * Convert SSE operations converting signed double-words to double-precision floating point values.
|
---|
8171 | */
|
---|
8172 | static SSE_CONVERT_XMM_T g_aSseConvertXmmI32R64[] =
|
---|
8173 | {
|
---|
8174 | ENTRY_BIN(cvtdq2pd_u128)
|
---|
8175 | };
|
---|
8176 |
|
---|
8177 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8178 | static RTEXITCODE SseConvertXmmI32R64Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
8179 | {
|
---|
8180 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8181 |
|
---|
8182 | static int32_t const s_aSpecials[] =
|
---|
8183 | {
|
---|
8184 | INT32_MIN,
|
---|
8185 | INT32_MIN / 2,
|
---|
8186 | 0,
|
---|
8187 | INT32_MAX / 2,
|
---|
8188 | INT32_MAX,
|
---|
8189 | (int32_t)0x80000000
|
---|
8190 | /** @todo More specials. */
|
---|
8191 | };
|
---|
8192 |
|
---|
8193 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R64); iFn++)
|
---|
8194 | {
|
---|
8195 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmI32R64[iFn].pfnNative ? g_aSseConvertXmmI32R64[iFn].pfnNative : g_aSseConvertXmmI32R64[iFn].pfn;
|
---|
8196 |
|
---|
8197 | IEMBINARYOUTPUT BinOut;
|
---|
8198 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseConvertXmmI32R64[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
8199 |
|
---|
8200 | X86FXSTATE State;
|
---|
8201 | RT_ZERO(State);
|
---|
8202 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8203 | {
|
---|
8204 | SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8205 |
|
---|
8206 | TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8207 | TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8208 | TestData.InVal.ai32[2] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8209 | TestData.InVal.ai32[3] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8210 |
|
---|
8211 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8212 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8213 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8214 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8215 | {
|
---|
8216 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8217 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8218 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8219 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8220 | | X86_MXCSR_XCPT_MASK;
|
---|
8221 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
8222 | pfn(&State, &ResM, &ResM.uResult, &TestData.InVal);
|
---|
8223 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8224 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
8225 | TestData.OutVal = ResM.uResult;
|
---|
8226 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8227 |
|
---|
8228 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
8229 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
8230 | pfn(&State, &ResU, &ResU.uResult, &TestData.InVal);
|
---|
8231 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8232 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
8233 | TestData.OutVal = ResU.uResult;
|
---|
8234 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8235 |
|
---|
8236 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
8237 | if (fXcpt)
|
---|
8238 | {
|
---|
8239 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8240 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
8241 | pfn(&State, &Res1, &Res1.uResult, &TestData.InVal);
|
---|
8242 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8243 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
8244 | TestData.OutVal = Res1.uResult;
|
---|
8245 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8246 |
|
---|
8247 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
8248 | {
|
---|
8249 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
8250 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8251 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
8252 | pfn(&State, &Res2, &Res2.uResult, &TestData.InVal);
|
---|
8253 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8254 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
8255 | TestData.OutVal = Res2.uResult;
|
---|
8256 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8257 | }
|
---|
8258 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8259 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8260 | if (fUnmasked & fXcpt)
|
---|
8261 | {
|
---|
8262 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8263 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
8264 | pfn(&State, &Res3, &Res3.uResult, &TestData.InVal);
|
---|
8265 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8266 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
8267 | TestData.OutVal = Res3.uResult;
|
---|
8268 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8269 | }
|
---|
8270 | }
|
---|
8271 | }
|
---|
8272 | }
|
---|
8273 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8274 | }
|
---|
8275 |
|
---|
8276 | return RTEXITCODE_SUCCESS;
|
---|
8277 | }
|
---|
8278 | #endif
|
---|
8279 |
|
---|
8280 | static void SseConvertXmmI32R64Test(void)
|
---|
8281 | {
|
---|
8282 | X86FXSTATE State;
|
---|
8283 | RT_ZERO(State);
|
---|
8284 |
|
---|
8285 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R64); iFn++)
|
---|
8286 | {
|
---|
8287 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmI32R64[iFn]))
|
---|
8288 | continue;
|
---|
8289 |
|
---|
8290 | SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmI32R64[iFn].paTests;
|
---|
8291 | uint32_t const cTests = g_aSseConvertXmmI32R64[iFn].cTests;
|
---|
8292 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmI32R64[iFn].pfn;
|
---|
8293 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmI32R64[iFn]);
|
---|
8294 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8295 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8296 | {
|
---|
8297 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8298 | {
|
---|
8299 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
8300 |
|
---|
8301 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
8302 | pfn(&State, &Res, &Res.uResult, &paTests[iTest].InVal);
|
---|
8303 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
8304 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
8305 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
8306 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32'%RI32'%RI32 \n"
|
---|
8307 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
8308 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
8309 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8310 | paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1],
|
---|
8311 | paTests[iTest].InVal.ai32[2], paTests[iTest].InVal.ai32[3],
|
---|
8312 | iVar ? " " : "", Res.MXCSR,
|
---|
8313 | FormatR64(&Res.uResult.ar64[0]), FormatR64(&Res.uResult.ar64[1]),
|
---|
8314 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8315 | FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]),
|
---|
8316 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
8317 | ( !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
8318 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
8319 | ? " - val" : "",
|
---|
8320 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8321 | }
|
---|
8322 | }
|
---|
8323 | }
|
---|
8324 | }
|
---|
8325 |
|
---|
8326 |
|
---|
8327 | /*
|
---|
8328 | * Convert SSE operations converting signed double-words to double-precision floating point values.
|
---|
8329 | */
|
---|
8330 | static SSE_CONVERT_XMM_T g_aSseConvertXmmR64I32[] =
|
---|
8331 | {
|
---|
8332 | ENTRY_BIN(cvtpd2dq_u128),
|
---|
8333 | ENTRY_BIN(cvttpd2dq_u128)
|
---|
8334 | };
|
---|
8335 |
|
---|
8336 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8337 | static RTEXITCODE SseConvertXmmR64I32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
8338 | {
|
---|
8339 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8340 |
|
---|
8341 | static struct { RTFLOAT64U aVal1[2]; } const s_aSpecials[] =
|
---|
8342 | {
|
---|
8343 | { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) } },
|
---|
8344 | { { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) } },
|
---|
8345 | { { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) } },
|
---|
8346 | { { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) } }
|
---|
8347 | /** @todo More specials. */
|
---|
8348 | };
|
---|
8349 |
|
---|
8350 | X86FXSTATE State;
|
---|
8351 | RT_ZERO(State);
|
---|
8352 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
8353 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64I32); iFn++)
|
---|
8354 | {
|
---|
8355 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmR64I32[iFn].pfnNative ? g_aSseConvertXmmR64I32[iFn].pfnNative : g_aSseConvertXmmR64I32[iFn].pfn;
|
---|
8356 |
|
---|
8357 | IEMBINARYOUTPUT BinOut;
|
---|
8358 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseConvertXmmR64I32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
8359 |
|
---|
8360 | uint32_t cNormalInputPairs = 0;
|
---|
8361 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8362 | {
|
---|
8363 | SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8364 |
|
---|
8365 | TestData.InVal.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
8366 | TestData.InVal.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
8367 |
|
---|
8368 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[0])
|
---|
8369 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[1]))
|
---|
8370 | cNormalInputPairs++;
|
---|
8371 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
8372 | {
|
---|
8373 | iTest -= 1;
|
---|
8374 | continue;
|
---|
8375 | }
|
---|
8376 |
|
---|
8377 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8378 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8379 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8380 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8381 | {
|
---|
8382 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8383 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8384 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8385 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8386 | | X86_MXCSR_XCPT_MASK;
|
---|
8387 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
8388 | pfn(&State, &ResM, &ResM.uResult, &TestData.InVal);
|
---|
8389 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8390 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
8391 | TestData.OutVal = ResM.uResult;
|
---|
8392 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8393 |
|
---|
8394 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
8395 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
8396 | pfn(&State, &ResU, &ResU.uResult, &TestData.InVal);
|
---|
8397 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8398 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
8399 | TestData.OutVal = ResU.uResult;
|
---|
8400 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8401 |
|
---|
8402 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
8403 | if (fXcpt)
|
---|
8404 | {
|
---|
8405 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8406 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
8407 | pfn(&State, &Res1, &Res1.uResult, &TestData.InVal);
|
---|
8408 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8409 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
8410 | TestData.OutVal = Res1.uResult;
|
---|
8411 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8412 |
|
---|
8413 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
8414 | {
|
---|
8415 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
8416 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8417 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
8418 | pfn(&State, &Res2, &Res2.uResult, &TestData.InVal);
|
---|
8419 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8420 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
8421 | TestData.OutVal = Res2.uResult;
|
---|
8422 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8423 | }
|
---|
8424 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8425 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8426 | if (fUnmasked & fXcpt)
|
---|
8427 | {
|
---|
8428 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8429 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
8430 | pfn(&State, &Res3, &Res3.uResult, &TestData.InVal);
|
---|
8431 | TestData.fMxcsrIn = State.MXCSR;
|
---|
8432 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
8433 | TestData.OutVal = Res3.uResult;
|
---|
8434 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8435 | }
|
---|
8436 | }
|
---|
8437 | }
|
---|
8438 | }
|
---|
8439 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8440 | }
|
---|
8441 |
|
---|
8442 | return RTEXITCODE_SUCCESS;
|
---|
8443 | }
|
---|
8444 | #endif
|
---|
8445 |
|
---|
8446 | static void SseConvertXmmR64I32Test(void)
|
---|
8447 | {
|
---|
8448 | X86FXSTATE State;
|
---|
8449 | RT_ZERO(State);
|
---|
8450 |
|
---|
8451 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64I32); iFn++)
|
---|
8452 | {
|
---|
8453 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR64I32[iFn]))
|
---|
8454 | continue;
|
---|
8455 |
|
---|
8456 | SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmR64I32[iFn].paTests;
|
---|
8457 | uint32_t const cTests = g_aSseConvertXmmR64I32[iFn].cTests;
|
---|
8458 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmR64I32[iFn].pfn;
|
---|
8459 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR64I32[iFn]);
|
---|
8460 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8461 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8462 | {
|
---|
8463 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8464 | {
|
---|
8465 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
8466 |
|
---|
8467 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
8468 | pfn(&State, &Res, &Res.uResult, &paTests[iTest].InVal);
|
---|
8469 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
8470 | || Res.uResult.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8471 | || Res.uResult.ai32[1] != paTests[iTest].OutVal.ai32[1]
|
---|
8472 | || Res.uResult.ai32[2] != paTests[iTest].OutVal.ai32[2]
|
---|
8473 | || Res.uResult.ai32[3] != paTests[iTest].OutVal.ai32[3])
|
---|
8474 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s \n"
|
---|
8475 | "%s -> mxcsr=%#08x %RI32'%RI32'%RI32'%RI32\n"
|
---|
8476 | "%s expected %#08x %RI32'%RI32'%RI32'%RI32%s%s (%s)\n",
|
---|
8477 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8478 | FormatR64(&paTests[iTest].InVal.ar64[0]), FormatR64(&paTests[iTest].InVal.ar64[1]),
|
---|
8479 | iVar ? " " : "", Res.MXCSR,
|
---|
8480 | Res.uResult.ai32[0], Res.uResult.ai32[1],
|
---|
8481 | Res.uResult.ai32[2], Res.uResult.ai32[3],
|
---|
8482 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8483 | paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1],
|
---|
8484 | paTests[iTest].OutVal.ai32[2], paTests[iTest].OutVal.ai32[3],
|
---|
8485 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
8486 | ( Res.uResult.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8487 | || Res.uResult.ai32[1] != paTests[iTest].OutVal.ai32[1]
|
---|
8488 | || Res.uResult.ai32[2] != paTests[iTest].OutVal.ai32[2]
|
---|
8489 | || Res.uResult.ai32[3] != paTests[iTest].OutVal.ai32[3])
|
---|
8490 | ? " - val" : "",
|
---|
8491 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8492 | }
|
---|
8493 | }
|
---|
8494 | }
|
---|
8495 | }
|
---|
8496 |
|
---|
8497 |
|
---|
8498 | /*
|
---|
8499 | * Convert SSE operations converting double-precision floating point values to signed double-word values.
|
---|
8500 | */
|
---|
8501 | TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_MM_XMM_T, SSE_CONVERT_MM_XMM_TEST_T, PFNIEMAIMPLMXCSRU64U128);
|
---|
8502 |
|
---|
8503 | static SSE_CONVERT_MM_XMM_T g_aSseConvertMmXmm[] =
|
---|
8504 | {
|
---|
8505 | ENTRY_BIN(cvtpd2pi_u128),
|
---|
8506 | ENTRY_BIN(cvttpd2pi_u128)
|
---|
8507 | };
|
---|
8508 |
|
---|
8509 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8510 | static RTEXITCODE SseConvertMmXmmGenerate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
8511 | {
|
---|
8512 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8513 |
|
---|
8514 | static struct { RTFLOAT64U aVal1[2]; } const s_aSpecials[] =
|
---|
8515 | {
|
---|
8516 | { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) } },
|
---|
8517 | { { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) } },
|
---|
8518 | { { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) } },
|
---|
8519 | { { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) } }
|
---|
8520 | /** @todo More specials. */
|
---|
8521 | };
|
---|
8522 |
|
---|
8523 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
8524 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmXmm); iFn++)
|
---|
8525 | {
|
---|
8526 | PFNIEMAIMPLMXCSRU64U128 const pfn = g_aSseConvertMmXmm[iFn].pfnNative ? g_aSseConvertMmXmm[iFn].pfnNative : g_aSseConvertMmXmm[iFn].pfn;
|
---|
8527 |
|
---|
8528 | IEMBINARYOUTPUT BinOut;
|
---|
8529 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseConvertMmXmm[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
8530 |
|
---|
8531 | uint32_t cNormalInputPairs = 0;
|
---|
8532 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8533 | {
|
---|
8534 | SSE_CONVERT_MM_XMM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8535 |
|
---|
8536 | TestData.InVal.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
8537 | TestData.InVal.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
8538 |
|
---|
8539 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[0])
|
---|
8540 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[1]))
|
---|
8541 | cNormalInputPairs++;
|
---|
8542 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
8543 | {
|
---|
8544 | iTest -= 1;
|
---|
8545 | continue;
|
---|
8546 | }
|
---|
8547 |
|
---|
8548 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8549 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8550 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8551 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8552 | {
|
---|
8553 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8554 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8555 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8556 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8557 | | X86_MXCSR_XCPT_MASK;
|
---|
8558 | uint32_t fMxcsrM = fMxcsrIn;
|
---|
8559 | uint64_t u64ResM;
|
---|
8560 | pfn(&fMxcsrM, &u64ResM, &TestData.InVal);
|
---|
8561 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8562 | TestData.fMxcsrOut = fMxcsrM;
|
---|
8563 | TestData.OutVal.u = u64ResM;
|
---|
8564 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8565 |
|
---|
8566 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
8567 | uint32_t fMxcsrU = fMxcsrIn;
|
---|
8568 | uint64_t u64ResU;
|
---|
8569 | pfn(&fMxcsrU, &u64ResU, &TestData.InVal);
|
---|
8570 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8571 | TestData.fMxcsrOut = fMxcsrU;
|
---|
8572 | TestData.OutVal.u = u64ResU;
|
---|
8573 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8574 |
|
---|
8575 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
8576 | if (fXcpt)
|
---|
8577 | {
|
---|
8578 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8579 | uint32_t fMxcsr1 = fMxcsrIn;
|
---|
8580 | uint64_t u64Res1;
|
---|
8581 | pfn(&fMxcsr1, &u64Res1, &TestData.InVal);
|
---|
8582 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8583 | TestData.fMxcsrOut = fMxcsr1;
|
---|
8584 | TestData.OutVal.u = u64Res1;
|
---|
8585 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8586 |
|
---|
8587 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
8588 | {
|
---|
8589 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
8590 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8591 | uint32_t fMxcsr2 = fMxcsrIn;
|
---|
8592 | uint64_t u64Res2;
|
---|
8593 | pfn(&fMxcsr2, &u64Res2, &TestData.InVal);
|
---|
8594 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8595 | TestData.fMxcsrOut = fMxcsr2;
|
---|
8596 | TestData.OutVal.u = u64Res2;
|
---|
8597 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8598 | }
|
---|
8599 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8600 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8601 | if (fUnmasked & fXcpt)
|
---|
8602 | {
|
---|
8603 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8604 | uint32_t fMxcsr3 = fMxcsrIn;
|
---|
8605 | uint64_t u64Res3;
|
---|
8606 | pfn(&fMxcsr3, &u64Res3, &TestData.InVal);
|
---|
8607 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8608 | TestData.fMxcsrOut = fMxcsr3;
|
---|
8609 | TestData.OutVal.u = u64Res3;
|
---|
8610 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8611 | }
|
---|
8612 | }
|
---|
8613 | }
|
---|
8614 | }
|
---|
8615 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8616 | }
|
---|
8617 |
|
---|
8618 | return RTEXITCODE_SUCCESS;
|
---|
8619 | }
|
---|
8620 | #endif
|
---|
8621 |
|
---|
8622 | static void SseConvertMmXmmTest(void)
|
---|
8623 | {
|
---|
8624 | X86FXSTATE State;
|
---|
8625 | RT_ZERO(State);
|
---|
8626 |
|
---|
8627 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmXmm); iFn++)
|
---|
8628 | {
|
---|
8629 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertMmXmm[iFn]))
|
---|
8630 | continue;
|
---|
8631 |
|
---|
8632 | SSE_CONVERT_MM_XMM_TEST_T const * const paTests = g_aSseConvertMmXmm[iFn].paTests;
|
---|
8633 | uint32_t const cTests = g_aSseConvertMmXmm[iFn].cTests;
|
---|
8634 | PFNIEMAIMPLMXCSRU64U128 pfn = g_aSseConvertMmXmm[iFn].pfn;
|
---|
8635 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertMmXmm[iFn]);
|
---|
8636 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8637 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8638 | {
|
---|
8639 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8640 | {
|
---|
8641 | RTUINT64U ValOut;
|
---|
8642 | uint32_t fMxcsr = paTests[iTest].fMxcsrIn;
|
---|
8643 | pfn(&fMxcsr, &ValOut.u, &paTests[iTest].InVal);
|
---|
8644 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
8645 | || ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8646 | || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1])
|
---|
8647 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s\n"
|
---|
8648 | "%s -> mxcsr=%#08x %RI32'%RI32\n"
|
---|
8649 | "%s expected %#08x %RI32'%RI32%s%s (%s)\n",
|
---|
8650 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8651 | FormatR64(&paTests[iTest].InVal.ar64[0]), FormatR64(&paTests[iTest].InVal.ar64[1]),
|
---|
8652 | iVar ? " " : "", fMxcsr, ValOut.ai32[0], ValOut.ai32[1],
|
---|
8653 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8654 | paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1],
|
---|
8655 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
8656 | ( ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8657 | || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1])
|
---|
8658 | ? " - val" : "",
|
---|
8659 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8660 | }
|
---|
8661 | }
|
---|
8662 | }
|
---|
8663 | }
|
---|
8664 |
|
---|
8665 |
|
---|
8666 | /*
|
---|
8667 | * Convert SSE operations converting signed double-word values to double precision floating-point values (probably only cvtpi2pd).
|
---|
8668 | */
|
---|
8669 | TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_XMM_R64_MM_T, SSE_CONVERT_XMM_MM_TEST_T, PFNIEMAIMPLMXCSRU128U64);
|
---|
8670 |
|
---|
8671 | static SSE_CONVERT_XMM_R64_MM_T g_aSseConvertXmmR64Mm[] =
|
---|
8672 | {
|
---|
8673 | ENTRY_BIN(cvtpi2pd_u128)
|
---|
8674 | };
|
---|
8675 |
|
---|
8676 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8677 | static RTEXITCODE SseConvertXmmR64MmGenerate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
8678 | {
|
---|
8679 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8680 |
|
---|
8681 | static struct { int32_t aVal[2]; } const s_aSpecials[] =
|
---|
8682 | {
|
---|
8683 | { { INT32_MIN, INT32_MIN } },
|
---|
8684 | { { INT32_MAX, INT32_MAX } }
|
---|
8685 | /** @todo More specials. */
|
---|
8686 | };
|
---|
8687 |
|
---|
8688 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64Mm); iFn++)
|
---|
8689 | {
|
---|
8690 | PFNIEMAIMPLMXCSRU128U64 const pfn = g_aSseConvertXmmR64Mm[iFn].pfnNative ? g_aSseConvertXmmR64Mm[iFn].pfnNative : g_aSseConvertXmmR64Mm[iFn].pfn;
|
---|
8691 |
|
---|
8692 | IEMBINARYOUTPUT BinOut;
|
---|
8693 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseConvertXmmR64Mm[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
8694 |
|
---|
8695 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8696 | {
|
---|
8697 | SSE_CONVERT_XMM_MM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8698 |
|
---|
8699 | TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[0];
|
---|
8700 | TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[1];
|
---|
8701 |
|
---|
8702 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8703 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8704 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8705 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8706 | {
|
---|
8707 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8708 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8709 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8710 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8711 | | X86_MXCSR_XCPT_MASK;
|
---|
8712 | uint32_t fMxcsrM = fMxcsrIn;
|
---|
8713 | pfn(&fMxcsrM, &TestData.OutVal, TestData.InVal.u);
|
---|
8714 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8715 | TestData.fMxcsrOut = fMxcsrM;
|
---|
8716 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8717 |
|
---|
8718 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
8719 | uint32_t fMxcsrU = fMxcsrIn;
|
---|
8720 | pfn(&fMxcsrU, &TestData.OutVal, TestData.InVal.u);
|
---|
8721 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8722 | TestData.fMxcsrOut = fMxcsrU;
|
---|
8723 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8724 |
|
---|
8725 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
8726 | if (fXcpt)
|
---|
8727 | {
|
---|
8728 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8729 | uint32_t fMxcsr1 = fMxcsrIn;
|
---|
8730 | pfn(&fMxcsr1, &TestData.OutVal, TestData.InVal.u);
|
---|
8731 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8732 | TestData.fMxcsrOut = fMxcsr1;
|
---|
8733 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8734 |
|
---|
8735 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
8736 | {
|
---|
8737 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
8738 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8739 | uint32_t fMxcsr2 = fMxcsrIn;
|
---|
8740 | pfn(&fMxcsr2, &TestData.OutVal, TestData.InVal.u);
|
---|
8741 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8742 | TestData.fMxcsrOut = fMxcsr2;
|
---|
8743 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8744 | }
|
---|
8745 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8746 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8747 | if (fUnmasked & fXcpt)
|
---|
8748 | {
|
---|
8749 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8750 | uint32_t fMxcsr3 = fMxcsrIn;
|
---|
8751 | pfn(&fMxcsr3, &TestData.OutVal, TestData.InVal.u);
|
---|
8752 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8753 | TestData.fMxcsrOut = fMxcsr3;
|
---|
8754 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8755 | }
|
---|
8756 | }
|
---|
8757 | }
|
---|
8758 | }
|
---|
8759 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8760 | }
|
---|
8761 |
|
---|
8762 | return RTEXITCODE_SUCCESS;
|
---|
8763 | }
|
---|
8764 | #endif
|
---|
8765 |
|
---|
8766 | static void SseConvertXmmR64MmTest(void)
|
---|
8767 | {
|
---|
8768 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64Mm); iFn++)
|
---|
8769 | {
|
---|
8770 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR64Mm[iFn]))
|
---|
8771 | continue;
|
---|
8772 |
|
---|
8773 | SSE_CONVERT_XMM_MM_TEST_T const * const paTests = g_aSseConvertXmmR64Mm[iFn].paTests;
|
---|
8774 | uint32_t const cTests = g_aSseConvertXmmR64Mm[iFn].cTests;
|
---|
8775 | PFNIEMAIMPLMXCSRU128U64 pfn = g_aSseConvertXmmR64Mm[iFn].pfn;
|
---|
8776 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR64Mm[iFn]);
|
---|
8777 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8778 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8779 | {
|
---|
8780 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8781 | {
|
---|
8782 | X86XMMREG ValOut;
|
---|
8783 | uint32_t fMxcsr = paTests[iTest].fMxcsrIn;
|
---|
8784 | pfn(&fMxcsr, &ValOut, paTests[iTest].InVal.u);
|
---|
8785 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
8786 | || !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
8787 | || !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
8788 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32\n"
|
---|
8789 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
8790 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
8791 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8792 | paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1],
|
---|
8793 | iVar ? " " : "", fMxcsr,
|
---|
8794 | FormatR64(&ValOut.ar64[0]), FormatR64(&ValOut.ar64[1]),
|
---|
8795 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8796 | FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]),
|
---|
8797 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
8798 | ( !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
8799 | || !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
8800 | ? " - val" : "",
|
---|
8801 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8802 | }
|
---|
8803 | }
|
---|
8804 | }
|
---|
8805 | }
|
---|
8806 |
|
---|
8807 |
|
---|
8808 | /*
|
---|
8809 | * Convert SSE operations converting signed double-word values to double precision floating-point values (probably only cvtpi2pd).
|
---|
8810 | */
|
---|
8811 | TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_XMM_R32_MM_T, SSE_CONVERT_XMM_MM_TEST_T, PFNIEMAIMPLMXCSRU128U64);
|
---|
8812 |
|
---|
8813 | static SSE_CONVERT_XMM_R32_MM_T g_aSseConvertXmmR32Mm[] =
|
---|
8814 | {
|
---|
8815 | ENTRY_BIN(cvtpi2ps_u128)
|
---|
8816 | };
|
---|
8817 |
|
---|
8818 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8819 | static RTEXITCODE SseConvertXmmR32MmGenerate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
8820 | {
|
---|
8821 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8822 |
|
---|
8823 | static struct { int32_t aVal[2]; } const s_aSpecials[] =
|
---|
8824 | {
|
---|
8825 | { { INT32_MIN, INT32_MIN } },
|
---|
8826 | { { INT32_MAX, INT32_MAX } }
|
---|
8827 | /** @todo More specials. */
|
---|
8828 | };
|
---|
8829 |
|
---|
8830 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32Mm); iFn++)
|
---|
8831 | {
|
---|
8832 | PFNIEMAIMPLMXCSRU128U64 const pfn = g_aSseConvertXmmR32Mm[iFn].pfnNative ? g_aSseConvertXmmR32Mm[iFn].pfnNative : g_aSseConvertXmmR32Mm[iFn].pfn;
|
---|
8833 |
|
---|
8834 | IEMBINARYOUTPUT BinOut;
|
---|
8835 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseConvertXmmR32Mm[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
8836 |
|
---|
8837 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8838 | {
|
---|
8839 | SSE_CONVERT_XMM_MM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8840 |
|
---|
8841 | TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[0];
|
---|
8842 | TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[1];
|
---|
8843 |
|
---|
8844 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8845 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8846 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8847 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8848 | {
|
---|
8849 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8850 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8851 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8852 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8853 | | X86_MXCSR_XCPT_MASK;
|
---|
8854 | uint32_t fMxcsrM = fMxcsrIn;
|
---|
8855 | pfn(&fMxcsrM, &TestData.OutVal, TestData.InVal.u);
|
---|
8856 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8857 | TestData.fMxcsrOut = fMxcsrM;
|
---|
8858 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8859 |
|
---|
8860 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
8861 | uint32_t fMxcsrU = fMxcsrIn;
|
---|
8862 | pfn(&fMxcsrU, &TestData.OutVal, TestData.InVal.u);
|
---|
8863 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8864 | TestData.fMxcsrOut = fMxcsrU;
|
---|
8865 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8866 |
|
---|
8867 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
8868 | if (fXcpt)
|
---|
8869 | {
|
---|
8870 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8871 | uint32_t fMxcsr1 = fMxcsrIn;
|
---|
8872 | pfn(&fMxcsr1, &TestData.OutVal, TestData.InVal.u);
|
---|
8873 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8874 | TestData.fMxcsrOut = fMxcsr1;
|
---|
8875 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8876 |
|
---|
8877 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
8878 | {
|
---|
8879 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
8880 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8881 | uint32_t fMxcsr2 = fMxcsrIn;
|
---|
8882 | pfn(&fMxcsr2, &TestData.OutVal, TestData.InVal.u);
|
---|
8883 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8884 | TestData.fMxcsrOut = fMxcsr2;
|
---|
8885 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8886 | }
|
---|
8887 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8888 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8889 | if (fUnmasked & fXcpt)
|
---|
8890 | {
|
---|
8891 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8892 | uint32_t fMxcsr3 = fMxcsrIn;
|
---|
8893 | pfn(&fMxcsr3, &TestData.OutVal, TestData.InVal.u);
|
---|
8894 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8895 | TestData.fMxcsrOut = fMxcsr3;
|
---|
8896 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8897 | }
|
---|
8898 | }
|
---|
8899 | }
|
---|
8900 | }
|
---|
8901 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8902 | }
|
---|
8903 |
|
---|
8904 | return RTEXITCODE_SUCCESS;
|
---|
8905 | }
|
---|
8906 | #endif
|
---|
8907 |
|
---|
8908 | static void SseConvertXmmR32MmTest(void)
|
---|
8909 | {
|
---|
8910 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32Mm); iFn++)
|
---|
8911 | {
|
---|
8912 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR32Mm[iFn]))
|
---|
8913 | continue;
|
---|
8914 |
|
---|
8915 | SSE_CONVERT_XMM_MM_TEST_T const * const paTests = g_aSseConvertXmmR32Mm[iFn].paTests;
|
---|
8916 | uint32_t const cTests = g_aSseConvertXmmR32Mm[iFn].cTests;
|
---|
8917 | PFNIEMAIMPLMXCSRU128U64 pfn = g_aSseConvertXmmR32Mm[iFn].pfn;
|
---|
8918 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR32Mm[iFn]);
|
---|
8919 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8920 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8921 | {
|
---|
8922 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8923 | {
|
---|
8924 | X86XMMREG ValOut;
|
---|
8925 | uint32_t fMxcsr = paTests[iTest].fMxcsrIn;
|
---|
8926 | pfn(&fMxcsr, &ValOut, paTests[iTest].InVal.u);
|
---|
8927 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
8928 | || !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
8929 | || !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[1], &paTests[iTest].OutVal.ar32[1]))
|
---|
8930 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32\n"
|
---|
8931 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
8932 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
8933 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8934 | paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1],
|
---|
8935 | iVar ? " " : "", fMxcsr,
|
---|
8936 | FormatR32(&ValOut.ar32[0]), FormatR32(&ValOut.ar32[1]),
|
---|
8937 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8938 | FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]),
|
---|
8939 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
8940 | ( !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
8941 | || !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[1], &paTests[iTest].OutVal.ar32[1]))
|
---|
8942 | ? " - val" : "",
|
---|
8943 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8944 | }
|
---|
8945 | }
|
---|
8946 | }
|
---|
8947 | }
|
---|
8948 |
|
---|
8949 |
|
---|
8950 | /*
|
---|
8951 | * Convert SSE operations converting single-precision floating point values to signed double-word values.
|
---|
8952 | */
|
---|
8953 | TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_MM_I32_XMM_R32_T, SSE_CONVERT_MM_R32_TEST_T, PFNIEMAIMPLMXCSRU64U64);
|
---|
8954 |
|
---|
8955 | static SSE_CONVERT_MM_I32_XMM_R32_T g_aSseConvertMmI32XmmR32[] =
|
---|
8956 | {
|
---|
8957 | ENTRY_BIN(cvtps2pi_u128),
|
---|
8958 | ENTRY_BIN(cvttps2pi_u128)
|
---|
8959 | };
|
---|
8960 |
|
---|
8961 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8962 | static RTEXITCODE SseConvertMmI32XmmR32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
8963 | {
|
---|
8964 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8965 |
|
---|
8966 | static struct { RTFLOAT32U aVal1[2]; } const s_aSpecials[] =
|
---|
8967 | {
|
---|
8968 | { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) } },
|
---|
8969 | { { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) } },
|
---|
8970 | { { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) } },
|
---|
8971 | { { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) } }
|
---|
8972 | /** @todo More specials. */
|
---|
8973 | };
|
---|
8974 |
|
---|
8975 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
8976 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmI32XmmR32); iFn++)
|
---|
8977 | {
|
---|
8978 | PFNIEMAIMPLMXCSRU64U64 const pfn = g_aSseConvertMmI32XmmR32[iFn].pfnNative ? g_aSseConvertMmI32XmmR32[iFn].pfnNative : g_aSseConvertMmI32XmmR32[iFn].pfn;
|
---|
8979 |
|
---|
8980 | IEMBINARYOUTPUT BinOut;
|
---|
8981 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSseConvertMmI32XmmR32[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
8982 |
|
---|
8983 | uint32_t cNormalInputPairs = 0;
|
---|
8984 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8985 | {
|
---|
8986 | SSE_CONVERT_MM_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
8987 |
|
---|
8988 | TestData.ar32InVal[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
8989 | TestData.ar32InVal[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
8990 |
|
---|
8991 | if ( RTFLOAT32U_IS_NORMAL(&TestData.ar32InVal[0])
|
---|
8992 | && RTFLOAT32U_IS_NORMAL(&TestData.ar32InVal[1]))
|
---|
8993 | cNormalInputPairs++;
|
---|
8994 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
8995 | {
|
---|
8996 | iTest -= 1;
|
---|
8997 | continue;
|
---|
8998 | }
|
---|
8999 |
|
---|
9000 | RTFLOAT64U TestVal;
|
---|
9001 | TestVal.au32[0] = TestData.ar32InVal[0].u;
|
---|
9002 | TestVal.au32[1] = TestData.ar32InVal[1].u;
|
---|
9003 |
|
---|
9004 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
9005 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
9006 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
9007 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
9008 | {
|
---|
9009 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
9010 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
9011 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
9012 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
9013 | | X86_MXCSR_XCPT_MASK;
|
---|
9014 | uint32_t fMxcsrM = fMxcsrIn;
|
---|
9015 | uint64_t u64ResM;
|
---|
9016 | pfn(&fMxcsrM, &u64ResM, TestVal.u);
|
---|
9017 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9018 | TestData.fMxcsrOut = fMxcsrM;
|
---|
9019 | TestData.OutVal.u = u64ResM;
|
---|
9020 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9021 |
|
---|
9022 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
9023 | uint32_t fMxcsrU = fMxcsrIn;
|
---|
9024 | uint64_t u64ResU;
|
---|
9025 | pfn(&fMxcsrU, &u64ResU, TestVal.u);
|
---|
9026 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9027 | TestData.fMxcsrOut = fMxcsrU;
|
---|
9028 | TestData.OutVal.u = u64ResU;
|
---|
9029 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9030 |
|
---|
9031 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
9032 | if (fXcpt)
|
---|
9033 | {
|
---|
9034 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
9035 | uint32_t fMxcsr1 = fMxcsrIn;
|
---|
9036 | uint64_t u64Res1;
|
---|
9037 | pfn(&fMxcsr1, &u64Res1, TestVal.u);
|
---|
9038 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9039 | TestData.fMxcsrOut = fMxcsr1;
|
---|
9040 | TestData.OutVal.u = u64Res1;
|
---|
9041 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9042 |
|
---|
9043 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
9044 | {
|
---|
9045 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
9046 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
9047 | uint32_t fMxcsr2 = fMxcsrIn;
|
---|
9048 | uint64_t u64Res2;
|
---|
9049 | pfn(&fMxcsr2, &u64Res2, TestVal.u);
|
---|
9050 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9051 | TestData.fMxcsrOut = fMxcsr2;
|
---|
9052 | TestData.OutVal.u = u64Res2;
|
---|
9053 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9054 | }
|
---|
9055 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
9056 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
9057 | if (fUnmasked & fXcpt)
|
---|
9058 | {
|
---|
9059 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
9060 | uint32_t fMxcsr3 = fMxcsrIn;
|
---|
9061 | uint64_t u64Res3;
|
---|
9062 | pfn(&fMxcsr3, &u64Res3, TestVal.u);
|
---|
9063 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9064 | TestData.fMxcsrOut = fMxcsr3;
|
---|
9065 | TestData.OutVal.u = u64Res3;
|
---|
9066 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9067 | }
|
---|
9068 | }
|
---|
9069 | }
|
---|
9070 | }
|
---|
9071 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9072 | }
|
---|
9073 |
|
---|
9074 | return RTEXITCODE_SUCCESS;
|
---|
9075 | }
|
---|
9076 | #endif
|
---|
9077 |
|
---|
9078 | static void SseConvertMmI32XmmR32Test(void)
|
---|
9079 | {
|
---|
9080 | X86FXSTATE State;
|
---|
9081 | RT_ZERO(State);
|
---|
9082 |
|
---|
9083 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmI32XmmR32); iFn++)
|
---|
9084 | {
|
---|
9085 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertMmI32XmmR32[iFn]))
|
---|
9086 | continue;
|
---|
9087 |
|
---|
9088 | SSE_CONVERT_MM_R32_TEST_T const * const paTests = g_aSseConvertMmI32XmmR32[iFn].paTests;
|
---|
9089 | uint32_t const cTests = g_aSseConvertMmI32XmmR32[iFn].cTests;
|
---|
9090 | PFNIEMAIMPLMXCSRU64U64 pfn = g_aSseConvertMmI32XmmR32[iFn].pfn;
|
---|
9091 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertMmI32XmmR32[iFn]);
|
---|
9092 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9093 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9094 | {
|
---|
9095 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9096 | {
|
---|
9097 | RTUINT64U ValOut;
|
---|
9098 | RTUINT64U ValIn;
|
---|
9099 |
|
---|
9100 | ValIn.au32[0] = paTests[iTest].ar32InVal[0].u;
|
---|
9101 | ValIn.au32[1] = paTests[iTest].ar32InVal[1].u;
|
---|
9102 |
|
---|
9103 | uint32_t fMxcsr = paTests[iTest].fMxcsrIn;
|
---|
9104 | pfn(&fMxcsr, &ValOut.u, ValIn.u);
|
---|
9105 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
9106 | || ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
9107 | || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1])
|
---|
9108 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s \n"
|
---|
9109 | "%s -> mxcsr=%#08x %RI32'%RI32\n"
|
---|
9110 | "%s expected %#08x %RI32'%RI32%s%s (%s)\n",
|
---|
9111 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
9112 | FormatR32(&paTests[iTest].ar32InVal[0]), FormatR32(&paTests[iTest].ar32InVal[1]),
|
---|
9113 | iVar ? " " : "", fMxcsr,
|
---|
9114 | ValOut.ai32[0], ValOut.ai32[1],
|
---|
9115 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
9116 | paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1],
|
---|
9117 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
9118 | ( ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
9119 | || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1])
|
---|
9120 | ? " - val" : "",
|
---|
9121 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
9122 | }
|
---|
9123 | }
|
---|
9124 | }
|
---|
9125 | }
|
---|
9126 |
|
---|
9127 |
|
---|
9128 | /*
|
---|
9129 | * SSE 4.2 pcmpxstrx instructions.
|
---|
9130 | */
|
---|
9131 | TYPEDEF_SUBTEST_TYPE(SSE_PCMPISTRI_T, SSE_PCMPISTRI_TEST_T, PFNIEMAIMPLPCMPISTRIU128IMM8);
|
---|
9132 |
|
---|
9133 | static SSE_PCMPISTRI_T g_aSsePcmpistri[] =
|
---|
9134 | {
|
---|
9135 | ENTRY_BIN_SSE_OPT(pcmpistri_u128),
|
---|
9136 | };
|
---|
9137 |
|
---|
9138 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9139 | static RTEXITCODE SseComparePcmpistriGenerate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
9140 | {
|
---|
9141 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9142 |
|
---|
9143 | static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] =
|
---|
9144 | {
|
---|
9145 | { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) },
|
---|
9146 | /** @todo More specials. */
|
---|
9147 | };
|
---|
9148 |
|
---|
9149 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistri); iFn++)
|
---|
9150 | {
|
---|
9151 | PFNIEMAIMPLPCMPISTRIU128IMM8 const pfn = g_aSsePcmpistri[iFn].pfnNative ? g_aSsePcmpistri[iFn].pfnNative : g_aSsePcmpistri[iFn].pfn;
|
---|
9152 |
|
---|
9153 | IEMBINARYOUTPUT BinOut;
|
---|
9154 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSsePcmpistri[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
9155 |
|
---|
9156 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9157 | {
|
---|
9158 | SSE_PCMPISTRI_TEST_T TestData; RT_ZERO(TestData);
|
---|
9159 |
|
---|
9160 | TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1;
|
---|
9161 | TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2;
|
---|
9162 |
|
---|
9163 | IEMPCMPISTRXSRC TestVal;
|
---|
9164 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9165 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9166 |
|
---|
9167 | uint32_t const fEFlagsIn = RandEFlags();
|
---|
9168 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9169 | {
|
---|
9170 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9171 | pfn(&TestData.u32EcxOut, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9172 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9173 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9174 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9175 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9176 | }
|
---|
9177 |
|
---|
9178 | /* Repeat the test with the input value being the same. */
|
---|
9179 | TestData.InVal2.uXmm = TestData.InVal1.uXmm;
|
---|
9180 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9181 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9182 |
|
---|
9183 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9184 | {
|
---|
9185 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9186 | pfn(&TestData.u32EcxOut, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9187 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9188 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9189 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9190 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9191 | }
|
---|
9192 | }
|
---|
9193 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9194 | }
|
---|
9195 |
|
---|
9196 | return RTEXITCODE_SUCCESS;
|
---|
9197 | }
|
---|
9198 | #endif
|
---|
9199 |
|
---|
9200 | static void SseComparePcmpistriTest(void)
|
---|
9201 | {
|
---|
9202 | X86FXSTATE State;
|
---|
9203 | RT_ZERO(State);
|
---|
9204 |
|
---|
9205 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistri); iFn++)
|
---|
9206 | {
|
---|
9207 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpistri[iFn]))
|
---|
9208 | continue;
|
---|
9209 |
|
---|
9210 | SSE_PCMPISTRI_TEST_T const * const paTests = g_aSsePcmpistri[iFn].paTests;
|
---|
9211 | uint32_t const cTests = g_aSsePcmpistri[iFn].cTests;
|
---|
9212 | PFNIEMAIMPLPCMPISTRIU128IMM8 pfn = g_aSsePcmpistri[iFn].pfn;
|
---|
9213 | uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpistri[iFn]);
|
---|
9214 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9215 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9216 | {
|
---|
9217 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9218 | {
|
---|
9219 | IEMPCMPISTRXSRC TestVal;
|
---|
9220 | TestVal.uSrc1 = paTests[iTest].InVal1.uXmm;
|
---|
9221 | TestVal.uSrc2 = paTests[iTest].InVal2.uXmm;
|
---|
9222 |
|
---|
9223 | uint32_t fEFlags = paTests[iTest].fEFlagsIn;
|
---|
9224 | uint32_t u32EcxOut = 0;
|
---|
9225 | pfn(&u32EcxOut, &fEFlags, &TestVal, paTests[iTest].bImm);
|
---|
9226 | if ( fEFlags != paTests[iTest].fEFlagsOut
|
---|
9227 | || u32EcxOut != paTests[iTest].u32EcxOut)
|
---|
9228 | RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s in2=%s bImm=%#x\n"
|
---|
9229 | "%s -> efl=%#08x %RU32\n"
|
---|
9230 | "%s expected %#08x %RU32%s%s\n",
|
---|
9231 | iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn,
|
---|
9232 | FormatU128(&paTests[iTest].InVal1.uXmm), FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].bImm,
|
---|
9233 | iVar ? " " : "", fEFlags, u32EcxOut,
|
---|
9234 | iVar ? " " : "", paTests[iTest].fEFlagsOut, paTests[iTest].u32EcxOut,
|
---|
9235 | EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut),
|
---|
9236 | (u32EcxOut != paTests[iTest].u32EcxOut) ? " - val" : "");
|
---|
9237 | }
|
---|
9238 | }
|
---|
9239 | }
|
---|
9240 | }
|
---|
9241 |
|
---|
9242 |
|
---|
9243 | TYPEDEF_SUBTEST_TYPE(SSE_PCMPISTRM_T, SSE_PCMPISTRM_TEST_T, PFNIEMAIMPLPCMPISTRMU128IMM8);
|
---|
9244 |
|
---|
9245 | static SSE_PCMPISTRM_T g_aSsePcmpistrm[] =
|
---|
9246 | {
|
---|
9247 | ENTRY_BIN_SSE_OPT(pcmpistrm_u128),
|
---|
9248 | };
|
---|
9249 |
|
---|
9250 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9251 | static RTEXITCODE SseComparePcmpistrmGenerate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
9252 | {
|
---|
9253 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9254 |
|
---|
9255 | static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] =
|
---|
9256 | {
|
---|
9257 | { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) },
|
---|
9258 | /** @todo More specials. */
|
---|
9259 | };
|
---|
9260 |
|
---|
9261 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistrm); iFn++)
|
---|
9262 | {
|
---|
9263 | PFNIEMAIMPLPCMPISTRMU128IMM8 const pfn = g_aSsePcmpistrm[iFn].pfnNative ? g_aSsePcmpistrm[iFn].pfnNative : g_aSsePcmpistrm[iFn].pfn;
|
---|
9264 |
|
---|
9265 | IEMBINARYOUTPUT BinOut;
|
---|
9266 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSsePcmpistrm[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
9267 |
|
---|
9268 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9269 | {
|
---|
9270 | SSE_PCMPISTRM_TEST_T TestData; RT_ZERO(TestData);
|
---|
9271 |
|
---|
9272 | TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1;
|
---|
9273 | TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2;
|
---|
9274 |
|
---|
9275 | IEMPCMPISTRXSRC TestVal;
|
---|
9276 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9277 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9278 |
|
---|
9279 | uint32_t const fEFlagsIn = RandEFlags();
|
---|
9280 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9281 | {
|
---|
9282 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9283 | pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9284 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9285 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9286 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9287 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9288 | }
|
---|
9289 |
|
---|
9290 | /* Repeat the test with the input value being the same. */
|
---|
9291 | TestData.InVal2.uXmm = TestData.InVal1.uXmm;
|
---|
9292 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9293 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9294 |
|
---|
9295 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9296 | {
|
---|
9297 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9298 | pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9299 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9300 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9301 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9302 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9303 | }
|
---|
9304 | }
|
---|
9305 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9306 | }
|
---|
9307 |
|
---|
9308 | return RTEXITCODE_SUCCESS;
|
---|
9309 | }
|
---|
9310 | #endif
|
---|
9311 |
|
---|
9312 | static void SseComparePcmpistrmTest(void)
|
---|
9313 | {
|
---|
9314 | X86FXSTATE State;
|
---|
9315 | RT_ZERO(State);
|
---|
9316 |
|
---|
9317 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistrm); iFn++)
|
---|
9318 | {
|
---|
9319 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpistrm[iFn]))
|
---|
9320 | continue;
|
---|
9321 |
|
---|
9322 | SSE_PCMPISTRM_TEST_T const * const paTests = g_aSsePcmpistrm[iFn].paTests;
|
---|
9323 | uint32_t const cTests = g_aSsePcmpistrm[iFn].cTests;
|
---|
9324 | PFNIEMAIMPLPCMPISTRMU128IMM8 pfn = g_aSsePcmpistrm[iFn].pfn;
|
---|
9325 | uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpistrm[iFn]);
|
---|
9326 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9327 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9328 | {
|
---|
9329 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9330 | {
|
---|
9331 | IEMPCMPISTRXSRC TestVal;
|
---|
9332 | TestVal.uSrc1 = paTests[iTest].InVal1.uXmm;
|
---|
9333 | TestVal.uSrc2 = paTests[iTest].InVal2.uXmm;
|
---|
9334 |
|
---|
9335 | uint32_t fEFlags = paTests[iTest].fEFlagsIn;
|
---|
9336 | RTUINT128U OutVal;
|
---|
9337 | pfn(&OutVal, &fEFlags, &TestVal, paTests[iTest].bImm);
|
---|
9338 | if ( fEFlags != paTests[iTest].fEFlagsOut
|
---|
9339 | || OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi
|
---|
9340 | || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo)
|
---|
9341 | RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s in2=%s bImm=%#x\n"
|
---|
9342 | "%s -> efl=%#08x %s\n"
|
---|
9343 | "%s expected %#08x %s%s%s\n",
|
---|
9344 | iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn,
|
---|
9345 | FormatU128(&paTests[iTest].InVal1.uXmm), FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].bImm,
|
---|
9346 | iVar ? " " : "", fEFlags, FormatU128(&OutVal),
|
---|
9347 | iVar ? " " : "", paTests[iTest].fEFlagsOut, FormatU128(&paTests[iTest].OutVal.uXmm),
|
---|
9348 | EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut),
|
---|
9349 | ( OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi
|
---|
9350 | || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo) ? " - val" : "");
|
---|
9351 | }
|
---|
9352 | }
|
---|
9353 | }
|
---|
9354 | }
|
---|
9355 |
|
---|
9356 |
|
---|
9357 | TYPEDEF_SUBTEST_TYPE(SSE_PCMPESTRI_T, SSE_PCMPESTRI_TEST_T, PFNIEMAIMPLPCMPESTRIU128IMM8);
|
---|
9358 |
|
---|
9359 | static SSE_PCMPESTRI_T g_aSsePcmpestri[] =
|
---|
9360 | {
|
---|
9361 | ENTRY_BIN_SSE_OPT(pcmpestri_u128),
|
---|
9362 | };
|
---|
9363 |
|
---|
9364 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9365 | static RTEXITCODE SseComparePcmpestriGenerate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
9366 | {
|
---|
9367 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9368 |
|
---|
9369 | static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] =
|
---|
9370 | {
|
---|
9371 | { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) },
|
---|
9372 | /** @todo More specials. */
|
---|
9373 | };
|
---|
9374 |
|
---|
9375 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestri); iFn++)
|
---|
9376 | {
|
---|
9377 | PFNIEMAIMPLPCMPESTRIU128IMM8 const pfn = g_aSsePcmpestri[iFn].pfnNative ? g_aSsePcmpestri[iFn].pfnNative : g_aSsePcmpestri[iFn].pfn;
|
---|
9378 |
|
---|
9379 | IEMBINARYOUTPUT BinOut;
|
---|
9380 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSsePcmpestri[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
9381 |
|
---|
9382 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9383 | {
|
---|
9384 | SSE_PCMPESTRI_TEST_T TestData; RT_ZERO(TestData);
|
---|
9385 |
|
---|
9386 | TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1;
|
---|
9387 | TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2;
|
---|
9388 |
|
---|
9389 | for (int64_t i64Rax = -20; i64Rax < 20; i64Rax += 20)
|
---|
9390 | for (int64_t i64Rdx = -20; i64Rdx < 20; i64Rdx += 20)
|
---|
9391 | {
|
---|
9392 | TestData.u64Rax = (uint64_t)i64Rax;
|
---|
9393 | TestData.u64Rdx = (uint64_t)i64Rdx;
|
---|
9394 |
|
---|
9395 | IEMPCMPESTRXSRC TestVal;
|
---|
9396 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9397 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9398 | TestVal.u64Rax = TestData.u64Rax;
|
---|
9399 | TestVal.u64Rdx = TestData.u64Rdx;
|
---|
9400 |
|
---|
9401 | uint32_t const fEFlagsIn = RandEFlags();
|
---|
9402 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9403 | {
|
---|
9404 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9405 | pfn(&TestData.u32EcxOut, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9406 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9407 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9408 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9409 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9410 | }
|
---|
9411 |
|
---|
9412 | /* Repeat the test with the input value being the same. */
|
---|
9413 | TestData.InVal2.uXmm = TestData.InVal1.uXmm;
|
---|
9414 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9415 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9416 |
|
---|
9417 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9418 | {
|
---|
9419 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9420 | pfn(&TestData.u32EcxOut, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9421 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9422 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9423 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9424 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9425 | }
|
---|
9426 | }
|
---|
9427 | }
|
---|
9428 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9429 | }
|
---|
9430 |
|
---|
9431 | return RTEXITCODE_SUCCESS;
|
---|
9432 | }
|
---|
9433 | #endif
|
---|
9434 |
|
---|
9435 | static void SseComparePcmpestriTest(void)
|
---|
9436 | {
|
---|
9437 | X86FXSTATE State;
|
---|
9438 | RT_ZERO(State);
|
---|
9439 |
|
---|
9440 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestri); iFn++)
|
---|
9441 | {
|
---|
9442 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpestri[iFn]))
|
---|
9443 | continue;
|
---|
9444 |
|
---|
9445 | SSE_PCMPESTRI_TEST_T const * const paTests = g_aSsePcmpestri[iFn].paTests;
|
---|
9446 | uint32_t const cTests = g_aSsePcmpestri[iFn].cTests;
|
---|
9447 | PFNIEMAIMPLPCMPESTRIU128IMM8 pfn = g_aSsePcmpestri[iFn].pfn;
|
---|
9448 | uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpestri[iFn]);
|
---|
9449 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9450 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9451 | {
|
---|
9452 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9453 | {
|
---|
9454 | IEMPCMPESTRXSRC TestVal;
|
---|
9455 | TestVal.uSrc1 = paTests[iTest].InVal1.uXmm;
|
---|
9456 | TestVal.uSrc2 = paTests[iTest].InVal2.uXmm;
|
---|
9457 | TestVal.u64Rax = paTests[iTest].u64Rax;
|
---|
9458 | TestVal.u64Rdx = paTests[iTest].u64Rdx;
|
---|
9459 |
|
---|
9460 | uint32_t fEFlags = paTests[iTest].fEFlagsIn;
|
---|
9461 | uint32_t u32EcxOut = 0;
|
---|
9462 | pfn(&u32EcxOut, &fEFlags, &TestVal, paTests[iTest].bImm);
|
---|
9463 | if ( fEFlags != paTests[iTest].fEFlagsOut
|
---|
9464 | || u32EcxOut != paTests[iTest].u32EcxOut)
|
---|
9465 | RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s rax1=%RI64 in2=%s rdx2=%RI64 bImm=%#x\n"
|
---|
9466 | "%s -> efl=%#08x %RU32\n"
|
---|
9467 | "%s expected %#08x %RU32%s%s\n",
|
---|
9468 | iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn,
|
---|
9469 | FormatU128(&paTests[iTest].InVal1.uXmm), paTests[iTest].u64Rax,
|
---|
9470 | FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].u64Rdx,
|
---|
9471 | paTests[iTest].bImm,
|
---|
9472 | iVar ? " " : "", fEFlags, u32EcxOut,
|
---|
9473 | iVar ? " " : "", paTests[iTest].fEFlagsOut, paTests[iTest].u32EcxOut,
|
---|
9474 | EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut),
|
---|
9475 | (u32EcxOut != paTests[iTest].u32EcxOut) ? " - val" : "");
|
---|
9476 | }
|
---|
9477 | }
|
---|
9478 | }
|
---|
9479 | }
|
---|
9480 |
|
---|
9481 |
|
---|
9482 | TYPEDEF_SUBTEST_TYPE(SSE_PCMPESTRM_T, SSE_PCMPESTRM_TEST_T, PFNIEMAIMPLPCMPESTRMU128IMM8);
|
---|
9483 |
|
---|
9484 | static SSE_PCMPESTRM_T g_aSsePcmpestrm[] =
|
---|
9485 | {
|
---|
9486 | ENTRY_BIN_SSE_OPT(pcmpestrm_u128),
|
---|
9487 | };
|
---|
9488 |
|
---|
9489 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9490 | static RTEXITCODE SseComparePcmpestrmGenerate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
9491 | {
|
---|
9492 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9493 |
|
---|
9494 | static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] =
|
---|
9495 | {
|
---|
9496 | { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) },
|
---|
9497 | /** @todo More specials. */
|
---|
9498 | };
|
---|
9499 |
|
---|
9500 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestrm); iFn++)
|
---|
9501 | {
|
---|
9502 | PFNIEMAIMPLPCMPESTRMU128IMM8 const pfn = g_aSsePcmpestrm[iFn].pfnNative ? g_aSsePcmpestrm[iFn].pfnNative : g_aSsePcmpestrm[iFn].pfn;
|
---|
9503 |
|
---|
9504 | IEMBINARYOUTPUT BinOut;
|
---|
9505 | AssertReturn(GenerateBinaryOpen(&BinOut, pszDataFileFmt, g_aSsePcmpestrm[iFn].pszName), RTEXITCODE_FAILURE);
|
---|
9506 |
|
---|
9507 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9508 | {
|
---|
9509 | SSE_PCMPESTRM_TEST_T TestData; RT_ZERO(TestData);
|
---|
9510 |
|
---|
9511 | TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1;
|
---|
9512 | TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2;
|
---|
9513 |
|
---|
9514 | for (int64_t i64Rax = -20; i64Rax < 20; i64Rax += 20)
|
---|
9515 | for (int64_t i64Rdx = -20; i64Rdx < 20; i64Rdx += 20)
|
---|
9516 | {
|
---|
9517 | TestData.u64Rax = (uint64_t)i64Rax;
|
---|
9518 | TestData.u64Rdx = (uint64_t)i64Rdx;
|
---|
9519 |
|
---|
9520 | IEMPCMPESTRXSRC TestVal;
|
---|
9521 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9522 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9523 | TestVal.u64Rax = TestData.u64Rax;
|
---|
9524 | TestVal.u64Rdx = TestData.u64Rdx;
|
---|
9525 |
|
---|
9526 | uint32_t const fEFlagsIn = RandEFlags();
|
---|
9527 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9528 | {
|
---|
9529 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9530 | pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9531 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9532 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9533 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9534 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9535 | }
|
---|
9536 |
|
---|
9537 | /* Repeat the test with the input value being the same. */
|
---|
9538 | TestData.InVal2.uXmm = TestData.InVal1.uXmm;
|
---|
9539 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9540 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9541 |
|
---|
9542 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9543 | {
|
---|
9544 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9545 | pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9546 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9547 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9548 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9549 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9550 | }
|
---|
9551 | }
|
---|
9552 | }
|
---|
9553 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9554 | }
|
---|
9555 |
|
---|
9556 | return RTEXITCODE_SUCCESS;
|
---|
9557 | }
|
---|
9558 | #endif
|
---|
9559 |
|
---|
9560 | static void SseComparePcmpestrmTest(void)
|
---|
9561 | {
|
---|
9562 | X86FXSTATE State;
|
---|
9563 | RT_ZERO(State);
|
---|
9564 |
|
---|
9565 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestrm); iFn++)
|
---|
9566 | {
|
---|
9567 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpestrm[iFn]))
|
---|
9568 | continue;
|
---|
9569 |
|
---|
9570 | SSE_PCMPESTRM_TEST_T const * const paTests = g_aSsePcmpestrm[iFn].paTests;
|
---|
9571 | uint32_t const cTests = g_aSsePcmpestrm[iFn].cTests;
|
---|
9572 | PFNIEMAIMPLPCMPESTRMU128IMM8 pfn = g_aSsePcmpestrm[iFn].pfn;
|
---|
9573 | uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpestrm[iFn]);
|
---|
9574 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9575 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9576 | {
|
---|
9577 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9578 | {
|
---|
9579 | IEMPCMPESTRXSRC TestVal;
|
---|
9580 | TestVal.uSrc1 = paTests[iTest].InVal1.uXmm;
|
---|
9581 | TestVal.uSrc2 = paTests[iTest].InVal2.uXmm;
|
---|
9582 | TestVal.u64Rax = paTests[iTest].u64Rax;
|
---|
9583 | TestVal.u64Rdx = paTests[iTest].u64Rdx;
|
---|
9584 |
|
---|
9585 | uint32_t fEFlags = paTests[iTest].fEFlagsIn;
|
---|
9586 | RTUINT128U OutVal;
|
---|
9587 | pfn(&OutVal, &fEFlags, &TestVal, paTests[iTest].bImm);
|
---|
9588 | if ( fEFlags != paTests[iTest].fEFlagsOut
|
---|
9589 | || OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi
|
---|
9590 | || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo)
|
---|
9591 | RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s rax1=%RI64 in2=%s rdx2=%RI64 bImm=%#x\n"
|
---|
9592 | "%s -> efl=%#08x %s\n"
|
---|
9593 | "%s expected %#08x %s%s%s\n",
|
---|
9594 | iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn,
|
---|
9595 | FormatU128(&paTests[iTest].InVal1.uXmm), paTests[iTest].u64Rax,
|
---|
9596 | FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].u64Rdx,
|
---|
9597 | paTests[iTest].bImm,
|
---|
9598 | iVar ? " " : "", fEFlags, FormatU128(&OutVal),
|
---|
9599 | iVar ? " " : "", paTests[iTest].fEFlagsOut, FormatU128(&paTests[iTest].OutVal.uXmm),
|
---|
9600 | EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut),
|
---|
9601 | ( OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi
|
---|
9602 | || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo) ? " - val" : "");
|
---|
9603 | }
|
---|
9604 | }
|
---|
9605 | }
|
---|
9606 | }
|
---|
9607 |
|
---|
9608 |
|
---|
9609 |
|
---|
9610 | int main(int argc, char **argv)
|
---|
9611 | {
|
---|
9612 | int rc = RTR3InitExe(argc, &argv, 0);
|
---|
9613 | if (RT_FAILURE(rc))
|
---|
9614 | return RTMsgInitFailure(rc);
|
---|
9615 |
|
---|
9616 | /*
|
---|
9617 | * Determin the host CPU.
|
---|
9618 | * If not using the IEMAllAImpl.asm code, this will be set to Intel.
|
---|
9619 | */
|
---|
9620 | #if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
|
---|
9621 | g_idxCpuEflFlavour = ASMIsAmdCpu() || ASMIsHygonCpu()
|
---|
9622 | ? IEMTARGETCPU_EFL_BEHAVIOR_AMD
|
---|
9623 | : IEMTARGETCPU_EFL_BEHAVIOR_INTEL;
|
---|
9624 | #else
|
---|
9625 | g_idxCpuEflFlavour = IEMTARGETCPU_EFL_BEHAVIOR_INTEL;
|
---|
9626 | #endif
|
---|
9627 |
|
---|
9628 | /*
|
---|
9629 | * Parse arguments.
|
---|
9630 | */
|
---|
9631 | enum { kModeNotSet, kModeTest, kModeGenerate, kModeDump }
|
---|
9632 | enmMode = kModeNotSet;
|
---|
9633 | bool fInt = true;
|
---|
9634 | bool fFpuLdSt = true;
|
---|
9635 | bool fFpuBinary1 = true;
|
---|
9636 | bool fFpuBinary2 = true;
|
---|
9637 | bool fFpuOther = true;
|
---|
9638 | bool fCpuData = true;
|
---|
9639 | bool fCommonData = true;
|
---|
9640 | bool fSseFpBinary = true;
|
---|
9641 | bool fSseFpOther = true;
|
---|
9642 | bool fSsePcmpxstrx = true;
|
---|
9643 | uint32_t const cDefaultTests = 96;
|
---|
9644 | uint32_t cTests = cDefaultTests;
|
---|
9645 | RTGETOPTDEF const s_aOptions[] =
|
---|
9646 | {
|
---|
9647 | // mode:
|
---|
9648 | { "--generate", 'g', RTGETOPT_REQ_NOTHING },
|
---|
9649 | { "--dump", 'G', RTGETOPT_REQ_NOTHING },
|
---|
9650 | { "--test", 't', RTGETOPT_REQ_NOTHING },
|
---|
9651 | { "--benchmark", 'b', RTGETOPT_REQ_NOTHING },
|
---|
9652 | // test selection (both)
|
---|
9653 | { "--all", 'a', RTGETOPT_REQ_NOTHING },
|
---|
9654 | { "--none", 'z', RTGETOPT_REQ_NOTHING },
|
---|
9655 | { "--zap", 'z', RTGETOPT_REQ_NOTHING },
|
---|
9656 | { "--fpu-ld-st", 'F', RTGETOPT_REQ_NOTHING }, /* FPU stuff is upper case */
|
---|
9657 | { "--fpu-load-store", 'F', RTGETOPT_REQ_NOTHING },
|
---|
9658 | { "--fpu-binary-1", 'B', RTGETOPT_REQ_NOTHING },
|
---|
9659 | { "--fpu-binary-2", 'P', RTGETOPT_REQ_NOTHING },
|
---|
9660 | { "--fpu-other", 'O', RTGETOPT_REQ_NOTHING },
|
---|
9661 | { "--sse-fp-binary", 'S', RTGETOPT_REQ_NOTHING },
|
---|
9662 | { "--sse-fp-other", 'T', RTGETOPT_REQ_NOTHING },
|
---|
9663 | { "--sse-pcmpxstrx", 'C', RTGETOPT_REQ_NOTHING },
|
---|
9664 | { "--int", 'i', RTGETOPT_REQ_NOTHING },
|
---|
9665 | { "--include", 'I', RTGETOPT_REQ_STRING },
|
---|
9666 | { "--exclude", 'X', RTGETOPT_REQ_STRING },
|
---|
9667 | // generation parameters
|
---|
9668 | { "--common", 'm', RTGETOPT_REQ_NOTHING },
|
---|
9669 | { "--cpu", 'c', RTGETOPT_REQ_NOTHING },
|
---|
9670 | { "--number-of-tests", 'n', RTGETOPT_REQ_UINT32 },
|
---|
9671 | { "--verbose", 'v', RTGETOPT_REQ_NOTHING },
|
---|
9672 | { "--quiet", 'q', RTGETOPT_REQ_NOTHING },
|
---|
9673 | };
|
---|
9674 |
|
---|
9675 | RTGETOPTSTATE State;
|
---|
9676 | rc = RTGetOptInit(&State, argc, argv, s_aOptions, RT_ELEMENTS(s_aOptions), 1, 0);
|
---|
9677 | AssertRCReturn(rc, RTEXITCODE_FAILURE);
|
---|
9678 |
|
---|
9679 | RTGETOPTUNION ValueUnion;
|
---|
9680 | while ((rc = RTGetOpt(&State, &ValueUnion)))
|
---|
9681 | {
|
---|
9682 | switch (rc)
|
---|
9683 | {
|
---|
9684 | case 'g':
|
---|
9685 | enmMode = kModeGenerate;
|
---|
9686 | g_cPicoSecBenchmark = 0;
|
---|
9687 | break;
|
---|
9688 | case 'G':
|
---|
9689 | enmMode = kModeDump;
|
---|
9690 | g_cPicoSecBenchmark = 0;
|
---|
9691 | break;
|
---|
9692 | case 't':
|
---|
9693 | enmMode = kModeTest;
|
---|
9694 | g_cPicoSecBenchmark = 0;
|
---|
9695 | break;
|
---|
9696 | case 'b':
|
---|
9697 | enmMode = kModeTest;
|
---|
9698 | g_cPicoSecBenchmark += RT_NS_1SEC / 2 * UINT64_C(1000); /* half a second in pico seconds */
|
---|
9699 | break;
|
---|
9700 |
|
---|
9701 | case 'a':
|
---|
9702 | fCpuData = true;
|
---|
9703 | fCommonData = true;
|
---|
9704 | fInt = true;
|
---|
9705 | fFpuLdSt = true;
|
---|
9706 | fFpuBinary1 = true;
|
---|
9707 | fFpuBinary2 = true;
|
---|
9708 | fFpuOther = true;
|
---|
9709 | fSseFpBinary = true;
|
---|
9710 | fSseFpOther = true;
|
---|
9711 | fSsePcmpxstrx = true;
|
---|
9712 | break;
|
---|
9713 | case 'z':
|
---|
9714 | fCpuData = false;
|
---|
9715 | fCommonData = false;
|
---|
9716 | fInt = false;
|
---|
9717 | fFpuLdSt = false;
|
---|
9718 | fFpuBinary1 = false;
|
---|
9719 | fFpuBinary2 = false;
|
---|
9720 | fFpuOther = false;
|
---|
9721 | fSseFpBinary = false;
|
---|
9722 | fSseFpOther = false;
|
---|
9723 | fSsePcmpxstrx = false;
|
---|
9724 | break;
|
---|
9725 |
|
---|
9726 | case 'F':
|
---|
9727 | fFpuLdSt = true;
|
---|
9728 | break;
|
---|
9729 | case 'O':
|
---|
9730 | fFpuOther = true;
|
---|
9731 | break;
|
---|
9732 | case 'B':
|
---|
9733 | fFpuBinary1 = true;
|
---|
9734 | break;
|
---|
9735 | case 'P':
|
---|
9736 | fFpuBinary2 = true;
|
---|
9737 | break;
|
---|
9738 | case 'S':
|
---|
9739 | fSseFpBinary = true;
|
---|
9740 | break;
|
---|
9741 | case 'T':
|
---|
9742 | fSseFpOther = true;
|
---|
9743 | break;
|
---|
9744 | case 'C':
|
---|
9745 | fSsePcmpxstrx = true;
|
---|
9746 | break;
|
---|
9747 | case 'i':
|
---|
9748 | fInt = true;
|
---|
9749 | break;
|
---|
9750 |
|
---|
9751 | case 'I':
|
---|
9752 | if (g_cIncludeTestPatterns >= RT_ELEMENTS(g_apszIncludeTestPatterns))
|
---|
9753 | return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Too many include patterns (max %zu)",
|
---|
9754 | RT_ELEMENTS(g_apszIncludeTestPatterns));
|
---|
9755 | g_apszIncludeTestPatterns[g_cIncludeTestPatterns++] = ValueUnion.psz;
|
---|
9756 | break;
|
---|
9757 | case 'X':
|
---|
9758 | if (g_cExcludeTestPatterns >= RT_ELEMENTS(g_apszExcludeTestPatterns))
|
---|
9759 | return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Too many exclude patterns (max %zu)",
|
---|
9760 | RT_ELEMENTS(g_apszExcludeTestPatterns));
|
---|
9761 | g_apszExcludeTestPatterns[g_cExcludeTestPatterns++] = ValueUnion.psz;
|
---|
9762 | break;
|
---|
9763 |
|
---|
9764 | case 'm':
|
---|
9765 | fCommonData = true;
|
---|
9766 | break;
|
---|
9767 | case 'c':
|
---|
9768 | fCpuData = true;
|
---|
9769 | break;
|
---|
9770 | case 'n':
|
---|
9771 | cTests = ValueUnion.u32;
|
---|
9772 | break;
|
---|
9773 |
|
---|
9774 | case 'q':
|
---|
9775 | g_cVerbosity = 0;
|
---|
9776 | break;
|
---|
9777 | case 'v':
|
---|
9778 | g_cVerbosity++;
|
---|
9779 | break;
|
---|
9780 |
|
---|
9781 | case 'h':
|
---|
9782 | RTPrintf("usage: %s <-g|-t> [options]\n"
|
---|
9783 | "\n"
|
---|
9784 | "Mode:\n"
|
---|
9785 | " -g, --generate\n"
|
---|
9786 | " Generate test data.\n"
|
---|
9787 | " -t, --test\n"
|
---|
9788 | " Execute tests.\n"
|
---|
9789 | " -b, --benchmark\n"
|
---|
9790 | " Execute tests and do 1/2 seconds of benchmarking.\n"
|
---|
9791 | " Repeating the option increases the benchmark duration by 0.5 seconds.\n"
|
---|
9792 | "\n"
|
---|
9793 | "Test selection (both modes):\n"
|
---|
9794 | " -a, --all\n"
|
---|
9795 | " Enable all tests and generated test data. (default)\n"
|
---|
9796 | " -z, --zap, --none\n"
|
---|
9797 | " Disable all tests and test data types.\n"
|
---|
9798 | " -i, --int\n"
|
---|
9799 | " Enable non-FPU tests.\n"
|
---|
9800 | " -F, --fpu-ld-st\n"
|
---|
9801 | " Enable FPU load and store tests.\n"
|
---|
9802 | " -B, --fpu-binary-1\n"
|
---|
9803 | " Enable FPU binary 80-bit FP tests.\n"
|
---|
9804 | " -P, --fpu-binary-2\n"
|
---|
9805 | " Enable FPU binary 64- and 32-bit FP tests.\n"
|
---|
9806 | " -O, --fpu-other\n"
|
---|
9807 | " Enable FPU binary 64- and 32-bit FP tests.\n"
|
---|
9808 | " -S, --sse-fp-binary\n"
|
---|
9809 | " Enable SSE binary 64- and 32-bit FP tests.\n"
|
---|
9810 | " -T, --sse-fp-other\n"
|
---|
9811 | " Enable misc SSE 64- and 32-bit FP tests.\n"
|
---|
9812 | " -C, --sse-pcmpxstrx\n"
|
---|
9813 | " Enable SSE pcmpxstrx tests.\n"
|
---|
9814 | " -I,--include=<test-patter>\n"
|
---|
9815 | " Enable tests matching the given pattern.\n"
|
---|
9816 | " -X,--exclude=<test-patter>\n"
|
---|
9817 | " Skip tests matching the given pattern (overrides --include).\n"
|
---|
9818 | "\n"
|
---|
9819 | "Generation:\n"
|
---|
9820 | " -m, --common\n"
|
---|
9821 | " Enable generating common test data.\n"
|
---|
9822 | " -c, --only-cpu\n"
|
---|
9823 | " Enable generating CPU specific test data.\n"
|
---|
9824 | " -n, --number-of-test <count>\n"
|
---|
9825 | " Number of tests to generate. Default: %u\n"
|
---|
9826 | "\n"
|
---|
9827 | "Other:\n"
|
---|
9828 | " -v, --verbose\n"
|
---|
9829 | " -q, --quiet\n"
|
---|
9830 | " Noise level. Default: --quiet\n"
|
---|
9831 | , argv[0], cDefaultTests);
|
---|
9832 | return RTEXITCODE_SUCCESS;
|
---|
9833 | default:
|
---|
9834 | return RTGetOptPrintError(rc, &ValueUnion);
|
---|
9835 | }
|
---|
9836 | }
|
---|
9837 |
|
---|
9838 | /*
|
---|
9839 | * Generate data?
|
---|
9840 | */
|
---|
9841 | if (enmMode == kModeGenerate)
|
---|
9842 | {
|
---|
9843 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9844 | if (cTests == 0)
|
---|
9845 | cTests = cDefaultTests;
|
---|
9846 | g_cZeroDstTests = RT_MIN(cTests / 16, 32);
|
---|
9847 | g_cZeroSrcTests = g_cZeroDstTests * 2;
|
---|
9848 |
|
---|
9849 | if (fInt)
|
---|
9850 | {
|
---|
9851 | const char * const apszNameFmts[] =
|
---|
9852 | {
|
---|
9853 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? "tstIEMAImplDataInt-%s.bin.gz" : NULL,
|
---|
9854 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? "tstIEMAImplDataInt-%s-Intel.bin.gz" : NULL,
|
---|
9855 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? "tstIEMAImplDataInt-%s-Amd.bin.gz" : NULL,
|
---|
9856 | };
|
---|
9857 | RTEXITCODE rcExit = BinU8Generate(cTests, apszNameFmts);
|
---|
9858 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9859 | rcExit = BinU16Generate(cTests, apszNameFmts);
|
---|
9860 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9861 | rcExit = BinU32Generate(cTests, apszNameFmts);
|
---|
9862 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9863 | rcExit = BinU64Generate(cTests, apszNameFmts);
|
---|
9864 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9865 | rcExit = ShiftDblGenerate(RT_MAX(cTests, 128), apszNameFmts);
|
---|
9866 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9867 | rcExit = UnaryGenerate(cTests, apszNameFmts);
|
---|
9868 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9869 | rcExit = ShiftGenerate(cTests, apszNameFmts);
|
---|
9870 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9871 | rcExit = MulDivGenerate(cTests, apszNameFmts);
|
---|
9872 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
9873 | return rcExit;
|
---|
9874 | }
|
---|
9875 |
|
---|
9876 | if (fFpuLdSt)
|
---|
9877 | {
|
---|
9878 | const char * const apszNameFmts[] =
|
---|
9879 | {
|
---|
9880 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? "tstIEMAImplDataFpuLdSt-%s.bin.gz" : NULL,
|
---|
9881 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? "tstIEMAImplDataFpuLdSt-%s.bin.gz" : NULL,
|
---|
9882 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? "tstIEMAImplDataFpuLdSt-%s.bin.gz" : NULL,
|
---|
9883 | };
|
---|
9884 | RTEXITCODE rcExit = FpuLdConstGenerate(cTests, apszNameFmts);
|
---|
9885 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9886 | rcExit = FpuLdIntGenerate(cTests, apszNameFmts);
|
---|
9887 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9888 | rcExit = FpuLdD80Generate(cTests, apszNameFmts);
|
---|
9889 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9890 | rcExit = FpuStIntGenerate(cTests, apszNameFmts);
|
---|
9891 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9892 | rcExit = FpuStD80Generate(cTests, apszNameFmts);
|
---|
9893 | uint32_t const cTests2 = RT_MAX(cTests, 384); /* need better coverage for the next ones. */
|
---|
9894 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9895 | rcExit = FpuLdMemGenerate(cTests2, apszNameFmts);
|
---|
9896 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9897 | rcExit = FpuStMemGenerate(cTests2, apszNameFmts);
|
---|
9898 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
9899 | return rcExit;
|
---|
9900 | }
|
---|
9901 |
|
---|
9902 | if (fFpuBinary1)
|
---|
9903 | {
|
---|
9904 | const char * const apszNameFmts[] =
|
---|
9905 | {
|
---|
9906 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? "tstIEMAImplDataFpuBinary1-%s.bin.gz" : NULL,
|
---|
9907 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? "tstIEMAImplDataFpuBinary1-%s.bin.gz" : NULL,
|
---|
9908 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? "tstIEMAImplDataFpuBinary1-%s.bin.gz" : NULL,
|
---|
9909 | };
|
---|
9910 | RTEXITCODE rcExit = FpuBinaryR80Generate(cTests, apszNameFmts);
|
---|
9911 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9912 | rcExit = FpuBinaryFswR80Generate(cTests, apszNameFmts);
|
---|
9913 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9914 | rcExit = FpuBinaryEflR80Generate(cTests, apszNameFmts);
|
---|
9915 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
9916 | return rcExit;
|
---|
9917 | }
|
---|
9918 |
|
---|
9919 | if (fFpuBinary2)
|
---|
9920 | {
|
---|
9921 | const char * const apszNameFmts[] =
|
---|
9922 | {
|
---|
9923 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? "tstIEMAImplDataFpuBinary2-%s.bin.gz" : NULL,
|
---|
9924 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? "tstIEMAImplDataFpuBinary2-%s.bin.gz" : NULL,
|
---|
9925 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? "tstIEMAImplDataFpuBinary2-%s.bin.gz" : NULL,
|
---|
9926 | };
|
---|
9927 | RTEXITCODE rcExit = FpuBinaryR64Generate(cTests, apszNameFmts);
|
---|
9928 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9929 | rcExit = FpuBinaryR32Generate(cTests, apszNameFmts);
|
---|
9930 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9931 | rcExit = FpuBinaryI32Generate(cTests, apszNameFmts);
|
---|
9932 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9933 | rcExit = FpuBinaryI16Generate(cTests, apszNameFmts);
|
---|
9934 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9935 | rcExit = FpuBinaryFswR64Generate(cTests, apszNameFmts);
|
---|
9936 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9937 | rcExit = FpuBinaryFswR32Generate(cTests, apszNameFmts);
|
---|
9938 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9939 | rcExit = FpuBinaryFswI32Generate(cTests, apszNameFmts);
|
---|
9940 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9941 | rcExit = FpuBinaryFswI16Generate(cTests, apszNameFmts);
|
---|
9942 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
9943 | return rcExit;
|
---|
9944 | }
|
---|
9945 |
|
---|
9946 | if (fFpuOther)
|
---|
9947 | {
|
---|
9948 | const char * const apszNameFmts[] =
|
---|
9949 | {
|
---|
9950 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? "tstIEMAImplDataFpuOther-%s.bin.gz" : NULL,
|
---|
9951 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? "tstIEMAImplDataFpuOther-%s.bin.gz" : NULL,
|
---|
9952 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? "tstIEMAImplDataFpuOther-%s.bin.gz" : NULL,
|
---|
9953 | };
|
---|
9954 | RTEXITCODE rcExit = FpuUnaryR80Generate(cTests, apszNameFmts);
|
---|
9955 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9956 | rcExit = FpuUnaryFswR80Generate(cTests, apszNameFmts);
|
---|
9957 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9958 | rcExit = FpuUnaryTwoR80Generate(cTests, apszNameFmts);
|
---|
9959 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
9960 | return rcExit;
|
---|
9961 | }
|
---|
9962 |
|
---|
9963 | if (fSseFpBinary)
|
---|
9964 | {
|
---|
9965 | const char * const pszDataFileFmt = fCommonData ? "tstIEMAImplDataSseBinary-%s.bin.gz" : NULL;
|
---|
9966 |
|
---|
9967 | RTEXITCODE rcExit = SseBinaryR32Generate(pszDataFileFmt, cTests);
|
---|
9968 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9969 | rcExit = SseBinaryR64Generate(pszDataFileFmt, cTests);
|
---|
9970 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9971 | rcExit = SseBinaryU128R32Generate(pszDataFileFmt, cTests);
|
---|
9972 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9973 | rcExit = SseBinaryU128R64Generate(pszDataFileFmt, cTests);
|
---|
9974 |
|
---|
9975 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9976 | rcExit = SseBinaryI32R64Generate(pszDataFileFmt, cTests);
|
---|
9977 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9978 | rcExit = SseBinaryI64R64Generate(pszDataFileFmt, cTests);
|
---|
9979 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9980 | rcExit = SseBinaryI32R32Generate(pszDataFileFmt, cTests);
|
---|
9981 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9982 | rcExit = SseBinaryI64R32Generate(pszDataFileFmt, cTests);
|
---|
9983 |
|
---|
9984 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9985 | rcExit = SseBinaryR64I32Generate(pszDataFileFmt, cTests);
|
---|
9986 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9987 | rcExit = SseBinaryR64I64Generate(pszDataFileFmt, cTests);
|
---|
9988 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9989 | rcExit = SseBinaryR32I32Generate(pszDataFileFmt, cTests);
|
---|
9990 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
9991 | rcExit = SseBinaryR32I64Generate(pszDataFileFmt, cTests);
|
---|
9992 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
9993 | return rcExit;
|
---|
9994 | }
|
---|
9995 |
|
---|
9996 | if (fSseFpOther)
|
---|
9997 | {
|
---|
9998 | const char * const pszDataFileFmtCmp = fCommonData ? "tstIEMAImplDataSseCompare-%s.bin.gz" : NULL;
|
---|
9999 | const char * const pszDataFileFmtConv = fCommonData ? "tstIEMAImplDataSseConvert-%s.bin.gz" : NULL;
|
---|
10000 |
|
---|
10001 | RTEXITCODE rcExit = SseCompareEflR32R32Generate(pszDataFileFmtCmp, cTests);
|
---|
10002 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10003 | rcExit = SseCompareEflR64R64Generate(pszDataFileFmtCmp, cTests);
|
---|
10004 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10005 | rcExit = SseCompareF2XmmR32Imm8Generate(pszDataFileFmtCmp, cTests);
|
---|
10006 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10007 | rcExit = SseCompareF2XmmR64Imm8Generate(pszDataFileFmtCmp, cTests);
|
---|
10008 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10009 | rcExit = SseConvertXmmI32R32Generate(pszDataFileFmtConv, cTests);
|
---|
10010 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10011 | rcExit = SseConvertXmmR32I32Generate(pszDataFileFmtConv, cTests);
|
---|
10012 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10013 | rcExit = SseConvertXmmI32R64Generate(pszDataFileFmtConv, cTests);
|
---|
10014 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10015 | rcExit = SseConvertXmmR64I32Generate(pszDataFileFmtConv, cTests);
|
---|
10016 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10017 | rcExit = SseConvertMmXmmGenerate(pszDataFileFmtConv, cTests);
|
---|
10018 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10019 | rcExit = SseConvertXmmR32MmGenerate(pszDataFileFmtConv, cTests);
|
---|
10020 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10021 | rcExit = SseConvertXmmR64MmGenerate(pszDataFileFmtConv, cTests);
|
---|
10022 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10023 | rcExit = SseConvertMmI32XmmR32Generate(pszDataFileFmtConv, cTests);
|
---|
10024 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
10025 | return rcExit;
|
---|
10026 | }
|
---|
10027 |
|
---|
10028 | if (fSsePcmpxstrx)
|
---|
10029 | {
|
---|
10030 | const char * const pszDataFileFmtCmp = fCommonData ? "tstIEMAImplDataSsePcmpxstrx-%s.bin.gz" : NULL;
|
---|
10031 |
|
---|
10032 | RTEXITCODE rcExit = SseComparePcmpistriGenerate(pszDataFileFmtCmp, cTests);
|
---|
10033 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10034 | rcExit = SseComparePcmpistrmGenerate(pszDataFileFmtCmp, cTests);
|
---|
10035 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10036 | rcExit = SseComparePcmpestriGenerate(pszDataFileFmtCmp, cTests);
|
---|
10037 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10038 | rcExit = SseComparePcmpestrmGenerate(pszDataFileFmtCmp, cTests);
|
---|
10039 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
10040 | return rcExit;
|
---|
10041 | }
|
---|
10042 |
|
---|
10043 | return RTEXITCODE_SUCCESS;
|
---|
10044 | #else
|
---|
10045 | return RTMsgErrorExitFailure("Test data generator not compiled in!");
|
---|
10046 | #endif
|
---|
10047 | }
|
---|
10048 |
|
---|
10049 | /*
|
---|
10050 | * Dump tables.
|
---|
10051 | */
|
---|
10052 | if (enmMode == kModeDump)
|
---|
10053 | {
|
---|
10054 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
10055 | if (fInt)
|
---|
10056 | {
|
---|
10057 | const char * const apszNameFmts[] =
|
---|
10058 | {
|
---|
10059 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? "tstIEMAImplDataInt-%s.bin.gz" : NULL,
|
---|
10060 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? "tstIEMAImplDataInt-%s-Intel.bin.gz" : NULL,
|
---|
10061 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? "tstIEMAImplDataInt-%s-Amd.bin.gz" : NULL,
|
---|
10062 | };
|
---|
10063 | RTEXITCODE rcExit = BinU8DumpAll(apszNameFmts);
|
---|
10064 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10065 | rcExit = BinU16DumpAll(apszNameFmts);
|
---|
10066 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10067 | rcExit = BinU32DumpAll(apszNameFmts);
|
---|
10068 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10069 | rcExit = BinU64DumpAll(apszNameFmts);
|
---|
10070 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10071 | rcExit = ShiftDblDumpAll(apszNameFmts);
|
---|
10072 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10073 | rcExit = UnaryDumpAll(apszNameFmts);
|
---|
10074 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10075 | rcExit = ShiftDumpAll(apszNameFmts);
|
---|
10076 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10077 | rcExit = MulDivDumpAll(apszNameFmts);
|
---|
10078 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
10079 | return rcExit;
|
---|
10080 | }
|
---|
10081 |
|
---|
10082 | if (fFpuLdSt)
|
---|
10083 | {
|
---|
10084 | const char * const apszNameFmts[] =
|
---|
10085 | {
|
---|
10086 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? "tstIEMAImplDataFpuLdSt-%s.bin.gz" : NULL,
|
---|
10087 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? "tstIEMAImplDataFpuLdSt-%s.bin.gz" : NULL,
|
---|
10088 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? "tstIEMAImplDataFpuLdSt-%s.bin.gz" : NULL,
|
---|
10089 | };
|
---|
10090 | RTEXITCODE rcExit = FpuLdConstDumpAll(apszNameFmts);
|
---|
10091 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10092 | rcExit = FpuLdIntDumpAll(apszNameFmts);
|
---|
10093 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10094 | rcExit = FpuLdD80DumpAll(apszNameFmts);
|
---|
10095 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10096 | rcExit = FpuStIntDumpAll(apszNameFmts);
|
---|
10097 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10098 | rcExit = FpuStD80DumpAll(apszNameFmts);
|
---|
10099 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10100 | rcExit = FpuLdMemDumpAll(apszNameFmts);
|
---|
10101 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10102 | rcExit = FpuStMemDumpAll(apszNameFmts);
|
---|
10103 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
10104 | return rcExit;
|
---|
10105 | }
|
---|
10106 |
|
---|
10107 | if (fFpuBinary1)
|
---|
10108 | {
|
---|
10109 | const char * const apszNameFmts[] =
|
---|
10110 | {
|
---|
10111 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? "tstIEMAImplDataFpuBinary1-%s.bin.gz" : NULL,
|
---|
10112 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? "tstIEMAImplDataFpuBinary1-%s.bin.gz" : NULL,
|
---|
10113 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? "tstIEMAImplDataFpuBinary1-%s.bin.gz" : NULL,
|
---|
10114 | };
|
---|
10115 | RTEXITCODE rcExit = FpuBinaryR80DumpAll(apszNameFmts);
|
---|
10116 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10117 | rcExit = FpuBinaryFswR80DumpAll(apszNameFmts);
|
---|
10118 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10119 | rcExit = FpuBinaryEflR80DumpAll(apszNameFmts);
|
---|
10120 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
10121 | return rcExit;
|
---|
10122 | }
|
---|
10123 |
|
---|
10124 | if (fFpuBinary2)
|
---|
10125 | {
|
---|
10126 | const char * const apszNameFmts[] =
|
---|
10127 | {
|
---|
10128 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? "tstIEMAImplDataFpuBinary2-%s.bin.gz" : NULL,
|
---|
10129 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? "tstIEMAImplDataFpuBinary2-%s.bin.gz" : NULL,
|
---|
10130 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? "tstIEMAImplDataFpuBinary2-%s.bin.gz" : NULL,
|
---|
10131 | };
|
---|
10132 | RTEXITCODE rcExit = FpuBinaryR64DumpAll(apszNameFmts);
|
---|
10133 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10134 | rcExit = FpuBinaryR32DumpAll(apszNameFmts);
|
---|
10135 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10136 | rcExit = FpuBinaryI32DumpAll(apszNameFmts);
|
---|
10137 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10138 | rcExit = FpuBinaryI16DumpAll(apszNameFmts);
|
---|
10139 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10140 | rcExit = FpuBinaryFswR64DumpAll(apszNameFmts);
|
---|
10141 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10142 | rcExit = FpuBinaryFswR32DumpAll(apszNameFmts);
|
---|
10143 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10144 | rcExit = FpuBinaryFswI32DumpAll(apszNameFmts);
|
---|
10145 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10146 | rcExit = FpuBinaryFswI16DumpAll(apszNameFmts);
|
---|
10147 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
10148 | return rcExit;
|
---|
10149 | }
|
---|
10150 |
|
---|
10151 | if (fFpuOther)
|
---|
10152 | {
|
---|
10153 | const char * const apszNameFmts[] =
|
---|
10154 | {
|
---|
10155 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? "tstIEMAImplDataFpuOther-%s.bin.gz" : NULL,
|
---|
10156 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? "tstIEMAImplDataFpuOther-%s.bin.gz" : NULL,
|
---|
10157 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? "tstIEMAImplDataFpuOther-%s.bin.gz" : NULL,
|
---|
10158 | };
|
---|
10159 | RTEXITCODE rcExit = FpuUnaryR80DumpAll(apszNameFmts);
|
---|
10160 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10161 | rcExit = FpuUnaryFswR80DumpAll(apszNameFmts);
|
---|
10162 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
10163 | rcExit = FpuUnaryTwoR80DumpAll(apszNameFmts);
|
---|
10164 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
10165 | return rcExit;
|
---|
10166 | }
|
---|
10167 |
|
---|
10168 | return RTEXITCODE_SUCCESS;
|
---|
10169 | #else
|
---|
10170 | return RTMsgErrorExitFailure("Test data generator not compiled in!");
|
---|
10171 | #endif
|
---|
10172 | }
|
---|
10173 |
|
---|
10174 |
|
---|
10175 | /*
|
---|
10176 | * Do testing. Currrently disabled by default as data needs to be checked
|
---|
10177 | * on both intel and AMD systems first.
|
---|
10178 | */
|
---|
10179 | rc = RTTestCreate("tstIEMAimpl", &g_hTest);
|
---|
10180 | AssertRCReturn(rc, RTEXITCODE_FAILURE);
|
---|
10181 | if (enmMode == kModeTest)
|
---|
10182 | {
|
---|
10183 | RTTestBanner(g_hTest);
|
---|
10184 |
|
---|
10185 | /* Allocate guarded memory for use in the tests. */
|
---|
10186 | #define ALLOC_GUARDED_VAR(a_puVar) do { \
|
---|
10187 | rc = RTTestGuardedAlloc(g_hTest, sizeof(*a_puVar), sizeof(*a_puVar), false /*fHead*/, (void **)&a_puVar); \
|
---|
10188 | if (RT_FAILURE(rc)) RTTestFailed(g_hTest, "Failed to allocate guarded mem: " #a_puVar); \
|
---|
10189 | } while (0)
|
---|
10190 | ALLOC_GUARDED_VAR(g_pu8);
|
---|
10191 | ALLOC_GUARDED_VAR(g_pu16);
|
---|
10192 | ALLOC_GUARDED_VAR(g_pu32);
|
---|
10193 | ALLOC_GUARDED_VAR(g_pu64);
|
---|
10194 | ALLOC_GUARDED_VAR(g_pu128);
|
---|
10195 | ALLOC_GUARDED_VAR(g_pu8Two);
|
---|
10196 | ALLOC_GUARDED_VAR(g_pu16Two);
|
---|
10197 | ALLOC_GUARDED_VAR(g_pu32Two);
|
---|
10198 | ALLOC_GUARDED_VAR(g_pu64Two);
|
---|
10199 | ALLOC_GUARDED_VAR(g_pu128Two);
|
---|
10200 | ALLOC_GUARDED_VAR(g_pfEfl);
|
---|
10201 | if (RTTestErrorCount(g_hTest) == 0)
|
---|
10202 | {
|
---|
10203 | if (fInt)
|
---|
10204 | {
|
---|
10205 | BinU8Test();
|
---|
10206 | BinU16Test();
|
---|
10207 | BinU32Test();
|
---|
10208 | BinU64Test();
|
---|
10209 | XchgTest();
|
---|
10210 | XaddTest();
|
---|
10211 | CmpXchgTest();
|
---|
10212 | CmpXchg8bTest();
|
---|
10213 | CmpXchg16bTest();
|
---|
10214 | ShiftDblTest();
|
---|
10215 | UnaryTest();
|
---|
10216 | ShiftTest();
|
---|
10217 | MulDivTest();
|
---|
10218 | BswapTest();
|
---|
10219 | }
|
---|
10220 |
|
---|
10221 | if (fFpuLdSt)
|
---|
10222 | {
|
---|
10223 | FpuLoadConstTest();
|
---|
10224 | FpuLdMemTest();
|
---|
10225 | FpuLdIntTest();
|
---|
10226 | FpuLdD80Test();
|
---|
10227 | FpuStMemTest();
|
---|
10228 | FpuStIntTest();
|
---|
10229 | FpuStD80Test();
|
---|
10230 | }
|
---|
10231 |
|
---|
10232 | if (fFpuBinary1)
|
---|
10233 | {
|
---|
10234 | FpuBinaryR80Test();
|
---|
10235 | FpuBinaryFswR80Test();
|
---|
10236 | FpuBinaryEflR80Test();
|
---|
10237 | }
|
---|
10238 |
|
---|
10239 | if (fFpuBinary2)
|
---|
10240 | {
|
---|
10241 | FpuBinaryR64Test();
|
---|
10242 | FpuBinaryR32Test();
|
---|
10243 | FpuBinaryI32Test();
|
---|
10244 | FpuBinaryI16Test();
|
---|
10245 | FpuBinaryFswR64Test();
|
---|
10246 | FpuBinaryFswR32Test();
|
---|
10247 | FpuBinaryFswI32Test();
|
---|
10248 | FpuBinaryFswI16Test();
|
---|
10249 | }
|
---|
10250 |
|
---|
10251 | if (fFpuOther)
|
---|
10252 | {
|
---|
10253 | FpuUnaryR80Test();
|
---|
10254 | FpuUnaryFswR80Test();
|
---|
10255 | FpuUnaryTwoR80Test();
|
---|
10256 | }
|
---|
10257 |
|
---|
10258 | if (fSseFpBinary)
|
---|
10259 | {
|
---|
10260 | SseBinaryR32Test();
|
---|
10261 | SseBinaryR64Test();
|
---|
10262 | SseBinaryU128R32Test();
|
---|
10263 | SseBinaryU128R64Test();
|
---|
10264 |
|
---|
10265 | SseBinaryI32R64Test();
|
---|
10266 | SseBinaryI64R64Test();
|
---|
10267 | SseBinaryI32R32Test();
|
---|
10268 | SseBinaryI64R32Test();
|
---|
10269 |
|
---|
10270 | SseBinaryR64I32Test();
|
---|
10271 | SseBinaryR64I64Test();
|
---|
10272 | SseBinaryR32I32Test();
|
---|
10273 | SseBinaryR32I64Test();
|
---|
10274 | }
|
---|
10275 |
|
---|
10276 | if (fSseFpOther)
|
---|
10277 | {
|
---|
10278 | SseCompareEflR32R32Test();
|
---|
10279 | SseCompareEflR64R64Test();
|
---|
10280 | SseCompareEflR64R64Test();
|
---|
10281 | SseCompareF2XmmR32Imm8Test();
|
---|
10282 | SseCompareF2XmmR64Imm8Test();
|
---|
10283 | SseConvertXmmI32R32Test();
|
---|
10284 | SseConvertXmmR32I32Test();
|
---|
10285 | SseConvertXmmI32R64Test();
|
---|
10286 | SseConvertXmmR64I32Test();
|
---|
10287 | SseConvertMmXmmTest();
|
---|
10288 | SseConvertXmmR32MmTest();
|
---|
10289 | SseConvertXmmR64MmTest();
|
---|
10290 | SseConvertMmI32XmmR32Test();
|
---|
10291 | }
|
---|
10292 |
|
---|
10293 | if (fSsePcmpxstrx)
|
---|
10294 | {
|
---|
10295 | SseComparePcmpistriTest();
|
---|
10296 | SseComparePcmpistrmTest();
|
---|
10297 | SseComparePcmpestriTest();
|
---|
10298 | SseComparePcmpestrmTest();
|
---|
10299 | }
|
---|
10300 | }
|
---|
10301 | return RTTestSummaryAndDestroy(g_hTest);
|
---|
10302 | }
|
---|
10303 | return RTTestSkipAndDestroy(g_hTest, "unfinished testcase");
|
---|
10304 | }
|
---|
10305 |
|
---|