1 | /* $Id: tstIEMAImpl.cpp 104208 2024-04-05 21:17:41Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM Assembly Instruction Helper Testcase.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2022-2024 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /*********************************************************************************************************************************
|
---|
30 | * Header Files *
|
---|
31 | *********************************************************************************************************************************/
|
---|
32 | #include "../include/IEMInternal.h"
|
---|
33 |
|
---|
34 | #include <iprt/errcore.h>
|
---|
35 | #include <VBox/log.h>
|
---|
36 | #include <iprt/assert.h>
|
---|
37 | #include <iprt/buildconfig.h>
|
---|
38 | #include <iprt/ctype.h>
|
---|
39 | #include <iprt/err.h>
|
---|
40 | #include <iprt/getopt.h>
|
---|
41 | #include <iprt/initterm.h>
|
---|
42 | #include <iprt/file.h>
|
---|
43 | #include <iprt/mem.h>
|
---|
44 | #include <iprt/message.h>
|
---|
45 | #include <iprt/mp.h>
|
---|
46 | #include <iprt/rand.h>
|
---|
47 | #include <iprt/stream.h>
|
---|
48 | #include <iprt/string.h>
|
---|
49 | #include <iprt/test.h>
|
---|
50 | #include <iprt/time.h>
|
---|
51 | #include <iprt/thread.h>
|
---|
52 | #include <iprt/vfs.h>
|
---|
53 | #include <iprt/zip.h>
|
---|
54 | #include <VBox/version.h>
|
---|
55 |
|
---|
56 | #include "tstIEMAImpl.h"
|
---|
57 |
|
---|
58 |
|
---|
59 | /*********************************************************************************************************************************
|
---|
60 | * Defined Constants And Macros *
|
---|
61 | *********************************************************************************************************************************/
|
---|
62 | #define ENTRY_BIN_FIX(a_Name) ENTRY_BIN_FIX_EX(a_Name, 0)
|
---|
63 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
64 | # define ENTRY_BIN_FIX_EX(a_Name, a_uExtra) \
|
---|
65 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \
|
---|
66 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
67 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */, \
|
---|
68 | RT_ELEMENTS(g_aFixedTests_ ## a_Name), g_aFixedTests_ ## a_Name }
|
---|
69 | #else
|
---|
70 | # define ENTRY_BIN_FIX_EX(a_Name, a_uExtra) ENTRY_BIN_EX(a_Name, a_uExtra)
|
---|
71 | #endif
|
---|
72 |
|
---|
73 | #define ENTRY_BIN_PFN_CAST(a_Name, a_pfnType) ENTRY_BIN_PFN_CAST_EX(a_Name, a_pfnType, 0)
|
---|
74 | #define ENTRY_BIN_PFN_CAST_EX(a_Name, a_pfnType, a_uExtra) \
|
---|
75 | { RT_XSTR(a_Name), (a_pfnType)iemAImpl_ ## a_Name, NULL, \
|
---|
76 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
77 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
78 |
|
---|
79 | #define ENTRY_BIN(a_Name) ENTRY_BIN_EX(a_Name, 0)
|
---|
80 | #define ENTRY_BIN_EX(a_Name, a_uExtra) \
|
---|
81 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \
|
---|
82 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
83 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
84 |
|
---|
85 | #define ENTRY_BIN_AVX(a_Name) ENTRY_BIN_AVX_EX(a_Name, 0)
|
---|
86 | #ifndef IEM_WITHOUT_ASSEMBLY
|
---|
87 | # define ENTRY_BIN_AVX_EX(a_Name, a_uExtra) \
|
---|
88 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \
|
---|
89 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
90 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
91 | #else
|
---|
92 | # define ENTRY_BIN_AVX_EX(a_Name, a_uExtra) \
|
---|
93 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name ## _fallback, NULL, \
|
---|
94 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
95 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
96 | #endif
|
---|
97 |
|
---|
98 | #define ENTRY_BIN_SSE_OPT(a_Name) ENTRY_BIN_SSE_OPT_EX(a_Name, 0)
|
---|
99 | #ifndef IEM_WITHOUT_ASSEMBLY
|
---|
100 | # define ENTRY_BIN_SSE_OPT_EX(a_Name, a_uExtra) \
|
---|
101 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \
|
---|
102 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
103 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
104 | #else
|
---|
105 | # define ENTRY_BIN_SSE_OPT_EX(a_Name, a_uExtra) \
|
---|
106 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name ## _fallback, NULL, \
|
---|
107 | g_abTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
108 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
109 | #endif
|
---|
110 |
|
---|
111 | #define ENTRY_BIN_INTEL(a_Name, a_fEflUndef) ENTRY_BIN_INTEL_EX(a_Name, a_fEflUndef, 0)
|
---|
112 | #define ENTRY_BIN_INTEL_EX(a_Name, a_fEflUndef, a_uExtra) \
|
---|
113 | { RT_XSTR(a_Name) "_intel", iemAImpl_ ## a_Name ## _intel, iemAImpl_ ## a_Name, \
|
---|
114 | g_abTests_ ## a_Name ## _intel, &g_cbTests_ ## a_Name ## _intel, \
|
---|
115 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_INTEL }
|
---|
116 |
|
---|
117 | #define ENTRY_BIN_AMD(a_Name, a_fEflUndef) ENTRY_BIN_AMD_EX(a_Name, a_fEflUndef, 0)
|
---|
118 | #define ENTRY_BIN_AMD_EX(a_Name, a_fEflUndef, a_uExtra) \
|
---|
119 | { RT_XSTR(a_Name) "_amd", iemAImpl_ ## a_Name ## _amd, iemAImpl_ ## a_Name, \
|
---|
120 | g_abTests_ ## a_Name ## _amd, &g_cbTests_ ## a_Name ## _amd, \
|
---|
121 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_AMD }
|
---|
122 |
|
---|
123 | #define ENTRY_BIN_FIX_INTEL(a_Name, a_fEflUndef) ENTRY_BIN_FIX_INTEL_EX(a_Name, a_fEflUndef, 0)
|
---|
124 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
125 | # define ENTRY_BIN_FIX_INTEL_EX(a_Name, a_fEflUndef, a_uExtra) \
|
---|
126 | { RT_XSTR(a_Name) "_intel", iemAImpl_ ## a_Name ## _intel, iemAImpl_ ## a_Name, \
|
---|
127 | g_abTests_ ## a_Name ## _intel, &g_cbTests_ ## a_Name ## _intel, \
|
---|
128 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_INTEL, \
|
---|
129 | RT_ELEMENTS(g_aFixedTests_ ## a_Name), g_aFixedTests_ ## a_Name }
|
---|
130 | #else
|
---|
131 | # define ENTRY_BIN_FIX_INTEL_EX(a_Name, a_fEflUndef, a_uExtra) ENTRY_BIN_INTEL_EX(a_Name, a_fEflUndef, a_uExtra)
|
---|
132 | #endif
|
---|
133 |
|
---|
134 | #define ENTRY_BIN_FIX_AMD(a_Name, a_fEflUndef) ENTRY_BIN_FIX_AMD_EX(a_Name, a_fEflUndef, 0)
|
---|
135 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
136 | # define ENTRY_BIN_FIX_AMD_EX(a_Name, a_fEflUndef, a_uExtra) \
|
---|
137 | { RT_XSTR(a_Name) "_amd", iemAImpl_ ## a_Name ## _amd, iemAImpl_ ## a_Name, \
|
---|
138 | g_abTests_ ## a_Name ## _amd, &g_cbTests_ ## a_Name ## _amd, \
|
---|
139 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_AMD, \
|
---|
140 | RT_ELEMENTS(g_aFixedTests_ ## a_Name), g_aFixedTests_ ## a_Name }
|
---|
141 | #else
|
---|
142 | # define ENTRY_BIN_FIX_AMD_EX(a_Name, a_fEflUndef, a_uExtra) ENTRY_BIN_AMD_EX(a_Name, a_fEflUndef, a_uExtra)
|
---|
143 | #endif
|
---|
144 |
|
---|
145 |
|
---|
146 | #define TYPEDEF_SUBTEST_TYPE(a_TypeName, a_TestType, a_FunctionPtrType) \
|
---|
147 | typedef struct a_TypeName \
|
---|
148 | { \
|
---|
149 | const char *pszName; \
|
---|
150 | const a_FunctionPtrType pfn; \
|
---|
151 | const a_FunctionPtrType pfnNative; \
|
---|
152 | void const * const pvCompressedTests; \
|
---|
153 | uint32_t const *pcbCompressedTests; \
|
---|
154 | uint32_t const uExtra; \
|
---|
155 | uint8_t const idxCpuEflFlavour; \
|
---|
156 | uint16_t const cFixedTests; \
|
---|
157 | a_TestType const * const paFixedTests; \
|
---|
158 | a_TestType const *paTests; /**< The decompressed info. */ \
|
---|
159 | uint32_t cTests; /**< The decompressed info. */ \
|
---|
160 | IEMTESTENTRYINFO Info; \
|
---|
161 | } a_TypeName
|
---|
162 |
|
---|
163 | #define COUNT_VARIATIONS(a_SubTest) \
|
---|
164 | (1 + ((a_SubTest).idxCpuEflFlavour == g_idxCpuEflFlavour && (a_SubTest).pfnNative) )
|
---|
165 |
|
---|
166 |
|
---|
167 | /*********************************************************************************************************************************
|
---|
168 | * Structures and Typedefs *
|
---|
169 | *********************************************************************************************************************************/
|
---|
170 | typedef struct IEMBINARYHEADER
|
---|
171 | {
|
---|
172 | char szMagic[16];
|
---|
173 | uint32_t cbEntry;
|
---|
174 | uint32_t uSvnRev;
|
---|
175 | uint32_t auUnused[6];
|
---|
176 | char szCpuDesc[80];
|
---|
177 | } IEMBINARYHEADER;
|
---|
178 | AssertCompileSize(IEMBINARYHEADER, 128);
|
---|
179 |
|
---|
180 | // 01234567890123456
|
---|
181 | #define IEMBINARYHEADER_MAGIC "IEMAImpl Bin v1"
|
---|
182 | AssertCompile(sizeof(IEMBINARYHEADER_MAGIC) == 16);
|
---|
183 |
|
---|
184 |
|
---|
185 | typedef struct IEMBINARYFOOTER
|
---|
186 | {
|
---|
187 | char szMagic[24];
|
---|
188 | uint32_t cbEntry;
|
---|
189 | uint32_t cEntries;
|
---|
190 | } IEMBINARYFOOTER;
|
---|
191 | AssertCompileSize(IEMBINARYFOOTER, 32);
|
---|
192 | // 012345678901234567890123
|
---|
193 | #define IEMBINARYFOOTER_MAGIC "\nIEMAImpl Bin Footer v1"
|
---|
194 | AssertCompile(sizeof(IEMBINARYFOOTER_MAGIC) == 24);
|
---|
195 |
|
---|
196 |
|
---|
197 | /** Fixed part of TYPEDEF_SUBTEST_TYPE and friends. */
|
---|
198 | typedef struct IEMTESTENTRYINFO
|
---|
199 | {
|
---|
200 | void *pvUncompressed;
|
---|
201 | uint32_t cbUncompressed;
|
---|
202 | const char *pszCpuDesc;
|
---|
203 | uint32_t uSvnRev;
|
---|
204 | } IEMTESTENTRYINFO;
|
---|
205 |
|
---|
206 |
|
---|
207 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
208 | typedef struct IEMBINARYOUTPUT
|
---|
209 | {
|
---|
210 | /** The output file. */
|
---|
211 | RTVFSFILE hVfsFile;
|
---|
212 | /** The stream we write uncompressed binary test data to. */
|
---|
213 | RTVFSIOSTREAM hVfsUncompressed;
|
---|
214 | /** The number of bytes written (ignoring write failures). */
|
---|
215 | size_t cbWritten;
|
---|
216 | /** The entry size. */
|
---|
217 | uint32_t cbEntry;
|
---|
218 | /** Write status. */
|
---|
219 | int rcWrite;
|
---|
220 | /** Set if NULL. */
|
---|
221 | bool fNull;
|
---|
222 | /** Set if we wrote a header and should write a footer as well. */
|
---|
223 | bool fWroteHeader;
|
---|
224 | /** Filename. */
|
---|
225 | char szFilename[94];
|
---|
226 | } IEMBINARYOUTPUT;
|
---|
227 | typedef IEMBINARYOUTPUT *PIEMBINARYOUTPUT;
|
---|
228 | #endif /* TSTIEMAIMPL_WITH_GENERATOR */
|
---|
229 |
|
---|
230 |
|
---|
231 | /*********************************************************************************************************************************
|
---|
232 | * Global Variables *
|
---|
233 | *********************************************************************************************************************************/
|
---|
234 | static RTTEST g_hTest;
|
---|
235 | static uint8_t g_idxCpuEflFlavour = IEMTARGETCPU_EFL_BEHAVIOR_INTEL;
|
---|
236 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
237 | static uint32_t g_cZeroDstTests = 2;
|
---|
238 | static uint32_t g_cZeroSrcTests = 4;
|
---|
239 | #endif
|
---|
240 | static uint8_t *g_pu8, *g_pu8Two;
|
---|
241 | static uint16_t *g_pu16, *g_pu16Two;
|
---|
242 | static uint32_t *g_pu32, *g_pu32Two, *g_pfEfl;
|
---|
243 | static uint64_t *g_pu64, *g_pu64Two;
|
---|
244 | static RTUINT128U *g_pu128, *g_pu128Two;
|
---|
245 |
|
---|
246 | static char g_aszBuf[32][256];
|
---|
247 | static unsigned g_idxBuf = 0;
|
---|
248 |
|
---|
249 | static uint32_t g_cIncludeTestPatterns;
|
---|
250 | static uint32_t g_cExcludeTestPatterns;
|
---|
251 | static const char *g_apszIncludeTestPatterns[64];
|
---|
252 | static const char *g_apszExcludeTestPatterns[64];
|
---|
253 |
|
---|
254 | /** Higher value, means longer benchmarking. */
|
---|
255 | static uint64_t g_cPicoSecBenchmark = 0;
|
---|
256 |
|
---|
257 | static unsigned g_cVerbosity = 0;
|
---|
258 | static bool g_fVerboseSkipping = true;
|
---|
259 |
|
---|
260 |
|
---|
261 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
262 | /** The SVN revision (for use in the binary headers). */
|
---|
263 | static uint32_t g_uSvnRev = 0;
|
---|
264 | /** The CPU description (for use in the binary headers). */
|
---|
265 | static char g_szCpuDesc[80] = "";
|
---|
266 | #endif
|
---|
267 |
|
---|
268 |
|
---|
269 | /*********************************************************************************************************************************
|
---|
270 | * Internal Functions *
|
---|
271 | *********************************************************************************************************************************/
|
---|
272 | static const char *FormatR80(PCRTFLOAT80U pr80);
|
---|
273 | static const char *FormatR64(PCRTFLOAT64U pr64);
|
---|
274 | static const char *FormatR32(PCRTFLOAT32U pr32);
|
---|
275 |
|
---|
276 |
|
---|
277 | /*
|
---|
278 | * Random helpers.
|
---|
279 | */
|
---|
280 |
|
---|
281 | static uint32_t RandEFlags(void)
|
---|
282 | {
|
---|
283 | uint32_t fEfl = RTRandU32();
|
---|
284 | return (fEfl & X86_EFL_LIVE_MASK) | X86_EFL_RA1_MASK;
|
---|
285 | }
|
---|
286 |
|
---|
287 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
288 |
|
---|
289 | static uint8_t RandU8(void)
|
---|
290 | {
|
---|
291 | return RTRandU32Ex(0, 0xff);
|
---|
292 | }
|
---|
293 |
|
---|
294 |
|
---|
295 | static uint16_t RandU16(void)
|
---|
296 | {
|
---|
297 | return RTRandU32Ex(0, 0xffff);
|
---|
298 | }
|
---|
299 |
|
---|
300 |
|
---|
301 | static uint32_t RandU32(void)
|
---|
302 | {
|
---|
303 | return RTRandU32();
|
---|
304 | }
|
---|
305 |
|
---|
306 | #endif
|
---|
307 |
|
---|
308 | static uint64_t RandU64(void)
|
---|
309 | {
|
---|
310 | return RTRandU64();
|
---|
311 | }
|
---|
312 |
|
---|
313 |
|
---|
314 | static RTUINT128U RandU128(void)
|
---|
315 | {
|
---|
316 | RTUINT128U Ret;
|
---|
317 | Ret.s.Hi = RTRandU64();
|
---|
318 | Ret.s.Lo = RTRandU64();
|
---|
319 | return Ret;
|
---|
320 | }
|
---|
321 |
|
---|
322 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
323 |
|
---|
324 | static uint8_t RandU8Dst(uint32_t iTest)
|
---|
325 | {
|
---|
326 | if (iTest < g_cZeroDstTests)
|
---|
327 | return 0;
|
---|
328 | return RandU8();
|
---|
329 | }
|
---|
330 |
|
---|
331 |
|
---|
332 | static uint8_t RandU8Src(uint32_t iTest)
|
---|
333 | {
|
---|
334 | if (iTest < g_cZeroSrcTests)
|
---|
335 | return 0;
|
---|
336 | return RandU8();
|
---|
337 | }
|
---|
338 |
|
---|
339 |
|
---|
340 | static uint16_t RandU16Dst(uint32_t iTest)
|
---|
341 | {
|
---|
342 | if (iTest < g_cZeroDstTests)
|
---|
343 | return 0;
|
---|
344 | return RandU16();
|
---|
345 | }
|
---|
346 |
|
---|
347 |
|
---|
348 | static uint16_t RandU16Src(uint32_t iTest)
|
---|
349 | {
|
---|
350 | if (iTest < g_cZeroSrcTests)
|
---|
351 | return 0;
|
---|
352 | return RandU16();
|
---|
353 | }
|
---|
354 |
|
---|
355 |
|
---|
356 | static uint32_t RandU32Dst(uint32_t iTest)
|
---|
357 | {
|
---|
358 | if (iTest < g_cZeroDstTests)
|
---|
359 | return 0;
|
---|
360 | return RandU32();
|
---|
361 | }
|
---|
362 |
|
---|
363 |
|
---|
364 | static uint32_t RandU32Src(uint32_t iTest)
|
---|
365 | {
|
---|
366 | if (iTest < g_cZeroSrcTests)
|
---|
367 | return 0;
|
---|
368 | return RandU32();
|
---|
369 | }
|
---|
370 |
|
---|
371 |
|
---|
372 | static uint64_t RandU64Dst(uint32_t iTest)
|
---|
373 | {
|
---|
374 | if (iTest < g_cZeroDstTests)
|
---|
375 | return 0;
|
---|
376 | return RandU64();
|
---|
377 | }
|
---|
378 |
|
---|
379 |
|
---|
380 | static uint64_t RandU64Src(uint32_t iTest)
|
---|
381 | {
|
---|
382 | if (iTest < g_cZeroSrcTests)
|
---|
383 | return 0;
|
---|
384 | return RandU64();
|
---|
385 | }
|
---|
386 |
|
---|
387 |
|
---|
388 | /** 2nd operand for and FPU instruction, pairing with RandR80Src1. */
|
---|
389 | static int16_t RandI16Src2(uint32_t iTest)
|
---|
390 | {
|
---|
391 | if (iTest < 18 * 4)
|
---|
392 | switch (iTest % 4)
|
---|
393 | {
|
---|
394 | case 0: return 0;
|
---|
395 | case 1: return INT16_MAX;
|
---|
396 | case 2: return INT16_MIN;
|
---|
397 | case 3: break;
|
---|
398 | }
|
---|
399 | return (int16_t)RandU16();
|
---|
400 | }
|
---|
401 |
|
---|
402 |
|
---|
403 | /** 2nd operand for and FPU instruction, pairing with RandR80Src1. */
|
---|
404 | static int32_t RandI32Src2(uint32_t iTest)
|
---|
405 | {
|
---|
406 | if (iTest < 18 * 4)
|
---|
407 | switch (iTest % 4)
|
---|
408 | {
|
---|
409 | case 0: return 0;
|
---|
410 | case 1: return INT32_MAX;
|
---|
411 | case 2: return INT32_MIN;
|
---|
412 | case 3: break;
|
---|
413 | }
|
---|
414 | return (int32_t)RandU32();
|
---|
415 | }
|
---|
416 |
|
---|
417 |
|
---|
418 | static int64_t RandI64Src(uint32_t iTest)
|
---|
419 | {
|
---|
420 | RT_NOREF(iTest);
|
---|
421 | return (int64_t)RandU64();
|
---|
422 | }
|
---|
423 |
|
---|
424 |
|
---|
425 | static uint16_t RandFcw(void)
|
---|
426 | {
|
---|
427 | return RandU16() & ~X86_FCW_ZERO_MASK;
|
---|
428 | }
|
---|
429 |
|
---|
430 |
|
---|
431 | static uint16_t RandFsw(void)
|
---|
432 | {
|
---|
433 | AssertCompile((X86_FSW_C_MASK | X86_FSW_XCPT_ES_MASK | X86_FSW_TOP_MASK | X86_FSW_B) == 0xffff);
|
---|
434 | return RandU16();
|
---|
435 | }
|
---|
436 |
|
---|
437 |
|
---|
438 | static uint32_t RandMxcsr(void)
|
---|
439 | {
|
---|
440 | return RandU32() & ~X86_MXCSR_ZERO_MASK;
|
---|
441 | }
|
---|
442 |
|
---|
443 |
|
---|
444 | static void SafeR80FractionShift(PRTFLOAT80U pr80, uint8_t cShift)
|
---|
445 | {
|
---|
446 | if (pr80->sj64.uFraction >= RT_BIT_64(cShift))
|
---|
447 | pr80->sj64.uFraction >>= cShift;
|
---|
448 | else
|
---|
449 | pr80->sj64.uFraction = (cShift % 19) + 1;
|
---|
450 | }
|
---|
451 |
|
---|
452 |
|
---|
453 |
|
---|
454 | static RTFLOAT80U RandR80Ex(uint8_t bType, unsigned cTarget = 80, bool fIntTarget = false)
|
---|
455 | {
|
---|
456 | Assert(cTarget == (!fIntTarget ? 80U : 16U) || cTarget == 64U || cTarget == 32U || (cTarget == 59U && fIntTarget));
|
---|
457 |
|
---|
458 | RTFLOAT80U r80;
|
---|
459 | r80.au64[0] = RandU64();
|
---|
460 | r80.au16[4] = RandU16();
|
---|
461 |
|
---|
462 | /*
|
---|
463 | * Adjust the random stuff according to bType.
|
---|
464 | */
|
---|
465 | bType &= 0x1f;
|
---|
466 | if (bType == 0 || bType == 1 || bType == 2 || bType == 3)
|
---|
467 | {
|
---|
468 | /* Zero (0), Pseudo-Infinity (1), Infinity (2), Indefinite (3). We only keep fSign here. */
|
---|
469 | r80.sj64.uExponent = bType == 0 ? 0 : 0x7fff;
|
---|
470 | r80.sj64.uFraction = bType <= 2 ? 0 : RT_BIT_64(62);
|
---|
471 | r80.sj64.fInteger = bType >= 2 ? 1 : 0;
|
---|
472 | AssertMsg(bType != 0 || RTFLOAT80U_IS_ZERO(&r80), ("%s\n", FormatR80(&r80)));
|
---|
473 | AssertMsg(bType != 1 || RTFLOAT80U_IS_PSEUDO_INF(&r80), ("%s\n", FormatR80(&r80)));
|
---|
474 | Assert( bType != 1 || RTFLOAT80U_IS_387_INVALID(&r80));
|
---|
475 | AssertMsg(bType != 2 || RTFLOAT80U_IS_INF(&r80), ("%s\n", FormatR80(&r80)));
|
---|
476 | AssertMsg(bType != 3 || RTFLOAT80U_IS_INDEFINITE(&r80), ("%s\n", FormatR80(&r80)));
|
---|
477 | }
|
---|
478 | else if (bType == 4 || bType == 5 || bType == 6 || bType == 7)
|
---|
479 | {
|
---|
480 | /* Denormals (4,5) and Pseudo denormals (6,7) */
|
---|
481 | if (bType & 1)
|
---|
482 | SafeR80FractionShift(&r80, r80.sj64.uExponent % 62);
|
---|
483 | else if (r80.sj64.uFraction == 0 && bType < 6)
|
---|
484 | r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1);
|
---|
485 | r80.sj64.uExponent = 0;
|
---|
486 | r80.sj64.fInteger = bType >= 6;
|
---|
487 | AssertMsg(bType >= 6 || RTFLOAT80U_IS_DENORMAL(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
488 | AssertMsg(bType < 6 || RTFLOAT80U_IS_PSEUDO_DENORMAL(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
489 | }
|
---|
490 | else if (bType == 8 || bType == 9)
|
---|
491 | {
|
---|
492 | /* Pseudo NaN. */
|
---|
493 | if (bType & 1)
|
---|
494 | SafeR80FractionShift(&r80, r80.sj64.uExponent % 62);
|
---|
495 | else if (r80.sj64.uFraction == 0 && !r80.sj64.fInteger)
|
---|
496 | r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1);
|
---|
497 | r80.sj64.uExponent = 0x7fff;
|
---|
498 | if (r80.sj64.fInteger)
|
---|
499 | r80.sj64.uFraction |= RT_BIT_64(62);
|
---|
500 | else
|
---|
501 | r80.sj64.uFraction &= ~RT_BIT_64(62);
|
---|
502 | r80.sj64.fInteger = 0;
|
---|
503 | AssertMsg(RTFLOAT80U_IS_PSEUDO_NAN(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
504 | AssertMsg(RTFLOAT80U_IS_NAN(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
505 | Assert(RTFLOAT80U_IS_387_INVALID(&r80));
|
---|
506 | }
|
---|
507 | else if (bType == 10 || bType == 11 || bType == 12 || bType == 13)
|
---|
508 | {
|
---|
509 | /* Quiet and signalling NaNs. */
|
---|
510 | if (bType & 1)
|
---|
511 | SafeR80FractionShift(&r80, r80.sj64.uExponent % 62);
|
---|
512 | else if (r80.sj64.uFraction == 0)
|
---|
513 | r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1);
|
---|
514 | r80.sj64.uExponent = 0x7fff;
|
---|
515 | if (bType < 12)
|
---|
516 | r80.sj64.uFraction |= RT_BIT_64(62); /* quiet */
|
---|
517 | else
|
---|
518 | r80.sj64.uFraction &= ~RT_BIT_64(62); /* signaling */
|
---|
519 | r80.sj64.fInteger = 1;
|
---|
520 | AssertMsg(bType >= 12 || RTFLOAT80U_IS_QUIET_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
521 | AssertMsg(bType < 12 || RTFLOAT80U_IS_SIGNALLING_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
522 | AssertMsg(RTFLOAT80U_IS_SIGNALLING_NAN(&r80) || RTFLOAT80U_IS_QUIET_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
523 | AssertMsg(RTFLOAT80U_IS_QUIET_OR_SIGNALLING_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
524 | AssertMsg(RTFLOAT80U_IS_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
525 | }
|
---|
526 | else if (bType == 14 || bType == 15)
|
---|
527 | {
|
---|
528 | /* Unnormals */
|
---|
529 | if (bType & 1)
|
---|
530 | SafeR80FractionShift(&r80, RandU8() % 62);
|
---|
531 | r80.sj64.fInteger = 0;
|
---|
532 | if (r80.sj64.uExponent == RTFLOAT80U_EXP_MAX || r80.sj64.uExponent == 0)
|
---|
533 | r80.sj64.uExponent = (uint16_t)RTRandU32Ex(1, RTFLOAT80U_EXP_MAX - 1);
|
---|
534 | AssertMsg(RTFLOAT80U_IS_UNNORMAL(&r80), ("%s\n", FormatR80(&r80)));
|
---|
535 | Assert(RTFLOAT80U_IS_387_INVALID(&r80));
|
---|
536 | }
|
---|
537 | else if (bType < 26)
|
---|
538 | {
|
---|
539 | /* Make sure we have lots of normalized values. */
|
---|
540 | if (!fIntTarget)
|
---|
541 | {
|
---|
542 | const unsigned uMinExp = cTarget == 64 ? RTFLOAT80U_EXP_BIAS - RTFLOAT64U_EXP_BIAS
|
---|
543 | : cTarget == 32 ? RTFLOAT80U_EXP_BIAS - RTFLOAT32U_EXP_BIAS : 0;
|
---|
544 | const unsigned uMaxExp = cTarget == 64 ? uMinExp + RTFLOAT64U_EXP_MAX
|
---|
545 | : cTarget == 32 ? uMinExp + RTFLOAT32U_EXP_MAX : RTFLOAT80U_EXP_MAX;
|
---|
546 | r80.sj64.fInteger = 1;
|
---|
547 | if (r80.sj64.uExponent <= uMinExp)
|
---|
548 | r80.sj64.uExponent = uMinExp + 1;
|
---|
549 | else if (r80.sj64.uExponent >= uMaxExp)
|
---|
550 | r80.sj64.uExponent = uMaxExp - 1;
|
---|
551 |
|
---|
552 | if (bType == 16)
|
---|
553 | { /* All 1s is useful to testing rounding. Also try trigger special
|
---|
554 | behaviour by sometimes rounding out of range, while we're at it. */
|
---|
555 | r80.sj64.uFraction = RT_BIT_64(63) - 1;
|
---|
556 | uint8_t bExp = RandU8();
|
---|
557 | if ((bExp & 3) == 0)
|
---|
558 | r80.sj64.uExponent = uMaxExp - 1;
|
---|
559 | else if ((bExp & 3) == 1)
|
---|
560 | r80.sj64.uExponent = uMinExp + 1;
|
---|
561 | else if ((bExp & 3) == 2)
|
---|
562 | r80.sj64.uExponent = uMinExp - (bExp & 15); /* (small numbers are mapped to subnormal values) */
|
---|
563 | }
|
---|
564 | }
|
---|
565 | else
|
---|
566 | {
|
---|
567 | /* integer target: */
|
---|
568 | const unsigned uMinExp = RTFLOAT80U_EXP_BIAS;
|
---|
569 | const unsigned uMaxExp = RTFLOAT80U_EXP_BIAS + cTarget - 2;
|
---|
570 | r80.sj64.fInteger = 1;
|
---|
571 | if (r80.sj64.uExponent < uMinExp)
|
---|
572 | r80.sj64.uExponent = uMinExp;
|
---|
573 | else if (r80.sj64.uExponent > uMaxExp)
|
---|
574 | r80.sj64.uExponent = uMaxExp;
|
---|
575 |
|
---|
576 | if (bType == 16)
|
---|
577 | { /* All 1s is useful to testing rounding. Also try trigger special
|
---|
578 | behaviour by sometimes rounding out of range, while we're at it. */
|
---|
579 | r80.sj64.uFraction = RT_BIT_64(63) - 1;
|
---|
580 | uint8_t bExp = RandU8();
|
---|
581 | if ((bExp & 3) == 0)
|
---|
582 | r80.sj64.uExponent = uMaxExp;
|
---|
583 | else if ((bExp & 3) == 1)
|
---|
584 | r80.sj64.uFraction &= ~(RT_BIT_64(cTarget - 1 - r80.sj64.uExponent) - 1); /* no rounding */
|
---|
585 | }
|
---|
586 | }
|
---|
587 |
|
---|
588 | AssertMsg(RTFLOAT80U_IS_NORMAL(&r80), ("%s\n", FormatR80(&r80)));
|
---|
589 | }
|
---|
590 | return r80;
|
---|
591 | }
|
---|
592 |
|
---|
593 |
|
---|
594 | static RTFLOAT80U RandR80(unsigned cTarget = 80, bool fIntTarget = false)
|
---|
595 | {
|
---|
596 | /*
|
---|
597 | * Make it more likely that we get a good selection of special values.
|
---|
598 | */
|
---|
599 | return RandR80Ex(RandU8(), cTarget, fIntTarget);
|
---|
600 |
|
---|
601 | }
|
---|
602 |
|
---|
603 |
|
---|
604 | static RTFLOAT80U RandR80Src(uint32_t iTest, unsigned cTarget = 80, bool fIntTarget = false)
|
---|
605 | {
|
---|
606 | /* Make sure we cover all the basic types first before going for random selection: */
|
---|
607 | if (iTest <= 18)
|
---|
608 | return RandR80Ex(18 - iTest, cTarget, fIntTarget); /* Starting with 3 normals. */
|
---|
609 | return RandR80(cTarget, fIntTarget);
|
---|
610 | }
|
---|
611 |
|
---|
612 |
|
---|
613 | /**
|
---|
614 | * Helper for RandR80Src1 and RandR80Src2 that converts bType from a 0..11 range
|
---|
615 | * to a 0..17, covering all basic value types.
|
---|
616 | */
|
---|
617 | static uint8_t RandR80Src12RemapType(uint8_t bType)
|
---|
618 | {
|
---|
619 | switch (bType)
|
---|
620 | {
|
---|
621 | case 0: return 18; /* normal */
|
---|
622 | case 1: return 16; /* normal extreme rounding */
|
---|
623 | case 2: return 14; /* unnormal */
|
---|
624 | case 3: return 12; /* Signalling NaN */
|
---|
625 | case 4: return 10; /* Quiet NaN */
|
---|
626 | case 5: return 8; /* PseudoNaN */
|
---|
627 | case 6: return 6; /* Pseudo Denormal */
|
---|
628 | case 7: return 4; /* Denormal */
|
---|
629 | case 8: return 3; /* Indefinite */
|
---|
630 | case 9: return 2; /* Infinity */
|
---|
631 | case 10: return 1; /* Pseudo-Infinity */
|
---|
632 | case 11: return 0; /* Zero */
|
---|
633 | default: AssertFailedReturn(18);
|
---|
634 | }
|
---|
635 | }
|
---|
636 |
|
---|
637 |
|
---|
638 | /**
|
---|
639 | * This works in tandem with RandR80Src2 to make sure we cover all operand
|
---|
640 | * type mixes first before we venture into regular random testing.
|
---|
641 | *
|
---|
642 | * There are 11 basic variations, when we leave out the five odd ones using
|
---|
643 | * SafeR80FractionShift. Because of the special normalized value targetting at
|
---|
644 | * rounding, we make it an even 12. So 144 combinations for two operands.
|
---|
645 | */
|
---|
646 | static RTFLOAT80U RandR80Src1(uint32_t iTest, unsigned cPartnerBits = 80, bool fPartnerInt = false)
|
---|
647 | {
|
---|
648 | if (cPartnerBits == 80)
|
---|
649 | {
|
---|
650 | Assert(!fPartnerInt);
|
---|
651 | if (iTest < 12 * 12)
|
---|
652 | return RandR80Ex(RandR80Src12RemapType(iTest / 12));
|
---|
653 | }
|
---|
654 | else if ((cPartnerBits == 64 || cPartnerBits == 32) && !fPartnerInt)
|
---|
655 | {
|
---|
656 | if (iTest < 12 * 10)
|
---|
657 | return RandR80Ex(RandR80Src12RemapType(iTest / 10));
|
---|
658 | }
|
---|
659 | else if (iTest < 18 * 4 && fPartnerInt)
|
---|
660 | return RandR80Ex(iTest / 4);
|
---|
661 | return RandR80();
|
---|
662 | }
|
---|
663 |
|
---|
664 |
|
---|
665 | /** Partner to RandR80Src1. */
|
---|
666 | static RTFLOAT80U RandR80Src2(uint32_t iTest)
|
---|
667 | {
|
---|
668 | if (iTest < 12 * 12)
|
---|
669 | return RandR80Ex(RandR80Src12RemapType(iTest % 12));
|
---|
670 | return RandR80();
|
---|
671 | }
|
---|
672 |
|
---|
673 |
|
---|
674 | static void SafeR64FractionShift(PRTFLOAT64U pr64, uint8_t cShift)
|
---|
675 | {
|
---|
676 | if (pr64->s64.uFraction >= RT_BIT_64(cShift))
|
---|
677 | pr64->s64.uFraction >>= cShift;
|
---|
678 | else
|
---|
679 | pr64->s64.uFraction = (cShift % 19) + 1;
|
---|
680 | }
|
---|
681 |
|
---|
682 |
|
---|
683 | static RTFLOAT64U RandR64Ex(uint8_t bType)
|
---|
684 | {
|
---|
685 | RTFLOAT64U r64;
|
---|
686 | r64.u = RandU64();
|
---|
687 |
|
---|
688 | /*
|
---|
689 | * Make it more likely that we get a good selection of special values.
|
---|
690 | * On average 6 out of 16 calls should return a special value.
|
---|
691 | */
|
---|
692 | bType &= 0xf;
|
---|
693 | if (bType == 0 || bType == 1)
|
---|
694 | {
|
---|
695 | /* 0 or Infinity. We only keep fSign here. */
|
---|
696 | r64.s.uExponent = bType == 0 ? 0 : 0x7ff;
|
---|
697 | r64.s.uFractionHigh = 0;
|
---|
698 | r64.s.uFractionLow = 0;
|
---|
699 | AssertMsg(bType != 0 || RTFLOAT64U_IS_ZERO(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
700 | AssertMsg(bType != 1 || RTFLOAT64U_IS_INF(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
701 | }
|
---|
702 | else if (bType == 2 || bType == 3)
|
---|
703 | {
|
---|
704 | /* Subnormals */
|
---|
705 | if (bType == 3)
|
---|
706 | SafeR64FractionShift(&r64, r64.s64.uExponent % 51);
|
---|
707 | else if (r64.s64.uFraction == 0)
|
---|
708 | r64.s64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1);
|
---|
709 | r64.s64.uExponent = 0;
|
---|
710 | AssertMsg(RTFLOAT64U_IS_SUBNORMAL(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
711 | }
|
---|
712 | else if (bType == 4 || bType == 5 || bType == 6 || bType == 7)
|
---|
713 | {
|
---|
714 | /* NaNs */
|
---|
715 | if (bType & 1)
|
---|
716 | SafeR64FractionShift(&r64, r64.s64.uExponent % 51);
|
---|
717 | else if (r64.s64.uFraction == 0)
|
---|
718 | r64.s64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1);
|
---|
719 | r64.s64.uExponent = 0x7ff;
|
---|
720 | if (bType < 6)
|
---|
721 | r64.s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); /* quiet */
|
---|
722 | else
|
---|
723 | r64.s64.uFraction &= ~RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); /* signalling */
|
---|
724 | AssertMsg(bType >= 6 || RTFLOAT64U_IS_QUIET_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
725 | AssertMsg(bType < 6 || RTFLOAT64U_IS_SIGNALLING_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
726 | AssertMsg(RTFLOAT64U_IS_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
727 | }
|
---|
728 | else if (bType < 12)
|
---|
729 | {
|
---|
730 | /* Make sure we have lots of normalized values. */
|
---|
731 | if (r64.s.uExponent == 0)
|
---|
732 | r64.s.uExponent = 1;
|
---|
733 | else if (r64.s.uExponent == 0x7ff)
|
---|
734 | r64.s.uExponent = 0x7fe;
|
---|
735 | AssertMsg(RTFLOAT64U_IS_NORMAL(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
736 | }
|
---|
737 | return r64;
|
---|
738 | }
|
---|
739 |
|
---|
740 |
|
---|
741 | static RTFLOAT64U RandR64Src(uint32_t iTest)
|
---|
742 | {
|
---|
743 | if (iTest < 16)
|
---|
744 | return RandR64Ex(iTest);
|
---|
745 | return RandR64Ex(RandU8());
|
---|
746 | }
|
---|
747 |
|
---|
748 |
|
---|
749 | /** Pairing with a 80-bit floating point arg. */
|
---|
750 | static RTFLOAT64U RandR64Src2(uint32_t iTest)
|
---|
751 | {
|
---|
752 | if (iTest < 12 * 10)
|
---|
753 | return RandR64Ex(9 - iTest % 10); /* start with normal values */
|
---|
754 | return RandR64Ex(RandU8());
|
---|
755 | }
|
---|
756 |
|
---|
757 |
|
---|
758 | static void SafeR32FractionShift(PRTFLOAT32U pr32, uint8_t cShift)
|
---|
759 | {
|
---|
760 | if (pr32->s.uFraction >= RT_BIT_32(cShift))
|
---|
761 | pr32->s.uFraction >>= cShift;
|
---|
762 | else
|
---|
763 | pr32->s.uFraction = (cShift % 19) + 1;
|
---|
764 | }
|
---|
765 |
|
---|
766 |
|
---|
767 | static RTFLOAT32U RandR32Ex(uint8_t bType)
|
---|
768 | {
|
---|
769 | RTFLOAT32U r32;
|
---|
770 | r32.u = RandU32();
|
---|
771 |
|
---|
772 | /*
|
---|
773 | * Make it more likely that we get a good selection of special values.
|
---|
774 | * On average 6 out of 16 calls should return a special value.
|
---|
775 | */
|
---|
776 | bType &= 0xf;
|
---|
777 | if (bType == 0 || bType == 1)
|
---|
778 | {
|
---|
779 | /* 0 or Infinity. We only keep fSign here. */
|
---|
780 | r32.s.uExponent = bType == 0 ? 0 : 0xff;
|
---|
781 | r32.s.uFraction = 0;
|
---|
782 | AssertMsg(bType != 0 || RTFLOAT32U_IS_ZERO(&r32), ("%s\n", FormatR32(&r32)));
|
---|
783 | AssertMsg(bType != 1 || RTFLOAT32U_IS_INF(&r32), ("%s\n", FormatR32(&r32)));
|
---|
784 | }
|
---|
785 | else if (bType == 2 || bType == 3)
|
---|
786 | {
|
---|
787 | /* Subnormals */
|
---|
788 | if (bType == 3)
|
---|
789 | SafeR32FractionShift(&r32, r32.s.uExponent % 22);
|
---|
790 | else if (r32.s.uFraction == 0)
|
---|
791 | r32.s.uFraction = RTRandU32Ex(1, RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1);
|
---|
792 | r32.s.uExponent = 0;
|
---|
793 | AssertMsg(RTFLOAT32U_IS_SUBNORMAL(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
794 | }
|
---|
795 | else if (bType == 4 || bType == 5 || bType == 6 || bType == 7)
|
---|
796 | {
|
---|
797 | /* NaNs */
|
---|
798 | if (bType & 1)
|
---|
799 | SafeR32FractionShift(&r32, r32.s.uExponent % 22);
|
---|
800 | else if (r32.s.uFraction == 0)
|
---|
801 | r32.s.uFraction = RTRandU32Ex(1, RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1);
|
---|
802 | r32.s.uExponent = 0xff;
|
---|
803 | if (bType < 6)
|
---|
804 | r32.s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); /* quiet */
|
---|
805 | else
|
---|
806 | r32.s.uFraction &= ~RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); /* signalling */
|
---|
807 | AssertMsg(bType >= 6 || RTFLOAT32U_IS_QUIET_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
808 | AssertMsg(bType < 6 || RTFLOAT32U_IS_SIGNALLING_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
809 | AssertMsg(RTFLOAT32U_IS_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
810 | }
|
---|
811 | else if (bType < 12)
|
---|
812 | {
|
---|
813 | /* Make sure we have lots of normalized values. */
|
---|
814 | if (r32.s.uExponent == 0)
|
---|
815 | r32.s.uExponent = 1;
|
---|
816 | else if (r32.s.uExponent == 0xff)
|
---|
817 | r32.s.uExponent = 0xfe;
|
---|
818 | AssertMsg(RTFLOAT32U_IS_NORMAL(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
819 | }
|
---|
820 | return r32;
|
---|
821 | }
|
---|
822 |
|
---|
823 |
|
---|
824 | static RTFLOAT32U RandR32Src(uint32_t iTest)
|
---|
825 | {
|
---|
826 | if (iTest < 16)
|
---|
827 | return RandR32Ex(iTest);
|
---|
828 | return RandR32Ex(RandU8());
|
---|
829 | }
|
---|
830 |
|
---|
831 |
|
---|
832 | /** Pairing with a 80-bit floating point arg. */
|
---|
833 | static RTFLOAT32U RandR32Src2(uint32_t iTest)
|
---|
834 | {
|
---|
835 | if (iTest < 12 * 10)
|
---|
836 | return RandR32Ex(9 - iTest % 10); /* start with normal values */
|
---|
837 | return RandR32Ex(RandU8());
|
---|
838 | }
|
---|
839 |
|
---|
840 |
|
---|
841 | static RTPBCD80U RandD80Src(uint32_t iTest)
|
---|
842 | {
|
---|
843 | if (iTest < 3)
|
---|
844 | {
|
---|
845 | RTPBCD80U d80Zero = RTPBCD80U_INIT_ZERO(!(iTest & 1));
|
---|
846 | return d80Zero;
|
---|
847 | }
|
---|
848 | if (iTest < 5)
|
---|
849 | {
|
---|
850 | RTPBCD80U d80Ind = RTPBCD80U_INIT_INDEFINITE();
|
---|
851 | return d80Ind;
|
---|
852 | }
|
---|
853 |
|
---|
854 | RTPBCD80U d80;
|
---|
855 | uint8_t b = RandU8();
|
---|
856 | d80.s.fSign = b & 1;
|
---|
857 |
|
---|
858 | if ((iTest & 7) >= 6)
|
---|
859 | {
|
---|
860 | /* Illegal */
|
---|
861 | d80.s.uPad = (iTest & 7) == 7 ? b >> 1 : 0;
|
---|
862 | for (size_t iPair = 0; iPair < RT_ELEMENTS(d80.s.abPairs); iPair++)
|
---|
863 | d80.s.abPairs[iPair] = RandU8();
|
---|
864 | }
|
---|
865 | else
|
---|
866 | {
|
---|
867 | /* Normal */
|
---|
868 | d80.s.uPad = 0;
|
---|
869 | for (size_t iPair = 0; iPair < RT_ELEMENTS(d80.s.abPairs); iPair++)
|
---|
870 | {
|
---|
871 | uint8_t const uLo = (uint8_t)RTRandU32Ex(0, 9);
|
---|
872 | uint8_t const uHi = (uint8_t)RTRandU32Ex(0, 9);
|
---|
873 | d80.s.abPairs[iPair] = RTPBCD80U_MAKE_PAIR(uHi, uLo);
|
---|
874 | }
|
---|
875 | }
|
---|
876 | return d80;
|
---|
877 | }
|
---|
878 |
|
---|
879 | # if 0 /* unused */
|
---|
880 |
|
---|
881 | static const char *GenFormatR80(PCRTFLOAT80U plrd)
|
---|
882 | {
|
---|
883 | if (RTFLOAT80U_IS_ZERO(plrd))
|
---|
884 | return plrd->s.fSign ? "RTFLOAT80U_INIT_ZERO(1)" : "RTFLOAT80U_INIT_ZERO(0)";
|
---|
885 | if (RTFLOAT80U_IS_INF(plrd))
|
---|
886 | return plrd->s.fSign ? "RTFLOAT80U_INIT_INF(1)" : "RTFLOAT80U_INIT_INF(0)";
|
---|
887 | if (RTFLOAT80U_IS_INDEFINITE(plrd))
|
---|
888 | return plrd->s.fSign ? "RTFLOAT80U_INIT_IND(1)" : "RTFLOAT80U_INIT_IND(0)";
|
---|
889 | if (RTFLOAT80U_IS_QUIET_NAN(plrd) && (plrd->s.uMantissa & (RT_BIT_64(62) - 1)) == 1)
|
---|
890 | return plrd->s.fSign ? "RTFLOAT80U_INIT_QNAN(1)" : "RTFLOAT80U_INIT_QNAN(0)";
|
---|
891 | if (RTFLOAT80U_IS_SIGNALLING_NAN(plrd) && (plrd->s.uMantissa & (RT_BIT_64(62) - 1)) == 1)
|
---|
892 | return plrd->s.fSign ? "RTFLOAT80U_INIT_SNAN(1)" : "RTFLOAT80U_INIT_SNAN(0)";
|
---|
893 |
|
---|
894 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
895 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT80U_INIT_C(%d,%#RX64,%u)",
|
---|
896 | plrd->s.fSign, plrd->s.uMantissa, plrd->s.uExponent);
|
---|
897 | return pszBuf;
|
---|
898 | }
|
---|
899 |
|
---|
900 | static const char *GenFormatR64(PCRTFLOAT64U prd)
|
---|
901 | {
|
---|
902 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
903 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT64U_INIT_C(%d,%#RX64,%u)",
|
---|
904 | prd->s.fSign, RT_MAKE_U64(prd->s.uFractionLow, prd->s.uFractionHigh), prd->s.uExponent);
|
---|
905 | return pszBuf;
|
---|
906 | }
|
---|
907 |
|
---|
908 |
|
---|
909 | static const char *GenFormatR32(PCRTFLOAT32U pr)
|
---|
910 | {
|
---|
911 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
912 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT32U_INIT_C(%d,%#RX32,%u)", pr->s.fSign, pr->s.uFraction, pr->s.uExponent);
|
---|
913 | return pszBuf;
|
---|
914 | }
|
---|
915 |
|
---|
916 |
|
---|
917 | static const char *GenFormatD80(PCRTPBCD80U pd80)
|
---|
918 | {
|
---|
919 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
920 | size_t off;
|
---|
921 | if (pd80->s.uPad == 0)
|
---|
922 | off = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTPBCD80U_INIT_C(%d", pd80->s.fSign);
|
---|
923 | else
|
---|
924 | off = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTPBCD80U_INIT_EX_C(%#x,%d", pd80->s.uPad, pd80->s.fSign);
|
---|
925 | size_t iPair = RT_ELEMENTS(pd80->s.abPairs);
|
---|
926 | while (iPair-- > 0)
|
---|
927 | off += RTStrPrintf(&pszBuf[off], sizeof(g_aszBuf[0]) - off, ",%d,%d",
|
---|
928 | RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair]),
|
---|
929 | RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair]));
|
---|
930 | pszBuf[off++] = ')';
|
---|
931 | pszBuf[off++] = '\0';
|
---|
932 | return pszBuf;
|
---|
933 | }
|
---|
934 |
|
---|
935 |
|
---|
936 | static const char *GenFormatI64(int64_t i64)
|
---|
937 | {
|
---|
938 | if (i64 == INT64_MIN) /* This one is problematic */
|
---|
939 | return "INT64_MIN";
|
---|
940 | if (i64 == INT64_MAX)
|
---|
941 | return "INT64_MAX";
|
---|
942 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
943 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT64_C(%RI64)", i64);
|
---|
944 | return pszBuf;
|
---|
945 | }
|
---|
946 |
|
---|
947 | # if 0 /* unused */
|
---|
948 | static const char *GenFormatI64(int64_t const *pi64)
|
---|
949 | {
|
---|
950 | return GenFormatI64(*pi64);
|
---|
951 | }
|
---|
952 | # endif
|
---|
953 |
|
---|
954 | static const char *GenFormatI32(int32_t i32)
|
---|
955 | {
|
---|
956 | if (i32 == INT32_MIN) /* This one is problematic */
|
---|
957 | return "INT32_MIN";
|
---|
958 | if (i32 == INT32_MAX)
|
---|
959 | return "INT32_MAX";
|
---|
960 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
961 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT32_C(%RI32)", i32);
|
---|
962 | return pszBuf;
|
---|
963 | }
|
---|
964 |
|
---|
965 |
|
---|
966 | const char *GenFormatI32(int32_t const *pi32)
|
---|
967 | {
|
---|
968 | return GenFormatI32(*pi32);
|
---|
969 | }
|
---|
970 |
|
---|
971 |
|
---|
972 | const char *GenFormatI16(int16_t i16)
|
---|
973 | {
|
---|
974 | if (i16 == INT16_MIN) /* This one is problematic */
|
---|
975 | return "INT16_MIN";
|
---|
976 | if (i16 == INT16_MAX)
|
---|
977 | return "INT16_MAX";
|
---|
978 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
979 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT16_C(%RI16)", i16);
|
---|
980 | return pszBuf;
|
---|
981 | }
|
---|
982 |
|
---|
983 |
|
---|
984 | const char *GenFormatI16(int16_t const *pi16)
|
---|
985 | {
|
---|
986 | return GenFormatI16(*pi16);
|
---|
987 | }
|
---|
988 |
|
---|
989 |
|
---|
990 | static void GenerateHeader(PRTSTREAM pOut, const char *pszCpuDesc, const char *pszCpuType)
|
---|
991 | {
|
---|
992 | /* We want to tag the generated source code with the revision that produced it. */
|
---|
993 | static char s_szRev[] = "$Revision: 104208 $";
|
---|
994 | const char *pszRev = RTStrStripL(strchr(s_szRev, ':') + 1);
|
---|
995 | size_t cchRev = 0;
|
---|
996 | while (RT_C_IS_DIGIT(pszRev[cchRev]))
|
---|
997 | cchRev++;
|
---|
998 |
|
---|
999 | RTStrmPrintf(pOut,
|
---|
1000 | "/* $Id: tstIEMAImpl.cpp 104208 2024-04-05 21:17:41Z vboxsync $ */\n"
|
---|
1001 | "/** @file\n"
|
---|
1002 | " * IEM Assembly Instruction Helper Testcase Data%s%s - r%.*s on %s.\n"
|
---|
1003 | " */\n"
|
---|
1004 | "\n"
|
---|
1005 | "/*\n"
|
---|
1006 | " * Copyright (C) 2022-" VBOX_C_YEAR " Oracle and/or its affiliates.\n"
|
---|
1007 | " *\n"
|
---|
1008 | " * This file is part of VirtualBox base platform packages, as\n"
|
---|
1009 | " * available from https://www.virtualbox.org.\n"
|
---|
1010 | " *\n"
|
---|
1011 | " * This program is free software; you can redistribute it and/or\n"
|
---|
1012 | " * modify it under the terms of the GNU General Public License\n"
|
---|
1013 | " * as published by the Free Software Foundation, in version 3 of the\n"
|
---|
1014 | " * License.\n"
|
---|
1015 | " *\n"
|
---|
1016 | " * This program is distributed in the hope that it will be useful, but\n"
|
---|
1017 | " * WITHOUT ANY WARRANTY; without even the implied warranty of\n"
|
---|
1018 | " * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\n"
|
---|
1019 | " * General Public License for more details.\n"
|
---|
1020 | " *\n"
|
---|
1021 | " * You should have received a copy of the GNU General Public License\n"
|
---|
1022 | " * along with this program; if not, see <https://www.gnu.org/licenses>.\n"
|
---|
1023 | " *\n"
|
---|
1024 | " * SPDX-License-Identifier: GPL-3.0-only\n"
|
---|
1025 | " */\n"
|
---|
1026 | "\n"
|
---|
1027 | "#include \"tstIEMAImpl.h\"\n"
|
---|
1028 | "\n"
|
---|
1029 | ,
|
---|
1030 | pszCpuType ? " " : "", pszCpuType ? pszCpuType : "", cchRev, pszRev, pszCpuDesc);
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 |
|
---|
1034 | static PRTSTREAM GenerateOpenWithHdr(const char *pszFilename, const char *pszCpuDesc, const char *pszCpuType)
|
---|
1035 | {
|
---|
1036 | PRTSTREAM pOut = NULL;
|
---|
1037 | int rc = RTStrmOpen(pszFilename, "w", &pOut);
|
---|
1038 | if (RT_SUCCESS(rc))
|
---|
1039 | {
|
---|
1040 | GenerateHeader(pOut, pszCpuDesc, pszCpuType);
|
---|
1041 | return pOut;
|
---|
1042 | }
|
---|
1043 | RTMsgError("Failed to open %s for writing: %Rrc", pszFilename, rc);
|
---|
1044 | return NULL;
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 |
|
---|
1048 | static RTEXITCODE GenerateFooterAndClose(PRTSTREAM pOut, const char *pszFilename, RTEXITCODE rcExit)
|
---|
1049 | {
|
---|
1050 | RTStrmPrintf(pOut,
|
---|
1051 | "\n"
|
---|
1052 | "/* end of file */\n");
|
---|
1053 | int rc = RTStrmClose(pOut);
|
---|
1054 | if (RT_SUCCESS(rc))
|
---|
1055 | return rcExit;
|
---|
1056 | return RTMsgErrorExitFailure("RTStrmClose failed on %s: %Rrc", pszFilename, rc);
|
---|
1057 | }
|
---|
1058 |
|
---|
1059 |
|
---|
1060 | static void GenerateArrayStart(PRTSTREAM pOut, const char *pszName, const char *pszType)
|
---|
1061 | {
|
---|
1062 | RTStrmPrintf(pOut, "%s const g_aTests_%s[] =\n{\n", pszType, pszName);
|
---|
1063 | }
|
---|
1064 |
|
---|
1065 |
|
---|
1066 | static void GenerateArrayEnd(PRTSTREAM pOut, const char *pszName)
|
---|
1067 | {
|
---|
1068 | RTStrmPrintf(pOut,
|
---|
1069 | "};\n"
|
---|
1070 | "uint32_t const g_cTests_%s = RT_ELEMENTS(g_aTests_%s);\n"
|
---|
1071 | "\n",
|
---|
1072 | pszName, pszName);
|
---|
1073 | }
|
---|
1074 |
|
---|
1075 | # endif /* unused */
|
---|
1076 |
|
---|
1077 | static void GenerateBinaryWrite(PIEMBINARYOUTPUT pBinOut, const void *pvData, size_t cbData)
|
---|
1078 | {
|
---|
1079 | pBinOut->cbWritten += cbData; /* ignore errors - makes entry calculation simpler */
|
---|
1080 | if (RT_SUCCESS_NP(pBinOut->rcWrite))
|
---|
1081 | {
|
---|
1082 | pBinOut->rcWrite = RTVfsIoStrmWrite(pBinOut->hVfsUncompressed, pvData, cbData, true /*fBlocking*/, NULL);
|
---|
1083 | if (RT_SUCCESS(pBinOut->rcWrite))
|
---|
1084 | return;
|
---|
1085 | RTMsgError("Error writing '%s': %Rrc", pBinOut->szFilename, pBinOut->rcWrite);
|
---|
1086 | }
|
---|
1087 | }
|
---|
1088 |
|
---|
1089 | static bool GenerateBinaryOpen(PIEMBINARYOUTPUT pBinOut, const char *pszFilenameFmt, const char *pszName,
|
---|
1090 | IEMTESTENTRYINFO const *pInfoToPreserve, uint32_t cbEntry)
|
---|
1091 | {
|
---|
1092 | pBinOut->cbEntry = cbEntry;
|
---|
1093 | pBinOut->cbWritten = 0;
|
---|
1094 | pBinOut->hVfsFile = NIL_RTVFSFILE;
|
---|
1095 | pBinOut->hVfsUncompressed = NIL_RTVFSIOSTREAM;
|
---|
1096 | if (pszFilenameFmt)
|
---|
1097 | {
|
---|
1098 | pBinOut->fNull = false;
|
---|
1099 | if (RTStrPrintf2(pBinOut->szFilename, sizeof(pBinOut->szFilename), pszFilenameFmt, pszName) > 0)
|
---|
1100 | {
|
---|
1101 | RTMsgInfo("GenerateBinaryOpen: %s...\n", pBinOut->szFilename);
|
---|
1102 | pBinOut->rcWrite = RTVfsFileOpenNormal(pBinOut->szFilename,
|
---|
1103 | RTFILE_O_CREATE_REPLACE | RTFILE_O_WRITE | RTFILE_O_DENY_READWRITE,
|
---|
1104 | &pBinOut->hVfsFile);
|
---|
1105 | if (RT_SUCCESS(pBinOut->rcWrite))
|
---|
1106 | {
|
---|
1107 | RTVFSIOSTREAM hVfsIoFile = RTVfsFileToIoStream(pBinOut->hVfsFile);
|
---|
1108 | if (hVfsIoFile != NIL_RTVFSIOSTREAM)
|
---|
1109 | {
|
---|
1110 | pBinOut->rcWrite = RTZipGzipCompressIoStream(hVfsIoFile, 0 /*fFlags*/, 9, &pBinOut->hVfsUncompressed);
|
---|
1111 | RTVfsIoStrmRelease(hVfsIoFile);
|
---|
1112 | if (RT_SUCCESS(pBinOut->rcWrite))
|
---|
1113 | {
|
---|
1114 | pBinOut->rcWrite = VINF_SUCCESS;
|
---|
1115 | pBinOut->fWroteHeader = false;
|
---|
1116 |
|
---|
1117 | /* Write the header if applicable. */
|
---|
1118 | if ( !pInfoToPreserve
|
---|
1119 | || (pInfoToPreserve->uSvnRev != 0 && *pInfoToPreserve->pszCpuDesc))
|
---|
1120 | {
|
---|
1121 | IEMBINARYHEADER Hdr;
|
---|
1122 | RT_ZERO(Hdr);
|
---|
1123 | memcpy(Hdr.szMagic, IEMBINARYHEADER_MAGIC, sizeof(IEMBINARYHEADER_MAGIC));
|
---|
1124 | Hdr.cbEntry = cbEntry;
|
---|
1125 | Hdr.uSvnRev = pInfoToPreserve ? pInfoToPreserve->uSvnRev : g_uSvnRev;
|
---|
1126 | RTStrCopy(Hdr.szCpuDesc, sizeof(Hdr.szCpuDesc),
|
---|
1127 | pInfoToPreserve ? pInfoToPreserve->pszCpuDesc : g_szCpuDesc);
|
---|
1128 | GenerateBinaryWrite(pBinOut, &Hdr, sizeof(Hdr));
|
---|
1129 | pBinOut->fWroteHeader = true;
|
---|
1130 | }
|
---|
1131 |
|
---|
1132 | return true;
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 | RTMsgError("RTZipGzipCompressIoStream: %Rrc", pBinOut->rcWrite);
|
---|
1136 | }
|
---|
1137 | else
|
---|
1138 | {
|
---|
1139 | RTMsgError("RTVfsFileToIoStream failed!");
|
---|
1140 | pBinOut->rcWrite = VERR_VFS_CHAIN_CAST_FAILED;
|
---|
1141 | }
|
---|
1142 | RTVfsFileRelease(pBinOut->hVfsFile);
|
---|
1143 | RTFileDelete(pBinOut->szFilename);
|
---|
1144 | }
|
---|
1145 | else
|
---|
1146 | RTMsgError("Failed to open '%s' for writing: %Rrc", pBinOut->szFilename, pBinOut->rcWrite);
|
---|
1147 | }
|
---|
1148 | else
|
---|
1149 | {
|
---|
1150 | RTMsgError("filename too long: %s + %s", pszFilenameFmt, pszName);
|
---|
1151 | pBinOut->rcWrite = VERR_BUFFER_OVERFLOW;
|
---|
1152 | }
|
---|
1153 | return false;
|
---|
1154 | }
|
---|
1155 | RTMsgInfo("GenerateBinaryOpen: %s -> /dev/null\n", pszName);
|
---|
1156 | pBinOut->rcWrite = VERR_IGNORED;
|
---|
1157 | pBinOut->fNull = true;
|
---|
1158 | pBinOut->fWroteHeader = false;
|
---|
1159 | pBinOut->szFilename[0] = '\0';
|
---|
1160 | return true;
|
---|
1161 | }
|
---|
1162 |
|
---|
1163 | # define GENERATE_BINARY_OPEN(a_pBinOut, a_papszNameFmts, a_Entry) \
|
---|
1164 | GenerateBinaryOpen((a_pBinOut), a_papszNameFmts[(a_Entry).idxCpuEflFlavour], (a_Entry).pszName, \
|
---|
1165 | NULL /*pInfo*/, sizeof((a_Entry).paTests[0]))
|
---|
1166 |
|
---|
1167 | static bool GenerateBinaryClose(PIEMBINARYOUTPUT pBinOut)
|
---|
1168 | {
|
---|
1169 | if (!pBinOut->fNull)
|
---|
1170 | {
|
---|
1171 | /* Write footer if we've written a header. */
|
---|
1172 | if (pBinOut->fWroteHeader)
|
---|
1173 | {
|
---|
1174 | IEMBINARYFOOTER Ftr;
|
---|
1175 | RT_ZERO(Ftr);
|
---|
1176 | memcpy(Ftr.szMagic, IEMBINARYFOOTER_MAGIC, sizeof(IEMBINARYFOOTER_MAGIC));
|
---|
1177 | Ftr.cbEntry = pBinOut->cbEntry;
|
---|
1178 | Ftr.cEntries = (uint32_t)((pBinOut->cbWritten - sizeof(IEMBINARYHEADER)) / pBinOut->cbEntry);
|
---|
1179 | Assert(Ftr.cEntries * pBinOut->cbEntry + sizeof(IEMBINARYHEADER) == pBinOut->cbWritten);
|
---|
1180 | GenerateBinaryWrite(pBinOut, &Ftr, sizeof(Ftr));
|
---|
1181 | }
|
---|
1182 |
|
---|
1183 | /* This is rather jovial about rcWrite. */
|
---|
1184 | int const rc1 = RTVfsIoStrmFlush(pBinOut->hVfsUncompressed);
|
---|
1185 | RTVfsIoStrmRelease(pBinOut->hVfsUncompressed);
|
---|
1186 | pBinOut->hVfsUncompressed = NIL_RTVFSIOSTREAM;
|
---|
1187 | if (RT_FAILURE(rc1))
|
---|
1188 | RTMsgError("Error flushing '%s' (uncompressed stream): %Rrc", pBinOut->szFilename, rc1);
|
---|
1189 |
|
---|
1190 | int const rc2 = RTVfsFileFlush(pBinOut->hVfsFile);
|
---|
1191 | RTVfsFileRelease(pBinOut->hVfsFile);
|
---|
1192 | pBinOut->hVfsFile = NIL_RTVFSFILE;
|
---|
1193 | if (RT_FAILURE(rc2))
|
---|
1194 | RTMsgError("Error flushing '%s' (compressed file): %Rrc", pBinOut->szFilename, rc2);
|
---|
1195 |
|
---|
1196 | return RT_SUCCESS(rc2) && RT_SUCCESS(rc1) && RT_SUCCESS(pBinOut->rcWrite);
|
---|
1197 | }
|
---|
1198 | return true;
|
---|
1199 | }
|
---|
1200 |
|
---|
1201 | /* Helper for DumpAll. */
|
---|
1202 | # define DUMP_ALL_FN(a_FnBaseName, a_aSubTests) \
|
---|
1203 | static RTEXITCODE a_FnBaseName ## DumpAll(const char * const * papszNameFmts) \
|
---|
1204 | { \
|
---|
1205 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
1206 | { \
|
---|
1207 | AssertReturn(DECOMPRESS_TESTS(a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
1208 | IEMBINARYOUTPUT BinOut; \
|
---|
1209 | AssertReturn(GenerateBinaryOpen(&BinOut, papszNameFmts[a_aSubTests[iFn].idxCpuEflFlavour], \
|
---|
1210 | a_aSubTests[iFn].pszName, &a_aSubTests[iFn].Info, \
|
---|
1211 | sizeof(a_aSubTests[iFn].paTests[0])), \
|
---|
1212 | RTEXITCODE_FAILURE); \
|
---|
1213 | GenerateBinaryWrite(&BinOut, a_aSubTests[iFn].paTests, a_aSubTests[iFn].cTests); \
|
---|
1214 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
1215 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
1216 | } \
|
---|
1217 | return RTEXITCODE_SUCCESS; \
|
---|
1218 | }
|
---|
1219 | #endif /* TSTIEMAIMPL_WITH_GENERATOR */
|
---|
1220 |
|
---|
1221 |
|
---|
1222 | /*
|
---|
1223 | * Test helpers.
|
---|
1224 | */
|
---|
1225 | static bool IsTestEnabled(const char *pszName)
|
---|
1226 | {
|
---|
1227 | /* Process excludes first: */
|
---|
1228 | uint32_t i = g_cExcludeTestPatterns;
|
---|
1229 | while (i-- > 0)
|
---|
1230 | if (RTStrSimplePatternMultiMatch(g_apszExcludeTestPatterns[i], RTSTR_MAX, pszName, RTSTR_MAX, NULL))
|
---|
1231 | return false;
|
---|
1232 |
|
---|
1233 | /* If no include patterns, everything is included: */
|
---|
1234 | i = g_cIncludeTestPatterns;
|
---|
1235 | if (!i)
|
---|
1236 | return true;
|
---|
1237 |
|
---|
1238 | /* Otherwise only tests in the include patters gets tested: */
|
---|
1239 | while (i-- > 0)
|
---|
1240 | if (RTStrSimplePatternMultiMatch(g_apszIncludeTestPatterns[i], RTSTR_MAX, pszName, RTSTR_MAX, NULL))
|
---|
1241 | return true;
|
---|
1242 |
|
---|
1243 | return false;
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 |
|
---|
1247 | static bool SubTestAndCheckIfEnabled(const char *pszName)
|
---|
1248 | {
|
---|
1249 | bool const fEnabled = IsTestEnabled(pszName);
|
---|
1250 | if (g_fVerboseSkipping || fEnabled)
|
---|
1251 | {
|
---|
1252 | RTTestSub(g_hTest, pszName);
|
---|
1253 | if (fEnabled)
|
---|
1254 | return true;
|
---|
1255 | RTTestSkipped(g_hTest, g_cVerbosity > 0 ? "excluded" : NULL);
|
---|
1256 | }
|
---|
1257 | return false;
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 |
|
---|
1261 | /** Decompresses test data before use as required. */
|
---|
1262 | static int DecompressBinaryTest(void const *pvCompressed, uint32_t cbCompressed, size_t cbEntry, const char *pszWhat,
|
---|
1263 | void **ppvTests, uint32_t *pcTests, IEMTESTENTRYINFO *pInfo)
|
---|
1264 | {
|
---|
1265 | /* Don't do it again. */
|
---|
1266 | if (pInfo->pvUncompressed && *ppvTests)
|
---|
1267 | return VINF_SUCCESS;
|
---|
1268 |
|
---|
1269 | /* Open a memory stream for the compressed binary data. */
|
---|
1270 | RTVFSIOSTREAM hVfsIos = NIL_RTVFSIOSTREAM;
|
---|
1271 | int rc = RTVfsIoStrmFromBuffer(RTFILE_O_READ, pvCompressed, cbCompressed, &hVfsIos);
|
---|
1272 | RTTESTI_CHECK_RC_OK_RET(rc, rc);
|
---|
1273 |
|
---|
1274 | /* Open a decompressed stream for it. */
|
---|
1275 | RTVFSIOSTREAM hVfsIosDecomp = NIL_RTVFSIOSTREAM;
|
---|
1276 | rc = RTZipGzipDecompressIoStream(hVfsIos, RTZIPGZIPDECOMP_F_ALLOW_ZLIB_HDR, &hVfsIosDecomp);
|
---|
1277 | RTTESTI_CHECK_RC_OK(rc);
|
---|
1278 | if (RT_SUCCESS(rc))
|
---|
1279 | {
|
---|
1280 | /* Initial output buffer allocation. */
|
---|
1281 | size_t cbDecompressedAlloc = cbCompressed <= _16M ? (size_t)cbCompressed * 16 : (size_t)cbCompressed * 4;
|
---|
1282 | uint8_t *pbDecompressed = (uint8_t *)RTMemAllocZ(cbDecompressedAlloc);
|
---|
1283 | if (pbDecompressed)
|
---|
1284 | {
|
---|
1285 | size_t off = 0;
|
---|
1286 | for (;;)
|
---|
1287 | {
|
---|
1288 | size_t cbRead = 0;
|
---|
1289 | rc = RTVfsIoStrmRead(hVfsIosDecomp, &pbDecompressed[off], cbDecompressedAlloc - off, true /*fBlocking*/, &cbRead);
|
---|
1290 | if (RT_FAILURE(rc))
|
---|
1291 | break;
|
---|
1292 | if (rc == VINF_EOF && cbRead == 0)
|
---|
1293 | break;
|
---|
1294 | off += cbRead;
|
---|
1295 |
|
---|
1296 | if (cbDecompressedAlloc < off + 256)
|
---|
1297 | {
|
---|
1298 | size_t const cbNew = cbDecompressedAlloc < _128M ? cbDecompressedAlloc * 2 : cbDecompressedAlloc + _32M;
|
---|
1299 | void * const pvNew = RTMemRealloc(pbDecompressed, cbNew);
|
---|
1300 | AssertBreakStmt(pvNew, rc = VERR_NO_MEMORY);
|
---|
1301 | cbDecompressedAlloc = cbNew;
|
---|
1302 | pbDecompressed = (uint8_t *)pvNew;
|
---|
1303 | }
|
---|
1304 | }
|
---|
1305 | if (RT_SUCCESS(rc))
|
---|
1306 | {
|
---|
1307 | size_t const cbUncompressed = off;
|
---|
1308 |
|
---|
1309 | /* Validate the header and footer if present and subtract them from 'off'. */
|
---|
1310 | IEMBINARYHEADER const *pHdr = NULL;
|
---|
1311 | if ( off >= sizeof(IEMTESTENTRYINFO)
|
---|
1312 | && memcmp(pbDecompressed, IEMBINARYHEADER_MAGIC, sizeof(IEMBINARYHEADER_MAGIC)) == 0)
|
---|
1313 | {
|
---|
1314 | pHdr = (IEMBINARYHEADER const *)pbDecompressed;
|
---|
1315 | IEMBINARYFOOTER const *pFtr = (IEMBINARYFOOTER const *)&pbDecompressed[off - sizeof(IEMBINARYFOOTER)];
|
---|
1316 |
|
---|
1317 | off -= sizeof(*pHdr) + sizeof(*pFtr);
|
---|
1318 | rc = VERR_IO_BAD_UNIT;
|
---|
1319 | if (pHdr->cbEntry != cbEntry)
|
---|
1320 | RTTestIFailed("Test entry size differs for '%s': %#x (header r%u), expected %#zx (uncompressed size %#zx)",
|
---|
1321 | pszWhat, pHdr->cbEntry, pHdr->uSvnRev, cbEntry, off + sizeof(*pHdr) + sizeof(*pFtr));
|
---|
1322 | else if (memcmp(pFtr->szMagic, IEMBINARYFOOTER_MAGIC, sizeof(IEMBINARYFOOTER_MAGIC)) != 0)
|
---|
1323 | RTTestIFailed("Wrong footer magic for '%s': %.*Rhxs\n", pszWhat, sizeof(pFtr->szMagic), pFtr->szMagic);
|
---|
1324 | else if (pFtr->cbEntry != cbEntry)
|
---|
1325 | RTTestIFailed("Wrong footer entry size for '%s': %#x, expected %#x\n", pszWhat, pFtr->cbEntry, cbEntry);
|
---|
1326 | else if (pFtr->cEntries != off / cbEntry)
|
---|
1327 | RTTestIFailed("Wrong footer entry count for '%s': %#x, expected %#x\n",
|
---|
1328 | pszWhat, pFtr->cEntries, off / cbEntry);
|
---|
1329 | else
|
---|
1330 | rc = VINF_SUCCESS;
|
---|
1331 | }
|
---|
1332 |
|
---|
1333 | /* Validate the decompressed size wrt entry size. */
|
---|
1334 | if ((off % cbEntry) != 0 && RT_SUCCESS(rc))
|
---|
1335 | {
|
---|
1336 | RTTestIFailed("Uneven decompressed data size for '%s': %#zx vs entry size %#zx -> %#zx",
|
---|
1337 | pszWhat, off, cbEntry, off % cbEntry);
|
---|
1338 | rc = VERR_IO_BAD_LENGTH;
|
---|
1339 | }
|
---|
1340 |
|
---|
1341 | if (RT_SUCCESS(rc))
|
---|
1342 | {
|
---|
1343 | /*
|
---|
1344 | * We're good.
|
---|
1345 | */
|
---|
1346 | /* Reallocate the block if it's way to big. */
|
---|
1347 | if (cbDecompressedAlloc - cbUncompressed > _512K)
|
---|
1348 | {
|
---|
1349 | void * const pvNew = RTMemRealloc(pbDecompressed, cbUncompressed);
|
---|
1350 | if (pvNew)
|
---|
1351 | {
|
---|
1352 | pbDecompressed = (uint8_t *)pvNew;
|
---|
1353 | if (pHdr)
|
---|
1354 | pHdr = (IEMBINARYHEADER const *)pbDecompressed;
|
---|
1355 | }
|
---|
1356 | }
|
---|
1357 | RTMEM_MAY_LEAK(pbDecompressed);
|
---|
1358 |
|
---|
1359 | /* Fill in the info and other return values. */
|
---|
1360 | pInfo->cbUncompressed = (uint32_t)cbUncompressed;
|
---|
1361 | pInfo->pvUncompressed = pbDecompressed;
|
---|
1362 | pInfo->pszCpuDesc = pHdr ? pHdr->szCpuDesc : NULL;
|
---|
1363 | pInfo->uSvnRev = pHdr ? pHdr->uSvnRev : 0;
|
---|
1364 | *pcTests = (uint32_t)(off / cbEntry);
|
---|
1365 | *ppvTests = pHdr ? (uint8_t *)(pHdr + 1) : pbDecompressed;
|
---|
1366 |
|
---|
1367 | pbDecompressed = NULL;
|
---|
1368 | rc = VINF_SUCCESS;
|
---|
1369 | }
|
---|
1370 | }
|
---|
1371 | else
|
---|
1372 | RTTestIFailed("Failed to decompress binary stream '%s': %Rrc (off=%#zx, cbCompressed=%#x)",
|
---|
1373 | pszWhat, rc, off, cbCompressed);
|
---|
1374 | RTMemFree(pbDecompressed);
|
---|
1375 | }
|
---|
1376 | else
|
---|
1377 | {
|
---|
1378 | RTTestIFailed("Out of memory decompressing test data '%s'", pszWhat);
|
---|
1379 | rc = VERR_NO_MEMORY;
|
---|
1380 | }
|
---|
1381 | RTVfsIoStrmRelease(hVfsIosDecomp);
|
---|
1382 | }
|
---|
1383 | RTVfsIoStrmRelease(hVfsIos);
|
---|
1384 | return rc;
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | #define DECOMPRESS_TESTS(a_Entry) \
|
---|
1388 | RT_SUCCESS(DecompressBinaryTest((a_Entry).pvCompressedTests, *(a_Entry).pcbCompressedTests, \
|
---|
1389 | sizeof((a_Entry).paTests[0]), (a_Entry).pszName, \
|
---|
1390 | (void **)&(a_Entry).paTests, &(a_Entry).cTests, &(a_Entry).Info))
|
---|
1391 |
|
---|
1392 | /** Frees the decompressed test data. */
|
---|
1393 | static void FreeDecompressedTests(void **ppvTests, uint32_t *pcTests, IEMTESTENTRYINFO *pInfo)
|
---|
1394 | {
|
---|
1395 | RTMemFree(pInfo->pvUncompressed);
|
---|
1396 | pInfo->pvUncompressed = NULL;
|
---|
1397 | pInfo->cbUncompressed = 0;
|
---|
1398 | *ppvTests = NULL;
|
---|
1399 | *pcTests = 0;
|
---|
1400 | }
|
---|
1401 |
|
---|
1402 | #define FREE_DECOMPRESSED_TESTS(a_Entry) \
|
---|
1403 | FreeDecompressedTests((void **)&(a_Entry).paTests, &(a_Entry).cTests, &(a_Entry).Info)
|
---|
1404 |
|
---|
1405 |
|
---|
1406 | /** Check if the test is enabled and decompresses test data. */
|
---|
1407 | static int SubTestAndCheckIfEnabledAndDecompress(const char *pszName, void const *pvCompressed, uint32_t cbCompressed,
|
---|
1408 | size_t cbEntry, void **ppvTests, uint32_t *pcTests, IEMTESTENTRYINFO *pInfo)
|
---|
1409 | {
|
---|
1410 | if (SubTestAndCheckIfEnabled(pszName))
|
---|
1411 | {
|
---|
1412 | int const rc = DecompressBinaryTest(pvCompressed, cbCompressed, cbEntry, pszName, ppvTests, pcTests, pInfo);
|
---|
1413 | if (RT_SUCCESS(rc))
|
---|
1414 | return true;
|
---|
1415 | }
|
---|
1416 | return false;
|
---|
1417 | }
|
---|
1418 |
|
---|
1419 | #define SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_Entry) \
|
---|
1420 | SubTestAndCheckIfEnabledAndDecompress((a_Entry).pszName, (a_Entry).pvCompressedTests, *(a_Entry).pcbCompressedTests, \
|
---|
1421 | sizeof((a_Entry).paTests[0]), \
|
---|
1422 | (void **)&(a_Entry).paTests, &(a_Entry).cTests, &(a_Entry).Info)
|
---|
1423 |
|
---|
1424 |
|
---|
1425 | static const char *EFlagsDiff(uint32_t fActual, uint32_t fExpected)
|
---|
1426 | {
|
---|
1427 | if (fActual == fExpected)
|
---|
1428 | return "";
|
---|
1429 |
|
---|
1430 | uint32_t const fXor = fActual ^ fExpected;
|
---|
1431 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1432 | size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor);
|
---|
1433 |
|
---|
1434 | static struct
|
---|
1435 | {
|
---|
1436 | const char *pszName;
|
---|
1437 | uint32_t fFlag;
|
---|
1438 | } const s_aFlags[] =
|
---|
1439 | {
|
---|
1440 | #define EFL_ENTRY(a_Flags) { #a_Flags, X86_EFL_ ## a_Flags }
|
---|
1441 | EFL_ENTRY(CF),
|
---|
1442 | EFL_ENTRY(PF),
|
---|
1443 | EFL_ENTRY(AF),
|
---|
1444 | EFL_ENTRY(ZF),
|
---|
1445 | EFL_ENTRY(SF),
|
---|
1446 | EFL_ENTRY(TF),
|
---|
1447 | EFL_ENTRY(IF),
|
---|
1448 | EFL_ENTRY(DF),
|
---|
1449 | EFL_ENTRY(OF),
|
---|
1450 | EFL_ENTRY(IOPL),
|
---|
1451 | EFL_ENTRY(NT),
|
---|
1452 | EFL_ENTRY(RF),
|
---|
1453 | EFL_ENTRY(VM),
|
---|
1454 | EFL_ENTRY(AC),
|
---|
1455 | EFL_ENTRY(VIF),
|
---|
1456 | EFL_ENTRY(VIP),
|
---|
1457 | EFL_ENTRY(ID),
|
---|
1458 | };
|
---|
1459 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1460 | if (s_aFlags[i].fFlag & fXor)
|
---|
1461 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch,
|
---|
1462 | s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName);
|
---|
1463 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1464 | return pszBuf;
|
---|
1465 | }
|
---|
1466 |
|
---|
1467 |
|
---|
1468 | static const char *FswDiff(uint16_t fActual, uint16_t fExpected)
|
---|
1469 | {
|
---|
1470 | if (fActual == fExpected)
|
---|
1471 | return "";
|
---|
1472 |
|
---|
1473 | uint16_t const fXor = fActual ^ fExpected;
|
---|
1474 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1475 | size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor);
|
---|
1476 |
|
---|
1477 | static struct
|
---|
1478 | {
|
---|
1479 | const char *pszName;
|
---|
1480 | uint32_t fFlag;
|
---|
1481 | } const s_aFlags[] =
|
---|
1482 | {
|
---|
1483 | #define FSW_ENTRY(a_Flags) { #a_Flags, X86_FSW_ ## a_Flags }
|
---|
1484 | FSW_ENTRY(IE),
|
---|
1485 | FSW_ENTRY(DE),
|
---|
1486 | FSW_ENTRY(ZE),
|
---|
1487 | FSW_ENTRY(OE),
|
---|
1488 | FSW_ENTRY(UE),
|
---|
1489 | FSW_ENTRY(PE),
|
---|
1490 | FSW_ENTRY(SF),
|
---|
1491 | FSW_ENTRY(ES),
|
---|
1492 | FSW_ENTRY(C0),
|
---|
1493 | FSW_ENTRY(C1),
|
---|
1494 | FSW_ENTRY(C2),
|
---|
1495 | FSW_ENTRY(C3),
|
---|
1496 | FSW_ENTRY(B),
|
---|
1497 | };
|
---|
1498 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1499 | if (s_aFlags[i].fFlag & fXor)
|
---|
1500 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch,
|
---|
1501 | s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName);
|
---|
1502 | if (fXor & X86_FSW_TOP_MASK)
|
---|
1503 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "/TOP%u!%u",
|
---|
1504 | X86_FSW_TOP_GET(fActual), X86_FSW_TOP_GET(fExpected));
|
---|
1505 | #if 0 /* For debugging fprem & fprem1 */
|
---|
1506 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " - Q=%d (vs %d)",
|
---|
1507 | X86_FSW_CX_TO_QUOTIENT(fActual), X86_FSW_CX_TO_QUOTIENT(fExpected));
|
---|
1508 | #endif
|
---|
1509 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1510 | return pszBuf;
|
---|
1511 | }
|
---|
1512 |
|
---|
1513 |
|
---|
1514 | static const char *MxcsrDiff(uint32_t fActual, uint32_t fExpected)
|
---|
1515 | {
|
---|
1516 | if (fActual == fExpected)
|
---|
1517 | return "";
|
---|
1518 |
|
---|
1519 | uint16_t const fXor = fActual ^ fExpected;
|
---|
1520 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1521 | size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor);
|
---|
1522 |
|
---|
1523 | static struct
|
---|
1524 | {
|
---|
1525 | const char *pszName;
|
---|
1526 | uint32_t fFlag;
|
---|
1527 | } const s_aFlags[] =
|
---|
1528 | {
|
---|
1529 | #define MXCSR_ENTRY(a_Flags) { #a_Flags, X86_MXCSR_ ## a_Flags }
|
---|
1530 | MXCSR_ENTRY(IE),
|
---|
1531 | MXCSR_ENTRY(DE),
|
---|
1532 | MXCSR_ENTRY(ZE),
|
---|
1533 | MXCSR_ENTRY(OE),
|
---|
1534 | MXCSR_ENTRY(UE),
|
---|
1535 | MXCSR_ENTRY(PE),
|
---|
1536 |
|
---|
1537 | MXCSR_ENTRY(IM),
|
---|
1538 | MXCSR_ENTRY(DM),
|
---|
1539 | MXCSR_ENTRY(ZM),
|
---|
1540 | MXCSR_ENTRY(OM),
|
---|
1541 | MXCSR_ENTRY(UM),
|
---|
1542 | MXCSR_ENTRY(PM),
|
---|
1543 |
|
---|
1544 | MXCSR_ENTRY(DAZ),
|
---|
1545 | MXCSR_ENTRY(FZ),
|
---|
1546 | #undef MXCSR_ENTRY
|
---|
1547 | };
|
---|
1548 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1549 | if (s_aFlags[i].fFlag & fXor)
|
---|
1550 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch,
|
---|
1551 | s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName);
|
---|
1552 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1553 | return pszBuf;
|
---|
1554 | }
|
---|
1555 |
|
---|
1556 |
|
---|
1557 | static const char *FormatFcw(uint16_t fFcw)
|
---|
1558 | {
|
---|
1559 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1560 |
|
---|
1561 | const char *pszPC = NULL; /* (msc+gcc are too stupid) */
|
---|
1562 | switch (fFcw & X86_FCW_PC_MASK)
|
---|
1563 | {
|
---|
1564 | case X86_FCW_PC_24: pszPC = "PC24"; break;
|
---|
1565 | case X86_FCW_PC_RSVD: pszPC = "PCRSVD!"; break;
|
---|
1566 | case X86_FCW_PC_53: pszPC = "PC53"; break;
|
---|
1567 | case X86_FCW_PC_64: pszPC = "PC64"; break;
|
---|
1568 | }
|
---|
1569 |
|
---|
1570 | const char *pszRC = NULL; /* (msc+gcc are too stupid) */
|
---|
1571 | switch (fFcw & X86_FCW_RC_MASK)
|
---|
1572 | {
|
---|
1573 | case X86_FCW_RC_NEAREST: pszRC = "NEAR"; break;
|
---|
1574 | case X86_FCW_RC_DOWN: pszRC = "DOWN"; break;
|
---|
1575 | case X86_FCW_RC_UP: pszRC = "UP"; break;
|
---|
1576 | case X86_FCW_RC_ZERO: pszRC = "ZERO"; break;
|
---|
1577 | }
|
---|
1578 | size_t cch = RTStrPrintf(&pszBuf[0], sizeof(g_aszBuf[0]), "%s %s", pszPC, pszRC);
|
---|
1579 |
|
---|
1580 | static struct
|
---|
1581 | {
|
---|
1582 | const char *pszName;
|
---|
1583 | uint32_t fFlag;
|
---|
1584 | } const s_aFlags[] =
|
---|
1585 | {
|
---|
1586 | #define FCW_ENTRY(a_Flags) { #a_Flags, X86_FCW_ ## a_Flags }
|
---|
1587 | FCW_ENTRY(IM),
|
---|
1588 | FCW_ENTRY(DM),
|
---|
1589 | FCW_ENTRY(ZM),
|
---|
1590 | FCW_ENTRY(OM),
|
---|
1591 | FCW_ENTRY(UM),
|
---|
1592 | FCW_ENTRY(PM),
|
---|
1593 | { "6M", 64 },
|
---|
1594 | };
|
---|
1595 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1596 | if (fFcw & s_aFlags[i].fFlag)
|
---|
1597 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " %s", s_aFlags[i].pszName);
|
---|
1598 |
|
---|
1599 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1600 | return pszBuf;
|
---|
1601 | }
|
---|
1602 |
|
---|
1603 |
|
---|
1604 | static const char *FormatMxcsr(uint32_t fMxcsr)
|
---|
1605 | {
|
---|
1606 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1607 |
|
---|
1608 | const char *pszRC = NULL; /* (msc+gcc are too stupid) */
|
---|
1609 | switch (fMxcsr & X86_MXCSR_RC_MASK)
|
---|
1610 | {
|
---|
1611 | case X86_MXCSR_RC_NEAREST: pszRC = "NEAR"; break;
|
---|
1612 | case X86_MXCSR_RC_DOWN: pszRC = "DOWN"; break;
|
---|
1613 | case X86_MXCSR_RC_UP: pszRC = "UP"; break;
|
---|
1614 | case X86_MXCSR_RC_ZERO: pszRC = "ZERO"; break;
|
---|
1615 | }
|
---|
1616 |
|
---|
1617 | const char *pszDAZ = fMxcsr & X86_MXCSR_DAZ ? " DAZ" : "";
|
---|
1618 | const char *pszFZ = fMxcsr & X86_MXCSR_FZ ? " FZ" : "";
|
---|
1619 | size_t cch = RTStrPrintf(&pszBuf[0], sizeof(g_aszBuf[0]), "%s%s%s", pszRC, pszDAZ, pszFZ);
|
---|
1620 |
|
---|
1621 | static struct
|
---|
1622 | {
|
---|
1623 | const char *pszName;
|
---|
1624 | uint32_t fFlag;
|
---|
1625 | } const s_aFlags[] =
|
---|
1626 | {
|
---|
1627 | #define MXCSR_ENTRY(a_Flags) { #a_Flags, X86_MXCSR_ ## a_Flags }
|
---|
1628 | MXCSR_ENTRY(IE),
|
---|
1629 | MXCSR_ENTRY(DE),
|
---|
1630 | MXCSR_ENTRY(ZE),
|
---|
1631 | MXCSR_ENTRY(OE),
|
---|
1632 | MXCSR_ENTRY(UE),
|
---|
1633 | MXCSR_ENTRY(PE),
|
---|
1634 |
|
---|
1635 | MXCSR_ENTRY(IM),
|
---|
1636 | MXCSR_ENTRY(DM),
|
---|
1637 | MXCSR_ENTRY(ZM),
|
---|
1638 | MXCSR_ENTRY(OM),
|
---|
1639 | MXCSR_ENTRY(UM),
|
---|
1640 | MXCSR_ENTRY(PM),
|
---|
1641 | { "6M", 64 },
|
---|
1642 | };
|
---|
1643 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1644 | if (fMxcsr & s_aFlags[i].fFlag)
|
---|
1645 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " %s", s_aFlags[i].pszName);
|
---|
1646 |
|
---|
1647 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1648 | return pszBuf;
|
---|
1649 | }
|
---|
1650 |
|
---|
1651 |
|
---|
1652 | static const char *FormatR80(PCRTFLOAT80U pr80)
|
---|
1653 | {
|
---|
1654 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1655 | RTStrFormatR80(pszBuf, sizeof(g_aszBuf[0]), pr80, 0, 0, RTSTR_F_SPECIAL);
|
---|
1656 | return pszBuf;
|
---|
1657 | }
|
---|
1658 |
|
---|
1659 |
|
---|
1660 | static const char *FormatR64(PCRTFLOAT64U pr64)
|
---|
1661 | {
|
---|
1662 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1663 | RTStrFormatR64(pszBuf, sizeof(g_aszBuf[0]), pr64, 0, 0, RTSTR_F_SPECIAL);
|
---|
1664 | return pszBuf;
|
---|
1665 | }
|
---|
1666 |
|
---|
1667 |
|
---|
1668 | static const char *FormatR32(PCRTFLOAT32U pr32)
|
---|
1669 | {
|
---|
1670 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1671 | RTStrFormatR32(pszBuf, sizeof(g_aszBuf[0]), pr32, 0, 0, RTSTR_F_SPECIAL);
|
---|
1672 | return pszBuf;
|
---|
1673 | }
|
---|
1674 |
|
---|
1675 |
|
---|
1676 | static const char *FormatD80(PCRTPBCD80U pd80)
|
---|
1677 | {
|
---|
1678 | /* There is only one indefinite endcoding (same as for 80-bit
|
---|
1679 | floating point), so get it out of the way first: */
|
---|
1680 | if (RTPBCD80U_IS_INDEFINITE(pd80))
|
---|
1681 | return "Ind";
|
---|
1682 |
|
---|
1683 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1684 | size_t off = 0;
|
---|
1685 | pszBuf[off++] = pd80->s.fSign ? '-' : '+';
|
---|
1686 | unsigned cBadDigits = 0;
|
---|
1687 | size_t iPair = RT_ELEMENTS(pd80->s.abPairs);
|
---|
1688 | while (iPair-- > 0)
|
---|
1689 | {
|
---|
1690 | static const char s_szDigits[] = "0123456789abcdef";
|
---|
1691 | static const uint8_t s_bBadDigits[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 };
|
---|
1692 | pszBuf[off++] = s_szDigits[RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair])];
|
---|
1693 | pszBuf[off++] = s_szDigits[RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])];
|
---|
1694 | cBadDigits += s_bBadDigits[RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair])]
|
---|
1695 | + s_bBadDigits[RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])];
|
---|
1696 | }
|
---|
1697 | if (cBadDigits || pd80->s.uPad != 0)
|
---|
1698 | off += RTStrPrintf(&pszBuf[off], sizeof(g_aszBuf[0]) - off, "[%u,%#x]", cBadDigits, pd80->s.uPad);
|
---|
1699 | pszBuf[off] = '\0';
|
---|
1700 | return pszBuf;
|
---|
1701 | }
|
---|
1702 |
|
---|
1703 |
|
---|
1704 | #if 0
|
---|
1705 | static const char *FormatI64(int64_t const *piVal)
|
---|
1706 | {
|
---|
1707 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1708 | RTStrFormatU64(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED);
|
---|
1709 | return pszBuf;
|
---|
1710 | }
|
---|
1711 | #endif
|
---|
1712 |
|
---|
1713 |
|
---|
1714 | static const char *FormatI32(int32_t const *piVal)
|
---|
1715 | {
|
---|
1716 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1717 | RTStrFormatU32(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED);
|
---|
1718 | return pszBuf;
|
---|
1719 | }
|
---|
1720 |
|
---|
1721 |
|
---|
1722 | static const char *FormatI16(int16_t const *piVal)
|
---|
1723 | {
|
---|
1724 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1725 | RTStrFormatU16(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED);
|
---|
1726 | return pszBuf;
|
---|
1727 | }
|
---|
1728 |
|
---|
1729 |
|
---|
1730 | static const char *FormatU128(PCRTUINT128U puVal)
|
---|
1731 | {
|
---|
1732 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1733 | RTStrFormatU128(pszBuf, sizeof(g_aszBuf[0]), puVal, 16, 0, 0, RTSTR_F_SPECIAL);
|
---|
1734 | return pszBuf;
|
---|
1735 | }
|
---|
1736 |
|
---|
1737 |
|
---|
1738 | /*
|
---|
1739 | * Binary operations.
|
---|
1740 | */
|
---|
1741 | TYPEDEF_SUBTEST_TYPE(BINU8_T, BINU8_TEST_T, PFNIEMAIMPLBINU8);
|
---|
1742 | TYPEDEF_SUBTEST_TYPE(BINU16_T, BINU16_TEST_T, PFNIEMAIMPLBINU16);
|
---|
1743 | TYPEDEF_SUBTEST_TYPE(BINU32_T, BINU32_TEST_T, PFNIEMAIMPLBINU32);
|
---|
1744 | TYPEDEF_SUBTEST_TYPE(BINU64_T, BINU64_TEST_T, PFNIEMAIMPLBINU64);
|
---|
1745 |
|
---|
1746 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1747 | # define GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) \
|
---|
1748 | static RTEXITCODE BinU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \
|
---|
1749 | { \
|
---|
1750 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aBinU ## a_cBits); iFn++) \
|
---|
1751 | { \
|
---|
1752 | PFNIEMAIMPLBINU ## a_cBits const pfn = g_aBinU ## a_cBits[iFn].pfnNative \
|
---|
1753 | ? g_aBinU ## a_cBits[iFn].pfnNative : g_aBinU ## a_cBits[iFn].pfn; \
|
---|
1754 | IEMBINARYOUTPUT BinOut; \
|
---|
1755 | if ( g_aBinU ## a_cBits[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
1756 | && g_aBinU ## a_cBits[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
1757 | continue; \
|
---|
1758 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aBinU ## a_cBits[iFn]), RTEXITCODE_FAILURE); \
|
---|
1759 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
1760 | { \
|
---|
1761 | a_TestType Test; \
|
---|
1762 | Test.fEflIn = RandEFlags(); \
|
---|
1763 | Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \
|
---|
1764 | Test.uDstOut = Test.uDstIn; \
|
---|
1765 | Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \
|
---|
1766 | if (g_aBinU ## a_cBits[iFn].uExtra) \
|
---|
1767 | Test.uSrcIn &= a_cBits - 1; /* Restrict bit index according to operand width */ \
|
---|
1768 | Test.uMisc = 0; \
|
---|
1769 | Test.fEflOut = pfn(Test.fEflIn, &Test.uDstOut, Test.uSrcIn); \
|
---|
1770 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
1771 | } \
|
---|
1772 | for (uint32_t iTest = 0; iTest < g_aBinU ## a_cBits[iFn].cFixedTests; iTest++ ) \
|
---|
1773 | { \
|
---|
1774 | a_TestType Test; \
|
---|
1775 | Test.fEflIn = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].fEflIn == UINT32_MAX ? RandEFlags() \
|
---|
1776 | : g_aBinU ## a_cBits[iFn].paFixedTests[iTest].fEflIn; \
|
---|
1777 | Test.uDstIn = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].uDstIn; \
|
---|
1778 | Test.uDstOut = Test.uDstIn; \
|
---|
1779 | Test.uSrcIn = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].uSrcIn; \
|
---|
1780 | Test.uMisc = g_aBinU ## a_cBits[iFn].paFixedTests[iTest].uMisc; \
|
---|
1781 | Test.fEflOut = pfn(Test.fEflIn, &Test.uDstOut, Test.uSrcIn); \
|
---|
1782 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
1783 | } \
|
---|
1784 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
1785 | } \
|
---|
1786 | return RTEXITCODE_SUCCESS; \
|
---|
1787 | } \
|
---|
1788 | DUMP_ALL_FN(BinU ## a_cBits, g_aBinU ## a_cBits)
|
---|
1789 |
|
---|
1790 | #else
|
---|
1791 | # define GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType)
|
---|
1792 | #endif
|
---|
1793 |
|
---|
1794 |
|
---|
1795 | /** Based on a quick probe run, guess how long to run the benchmark. */
|
---|
1796 | static uint32_t EstimateIterations(uint32_t cProbeIterations, uint64_t cNsProbe)
|
---|
1797 | {
|
---|
1798 | uint64_t cPicoSecPerIteration = cNsProbe * 1000 / cProbeIterations;
|
---|
1799 | uint64_t cIterations = g_cPicoSecBenchmark / cPicoSecPerIteration;
|
---|
1800 | if (cIterations > _2G)
|
---|
1801 | return _2G;
|
---|
1802 | if (cIterations < _4K)
|
---|
1803 | return _4K;
|
---|
1804 | return RT_ALIGN_32((uint32_t)cIterations, _4K);
|
---|
1805 | }
|
---|
1806 |
|
---|
1807 |
|
---|
1808 | #define TEST_BINARY_OPS(a_cBits, a_uType, a_Fmt, a_TestType, a_aSubTests) \
|
---|
1809 | GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) \
|
---|
1810 | \
|
---|
1811 | static uint64_t BinU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLBINU ## a_cBits pfn, a_TestType const *pEntry) \
|
---|
1812 | { \
|
---|
1813 | uint32_t const fEflIn = pEntry->fEflIn; \
|
---|
1814 | a_uType const uDstIn = pEntry->uDstIn; \
|
---|
1815 | a_uType const uSrcIn = pEntry->uSrcIn; \
|
---|
1816 | cIterations /= 4; \
|
---|
1817 | RTThreadYield(); \
|
---|
1818 | uint64_t const nsStart = RTTimeNanoTS(); \
|
---|
1819 | for (uint32_t i = 0; i < cIterations; i++) \
|
---|
1820 | { \
|
---|
1821 | a_uType uBenchDst = uDstIn; \
|
---|
1822 | pfn(fEflIn, &uBenchDst, uSrcIn); \
|
---|
1823 | \
|
---|
1824 | uBenchDst = uDstIn; \
|
---|
1825 | pfn(fEflIn, &uBenchDst, uSrcIn); \
|
---|
1826 | \
|
---|
1827 | uBenchDst = uDstIn; \
|
---|
1828 | pfn(fEflIn, &uBenchDst, uSrcIn); \
|
---|
1829 | \
|
---|
1830 | uBenchDst = uDstIn; \
|
---|
1831 | pfn(fEflIn, &uBenchDst, uSrcIn); \
|
---|
1832 | } \
|
---|
1833 | return RTTimeNanoTS() - nsStart; \
|
---|
1834 | } \
|
---|
1835 | \
|
---|
1836 | static void BinU ## a_cBits ## Test(void) \
|
---|
1837 | { \
|
---|
1838 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
1839 | { \
|
---|
1840 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
1841 | continue; \
|
---|
1842 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
1843 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
1844 | PFNIEMAIMPLBINU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
1845 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
1846 | if (!cTests) { RTTestSkipped(g_hTest, "no tests"); continue; } \
|
---|
1847 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
1848 | { \
|
---|
1849 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
1850 | { \
|
---|
1851 | a_uType uDst = paTests[iTest].uDstIn; \
|
---|
1852 | uint32_t fEfl = pfn(paTests[iTest].fEflIn, &uDst, paTests[iTest].uSrcIn); \
|
---|
1853 | if ( uDst != paTests[iTest].uDstOut \
|
---|
1854 | || fEfl != paTests[iTest].fEflOut) \
|
---|
1855 | RTTestFailed(g_hTest, "#%u%s: efl=%#08x dst=" a_Fmt " src=" a_Fmt " -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s - %s\n", \
|
---|
1856 | iTest, !iVar ? "" : "/n", paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, \
|
---|
1857 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
1858 | EFlagsDiff(fEfl, paTests[iTest].fEflOut), \
|
---|
1859 | uDst == paTests[iTest].uDstOut ? "eflags" : fEfl == paTests[iTest].fEflOut ? "dst" : "both"); \
|
---|
1860 | else \
|
---|
1861 | { \
|
---|
1862 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
1863 | fEfl = pfn(paTests[iTest].fEflIn, g_pu ## a_cBits, paTests[iTest].uSrcIn); \
|
---|
1864 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
1865 | RTTEST_CHECK(g_hTest, fEfl == paTests[iTest].fEflOut); \
|
---|
1866 | } \
|
---|
1867 | } \
|
---|
1868 | \
|
---|
1869 | /* Benchmark if all succeeded. */ \
|
---|
1870 | if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \
|
---|
1871 | { \
|
---|
1872 | uint32_t const iTest = cTests / 2; \
|
---|
1873 | uint32_t const cIterations = EstimateIterations(_64K, BinU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \
|
---|
1874 | uint64_t const cNsRealRun = BinU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \
|
---|
1875 | RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, \
|
---|
1876 | "%s%s", a_aSubTests[iFn].pszName, iVar ? "-native" : ""); \
|
---|
1877 | } \
|
---|
1878 | \
|
---|
1879 | /* Next variation is native. */ \
|
---|
1880 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
1881 | } \
|
---|
1882 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
1883 | } \
|
---|
1884 | }
|
---|
1885 |
|
---|
1886 |
|
---|
1887 | /*
|
---|
1888 | * 8-bit binary operations.
|
---|
1889 | */
|
---|
1890 | static BINU8_T g_aBinU8[] =
|
---|
1891 | {
|
---|
1892 | ENTRY_BIN(add_u8),
|
---|
1893 | ENTRY_BIN(add_u8_locked),
|
---|
1894 | ENTRY_BIN(adc_u8),
|
---|
1895 | ENTRY_BIN(adc_u8_locked),
|
---|
1896 | ENTRY_BIN(sub_u8),
|
---|
1897 | ENTRY_BIN(sub_u8_locked),
|
---|
1898 | ENTRY_BIN(sbb_u8),
|
---|
1899 | ENTRY_BIN(sbb_u8_locked),
|
---|
1900 | ENTRY_BIN(or_u8),
|
---|
1901 | ENTRY_BIN(or_u8_locked),
|
---|
1902 | ENTRY_BIN(xor_u8),
|
---|
1903 | ENTRY_BIN(xor_u8_locked),
|
---|
1904 | ENTRY_BIN(and_u8),
|
---|
1905 | ENTRY_BIN(and_u8_locked),
|
---|
1906 | ENTRY_BIN_PFN_CAST(cmp_u8, PFNIEMAIMPLBINU8),
|
---|
1907 | ENTRY_BIN_PFN_CAST(test_u8, PFNIEMAIMPLBINU8),
|
---|
1908 | };
|
---|
1909 | TEST_BINARY_OPS(8, uint8_t, "%#04x", BINU8_TEST_T, g_aBinU8)
|
---|
1910 |
|
---|
1911 |
|
---|
1912 | /*
|
---|
1913 | * 16-bit binary operations.
|
---|
1914 | */
|
---|
1915 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1916 | static const BINU16_TEST_T g_aFixedTests_add_u16[] =
|
---|
1917 | {
|
---|
1918 | /* efl in, efl out, uDstIn, uDstOut, uSrc, uExtra */
|
---|
1919 | { UINT32_MAX, 0, 1, 0, UINT16_MAX, 0 },
|
---|
1920 | };
|
---|
1921 | #endif
|
---|
1922 | static BINU16_T g_aBinU16[] =
|
---|
1923 | {
|
---|
1924 | ENTRY_BIN_FIX(add_u16),
|
---|
1925 | ENTRY_BIN(add_u16_locked),
|
---|
1926 | ENTRY_BIN(adc_u16),
|
---|
1927 | ENTRY_BIN(adc_u16_locked),
|
---|
1928 | ENTRY_BIN(sub_u16),
|
---|
1929 | ENTRY_BIN(sub_u16_locked),
|
---|
1930 | ENTRY_BIN(sbb_u16),
|
---|
1931 | ENTRY_BIN(sbb_u16_locked),
|
---|
1932 | ENTRY_BIN(or_u16),
|
---|
1933 | ENTRY_BIN(or_u16_locked),
|
---|
1934 | ENTRY_BIN(xor_u16),
|
---|
1935 | ENTRY_BIN(xor_u16_locked),
|
---|
1936 | ENTRY_BIN(and_u16),
|
---|
1937 | ENTRY_BIN(and_u16_locked),
|
---|
1938 | ENTRY_BIN_PFN_CAST(cmp_u16, PFNIEMAIMPLBINU16),
|
---|
1939 | ENTRY_BIN_PFN_CAST(test_u16, PFNIEMAIMPLBINU16),
|
---|
1940 | ENTRY_BIN_PFN_CAST_EX(bt_u16, PFNIEMAIMPLBINU16, 1),
|
---|
1941 | ENTRY_BIN_EX(btc_u16, 1),
|
---|
1942 | ENTRY_BIN_EX(btc_u16_locked, 1),
|
---|
1943 | ENTRY_BIN_EX(btr_u16, 1),
|
---|
1944 | ENTRY_BIN_EX(btr_u16_locked, 1),
|
---|
1945 | ENTRY_BIN_EX(bts_u16, 1),
|
---|
1946 | ENTRY_BIN_EX(bts_u16_locked, 1),
|
---|
1947 | ENTRY_BIN_AMD( bsf_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1948 | ENTRY_BIN_INTEL(bsf_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1949 | ENTRY_BIN_AMD( bsr_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1950 | ENTRY_BIN_INTEL(bsr_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1951 | ENTRY_BIN_AMD( imul_two_u16, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1952 | ENTRY_BIN_INTEL(imul_two_u16, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1953 | ENTRY_BIN(arpl),
|
---|
1954 | };
|
---|
1955 | TEST_BINARY_OPS(16, uint16_t, "%#06x", BINU16_TEST_T, g_aBinU16)
|
---|
1956 |
|
---|
1957 |
|
---|
1958 | /*
|
---|
1959 | * 32-bit binary operations.
|
---|
1960 | */
|
---|
1961 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1962 | static const BINU32_TEST_T g_aFixedTests_add_u32[] =
|
---|
1963 | {
|
---|
1964 | /* efl in, efl out, uDstIn, uDstOut, uSrc, uExtra */
|
---|
1965 | { UINT32_MAX, 0, 1, 0, UINT32_MAX, 0 },
|
---|
1966 | };
|
---|
1967 | #endif
|
---|
1968 | static BINU32_T g_aBinU32[] =
|
---|
1969 | {
|
---|
1970 | ENTRY_BIN_FIX(add_u32),
|
---|
1971 | ENTRY_BIN(add_u32_locked),
|
---|
1972 | ENTRY_BIN(adc_u32),
|
---|
1973 | ENTRY_BIN(adc_u32_locked),
|
---|
1974 | ENTRY_BIN(sub_u32),
|
---|
1975 | ENTRY_BIN(sub_u32_locked),
|
---|
1976 | ENTRY_BIN(sbb_u32),
|
---|
1977 | ENTRY_BIN(sbb_u32_locked),
|
---|
1978 | ENTRY_BIN(or_u32),
|
---|
1979 | ENTRY_BIN(or_u32_locked),
|
---|
1980 | ENTRY_BIN(xor_u32),
|
---|
1981 | ENTRY_BIN(xor_u32_locked),
|
---|
1982 | ENTRY_BIN(and_u32),
|
---|
1983 | ENTRY_BIN(and_u32_locked),
|
---|
1984 | ENTRY_BIN_PFN_CAST(cmp_u32, PFNIEMAIMPLBINU32),
|
---|
1985 | ENTRY_BIN_PFN_CAST(test_u32, PFNIEMAIMPLBINU32),
|
---|
1986 | ENTRY_BIN_PFN_CAST_EX(bt_u32, PFNIEMAIMPLBINU32, 1),
|
---|
1987 | ENTRY_BIN_EX(btc_u32, 1),
|
---|
1988 | ENTRY_BIN_EX(btc_u32_locked, 1),
|
---|
1989 | ENTRY_BIN_EX(btr_u32, 1),
|
---|
1990 | ENTRY_BIN_EX(btr_u32_locked, 1),
|
---|
1991 | ENTRY_BIN_EX(bts_u32, 1),
|
---|
1992 | ENTRY_BIN_EX(bts_u32_locked, 1),
|
---|
1993 | ENTRY_BIN_AMD( bsf_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1994 | ENTRY_BIN_INTEL(bsf_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1995 | ENTRY_BIN_AMD( bsr_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1996 | ENTRY_BIN_INTEL(bsr_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1997 | ENTRY_BIN_AMD( imul_two_u32, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1998 | ENTRY_BIN_INTEL(imul_two_u32, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1999 | ENTRY_BIN(adcx_u32),
|
---|
2000 | ENTRY_BIN(adox_u32),
|
---|
2001 | };
|
---|
2002 | TEST_BINARY_OPS(32, uint32_t, "%#010RX32", BINU32_TEST_T, g_aBinU32)
|
---|
2003 |
|
---|
2004 |
|
---|
2005 | /*
|
---|
2006 | * 64-bit binary operations.
|
---|
2007 | */
|
---|
2008 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2009 | static const BINU64_TEST_T g_aFixedTests_add_u64[] =
|
---|
2010 | {
|
---|
2011 | /* efl in, efl out, uDstIn, uDstOut, uSrc, uExtra */
|
---|
2012 | { UINT32_MAX, 0, 1, 0, UINT64_MAX, 0 },
|
---|
2013 | };
|
---|
2014 | #endif
|
---|
2015 | static BINU64_T g_aBinU64[] =
|
---|
2016 | {
|
---|
2017 | ENTRY_BIN_FIX(add_u64),
|
---|
2018 | ENTRY_BIN(add_u64_locked),
|
---|
2019 | ENTRY_BIN(adc_u64),
|
---|
2020 | ENTRY_BIN(adc_u64_locked),
|
---|
2021 | ENTRY_BIN(sub_u64),
|
---|
2022 | ENTRY_BIN(sub_u64_locked),
|
---|
2023 | ENTRY_BIN(sbb_u64),
|
---|
2024 | ENTRY_BIN(sbb_u64_locked),
|
---|
2025 | ENTRY_BIN(or_u64),
|
---|
2026 | ENTRY_BIN(or_u64_locked),
|
---|
2027 | ENTRY_BIN(xor_u64),
|
---|
2028 | ENTRY_BIN(xor_u64_locked),
|
---|
2029 | ENTRY_BIN(and_u64),
|
---|
2030 | ENTRY_BIN(and_u64_locked),
|
---|
2031 | ENTRY_BIN_PFN_CAST(cmp_u64, PFNIEMAIMPLBINU64),
|
---|
2032 | ENTRY_BIN_PFN_CAST(test_u64, PFNIEMAIMPLBINU64),
|
---|
2033 | ENTRY_BIN_PFN_CAST_EX(bt_u64, PFNIEMAIMPLBINU64, 1),
|
---|
2034 | ENTRY_BIN_EX(btc_u64, 1),
|
---|
2035 | ENTRY_BIN_EX(btc_u64_locked, 1),
|
---|
2036 | ENTRY_BIN_EX(btr_u64, 1),
|
---|
2037 | ENTRY_BIN_EX(btr_u64_locked, 1),
|
---|
2038 | ENTRY_BIN_EX(bts_u64, 1),
|
---|
2039 | ENTRY_BIN_EX(bts_u64_locked, 1),
|
---|
2040 | ENTRY_BIN_AMD( bsf_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
2041 | ENTRY_BIN_INTEL(bsf_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
2042 | ENTRY_BIN_AMD( bsr_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
2043 | ENTRY_BIN_INTEL(bsr_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
2044 | ENTRY_BIN_AMD( imul_two_u64, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
2045 | ENTRY_BIN_INTEL(imul_two_u64, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
2046 | ENTRY_BIN(adcx_u64),
|
---|
2047 | ENTRY_BIN(adox_u64),
|
---|
2048 | /** @todo popcnt */
|
---|
2049 | /** @todo tzcnt */
|
---|
2050 | /** @todo lzcnt */
|
---|
2051 | };
|
---|
2052 | TEST_BINARY_OPS(64, uint64_t, "%#018RX64", BINU64_TEST_T, g_aBinU64)
|
---|
2053 |
|
---|
2054 |
|
---|
2055 | /*
|
---|
2056 | * XCHG
|
---|
2057 | */
|
---|
2058 | static void XchgTest(void)
|
---|
2059 | {
|
---|
2060 | if (!SubTestAndCheckIfEnabled("xchg"))
|
---|
2061 | return;
|
---|
2062 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU8, (uint8_t *pu8Mem, uint8_t *pu8Reg));
|
---|
2063 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU16,(uint16_t *pu16Mem, uint16_t *pu16Reg));
|
---|
2064 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU32,(uint32_t *pu32Mem, uint32_t *pu32Reg));
|
---|
2065 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU64,(uint64_t *pu64Mem, uint64_t *pu64Reg));
|
---|
2066 |
|
---|
2067 | static struct
|
---|
2068 | {
|
---|
2069 | uint8_t cb; uint64_t fMask;
|
---|
2070 | union
|
---|
2071 | {
|
---|
2072 | uintptr_t pfn;
|
---|
2073 | FNIEMAIMPLXCHGU8 *pfnU8;
|
---|
2074 | FNIEMAIMPLXCHGU16 *pfnU16;
|
---|
2075 | FNIEMAIMPLXCHGU32 *pfnU32;
|
---|
2076 | FNIEMAIMPLXCHGU64 *pfnU64;
|
---|
2077 | } u;
|
---|
2078 | }
|
---|
2079 | s_aXchgWorkers[] =
|
---|
2080 | {
|
---|
2081 | { 1, UINT8_MAX, { (uintptr_t)iemAImpl_xchg_u8_locked } },
|
---|
2082 | { 2, UINT16_MAX, { (uintptr_t)iemAImpl_xchg_u16_locked } },
|
---|
2083 | { 4, UINT32_MAX, { (uintptr_t)iemAImpl_xchg_u32_locked } },
|
---|
2084 | { 8, UINT64_MAX, { (uintptr_t)iemAImpl_xchg_u64_locked } },
|
---|
2085 | { 1, UINT8_MAX, { (uintptr_t)iemAImpl_xchg_u8_unlocked } },
|
---|
2086 | { 2, UINT16_MAX, { (uintptr_t)iemAImpl_xchg_u16_unlocked } },
|
---|
2087 | { 4, UINT32_MAX, { (uintptr_t)iemAImpl_xchg_u32_unlocked } },
|
---|
2088 | { 8, UINT64_MAX, { (uintptr_t)iemAImpl_xchg_u64_unlocked } },
|
---|
2089 | };
|
---|
2090 | for (size_t i = 0; i < RT_ELEMENTS(s_aXchgWorkers); i++)
|
---|
2091 | {
|
---|
2092 | RTUINT64U uIn1, uIn2, uMem, uDst;
|
---|
2093 | uMem.u = uIn1.u = RTRandU64Ex(0, s_aXchgWorkers[i].fMask);
|
---|
2094 | uDst.u = uIn2.u = RTRandU64Ex(0, s_aXchgWorkers[i].fMask);
|
---|
2095 | if (uIn1.u == uIn2.u)
|
---|
2096 | uDst.u = uIn2.u = ~uIn2.u;
|
---|
2097 |
|
---|
2098 | switch (s_aXchgWorkers[i].cb)
|
---|
2099 | {
|
---|
2100 | case 1:
|
---|
2101 | s_aXchgWorkers[i].u.pfnU8(g_pu8, g_pu8Two);
|
---|
2102 | s_aXchgWorkers[i].u.pfnU8(&uMem.au8[0], &uDst.au8[0]);
|
---|
2103 | break;
|
---|
2104 | case 2:
|
---|
2105 | s_aXchgWorkers[i].u.pfnU16(g_pu16, g_pu16Two);
|
---|
2106 | s_aXchgWorkers[i].u.pfnU16(&uMem.Words.w0, &uDst.Words.w0);
|
---|
2107 | break;
|
---|
2108 | case 4:
|
---|
2109 | s_aXchgWorkers[i].u.pfnU32(g_pu32, g_pu32Two);
|
---|
2110 | s_aXchgWorkers[i].u.pfnU32(&uMem.DWords.dw0, &uDst.DWords.dw0);
|
---|
2111 | break;
|
---|
2112 | case 8:
|
---|
2113 | s_aXchgWorkers[i].u.pfnU64(g_pu64, g_pu64Two);
|
---|
2114 | s_aXchgWorkers[i].u.pfnU64(&uMem.u, &uDst.u);
|
---|
2115 | break;
|
---|
2116 | default: RTTestFailed(g_hTest, "%d\n", s_aXchgWorkers[i].cb); break;
|
---|
2117 | }
|
---|
2118 |
|
---|
2119 | if (uMem.u != uIn2.u || uDst.u != uIn1.u)
|
---|
2120 | RTTestFailed(g_hTest, "i=%u: %#RX64, %#RX64 -> %#RX64, %#RX64\n", i, uIn1.u, uIn2.u, uMem.u, uDst.u);
|
---|
2121 | }
|
---|
2122 | }
|
---|
2123 |
|
---|
2124 |
|
---|
2125 | /*
|
---|
2126 | * XADD
|
---|
2127 | */
|
---|
2128 | static void XaddTest(void)
|
---|
2129 | {
|
---|
2130 | #define TEST_XADD(a_cBits, a_Type, a_Fmt) do { \
|
---|
2131 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXADDU ## a_cBits, (a_Type *, a_Type *, uint32_t *)); \
|
---|
2132 | static struct \
|
---|
2133 | { \
|
---|
2134 | const char * const pszName; \
|
---|
2135 | FNIEMAIMPLXADDU ## a_cBits * const pfn; \
|
---|
2136 | void const * const pvCompressedTests; \
|
---|
2137 | uint32_t const * const pcbCompressedTests; \
|
---|
2138 | BINU ## a_cBits ## _TEST_T const *paTests; \
|
---|
2139 | uint32_t cTests; \
|
---|
2140 | IEMTESTENTRYINFO Info; \
|
---|
2141 | } s_aFuncs[] = \
|
---|
2142 | { \
|
---|
2143 | { "xadd_u" # a_cBits, iemAImpl_xadd_u ## a_cBits, \
|
---|
2144 | g_abTests_add_u ## a_cBits, &g_cbTests_add_u ## a_cBits }, \
|
---|
2145 | { "xadd_u" # a_cBits "8_locked", iemAImpl_xadd_u ## a_cBits ## _locked, \
|
---|
2146 | g_abTests_add_u ## a_cBits, &g_cbTests_add_u ## a_cBits }, \
|
---|
2147 | }; \
|
---|
2148 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) \
|
---|
2149 | { \
|
---|
2150 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(s_aFuncs[iFn])) continue; \
|
---|
2151 | BINU ## a_cBits ## _TEST_T const * const paTests = s_aFuncs[iFn].paTests; \
|
---|
2152 | uint32_t const cTests = s_aFuncs[iFn].cTests; \
|
---|
2153 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2154 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
2155 | { \
|
---|
2156 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2157 | a_Type uSrc = paTests[iTest].uSrcIn; \
|
---|
2158 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
2159 | s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uSrc, &fEfl); \
|
---|
2160 | if ( fEfl != paTests[iTest].fEflOut \
|
---|
2161 | || *g_pu ## a_cBits != paTests[iTest].uDstOut \
|
---|
2162 | || uSrc != paTests[iTest].uDstIn) \
|
---|
2163 | RTTestFailed(g_hTest, "%s/#%u: efl=%#08x dst=" a_Fmt " src=" a_Fmt " -> efl=%#08x dst=" a_Fmt " src=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \
|
---|
2164 | s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, \
|
---|
2165 | fEfl, *g_pu ## a_cBits, uSrc, paTests[iTest].fEflOut, paTests[iTest].uDstOut, paTests[iTest].uDstIn, \
|
---|
2166 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
2167 | } \
|
---|
2168 | FREE_DECOMPRESSED_TESTS(s_aFuncs[iFn]); \
|
---|
2169 | } \
|
---|
2170 | } while(0)
|
---|
2171 | TEST_XADD(8, uint8_t, "%#04x");
|
---|
2172 | TEST_XADD(16, uint16_t, "%#06x");
|
---|
2173 | TEST_XADD(32, uint32_t, "%#010RX32");
|
---|
2174 | TEST_XADD(64, uint64_t, "%#010RX64");
|
---|
2175 | }
|
---|
2176 |
|
---|
2177 |
|
---|
2178 | /*
|
---|
2179 | * CMPXCHG
|
---|
2180 | */
|
---|
2181 |
|
---|
2182 | static void CmpXchgTest(void)
|
---|
2183 | {
|
---|
2184 | #define TEST_CMPXCHG(a_cBits, a_Type, a_Fmt) do {\
|
---|
2185 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHGU ## a_cBits, (a_Type *, a_Type *, a_Type, uint32_t *)); \
|
---|
2186 | static struct \
|
---|
2187 | { \
|
---|
2188 | const char * const pszName; \
|
---|
2189 | FNIEMAIMPLCMPXCHGU ## a_cBits * const pfn; \
|
---|
2190 | PFNIEMAIMPLBINU ## a_cBits const pfnSub; \
|
---|
2191 | void const * const pvCompressedTests; \
|
---|
2192 | uint32_t const * const pcbCompressedTests; \
|
---|
2193 | BINU ## a_cBits ## _TEST_T const *paTests; \
|
---|
2194 | uint32_t cTests; \
|
---|
2195 | IEMTESTENTRYINFO Info; \
|
---|
2196 | } s_aFuncs[] = \
|
---|
2197 | { \
|
---|
2198 | { "cmpxchg_u" # a_cBits, iemAImpl_cmpxchg_u ## a_cBits, iemAImpl_sub_u ## a_cBits, \
|
---|
2199 | g_abTests_cmp_u ## a_cBits, &g_cbTests_cmp_u ## a_cBits }, \
|
---|
2200 | { "cmpxchg_u" # a_cBits "_locked", iemAImpl_cmpxchg_u ## a_cBits ## _locked, iemAImpl_sub_u ## a_cBits, \
|
---|
2201 | g_abTests_cmp_u ## a_cBits, &g_cbTests_cmp_u ## a_cBits }, \
|
---|
2202 | }; \
|
---|
2203 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) \
|
---|
2204 | { \
|
---|
2205 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(s_aFuncs[iFn])) continue; \
|
---|
2206 | BINU ## a_cBits ## _TEST_T const * const paTests = s_aFuncs[iFn].paTests; \
|
---|
2207 | uint32_t const cTests = s_aFuncs[iFn].cTests; \
|
---|
2208 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2209 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
2210 | { \
|
---|
2211 | /* as is (99% likely to be negative). */ \
|
---|
2212 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2213 | a_Type const uNew = paTests[iTest].uSrcIn + 0x42; \
|
---|
2214 | a_Type uA = paTests[iTest].uDstIn; \
|
---|
2215 | *g_pu ## a_cBits = paTests[iTest].uSrcIn; \
|
---|
2216 | a_Type const uExpect = uA != paTests[iTest].uSrcIn ? paTests[iTest].uSrcIn : uNew; \
|
---|
2217 | s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uA, uNew, &fEfl); \
|
---|
2218 | if ( fEfl != paTests[iTest].fEflOut \
|
---|
2219 | || *g_pu ## a_cBits != uExpect \
|
---|
2220 | || uA != paTests[iTest].uSrcIn) \
|
---|
2221 | RTTestFailed(g_hTest, "%s/#%ua: efl=%#08x dst=" a_Fmt " cmp=" a_Fmt " new=" a_Fmt " -> efl=%#08x dst=" a_Fmt " old=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \
|
---|
2222 | s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uSrcIn, paTests[iTest].uDstIn, \
|
---|
2223 | uNew, fEfl, *g_pu ## a_cBits, uA, paTests[iTest].fEflOut, uExpect, paTests[iTest].uSrcIn, \
|
---|
2224 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
2225 | /* positive */ \
|
---|
2226 | uA = paTests[iTest].uDstIn; \
|
---|
2227 | uint32_t fEflExpect = s_aFuncs[iFn].pfnSub(paTests[iTest].fEflIn, &uA, uA); \
|
---|
2228 | fEfl = paTests[iTest].fEflIn; \
|
---|
2229 | uA = paTests[iTest].uDstIn; \
|
---|
2230 | *g_pu ## a_cBits = uA; \
|
---|
2231 | s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uA, uNew, &fEfl); \
|
---|
2232 | if ( fEfl != fEflExpect \
|
---|
2233 | || *g_pu ## a_cBits != uNew \
|
---|
2234 | || uA != paTests[iTest].uDstIn) \
|
---|
2235 | RTTestFailed(g_hTest, "%s/#%ua: efl=%#08x dst=" a_Fmt " cmp=" a_Fmt " new=" a_Fmt " -> efl=%#08x dst=" a_Fmt " old=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \
|
---|
2236 | s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uDstIn, \
|
---|
2237 | uNew, fEfl, *g_pu ## a_cBits, uA, fEflExpect, uNew, paTests[iTest].uDstIn, \
|
---|
2238 | EFlagsDiff(fEfl, fEflExpect)); \
|
---|
2239 | } \
|
---|
2240 | FREE_DECOMPRESSED_TESTS(s_aFuncs[iFn]); \
|
---|
2241 | } \
|
---|
2242 | } while(0)
|
---|
2243 | TEST_CMPXCHG(8, uint8_t, "%#04RX8");
|
---|
2244 | TEST_CMPXCHG(16, uint16_t, "%#06x");
|
---|
2245 | TEST_CMPXCHG(32, uint32_t, "%#010RX32");
|
---|
2246 | #if ARCH_BITS != 32 /* calling convension issue, skipping as it's an unsupported host */
|
---|
2247 | TEST_CMPXCHG(64, uint64_t, "%#010RX64");
|
---|
2248 | #endif
|
---|
2249 | }
|
---|
2250 |
|
---|
2251 |
|
---|
2252 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHG8B,(uint64_t *, PRTUINT64U, PRTUINT64U, uint32_t *));
|
---|
2253 |
|
---|
2254 | static uint64_t CmpXchg8bBench(uint32_t cIterations, FNIEMAIMPLCMPXCHG8B *pfn, uint64_t const uDstValue,
|
---|
2255 | uint64_t const uOldValue, uint64_t const uNewValue, uint32_t const fEflIn)
|
---|
2256 | {
|
---|
2257 | cIterations /= 4;
|
---|
2258 | RTThreadYield();
|
---|
2259 | uint64_t const nsStart = RTTimeNanoTS();
|
---|
2260 | for (uint32_t i = 0; i < cIterations; i++)
|
---|
2261 | {
|
---|
2262 | RTUINT64U uA, uB;
|
---|
2263 | uint32_t fEfl = fEflIn;
|
---|
2264 | uint64_t uDst = uDstValue;
|
---|
2265 | uB.u = uNewValue;
|
---|
2266 | uA.u = uOldValue;
|
---|
2267 | pfn(&uDst, &uA, &uB, &fEfl);
|
---|
2268 |
|
---|
2269 | fEfl = fEflIn;
|
---|
2270 | uDst = uDstValue;
|
---|
2271 | uB.u = uNewValue;
|
---|
2272 | uA.u = uOldValue;
|
---|
2273 | pfn(&uDst, &uA, &uB, &fEfl);
|
---|
2274 |
|
---|
2275 | fEfl = fEflIn;
|
---|
2276 | uDst = uDstValue;
|
---|
2277 | uB.u = uNewValue;
|
---|
2278 | uA.u = uOldValue;
|
---|
2279 | pfn(&uDst, &uA, &uB, &fEfl);
|
---|
2280 |
|
---|
2281 | fEfl = fEflIn;
|
---|
2282 | uDst = uDstValue;
|
---|
2283 | uB.u = uNewValue;
|
---|
2284 | uA.u = uOldValue;
|
---|
2285 | pfn(&uDst, &uA, &uB, &fEfl);
|
---|
2286 | }
|
---|
2287 | return RTTimeNanoTS() - nsStart;
|
---|
2288 | }
|
---|
2289 |
|
---|
2290 | static void CmpXchg8bTest(void)
|
---|
2291 | {
|
---|
2292 | static struct
|
---|
2293 | {
|
---|
2294 | const char *pszName;
|
---|
2295 | FNIEMAIMPLCMPXCHG8B *pfn;
|
---|
2296 | } const s_aFuncs[] =
|
---|
2297 | {
|
---|
2298 | { "cmpxchg8b", iemAImpl_cmpxchg8b },
|
---|
2299 | { "cmpxchg8b_locked", iemAImpl_cmpxchg8b_locked },
|
---|
2300 | };
|
---|
2301 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++)
|
---|
2302 | {
|
---|
2303 | if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName))
|
---|
2304 | continue;
|
---|
2305 | for (uint32_t iTest = 0; iTest < 4; iTest += 2)
|
---|
2306 | {
|
---|
2307 | uint64_t const uOldValue = RandU64();
|
---|
2308 | uint64_t const uNewValue = RandU64();
|
---|
2309 |
|
---|
2310 | /* positive test. */
|
---|
2311 | RTUINT64U uA, uB;
|
---|
2312 | uB.u = uNewValue;
|
---|
2313 | uA.u = uOldValue;
|
---|
2314 | *g_pu64 = uOldValue;
|
---|
2315 | uint32_t fEflIn = RandEFlags();
|
---|
2316 | uint32_t fEfl = fEflIn;
|
---|
2317 | s_aFuncs[iFn].pfn(g_pu64, &uA, &uB, &fEfl);
|
---|
2318 | if ( fEfl != (fEflIn | X86_EFL_ZF)
|
---|
2319 | || *g_pu64 != uNewValue
|
---|
2320 | || uA.u != uOldValue)
|
---|
2321 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64 cmp=%#018RX64 new=%#018RX64\n -> efl=%#08x dst=%#018RX64 old=%#018RX64,\n wanted %#08x, %#018RX64, %#018RX64%s\n",
|
---|
2322 | iTest, fEflIn, uOldValue, uOldValue, uNewValue,
|
---|
2323 | fEfl, *g_pu64, uA.u,
|
---|
2324 | (fEflIn | X86_EFL_ZF), uNewValue, uOldValue, EFlagsDiff(fEfl, fEflIn | X86_EFL_ZF));
|
---|
2325 | RTTEST_CHECK(g_hTest, uB.u == uNewValue);
|
---|
2326 |
|
---|
2327 | /* negative */
|
---|
2328 | uint64_t const uExpect = ~uOldValue;
|
---|
2329 | *g_pu64 = uExpect;
|
---|
2330 | uA.u = uOldValue;
|
---|
2331 | uB.u = uNewValue;
|
---|
2332 | fEfl = fEflIn = RandEFlags();
|
---|
2333 | s_aFuncs[iFn].pfn(g_pu64, &uA, &uB, &fEfl);
|
---|
2334 | if ( fEfl != (fEflIn & ~X86_EFL_ZF)
|
---|
2335 | || *g_pu64 != uExpect
|
---|
2336 | || uA.u != uExpect)
|
---|
2337 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64 cmp=%#018RX64 new=%#018RX64\n -> efl=%#08x dst=%#018RX64 old=%#018RX64,\n wanted %#08x, %#018RX64, %#018RX64%s\n",
|
---|
2338 | iTest + 1, fEflIn, uExpect, uOldValue, uNewValue,
|
---|
2339 | fEfl, *g_pu64, uA.u,
|
---|
2340 | (fEflIn & ~X86_EFL_ZF), uExpect, uExpect, EFlagsDiff(fEfl, fEflIn & ~X86_EFL_ZF));
|
---|
2341 | RTTEST_CHECK(g_hTest, uB.u == uNewValue);
|
---|
2342 |
|
---|
2343 | if (iTest == 2 && g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0)
|
---|
2344 | {
|
---|
2345 | uint32_t cIterations = EstimateIterations(_64K, CmpXchg8bBench(_64K, s_aFuncs[iFn].pfn,
|
---|
2346 | uOldValue, uOldValue, uNewValue, fEflIn));
|
---|
2347 | uint64_t cNsRealRun = CmpXchg8bBench(cIterations, s_aFuncs[iFn].pfn, uOldValue, uOldValue, uNewValue, fEflIn);
|
---|
2348 | RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL,
|
---|
2349 | "%s-positive", s_aFuncs[iFn].pszName);
|
---|
2350 |
|
---|
2351 | cIterations = EstimateIterations(_64K, CmpXchg8bBench(_64K, s_aFuncs[iFn].pfn,
|
---|
2352 | ~uOldValue, uOldValue, uNewValue, fEflIn));
|
---|
2353 | cNsRealRun = CmpXchg8bBench(cIterations, s_aFuncs[iFn].pfn, ~uOldValue, uOldValue, uNewValue, fEflIn);
|
---|
2354 | RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL,
|
---|
2355 | "%s-negative", s_aFuncs[iFn].pszName);
|
---|
2356 | }
|
---|
2357 | }
|
---|
2358 | }
|
---|
2359 | }
|
---|
2360 |
|
---|
2361 | static void CmpXchg16bTest(void)
|
---|
2362 | {
|
---|
2363 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHG16B,(PRTUINT128U, PRTUINT128U, PRTUINT128U, uint32_t *));
|
---|
2364 | static struct
|
---|
2365 | {
|
---|
2366 | const char *pszName;
|
---|
2367 | FNIEMAIMPLCMPXCHG16B *pfn;
|
---|
2368 | } const s_aFuncs[] =
|
---|
2369 | {
|
---|
2370 | { "cmpxchg16b", iemAImpl_cmpxchg16b },
|
---|
2371 | { "cmpxchg16b_locked", iemAImpl_cmpxchg16b_locked },
|
---|
2372 | #if !defined(RT_ARCH_ARM64)
|
---|
2373 | { "cmpxchg16b_fallback", iemAImpl_cmpxchg16b_fallback },
|
---|
2374 | #endif
|
---|
2375 | };
|
---|
2376 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++)
|
---|
2377 | {
|
---|
2378 | if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName))
|
---|
2379 | continue;
|
---|
2380 | #if !defined(IEM_WITHOUT_ASSEMBLY) && defined(RT_ARCH_AMD64)
|
---|
2381 | if (!(ASMCpuId_ECX(1) & X86_CPUID_FEATURE_ECX_CX16))
|
---|
2382 | {
|
---|
2383 | RTTestSkipped(g_hTest, "no hardware cmpxchg16b");
|
---|
2384 | continue;
|
---|
2385 | }
|
---|
2386 | #endif
|
---|
2387 | for (uint32_t iTest = 0; iTest < 4; iTest += 2)
|
---|
2388 | {
|
---|
2389 | RTUINT128U const uOldValue = RandU128();
|
---|
2390 | RTUINT128U const uNewValue = RandU128();
|
---|
2391 |
|
---|
2392 | /* positive test. */
|
---|
2393 | RTUINT128U uA, uB;
|
---|
2394 | uB = uNewValue;
|
---|
2395 | uA = uOldValue;
|
---|
2396 | *g_pu128 = uOldValue;
|
---|
2397 | uint32_t fEflIn = RandEFlags();
|
---|
2398 | uint32_t fEfl = fEflIn;
|
---|
2399 | s_aFuncs[iFn].pfn(g_pu128, &uA, &uB, &fEfl);
|
---|
2400 | if ( fEfl != (fEflIn | X86_EFL_ZF)
|
---|
2401 | || g_pu128->s.Lo != uNewValue.s.Lo
|
---|
2402 | || g_pu128->s.Hi != uNewValue.s.Hi
|
---|
2403 | || uA.s.Lo != uOldValue.s.Lo
|
---|
2404 | || uA.s.Hi != uOldValue.s.Hi)
|
---|
2405 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64'%016RX64 cmp=%#018RX64'%016RX64 new=%#018RX64'%016RX64\n"
|
---|
2406 | " -> efl=%#08x dst=%#018RX64'%016RX64 old=%#018RX64'%016RX64,\n"
|
---|
2407 | " wanted %#08x, %#018RX64'%016RX64, %#018RX64'%016RX64%s\n",
|
---|
2408 | iTest, fEflIn, uOldValue.s.Hi, uOldValue.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, uNewValue.s.Hi, uNewValue.s.Lo,
|
---|
2409 | fEfl, g_pu128->s.Hi, g_pu128->s.Lo, uA.s.Hi, uA.s.Lo,
|
---|
2410 | (fEflIn | X86_EFL_ZF), uNewValue.s.Hi, uNewValue.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo,
|
---|
2411 | EFlagsDiff(fEfl, fEflIn | X86_EFL_ZF));
|
---|
2412 | RTTEST_CHECK(g_hTest, uB.s.Lo == uNewValue.s.Lo && uB.s.Hi == uNewValue.s.Hi);
|
---|
2413 |
|
---|
2414 | /* negative */
|
---|
2415 | RTUINT128U const uExpect = RTUINT128_INIT(~uOldValue.s.Hi, ~uOldValue.s.Lo);
|
---|
2416 | *g_pu128 = uExpect;
|
---|
2417 | uA = uOldValue;
|
---|
2418 | uB = uNewValue;
|
---|
2419 | fEfl = fEflIn = RandEFlags();
|
---|
2420 | s_aFuncs[iFn].pfn(g_pu128, &uA, &uB, &fEfl);
|
---|
2421 | if ( fEfl != (fEflIn & ~X86_EFL_ZF)
|
---|
2422 | || g_pu128->s.Lo != uExpect.s.Lo
|
---|
2423 | || g_pu128->s.Hi != uExpect.s.Hi
|
---|
2424 | || uA.s.Lo != uExpect.s.Lo
|
---|
2425 | || uA.s.Hi != uExpect.s.Hi)
|
---|
2426 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64'%016RX64 cmp=%#018RX64'%016RX64 new=%#018RX64'%016RX64\n"
|
---|
2427 | " -> efl=%#08x dst=%#018RX64'%016RX64 old=%#018RX64'%016RX64,\n"
|
---|
2428 | " wanted %#08x, %#018RX64'%016RX64, %#018RX64'%016RX64%s\n",
|
---|
2429 | iTest + 1, fEflIn, uExpect.s.Hi, uExpect.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, uNewValue.s.Hi, uNewValue.s.Lo,
|
---|
2430 | fEfl, g_pu128->s.Hi, g_pu128->s.Lo, uA.s.Hi, uA.s.Lo,
|
---|
2431 | (fEflIn & ~X86_EFL_ZF), uExpect.s.Hi, uExpect.s.Lo, uExpect.s.Hi, uExpect.s.Lo,
|
---|
2432 | EFlagsDiff(fEfl, fEflIn & ~X86_EFL_ZF));
|
---|
2433 | RTTEST_CHECK(g_hTest, uB.s.Lo == uNewValue.s.Lo && uB.s.Hi == uNewValue.s.Hi);
|
---|
2434 | }
|
---|
2435 | }
|
---|
2436 | }
|
---|
2437 |
|
---|
2438 |
|
---|
2439 | /*
|
---|
2440 | * Double shifts.
|
---|
2441 | *
|
---|
2442 | * Note! We use BINUxx_TEST_T with the shift value in the uMisc field.
|
---|
2443 | */
|
---|
2444 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2445 | # define GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2446 | static RTEXITCODE ShiftDblU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \
|
---|
2447 | { \
|
---|
2448 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2449 | { \
|
---|
2450 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
2451 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
2452 | continue; \
|
---|
2453 | IEMBINARYOUTPUT BinOut; \
|
---|
2454 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
2455 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2456 | { \
|
---|
2457 | a_TestType Test; \
|
---|
2458 | Test.fEflIn = RandEFlags(); \
|
---|
2459 | Test.fEflOut = Test.fEflIn; \
|
---|
2460 | Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \
|
---|
2461 | Test.uDstOut = Test.uDstIn; \
|
---|
2462 | Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \
|
---|
2463 | Test.uMisc = RandU8() & (a_cBits * 4 - 1); /* need to go way beyond the a_cBits limit */ \
|
---|
2464 | a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, Test.uMisc, &Test.fEflOut); \
|
---|
2465 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
2466 | } \
|
---|
2467 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
2468 | } \
|
---|
2469 | return RTEXITCODE_SUCCESS; \
|
---|
2470 | } \
|
---|
2471 | DUMP_ALL_FN(ShiftDblU ## a_cBits, a_aSubTests)
|
---|
2472 |
|
---|
2473 | #else
|
---|
2474 | # define GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests)
|
---|
2475 | #endif
|
---|
2476 |
|
---|
2477 | #define TEST_SHIFT_DBL(a_cBits, a_uType, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \
|
---|
2478 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLSHIFTDBLU ## a_cBits); \
|
---|
2479 | \
|
---|
2480 | static a_SubTestType a_aSubTests[] = \
|
---|
2481 | { \
|
---|
2482 | ENTRY_BIN_AMD(shld_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
2483 | ENTRY_BIN_INTEL(shld_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
2484 | ENTRY_BIN_AMD(shrd_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
2485 | ENTRY_BIN_INTEL(shrd_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
2486 | }; \
|
---|
2487 | \
|
---|
2488 | GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2489 | \
|
---|
2490 | static uint64_t ShiftDblU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLSHIFTDBLU ## a_cBits pfn, a_TestType const *pEntry) \
|
---|
2491 | { \
|
---|
2492 | uint32_t const fEflIn = pEntry->fEflIn; \
|
---|
2493 | a_uType const uDstIn = pEntry->uDstIn; \
|
---|
2494 | a_uType const uSrcIn = pEntry->uSrcIn; \
|
---|
2495 | a_uType const cShift = pEntry->uMisc; \
|
---|
2496 | cIterations /= 4; \
|
---|
2497 | RTThreadYield(); \
|
---|
2498 | uint64_t const nsStart = RTTimeNanoTS(); \
|
---|
2499 | for (uint32_t i = 0; i < cIterations; i++) \
|
---|
2500 | { \
|
---|
2501 | uint32_t fBenchEfl = fEflIn; \
|
---|
2502 | a_uType uBenchDst = uDstIn; \
|
---|
2503 | pfn(&uBenchDst, uSrcIn, cShift, &fBenchEfl); \
|
---|
2504 | \
|
---|
2505 | fBenchEfl = fEflIn; \
|
---|
2506 | uBenchDst = uDstIn; \
|
---|
2507 | pfn(&uBenchDst, uSrcIn, cShift, &fBenchEfl); \
|
---|
2508 | \
|
---|
2509 | fBenchEfl = fEflIn; \
|
---|
2510 | uBenchDst = uDstIn; \
|
---|
2511 | pfn(&uBenchDst, uSrcIn, cShift, &fBenchEfl); \
|
---|
2512 | \
|
---|
2513 | fBenchEfl = fEflIn; \
|
---|
2514 | uBenchDst = uDstIn; \
|
---|
2515 | pfn(&uBenchDst, uSrcIn, cShift, &fBenchEfl); \
|
---|
2516 | } \
|
---|
2517 | return RTTimeNanoTS() - nsStart; \
|
---|
2518 | } \
|
---|
2519 | \
|
---|
2520 | static void ShiftDblU ## a_cBits ## Test(void) \
|
---|
2521 | { \
|
---|
2522 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2523 | { \
|
---|
2524 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
2525 | continue; \
|
---|
2526 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2527 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
2528 | PFNIEMAIMPLSHIFTDBLU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
2529 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
2530 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2531 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
2532 | { \
|
---|
2533 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2534 | { \
|
---|
2535 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2536 | a_uType uDst = paTests[iTest].uDstIn; \
|
---|
2537 | pfn(&uDst, paTests[iTest].uSrcIn, paTests[iTest].uMisc, &fEfl); \
|
---|
2538 | if ( uDst != paTests[iTest].uDstOut \
|
---|
2539 | || fEfl != paTests[iTest].fEflOut) \
|
---|
2540 | RTTestFailed(g_hTest, "#%03u%s: efl=%#08x dst=" a_Fmt " src=" a_Fmt " shift=%-2u -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s%s\n", \
|
---|
2541 | iTest, iVar == 0 ? "" : "/n", paTests[iTest].fEflIn, \
|
---|
2542 | paTests[iTest].uDstIn, paTests[iTest].uSrcIn, (unsigned)paTests[iTest].uMisc, \
|
---|
2543 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
2544 | EFlagsDiff(fEfl, paTests[iTest].fEflOut), uDst == paTests[iTest].uDstOut ? "" : " dst!"); \
|
---|
2545 | else \
|
---|
2546 | { \
|
---|
2547 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
2548 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
2549 | pfn(g_pu ## a_cBits, paTests[iTest].uSrcIn, paTests[iTest].uMisc, g_pfEfl); \
|
---|
2550 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
2551 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
2552 | } \
|
---|
2553 | } \
|
---|
2554 | \
|
---|
2555 | /* Benchmark if all succeeded. */ \
|
---|
2556 | if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \
|
---|
2557 | { \
|
---|
2558 | uint32_t const iTest = cTests / 2; \
|
---|
2559 | uint32_t const cIterations = EstimateIterations(_64K, ShiftDblU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \
|
---|
2560 | uint64_t const cNsRealRun = ShiftDblU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \
|
---|
2561 | RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, \
|
---|
2562 | "%s%s", a_aSubTests[iFn].pszName, iVar ? "-native" : ""); \
|
---|
2563 | } \
|
---|
2564 | \
|
---|
2565 | /* Next variation is native. */ \
|
---|
2566 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
2567 | } \
|
---|
2568 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
2569 | } \
|
---|
2570 | }
|
---|
2571 | TEST_SHIFT_DBL(16, uint16_t, "%#06RX16", BINU16_TEST_T, SHIFT_DBL_U16_T, g_aShiftDblU16)
|
---|
2572 | TEST_SHIFT_DBL(32, uint32_t, "%#010RX32", BINU32_TEST_T, SHIFT_DBL_U32_T, g_aShiftDblU32)
|
---|
2573 | TEST_SHIFT_DBL(64, uint64_t, "%#018RX64", BINU64_TEST_T, SHIFT_DBL_U64_T, g_aShiftDblU64)
|
---|
2574 |
|
---|
2575 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2576 | static RTEXITCODE ShiftDblGenerate(uint32_t cTests, const char * const * papszNameFmts)
|
---|
2577 | {
|
---|
2578 | RTEXITCODE rcExit = ShiftDblU16Generate(cTests, papszNameFmts);
|
---|
2579 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2580 | rcExit = ShiftDblU32Generate(cTests, papszNameFmts);
|
---|
2581 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2582 | rcExit = ShiftDblU64Generate(cTests, papszNameFmts);
|
---|
2583 | return rcExit;
|
---|
2584 | }
|
---|
2585 |
|
---|
2586 | static RTEXITCODE ShiftDblDumpAll(const char * const * papszNameFmts)
|
---|
2587 | {
|
---|
2588 | RTEXITCODE rcExit = ShiftDblU16DumpAll(papszNameFmts);
|
---|
2589 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2590 | rcExit = ShiftDblU32DumpAll(papszNameFmts);
|
---|
2591 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2592 | rcExit = ShiftDblU64DumpAll(papszNameFmts);
|
---|
2593 | return rcExit;
|
---|
2594 | }
|
---|
2595 | #endif
|
---|
2596 |
|
---|
2597 | static void ShiftDblTest(void)
|
---|
2598 | {
|
---|
2599 | ShiftDblU16Test();
|
---|
2600 | ShiftDblU32Test();
|
---|
2601 | ShiftDblU64Test();
|
---|
2602 | }
|
---|
2603 |
|
---|
2604 |
|
---|
2605 | /*
|
---|
2606 | * Unary operators.
|
---|
2607 | *
|
---|
2608 | * Note! We use BINUxx_TEST_T ignoreing uSrcIn and uMisc.
|
---|
2609 | */
|
---|
2610 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2611 | # define GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \
|
---|
2612 | static RTEXITCODE UnaryU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \
|
---|
2613 | { \
|
---|
2614 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aUnaryU ## a_cBits); iFn++) \
|
---|
2615 | { \
|
---|
2616 | IEMBINARYOUTPUT BinOut; \
|
---|
2617 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aUnaryU ## a_cBits[iFn]), RTEXITCODE_FAILURE); \
|
---|
2618 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2619 | { \
|
---|
2620 | a_TestType Test; \
|
---|
2621 | Test.fEflIn = RandEFlags(); \
|
---|
2622 | Test.fEflOut = Test.fEflIn; \
|
---|
2623 | Test.uDstIn = RandU ## a_cBits(); \
|
---|
2624 | Test.uDstOut = Test.uDstIn; \
|
---|
2625 | Test.uSrcIn = 0; \
|
---|
2626 | Test.uMisc = 0; \
|
---|
2627 | g_aUnaryU ## a_cBits[iFn].pfn(&Test.uDstOut, &Test.fEflOut); \
|
---|
2628 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
2629 | } \
|
---|
2630 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
2631 | } \
|
---|
2632 | return RTEXITCODE_SUCCESS; \
|
---|
2633 | } \
|
---|
2634 | DUMP_ALL_FN(UnaryU ## a_cBits, g_aUnaryU ## a_cBits)
|
---|
2635 | #else
|
---|
2636 | # define GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType)
|
---|
2637 | #endif
|
---|
2638 |
|
---|
2639 | #define TEST_UNARY(a_cBits, a_uType, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \
|
---|
2640 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLUNARYU ## a_cBits); \
|
---|
2641 | static a_SubTestType a_aSubTests[] = \
|
---|
2642 | { \
|
---|
2643 | ENTRY_BIN(inc_u ## a_cBits), \
|
---|
2644 | ENTRY_BIN(inc_u ## a_cBits ## _locked), \
|
---|
2645 | ENTRY_BIN(dec_u ## a_cBits), \
|
---|
2646 | ENTRY_BIN(dec_u ## a_cBits ## _locked), \
|
---|
2647 | ENTRY_BIN(not_u ## a_cBits), \
|
---|
2648 | ENTRY_BIN(not_u ## a_cBits ## _locked), \
|
---|
2649 | ENTRY_BIN(neg_u ## a_cBits), \
|
---|
2650 | ENTRY_BIN(neg_u ## a_cBits ## _locked), \
|
---|
2651 | }; \
|
---|
2652 | \
|
---|
2653 | GEN_UNARY(a_cBits, a_uType, a_Fmt, a_TestType, a_SubTestType) \
|
---|
2654 | \
|
---|
2655 | static uint64_t UnaryU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLUNARYU ## a_cBits pfn, a_TestType const *pEntry) \
|
---|
2656 | { \
|
---|
2657 | uint32_t const fEflIn = pEntry->fEflIn; \
|
---|
2658 | a_uType const uDstIn = pEntry->uDstIn; \
|
---|
2659 | cIterations /= 4; \
|
---|
2660 | RTThreadYield(); \
|
---|
2661 | uint64_t const nsStart = RTTimeNanoTS(); \
|
---|
2662 | for (uint32_t i = 0; i < cIterations; i++) \
|
---|
2663 | { \
|
---|
2664 | uint32_t fBenchEfl = fEflIn; \
|
---|
2665 | a_uType uBenchDst = uDstIn; \
|
---|
2666 | pfn(&uBenchDst, &fBenchEfl); \
|
---|
2667 | \
|
---|
2668 | fBenchEfl = fEflIn; \
|
---|
2669 | uBenchDst = uDstIn; \
|
---|
2670 | pfn(&uBenchDst, &fBenchEfl); \
|
---|
2671 | \
|
---|
2672 | fBenchEfl = fEflIn; \
|
---|
2673 | uBenchDst = uDstIn; \
|
---|
2674 | pfn(&uBenchDst, &fBenchEfl); \
|
---|
2675 | \
|
---|
2676 | fBenchEfl = fEflIn; \
|
---|
2677 | uBenchDst = uDstIn; \
|
---|
2678 | pfn(&uBenchDst, &fBenchEfl); \
|
---|
2679 | } \
|
---|
2680 | return RTTimeNanoTS() - nsStart; \
|
---|
2681 | } \
|
---|
2682 | \
|
---|
2683 | static void UnaryU ## a_cBits ## Test(void) \
|
---|
2684 | { \
|
---|
2685 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2686 | { \
|
---|
2687 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
2688 | continue; \
|
---|
2689 | PFNIEMAIMPLUNARYU ## a_cBits const pfn = a_aSubTests[iFn].pfn; \
|
---|
2690 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2691 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
2692 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2693 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2694 | { \
|
---|
2695 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2696 | a_uType uDst = paTests[iTest].uDstIn; \
|
---|
2697 | pfn(&uDst, &fEfl); \
|
---|
2698 | if ( uDst != paTests[iTest].uDstOut \
|
---|
2699 | || fEfl != paTests[iTest].fEflOut) \
|
---|
2700 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=" a_Fmt " -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s\n", \
|
---|
2701 | iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, \
|
---|
2702 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
2703 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
2704 | else \
|
---|
2705 | { \
|
---|
2706 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
2707 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
2708 | pfn(g_pu ## a_cBits, g_pfEfl); \
|
---|
2709 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
2710 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
2711 | } \
|
---|
2712 | } \
|
---|
2713 | \
|
---|
2714 | if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \
|
---|
2715 | { \
|
---|
2716 | uint32_t const iTest = cTests / 2; \
|
---|
2717 | uint32_t const cIterations = EstimateIterations(_64K, UnaryU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \
|
---|
2718 | uint64_t const cNsRealRun = UnaryU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \
|
---|
2719 | RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, "%s", a_aSubTests[iFn].pszName); \
|
---|
2720 | } \
|
---|
2721 | \
|
---|
2722 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
2723 | } \
|
---|
2724 | }
|
---|
2725 | TEST_UNARY(8, uint8_t, "%#04RX8", BINU8_TEST_T, INT_UNARY_U8_T, g_aUnaryU8)
|
---|
2726 | TEST_UNARY(16, uint16_t, "%#06RX16", BINU16_TEST_T, INT_UNARY_U16_T, g_aUnaryU16)
|
---|
2727 | TEST_UNARY(32, uint32_t, "%#010RX32", BINU32_TEST_T, INT_UNARY_U32_T, g_aUnaryU32)
|
---|
2728 | TEST_UNARY(64, uint64_t, "%#018RX64", BINU64_TEST_T, INT_UNARY_U64_T, g_aUnaryU64)
|
---|
2729 |
|
---|
2730 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2731 | static RTEXITCODE UnaryGenerate(uint32_t cTests, const char * const * papszNameFmts)
|
---|
2732 | {
|
---|
2733 | RTEXITCODE rcExit = UnaryU8Generate(cTests, papszNameFmts);
|
---|
2734 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2735 | rcExit = UnaryU16Generate(cTests, papszNameFmts);
|
---|
2736 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2737 | rcExit = UnaryU32Generate(cTests, papszNameFmts);
|
---|
2738 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2739 | rcExit = UnaryU64Generate(cTests, papszNameFmts);
|
---|
2740 | return rcExit;
|
---|
2741 | }
|
---|
2742 |
|
---|
2743 | static RTEXITCODE UnaryDumpAll(const char * const * papszNameFmts)
|
---|
2744 | {
|
---|
2745 | RTEXITCODE rcExit = UnaryU8DumpAll(papszNameFmts);
|
---|
2746 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2747 | rcExit = UnaryU16DumpAll(papszNameFmts);
|
---|
2748 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2749 | rcExit = UnaryU32DumpAll(papszNameFmts);
|
---|
2750 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2751 | rcExit = UnaryU64DumpAll(papszNameFmts);
|
---|
2752 | return rcExit;
|
---|
2753 | }
|
---|
2754 | #endif
|
---|
2755 |
|
---|
2756 | static void UnaryTest(void)
|
---|
2757 | {
|
---|
2758 | UnaryU8Test();
|
---|
2759 | UnaryU16Test();
|
---|
2760 | UnaryU32Test();
|
---|
2761 | UnaryU64Test();
|
---|
2762 | }
|
---|
2763 |
|
---|
2764 |
|
---|
2765 | /*
|
---|
2766 | * Shifts.
|
---|
2767 | *
|
---|
2768 | * Note! We use BINUxx_TEST_T with the shift count in uMisc and uSrcIn unused.
|
---|
2769 | */
|
---|
2770 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2771 | # define GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2772 | static RTEXITCODE ShiftU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \
|
---|
2773 | { \
|
---|
2774 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2775 | { \
|
---|
2776 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
2777 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
2778 | continue; \
|
---|
2779 | IEMBINARYOUTPUT BinOut; \
|
---|
2780 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
2781 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2782 | { \
|
---|
2783 | a_TestType Test; \
|
---|
2784 | Test.fEflIn = RandEFlags(); \
|
---|
2785 | Test.fEflOut = Test.fEflIn; \
|
---|
2786 | Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \
|
---|
2787 | Test.uDstOut = Test.uDstIn; \
|
---|
2788 | Test.uSrcIn = 0; \
|
---|
2789 | Test.uMisc = RandU8() & (a_cBits * 4 - 1); /* need to go way beyond the a_cBits limit */ \
|
---|
2790 | a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uMisc, &Test.fEflOut); \
|
---|
2791 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
2792 | \
|
---|
2793 | Test.fEflIn = (~Test.fEflIn & X86_EFL_LIVE_MASK) | X86_EFL_RA1_MASK; \
|
---|
2794 | Test.fEflOut = Test.fEflIn; \
|
---|
2795 | Test.uDstOut = Test.uDstIn; \
|
---|
2796 | a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uMisc, &Test.fEflOut); \
|
---|
2797 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
2798 | } \
|
---|
2799 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
2800 | } \
|
---|
2801 | return RTEXITCODE_SUCCESS; \
|
---|
2802 | } \
|
---|
2803 | DUMP_ALL_FN(ShiftU ## a_cBits, a_aSubTests)
|
---|
2804 | #else
|
---|
2805 | # define GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests)
|
---|
2806 | #endif
|
---|
2807 |
|
---|
2808 | #define TEST_SHIFT(a_cBits, a_uType, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \
|
---|
2809 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLSHIFTU ## a_cBits); \
|
---|
2810 | static a_SubTestType a_aSubTests[] = \
|
---|
2811 | { \
|
---|
2812 | ENTRY_BIN_AMD( rol_u ## a_cBits, X86_EFL_OF), \
|
---|
2813 | ENTRY_BIN_INTEL(rol_u ## a_cBits, X86_EFL_OF), \
|
---|
2814 | ENTRY_BIN_AMD( ror_u ## a_cBits, X86_EFL_OF), \
|
---|
2815 | ENTRY_BIN_INTEL(ror_u ## a_cBits, X86_EFL_OF), \
|
---|
2816 | ENTRY_BIN_AMD( rcl_u ## a_cBits, X86_EFL_OF), \
|
---|
2817 | ENTRY_BIN_INTEL(rcl_u ## a_cBits, X86_EFL_OF), \
|
---|
2818 | ENTRY_BIN_AMD( rcr_u ## a_cBits, X86_EFL_OF), \
|
---|
2819 | ENTRY_BIN_INTEL(rcr_u ## a_cBits, X86_EFL_OF), \
|
---|
2820 | ENTRY_BIN_AMD( shl_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2821 | ENTRY_BIN_INTEL(shl_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2822 | ENTRY_BIN_AMD( shr_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2823 | ENTRY_BIN_INTEL(shr_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2824 | ENTRY_BIN_AMD( sar_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2825 | ENTRY_BIN_INTEL(sar_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2826 | }; \
|
---|
2827 | \
|
---|
2828 | GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2829 | \
|
---|
2830 | static uint64_t ShiftU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLSHIFTU ## a_cBits pfn, a_TestType const *pEntry) \
|
---|
2831 | { \
|
---|
2832 | uint32_t const fEflIn = pEntry->fEflIn; \
|
---|
2833 | a_uType const uDstIn = pEntry->uDstIn; \
|
---|
2834 | a_uType const cShift = pEntry->uMisc; \
|
---|
2835 | cIterations /= 4; \
|
---|
2836 | RTThreadYield(); \
|
---|
2837 | uint64_t const nsStart = RTTimeNanoTS(); \
|
---|
2838 | for (uint32_t i = 0; i < cIterations; i++) \
|
---|
2839 | { \
|
---|
2840 | uint32_t fBenchEfl = fEflIn; \
|
---|
2841 | a_uType uBenchDst = uDstIn; \
|
---|
2842 | pfn(&uBenchDst, cShift, &fBenchEfl); \
|
---|
2843 | \
|
---|
2844 | fBenchEfl = fEflIn; \
|
---|
2845 | uBenchDst = uDstIn; \
|
---|
2846 | pfn(&uBenchDst, cShift, &fBenchEfl); \
|
---|
2847 | \
|
---|
2848 | fBenchEfl = fEflIn; \
|
---|
2849 | uBenchDst = uDstIn; \
|
---|
2850 | pfn(&uBenchDst, cShift, &fBenchEfl); \
|
---|
2851 | \
|
---|
2852 | fBenchEfl = fEflIn; \
|
---|
2853 | uBenchDst = uDstIn; \
|
---|
2854 | pfn(&uBenchDst, cShift, &fBenchEfl); \
|
---|
2855 | } \
|
---|
2856 | return RTTimeNanoTS() - nsStart; \
|
---|
2857 | } \
|
---|
2858 | \
|
---|
2859 | static void ShiftU ## a_cBits ## Test(void) \
|
---|
2860 | { \
|
---|
2861 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2862 | { \
|
---|
2863 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
2864 | continue; \
|
---|
2865 | PFNIEMAIMPLSHIFTU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
2866 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2867 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
2868 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
2869 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2870 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
2871 | { \
|
---|
2872 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2873 | { \
|
---|
2874 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2875 | a_uType uDst = paTests[iTest].uDstIn; \
|
---|
2876 | pfn(&uDst, paTests[iTest].uMisc, &fEfl); \
|
---|
2877 | if ( uDst != paTests[iTest].uDstOut \
|
---|
2878 | || fEfl != paTests[iTest].fEflOut ) \
|
---|
2879 | RTTestFailed(g_hTest, "#%u%s: efl=%#08x dst=" a_Fmt " shift=%2u -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s\n", \
|
---|
2880 | iTest, iVar == 0 ? "" : "/n", \
|
---|
2881 | paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uMisc, \
|
---|
2882 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
2883 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
2884 | else \
|
---|
2885 | { \
|
---|
2886 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
2887 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
2888 | pfn(g_pu ## a_cBits, paTests[iTest].uMisc, g_pfEfl); \
|
---|
2889 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
2890 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
2891 | } \
|
---|
2892 | } \
|
---|
2893 | \
|
---|
2894 | /* Benchmark if all succeeded. */ \
|
---|
2895 | if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \
|
---|
2896 | { \
|
---|
2897 | uint32_t const iTest = cTests / 2; \
|
---|
2898 | uint32_t const cIterations = EstimateIterations(_64K, ShiftU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \
|
---|
2899 | uint64_t const cNsRealRun = ShiftU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \
|
---|
2900 | RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, \
|
---|
2901 | "%s%s", a_aSubTests[iFn].pszName, iVar ? "-native" : ""); \
|
---|
2902 | } \
|
---|
2903 | \
|
---|
2904 | /* Next variation is native. */ \
|
---|
2905 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
2906 | } \
|
---|
2907 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
2908 | } \
|
---|
2909 | }
|
---|
2910 | TEST_SHIFT(8, uint8_t, "%#04RX8", BINU8_TEST_T, INT_BINARY_U8_T, g_aShiftU8)
|
---|
2911 | TEST_SHIFT(16, uint16_t, "%#06RX16", BINU16_TEST_T, INT_BINARY_U16_T, g_aShiftU16)
|
---|
2912 | TEST_SHIFT(32, uint32_t, "%#010RX32", BINU32_TEST_T, INT_BINARY_U32_T, g_aShiftU32)
|
---|
2913 | TEST_SHIFT(64, uint64_t, "%#018RX64", BINU64_TEST_T, INT_BINARY_U64_T, g_aShiftU64)
|
---|
2914 |
|
---|
2915 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2916 | static RTEXITCODE ShiftGenerate(uint32_t cTests, const char * const * papszNameFmts)
|
---|
2917 | {
|
---|
2918 | RTEXITCODE rcExit = ShiftU8Generate(cTests, papszNameFmts);
|
---|
2919 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2920 | rcExit = ShiftU16Generate(cTests, papszNameFmts);
|
---|
2921 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2922 | rcExit = ShiftU32Generate(cTests, papszNameFmts);
|
---|
2923 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2924 | rcExit = ShiftU64Generate(cTests, papszNameFmts);
|
---|
2925 | return rcExit;
|
---|
2926 | }
|
---|
2927 |
|
---|
2928 | static RTEXITCODE ShiftDumpAll(const char * const * papszNameFmts)
|
---|
2929 | {
|
---|
2930 | RTEXITCODE rcExit = ShiftU8DumpAll(papszNameFmts);
|
---|
2931 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2932 | rcExit = ShiftU16DumpAll(papszNameFmts);
|
---|
2933 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2934 | rcExit = ShiftU32DumpAll(papszNameFmts);
|
---|
2935 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
2936 | rcExit = ShiftU64DumpAll(papszNameFmts);
|
---|
2937 | return rcExit;
|
---|
2938 | }
|
---|
2939 | #endif
|
---|
2940 |
|
---|
2941 | static void ShiftTest(void)
|
---|
2942 | {
|
---|
2943 | ShiftU8Test();
|
---|
2944 | ShiftU16Test();
|
---|
2945 | ShiftU32Test();
|
---|
2946 | ShiftU64Test();
|
---|
2947 | }
|
---|
2948 |
|
---|
2949 |
|
---|
2950 | /*
|
---|
2951 | * Multiplication and division.
|
---|
2952 | *
|
---|
2953 | * Note! The 8-bit functions has a different format, so we need to duplicate things.
|
---|
2954 | * Note! Currently ignoring undefined bits.
|
---|
2955 | */
|
---|
2956 |
|
---|
2957 | /* U8 */
|
---|
2958 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2959 | static const MULDIVU8_TEST_T g_aFixedTests_idiv_u8[] =
|
---|
2960 | {
|
---|
2961 | /* efl in, efl out, uDstIn, uDstOut, uSrcIn, rc (0 or -1 for actual; -128 for auto) */
|
---|
2962 | { UINT32_MAX, 0, 0x8000, 0, 0xc7, -1 }, /* -32768 / -57 = #DE (574.8771929824...) */
|
---|
2963 | { UINT32_MAX, 0, 0x8000, 0, 0xdd, -128 }, /* -32768 / -35 = #DE (936.2285714285...) */
|
---|
2964 | { UINT32_MAX, 0, 0x7f00, 0, 0x7f, -1 }, /* 0x7f00 / 0x7f = #DE (0x100) */
|
---|
2965 | { UINT32_MAX, 0, 0x3f80, 0, 0x7f, -1 }, /* 0x3F80 / 0x7f = #DE (0x80) */
|
---|
2966 | { UINT32_MAX, 0, 0x3f7f, 0, 0x7f, 0 }, /* 0x3F7F / 0x7f = 127.992125984... */
|
---|
2967 | { UINT32_MAX, 0, 0xc000, 0, 0x80, -1 }, /* -16384 / -128 = #DE (0x80) */
|
---|
2968 | { UINT32_MAX, 0, 0xc001, 0, 0x80, 0 }, /* -16383 / -128 = 127.9921875 */
|
---|
2969 | };
|
---|
2970 | #endif
|
---|
2971 | TYPEDEF_SUBTEST_TYPE(INT_MULDIV_U8_T, MULDIVU8_TEST_T, PFNIEMAIMPLMULDIVU8);
|
---|
2972 | static INT_MULDIV_U8_T g_aMulDivU8[] =
|
---|
2973 | {
|
---|
2974 | ENTRY_BIN_AMD_EX(mul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF,
|
---|
2975 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF),
|
---|
2976 | ENTRY_BIN_INTEL_EX(mul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0),
|
---|
2977 | ENTRY_BIN_AMD_EX(imul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF,
|
---|
2978 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF),
|
---|
2979 | ENTRY_BIN_INTEL_EX(imul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0),
|
---|
2980 | ENTRY_BIN_AMD_EX(div_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2981 | ENTRY_BIN_INTEL_EX(div_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2982 | ENTRY_BIN_FIX_AMD_EX(idiv_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2983 | ENTRY_BIN_FIX_INTEL_EX(idiv_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2984 | };
|
---|
2985 |
|
---|
2986 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2987 | DUMP_ALL_FN(MulDivU8, g_aMulDivU8)
|
---|
2988 | static RTEXITCODE MulDivU8Generate(uint32_t cTests, const char * const * papszNameFmts)
|
---|
2989 | {
|
---|
2990 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++)
|
---|
2991 | {
|
---|
2992 | if ( g_aMulDivU8[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
2993 | && g_aMulDivU8[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
2994 | continue;
|
---|
2995 | IEMBINARYOUTPUT BinOut; \
|
---|
2996 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aMulDivU8[iFn]), RTEXITCODE_FAILURE); \
|
---|
2997 | for (uint32_t iTest = 0; iTest < cTests; iTest++ )
|
---|
2998 | {
|
---|
2999 | MULDIVU8_TEST_T Test;
|
---|
3000 | Test.fEflIn = RandEFlags();
|
---|
3001 | Test.fEflOut = Test.fEflIn;
|
---|
3002 | Test.uDstIn = RandU16Dst(iTest);
|
---|
3003 | Test.uDstOut = Test.uDstIn;
|
---|
3004 | Test.uSrcIn = RandU8Src(iTest);
|
---|
3005 | Test.rc = g_aMulDivU8[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, &Test.fEflOut);
|
---|
3006 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
3007 | }
|
---|
3008 | for (uint32_t iTest = 0; iTest < g_aMulDivU8[iFn].cFixedTests; iTest++)
|
---|
3009 | {
|
---|
3010 | MULDIVU8_TEST_T Test;
|
---|
3011 | Test.fEflIn = g_aMulDivU8[iFn].paFixedTests[iTest].fEflIn == UINT32_MAX ? RandEFlags()
|
---|
3012 | : g_aMulDivU8[iFn].paFixedTests[iTest].fEflIn;
|
---|
3013 | Test.fEflOut = Test.fEflIn;
|
---|
3014 | Test.uDstIn = g_aMulDivU8[iFn].paFixedTests[iTest].uDstIn;
|
---|
3015 | Test.uDstOut = Test.uDstIn;
|
---|
3016 | Test.uSrcIn = g_aMulDivU8[iFn].paFixedTests[iTest].uSrcIn;
|
---|
3017 | Test.rc = g_aMulDivU8[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, &Test.fEflOut);
|
---|
3018 | if (g_aMulDivU8[iFn].paFixedTests[iTest].rc == 0 || g_aMulDivU8[iFn].paFixedTests[iTest].rc == -1)
|
---|
3019 | Test.rc = g_aMulDivU8[iFn].paFixedTests[iTest].rc;
|
---|
3020 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
3021 | }
|
---|
3022 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
3023 | }
|
---|
3024 | return RTEXITCODE_SUCCESS;
|
---|
3025 | }
|
---|
3026 | #endif
|
---|
3027 |
|
---|
3028 | static uint64_t MulDivU8Bench(uint32_t cIterations, PFNIEMAIMPLMULDIVU8 pfn, MULDIVU8_TEST_T const *pEntry)
|
---|
3029 | {
|
---|
3030 | uint32_t const fEflIn = pEntry->fEflIn;
|
---|
3031 | uint16_t const uDstIn = pEntry->uDstIn;
|
---|
3032 | uint8_t const uSrcIn = pEntry->uSrcIn;
|
---|
3033 | cIterations /= 4;
|
---|
3034 | RTThreadYield();
|
---|
3035 | uint64_t const nsStart = RTTimeNanoTS();
|
---|
3036 | for (uint32_t i = 0; i < cIterations; i++)
|
---|
3037 | {
|
---|
3038 | uint32_t fBenchEfl = fEflIn;
|
---|
3039 | uint16_t uBenchDst = uDstIn;
|
---|
3040 | pfn(&uBenchDst, uSrcIn, &fBenchEfl);
|
---|
3041 |
|
---|
3042 | fBenchEfl = fEflIn;
|
---|
3043 | uBenchDst = uDstIn;
|
---|
3044 | pfn(&uBenchDst, uSrcIn, &fBenchEfl);
|
---|
3045 |
|
---|
3046 | fBenchEfl = fEflIn;
|
---|
3047 | uBenchDst = uDstIn;
|
---|
3048 | pfn(&uBenchDst, uSrcIn, &fBenchEfl);
|
---|
3049 |
|
---|
3050 | fBenchEfl = fEflIn;
|
---|
3051 | uBenchDst = uDstIn;
|
---|
3052 | pfn(&uBenchDst, uSrcIn, &fBenchEfl);
|
---|
3053 | }
|
---|
3054 | return RTTimeNanoTS() - nsStart;
|
---|
3055 | }
|
---|
3056 |
|
---|
3057 | static void MulDivU8Test(void)
|
---|
3058 | {
|
---|
3059 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++)
|
---|
3060 | {
|
---|
3061 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aMulDivU8[iFn]))
|
---|
3062 | continue;
|
---|
3063 | MULDIVU8_TEST_T const * const paTests = g_aMulDivU8[iFn].paTests;
|
---|
3064 | uint32_t const cTests = g_aMulDivU8[iFn].cTests;
|
---|
3065 | uint32_t const fEflIgn = g_aMulDivU8[iFn].uExtra;
|
---|
3066 | PFNIEMAIMPLMULDIVU8 pfn = g_aMulDivU8[iFn].pfn;
|
---|
3067 | uint32_t const cVars = COUNT_VARIATIONS(g_aMulDivU8[iFn]);
|
---|
3068 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
3069 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
3070 | {
|
---|
3071 | for (uint32_t iTest = 0; iTest < cTests; iTest++ )
|
---|
3072 | {
|
---|
3073 | uint32_t fEfl = paTests[iTest].fEflIn;
|
---|
3074 | uint16_t uDst = paTests[iTest].uDstIn;
|
---|
3075 | int rc = g_aMulDivU8[iFn].pfn(&uDst, paTests[iTest].uSrcIn, &fEfl);
|
---|
3076 | if ( uDst != paTests[iTest].uDstOut
|
---|
3077 | || (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn)
|
---|
3078 | || rc != paTests[iTest].rc)
|
---|
3079 | RTTestFailed(g_hTest, "#%02u%s: efl=%#08x dst=%#06RX16 src=%#04RX8\n"
|
---|
3080 | " %s-> efl=%#08x dst=%#06RX16 rc=%d\n"
|
---|
3081 | "%sexpected %#08x %#06RX16 %d%s\n",
|
---|
3082 | iTest, iVar ? "/n" : "", paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn,
|
---|
3083 | iVar ? " " : "", fEfl, uDst, rc,
|
---|
3084 | iVar ? " " : "", paTests[iTest].fEflOut, paTests[iTest].uDstOut, paTests[iTest].rc,
|
---|
3085 | EFlagsDiff(fEfl | fEflIgn, paTests[iTest].fEflOut | fEflIgn));
|
---|
3086 | else
|
---|
3087 | {
|
---|
3088 | *g_pu16 = paTests[iTest].uDstIn;
|
---|
3089 | *g_pfEfl = paTests[iTest].fEflIn;
|
---|
3090 | rc = g_aMulDivU8[iFn].pfn(g_pu16, paTests[iTest].uSrcIn, g_pfEfl);
|
---|
3091 | RTTEST_CHECK(g_hTest, *g_pu16 == paTests[iTest].uDstOut);
|
---|
3092 | RTTEST_CHECK(g_hTest, (*g_pfEfl | fEflIgn) == (paTests[iTest].fEflOut | fEflIgn));
|
---|
3093 | RTTEST_CHECK(g_hTest, rc == paTests[iTest].rc);
|
---|
3094 | }
|
---|
3095 | }
|
---|
3096 |
|
---|
3097 | /* Benchmark if all succeeded. */
|
---|
3098 | if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0)
|
---|
3099 | {
|
---|
3100 | uint32_t const iTest = cTests / 2;
|
---|
3101 | uint32_t const cIterations = EstimateIterations(_64K, MulDivU8Bench(_64K, pfn, &paTests[iTest]));
|
---|
3102 | uint64_t const cNsRealRun = MulDivU8Bench(cIterations, pfn, &paTests[iTest]);
|
---|
3103 | RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL,
|
---|
3104 | "%s%s", g_aMulDivU8[iFn].pszName, iVar ? "-native" : "");
|
---|
3105 | }
|
---|
3106 |
|
---|
3107 | /* Next variation is native. */
|
---|
3108 | pfn = g_aMulDivU8[iFn].pfnNative;
|
---|
3109 | }
|
---|
3110 | FREE_DECOMPRESSED_TESTS(g_aMulDivU8[iFn]);
|
---|
3111 | }
|
---|
3112 | }
|
---|
3113 |
|
---|
3114 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3115 | static const MULDIVU16_TEST_T g_aFixedTests_idiv_u16[] =
|
---|
3116 | {
|
---|
3117 | /* low high */
|
---|
3118 | /* --- eflags ---, -- uDst1 --, -- uDst2 --, */
|
---|
3119 | /* in, out, in , out, in , out, uSrcIn, rc (0 or -1 for actual; -128 for auto) */
|
---|
3120 | { UINT32_MAX, 0, 0x0000, 0, 0x8000, 0, 0xc004, -1 }, /* -2147483648 /-16380 = #DE (131104.00781...) */
|
---|
3121 | { UINT32_MAX, 0, 0xffff, 0, 0x7fff, 0, 0x7fff, -1 }, /* 2147483647 / 32767 = #DE (65538.000030...) */
|
---|
3122 | { UINT32_MAX, 0, 0x8000, 0, 0x3fff, 0, 0x7fff, -1 }, /* 0x3fff8000 / 0x7fff = #DE (0x8000) */
|
---|
3123 | { UINT32_MAX, 0, 0x7fff, 0, 0x3fff, 0, 0x7fff, 0 }, /* 0x3fff7fff / 0x7fff = 32767.99996948... */
|
---|
3124 | { UINT32_MAX, 0, 0x0000, 0, 0xc000, 0, 0x8000, -1 }, /* -1073741824 / -32768 = #DE (0x8000) */
|
---|
3125 | { UINT32_MAX, 0, 0x0001, 0, 0xc000, 0, 0x8000, 0 }, /* -1073741823 / -32768 = 32767.999969482421875 */
|
---|
3126 | };
|
---|
3127 |
|
---|
3128 | static const MULDIVU32_TEST_T g_aFixedTests_idiv_u32[] =
|
---|
3129 | {
|
---|
3130 | /* low high */
|
---|
3131 | /* --- eflags ---, ---- uDst1 ----, ---- uDst2 ----, */
|
---|
3132 | /* in, out, in , out, in , out, uSrcIn, rc (0 or -1 for actual; -128 for auto) */
|
---|
3133 | { UINT32_MAX, 0, 0x00000000, 0, 0x80000000, 0, 0xc0000004, -1 },
|
---|
3134 | { UINT32_MAX, 0, 0xffffffff, 0, 0x7fffffff, 0, 0x7fffffff, -1 },
|
---|
3135 | { UINT32_MAX, 0, 0x80000000, 0, 0x3fffffff, 0, 0x7fffffff, -1 },
|
---|
3136 | { UINT32_MAX, 0, 0x7fffffff, 0, 0x3fffffff, 0, 0x7fffffff, 0 },
|
---|
3137 | { UINT32_MAX, 0, 0x00000000, 0, 0xc0000000, 0, 0x80000000, -1 },
|
---|
3138 | { UINT32_MAX, 0, 0x00000001, 0, 0xc0000000, 0, 0x80000000, 0 },
|
---|
3139 | };
|
---|
3140 |
|
---|
3141 | static const MULDIVU64_TEST_T g_aFixedTests_idiv_u64[] =
|
---|
3142 | {
|
---|
3143 | /* low high */
|
---|
3144 | /* --- eflags ---, -------- uDst1 --------, -------- uDst2 --------, */
|
---|
3145 | /* in, out, in , out, in , out, uSrcIn, rc (0 or -1 for actual; -128 for auto) */
|
---|
3146 | { UINT32_MAX, 0, 0x0000000000000000, 0, 0x8000000000000000, 0, 0xc000000000000004, -1 },
|
---|
3147 | { UINT32_MAX, 0, 0xffffffffffffffff, 0, 0x7fffffffffffffff, 0, 0x7fffffffffffffff, -1 },
|
---|
3148 | { UINT32_MAX, 0, 0x8000000000000000, 0, 0x3fffffffffffffff, 0, 0x7fffffffffffffff, -1 },
|
---|
3149 | { UINT32_MAX, 0, 0x7fffffffffffffff, 0, 0x3fffffffffffffff, 0, 0x7fffffffffffffff, 0 },
|
---|
3150 | { UINT32_MAX, 0, 0x0000000000000000, 0, 0xc000000000000000, 0, 0x8000000000000000, -1 },
|
---|
3151 | { UINT32_MAX, 0, 0x0000000000000001, 0, 0xc000000000000000, 0, 0x8000000000000000, 0 },
|
---|
3152 | };
|
---|
3153 |
|
---|
3154 | # define GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
3155 | DUMP_ALL_FN(MulDivU ## a_cBits, a_aSubTests) \
|
---|
3156 | static RTEXITCODE MulDivU ## a_cBits ## Generate(uint32_t cTests, const char * const * papszNameFmts) \
|
---|
3157 | { \
|
---|
3158 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3159 | { \
|
---|
3160 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
3161 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
3162 | continue; \
|
---|
3163 | IEMBINARYOUTPUT BinOut; \
|
---|
3164 | a_TestType Test; \
|
---|
3165 | RT_ZERO(Test); /* 64-bit variant contains alignment padding */ \
|
---|
3166 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
3167 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
3168 | { \
|
---|
3169 | Test.fEflIn = RandEFlags(); \
|
---|
3170 | Test.fEflOut = Test.fEflIn; \
|
---|
3171 | Test.uDst1In = RandU ## a_cBits ## Dst(iTest); \
|
---|
3172 | Test.uDst1Out = Test.uDst1In; \
|
---|
3173 | Test.uDst2In = RandU ## a_cBits ## Dst(iTest); \
|
---|
3174 | Test.uDst2Out = Test.uDst2In; \
|
---|
3175 | Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \
|
---|
3176 | Test.rc = a_aSubTests[iFn].pfnNative(&Test.uDst1Out, &Test.uDst2Out, Test.uSrcIn, &Test.fEflOut); \
|
---|
3177 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
3178 | } \
|
---|
3179 | for (uint32_t iTest = 0; iTest < a_aSubTests[iFn].cFixedTests; iTest++ ) \
|
---|
3180 | { \
|
---|
3181 | Test.fEflIn = a_aSubTests[iFn].paFixedTests[iTest].fEflIn == UINT32_MAX ? RandEFlags() \
|
---|
3182 | : a_aSubTests[iFn].paFixedTests[iTest].fEflIn; \
|
---|
3183 | Test.fEflOut = Test.fEflIn; \
|
---|
3184 | Test.uDst1In = a_aSubTests[iFn].paFixedTests[iTest].uDst1In; \
|
---|
3185 | Test.uDst1Out = Test.uDst1In; \
|
---|
3186 | Test.uDst2In = a_aSubTests[iFn].paFixedTests[iTest].uDst2In; \
|
---|
3187 | Test.uDst2Out = Test.uDst2In; \
|
---|
3188 | Test.uSrcIn = a_aSubTests[iFn].paFixedTests[iTest].uSrcIn; \
|
---|
3189 | Test.rc = a_aSubTests[iFn].pfnNative(&Test.uDst1Out, &Test.uDst2Out, Test.uSrcIn, &Test.fEflOut); \
|
---|
3190 | if (a_aSubTests[iFn].paFixedTests[iTest].rc == 0 || a_aSubTests[iFn].paFixedTests[iTest].rc == -1) \
|
---|
3191 | Test.rc = a_aSubTests[iFn].paFixedTests[iTest].rc; \
|
---|
3192 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
3193 | } \
|
---|
3194 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
3195 | } \
|
---|
3196 | return RTEXITCODE_SUCCESS; \
|
---|
3197 | }
|
---|
3198 | #else
|
---|
3199 | # define GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests)
|
---|
3200 | #endif
|
---|
3201 |
|
---|
3202 | #define TEST_MULDIV(a_cBits, a_uType, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \
|
---|
3203 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLMULDIVU ## a_cBits); \
|
---|
3204 | static a_SubTestType a_aSubTests [] = \
|
---|
3205 | { \
|
---|
3206 | ENTRY_BIN_AMD_EX(mul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
3207 | ENTRY_BIN_INTEL_EX(mul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
3208 | ENTRY_BIN_AMD_EX(imul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
3209 | ENTRY_BIN_INTEL_EX(imul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
3210 | ENTRY_BIN_AMD_EX(div_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
3211 | ENTRY_BIN_INTEL_EX(div_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
3212 | ENTRY_BIN_FIX_AMD_EX(idiv_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
3213 | ENTRY_BIN_FIX_INTEL_EX(idiv_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
3214 | }; \
|
---|
3215 | \
|
---|
3216 | GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
3217 | \
|
---|
3218 | static uint64_t MulDivU ## a_cBits ## Bench(uint32_t cIterations, PFNIEMAIMPLMULDIVU ## a_cBits pfn, a_TestType const *pEntry) \
|
---|
3219 | { \
|
---|
3220 | uint32_t const fEflIn = pEntry->fEflIn; \
|
---|
3221 | a_uType const uDst1In = pEntry->uDst1In; \
|
---|
3222 | a_uType const uDst2In = pEntry->uDst2In; \
|
---|
3223 | a_uType const uSrcIn = pEntry->uSrcIn; \
|
---|
3224 | cIterations /= 4; \
|
---|
3225 | RTThreadYield(); \
|
---|
3226 | uint64_t const nsStart = RTTimeNanoTS(); \
|
---|
3227 | for (uint32_t i = 0; i < cIterations; i++) \
|
---|
3228 | { \
|
---|
3229 | uint32_t fBenchEfl = fEflIn; \
|
---|
3230 | a_uType uBenchDst1 = uDst1In; \
|
---|
3231 | a_uType uBenchDst2 = uDst2In; \
|
---|
3232 | pfn(&uBenchDst1, &uBenchDst2, uSrcIn, &fBenchEfl); \
|
---|
3233 | \
|
---|
3234 | fBenchEfl = fEflIn; \
|
---|
3235 | uBenchDst1 = uDst1In; \
|
---|
3236 | uBenchDst2 = uDst2In; \
|
---|
3237 | pfn(&uBenchDst1, &uBenchDst2, uSrcIn, &fBenchEfl); \
|
---|
3238 | \
|
---|
3239 | fBenchEfl = fEflIn; \
|
---|
3240 | uBenchDst1 = uDst1In; \
|
---|
3241 | uBenchDst2 = uDst2In; \
|
---|
3242 | pfn(&uBenchDst1, &uBenchDst2, uSrcIn, &fBenchEfl); \
|
---|
3243 | \
|
---|
3244 | fBenchEfl = fEflIn; \
|
---|
3245 | uBenchDst1 = uDst1In; \
|
---|
3246 | uBenchDst2 = uDst2In; \
|
---|
3247 | pfn(&uBenchDst1, &uBenchDst2, uSrcIn, &fBenchEfl); \
|
---|
3248 | } \
|
---|
3249 | return RTTimeNanoTS() - nsStart; \
|
---|
3250 | } \
|
---|
3251 | \
|
---|
3252 | static void MulDivU ## a_cBits ## Test(void) \
|
---|
3253 | { \
|
---|
3254 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3255 | { \
|
---|
3256 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
3257 | continue; \
|
---|
3258 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3259 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
3260 | uint32_t const fEflIgn = a_aSubTests[iFn].uExtra; \
|
---|
3261 | PFNIEMAIMPLMULDIVU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
3262 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3263 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3264 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3265 | { \
|
---|
3266 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
3267 | { \
|
---|
3268 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
3269 | a_uType uDst1 = paTests[iTest].uDst1In; \
|
---|
3270 | a_uType uDst2 = paTests[iTest].uDst2In; \
|
---|
3271 | int rc = pfn(&uDst1, &uDst2, paTests[iTest].uSrcIn, &fEfl); \
|
---|
3272 | if ( uDst1 != paTests[iTest].uDst1Out \
|
---|
3273 | || uDst2 != paTests[iTest].uDst2Out \
|
---|
3274 | || (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn)\
|
---|
3275 | || rc != paTests[iTest].rc) \
|
---|
3276 | RTTestFailed(g_hTest, "#%04u%s: efl=%#010x dst1=" a_Fmt " dst2=" a_Fmt " src=" a_Fmt "\n" \
|
---|
3277 | " -> efl=%#010x dst1=" a_Fmt " dst2=" a_Fmt " rc=%d\n" \
|
---|
3278 | " expected %#010x " a_Fmt " " a_Fmt " %d%s -%s%s%s\n", \
|
---|
3279 | iTest, iVar == 0 ? " " : "/n", \
|
---|
3280 | paTests[iTest].fEflIn, paTests[iTest].uDst1In, paTests[iTest].uDst2In, paTests[iTest].uSrcIn, \
|
---|
3281 | fEfl, uDst1, uDst2, rc, \
|
---|
3282 | paTests[iTest].fEflOut, paTests[iTest].uDst1Out, paTests[iTest].uDst2Out, paTests[iTest].rc, \
|
---|
3283 | EFlagsDiff(fEfl | fEflIgn, paTests[iTest].fEflOut | fEflIgn), \
|
---|
3284 | uDst1 != paTests[iTest].uDst1Out ? " dst1" : "", uDst2 != paTests[iTest].uDst2Out ? " dst2" : "", \
|
---|
3285 | (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn) ? " eflags" : ""); \
|
---|
3286 | else \
|
---|
3287 | { \
|
---|
3288 | *g_pu ## a_cBits = paTests[iTest].uDst1In; \
|
---|
3289 | *g_pu ## a_cBits ## Two = paTests[iTest].uDst2In; \
|
---|
3290 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
3291 | rc = pfn(g_pu ## a_cBits, g_pu ## a_cBits ## Two, paTests[iTest].uSrcIn, g_pfEfl); \
|
---|
3292 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDst1Out); \
|
---|
3293 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits ## Two == paTests[iTest].uDst2Out); \
|
---|
3294 | RTTEST_CHECK(g_hTest, (*g_pfEfl | fEflIgn) == (paTests[iTest].fEflOut | fEflIgn)); \
|
---|
3295 | RTTEST_CHECK(g_hTest, rc == paTests[iTest].rc); \
|
---|
3296 | } \
|
---|
3297 | } \
|
---|
3298 | \
|
---|
3299 | /* Benchmark if all succeeded. */ \
|
---|
3300 | if (g_cPicoSecBenchmark && RTTestSubErrorCount(g_hTest) == 0) \
|
---|
3301 | { \
|
---|
3302 | uint32_t const iTest = cTests / 2; \
|
---|
3303 | uint32_t const cIterations = EstimateIterations(_64K, MulDivU ## a_cBits ## Bench(_64K, pfn, &paTests[iTest])); \
|
---|
3304 | uint64_t const cNsRealRun = MulDivU ## a_cBits ## Bench(cIterations, pfn, &paTests[iTest]); \
|
---|
3305 | RTTestValueF(g_hTest, cNsRealRun * 1000 / cIterations, RTTESTUNIT_PS_PER_CALL, \
|
---|
3306 | "%s%s", a_aSubTests[iFn].pszName, iVar ? "-native" : ""); \
|
---|
3307 | } \
|
---|
3308 | \
|
---|
3309 | /* Next variation is native. */ \
|
---|
3310 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3311 | } \
|
---|
3312 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
3313 | } \
|
---|
3314 | } //1068553096 = 0x3FB0D388 (1068553096)
|
---|
3315 | TEST_MULDIV(16, uint16_t, "%#06RX16", MULDIVU16_TEST_T, INT_MULDIV_U16_T, g_aMulDivU16)
|
---|
3316 | TEST_MULDIV(32, uint32_t, "%#010RX32", MULDIVU32_TEST_T, INT_MULDIV_U32_T, g_aMulDivU32)
|
---|
3317 | TEST_MULDIV(64, uint64_t, "%#018RX64", MULDIVU64_TEST_T, INT_MULDIV_U64_T, g_aMulDivU64)
|
---|
3318 |
|
---|
3319 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3320 | static RTEXITCODE MulDivGenerate(uint32_t cTests, const char * const * papszNameFmts)
|
---|
3321 | {
|
---|
3322 | RTEXITCODE rcExit = MulDivU8Generate(cTests, papszNameFmts);
|
---|
3323 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3324 | rcExit = MulDivU16Generate(cTests, papszNameFmts);
|
---|
3325 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3326 | rcExit = MulDivU32Generate(cTests, papszNameFmts);
|
---|
3327 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3328 | rcExit = MulDivU64Generate(cTests, papszNameFmts);
|
---|
3329 | return rcExit;
|
---|
3330 | }
|
---|
3331 |
|
---|
3332 | static RTEXITCODE MulDivDumpAll(const char * const * papszNameFmts)
|
---|
3333 | {
|
---|
3334 | RTEXITCODE rcExit = MulDivU8DumpAll(papszNameFmts);
|
---|
3335 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3336 | rcExit = MulDivU16DumpAll(papszNameFmts);
|
---|
3337 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3338 | rcExit = MulDivU32DumpAll(papszNameFmts);
|
---|
3339 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3340 | rcExit = MulDivU64DumpAll(papszNameFmts);
|
---|
3341 | return rcExit;
|
---|
3342 | }
|
---|
3343 | #endif
|
---|
3344 |
|
---|
3345 | static void MulDivTest(void)
|
---|
3346 | {
|
---|
3347 | MulDivU8Test();
|
---|
3348 | MulDivU16Test();
|
---|
3349 | MulDivU32Test();
|
---|
3350 | MulDivU64Test();
|
---|
3351 | }
|
---|
3352 |
|
---|
3353 |
|
---|
3354 | /*
|
---|
3355 | * BSWAP
|
---|
3356 | */
|
---|
3357 | static void BswapTest(void)
|
---|
3358 | {
|
---|
3359 | if (SubTestAndCheckIfEnabled("bswap_u16"))
|
---|
3360 | {
|
---|
3361 | *g_pu32 = UINT32_C(0x12345678);
|
---|
3362 | iemAImpl_bswap_u16(g_pu32);
|
---|
3363 | #if 0
|
---|
3364 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0x12347856), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
3365 | #else
|
---|
3366 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0x12340000), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
3367 | #endif
|
---|
3368 | *g_pu32 = UINT32_C(0xffff1122);
|
---|
3369 | iemAImpl_bswap_u16(g_pu32);
|
---|
3370 | #if 0
|
---|
3371 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0xffff2211), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
3372 | #else
|
---|
3373 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0xffff0000), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
3374 | #endif
|
---|
3375 | }
|
---|
3376 |
|
---|
3377 | if (SubTestAndCheckIfEnabled("bswap_u32"))
|
---|
3378 | {
|
---|
3379 | *g_pu32 = UINT32_C(0x12345678);
|
---|
3380 | iemAImpl_bswap_u32(g_pu32);
|
---|
3381 | RTTEST_CHECK(g_hTest, *g_pu32 == UINT32_C(0x78563412));
|
---|
3382 | }
|
---|
3383 |
|
---|
3384 | if (SubTestAndCheckIfEnabled("bswap_u64"))
|
---|
3385 | {
|
---|
3386 | *g_pu64 = UINT64_C(0x0123456789abcdef);
|
---|
3387 | iemAImpl_bswap_u64(g_pu64);
|
---|
3388 | RTTEST_CHECK(g_hTest, *g_pu64 == UINT64_C(0xefcdab8967452301));
|
---|
3389 | }
|
---|
3390 | }
|
---|
3391 |
|
---|
3392 |
|
---|
3393 |
|
---|
3394 | /*********************************************************************************************************************************
|
---|
3395 | * Floating point (x87 style) *
|
---|
3396 | *********************************************************************************************************************************/
|
---|
3397 |
|
---|
3398 | /*
|
---|
3399 | * FPU constant loading.
|
---|
3400 | */
|
---|
3401 | TYPEDEF_SUBTEST_TYPE(FPU_LD_CONST_T, FPU_LD_CONST_TEST_T, PFNIEMAIMPLFPUR80LDCONST);
|
---|
3402 |
|
---|
3403 | static FPU_LD_CONST_T g_aFpuLdConst[] =
|
---|
3404 | {
|
---|
3405 | ENTRY_BIN(fld1),
|
---|
3406 | ENTRY_BIN(fldl2t),
|
---|
3407 | ENTRY_BIN(fldl2e),
|
---|
3408 | ENTRY_BIN(fldpi),
|
---|
3409 | ENTRY_BIN(fldlg2),
|
---|
3410 | ENTRY_BIN(fldln2),
|
---|
3411 | ENTRY_BIN(fldz),
|
---|
3412 | };
|
---|
3413 |
|
---|
3414 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3415 | static RTEXITCODE FpuLdConstGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3416 | {
|
---|
3417 | X86FXSTATE State;
|
---|
3418 | RT_ZERO(State);
|
---|
3419 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++)
|
---|
3420 | {
|
---|
3421 | IEMBINARYOUTPUT BinOut;
|
---|
3422 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuLdConst[iFn]), RTEXITCODE_FAILURE);
|
---|
3423 | for (uint32_t iTest = 0; iTest < cTests; iTest += 4)
|
---|
3424 | {
|
---|
3425 | State.FCW = RandFcw();
|
---|
3426 | State.FSW = RandFsw();
|
---|
3427 |
|
---|
3428 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
3429 | {
|
---|
3430 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3431 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT);
|
---|
3432 | g_aFpuLdConst[iFn].pfn(&State, &Res);
|
---|
3433 | FPU_LD_CONST_TEST_T const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result };
|
---|
3434 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
3435 | }
|
---|
3436 | }
|
---|
3437 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
3438 | }
|
---|
3439 | return RTEXITCODE_SUCCESS;
|
---|
3440 | }
|
---|
3441 | DUMP_ALL_FN(FpuLdConst, g_aFpuLdConst)
|
---|
3442 | #endif
|
---|
3443 |
|
---|
3444 | static void FpuLdConstTest(void)
|
---|
3445 | {
|
---|
3446 | /*
|
---|
3447 | * Inputs:
|
---|
3448 | * - FSW: C0, C1, C2, C3
|
---|
3449 | * - FCW: Exception masks, Precision control, Rounding control.
|
---|
3450 | *
|
---|
3451 | * C1 set to 1 on stack overflow, zero otherwise. C0, C2, and C3 are "undefined".
|
---|
3452 | */
|
---|
3453 | X86FXSTATE State;
|
---|
3454 | RT_ZERO(State);
|
---|
3455 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++)
|
---|
3456 | {
|
---|
3457 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuLdConst[iFn]))
|
---|
3458 | continue;
|
---|
3459 |
|
---|
3460 | FPU_LD_CONST_TEST_T const *paTests = g_aFpuLdConst[iFn].paTests;
|
---|
3461 | uint32_t const cTests = g_aFpuLdConst[iFn].cTests;
|
---|
3462 | PFNIEMAIMPLFPUR80LDCONST pfn = g_aFpuLdConst[iFn].pfn;
|
---|
3463 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuLdConst[iFn]); \
|
---|
3464 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
3465 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
3466 | {
|
---|
3467 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
3468 | {
|
---|
3469 | State.FCW = paTests[iTest].fFcw;
|
---|
3470 | State.FSW = paTests[iTest].fFswIn;
|
---|
3471 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3472 | pfn(&State, &Res);
|
---|
3473 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
3474 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult))
|
---|
3475 | RTTestFailed(g_hTest, "#%u%s: fcw=%#06x fsw=%#06x -> fsw=%#06x %s, expected %#06x %s%s%s (%s)\n",
|
---|
3476 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
3477 | Res.FSW, FormatR80(&Res.r80Result),
|
---|
3478 | paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult),
|
---|
3479 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
3480 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "",
|
---|
3481 | FormatFcw(paTests[iTest].fFcw) );
|
---|
3482 | }
|
---|
3483 | pfn = g_aFpuLdConst[iFn].pfnNative;
|
---|
3484 | }
|
---|
3485 |
|
---|
3486 | FREE_DECOMPRESSED_TESTS(g_aFpuLdConst[iFn]);
|
---|
3487 | }
|
---|
3488 | }
|
---|
3489 |
|
---|
3490 |
|
---|
3491 | /*
|
---|
3492 | * Load floating point values from memory.
|
---|
3493 | */
|
---|
3494 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3495 | # define GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) \
|
---|
3496 | static RTEXITCODE FpuLdR ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
3497 | { \
|
---|
3498 | X86FXSTATE State; \
|
---|
3499 | RT_ZERO(State); \
|
---|
3500 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3501 | { \
|
---|
3502 | IEMBINARYOUTPUT BinOut; \
|
---|
3503 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
3504 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3505 | { \
|
---|
3506 | State.FCW = RandFcw(); \
|
---|
3507 | State.FSW = RandFsw(); \
|
---|
3508 | a_rdTypeIn InVal = RandR ## a_cBits ## Src(iTest); \
|
---|
3509 | \
|
---|
3510 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
3511 | { \
|
---|
3512 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
3513 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
3514 | a_aSubTests[iFn].pfn(&State, &Res, &InVal); \
|
---|
3515 | a_TestType const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result, InVal }; \
|
---|
3516 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
3517 | } \
|
---|
3518 | } \
|
---|
3519 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
3520 | } \
|
---|
3521 | return RTEXITCODE_SUCCESS; \
|
---|
3522 | } \
|
---|
3523 | DUMP_ALL_FN(FpuLdR ## a_cBits, a_aSubTests)
|
---|
3524 | #else
|
---|
3525 | # define GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType)
|
---|
3526 | #endif
|
---|
3527 |
|
---|
3528 | #define TEST_FPU_LOAD(a_cBits, a_rdTypeIn, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
3529 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROM ## a_cBits,(PCX86FXSTATE, PIEMFPURESULT, PC ## a_rdTypeIn)); \
|
---|
3530 | typedef FNIEMAIMPLFPULDR80FROM ## a_cBits *PFNIEMAIMPLFPULDR80FROM ## a_cBits; \
|
---|
3531 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPULDR80FROM ## a_cBits); \
|
---|
3532 | \
|
---|
3533 | static a_SubTestType a_aSubTests[] = \
|
---|
3534 | { \
|
---|
3535 | ENTRY_BIN(RT_CONCAT(fld_r80_from_r,a_cBits)) \
|
---|
3536 | }; \
|
---|
3537 | GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) \
|
---|
3538 | \
|
---|
3539 | static void FpuLdR ## a_cBits ## Test(void) \
|
---|
3540 | { \
|
---|
3541 | X86FXSTATE State; \
|
---|
3542 | RT_ZERO(State); \
|
---|
3543 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3544 | { \
|
---|
3545 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
3546 | continue; \
|
---|
3547 | \
|
---|
3548 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3549 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
3550 | PFNIEMAIMPLFPULDR80FROM ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
3551 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3552 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3553 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3554 | { \
|
---|
3555 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3556 | { \
|
---|
3557 | a_rdTypeIn const InVal = paTests[iTest].InVal; \
|
---|
3558 | State.FCW = paTests[iTest].fFcw; \
|
---|
3559 | State.FSW = paTests[iTest].fFswIn; \
|
---|
3560 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
3561 | pfn(&State, &Res, &InVal); \
|
---|
3562 | if ( Res.FSW != paTests[iTest].fFswOut \
|
---|
3563 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) \
|
---|
3564 | RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=%s\n" \
|
---|
3565 | "%s -> fsw=%#06x %s\n" \
|
---|
3566 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
3567 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
3568 | FormatR ## a_cBits(&paTests[iTest].InVal), \
|
---|
3569 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \
|
---|
3570 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), \
|
---|
3571 | FswDiff(Res.FSW, paTests[iTest].fFswOut), \
|
---|
3572 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", \
|
---|
3573 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
3574 | } \
|
---|
3575 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3576 | } \
|
---|
3577 | \
|
---|
3578 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
3579 | } \
|
---|
3580 | }
|
---|
3581 |
|
---|
3582 | TEST_FPU_LOAD(80, RTFLOAT80U, FPU_LD_R80_T, g_aFpuLdR80, FPU_R80_IN_TEST_T)
|
---|
3583 | TEST_FPU_LOAD(64, RTFLOAT64U, FPU_LD_R64_T, g_aFpuLdR64, FPU_R64_IN_TEST_T)
|
---|
3584 | TEST_FPU_LOAD(32, RTFLOAT32U, FPU_LD_R32_T, g_aFpuLdR32, FPU_R32_IN_TEST_T)
|
---|
3585 |
|
---|
3586 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3587 | static RTEXITCODE FpuLdMemGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3588 | {
|
---|
3589 | RTEXITCODE rcExit = FpuLdR80Generate(cTests, papszNameFmts);
|
---|
3590 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3591 | rcExit = FpuLdR64Generate(cTests, papszNameFmts);
|
---|
3592 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3593 | rcExit = FpuLdR32Generate(cTests, papszNameFmts);
|
---|
3594 | return rcExit;
|
---|
3595 | }
|
---|
3596 |
|
---|
3597 | static RTEXITCODE FpuLdMemDumpAll(const char * const *papszNameFmts)
|
---|
3598 | {
|
---|
3599 | RTEXITCODE rcExit = FpuLdR80DumpAll(papszNameFmts);
|
---|
3600 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3601 | rcExit = FpuLdR64DumpAll(papszNameFmts);
|
---|
3602 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3603 | rcExit = FpuLdR32DumpAll(papszNameFmts);
|
---|
3604 | return rcExit;
|
---|
3605 | }
|
---|
3606 | #endif
|
---|
3607 |
|
---|
3608 | static void FpuLdMemTest(void)
|
---|
3609 | {
|
---|
3610 | FpuLdR80Test();
|
---|
3611 | FpuLdR64Test();
|
---|
3612 | FpuLdR32Test();
|
---|
3613 | }
|
---|
3614 |
|
---|
3615 |
|
---|
3616 | /*
|
---|
3617 | * Load integer values from memory.
|
---|
3618 | */
|
---|
3619 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3620 | # define GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) \
|
---|
3621 | static RTEXITCODE FpuLdI ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
3622 | { \
|
---|
3623 | X86FXSTATE State; \
|
---|
3624 | RT_ZERO(State); \
|
---|
3625 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3626 | { \
|
---|
3627 | IEMBINARYOUTPUT BinOut; \
|
---|
3628 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
3629 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3630 | { \
|
---|
3631 | State.FCW = RandFcw(); \
|
---|
3632 | State.FSW = RandFsw(); \
|
---|
3633 | a_iTypeIn InVal = (a_iTypeIn)RandU ## a_cBits ## Src(iTest); \
|
---|
3634 | \
|
---|
3635 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
3636 | { \
|
---|
3637 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
3638 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
3639 | a_aSubTests[iFn].pfn(&State, &Res, &InVal); \
|
---|
3640 | a_TestType const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result }; \
|
---|
3641 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
3642 | } \
|
---|
3643 | } \
|
---|
3644 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
3645 | } \
|
---|
3646 | return RTEXITCODE_SUCCESS; \
|
---|
3647 | } \
|
---|
3648 | DUMP_ALL_FN(FpuLdI ## a_cBits, a_aSubTests)
|
---|
3649 | #else
|
---|
3650 | # define GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType)
|
---|
3651 | #endif
|
---|
3652 |
|
---|
3653 | #define TEST_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
3654 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROMI ## a_cBits,(PCX86FXSTATE, PIEMFPURESULT, a_iTypeIn const *)); \
|
---|
3655 | typedef FNIEMAIMPLFPULDR80FROMI ## a_cBits *PFNIEMAIMPLFPULDR80FROMI ## a_cBits; \
|
---|
3656 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPULDR80FROMI ## a_cBits); \
|
---|
3657 | \
|
---|
3658 | static a_SubTestType a_aSubTests[] = \
|
---|
3659 | { \
|
---|
3660 | ENTRY_BIN(RT_CONCAT(fild_r80_from_i,a_cBits)) \
|
---|
3661 | }; \
|
---|
3662 | GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) \
|
---|
3663 | \
|
---|
3664 | static void FpuLdI ## a_cBits ## Test(void) \
|
---|
3665 | { \
|
---|
3666 | X86FXSTATE State; \
|
---|
3667 | RT_ZERO(State); \
|
---|
3668 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3669 | { \
|
---|
3670 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
3671 | continue; \
|
---|
3672 | \
|
---|
3673 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3674 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
3675 | PFNIEMAIMPLFPULDR80FROMI ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
3676 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3677 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3678 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3679 | { \
|
---|
3680 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3681 | { \
|
---|
3682 | a_iTypeIn const iInVal = paTests[iTest].iInVal; \
|
---|
3683 | State.FCW = paTests[iTest].fFcw; \
|
---|
3684 | State.FSW = paTests[iTest].fFswIn; \
|
---|
3685 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
3686 | pfn(&State, &Res, &iInVal); \
|
---|
3687 | if ( Res.FSW != paTests[iTest].fFswOut \
|
---|
3688 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) \
|
---|
3689 | RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=" a_szFmtIn "\n" \
|
---|
3690 | "%s -> fsw=%#06x %s\n" \
|
---|
3691 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
3692 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, paTests[iTest].iInVal, \
|
---|
3693 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \
|
---|
3694 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), \
|
---|
3695 | FswDiff(Res.FSW, paTests[iTest].fFswOut), \
|
---|
3696 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", \
|
---|
3697 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
3698 | } \
|
---|
3699 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3700 | } \
|
---|
3701 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
3702 | } \
|
---|
3703 | }
|
---|
3704 |
|
---|
3705 | TEST_FPU_LOAD_INT(64, int64_t, "%RI64", FPU_LD_I64_T, g_aFpuLdU64, FPU_I64_IN_TEST_T)
|
---|
3706 | TEST_FPU_LOAD_INT(32, int32_t, "%RI32", FPU_LD_I32_T, g_aFpuLdU32, FPU_I32_IN_TEST_T)
|
---|
3707 | TEST_FPU_LOAD_INT(16, int16_t, "%RI16", FPU_LD_I16_T, g_aFpuLdU16, FPU_I16_IN_TEST_T)
|
---|
3708 |
|
---|
3709 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3710 | static RTEXITCODE FpuLdIntGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3711 | {
|
---|
3712 | RTEXITCODE rcExit = FpuLdI64Generate(cTests, papszNameFmts);
|
---|
3713 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3714 | rcExit = FpuLdI32Generate(cTests, papszNameFmts);
|
---|
3715 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3716 | rcExit = FpuLdI16Generate(cTests, papszNameFmts);
|
---|
3717 | return rcExit;
|
---|
3718 | }
|
---|
3719 |
|
---|
3720 | static RTEXITCODE FpuLdIntDumpAll(const char * const *papszNameFmts)
|
---|
3721 | {
|
---|
3722 | RTEXITCODE rcExit = FpuLdI64DumpAll(papszNameFmts);
|
---|
3723 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3724 | rcExit = FpuLdI32DumpAll(papszNameFmts);
|
---|
3725 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3726 | rcExit = FpuLdI16DumpAll(papszNameFmts);
|
---|
3727 | return rcExit;
|
---|
3728 | }
|
---|
3729 | #endif
|
---|
3730 |
|
---|
3731 | static void FpuLdIntTest(void)
|
---|
3732 | {
|
---|
3733 | FpuLdI64Test();
|
---|
3734 | FpuLdI32Test();
|
---|
3735 | FpuLdI16Test();
|
---|
3736 | }
|
---|
3737 |
|
---|
3738 |
|
---|
3739 | /*
|
---|
3740 | * Load binary coded decimal values from memory.
|
---|
3741 | */
|
---|
3742 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROMD80,(PCX86FXSTATE, PIEMFPURESULT, PCRTPBCD80U));
|
---|
3743 | typedef FNIEMAIMPLFPULDR80FROMD80 *PFNIEMAIMPLFPULDR80FROMD80;
|
---|
3744 | TYPEDEF_SUBTEST_TYPE(FPU_LD_D80_T, FPU_D80_IN_TEST_T, PFNIEMAIMPLFPULDR80FROMD80);
|
---|
3745 |
|
---|
3746 | static FPU_LD_D80_T g_aFpuLdD80[] =
|
---|
3747 | {
|
---|
3748 | ENTRY_BIN(fld_r80_from_d80)
|
---|
3749 | };
|
---|
3750 |
|
---|
3751 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3752 | static RTEXITCODE FpuLdD80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3753 | {
|
---|
3754 | X86FXSTATE State;
|
---|
3755 | RT_ZERO(State);
|
---|
3756 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++)
|
---|
3757 | {
|
---|
3758 | IEMBINARYOUTPUT BinOut;
|
---|
3759 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuLdD80[iFn]), RTEXITCODE_FAILURE);
|
---|
3760 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
3761 | {
|
---|
3762 | State.FCW = RandFcw();
|
---|
3763 | State.FSW = RandFsw();
|
---|
3764 | RTPBCD80U InVal = RandD80Src(iTest);
|
---|
3765 |
|
---|
3766 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
3767 | {
|
---|
3768 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3769 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT);
|
---|
3770 | g_aFpuLdD80[iFn].pfn(&State, &Res, &InVal);
|
---|
3771 | FPU_D80_IN_TEST_T const Test = { State.FCW, State.FSW, Res.FSW, Res.r80Result, InVal };
|
---|
3772 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
3773 | }
|
---|
3774 | }
|
---|
3775 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
3776 | }
|
---|
3777 | return RTEXITCODE_SUCCESS;
|
---|
3778 | }
|
---|
3779 | DUMP_ALL_FN(FpuLdD80, g_aFpuLdD80)
|
---|
3780 | #endif
|
---|
3781 |
|
---|
3782 | static void FpuLdD80Test(void)
|
---|
3783 | {
|
---|
3784 | X86FXSTATE State;
|
---|
3785 | RT_ZERO(State);
|
---|
3786 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++)
|
---|
3787 | {
|
---|
3788 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuLdD80[iFn]))
|
---|
3789 | continue;
|
---|
3790 |
|
---|
3791 | FPU_D80_IN_TEST_T const * const paTests = g_aFpuLdD80[iFn].paTests;
|
---|
3792 | uint32_t const cTests = g_aFpuLdD80[iFn].cTests;
|
---|
3793 | PFNIEMAIMPLFPULDR80FROMD80 pfn = g_aFpuLdD80[iFn].pfn;
|
---|
3794 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuLdD80[iFn]);
|
---|
3795 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
3796 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
3797 | {
|
---|
3798 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
3799 | {
|
---|
3800 | RTPBCD80U const InVal = paTests[iTest].InVal;
|
---|
3801 | State.FCW = paTests[iTest].fFcw;
|
---|
3802 | State.FSW = paTests[iTest].fFswIn;
|
---|
3803 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3804 | pfn(&State, &Res, &InVal);
|
---|
3805 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
3806 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult))
|
---|
3807 | RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
3808 | "%s -> fsw=%#06x %s\n"
|
---|
3809 | "%s expected %#06x %s%s%s (%s)\n",
|
---|
3810 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
3811 | FormatD80(&paTests[iTest].InVal),
|
---|
3812 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result),
|
---|
3813 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult),
|
---|
3814 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
3815 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "",
|
---|
3816 | FormatFcw(paTests[iTest].fFcw) );
|
---|
3817 | }
|
---|
3818 | pfn = g_aFpuLdD80[iFn].pfnNative;
|
---|
3819 | }
|
---|
3820 |
|
---|
3821 | FREE_DECOMPRESSED_TESTS(g_aFpuLdD80[iFn]);
|
---|
3822 | }
|
---|
3823 | }
|
---|
3824 |
|
---|
3825 |
|
---|
3826 | /*
|
---|
3827 | * Store values floating point values to memory.
|
---|
3828 | */
|
---|
3829 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3830 | static const RTFLOAT80U g_aFpuStR32Specials[] =
|
---|
3831 | {
|
---|
3832 | RTFLOAT80U_INIT_C(0, 0xffffff8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
3833 | RTFLOAT80U_INIT_C(1, 0xffffff8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
3834 | RTFLOAT80U_INIT_C(0, 0xfffffe8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
3835 | RTFLOAT80U_INIT_C(1, 0xfffffe8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
3836 | };
|
---|
3837 | static const RTFLOAT80U g_aFpuStR64Specials[] =
|
---|
3838 | {
|
---|
3839 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffc00, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
3840 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffc00, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
3841 | RTFLOAT80U_INIT_C(0, 0xfffffffffffff400, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
3842 | RTFLOAT80U_INIT_C(1, 0xfffffffffffff400, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
3843 | RTFLOAT80U_INIT_C(0, 0xd0b9e6fdda887400, 687 + RTFLOAT80U_EXP_BIAS), /* random example for this */
|
---|
3844 | };
|
---|
3845 | static const RTFLOAT80U g_aFpuStR80Specials[] =
|
---|
3846 | {
|
---|
3847 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* placeholder */
|
---|
3848 | };
|
---|
3849 | # define GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) \
|
---|
3850 | static RTEXITCODE FpuStR ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
3851 | { \
|
---|
3852 | uint32_t const cTotalTests = cTests + RT_ELEMENTS(g_aFpuStR ## a_cBits ## Specials); \
|
---|
3853 | X86FXSTATE State; \
|
---|
3854 | RT_ZERO(State); \
|
---|
3855 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3856 | { \
|
---|
3857 | IEMBINARYOUTPUT BinOut; \
|
---|
3858 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
3859 | for (uint32_t iTest = 0; iTest < cTotalTests; iTest++) \
|
---|
3860 | { \
|
---|
3861 | uint16_t const fFcw = RandFcw(); \
|
---|
3862 | State.FSW = RandFsw(); \
|
---|
3863 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, a_cBits) \
|
---|
3864 | : g_aFpuStR ## a_cBits ## Specials[iTest - cTests]; \
|
---|
3865 | \
|
---|
3866 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
3867 | { \
|
---|
3868 | /* PC doesn't influence these, so leave as is. */ \
|
---|
3869 | AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); \
|
---|
3870 | for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) \
|
---|
3871 | { \
|
---|
3872 | uint16_t uFswOut = 0; \
|
---|
3873 | a_rdType OutVal; \
|
---|
3874 | RT_ZERO(OutVal); \
|
---|
3875 | memset(&OutVal, 0xfe, sizeof(OutVal)); \
|
---|
3876 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) \
|
---|
3877 | | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
3878 | /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ \
|
---|
3879 | State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; \
|
---|
3880 | a_aSubTests[iFn].pfn(&State, &uFswOut, &OutVal, &InVal); \
|
---|
3881 | a_TestType const Test = { State.FCW, State.FSW, uFswOut, InVal, OutVal }; \
|
---|
3882 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
3883 | } \
|
---|
3884 | } \
|
---|
3885 | } \
|
---|
3886 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
3887 | } \
|
---|
3888 | return RTEXITCODE_SUCCESS; \
|
---|
3889 | } \
|
---|
3890 | DUMP_ALL_FN(FpuStR ## a_cBits, a_aSubTests)
|
---|
3891 | #else
|
---|
3892 | # define GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType)
|
---|
3893 | #endif
|
---|
3894 |
|
---|
3895 | #define TEST_FPU_STORE(a_cBits, a_rdType, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
3896 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOR ## a_cBits,(PCX86FXSTATE, uint16_t *, \
|
---|
3897 | PRTFLOAT ## a_cBits ## U, PCRTFLOAT80U)); \
|
---|
3898 | typedef FNIEMAIMPLFPUSTR80TOR ## a_cBits *PFNIEMAIMPLFPUSTR80TOR ## a_cBits; \
|
---|
3899 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPUSTR80TOR ## a_cBits); \
|
---|
3900 | \
|
---|
3901 | static a_SubTestType a_aSubTests[] = \
|
---|
3902 | { \
|
---|
3903 | ENTRY_BIN(RT_CONCAT(fst_r80_to_r,a_cBits)) \
|
---|
3904 | }; \
|
---|
3905 | GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) \
|
---|
3906 | \
|
---|
3907 | static void FpuStR ## a_cBits ## Test(void) \
|
---|
3908 | { \
|
---|
3909 | X86FXSTATE State; \
|
---|
3910 | RT_ZERO(State); \
|
---|
3911 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3912 | { \
|
---|
3913 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
3914 | continue; \
|
---|
3915 | \
|
---|
3916 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3917 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
3918 | PFNIEMAIMPLFPUSTR80TOR ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
3919 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3920 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3921 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3922 | { \
|
---|
3923 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3924 | { \
|
---|
3925 | RTFLOAT80U const InVal = paTests[iTest].InVal; \
|
---|
3926 | uint16_t uFswOut = 0; \
|
---|
3927 | a_rdType OutVal; \
|
---|
3928 | RT_ZERO(OutVal); \
|
---|
3929 | memset(&OutVal, 0xfe, sizeof(OutVal)); \
|
---|
3930 | State.FCW = paTests[iTest].fFcw; \
|
---|
3931 | State.FSW = paTests[iTest].fFswIn; \
|
---|
3932 | pfn(&State, &uFswOut, &OutVal, &InVal); \
|
---|
3933 | if ( uFswOut != paTests[iTest].fFswOut \
|
---|
3934 | || !RTFLOAT ## a_cBits ## U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal)) \
|
---|
3935 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" \
|
---|
3936 | "%s -> fsw=%#06x %s\n" \
|
---|
3937 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
3938 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
3939 | FormatR80(&paTests[iTest].InVal), \
|
---|
3940 | iVar ? " " : "", uFswOut, FormatR ## a_cBits(&OutVal), \
|
---|
3941 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR ## a_cBits(&paTests[iTest].OutVal), \
|
---|
3942 | FswDiff(uFswOut, paTests[iTest].fFswOut), \
|
---|
3943 | !RTFLOAT ## a_cBits ## U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal) ? " - val" : "", \
|
---|
3944 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
3945 | } \
|
---|
3946 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3947 | } \
|
---|
3948 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
3949 | } \
|
---|
3950 | }
|
---|
3951 |
|
---|
3952 | TEST_FPU_STORE(80, RTFLOAT80U, FPU_ST_R80_T, g_aFpuStR80, FPU_ST_R80_TEST_T)
|
---|
3953 | TEST_FPU_STORE(64, RTFLOAT64U, FPU_ST_R64_T, g_aFpuStR64, FPU_ST_R64_TEST_T)
|
---|
3954 | TEST_FPU_STORE(32, RTFLOAT32U, FPU_ST_R32_T, g_aFpuStR32, FPU_ST_R32_TEST_T)
|
---|
3955 |
|
---|
3956 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3957 | static RTEXITCODE FpuStMemGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
3958 | {
|
---|
3959 | RTEXITCODE rcExit = FpuStR80Generate(cTests, papszNameFmts);
|
---|
3960 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3961 | rcExit = FpuStR64Generate(cTests, papszNameFmts);
|
---|
3962 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3963 | rcExit = FpuStR32Generate(cTests, papszNameFmts);
|
---|
3964 | return rcExit;
|
---|
3965 | }
|
---|
3966 |
|
---|
3967 | static RTEXITCODE FpuStMemDumpAll(const char * const *papszNameFmts)
|
---|
3968 | {
|
---|
3969 | RTEXITCODE rcExit = FpuStR80DumpAll(papszNameFmts);
|
---|
3970 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3971 | rcExit = FpuStR64DumpAll(papszNameFmts);
|
---|
3972 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
3973 | rcExit = FpuStR32DumpAll(papszNameFmts);
|
---|
3974 | return rcExit;
|
---|
3975 | }
|
---|
3976 | #endif
|
---|
3977 |
|
---|
3978 | static void FpuStMemTest(void)
|
---|
3979 | {
|
---|
3980 | FpuStR80Test();
|
---|
3981 | FpuStR64Test();
|
---|
3982 | FpuStR32Test();
|
---|
3983 | }
|
---|
3984 |
|
---|
3985 |
|
---|
3986 | /*
|
---|
3987 | * Store integer values to memory or register.
|
---|
3988 | */
|
---|
3989 | TYPEDEF_SUBTEST_TYPE(FPU_ST_I16_T, FPU_ST_I16_TEST_T, PFNIEMAIMPLFPUSTR80TOI16);
|
---|
3990 | TYPEDEF_SUBTEST_TYPE(FPU_ST_I32_T, FPU_ST_I32_TEST_T, PFNIEMAIMPLFPUSTR80TOI32);
|
---|
3991 | TYPEDEF_SUBTEST_TYPE(FPU_ST_I64_T, FPU_ST_I64_TEST_T, PFNIEMAIMPLFPUSTR80TOI64);
|
---|
3992 |
|
---|
3993 | static FPU_ST_I16_T g_aFpuStI16[] =
|
---|
3994 | {
|
---|
3995 | ENTRY_BIN(fist_r80_to_i16),
|
---|
3996 | ENTRY_BIN_AMD( fistt_r80_to_i16, 0),
|
---|
3997 | ENTRY_BIN_INTEL(fistt_r80_to_i16, 0),
|
---|
3998 | };
|
---|
3999 | static FPU_ST_I32_T g_aFpuStI32[] =
|
---|
4000 | {
|
---|
4001 | ENTRY_BIN(fist_r80_to_i32),
|
---|
4002 | ENTRY_BIN(fistt_r80_to_i32),
|
---|
4003 | };
|
---|
4004 | static FPU_ST_I64_T g_aFpuStI64[] =
|
---|
4005 | {
|
---|
4006 | ENTRY_BIN(fist_r80_to_i64),
|
---|
4007 | ENTRY_BIN(fistt_r80_to_i64),
|
---|
4008 | };
|
---|
4009 |
|
---|
4010 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4011 | static const RTFLOAT80U g_aFpuStI16Specials[] = /* 16-bit variant borrows properties from the 32-bit one, thus all this stuff. */
|
---|
4012 | {
|
---|
4013 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 13 + RTFLOAT80U_EXP_BIAS),
|
---|
4014 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 13 + RTFLOAT80U_EXP_BIAS),
|
---|
4015 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4016 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4017 | RTFLOAT80U_INIT_C(0, 0x8000080000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4018 | RTFLOAT80U_INIT_C(1, 0x8000080000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4019 | RTFLOAT80U_INIT_C(0, 0x8000100000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4020 | RTFLOAT80U_INIT_C(1, 0x8000100000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4021 | RTFLOAT80U_INIT_C(0, 0x8000200000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4022 | RTFLOAT80U_INIT_C(1, 0x8000200000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4023 | RTFLOAT80U_INIT_C(0, 0x8000400000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4024 | RTFLOAT80U_INIT_C(1, 0x8000400000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4025 | RTFLOAT80U_INIT_C(0, 0x8000800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4026 | RTFLOAT80U_INIT_C(1, 0x8000800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4027 | RTFLOAT80U_INIT_C(1, 0x8000ffffffffffff, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4028 | RTFLOAT80U_INIT_C(0, 0x8001000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4029 | RTFLOAT80U_INIT_C(1, 0x8001000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4030 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4031 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4032 | RTFLOAT80U_INIT_C(0, 0xffff800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4033 | RTFLOAT80U_INIT_C(0, 0xffff000000000000, 14 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
4034 | RTFLOAT80U_INIT_C(0, 0xfffe000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4035 | RTFLOAT80U_INIT_C(1, 0xffff800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4036 | RTFLOAT80U_INIT_C(1, 0xffff000000000000, 14 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
4037 | RTFLOAT80U_INIT_C(1, 0xfffe000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
4038 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 15 + RTFLOAT80U_EXP_BIAS),
|
---|
4039 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 15 + RTFLOAT80U_EXP_BIAS),
|
---|
4040 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 16 + RTFLOAT80U_EXP_BIAS),
|
---|
4041 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 17 + RTFLOAT80U_EXP_BIAS),
|
---|
4042 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 20 + RTFLOAT80U_EXP_BIAS),
|
---|
4043 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 24 + RTFLOAT80U_EXP_BIAS),
|
---|
4044 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 28 + RTFLOAT80U_EXP_BIAS),
|
---|
4045 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
4046 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
4047 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
4048 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
4049 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4050 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4051 | RTFLOAT80U_INIT_C(0, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4052 | RTFLOAT80U_INIT_C(1, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4053 | RTFLOAT80U_INIT_C(0, 0x8000ffffffffffff, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4054 | RTFLOAT80U_INIT_C(1, 0x8000ffffffffffff, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4055 | RTFLOAT80U_INIT_C(0, 0x8001000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4056 | RTFLOAT80U_INIT_C(1, 0x8001000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4057 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4058 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4059 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 32 + RTFLOAT80U_EXP_BIAS),
|
---|
4060 | };
|
---|
4061 | static const RTFLOAT80U g_aFpuStI32Specials[] =
|
---|
4062 | {
|
---|
4063 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
4064 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
4065 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
4066 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
4067 | RTFLOAT80U_INIT_C(0, 0xffffffff80000000, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
4068 | RTFLOAT80U_INIT_C(1, 0xffffffff80000000, 30 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
4069 | RTFLOAT80U_INIT_C(0, 0xffffffff00000000, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
4070 | RTFLOAT80U_INIT_C(1, 0xffffffff00000000, 30 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
4071 | RTFLOAT80U_INIT_C(0, 0xfffffffe00000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
4072 | RTFLOAT80U_INIT_C(1, 0xfffffffe00000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
4073 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4074 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4075 | RTFLOAT80U_INIT_C(0, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4076 | RTFLOAT80U_INIT_C(1, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4077 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4078 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
4079 | };
|
---|
4080 | static const RTFLOAT80U g_aFpuStI64Specials[] =
|
---|
4081 | {
|
---|
4082 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 61 + RTFLOAT80U_EXP_BIAS),
|
---|
4083 | RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, 61 + RTFLOAT80U_EXP_BIAS),
|
---|
4084 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
4085 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
4086 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
4087 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
4088 | RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, 62 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
4089 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, 62 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
4090 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffffe, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
4091 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffffe, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
4092 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
4093 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
4094 | RTFLOAT80U_INIT_C(0, 0x8000000000000001, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
4095 | RTFLOAT80U_INIT_C(1, 0x8000000000000001, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
4096 | RTFLOAT80U_INIT_C(0, 0x8000000000000002, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
4097 | RTFLOAT80U_INIT_C(1, 0x8000000000000002, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
4098 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
4099 | };
|
---|
4100 |
|
---|
4101 | # define GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) \
|
---|
4102 | static RTEXITCODE FpuStI ## a_cBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
4103 | { \
|
---|
4104 | X86FXSTATE State; \
|
---|
4105 | RT_ZERO(State); \
|
---|
4106 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4107 | { \
|
---|
4108 | PFNIEMAIMPLFPUSTR80TOI ## a_cBits const pfn = a_aSubTests[iFn].pfnNative \
|
---|
4109 | ? a_aSubTests[iFn].pfnNative : a_aSubTests[iFn].pfn; \
|
---|
4110 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
4111 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
4112 | continue; \
|
---|
4113 | \
|
---|
4114 | IEMBINARYOUTPUT BinOut; \
|
---|
4115 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
4116 | uint32_t const cTotalTests = cTests + RT_ELEMENTS(g_aFpuStI ## a_cBits ## Specials); \
|
---|
4117 | for (uint32_t iTest = 0; iTest < cTotalTests; iTest++) \
|
---|
4118 | { \
|
---|
4119 | uint16_t const fFcw = RandFcw(); \
|
---|
4120 | State.FSW = RandFsw(); \
|
---|
4121 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, a_cBits, true) \
|
---|
4122 | : g_aFpuStI ## a_cBits ## Specials[iTest - cTests]; \
|
---|
4123 | \
|
---|
4124 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
4125 | { \
|
---|
4126 | /* PC doesn't influence these, so leave as is. */ \
|
---|
4127 | AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); \
|
---|
4128 | for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) \
|
---|
4129 | { \
|
---|
4130 | uint16_t uFswOut = 0; \
|
---|
4131 | a_iType iOutVal = ~(a_iType)2; \
|
---|
4132 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) \
|
---|
4133 | | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
4134 | /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ \
|
---|
4135 | State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; \
|
---|
4136 | pfn(&State, &uFswOut, &iOutVal, &InVal); \
|
---|
4137 | a_TestType const Test = { State.FCW, State.FSW, uFswOut, InVal, iOutVal }; \
|
---|
4138 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
4139 | } \
|
---|
4140 | } \
|
---|
4141 | } \
|
---|
4142 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
4143 | } \
|
---|
4144 | return RTEXITCODE_SUCCESS; \
|
---|
4145 | } \
|
---|
4146 | DUMP_ALL_FN(FpuStI ## a_cBits, a_aSubTests)
|
---|
4147 | #else
|
---|
4148 | # define GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType)
|
---|
4149 | #endif
|
---|
4150 |
|
---|
4151 | #define TEST_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
4152 | GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) \
|
---|
4153 | \
|
---|
4154 | static void FpuStI ## a_cBits ## Test(void) \
|
---|
4155 | { \
|
---|
4156 | X86FXSTATE State; \
|
---|
4157 | RT_ZERO(State); \
|
---|
4158 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4159 | { \
|
---|
4160 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
4161 | continue; \
|
---|
4162 | \
|
---|
4163 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
4164 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
4165 | PFNIEMAIMPLFPUSTR80TOI ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
4166 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
4167 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
4168 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
4169 | { \
|
---|
4170 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
4171 | { \
|
---|
4172 | RTFLOAT80U const InVal = paTests[iTest].InVal; \
|
---|
4173 | uint16_t uFswOut = 0; \
|
---|
4174 | a_iType iOutVal = ~(a_iType)2; \
|
---|
4175 | State.FCW = paTests[iTest].fFcw; \
|
---|
4176 | State.FSW = paTests[iTest].fFswIn; \
|
---|
4177 | pfn(&State, &uFswOut, &iOutVal, &InVal); \
|
---|
4178 | if ( uFswOut != paTests[iTest].fFswOut \
|
---|
4179 | || iOutVal != paTests[iTest].iOutVal) \
|
---|
4180 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" \
|
---|
4181 | "%s -> fsw=%#06x " a_szFmt "\n" \
|
---|
4182 | "%s expected %#06x " a_szFmt "%s%s (%s)\n", \
|
---|
4183 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
4184 | FormatR80(&paTests[iTest].InVal), \
|
---|
4185 | iVar ? " " : "", uFswOut, iOutVal, \
|
---|
4186 | iVar ? " " : "", paTests[iTest].fFswOut, paTests[iTest].iOutVal, \
|
---|
4187 | FswDiff(uFswOut, paTests[iTest].fFswOut), \
|
---|
4188 | iOutVal != paTests[iTest].iOutVal ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); \
|
---|
4189 | } \
|
---|
4190 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
4191 | } \
|
---|
4192 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
4193 | } \
|
---|
4194 | }
|
---|
4195 |
|
---|
4196 | //fistt_r80_to_i16 diffs for AMD, of course :-)
|
---|
4197 |
|
---|
4198 | TEST_FPU_STORE_INT(64, int64_t, "%RI64", FPU_ST_I64_T, g_aFpuStI64, FPU_ST_I64_TEST_T)
|
---|
4199 | TEST_FPU_STORE_INT(32, int32_t, "%RI32", FPU_ST_I32_T, g_aFpuStI32, FPU_ST_I32_TEST_T)
|
---|
4200 | TEST_FPU_STORE_INT(16, int16_t, "%RI16", FPU_ST_I16_T, g_aFpuStI16, FPU_ST_I16_TEST_T)
|
---|
4201 |
|
---|
4202 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4203 | static RTEXITCODE FpuStIntGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
4204 | {
|
---|
4205 | RTEXITCODE rcExit = FpuStI64Generate(cTests, papszNameFmts);
|
---|
4206 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
4207 | rcExit = FpuStI32Generate(cTests, papszNameFmts);
|
---|
4208 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
4209 | rcExit = FpuStI16Generate(cTests, papszNameFmts);
|
---|
4210 | return rcExit;
|
---|
4211 | }
|
---|
4212 | static RTEXITCODE FpuStIntDumpAll(const char * const *papszNameFmts)
|
---|
4213 | {
|
---|
4214 | RTEXITCODE rcExit = FpuStI64DumpAll(papszNameFmts);
|
---|
4215 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
4216 | rcExit = FpuStI32DumpAll(papszNameFmts);
|
---|
4217 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
4218 | rcExit = FpuStI16DumpAll(papszNameFmts);
|
---|
4219 | return rcExit;
|
---|
4220 | }
|
---|
4221 | #endif
|
---|
4222 |
|
---|
4223 | static void FpuStIntTest(void)
|
---|
4224 | {
|
---|
4225 | FpuStI64Test();
|
---|
4226 | FpuStI32Test();
|
---|
4227 | FpuStI16Test();
|
---|
4228 | }
|
---|
4229 |
|
---|
4230 |
|
---|
4231 | /*
|
---|
4232 | * Store as packed BCD value (memory).
|
---|
4233 | */
|
---|
4234 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOD80,(PCX86FXSTATE, uint16_t *, PRTPBCD80U, PCRTFLOAT80U));
|
---|
4235 | typedef FNIEMAIMPLFPUSTR80TOD80 *PFNIEMAIMPLFPUSTR80TOD80;
|
---|
4236 | TYPEDEF_SUBTEST_TYPE(FPU_ST_D80_T, FPU_ST_D80_TEST_T, PFNIEMAIMPLFPUSTR80TOD80);
|
---|
4237 |
|
---|
4238 | static FPU_ST_D80_T g_aFpuStD80[] =
|
---|
4239 | {
|
---|
4240 | ENTRY_BIN(fst_r80_to_d80),
|
---|
4241 | };
|
---|
4242 |
|
---|
4243 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4244 | static RTEXITCODE FpuStD80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
4245 | {
|
---|
4246 | static RTFLOAT80U const s_aSpecials[] =
|
---|
4247 | {
|
---|
4248 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763fffe0, RTFLOAT80U_EXP_BIAS + 59), /* 1 below max */
|
---|
4249 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763fffe0, RTFLOAT80U_EXP_BIAS + 59), /* 1 above min */
|
---|
4250 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff0, RTFLOAT80U_EXP_BIAS + 59), /* exact max */
|
---|
4251 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff0, RTFLOAT80U_EXP_BIAS + 59), /* exact min */
|
---|
4252 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763fffff, RTFLOAT80U_EXP_BIAS + 59), /* max & all rounded off bits set */
|
---|
4253 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763fffff, RTFLOAT80U_EXP_BIAS + 59), /* min & all rounded off bits set */
|
---|
4254 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff8, RTFLOAT80U_EXP_BIAS + 59), /* max & some rounded off bits set */
|
---|
4255 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff8, RTFLOAT80U_EXP_BIAS + 59), /* min & some rounded off bits set */
|
---|
4256 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff1, RTFLOAT80U_EXP_BIAS + 59), /* max & some other rounded off bits set */
|
---|
4257 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff1, RTFLOAT80U_EXP_BIAS + 59), /* min & some other rounded off bits set */
|
---|
4258 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a76400000, RTFLOAT80U_EXP_BIAS + 59), /* 1 above max */
|
---|
4259 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a76400000, RTFLOAT80U_EXP_BIAS + 59), /* 1 below min */
|
---|
4260 | };
|
---|
4261 |
|
---|
4262 | X86FXSTATE State;
|
---|
4263 | RT_ZERO(State);
|
---|
4264 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++)
|
---|
4265 | {
|
---|
4266 | IEMBINARYOUTPUT BinOut;
|
---|
4267 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuStD80[iFn]), RTEXITCODE_FAILURE);
|
---|
4268 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
4269 | {
|
---|
4270 | uint16_t const fFcw = RandFcw();
|
---|
4271 | State.FSW = RandFsw();
|
---|
4272 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, 59, true) : s_aSpecials[iTest - cTests];
|
---|
4273 |
|
---|
4274 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4275 | {
|
---|
4276 | /* PC doesn't influence these, so leave as is. */
|
---|
4277 | AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT);
|
---|
4278 | for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/)
|
---|
4279 | {
|
---|
4280 | uint16_t uFswOut = 0;
|
---|
4281 | RTPBCD80U OutVal = RTPBCD80U_INIT_ZERO(0);
|
---|
4282 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM))
|
---|
4283 | | (iRounding << X86_FCW_RC_SHIFT);
|
---|
4284 | /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/
|
---|
4285 | State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT;
|
---|
4286 | g_aFpuStD80[iFn].pfn(&State, &uFswOut, &OutVal, &InVal);
|
---|
4287 | FPU_ST_D80_TEST_T const Test = { State.FCW, State.FSW, uFswOut, InVal, OutVal };
|
---|
4288 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
4289 | }
|
---|
4290 | }
|
---|
4291 | }
|
---|
4292 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
4293 | }
|
---|
4294 | return RTEXITCODE_SUCCESS;
|
---|
4295 | }
|
---|
4296 | DUMP_ALL_FN(FpuStD80, g_aFpuStD80)
|
---|
4297 | #endif
|
---|
4298 |
|
---|
4299 |
|
---|
4300 | static void FpuStD80Test(void)
|
---|
4301 | {
|
---|
4302 | X86FXSTATE State;
|
---|
4303 | RT_ZERO(State);
|
---|
4304 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++)
|
---|
4305 | {
|
---|
4306 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuStD80[iFn]))
|
---|
4307 | continue;
|
---|
4308 |
|
---|
4309 | FPU_ST_D80_TEST_T const * const paTests = g_aFpuStD80[iFn].paTests;
|
---|
4310 | uint32_t const cTests = g_aFpuStD80[iFn].cTests;
|
---|
4311 | PFNIEMAIMPLFPUSTR80TOD80 pfn = g_aFpuStD80[iFn].pfn;
|
---|
4312 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuStD80[iFn]);
|
---|
4313 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4314 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4315 | {
|
---|
4316 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
4317 | {
|
---|
4318 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
4319 | uint16_t uFswOut = 0;
|
---|
4320 | RTPBCD80U OutVal = RTPBCD80U_INIT_ZERO(0);
|
---|
4321 | State.FCW = paTests[iTest].fFcw;
|
---|
4322 | State.FSW = paTests[iTest].fFswIn;
|
---|
4323 | pfn(&State, &uFswOut, &OutVal, &InVal);
|
---|
4324 | if ( uFswOut != paTests[iTest].fFswOut
|
---|
4325 | || !RTPBCD80U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal))
|
---|
4326 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
4327 | "%s -> fsw=%#06x %s\n"
|
---|
4328 | "%s expected %#06x %s%s%s (%s)\n",
|
---|
4329 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
4330 | FormatR80(&paTests[iTest].InVal),
|
---|
4331 | iVar ? " " : "", uFswOut, FormatD80(&OutVal),
|
---|
4332 | iVar ? " " : "", paTests[iTest].fFswOut, FormatD80(&paTests[iTest].OutVal),
|
---|
4333 | FswDiff(uFswOut, paTests[iTest].fFswOut),
|
---|
4334 | RTPBCD80U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal) ? " - val" : "",
|
---|
4335 | FormatFcw(paTests[iTest].fFcw) );
|
---|
4336 | }
|
---|
4337 | pfn = g_aFpuStD80[iFn].pfnNative;
|
---|
4338 | }
|
---|
4339 |
|
---|
4340 | FREE_DECOMPRESSED_TESTS(g_aFpuStD80[iFn]);
|
---|
4341 | }
|
---|
4342 | }
|
---|
4343 |
|
---|
4344 |
|
---|
4345 |
|
---|
4346 | /*********************************************************************************************************************************
|
---|
4347 | * x87 FPU Binary Operations *
|
---|
4348 | *********************************************************************************************************************************/
|
---|
4349 |
|
---|
4350 | /*
|
---|
4351 | * Binary FPU operations on two 80-bit floating point values.
|
---|
4352 | */
|
---|
4353 | TYPEDEF_SUBTEST_TYPE(FPU_BINARY_R80_T, FPU_BINARY_R80_TEST_T, PFNIEMAIMPLFPUR80);
|
---|
4354 | enum { kFpuBinaryHint_fprem = 1, };
|
---|
4355 |
|
---|
4356 | static FPU_BINARY_R80_T g_aFpuBinaryR80[] =
|
---|
4357 | {
|
---|
4358 | ENTRY_BIN(fadd_r80_by_r80),
|
---|
4359 | ENTRY_BIN(fsub_r80_by_r80),
|
---|
4360 | ENTRY_BIN(fsubr_r80_by_r80),
|
---|
4361 | ENTRY_BIN(fmul_r80_by_r80),
|
---|
4362 | ENTRY_BIN(fdiv_r80_by_r80),
|
---|
4363 | ENTRY_BIN(fdivr_r80_by_r80),
|
---|
4364 | ENTRY_BIN_EX(fprem_r80_by_r80, kFpuBinaryHint_fprem),
|
---|
4365 | ENTRY_BIN_EX(fprem1_r80_by_r80, kFpuBinaryHint_fprem),
|
---|
4366 | ENTRY_BIN(fscale_r80_by_r80),
|
---|
4367 | ENTRY_BIN_AMD( fpatan_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
4368 | ENTRY_BIN_INTEL(fpatan_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
4369 | ENTRY_BIN_AMD( fyl2x_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
4370 | ENTRY_BIN_INTEL(fyl2x_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
4371 | ENTRY_BIN_AMD( fyl2xp1_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
4372 | ENTRY_BIN_INTEL(fyl2xp1_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
4373 | };
|
---|
4374 |
|
---|
4375 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4376 | static RTEXITCODE FpuBinaryR80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
4377 | {
|
---|
4378 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
4379 |
|
---|
4380 | static struct { RTFLOAT80U Val1, Val2; } const s_aSpecials[] =
|
---|
4381 | {
|
---|
4382 | { RTFLOAT80U_INIT_C(1, 0xdd762f07f2e80eef, 30142), /* causes weird overflows with DOWN and NEAR rounding. */
|
---|
4383 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) },
|
---|
4384 | { RTFLOAT80U_INIT_ZERO(0), /* causes weird overflows with UP and NEAR rounding when precision is lower than 64. */
|
---|
4385 | RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) },
|
---|
4386 | { RTFLOAT80U_INIT_ZERO(0), /* minus variant */
|
---|
4387 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) },
|
---|
4388 | { RTFLOAT80U_INIT_C(0, 0xcef238bb9a0afd86, 577 + RTFLOAT80U_EXP_BIAS), /* for fprem and fprem1, max sequence length */
|
---|
4389 | RTFLOAT80U_INIT_C(0, 0xf11684ec0beaad94, 1 + RTFLOAT80U_EXP_BIAS) },
|
---|
4390 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, -13396 + RTFLOAT80U_EXP_BIAS), /* for fdiv. We missed PE. */
|
---|
4391 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, 16383 + RTFLOAT80U_EXP_BIAS) },
|
---|
4392 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS), /* for fprem/fprem1 */
|
---|
4393 | RTFLOAT80U_INIT_C(0, 0xe000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
4394 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS), /* for fprem/fprem1 */
|
---|
4395 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
4396 | /* fscale: This may seriously increase the exponent, and it turns out overflow and underflow behaviour changes
|
---|
4397 | once RTFLOAT80U_EXP_BIAS_ADJUST is exceeded. */
|
---|
4398 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1 */
|
---|
4399 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
4400 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^64 */
|
---|
4401 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 6 + RTFLOAT80U_EXP_BIAS) },
|
---|
4402 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1024 */
|
---|
4403 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 10 + RTFLOAT80U_EXP_BIAS) },
|
---|
4404 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^4096 */
|
---|
4405 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 12 + RTFLOAT80U_EXP_BIAS) },
|
---|
4406 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^16384 */
|
---|
4407 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 49150 */
|
---|
4408 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
4409 | RTFLOAT80U_INIT_C(0, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57342 - within 10980XE range */
|
---|
4410 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24577 */
|
---|
4411 | RTFLOAT80U_INIT_C(0, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57343 - outside 10980XE range, behaviour changes! */
|
---|
4412 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^32768 - result is within range on 10980XE */
|
---|
4413 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 15 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 65534 */
|
---|
4414 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^65536 */
|
---|
4415 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 16 + RTFLOAT80U_EXP_BIAS) },
|
---|
4416 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1048576 */
|
---|
4417 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 20 + RTFLOAT80U_EXP_BIAS) },
|
---|
4418 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^16777216 */
|
---|
4419 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 24 + RTFLOAT80U_EXP_BIAS) },
|
---|
4420 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1), /* for fscale: min * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
4421 | RTFLOAT80U_INIT_C(1, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -24575 - within 10980XE range */
|
---|
4422 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1), /* for fscale: max * 2^-24577 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
4423 | RTFLOAT80U_INIT_C(1, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -24576 - outside 10980XE range, behaviour changes! */
|
---|
4424 | /* fscale: Negative variants for the essentials of the above. */
|
---|
4425 | { RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
4426 | RTFLOAT80U_INIT_C(0, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57342 - within 10980XE range */
|
---|
4427 | { RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24577 */
|
---|
4428 | RTFLOAT80U_INIT_C(0, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57343 - outside 10980XE range, behaviour changes! */
|
---|
4429 | { RTFLOAT80U_INIT_C(1, 0x8000000000000000, 1), /* for fscale: min * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
4430 | RTFLOAT80U_INIT_C(1, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -57342 - within 10980XE range */
|
---|
4431 | { RTFLOAT80U_INIT_C(1, 0x8000000000000000, 1), /* for fscale: max * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
4432 | RTFLOAT80U_INIT_C(1, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -57343 - outside 10980XE range, behaviour changes! */
|
---|
4433 | /* fscale: Some fun with denormals and pseudo-denormals. */
|
---|
4434 | { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), /* for fscale: max * 2^-4 */
|
---|
4435 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) },
|
---|
4436 | { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), /* for fscale: max * 2^+1 */
|
---|
4437 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
4438 | { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), RTFLOAT80U_INIT_ZERO(0) }, /* for fscale: max * 2^+0 */
|
---|
4439 | { RTFLOAT80U_INIT_C(0, 0x0000000000000008, 0), /* for fscale: max * 2^-4 => underflow */
|
---|
4440 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) },
|
---|
4441 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), RTFLOAT80U_INIT_ZERO(0) }, /* pseudo-normal number * 2^+0. */
|
---|
4442 | { RTFLOAT80U_INIT_C(1, 0x8005000300020001, 0), RTFLOAT80U_INIT_ZERO(0) }, /* pseudo-normal number * 2^+0. */
|
---|
4443 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^-4 */
|
---|
4444 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) },
|
---|
4445 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^+0 */
|
---|
4446 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
4447 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^+1 */
|
---|
4448 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS) },
|
---|
4449 | };
|
---|
4450 |
|
---|
4451 | X86FXSTATE State;
|
---|
4452 | RT_ZERO(State);
|
---|
4453 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
4454 | uint32_t cMinTargetRangeInputs = cMinNormalPairs / 2;
|
---|
4455 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++)
|
---|
4456 | {
|
---|
4457 | PFNIEMAIMPLFPUR80 const pfn = g_aFpuBinaryR80[iFn].pfnNative ? g_aFpuBinaryR80[iFn].pfnNative : g_aFpuBinaryR80[iFn].pfn;
|
---|
4458 | if ( g_aFpuBinaryR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
4459 | && g_aFpuBinaryR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
4460 | continue;
|
---|
4461 |
|
---|
4462 | IEMBINARYOUTPUT BinOut;
|
---|
4463 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuBinaryR80[iFn]), RTEXITCODE_FAILURE);
|
---|
4464 | uint32_t cNormalInputPairs = 0;
|
---|
4465 | uint32_t cTargetRangeInputs = 0;
|
---|
4466 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
4467 | {
|
---|
4468 | RTFLOAT80U InVal1 = iTest < cTests ? RandR80Src1(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
4469 | RTFLOAT80U InVal2 = iTest < cTests ? RandR80Src2(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
4470 | bool fTargetRange = false;
|
---|
4471 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && RTFLOAT80U_IS_NORMAL(&InVal2))
|
---|
4472 | {
|
---|
4473 | cNormalInputPairs++;
|
---|
4474 | if ( g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem
|
---|
4475 | && (uint32_t)InVal1.s.uExponent - (uint32_t)InVal2.s.uExponent - (uint32_t)64 <= (uint32_t)512)
|
---|
4476 | cTargetRangeInputs += fTargetRange = true;
|
---|
4477 | else if (cTargetRangeInputs < cMinTargetRangeInputs && iTest < cTests)
|
---|
4478 | if (g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem)
|
---|
4479 | { /* The aim is two values with an exponent difference between 64 and 640 so we can do the whole sequence. */
|
---|
4480 | InVal2.s.uExponent = RTRandU32Ex(1, RTFLOAT80U_EXP_MAX - 66);
|
---|
4481 | InVal1.s.uExponent = RTRandU32Ex(InVal2.s.uExponent + 64, RT_MIN(InVal2.s.uExponent + 512, RTFLOAT80U_EXP_MAX - 1));
|
---|
4482 | cTargetRangeInputs += fTargetRange = true;
|
---|
4483 | }
|
---|
4484 | }
|
---|
4485 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
4486 | {
|
---|
4487 | iTest -= 1;
|
---|
4488 | continue;
|
---|
4489 | }
|
---|
4490 |
|
---|
4491 | uint16_t const fFcwExtra = 0;
|
---|
4492 | uint16_t const fFcw = RandFcw();
|
---|
4493 | State.FSW = RandFsw();
|
---|
4494 |
|
---|
4495 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4496 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
4497 | {
|
---|
4498 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
4499 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
4500 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
4501 | | X86_FCW_MASK_ALL;
|
---|
4502 | IEMFPURESULT ResM = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4503 | pfn(&State, &ResM, &InVal1, &InVal2);
|
---|
4504 | FPU_BINARY_R80_TEST_T const TestM
|
---|
4505 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResM.FSW, InVal1, InVal2, ResM.r80Result };
|
---|
4506 | GenerateBinaryWrite(&BinOut, &TestM, sizeof(TestM));
|
---|
4507 |
|
---|
4508 | State.FCW = State.FCW & ~X86_FCW_MASK_ALL;
|
---|
4509 | IEMFPURESULT ResU = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4510 | pfn(&State, &ResU, &InVal1, &InVal2);
|
---|
4511 | FPU_BINARY_R80_TEST_T const TestU
|
---|
4512 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResU.FSW, InVal1, InVal2, ResU.r80Result };
|
---|
4513 | GenerateBinaryWrite(&BinOut, &TestU, sizeof(TestU));
|
---|
4514 |
|
---|
4515 | uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF;
|
---|
4516 | if (fXcpt)
|
---|
4517 | {
|
---|
4518 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
4519 | IEMFPURESULT Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4520 | pfn(&State, &Res1, &InVal1, &InVal2);
|
---|
4521 | FPU_BINARY_R80_TEST_T const Test1
|
---|
4522 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res1.FSW, InVal1, InVal2, Res1.r80Result };
|
---|
4523 | GenerateBinaryWrite(&BinOut, &Test1, sizeof(Test1));
|
---|
4524 |
|
---|
4525 | if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK))
|
---|
4526 | {
|
---|
4527 | fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK;
|
---|
4528 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
4529 | IEMFPURESULT Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4530 | pfn(&State, &Res2, &InVal1, &InVal2);
|
---|
4531 | FPU_BINARY_R80_TEST_T const Test2
|
---|
4532 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res2.FSW, InVal1, InVal2, Res2.r80Result };
|
---|
4533 | GenerateBinaryWrite(&BinOut, &Test2, sizeof(Test2));
|
---|
4534 | }
|
---|
4535 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
4536 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1)
|
---|
4537 | if (fUnmasked & fXcpt)
|
---|
4538 | {
|
---|
4539 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked);
|
---|
4540 | IEMFPURESULT Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4541 | pfn(&State, &Res3, &InVal1, &InVal2);
|
---|
4542 | FPU_BINARY_R80_TEST_T const Test3
|
---|
4543 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res3.FSW, InVal1, InVal2, Res3.r80Result };
|
---|
4544 | GenerateBinaryWrite(&BinOut, &Test3, sizeof(Test3));
|
---|
4545 | }
|
---|
4546 | }
|
---|
4547 |
|
---|
4548 | /* If the values are in range and caused no exceptions, do the whole series of
|
---|
4549 | partial reminders till we get the non-partial one or run into an exception. */
|
---|
4550 | if (fTargetRange && fXcpt == 0 && g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem)
|
---|
4551 | {
|
---|
4552 | IEMFPURESULT ResPrev = ResM;
|
---|
4553 | for (unsigned i = 0; i < 32 && (ResPrev.FSW & (X86_FSW_C2 | X86_FSW_XCPT_MASK)) == X86_FSW_C2; i++)
|
---|
4554 | {
|
---|
4555 | State.FCW = State.FCW | X86_FCW_MASK_ALL;
|
---|
4556 | State.FSW = ResPrev.FSW;
|
---|
4557 | IEMFPURESULT ResSeq = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4558 | pfn(&State, &ResSeq, &ResPrev.r80Result, &InVal2);
|
---|
4559 | FPU_BINARY_R80_TEST_T const TestSeq
|
---|
4560 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResSeq.FSW, ResPrev.r80Result, InVal2, ResSeq.r80Result };
|
---|
4561 | GenerateBinaryWrite(&BinOut, &TestSeq, sizeof(TestSeq));
|
---|
4562 | ResPrev = ResSeq;
|
---|
4563 | }
|
---|
4564 | }
|
---|
4565 | }
|
---|
4566 | }
|
---|
4567 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
4568 | }
|
---|
4569 | return RTEXITCODE_SUCCESS;
|
---|
4570 | }
|
---|
4571 | DUMP_ALL_FN(FpuBinaryR80, g_aFpuBinaryR80)
|
---|
4572 | #endif
|
---|
4573 |
|
---|
4574 |
|
---|
4575 | static void FpuBinaryR80Test(void)
|
---|
4576 | {
|
---|
4577 | X86FXSTATE State;
|
---|
4578 | RT_ZERO(State);
|
---|
4579 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++)
|
---|
4580 | {
|
---|
4581 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuBinaryR80[iFn]))
|
---|
4582 | continue;
|
---|
4583 |
|
---|
4584 | FPU_BINARY_R80_TEST_T const * const paTests = g_aFpuBinaryR80[iFn].paTests;
|
---|
4585 | uint32_t const cTests = g_aFpuBinaryR80[iFn].cTests;
|
---|
4586 | PFNIEMAIMPLFPUR80 pfn = g_aFpuBinaryR80[iFn].pfn;
|
---|
4587 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuBinaryR80[iFn]);
|
---|
4588 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4589 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4590 | {
|
---|
4591 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
4592 | {
|
---|
4593 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1;
|
---|
4594 | RTFLOAT80U const InVal2 = paTests[iTest].InVal2;
|
---|
4595 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4596 | State.FCW = paTests[iTest].fFcw;
|
---|
4597 | State.FSW = paTests[iTest].fFswIn;
|
---|
4598 | pfn(&State, &Res, &InVal1, &InVal2);
|
---|
4599 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
4600 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal))
|
---|
4601 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n"
|
---|
4602 | "%s -> fsw=%#06x %s\n"
|
---|
4603 | "%s expected %#06x %s%s%s (%s)\n",
|
---|
4604 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
4605 | FormatR80(&paTests[iTest].InVal1), FormatR80(&paTests[iTest].InVal2),
|
---|
4606 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result),
|
---|
4607 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal),
|
---|
4608 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
4609 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "",
|
---|
4610 | FormatFcw(paTests[iTest].fFcw) );
|
---|
4611 | }
|
---|
4612 | pfn = g_aFpuBinaryR80[iFn].pfnNative;
|
---|
4613 | }
|
---|
4614 |
|
---|
4615 | FREE_DECOMPRESSED_TESTS(g_aFpuBinaryR80[iFn]);
|
---|
4616 | }
|
---|
4617 | }
|
---|
4618 |
|
---|
4619 |
|
---|
4620 | /*
|
---|
4621 | * Binary FPU operations on one 80-bit floating point value and one 64-bit or 32-bit one.
|
---|
4622 | */
|
---|
4623 | #define int64_t_IS_NORMAL(a) 1
|
---|
4624 | #define int32_t_IS_NORMAL(a) 1
|
---|
4625 | #define int16_t_IS_NORMAL(a) 1
|
---|
4626 |
|
---|
4627 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4628 | static struct { RTFLOAT80U Val1; RTFLOAT64U Val2; } const s_aFpuBinaryR64Specials[] =
|
---|
4629 | {
|
---|
4630 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4631 | RTFLOAT64U_INIT_C(0, 0xfeeeeddddcccc, RTFLOAT64U_EXP_BIAS) }, /* whatever */
|
---|
4632 | };
|
---|
4633 | static struct { RTFLOAT80U Val1; RTFLOAT32U Val2; } const s_aFpuBinaryR32Specials[] =
|
---|
4634 | {
|
---|
4635 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4636 | RTFLOAT32U_INIT_C(0, 0x7fffee, RTFLOAT32U_EXP_BIAS) }, /* whatever */
|
---|
4637 | };
|
---|
4638 | static struct { RTFLOAT80U Val1; int32_t Val2; } const s_aFpuBinaryI32Specials[] =
|
---|
4639 | {
|
---|
4640 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT32_MAX }, /* whatever */
|
---|
4641 | };
|
---|
4642 | static struct { RTFLOAT80U Val1; int16_t Val2; } const s_aFpuBinaryI16Specials[] =
|
---|
4643 | {
|
---|
4644 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT16_MAX }, /* whatever */
|
---|
4645 | };
|
---|
4646 |
|
---|
4647 | # define GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
4648 | static RTEXITCODE FpuBinary ## a_UpBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
4649 | { \
|
---|
4650 | cTests = RT_MAX(160, cTests); /* there are 144 standard input variations for r80 by r80 */ \
|
---|
4651 | \
|
---|
4652 | X86FXSTATE State; \
|
---|
4653 | RT_ZERO(State); \
|
---|
4654 | uint32_t cMinNormalPairs = (cTests - 144) / 4; \
|
---|
4655 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4656 | { \
|
---|
4657 | IEMBINARYOUTPUT BinOut; \
|
---|
4658 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
4659 | uint32_t cNormalInputPairs = 0; \
|
---|
4660 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinary ## a_UpBits ## Specials); iTest += 1) \
|
---|
4661 | { \
|
---|
4662 | RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest, a_cBits, a_fIntType) \
|
---|
4663 | : s_aFpuBinary ## a_UpBits ## Specials[iTest - cTests].Val1; \
|
---|
4664 | a_Type2 const InVal2 = iTest < cTests ? Rand ## a_UpBits ## Src2(iTest) \
|
---|
4665 | : s_aFpuBinary ## a_UpBits ## Specials[iTest - cTests].Val2; \
|
---|
4666 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && a_Type2 ## _IS_NORMAL(&InVal2)) \
|
---|
4667 | cNormalInputPairs++; \
|
---|
4668 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) \
|
---|
4669 | { \
|
---|
4670 | iTest -= 1; \
|
---|
4671 | continue; \
|
---|
4672 | } \
|
---|
4673 | \
|
---|
4674 | uint16_t const fFcw = RandFcw(); \
|
---|
4675 | State.FSW = RandFsw(); \
|
---|
4676 | \
|
---|
4677 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
4678 | { \
|
---|
4679 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) \
|
---|
4680 | { \
|
---|
4681 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) \
|
---|
4682 | { \
|
---|
4683 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) \
|
---|
4684 | | (iRounding << X86_FCW_RC_SHIFT) \
|
---|
4685 | | (iPrecision << X86_FCW_PC_SHIFT) \
|
---|
4686 | | iMask; \
|
---|
4687 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
4688 | a_aSubTests[iFn].pfn(&State, &Res, &InVal1, &InVal2); \
|
---|
4689 | a_TestType const Test = { State.FCW, State.FSW, Res.FSW, InVal1, InVal2, Res.r80Result }; \
|
---|
4690 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
4691 | } \
|
---|
4692 | } \
|
---|
4693 | } \
|
---|
4694 | } \
|
---|
4695 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
4696 | } \
|
---|
4697 | return RTEXITCODE_SUCCESS; \
|
---|
4698 | } \
|
---|
4699 | DUMP_ALL_FN(FpuBinary ## a_UpBits, a_aSubTests)
|
---|
4700 | #else
|
---|
4701 | # define GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType)
|
---|
4702 | #endif
|
---|
4703 |
|
---|
4704 | #define TEST_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_I, a_Type2, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
4705 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPU ## a_UpBits); \
|
---|
4706 | \
|
---|
4707 | static a_SubTestType a_aSubTests[] = \
|
---|
4708 | { \
|
---|
4709 | ENTRY_BIN(RT_CONCAT4(f, a_I, add_r80_by_, a_LoBits)), \
|
---|
4710 | ENTRY_BIN(RT_CONCAT4(f, a_I, mul_r80_by_, a_LoBits)), \
|
---|
4711 | ENTRY_BIN(RT_CONCAT4(f, a_I, sub_r80_by_, a_LoBits)), \
|
---|
4712 | ENTRY_BIN(RT_CONCAT4(f, a_I, subr_r80_by_, a_LoBits)), \
|
---|
4713 | ENTRY_BIN(RT_CONCAT4(f, a_I, div_r80_by_, a_LoBits)), \
|
---|
4714 | ENTRY_BIN(RT_CONCAT4(f, a_I, divr_r80_by_, a_LoBits)), \
|
---|
4715 | }; \
|
---|
4716 | \
|
---|
4717 | GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
4718 | \
|
---|
4719 | static void FpuBinary ## a_UpBits ## Test(void) \
|
---|
4720 | { \
|
---|
4721 | X86FXSTATE State; \
|
---|
4722 | RT_ZERO(State); \
|
---|
4723 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4724 | { \
|
---|
4725 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
4726 | continue; \
|
---|
4727 | \
|
---|
4728 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
4729 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
4730 | PFNIEMAIMPLFPU ## a_UpBits pfn = a_aSubTests[iFn].pfn; \
|
---|
4731 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
4732 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
4733 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
4734 | { \
|
---|
4735 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
4736 | { \
|
---|
4737 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1; \
|
---|
4738 | a_Type2 const InVal2 = paTests[iTest].InVal2; \
|
---|
4739 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
4740 | State.FCW = paTests[iTest].fFcw; \
|
---|
4741 | State.FSW = paTests[iTest].fFswIn; \
|
---|
4742 | pfn(&State, &Res, &InVal1, &InVal2); \
|
---|
4743 | if ( Res.FSW != paTests[iTest].fFswOut \
|
---|
4744 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal)) \
|
---|
4745 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" \
|
---|
4746 | "%s -> fsw=%#06x %s\n" \
|
---|
4747 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
4748 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
4749 | FormatR80(&paTests[iTest].InVal1), Format ## a_UpBits(&paTests[iTest].InVal2), \
|
---|
4750 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \
|
---|
4751 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal), \
|
---|
4752 | FswDiff(Res.FSW, paTests[iTest].fFswOut), \
|
---|
4753 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "", \
|
---|
4754 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
4755 | } \
|
---|
4756 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
4757 | } \
|
---|
4758 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
4759 | } \
|
---|
4760 | }
|
---|
4761 |
|
---|
4762 | TEST_FPU_BINARY_SMALL(0, 64, r64, R64, RT_NOTHING, RTFLOAT64U, FPU_BINARY_R64_T, g_aFpuBinaryR64, FPU_BINARY_R64_TEST_T)
|
---|
4763 | TEST_FPU_BINARY_SMALL(0, 32, r32, R32, RT_NOTHING, RTFLOAT32U, FPU_BINARY_R32_T, g_aFpuBinaryR32, FPU_BINARY_R32_TEST_T)
|
---|
4764 | TEST_FPU_BINARY_SMALL(1, 32, i32, I32, i, int32_t, FPU_BINARY_I32_T, g_aFpuBinaryI32, FPU_BINARY_I32_TEST_T)
|
---|
4765 | TEST_FPU_BINARY_SMALL(1, 16, i16, I16, i, int16_t, FPU_BINARY_I16_T, g_aFpuBinaryI16, FPU_BINARY_I16_TEST_T)
|
---|
4766 |
|
---|
4767 |
|
---|
4768 | /*
|
---|
4769 | * Binary operations on 80-, 64- and 32-bit floating point only affecting FSW.
|
---|
4770 | */
|
---|
4771 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4772 | static struct { RTFLOAT80U Val1, Val2; } const s_aFpuBinaryFswR80Specials[] =
|
---|
4773 | {
|
---|
4774 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4775 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS) }, /* whatever */
|
---|
4776 | };
|
---|
4777 | static struct { RTFLOAT80U Val1; RTFLOAT64U Val2; } const s_aFpuBinaryFswR64Specials[] =
|
---|
4778 | {
|
---|
4779 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4780 | RTFLOAT64U_INIT_C(0, 0xfeeeeddddcccc, RTFLOAT64U_EXP_BIAS) }, /* whatever */
|
---|
4781 | };
|
---|
4782 | static struct { RTFLOAT80U Val1; RTFLOAT32U Val2; } const s_aFpuBinaryFswR32Specials[] =
|
---|
4783 | {
|
---|
4784 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4785 | RTFLOAT32U_INIT_C(0, 0x7fffee, RTFLOAT32U_EXP_BIAS) }, /* whatever */
|
---|
4786 | };
|
---|
4787 | static struct { RTFLOAT80U Val1; int32_t Val2; } const s_aFpuBinaryFswI32Specials[] =
|
---|
4788 | {
|
---|
4789 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT32_MAX }, /* whatever */
|
---|
4790 | };
|
---|
4791 | static struct { RTFLOAT80U Val1; int16_t Val2; } const s_aFpuBinaryFswI16Specials[] =
|
---|
4792 | {
|
---|
4793 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT16_MAX }, /* whatever */
|
---|
4794 | };
|
---|
4795 |
|
---|
4796 | # define GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
4797 | static RTEXITCODE FpuBinaryFsw ## a_UpBits ## Generate(uint32_t cTests, const char * const *papszNameFmts) \
|
---|
4798 | { \
|
---|
4799 | cTests = RT_MAX(160, cTests); /* there are 144 standard input variations for r80 by r80 */ \
|
---|
4800 | \
|
---|
4801 | X86FXSTATE State; \
|
---|
4802 | RT_ZERO(State); \
|
---|
4803 | uint32_t cMinNormalPairs = (cTests - 144) / 4; \
|
---|
4804 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4805 | { \
|
---|
4806 | IEMBINARYOUTPUT BinOut; \
|
---|
4807 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, a_aSubTests[iFn]), RTEXITCODE_FAILURE); \
|
---|
4808 | uint32_t cNormalInputPairs = 0; \
|
---|
4809 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinaryFsw ## a_UpBits ## Specials); iTest += 1) \
|
---|
4810 | { \
|
---|
4811 | RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest, a_cBits, a_fIntType) \
|
---|
4812 | : s_aFpuBinaryFsw ## a_UpBits ## Specials[iTest - cTests].Val1; \
|
---|
4813 | a_Type2 const InVal2 = iTest < cTests ? Rand ## a_UpBits ## Src2(iTest) \
|
---|
4814 | : s_aFpuBinaryFsw ## a_UpBits ## Specials[iTest - cTests].Val2; \
|
---|
4815 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && a_Type2 ## _IS_NORMAL(&InVal2)) \
|
---|
4816 | cNormalInputPairs++; \
|
---|
4817 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) \
|
---|
4818 | { \
|
---|
4819 | iTest -= 1; \
|
---|
4820 | continue; \
|
---|
4821 | } \
|
---|
4822 | \
|
---|
4823 | uint16_t const fFcw = RandFcw(); \
|
---|
4824 | State.FSW = RandFsw(); \
|
---|
4825 | \
|
---|
4826 | /* Guess these aren't affected by precision or rounding, so just flip the exception mask. */ \
|
---|
4827 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) \
|
---|
4828 | { \
|
---|
4829 | State.FCW = (fFcw & ~(X86_FCW_MASK_ALL)) | iMask; \
|
---|
4830 | uint16_t fFswOut = 0; \
|
---|
4831 | a_aSubTests[iFn].pfn(&State, &fFswOut, &InVal1, &InVal2); \
|
---|
4832 | a_TestType const Test = { State.FCW, State.FSW, fFswOut, InVal1, InVal2 }; \
|
---|
4833 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test)); \
|
---|
4834 | } \
|
---|
4835 | } \
|
---|
4836 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE); \
|
---|
4837 | } \
|
---|
4838 | return RTEXITCODE_SUCCESS; \
|
---|
4839 | } \
|
---|
4840 | DUMP_ALL_FN(FpuBinaryFsw ## a_UpBits, a_aSubTests)
|
---|
4841 | #else
|
---|
4842 | # define GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType)
|
---|
4843 | #endif
|
---|
4844 |
|
---|
4845 | #define TEST_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_SubTestType, a_aSubTests, a_TestType, ...) \
|
---|
4846 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPU ## a_UpBits ## FSW); \
|
---|
4847 | \
|
---|
4848 | static a_SubTestType a_aSubTests[] = \
|
---|
4849 | { \
|
---|
4850 | __VA_ARGS__ \
|
---|
4851 | }; \
|
---|
4852 | \
|
---|
4853 | GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
4854 | \
|
---|
4855 | static void FpuBinaryFsw ## a_UpBits ## Test(void) \
|
---|
4856 | { \
|
---|
4857 | X86FXSTATE State; \
|
---|
4858 | RT_ZERO(State); \
|
---|
4859 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
4860 | { \
|
---|
4861 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(a_aSubTests[iFn])) \
|
---|
4862 | continue; \
|
---|
4863 | \
|
---|
4864 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
4865 | uint32_t const cTests = a_aSubTests[iFn].cTests; \
|
---|
4866 | PFNIEMAIMPLFPU ## a_UpBits ## FSW pfn = a_aSubTests[iFn].pfn; \
|
---|
4867 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
4868 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
4869 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
4870 | { \
|
---|
4871 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
4872 | { \
|
---|
4873 | uint16_t fFswOut = 0; \
|
---|
4874 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1; \
|
---|
4875 | a_Type2 const InVal2 = paTests[iTest].InVal2; \
|
---|
4876 | State.FCW = paTests[iTest].fFcw; \
|
---|
4877 | State.FSW = paTests[iTest].fFswIn; \
|
---|
4878 | pfn(&State, &fFswOut, &InVal1, &InVal2); \
|
---|
4879 | if (fFswOut != paTests[iTest].fFswOut) \
|
---|
4880 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" \
|
---|
4881 | "%s -> fsw=%#06x\n" \
|
---|
4882 | "%s expected %#06x %s (%s)\n", \
|
---|
4883 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
4884 | FormatR80(&paTests[iTest].InVal1), Format ## a_UpBits(&paTests[iTest].InVal2), \
|
---|
4885 | iVar ? " " : "", fFswOut, \
|
---|
4886 | iVar ? " " : "", paTests[iTest].fFswOut, \
|
---|
4887 | FswDiff(fFswOut, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw) ); \
|
---|
4888 | } \
|
---|
4889 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
4890 | } \
|
---|
4891 | FREE_DECOMPRESSED_TESTS(a_aSubTests[iFn]); \
|
---|
4892 | } \
|
---|
4893 | }
|
---|
4894 |
|
---|
4895 | TEST_FPU_BINARY_FSW(0, 80, R80, RTFLOAT80U, FPU_BINARY_FSW_R80_T, g_aFpuBinaryFswR80, FPU_BINARY_R80_TEST_T, ENTRY_BIN(fcom_r80_by_r80), ENTRY_BIN(fucom_r80_by_r80))
|
---|
4896 | TEST_FPU_BINARY_FSW(0, 64, R64, RTFLOAT64U, FPU_BINARY_FSW_R64_T, g_aFpuBinaryFswR64, FPU_BINARY_R64_TEST_T, ENTRY_BIN(fcom_r80_by_r64))
|
---|
4897 | TEST_FPU_BINARY_FSW(0, 32, R32, RTFLOAT32U, FPU_BINARY_FSW_R32_T, g_aFpuBinaryFswR32, FPU_BINARY_R32_TEST_T, ENTRY_BIN(fcom_r80_by_r32))
|
---|
4898 | TEST_FPU_BINARY_FSW(1, 32, I32, int32_t, FPU_BINARY_FSW_I32_T, g_aFpuBinaryFswI32, FPU_BINARY_I32_TEST_T, ENTRY_BIN(ficom_r80_by_i32))
|
---|
4899 | TEST_FPU_BINARY_FSW(1, 16, I16, int16_t, FPU_BINARY_FSW_I16_T, g_aFpuBinaryFswI16, FPU_BINARY_I16_TEST_T, ENTRY_BIN(ficom_r80_by_i16))
|
---|
4900 |
|
---|
4901 |
|
---|
4902 | /*
|
---|
4903 | * Binary operations on 80-bit floating point that effects only EFLAGS and possibly FSW.
|
---|
4904 | */
|
---|
4905 | TYPEDEF_SUBTEST_TYPE(FPU_BINARY_EFL_R80_T, FPU_BINARY_EFL_R80_TEST_T, PFNIEMAIMPLFPUR80EFL);
|
---|
4906 |
|
---|
4907 | static FPU_BINARY_EFL_R80_T g_aFpuBinaryEflR80[] =
|
---|
4908 | {
|
---|
4909 | ENTRY_BIN(fcomi_r80_by_r80),
|
---|
4910 | ENTRY_BIN(fucomi_r80_by_r80),
|
---|
4911 | };
|
---|
4912 |
|
---|
4913 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4914 | static struct { RTFLOAT80U Val1, Val2; } const s_aFpuBinaryEflR80Specials[] =
|
---|
4915 | {
|
---|
4916 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
4917 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS) }, /* whatever */
|
---|
4918 | };
|
---|
4919 |
|
---|
4920 | static RTEXITCODE FpuBinaryEflR80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
4921 | {
|
---|
4922 | cTests = RT_MAX(160, cTests); /* there are 144 standard input variations */
|
---|
4923 |
|
---|
4924 | X86FXSTATE State;
|
---|
4925 | RT_ZERO(State);
|
---|
4926 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
4927 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++)
|
---|
4928 | {
|
---|
4929 | IEMBINARYOUTPUT BinOut;
|
---|
4930 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuBinaryEflR80[iFn]), RTEXITCODE_FAILURE);
|
---|
4931 | uint32_t cNormalInputPairs = 0;
|
---|
4932 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinaryEflR80Specials); iTest += 1)
|
---|
4933 | {
|
---|
4934 | RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest) : s_aFpuBinaryEflR80Specials[iTest - cTests].Val1;
|
---|
4935 | RTFLOAT80U const InVal2 = iTest < cTests ? RandR80Src2(iTest) : s_aFpuBinaryEflR80Specials[iTest - cTests].Val2;
|
---|
4936 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && RTFLOAT80U_IS_NORMAL(&InVal2))
|
---|
4937 | cNormalInputPairs++;
|
---|
4938 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
4939 | {
|
---|
4940 | iTest -= 1;
|
---|
4941 | continue;
|
---|
4942 | }
|
---|
4943 |
|
---|
4944 | uint16_t const fFcw = RandFcw();
|
---|
4945 | State.FSW = RandFsw();
|
---|
4946 |
|
---|
4947 | /* Guess these aren't affected by precision or rounding, so just flip the exception mask. */
|
---|
4948 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL)
|
---|
4949 | {
|
---|
4950 | State.FCW = (fFcw & ~(X86_FCW_MASK_ALL)) | iMask;
|
---|
4951 | uint16_t uFswOut = 0;
|
---|
4952 | uint32_t fEflOut = g_aFpuBinaryEflR80[iFn].pfn(&State, &uFswOut, &InVal1, &InVal2);
|
---|
4953 | FPU_BINARY_EFL_R80_TEST_T const Test = { State.FCW, State.FSW, uFswOut, InVal1, InVal2, fEflOut, };
|
---|
4954 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
4955 | }
|
---|
4956 | }
|
---|
4957 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
4958 | }
|
---|
4959 | return RTEXITCODE_SUCCESS;
|
---|
4960 | }
|
---|
4961 | DUMP_ALL_FN(FpuBinaryEflR80, g_aFpuBinaryEflR80)
|
---|
4962 | #endif /*TSTIEMAIMPL_WITH_GENERATOR*/
|
---|
4963 |
|
---|
4964 | static void FpuBinaryEflR80Test(void)
|
---|
4965 | {
|
---|
4966 | X86FXSTATE State;
|
---|
4967 | RT_ZERO(State);
|
---|
4968 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++)
|
---|
4969 | {
|
---|
4970 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuBinaryEflR80[iFn]))
|
---|
4971 | continue;
|
---|
4972 |
|
---|
4973 | FPU_BINARY_EFL_R80_TEST_T const * const paTests = g_aFpuBinaryEflR80[iFn].paTests;
|
---|
4974 | uint32_t const cTests = g_aFpuBinaryEflR80[iFn].cTests;
|
---|
4975 | PFNIEMAIMPLFPUR80EFL pfn = g_aFpuBinaryEflR80[iFn].pfn;
|
---|
4976 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuBinaryEflR80[iFn]);
|
---|
4977 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4978 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4979 | {
|
---|
4980 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
4981 | {
|
---|
4982 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1;
|
---|
4983 | RTFLOAT80U const InVal2 = paTests[iTest].InVal2;
|
---|
4984 | State.FCW = paTests[iTest].fFcw;
|
---|
4985 | State.FSW = paTests[iTest].fFswIn;
|
---|
4986 | uint16_t uFswOut = 0;
|
---|
4987 | uint32_t fEflOut = pfn(&State, &uFswOut, &InVal1, &InVal2);
|
---|
4988 | if ( uFswOut != paTests[iTest].fFswOut
|
---|
4989 | || fEflOut != paTests[iTest].fEflOut)
|
---|
4990 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n"
|
---|
4991 | "%s -> fsw=%#06x efl=%#08x\n"
|
---|
4992 | "%s expected %#06x %#08x %s%s (%s)\n",
|
---|
4993 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
4994 | FormatR80(&paTests[iTest].InVal1), FormatR80(&paTests[iTest].InVal2),
|
---|
4995 | iVar ? " " : "", uFswOut, fEflOut,
|
---|
4996 | iVar ? " " : "", paTests[iTest].fFswOut, paTests[iTest].fEflOut,
|
---|
4997 | FswDiff(uFswOut, paTests[iTest].fFswOut), EFlagsDiff(fEflOut, paTests[iTest].fEflOut),
|
---|
4998 | FormatFcw(paTests[iTest].fFcw));
|
---|
4999 | }
|
---|
5000 | pfn = g_aFpuBinaryEflR80[iFn].pfnNative;
|
---|
5001 | }
|
---|
5002 |
|
---|
5003 | FREE_DECOMPRESSED_TESTS(g_aFpuBinaryEflR80[iFn]);
|
---|
5004 | }
|
---|
5005 | }
|
---|
5006 |
|
---|
5007 |
|
---|
5008 | /*********************************************************************************************************************************
|
---|
5009 | * x87 FPU Unary Operations *
|
---|
5010 | *********************************************************************************************************************************/
|
---|
5011 |
|
---|
5012 | /*
|
---|
5013 | * Unary FPU operations on one 80-bit floating point value.
|
---|
5014 | *
|
---|
5015 | * Note! The FCW reserved bit 7 is used to indicate whether a test may produce
|
---|
5016 | * a rounding error or not.
|
---|
5017 | */
|
---|
5018 | TYPEDEF_SUBTEST_TYPE(FPU_UNARY_R80_T, FPU_UNARY_R80_TEST_T, PFNIEMAIMPLFPUR80UNARY);
|
---|
5019 |
|
---|
5020 | enum { kUnary_Accurate = 0, kUnary_Accurate_Trigonometry /*probably not accurate, but need impl to know*/, kUnary_Rounding_F2xm1 };
|
---|
5021 | static FPU_UNARY_R80_T g_aFpuUnaryR80[] =
|
---|
5022 | {
|
---|
5023 | ENTRY_BIN_EX( fabs_r80, kUnary_Accurate),
|
---|
5024 | ENTRY_BIN_EX( fchs_r80, kUnary_Accurate),
|
---|
5025 | ENTRY_BIN_AMD_EX( f2xm1_r80, 0, kUnary_Accurate), // C1 differs for -1m0x3fb263cc2c331e15^-2654 (different ln2 constant?)
|
---|
5026 | ENTRY_BIN_INTEL_EX(f2xm1_r80, 0, kUnary_Rounding_F2xm1),
|
---|
5027 | ENTRY_BIN_EX( fsqrt_r80, kUnary_Accurate),
|
---|
5028 | ENTRY_BIN_EX( frndint_r80, kUnary_Accurate),
|
---|
5029 | ENTRY_BIN_AMD_EX( fsin_r80, 0, kUnary_Accurate_Trigonometry), // value & C1 differences for pseudo denormals and others (e.g. -1m0x2b1e5683cbca5725^-3485)
|
---|
5030 | ENTRY_BIN_INTEL_EX(fsin_r80, 0, kUnary_Accurate_Trigonometry),
|
---|
5031 | ENTRY_BIN_AMD_EX( fcos_r80, 0, kUnary_Accurate_Trigonometry), // value & C1 differences
|
---|
5032 | ENTRY_BIN_INTEL_EX(fcos_r80, 0, kUnary_Accurate_Trigonometry),
|
---|
5033 | };
|
---|
5034 |
|
---|
5035 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5036 |
|
---|
5037 | static bool FpuUnaryR80MayHaveRoundingError(PCRTFLOAT80U pr80Val, int enmKind)
|
---|
5038 | {
|
---|
5039 | if ( enmKind == kUnary_Rounding_F2xm1
|
---|
5040 | && RTFLOAT80U_IS_NORMAL(pr80Val)
|
---|
5041 | && pr80Val->s.uExponent < RTFLOAT80U_EXP_BIAS
|
---|
5042 | && pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS - 69)
|
---|
5043 | return true;
|
---|
5044 | return false;
|
---|
5045 | }
|
---|
5046 |
|
---|
5047 | DUMP_ALL_FN(FpuUnaryR80, g_aFpuUnaryR80)
|
---|
5048 | static RTEXITCODE FpuUnaryR80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
5049 | {
|
---|
5050 | static RTFLOAT80U const s_aSpecials[] =
|
---|
5051 | {
|
---|
5052 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS - 1), /* 0.5 (for f2xm1) */
|
---|
5053 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, RTFLOAT80U_EXP_BIAS - 1), /* -0.5 (for f2xm1) */
|
---|
5054 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* 1.0 (for f2xm1) */
|
---|
5055 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* -1.0 (for f2xm1) */
|
---|
5056 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0), /* +1.0^-16382 */
|
---|
5057 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 0), /* -1.0^-16382 */
|
---|
5058 | RTFLOAT80U_INIT_C(0, 0xc000000000000000, 0), /* +1.1^-16382 */
|
---|
5059 | RTFLOAT80U_INIT_C(1, 0xc000000000000000, 0), /* -1.1^-16382 */
|
---|
5060 | RTFLOAT80U_INIT_C(0, 0xc000100000000000, 0), /* +1.1xxx1^-16382 */
|
---|
5061 | RTFLOAT80U_INIT_C(1, 0xc000100000000000, 0), /* -1.1xxx1^-16382 */
|
---|
5062 | };
|
---|
5063 | X86FXSTATE State;
|
---|
5064 | RT_ZERO(State);
|
---|
5065 | uint32_t cMinNormals = cTests / 4;
|
---|
5066 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++)
|
---|
5067 | {
|
---|
5068 | PFNIEMAIMPLFPUR80UNARY const pfn = g_aFpuUnaryR80[iFn].pfnNative ? g_aFpuUnaryR80[iFn].pfnNative : g_aFpuUnaryR80[iFn].pfn;
|
---|
5069 | if ( g_aFpuUnaryR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
5070 | && g_aFpuUnaryR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
5071 | continue;
|
---|
5072 |
|
---|
5073 | IEMBINARYOUTPUT BinOut;
|
---|
5074 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuUnaryR80[iFn]), RTEXITCODE_FAILURE);
|
---|
5075 | uint32_t cNormalInputs = 0;
|
---|
5076 | uint32_t cTargetRangeInputs = 0;
|
---|
5077 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5078 | {
|
---|
5079 | RTFLOAT80U InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
5080 | if (RTFLOAT80U_IS_NORMAL(&InVal))
|
---|
5081 | {
|
---|
5082 | if (g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1)
|
---|
5083 | {
|
---|
5084 | unsigned uTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1
|
---|
5085 | ? RTFLOAT80U_EXP_BIAS /* 2^0..2^-69 */ : RTFLOAT80U_EXP_BIAS + 63 + 1 /* 2^64..2^-64 */;
|
---|
5086 | unsigned cTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? 69 : 63*2 + 2;
|
---|
5087 | if (InVal.s.uExponent <= uTargetExp && InVal.s.uExponent >= uTargetExp - cTargetExp)
|
---|
5088 | cTargetRangeInputs++;
|
---|
5089 | else if (cTargetRangeInputs < cMinNormals / 2 && iTest + cMinNormals / 2 >= cTests && iTest < cTests)
|
---|
5090 | {
|
---|
5091 | InVal.s.uExponent = RTRandU32Ex(uTargetExp - cTargetExp, uTargetExp);
|
---|
5092 | cTargetRangeInputs++;
|
---|
5093 | }
|
---|
5094 | }
|
---|
5095 | cNormalInputs++;
|
---|
5096 | }
|
---|
5097 | else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests)
|
---|
5098 | {
|
---|
5099 | iTest -= 1;
|
---|
5100 | continue;
|
---|
5101 | }
|
---|
5102 |
|
---|
5103 | uint16_t const fFcwExtra = FpuUnaryR80MayHaveRoundingError(&InVal, g_aFpuUnaryR80[iFn].uExtra) ? 0x80 : 0;
|
---|
5104 | uint16_t const fFcw = RandFcw();
|
---|
5105 | State.FSW = RandFsw();
|
---|
5106 |
|
---|
5107 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5108 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
5109 | {
|
---|
5110 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
5111 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
5112 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
5113 | | X86_FCW_MASK_ALL;
|
---|
5114 | IEMFPURESULT ResM = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
5115 | pfn(&State, &ResM, &InVal);
|
---|
5116 | FPU_UNARY_R80_TEST_T const TestM
|
---|
5117 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResM.FSW, InVal, ResM.r80Result };
|
---|
5118 | GenerateBinaryWrite(&BinOut, &TestM, sizeof(TestM));
|
---|
5119 |
|
---|
5120 | State.FCW = State.FCW & ~X86_FCW_MASK_ALL;
|
---|
5121 | IEMFPURESULT ResU = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
5122 | pfn(&State, &ResU, &InVal);
|
---|
5123 | FPU_UNARY_R80_TEST_T const TestU
|
---|
5124 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResU.FSW, InVal, ResU.r80Result };
|
---|
5125 | GenerateBinaryWrite(&BinOut, &TestU, sizeof(TestU));
|
---|
5126 |
|
---|
5127 | uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF;
|
---|
5128 | if (fXcpt)
|
---|
5129 | {
|
---|
5130 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
5131 | IEMFPURESULT Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
5132 | pfn(&State, &Res1, &InVal);
|
---|
5133 | FPU_UNARY_R80_TEST_T const Test1
|
---|
5134 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res1.FSW, InVal, Res1.r80Result };
|
---|
5135 | GenerateBinaryWrite(&BinOut, &Test1, sizeof(Test1));
|
---|
5136 | if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK))
|
---|
5137 | {
|
---|
5138 | fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK;
|
---|
5139 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
5140 | IEMFPURESULT Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
5141 | pfn(&State, &Res2, &InVal);
|
---|
5142 | FPU_UNARY_R80_TEST_T const Test2
|
---|
5143 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res2.FSW, InVal, Res2.r80Result };
|
---|
5144 | GenerateBinaryWrite(&BinOut, &Test2, sizeof(Test2));
|
---|
5145 | }
|
---|
5146 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5147 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1)
|
---|
5148 | if (fUnmasked & fXcpt)
|
---|
5149 | {
|
---|
5150 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked);
|
---|
5151 | IEMFPURESULT Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
5152 | pfn(&State, &Res3, &InVal);
|
---|
5153 | FPU_UNARY_R80_TEST_T const Test3
|
---|
5154 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res3.FSW, InVal, Res3.r80Result };
|
---|
5155 | GenerateBinaryWrite(&BinOut, &Test3, sizeof(Test3));
|
---|
5156 | }
|
---|
5157 | }
|
---|
5158 | }
|
---|
5159 | }
|
---|
5160 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5161 | }
|
---|
5162 | return RTEXITCODE_SUCCESS;
|
---|
5163 | }
|
---|
5164 | #endif
|
---|
5165 |
|
---|
5166 | static bool FpuIsEqualFcwMaybeIgnoreRoundErr(uint16_t fFcw1, uint16_t fFcw2, bool fRndErrOk, bool *pfRndErr)
|
---|
5167 | {
|
---|
5168 | if (fFcw1 == fFcw2)
|
---|
5169 | return true;
|
---|
5170 | if (fRndErrOk && (fFcw1 & ~X86_FSW_C1) == (fFcw2 & ~X86_FSW_C1))
|
---|
5171 | {
|
---|
5172 | *pfRndErr = true;
|
---|
5173 | return true;
|
---|
5174 | }
|
---|
5175 | return false;
|
---|
5176 | }
|
---|
5177 |
|
---|
5178 | static bool FpuIsEqualR80MaybeIgnoreRoundErr(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, bool fRndErrOk, bool *pfRndErr)
|
---|
5179 | {
|
---|
5180 | if (RTFLOAT80U_ARE_IDENTICAL(pr80Val1, pr80Val2))
|
---|
5181 | return true;
|
---|
5182 | if ( fRndErrOk
|
---|
5183 | && pr80Val1->s.fSign == pr80Val2->s.fSign)
|
---|
5184 | {
|
---|
5185 | if ( ( pr80Val1->s.uExponent == pr80Val2->s.uExponent
|
---|
5186 | && ( pr80Val1->s.uMantissa > pr80Val2->s.uMantissa
|
---|
5187 | ? pr80Val1->s.uMantissa - pr80Val2->s.uMantissa == 1
|
---|
5188 | : pr80Val2->s.uMantissa - pr80Val1->s.uMantissa == 1))
|
---|
5189 | ||
|
---|
5190 | ( pr80Val1->s.uExponent + 1 == pr80Val2->s.uExponent
|
---|
5191 | && pr80Val1->s.uMantissa == UINT64_MAX
|
---|
5192 | && pr80Val2->s.uMantissa == RT_BIT_64(63))
|
---|
5193 | ||
|
---|
5194 | ( pr80Val1->s.uExponent == pr80Val2->s.uExponent + 1
|
---|
5195 | && pr80Val2->s.uMantissa == UINT64_MAX
|
---|
5196 | && pr80Val1->s.uMantissa == RT_BIT_64(63)) )
|
---|
5197 | {
|
---|
5198 | *pfRndErr = true;
|
---|
5199 | return true;
|
---|
5200 | }
|
---|
5201 | }
|
---|
5202 | return false;
|
---|
5203 | }
|
---|
5204 |
|
---|
5205 |
|
---|
5206 | static void FpuUnaryR80Test(void)
|
---|
5207 | {
|
---|
5208 | X86FXSTATE State;
|
---|
5209 | RT_ZERO(State);
|
---|
5210 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++)
|
---|
5211 | {
|
---|
5212 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuUnaryR80[iFn]))
|
---|
5213 | continue;
|
---|
5214 |
|
---|
5215 | FPU_UNARY_R80_TEST_T const * const paTests = g_aFpuUnaryR80[iFn].paTests;
|
---|
5216 | uint32_t const cTests = g_aFpuUnaryR80[iFn].cTests;
|
---|
5217 | PFNIEMAIMPLFPUR80UNARY pfn = g_aFpuUnaryR80[iFn].pfn;
|
---|
5218 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryR80[iFn]);
|
---|
5219 | uint32_t cRndErrs = 0;
|
---|
5220 | uint32_t cPossibleRndErrs = 0;
|
---|
5221 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5222 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5223 | {
|
---|
5224 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
5225 | {
|
---|
5226 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
5227 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
5228 | bool const fRndErrOk = RT_BOOL(paTests[iTest].fFcw & 0x80);
|
---|
5229 | State.FCW = paTests[iTest].fFcw & ~(uint16_t)0x80;
|
---|
5230 | State.FSW = paTests[iTest].fFswIn;
|
---|
5231 | pfn(&State, &Res, &InVal);
|
---|
5232 | bool fRndErr = false;
|
---|
5233 | if ( !FpuIsEqualFcwMaybeIgnoreRoundErr(Res.FSW, paTests[iTest].fFswOut, fRndErrOk, &fRndErr)
|
---|
5234 | || !FpuIsEqualR80MaybeIgnoreRoundErr(&Res.r80Result, &paTests[iTest].OutVal, fRndErrOk, &fRndErr))
|
---|
5235 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
5236 | "%s -> fsw=%#06x %s\n"
|
---|
5237 | "%s expected %#06x %s%s%s%s (%s)\n",
|
---|
5238 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
5239 | FormatR80(&paTests[iTest].InVal),
|
---|
5240 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result),
|
---|
5241 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal),
|
---|
5242 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
5243 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "",
|
---|
5244 | fRndErrOk ? " - rounding errors ok" : "", FormatFcw(paTests[iTest].fFcw));
|
---|
5245 | cRndErrs += fRndErr;
|
---|
5246 | cPossibleRndErrs += fRndErrOk;
|
---|
5247 | }
|
---|
5248 | pfn = g_aFpuUnaryR80[iFn].pfnNative;
|
---|
5249 | }
|
---|
5250 | if (cPossibleRndErrs > 0)
|
---|
5251 | RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "rounding errors: %u out of %u\n", cRndErrs, cPossibleRndErrs);
|
---|
5252 | FREE_DECOMPRESSED_TESTS(g_aFpuUnaryR80[iFn]);
|
---|
5253 | }
|
---|
5254 | }
|
---|
5255 |
|
---|
5256 |
|
---|
5257 | /*
|
---|
5258 | * Unary FPU operations on one 80-bit floating point value, but only affects the FSW.
|
---|
5259 | */
|
---|
5260 | TYPEDEF_SUBTEST_TYPE(FPU_UNARY_FSW_R80_T, FPU_UNARY_R80_TEST_T, PFNIEMAIMPLFPUR80UNARYFSW);
|
---|
5261 |
|
---|
5262 | static FPU_UNARY_FSW_R80_T g_aFpuUnaryFswR80[] =
|
---|
5263 | {
|
---|
5264 | ENTRY_BIN(ftst_r80),
|
---|
5265 | ENTRY_BIN_EX(fxam_r80, 1),
|
---|
5266 | };
|
---|
5267 |
|
---|
5268 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5269 | static RTEXITCODE FpuUnaryFswR80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
5270 | {
|
---|
5271 | static RTFLOAT80U const s_aSpecials[] =
|
---|
5272 | {
|
---|
5273 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), /* whatever */
|
---|
5274 | };
|
---|
5275 |
|
---|
5276 | X86FXSTATE State;
|
---|
5277 | RT_ZERO(State);
|
---|
5278 | uint32_t cMinNormals = cTests / 4;
|
---|
5279 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++)
|
---|
5280 | {
|
---|
5281 | bool const fIsFxam = g_aFpuUnaryFswR80[iFn].uExtra == 1;
|
---|
5282 | PFNIEMAIMPLFPUR80UNARYFSW const pfn = g_aFpuUnaryFswR80[iFn].pfnNative ? g_aFpuUnaryFswR80[iFn].pfnNative : g_aFpuUnaryFswR80[iFn].pfn;
|
---|
5283 | if ( g_aFpuUnaryFswR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
5284 | && g_aFpuUnaryFswR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
5285 | continue;
|
---|
5286 | State.FTW = 0;
|
---|
5287 |
|
---|
5288 | IEMBINARYOUTPUT BinOut;
|
---|
5289 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuUnaryFswR80[iFn]), RTEXITCODE_FAILURE);
|
---|
5290 | uint32_t cNormalInputs = 0;
|
---|
5291 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5292 | {
|
---|
5293 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
5294 | if (RTFLOAT80U_IS_NORMAL(&InVal))
|
---|
5295 | cNormalInputs++;
|
---|
5296 | else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests)
|
---|
5297 | {
|
---|
5298 | iTest -= 1;
|
---|
5299 | continue;
|
---|
5300 | }
|
---|
5301 |
|
---|
5302 | uint16_t const fFcw = RandFcw();
|
---|
5303 | State.FSW = RandFsw();
|
---|
5304 | if (!fIsFxam)
|
---|
5305 | {
|
---|
5306 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5307 | {
|
---|
5308 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
5309 | {
|
---|
5310 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL)
|
---|
5311 | {
|
---|
5312 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
5313 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
5314 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
5315 | | iMask;
|
---|
5316 | uint16_t fFswOut = 0;
|
---|
5317 | pfn(&State, &fFswOut, &InVal);
|
---|
5318 | FPU_UNARY_R80_TEST_T const Test = { State.FCW, State.FSW, fFswOut, InVal };
|
---|
5319 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
5320 | }
|
---|
5321 | }
|
---|
5322 | }
|
---|
5323 | }
|
---|
5324 | else
|
---|
5325 | {
|
---|
5326 | uint16_t fFswOut = 0;
|
---|
5327 | uint16_t const fEmpty = RTRandU32Ex(0, 3) == 3 ? 0x80 : 0; /* Using MBZ bit 7 in FCW to indicate empty tag value. */
|
---|
5328 | State.FTW = !fEmpty ? 1 << X86_FSW_TOP_GET(State.FSW) : 0;
|
---|
5329 | State.FCW = fFcw;
|
---|
5330 | pfn(&State, &fFswOut, &InVal);
|
---|
5331 | FPU_UNARY_R80_TEST_T const Test = { (uint16_t)(fFcw | fEmpty), State.FSW, fFswOut, InVal };
|
---|
5332 | GenerateBinaryWrite(&BinOut, &Test, sizeof(Test));
|
---|
5333 | }
|
---|
5334 | }
|
---|
5335 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5336 | }
|
---|
5337 | return RTEXITCODE_SUCCESS;
|
---|
5338 | }
|
---|
5339 | DUMP_ALL_FN(FpuUnaryFswR80, g_aFpuUnaryFswR80)
|
---|
5340 | #endif
|
---|
5341 |
|
---|
5342 |
|
---|
5343 | static void FpuUnaryFswR80Test(void)
|
---|
5344 | {
|
---|
5345 | X86FXSTATE State;
|
---|
5346 | RT_ZERO(State);
|
---|
5347 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++)
|
---|
5348 | {
|
---|
5349 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuUnaryFswR80[iFn]))
|
---|
5350 | continue;
|
---|
5351 |
|
---|
5352 | FPU_UNARY_R80_TEST_T const * const paTests = g_aFpuUnaryFswR80[iFn].paTests;
|
---|
5353 | uint32_t const cTests = g_aFpuUnaryFswR80[iFn].cTests;
|
---|
5354 | PFNIEMAIMPLFPUR80UNARYFSW pfn = g_aFpuUnaryFswR80[iFn].pfn;
|
---|
5355 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryFswR80[iFn]);
|
---|
5356 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5357 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5358 | {
|
---|
5359 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
5360 | {
|
---|
5361 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
5362 | uint16_t fFswOut = 0;
|
---|
5363 | State.FSW = paTests[iTest].fFswIn;
|
---|
5364 | State.FCW = paTests[iTest].fFcw & ~(uint16_t)0x80; /* see generator code */
|
---|
5365 | State.FTW = paTests[iTest].fFcw & 0x80 ? 0 : 1 << X86_FSW_TOP_GET(paTests[iTest].fFswIn);
|
---|
5366 | pfn(&State, &fFswOut, &InVal);
|
---|
5367 | if (fFswOut != paTests[iTest].fFswOut)
|
---|
5368 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
5369 | "%s -> fsw=%#06x\n"
|
---|
5370 | "%s expected %#06x %s (%s%s)\n",
|
---|
5371 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
5372 | FormatR80(&paTests[iTest].InVal),
|
---|
5373 | iVar ? " " : "", fFswOut,
|
---|
5374 | iVar ? " " : "", paTests[iTest].fFswOut,
|
---|
5375 | FswDiff(fFswOut, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw),
|
---|
5376 | paTests[iTest].fFcw & 0x80 ? " empty" : "");
|
---|
5377 | }
|
---|
5378 | pfn = g_aFpuUnaryFswR80[iFn].pfnNative;
|
---|
5379 | }
|
---|
5380 |
|
---|
5381 | FREE_DECOMPRESSED_TESTS(g_aFpuUnaryFswR80[iFn]);
|
---|
5382 | }
|
---|
5383 | }
|
---|
5384 |
|
---|
5385 | /*
|
---|
5386 | * Unary FPU operations on one 80-bit floating point value, but with two outputs.
|
---|
5387 | */
|
---|
5388 | TYPEDEF_SUBTEST_TYPE(FPU_UNARY_TWO_R80_T, FPU_UNARY_TWO_R80_TEST_T, PFNIEMAIMPLFPUR80UNARYTWO);
|
---|
5389 |
|
---|
5390 | static FPU_UNARY_TWO_R80_T g_aFpuUnaryTwoR80[] =
|
---|
5391 | {
|
---|
5392 | ENTRY_BIN(fxtract_r80_r80),
|
---|
5393 | ENTRY_BIN_AMD( fptan_r80_r80, 0), // rounding differences
|
---|
5394 | ENTRY_BIN_INTEL(fptan_r80_r80, 0),
|
---|
5395 | ENTRY_BIN_AMD( fsincos_r80_r80, 0), // C1 differences & value differences (e.g. -1m0x235cf2f580244a27^-1696)
|
---|
5396 | ENTRY_BIN_INTEL(fsincos_r80_r80, 0),
|
---|
5397 | };
|
---|
5398 |
|
---|
5399 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5400 | static RTEXITCODE FpuUnaryTwoR80Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
5401 | {
|
---|
5402 | static RTFLOAT80U const s_aSpecials[] =
|
---|
5403 | {
|
---|
5404 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), /* whatever */
|
---|
5405 | };
|
---|
5406 |
|
---|
5407 | X86FXSTATE State;
|
---|
5408 | RT_ZERO(State);
|
---|
5409 | uint32_t cMinNormals = cTests / 4;
|
---|
5410 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++)
|
---|
5411 | {
|
---|
5412 | PFNIEMAIMPLFPUR80UNARYTWO const pfn = g_aFpuUnaryTwoR80[iFn].pfnNative ? g_aFpuUnaryTwoR80[iFn].pfnNative : g_aFpuUnaryTwoR80[iFn].pfn;
|
---|
5413 | if ( g_aFpuUnaryTwoR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
5414 | && g_aFpuUnaryTwoR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
5415 | continue;
|
---|
5416 |
|
---|
5417 | IEMBINARYOUTPUT BinOut;
|
---|
5418 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aFpuUnaryTwoR80[iFn]), RTEXITCODE_FAILURE);
|
---|
5419 | uint32_t cNormalInputs = 0;
|
---|
5420 | uint32_t cTargetRangeInputs = 0;
|
---|
5421 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5422 | {
|
---|
5423 | RTFLOAT80U InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
5424 | if (RTFLOAT80U_IS_NORMAL(&InVal))
|
---|
5425 | {
|
---|
5426 | if (iFn != 0)
|
---|
5427 | {
|
---|
5428 | unsigned uTargetExp = RTFLOAT80U_EXP_BIAS + 63 + 1 /* 2^64..2^-64 */;
|
---|
5429 | unsigned cTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? 69 : 63*2 + 2;
|
---|
5430 | if (InVal.s.uExponent <= uTargetExp && InVal.s.uExponent >= uTargetExp - cTargetExp)
|
---|
5431 | cTargetRangeInputs++;
|
---|
5432 | else if (cTargetRangeInputs < cMinNormals / 2 && iTest + cMinNormals / 2 >= cTests && iTest < cTests)
|
---|
5433 | {
|
---|
5434 | InVal.s.uExponent = RTRandU32Ex(uTargetExp - cTargetExp, uTargetExp);
|
---|
5435 | cTargetRangeInputs++;
|
---|
5436 | }
|
---|
5437 | }
|
---|
5438 | cNormalInputs++;
|
---|
5439 | }
|
---|
5440 | else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests)
|
---|
5441 | {
|
---|
5442 | iTest -= 1;
|
---|
5443 | continue;
|
---|
5444 | }
|
---|
5445 |
|
---|
5446 | uint16_t const fFcwExtra = 0; /* for rounding error indication */
|
---|
5447 | uint16_t const fFcw = RandFcw();
|
---|
5448 | State.FSW = RandFsw();
|
---|
5449 |
|
---|
5450 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5451 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
5452 | {
|
---|
5453 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
5454 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
5455 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
5456 | | X86_FCW_MASK_ALL;
|
---|
5457 | IEMFPURESULTTWO ResM = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5458 | pfn(&State, &ResM, &InVal);
|
---|
5459 | FPU_UNARY_TWO_R80_TEST_T const TestM
|
---|
5460 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResM.FSW, InVal, ResM.r80Result1, ResM.r80Result2 };
|
---|
5461 | GenerateBinaryWrite(&BinOut, &TestM, sizeof(TestM));
|
---|
5462 |
|
---|
5463 | State.FCW = State.FCW & ~X86_FCW_MASK_ALL;
|
---|
5464 | IEMFPURESULTTWO ResU = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5465 | pfn(&State, &ResU, &InVal);
|
---|
5466 | FPU_UNARY_TWO_R80_TEST_T const TestU
|
---|
5467 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, ResU.FSW, InVal, ResU.r80Result1, ResU.r80Result2 };
|
---|
5468 | GenerateBinaryWrite(&BinOut, &TestU, sizeof(TestU));
|
---|
5469 |
|
---|
5470 | uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF;
|
---|
5471 | if (fXcpt)
|
---|
5472 | {
|
---|
5473 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
5474 | IEMFPURESULTTWO Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5475 | pfn(&State, &Res1, &InVal);
|
---|
5476 | FPU_UNARY_TWO_R80_TEST_T const Test1
|
---|
5477 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res1.FSW, InVal, Res1.r80Result1, Res1.r80Result2 };
|
---|
5478 | GenerateBinaryWrite(&BinOut, &Test1, sizeof(Test1));
|
---|
5479 |
|
---|
5480 | if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK))
|
---|
5481 | {
|
---|
5482 | fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK;
|
---|
5483 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
5484 | IEMFPURESULTTWO Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5485 | pfn(&State, &Res2, &InVal);
|
---|
5486 | FPU_UNARY_TWO_R80_TEST_T const Test2
|
---|
5487 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res2.FSW, InVal, Res2.r80Result1, Res2.r80Result2 };
|
---|
5488 | GenerateBinaryWrite(&BinOut, &Test2, sizeof(Test2));
|
---|
5489 | }
|
---|
5490 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5491 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1)
|
---|
5492 | if (fUnmasked & fXcpt)
|
---|
5493 | {
|
---|
5494 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked);
|
---|
5495 | IEMFPURESULTTWO Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5496 | pfn(&State, &Res3, &InVal);
|
---|
5497 | FPU_UNARY_TWO_R80_TEST_T const Test3
|
---|
5498 | = { (uint16_t)(State.FCW | fFcwExtra), State.FSW, Res3.FSW, InVal, Res3.r80Result1, Res3.r80Result2 };
|
---|
5499 | GenerateBinaryWrite(&BinOut, &Test3, sizeof(Test3));
|
---|
5500 | }
|
---|
5501 | }
|
---|
5502 | }
|
---|
5503 | }
|
---|
5504 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5505 | }
|
---|
5506 | return RTEXITCODE_SUCCESS;
|
---|
5507 | }
|
---|
5508 | DUMP_ALL_FN(FpuUnaryTwoR80, g_aFpuUnaryTwoR80)
|
---|
5509 | #endif
|
---|
5510 |
|
---|
5511 |
|
---|
5512 | static void FpuUnaryTwoR80Test(void)
|
---|
5513 | {
|
---|
5514 | X86FXSTATE State;
|
---|
5515 | RT_ZERO(State);
|
---|
5516 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++)
|
---|
5517 | {
|
---|
5518 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aFpuUnaryTwoR80[iFn]))
|
---|
5519 | continue;
|
---|
5520 |
|
---|
5521 | FPU_UNARY_TWO_R80_TEST_T const * const paTests = g_aFpuUnaryTwoR80[iFn].paTests;
|
---|
5522 | uint32_t const cTests = g_aFpuUnaryTwoR80[iFn].cTests;
|
---|
5523 | PFNIEMAIMPLFPUR80UNARYTWO pfn = g_aFpuUnaryTwoR80[iFn].pfn;
|
---|
5524 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryTwoR80[iFn]);
|
---|
5525 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5526 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5527 | {
|
---|
5528 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
5529 | {
|
---|
5530 | IEMFPURESULTTWO Res = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
5531 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
5532 | State.FCW = paTests[iTest].fFcw;
|
---|
5533 | State.FSW = paTests[iTest].fFswIn;
|
---|
5534 | pfn(&State, &Res, &InVal);
|
---|
5535 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
5536 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result1, &paTests[iTest].OutVal1)
|
---|
5537 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result2, &paTests[iTest].OutVal2) )
|
---|
5538 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
5539 | "%s -> fsw=%#06x %s %s\n"
|
---|
5540 | "%s expected %#06x %s %s %s%s%s (%s)\n",
|
---|
5541 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
5542 | FormatR80(&paTests[iTest].InVal),
|
---|
5543 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result1), FormatR80(&Res.r80Result2),
|
---|
5544 | iVar ? " " : "", paTests[iTest].fFswOut,
|
---|
5545 | FormatR80(&paTests[iTest].OutVal1), FormatR80(&paTests[iTest].OutVal2),
|
---|
5546 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result1, &paTests[iTest].OutVal1) ? " - val1" : "",
|
---|
5547 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result2, &paTests[iTest].OutVal2) ? " - val2" : "",
|
---|
5548 | FswDiff(Res.FSW, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw) );
|
---|
5549 | }
|
---|
5550 | pfn = g_aFpuUnaryTwoR80[iFn].pfnNative;
|
---|
5551 | }
|
---|
5552 |
|
---|
5553 | FREE_DECOMPRESSED_TESTS(g_aFpuUnaryTwoR80[iFn]);
|
---|
5554 | }
|
---|
5555 | }
|
---|
5556 |
|
---|
5557 |
|
---|
5558 | /*********************************************************************************************************************************
|
---|
5559 | * SSE floating point Binary Operations *
|
---|
5560 | *********************************************************************************************************************************/
|
---|
5561 |
|
---|
5562 | /*
|
---|
5563 | * Binary SSE operations on packed single precision floating point values.
|
---|
5564 | */
|
---|
5565 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R32_T, SSE_BINARY_TEST_T, PFNIEMAIMPLFPSSEF2U128);
|
---|
5566 |
|
---|
5567 | static SSE_BINARY_R32_T g_aSseBinaryR32[] =
|
---|
5568 | {
|
---|
5569 | ENTRY_BIN(addps_u128),
|
---|
5570 | ENTRY_BIN(mulps_u128),
|
---|
5571 | ENTRY_BIN(subps_u128),
|
---|
5572 | ENTRY_BIN(minps_u128),
|
---|
5573 | ENTRY_BIN(divps_u128),
|
---|
5574 | ENTRY_BIN(maxps_u128),
|
---|
5575 | ENTRY_BIN(haddps_u128),
|
---|
5576 | ENTRY_BIN(hsubps_u128),
|
---|
5577 | ENTRY_BIN(sqrtps_u128),
|
---|
5578 | ENTRY_BIN(addsubps_u128),
|
---|
5579 | ENTRY_BIN(cvtps2pd_u128),
|
---|
5580 | };
|
---|
5581 |
|
---|
5582 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5583 | DUMP_ALL_FN(SseBinaryR32, g_aSseBinaryR32)
|
---|
5584 | static RTEXITCODE SseBinaryR32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
5585 | {
|
---|
5586 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
5587 |
|
---|
5588 | static struct { RTFLOAT32U aVal1[4], aVal2[4]; } const s_aSpecials[] =
|
---|
5589 | {
|
---|
5590 | { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), },
|
---|
5591 | { RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) } },
|
---|
5592 | /** @todo More specials. */
|
---|
5593 | };
|
---|
5594 |
|
---|
5595 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
5596 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32); iFn++)
|
---|
5597 | {
|
---|
5598 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseBinaryR32[iFn].pfnNative ? g_aSseBinaryR32[iFn].pfnNative : g_aSseBinaryR32[iFn].pfn;
|
---|
5599 |
|
---|
5600 | IEMBINARYOUTPUT BinOut;
|
---|
5601 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR32[iFn]), RTEXITCODE_FAILURE);
|
---|
5602 |
|
---|
5603 | uint32_t cNormalInputPairs = 0;
|
---|
5604 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5605 | {
|
---|
5606 | SSE_BINARY_TEST_T TestData; RT_ZERO(TestData);
|
---|
5607 |
|
---|
5608 | TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
5609 | TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
5610 | TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2];
|
---|
5611 | TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3];
|
---|
5612 |
|
---|
5613 | TestData.InVal2.ar32[0] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0];
|
---|
5614 | TestData.InVal2.ar32[1] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[1];
|
---|
5615 | TestData.InVal2.ar32[2] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[2];
|
---|
5616 | TestData.InVal2.ar32[3] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[3];
|
---|
5617 |
|
---|
5618 | if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[0])
|
---|
5619 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[1])
|
---|
5620 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[2])
|
---|
5621 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[3]))
|
---|
5622 | cNormalInputPairs++;
|
---|
5623 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
5624 | {
|
---|
5625 | iTest -= 1;
|
---|
5626 | continue;
|
---|
5627 | }
|
---|
5628 |
|
---|
5629 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
5630 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5631 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
5632 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
5633 | {
|
---|
5634 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
5635 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
5636 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
5637 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
5638 | | X86_MXCSR_XCPT_MASK;
|
---|
5639 | X86XMMREG ResM; RT_ZERO(ResM);
|
---|
5640 | uint32_t uMxCsrOutM = pfn(uMxCsrIn, &ResM, &TestData.InVal1, &TestData.InVal2);
|
---|
5641 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
5642 | TestData.fMxcsrOut = uMxCsrOutM;
|
---|
5643 | TestData.OutVal = ResM;
|
---|
5644 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5645 |
|
---|
5646 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
5647 | X86XMMREG ResU; RT_ZERO(ResU);
|
---|
5648 | uint32_t uMxCsrOutU = pfn(uMxCsrIn, &ResU, &TestData.InVal1, &TestData.InVal2);
|
---|
5649 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
5650 | TestData.fMxcsrOut = uMxCsrOutU;
|
---|
5651 | TestData.OutVal = ResU;
|
---|
5652 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5653 |
|
---|
5654 | uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS;
|
---|
5655 | if (fXcpt)
|
---|
5656 | {
|
---|
5657 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
5658 | X86XMMREG Res1; RT_ZERO(Res1);
|
---|
5659 | uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &Res1, &TestData.InVal1, &TestData.InVal2);
|
---|
5660 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
5661 | TestData.fMxcsrOut = uMxCsrOut1;
|
---|
5662 | TestData.OutVal = Res1;
|
---|
5663 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5664 |
|
---|
5665 | if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS))
|
---|
5666 | {
|
---|
5667 | fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS;
|
---|
5668 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5669 | X86XMMREG Res2; RT_ZERO(Res2);
|
---|
5670 | uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &Res2, &TestData.InVal1, &TestData.InVal2);
|
---|
5671 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
5672 | TestData.fMxcsrOut = uMxCsrOut2;
|
---|
5673 | TestData.OutVal = Res2;
|
---|
5674 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5675 | }
|
---|
5676 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5677 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
5678 | if (fUnmasked & fXcpt)
|
---|
5679 | {
|
---|
5680 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5681 | X86XMMREG Res3; RT_ZERO(Res3);
|
---|
5682 | uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &Res3, &TestData.InVal1, &TestData.InVal2);
|
---|
5683 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
5684 | TestData.fMxcsrOut = uMxCsrOut3;
|
---|
5685 | TestData.OutVal = Res3;
|
---|
5686 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5687 | }
|
---|
5688 | }
|
---|
5689 | }
|
---|
5690 | }
|
---|
5691 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5692 | }
|
---|
5693 |
|
---|
5694 | return RTEXITCODE_SUCCESS;
|
---|
5695 | }
|
---|
5696 | #endif
|
---|
5697 |
|
---|
5698 | static void SseBinaryR32Test(void)
|
---|
5699 | {
|
---|
5700 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32); iFn++)
|
---|
5701 | {
|
---|
5702 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR32[iFn]))
|
---|
5703 | continue;
|
---|
5704 |
|
---|
5705 | SSE_BINARY_TEST_T const * const paTests = g_aSseBinaryR32[iFn].paTests;
|
---|
5706 | uint32_t const cbTests = g_aSseBinaryR32[iFn].cTests;
|
---|
5707 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseBinaryR32[iFn].pfn;
|
---|
5708 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR32[iFn]);
|
---|
5709 | if (!cbTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5710 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5711 | {
|
---|
5712 | for (uint32_t iTest = 0; iTest < cbTests / sizeof(paTests[0]); iTest++)
|
---|
5713 | {
|
---|
5714 | X86XMMREG Res; RT_ZERO(Res);
|
---|
5715 |
|
---|
5716 | uint32_t uMxCsrOut = pfn(paTests[iTest].fMxcsrIn, &Res, &paTests[iTest].InVal1, &paTests[iTest].InVal2);
|
---|
5717 | bool fValsIdentical = RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
5718 | && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[1], &paTests[iTest].OutVal.ar32[1])
|
---|
5719 | && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[2], &paTests[iTest].OutVal.ar32[2])
|
---|
5720 | && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[3], &paTests[iTest].OutVal.ar32[3]);
|
---|
5721 | if ( uMxCsrOut != paTests[iTest].fMxcsrOut
|
---|
5722 | || !fValsIdentical)
|
---|
5723 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s'%s'%s'%s\n"
|
---|
5724 | "%s -> mxcsr=%#08x %s'%s'%s'%s\n"
|
---|
5725 | "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n",
|
---|
5726 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
5727 | FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]),
|
---|
5728 | FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]),
|
---|
5729 | FormatR32(&paTests[iTest].InVal2.ar32[0]), FormatR32(&paTests[iTest].InVal2.ar32[1]),
|
---|
5730 | FormatR32(&paTests[iTest].InVal2.ar32[2]), FormatR32(&paTests[iTest].InVal2.ar32[3]),
|
---|
5731 | iVar ? " " : "", uMxCsrOut,
|
---|
5732 | FormatR32(&Res.ar32[0]), FormatR32(&Res.ar32[1]),
|
---|
5733 | FormatR32(&Res.ar32[2]), FormatR32(&Res.ar32[3]),
|
---|
5734 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
5735 | FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]),
|
---|
5736 | FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]),
|
---|
5737 | MxcsrDiff(uMxCsrOut, paTests[iTest].fMxcsrOut),
|
---|
5738 | !fValsIdentical ? " - val" : "",
|
---|
5739 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
5740 | }
|
---|
5741 | pfn = g_aSseBinaryR32[iFn].pfnNative;
|
---|
5742 | }
|
---|
5743 |
|
---|
5744 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryR32[iFn]);
|
---|
5745 | }
|
---|
5746 | }
|
---|
5747 |
|
---|
5748 |
|
---|
5749 | /*
|
---|
5750 | * Binary SSE operations on packed single precision floating point values.
|
---|
5751 | */
|
---|
5752 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R64_T, SSE_BINARY_TEST_T, PFNIEMAIMPLFPSSEF2U128);
|
---|
5753 |
|
---|
5754 | static SSE_BINARY_R64_T g_aSseBinaryR64[] =
|
---|
5755 | {
|
---|
5756 | ENTRY_BIN(addpd_u128),
|
---|
5757 | ENTRY_BIN(mulpd_u128),
|
---|
5758 | ENTRY_BIN(subpd_u128),
|
---|
5759 | ENTRY_BIN(minpd_u128),
|
---|
5760 | ENTRY_BIN(divpd_u128),
|
---|
5761 | ENTRY_BIN(maxpd_u128),
|
---|
5762 | ENTRY_BIN(haddpd_u128),
|
---|
5763 | ENTRY_BIN(hsubpd_u128),
|
---|
5764 | ENTRY_BIN(sqrtpd_u128),
|
---|
5765 | ENTRY_BIN(addsubpd_u128),
|
---|
5766 | ENTRY_BIN(cvtpd2ps_u128),
|
---|
5767 | };
|
---|
5768 |
|
---|
5769 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5770 | DUMP_ALL_FN(SseBinaryR64, g_aSseBinaryR32)
|
---|
5771 | static RTEXITCODE SseBinaryR64Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
5772 | {
|
---|
5773 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
5774 |
|
---|
5775 | static struct { RTFLOAT64U aVal1[2], aVal2[2]; } const s_aSpecials[] =
|
---|
5776 | {
|
---|
5777 | { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) },
|
---|
5778 | { RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1), RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) } },
|
---|
5779 | /** @todo More specials. */
|
---|
5780 | };
|
---|
5781 |
|
---|
5782 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
5783 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64); iFn++)
|
---|
5784 | {
|
---|
5785 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseBinaryR64[iFn].pfnNative ? g_aSseBinaryR64[iFn].pfnNative : g_aSseBinaryR64[iFn].pfn;
|
---|
5786 |
|
---|
5787 | IEMBINARYOUTPUT BinOut;
|
---|
5788 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR64[iFn]), RTEXITCODE_FAILURE);
|
---|
5789 |
|
---|
5790 | uint32_t cNormalInputPairs = 0;
|
---|
5791 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5792 | {
|
---|
5793 | SSE_BINARY_TEST_T TestData; RT_ZERO(TestData);
|
---|
5794 |
|
---|
5795 | TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
5796 | TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
5797 | TestData.InVal2.ar64[0] = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0];
|
---|
5798 | TestData.InVal2.ar64[1] = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0];
|
---|
5799 |
|
---|
5800 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1])
|
---|
5801 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[1]))
|
---|
5802 | cNormalInputPairs++;
|
---|
5803 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
5804 | {
|
---|
5805 | iTest -= 1;
|
---|
5806 | continue;
|
---|
5807 | }
|
---|
5808 |
|
---|
5809 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
5810 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5811 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
5812 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
5813 | {
|
---|
5814 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
5815 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
5816 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
5817 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
5818 | | X86_MXCSR_XCPT_MASK;
|
---|
5819 | X86XMMREG ResM; RT_ZERO(ResM);
|
---|
5820 | uint32_t uMxCsrOutM = pfn(uMxCsrIn, &ResM, &TestData.InVal1, &TestData.InVal2);
|
---|
5821 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
5822 | TestData.fMxcsrOut = uMxCsrOutM;
|
---|
5823 | TestData.OutVal = ResM;
|
---|
5824 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5825 |
|
---|
5826 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
5827 | X86XMMREG ResU; RT_ZERO(ResU);
|
---|
5828 | uint32_t uMxCsrOutU = pfn(uMxCsrIn, &ResU, &TestData.InVal1, &TestData.InVal2);
|
---|
5829 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
5830 | TestData.fMxcsrOut = uMxCsrOutU;
|
---|
5831 | TestData.OutVal = ResU;
|
---|
5832 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5833 |
|
---|
5834 | uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS;
|
---|
5835 | if (fXcpt)
|
---|
5836 | {
|
---|
5837 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
5838 | X86XMMREG Res1; RT_ZERO(Res1);
|
---|
5839 | uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &Res1, &TestData.InVal1, &TestData.InVal2);
|
---|
5840 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
5841 | TestData.fMxcsrOut = uMxCsrOut1;
|
---|
5842 | TestData.OutVal = Res1;
|
---|
5843 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5844 |
|
---|
5845 | if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS))
|
---|
5846 | {
|
---|
5847 | fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS;
|
---|
5848 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5849 | X86XMMREG Res2; RT_ZERO(Res2);
|
---|
5850 | uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &Res2, &TestData.InVal1, &TestData.InVal2);
|
---|
5851 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
5852 | TestData.fMxcsrOut = uMxCsrOut2;
|
---|
5853 | TestData.OutVal = Res2;
|
---|
5854 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5855 | }
|
---|
5856 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5857 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
5858 | if (fUnmasked & fXcpt)
|
---|
5859 | {
|
---|
5860 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5861 | X86XMMREG Res3; RT_ZERO(Res3);
|
---|
5862 | uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &Res3, &TestData.InVal1, &TestData.InVal2);
|
---|
5863 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
5864 | TestData.fMxcsrOut = uMxCsrOut3;
|
---|
5865 | TestData.OutVal = Res3;
|
---|
5866 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
5867 | }
|
---|
5868 | }
|
---|
5869 | }
|
---|
5870 | }
|
---|
5871 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
5872 | }
|
---|
5873 |
|
---|
5874 | return RTEXITCODE_SUCCESS;
|
---|
5875 | }
|
---|
5876 | #endif
|
---|
5877 |
|
---|
5878 |
|
---|
5879 | static void SseBinaryR64Test(void)
|
---|
5880 | {
|
---|
5881 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64); iFn++)
|
---|
5882 | {
|
---|
5883 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR64[iFn]))
|
---|
5884 | continue;
|
---|
5885 |
|
---|
5886 | SSE_BINARY_TEST_T const * const paTests = g_aSseBinaryR64[iFn].paTests;
|
---|
5887 | uint32_t const cTests = g_aSseBinaryR64[iFn].cTests;
|
---|
5888 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseBinaryR64[iFn].pfn;
|
---|
5889 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR64[iFn]);
|
---|
5890 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5891 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5892 | {
|
---|
5893 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
5894 | {
|
---|
5895 | X86XMMREG Res; RT_ZERO(Res);
|
---|
5896 |
|
---|
5897 | uint32_t uMxCsrIn = paTests[iTest].fMxcsrIn;
|
---|
5898 | uint32_t uMxCsrOut = pfn(uMxCsrIn, &Res, &paTests[iTest].InVal1, &paTests[iTest].InVal2);
|
---|
5899 | if ( uMxCsrOut != paTests[iTest].fMxcsrOut
|
---|
5900 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
5901 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
5902 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s'%s\n"
|
---|
5903 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
5904 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
5905 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
5906 | FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]),
|
---|
5907 | FormatR64(&paTests[iTest].InVal2.ar64[0]), FormatR64(&paTests[iTest].InVal2.ar64[1]),
|
---|
5908 | iVar ? " " : "", uMxCsrOut,
|
---|
5909 | FormatR64(&Res.ar64[0]), FormatR64(&Res.ar64[1]),
|
---|
5910 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
5911 | FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]),
|
---|
5912 | MxcsrDiff(uMxCsrOut, paTests[iTest].fMxcsrOut),
|
---|
5913 | ( !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
5914 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
5915 | ? " - val" : "",
|
---|
5916 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
5917 | }
|
---|
5918 | pfn = g_aSseBinaryR64[iFn].pfnNative;
|
---|
5919 | }
|
---|
5920 |
|
---|
5921 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryR64[iFn]);
|
---|
5922 | }
|
---|
5923 | }
|
---|
5924 |
|
---|
5925 |
|
---|
5926 | /*
|
---|
5927 | * Binary SSE operations on packed single precision floating point values.
|
---|
5928 | */
|
---|
5929 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_U128_R32_T, SSE_BINARY_U128_R32_TEST_T, PFNIEMAIMPLFPSSEF2U128R32);
|
---|
5930 |
|
---|
5931 | static SSE_BINARY_U128_R32_T g_aSseBinaryU128R32[] =
|
---|
5932 | {
|
---|
5933 | ENTRY_BIN(addss_u128_r32),
|
---|
5934 | ENTRY_BIN(mulss_u128_r32),
|
---|
5935 | ENTRY_BIN(subss_u128_r32),
|
---|
5936 | ENTRY_BIN(minss_u128_r32),
|
---|
5937 | ENTRY_BIN(divss_u128_r32),
|
---|
5938 | ENTRY_BIN(maxss_u128_r32),
|
---|
5939 | ENTRY_BIN(cvtss2sd_u128_r32),
|
---|
5940 | ENTRY_BIN(sqrtss_u128_r32),
|
---|
5941 | };
|
---|
5942 |
|
---|
5943 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5944 | DUMP_ALL_FN(SseBinaryU128R32, g_aSseBinaryU128R32)
|
---|
5945 | static RTEXITCODE SseBinaryU128R32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
5946 | {
|
---|
5947 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
5948 |
|
---|
5949 | static struct { RTFLOAT32U aVal1[4], Val2; } const s_aSpecials[] =
|
---|
5950 | {
|
---|
5951 | { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), }, RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) },
|
---|
5952 | /** @todo More specials. */
|
---|
5953 | };
|
---|
5954 |
|
---|
5955 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
5956 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R32); iFn++)
|
---|
5957 | {
|
---|
5958 | PFNIEMAIMPLFPSSEF2U128R32 const pfn = g_aSseBinaryU128R32[iFn].pfnNative ? g_aSseBinaryU128R32[iFn].pfnNative : g_aSseBinaryU128R32[iFn].pfn;
|
---|
5959 |
|
---|
5960 | IEMBINARYOUTPUT BinOut;
|
---|
5961 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryU128R32[iFn]), RTEXITCODE_FAILURE);
|
---|
5962 |
|
---|
5963 | uint32_t cNormalInputPairs = 0;
|
---|
5964 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5965 | {
|
---|
5966 | SSE_BINARY_U128_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
5967 |
|
---|
5968 | TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
5969 | TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
5970 | TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2];
|
---|
5971 | TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3];
|
---|
5972 |
|
---|
5973 | TestData.r32Val2 = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
5974 |
|
---|
5975 | if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0])
|
---|
5976 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1])
|
---|
5977 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2])
|
---|
5978 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3])
|
---|
5979 | && RTFLOAT32U_IS_NORMAL(&TestData.r32Val2))
|
---|
5980 | cNormalInputPairs++;
|
---|
5981 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
5982 | {
|
---|
5983 | iTest -= 1;
|
---|
5984 | continue;
|
---|
5985 | }
|
---|
5986 |
|
---|
5987 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
5988 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5989 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
5990 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
5991 | {
|
---|
5992 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
5993 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
5994 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
5995 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
5996 | | X86_MXCSR_XCPT_MASK;
|
---|
5997 | X86XMMREG ResM; RT_ZERO(ResM);
|
---|
5998 | uint32_t uMxCsrOutM = pfn(uMxCsrIn, &ResM, &TestData.InVal1, &TestData.r32Val2);
|
---|
5999 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6000 | TestData.fMxcsrOut = uMxCsrOutM;
|
---|
6001 | TestData.OutVal = ResM;
|
---|
6002 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6003 |
|
---|
6004 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
6005 | X86XMMREG ResU; RT_ZERO(ResU);
|
---|
6006 | uint32_t uMxCsrOutU = pfn(uMxCsrIn, &ResU, &TestData.InVal1, &TestData.r32Val2);
|
---|
6007 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6008 | TestData.fMxcsrOut = uMxCsrOutU;
|
---|
6009 | TestData.OutVal = ResU;
|
---|
6010 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6011 |
|
---|
6012 | uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6013 | if (fXcpt)
|
---|
6014 | {
|
---|
6015 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6016 | X86XMMREG Res1; RT_ZERO(Res1);
|
---|
6017 | uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &Res1, &TestData.InVal1, &TestData.r32Val2);
|
---|
6018 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6019 | TestData.fMxcsrOut = uMxCsrOut1;
|
---|
6020 | TestData.OutVal = Res1;
|
---|
6021 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6022 |
|
---|
6023 | if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6024 | {
|
---|
6025 | fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6026 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6027 | X86XMMREG Res2; RT_ZERO(Res2);
|
---|
6028 | uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &Res2, &TestData.InVal1, &TestData.r32Val2);
|
---|
6029 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6030 | TestData.fMxcsrOut = uMxCsrOut2;
|
---|
6031 | TestData.OutVal = Res2;
|
---|
6032 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6033 | }
|
---|
6034 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6035 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6036 | if (fUnmasked & fXcpt)
|
---|
6037 | {
|
---|
6038 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6039 | X86XMMREG Res3; RT_ZERO(Res3);
|
---|
6040 | uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &Res3, &TestData.InVal1, &TestData.r32Val2);
|
---|
6041 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6042 | TestData.fMxcsrOut = uMxCsrOut3;
|
---|
6043 | TestData.OutVal = Res3;
|
---|
6044 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6045 | }
|
---|
6046 | }
|
---|
6047 | }
|
---|
6048 | }
|
---|
6049 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6050 | }
|
---|
6051 |
|
---|
6052 | return RTEXITCODE_SUCCESS;
|
---|
6053 | }
|
---|
6054 | #endif
|
---|
6055 |
|
---|
6056 | static void SseBinaryU128R32Test(void)
|
---|
6057 | {
|
---|
6058 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R32); iFn++)
|
---|
6059 | {
|
---|
6060 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryU128R32[iFn]))
|
---|
6061 | continue;
|
---|
6062 |
|
---|
6063 | SSE_BINARY_U128_R32_TEST_T const * const paTests = g_aSseBinaryU128R32[iFn].paTests;
|
---|
6064 | uint32_t const cTests = g_aSseBinaryU128R32[iFn].cTests;
|
---|
6065 | PFNIEMAIMPLFPSSEF2U128R32 pfn = g_aSseBinaryU128R32[iFn].pfn;
|
---|
6066 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryU128R32[iFn]);
|
---|
6067 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6068 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6069 | {
|
---|
6070 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6071 | {
|
---|
6072 | X86XMMREG Res; RT_ZERO(Res);
|
---|
6073 |
|
---|
6074 | uint32_t uMxCsrIn = paTests[iTest].fMxcsrIn;
|
---|
6075 | uint32_t uMxCsrOut = pfn(uMxCsrIn, &Res, &paTests[iTest].InVal1, &paTests[iTest].r32Val2);
|
---|
6076 | bool fValsIdentical = RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
6077 | && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[1], &paTests[iTest].OutVal.ar32[1])
|
---|
6078 | && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[2], &paTests[iTest].OutVal.ar32[2])
|
---|
6079 | && RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[3], &paTests[iTest].OutVal.ar32[3]);
|
---|
6080 | if ( uMxCsrOut != paTests[iTest].fMxcsrOut
|
---|
6081 | || !fValsIdentical)
|
---|
6082 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s\n"
|
---|
6083 | "%s -> mxcsr=%#08x %s'%s'%s'%s\n"
|
---|
6084 | "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n",
|
---|
6085 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6086 | FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]),
|
---|
6087 | FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]),
|
---|
6088 | FormatR32(&paTests[iTest].r32Val2),
|
---|
6089 | iVar ? " " : "", uMxCsrOut,
|
---|
6090 | FormatR32(&Res.ar32[0]), FormatR32(&Res.ar32[1]),
|
---|
6091 | FormatR32(&Res.ar32[2]), FormatR32(&Res.ar32[3]),
|
---|
6092 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
6093 | FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]),
|
---|
6094 | FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]),
|
---|
6095 | MxcsrDiff(uMxCsrOut, paTests[iTest].fMxcsrOut),
|
---|
6096 | !fValsIdentical ? " - val" : "",
|
---|
6097 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6098 | }
|
---|
6099 | }
|
---|
6100 |
|
---|
6101 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryU128R32[iFn]);
|
---|
6102 | }
|
---|
6103 | }
|
---|
6104 |
|
---|
6105 |
|
---|
6106 | /*
|
---|
6107 | * Binary SSE operations on packed single precision floating point values (xxxsd xmm1, r/m64).
|
---|
6108 | */
|
---|
6109 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_U128_R64_T, SSE_BINARY_U128_R64_TEST_T, PFNIEMAIMPLFPSSEF2U128R64);
|
---|
6110 |
|
---|
6111 | static SSE_BINARY_U128_R64_T g_aSseBinaryU128R64[] =
|
---|
6112 | {
|
---|
6113 | ENTRY_BIN(addsd_u128_r64),
|
---|
6114 | ENTRY_BIN(mulsd_u128_r64),
|
---|
6115 | ENTRY_BIN(subsd_u128_r64),
|
---|
6116 | ENTRY_BIN(minsd_u128_r64),
|
---|
6117 | ENTRY_BIN(divsd_u128_r64),
|
---|
6118 | ENTRY_BIN(maxsd_u128_r64),
|
---|
6119 | ENTRY_BIN(cvtsd2ss_u128_r64),
|
---|
6120 | ENTRY_BIN(sqrtsd_u128_r64),
|
---|
6121 | };
|
---|
6122 |
|
---|
6123 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6124 | DUMP_ALL_FN(SseBinaryU128R64, g_aSseBinaryU128R64)
|
---|
6125 | static RTEXITCODE SseBinaryU128R64Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
6126 | {
|
---|
6127 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6128 |
|
---|
6129 | static struct { RTFLOAT64U aVal1[2], Val2; } const s_aSpecials[] =
|
---|
6130 | {
|
---|
6131 | { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) }, RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) },
|
---|
6132 | /** @todo More specials. */
|
---|
6133 | };
|
---|
6134 |
|
---|
6135 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
6136 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R64); iFn++)
|
---|
6137 | {
|
---|
6138 | PFNIEMAIMPLFPSSEF2U128R64 const pfn = g_aSseBinaryU128R64[iFn].pfnNative ? g_aSseBinaryU128R64[iFn].pfnNative : g_aSseBinaryU128R64[iFn].pfn;
|
---|
6139 |
|
---|
6140 | IEMBINARYOUTPUT BinOut;
|
---|
6141 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryU128R64[iFn]), RTEXITCODE_FAILURE);
|
---|
6142 |
|
---|
6143 | uint32_t cNormalInputPairs = 0;
|
---|
6144 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6145 | {
|
---|
6146 | SSE_BINARY_U128_R64_TEST_T TestData; RT_ZERO(TestData);
|
---|
6147 |
|
---|
6148 | TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
6149 | TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
6150 | TestData.r64Val2 = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
6151 |
|
---|
6152 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1])
|
---|
6153 | && RTFLOAT64U_IS_NORMAL(&TestData.r64Val2))
|
---|
6154 | cNormalInputPairs++;
|
---|
6155 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
6156 | {
|
---|
6157 | iTest -= 1;
|
---|
6158 | continue;
|
---|
6159 | }
|
---|
6160 |
|
---|
6161 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6162 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6163 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6164 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6165 | {
|
---|
6166 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6167 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6168 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6169 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6170 | | X86_MXCSR_XCPT_MASK;
|
---|
6171 | uint32_t uMxCsrOutM = pfn(uMxCsrIn, &TestData.OutVal, &TestData.InVal1, &TestData.r64Val2);
|
---|
6172 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6173 | TestData.fMxcsrOut = uMxCsrOutM;
|
---|
6174 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6175 |
|
---|
6176 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
6177 | uint32_t uMxCsrOutU = pfn(uMxCsrIn, &TestData.OutVal, &TestData.InVal1, &TestData.r64Val2);
|
---|
6178 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6179 | TestData.fMxcsrOut = uMxCsrOutU;
|
---|
6180 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6181 |
|
---|
6182 | uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6183 | if (fXcpt)
|
---|
6184 | {
|
---|
6185 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6186 | uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.InVal1, &TestData.r64Val2);
|
---|
6187 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6188 | TestData.fMxcsrOut = uMxCsrOut1;
|
---|
6189 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6190 |
|
---|
6191 | if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6192 | {
|
---|
6193 | fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6194 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6195 | uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.InVal1, &TestData.r64Val2);
|
---|
6196 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6197 | TestData.fMxcsrOut = uMxCsrOut2;
|
---|
6198 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6199 | }
|
---|
6200 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6201 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6202 | if (fUnmasked & fXcpt)
|
---|
6203 | {
|
---|
6204 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6205 | uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.InVal1, &TestData.r64Val2);
|
---|
6206 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6207 | TestData.fMxcsrOut = uMxCsrOut3;
|
---|
6208 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6209 | }
|
---|
6210 | }
|
---|
6211 | }
|
---|
6212 | }
|
---|
6213 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6214 | }
|
---|
6215 |
|
---|
6216 | return RTEXITCODE_SUCCESS;
|
---|
6217 | }
|
---|
6218 | #endif
|
---|
6219 |
|
---|
6220 |
|
---|
6221 | static void SseBinaryU128R64Test(void)
|
---|
6222 | {
|
---|
6223 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R64); iFn++)
|
---|
6224 | {
|
---|
6225 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryU128R64[iFn]))
|
---|
6226 | continue;
|
---|
6227 |
|
---|
6228 | SSE_BINARY_U128_R64_TEST_T const * const paTests = g_aSseBinaryU128R64[iFn].paTests;
|
---|
6229 | uint32_t const cTests = g_aSseBinaryU128R64[iFn].cTests;
|
---|
6230 | PFNIEMAIMPLFPSSEF2U128R64 pfn = g_aSseBinaryU128R64[iFn].pfn;
|
---|
6231 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryU128R64[iFn]);
|
---|
6232 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6233 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6234 | {
|
---|
6235 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6236 | {
|
---|
6237 | X86XMMREG Res; RT_ZERO(Res);
|
---|
6238 |
|
---|
6239 | uint32_t uMxCsrIn = paTests[iTest].fMxcsrIn;
|
---|
6240 | uint32_t uMxCsrOut = pfn(uMxCsrIn, &Res, &paTests[iTest].InVal1, &paTests[iTest].r64Val2);
|
---|
6241 | if ( uMxCsrOut != paTests[iTest].fMxcsrOut
|
---|
6242 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
6243 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
6244 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s\n"
|
---|
6245 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
6246 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
6247 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6248 | FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]),
|
---|
6249 | FormatR64(&paTests[iTest].r64Val2),
|
---|
6250 | iVar ? " " : "", uMxCsrOut,
|
---|
6251 | FormatR64(&Res.ar64[0]), FormatR64(&Res.ar64[1]),
|
---|
6252 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
6253 | FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]),
|
---|
6254 | MxcsrDiff(uMxCsrOut, paTests[iTest].fMxcsrOut),
|
---|
6255 | ( !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
6256 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
6257 | ? " - val" : "",
|
---|
6258 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6259 | }
|
---|
6260 | }
|
---|
6261 |
|
---|
6262 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryU128R64[iFn]);
|
---|
6263 | }
|
---|
6264 | }
|
---|
6265 |
|
---|
6266 |
|
---|
6267 | /*
|
---|
6268 | * SSE operations converting single double-precision floating point values to signed double-word integers (cvttsd2si and friends).
|
---|
6269 | */
|
---|
6270 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I32_R64_T, SSE_BINARY_I32_R64_TEST_T, PFNIEMAIMPLSSEF2I32U64);
|
---|
6271 |
|
---|
6272 | static SSE_BINARY_I32_R64_T g_aSseBinaryI32R64[] =
|
---|
6273 | {
|
---|
6274 | ENTRY_BIN(cvttsd2si_i32_r64),
|
---|
6275 | ENTRY_BIN(cvtsd2si_i32_r64),
|
---|
6276 | };
|
---|
6277 |
|
---|
6278 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6279 | DUMP_ALL_FN(SseBinaryI32R64, g_aSseBinaryI32R64)
|
---|
6280 | static RTEXITCODE SseBinaryI32R64Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
6281 | {
|
---|
6282 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6283 |
|
---|
6284 | static struct { RTFLOAT64U Val; } const s_aSpecials[] =
|
---|
6285 | {
|
---|
6286 | { RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) },
|
---|
6287 | /** @todo More specials. */
|
---|
6288 | };
|
---|
6289 |
|
---|
6290 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
6291 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R64); iFn++)
|
---|
6292 | {
|
---|
6293 | PFNIEMAIMPLSSEF2I32U64 const pfn = g_aSseBinaryI32R64[iFn].pfnNative ? g_aSseBinaryI32R64[iFn].pfnNative : g_aSseBinaryI32R64[iFn].pfn;
|
---|
6294 |
|
---|
6295 | IEMBINARYOUTPUT BinOut;
|
---|
6296 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryI32R64[iFn]), RTEXITCODE_FAILURE);
|
---|
6297 |
|
---|
6298 | uint32_t cNormalInputPairs = 0;
|
---|
6299 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6300 | {
|
---|
6301 | SSE_BINARY_I32_R64_TEST_T TestData; RT_ZERO(TestData);
|
---|
6302 |
|
---|
6303 | TestData.r64ValIn = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val;
|
---|
6304 |
|
---|
6305 | if (RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn))
|
---|
6306 | cNormalInputPairs++;
|
---|
6307 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
6308 | {
|
---|
6309 | iTest -= 1;
|
---|
6310 | continue;
|
---|
6311 | }
|
---|
6312 |
|
---|
6313 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6314 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6315 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6316 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6317 | {
|
---|
6318 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6319 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6320 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6321 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6322 | | X86_MXCSR_XCPT_MASK;
|
---|
6323 | uint32_t fMxcsrM; int32_t i32OutM;
|
---|
6324 | fMxcsrM = pfn(uMxCsrIn, &i32OutM, &TestData.r64ValIn.u);
|
---|
6325 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6326 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6327 | TestData.i32ValOut = i32OutM;
|
---|
6328 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6329 |
|
---|
6330 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
6331 | uint32_t fMxcsrU; int32_t i32OutU;
|
---|
6332 | fMxcsrU = pfn(uMxCsrIn, &i32OutU, &TestData.r64ValIn.u);
|
---|
6333 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6334 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6335 | TestData.i32ValOut = i32OutU;
|
---|
6336 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6337 |
|
---|
6338 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6339 | if (fXcpt)
|
---|
6340 | {
|
---|
6341 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6342 | uint32_t fMxcsr1; int32_t i32Out1;
|
---|
6343 | fMxcsr1 = pfn(uMxCsrIn, &i32Out1, &TestData.r64ValIn.u);
|
---|
6344 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6345 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6346 | TestData.i32ValOut = i32Out1;
|
---|
6347 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6348 |
|
---|
6349 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6350 | {
|
---|
6351 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6352 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6353 | uint32_t fMxcsr2; int32_t i32Out2;
|
---|
6354 | fMxcsr2 = pfn(uMxCsrIn, &i32Out2, &TestData.r64ValIn.u);
|
---|
6355 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6356 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6357 | TestData.i32ValOut = i32Out2;
|
---|
6358 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6359 | }
|
---|
6360 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6361 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6362 | if (fUnmasked & fXcpt)
|
---|
6363 | {
|
---|
6364 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6365 | uint32_t fMxcsr3; int32_t i32Out3;
|
---|
6366 | fMxcsr3 = pfn(uMxCsrIn, &i32Out3, &TestData.r64ValIn.u);
|
---|
6367 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6368 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6369 | TestData.i32ValOut = i32Out3;
|
---|
6370 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6371 | }
|
---|
6372 | }
|
---|
6373 | }
|
---|
6374 | }
|
---|
6375 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6376 | }
|
---|
6377 |
|
---|
6378 | return RTEXITCODE_SUCCESS;
|
---|
6379 | }
|
---|
6380 | #endif
|
---|
6381 |
|
---|
6382 |
|
---|
6383 | static void SseBinaryI32R64Test(void)
|
---|
6384 | {
|
---|
6385 | X86FXSTATE State;
|
---|
6386 | RT_ZERO(State);
|
---|
6387 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R64); iFn++)
|
---|
6388 | {
|
---|
6389 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI32R64[iFn]))
|
---|
6390 | continue;
|
---|
6391 |
|
---|
6392 | SSE_BINARY_I32_R64_TEST_T const * const paTests = g_aSseBinaryI32R64[iFn].paTests;
|
---|
6393 | uint32_t const cTests = g_aSseBinaryI32R64[iFn].cTests;
|
---|
6394 | PFNIEMAIMPLSSEF2I32U64 pfn = g_aSseBinaryI32R64[iFn].pfn;
|
---|
6395 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI32R64[iFn]);
|
---|
6396 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6397 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6398 | {
|
---|
6399 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6400 | {
|
---|
6401 | int32_t i32Dst = 0;
|
---|
6402 |
|
---|
6403 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &i32Dst, &paTests[iTest].r64ValIn.u);
|
---|
6404 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
6405 | || i32Dst != paTests[iTest].i32ValOut)
|
---|
6406 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n"
|
---|
6407 | "%s -> mxcsr=%#08x %RI32\n"
|
---|
6408 | "%s expected %#08x %RI32%s%s (%s)\n",
|
---|
6409 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6410 | FormatR64(&paTests[iTest].r64ValIn),
|
---|
6411 | iVar ? " " : "", fMxcsr, i32Dst,
|
---|
6412 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i32ValOut,
|
---|
6413 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
6414 | i32Dst != paTests[iTest].i32ValOut
|
---|
6415 | ? " - val" : "",
|
---|
6416 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6417 | }
|
---|
6418 | }
|
---|
6419 |
|
---|
6420 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryI32R64[iFn]);
|
---|
6421 | }
|
---|
6422 | }
|
---|
6423 |
|
---|
6424 |
|
---|
6425 | /*
|
---|
6426 | * SSE operations converting single double-precision floating point values to signed quad-word integers (cvttsd2si and friends).
|
---|
6427 | */
|
---|
6428 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I64_R64_T, SSE_BINARY_I64_R64_TEST_T, PFNIEMAIMPLSSEF2I64U64);
|
---|
6429 |
|
---|
6430 | static SSE_BINARY_I64_R64_T g_aSseBinaryI64R64[] =
|
---|
6431 | {
|
---|
6432 | ENTRY_BIN(cvttsd2si_i64_r64),
|
---|
6433 | ENTRY_BIN(cvtsd2si_i64_r64),
|
---|
6434 | };
|
---|
6435 |
|
---|
6436 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6437 | DUMP_ALL_FN(SseBinaryI64R64, g_aSseBinaryI64R64)
|
---|
6438 | static RTEXITCODE SseBinaryI64R64Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
6439 | {
|
---|
6440 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6441 |
|
---|
6442 | static struct { RTFLOAT64U Val; } const s_aSpecials[] =
|
---|
6443 | {
|
---|
6444 | { RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) },
|
---|
6445 | /** @todo More specials. */
|
---|
6446 | };
|
---|
6447 |
|
---|
6448 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
6449 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R64); iFn++)
|
---|
6450 | {
|
---|
6451 | PFNIEMAIMPLSSEF2I64U64 const pfn = g_aSseBinaryI64R64[iFn].pfnNative ? g_aSseBinaryI64R64[iFn].pfnNative : g_aSseBinaryI64R64[iFn].pfn;
|
---|
6452 |
|
---|
6453 | IEMBINARYOUTPUT BinOut;
|
---|
6454 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryI64R64[iFn]), RTEXITCODE_FAILURE);
|
---|
6455 |
|
---|
6456 | uint32_t cNormalInputPairs = 0;
|
---|
6457 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6458 | {
|
---|
6459 | SSE_BINARY_I64_R64_TEST_T TestData; RT_ZERO(TestData);
|
---|
6460 |
|
---|
6461 | TestData.r64ValIn = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val;
|
---|
6462 |
|
---|
6463 | if (RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn))
|
---|
6464 | cNormalInputPairs++;
|
---|
6465 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
6466 | {
|
---|
6467 | iTest -= 1;
|
---|
6468 | continue;
|
---|
6469 | }
|
---|
6470 |
|
---|
6471 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6472 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6473 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6474 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6475 | {
|
---|
6476 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6477 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6478 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6479 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6480 | | X86_MXCSR_XCPT_MASK;
|
---|
6481 | uint32_t fMxcsrM; int64_t i64OutM;
|
---|
6482 | fMxcsrM = pfn(uMxCsrIn, &i64OutM, &TestData.r64ValIn.u);
|
---|
6483 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6484 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6485 | TestData.i64ValOut = i64OutM;
|
---|
6486 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6487 |
|
---|
6488 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
6489 | uint32_t fMxcsrU; int64_t i64OutU;
|
---|
6490 | fMxcsrU =pfn(uMxCsrIn, &i64OutU, &TestData.r64ValIn.u);
|
---|
6491 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6492 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6493 | TestData.i64ValOut = i64OutU;
|
---|
6494 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6495 |
|
---|
6496 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6497 | if (fXcpt)
|
---|
6498 | {
|
---|
6499 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6500 | uint32_t fMxcsr1; int64_t i64Out1;
|
---|
6501 | fMxcsr1 = pfn(uMxCsrIn, &i64Out1, &TestData.r64ValIn.u);
|
---|
6502 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6503 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6504 | TestData.i64ValOut = i64Out1;
|
---|
6505 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6506 |
|
---|
6507 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6508 | {
|
---|
6509 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6510 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6511 | uint32_t fMxcsr2; int64_t i64Out2;
|
---|
6512 | fMxcsr2 = pfn(uMxCsrIn, &i64Out2, &TestData.r64ValIn.u);
|
---|
6513 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6514 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6515 | TestData.i64ValOut = i64Out2;
|
---|
6516 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6517 | }
|
---|
6518 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6519 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6520 | if (fUnmasked & fXcpt)
|
---|
6521 | {
|
---|
6522 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6523 | uint32_t fMxcsr3; int64_t i64Out3;
|
---|
6524 | fMxcsr3 = pfn(uMxCsrIn, &i64Out3, &TestData.r64ValIn.u);
|
---|
6525 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6526 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6527 | TestData.i64ValOut = i64Out3;
|
---|
6528 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6529 | }
|
---|
6530 | }
|
---|
6531 | }
|
---|
6532 | }
|
---|
6533 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6534 | }
|
---|
6535 |
|
---|
6536 | return RTEXITCODE_SUCCESS;
|
---|
6537 | }
|
---|
6538 | #endif
|
---|
6539 |
|
---|
6540 |
|
---|
6541 | static void SseBinaryI64R64Test(void)
|
---|
6542 | {
|
---|
6543 | X86FXSTATE State;
|
---|
6544 | RT_ZERO(State);
|
---|
6545 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R64); iFn++)
|
---|
6546 | {
|
---|
6547 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI64R64[iFn]))
|
---|
6548 | continue;
|
---|
6549 |
|
---|
6550 | SSE_BINARY_I64_R64_TEST_T const * const paTests = g_aSseBinaryI64R64[iFn].paTests;
|
---|
6551 | uint32_t const cTests = g_aSseBinaryI64R64[iFn].cTests;
|
---|
6552 | PFNIEMAIMPLSSEF2I64U64 pfn = g_aSseBinaryI64R64[iFn].pfn;
|
---|
6553 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI32R64[iFn]);
|
---|
6554 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6555 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6556 | {
|
---|
6557 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6558 | {
|
---|
6559 | int64_t i64Dst = 0;
|
---|
6560 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &i64Dst, &paTests[iTest].r64ValIn.u);
|
---|
6561 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
6562 | || i64Dst != paTests[iTest].i64ValOut)
|
---|
6563 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n"
|
---|
6564 | "%s -> mxcsr=%#08x %RI64\n"
|
---|
6565 | "%s expected %#08x %RI64%s%s (%s)\n",
|
---|
6566 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6567 | FormatR64(&paTests[iTest].r64ValIn),
|
---|
6568 | iVar ? " " : "", fMxcsr, i64Dst,
|
---|
6569 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i64ValOut,
|
---|
6570 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
6571 | i64Dst != paTests[iTest].i64ValOut
|
---|
6572 | ? " - val" : "",
|
---|
6573 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6574 | }
|
---|
6575 | }
|
---|
6576 |
|
---|
6577 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryI64R64[iFn]);
|
---|
6578 | }
|
---|
6579 | }
|
---|
6580 |
|
---|
6581 |
|
---|
6582 | /*
|
---|
6583 | * SSE operations converting single single-precision floating point values to signed double-word integers (cvttss2si and friends).
|
---|
6584 | */
|
---|
6585 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I32_R32_T, SSE_BINARY_I32_R32_TEST_T, PFNIEMAIMPLSSEF2I32U32);
|
---|
6586 |
|
---|
6587 | static SSE_BINARY_I32_R32_T g_aSseBinaryI32R32[] =
|
---|
6588 | {
|
---|
6589 | ENTRY_BIN(cvttss2si_i32_r32),
|
---|
6590 | ENTRY_BIN(cvtss2si_i32_r32),
|
---|
6591 | };
|
---|
6592 |
|
---|
6593 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6594 | DUMP_ALL_FN(SseBinaryI32R32, g_aSseBinaryI32R32)
|
---|
6595 | static RTEXITCODE SseBinaryI32R32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
6596 | {
|
---|
6597 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6598 |
|
---|
6599 | static struct { RTFLOAT32U Val; } const s_aSpecials[] =
|
---|
6600 | {
|
---|
6601 | { RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) },
|
---|
6602 | /** @todo More specials. */
|
---|
6603 | };
|
---|
6604 |
|
---|
6605 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
6606 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R32); iFn++)
|
---|
6607 | {
|
---|
6608 | PFNIEMAIMPLSSEF2I32U32 const pfn = g_aSseBinaryI32R32[iFn].pfnNative ? g_aSseBinaryI32R32[iFn].pfnNative : g_aSseBinaryI32R32[iFn].pfn;
|
---|
6609 |
|
---|
6610 | IEMBINARYOUTPUT BinOut;
|
---|
6611 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryI32R32[iFn]), RTEXITCODE_FAILURE);
|
---|
6612 |
|
---|
6613 | uint32_t cNormalInputPairs = 0;
|
---|
6614 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6615 | {
|
---|
6616 | SSE_BINARY_I32_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
6617 |
|
---|
6618 | TestData.r32ValIn = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val;
|
---|
6619 |
|
---|
6620 | if (RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn))
|
---|
6621 | cNormalInputPairs++;
|
---|
6622 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
6623 | {
|
---|
6624 | iTest -= 1;
|
---|
6625 | continue;
|
---|
6626 | }
|
---|
6627 |
|
---|
6628 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6629 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6630 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6631 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6632 | {
|
---|
6633 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6634 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6635 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6636 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6637 | | X86_MXCSR_XCPT_MASK;
|
---|
6638 | uint32_t fMxcsrM; int32_t i32OutM;
|
---|
6639 | fMxcsrM = pfn(uMxCsrIn, &i32OutM, &TestData.r32ValIn.u);
|
---|
6640 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6641 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6642 | TestData.i32ValOut = i32OutM;
|
---|
6643 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6644 |
|
---|
6645 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
6646 | uint32_t fMxcsrU; int32_t i32OutU;
|
---|
6647 | fMxcsrU = pfn(uMxCsrIn, &i32OutU, &TestData.r32ValIn.u);
|
---|
6648 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6649 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6650 | TestData.i32ValOut = i32OutU;
|
---|
6651 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6652 |
|
---|
6653 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6654 | if (fXcpt)
|
---|
6655 | {
|
---|
6656 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6657 | uint32_t fMxcsr1; int32_t i32Out1;
|
---|
6658 | fMxcsr1 = pfn(uMxCsrIn, &i32Out1, &TestData.r32ValIn.u);
|
---|
6659 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6660 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6661 | TestData.i32ValOut = i32Out1;
|
---|
6662 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6663 |
|
---|
6664 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6665 | {
|
---|
6666 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6667 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6668 | uint32_t fMxcsr2; int32_t i32Out2;
|
---|
6669 | fMxcsr2 = pfn(uMxCsrIn, &i32Out2, &TestData.r32ValIn.u);
|
---|
6670 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6671 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6672 | TestData.i32ValOut = i32Out2;
|
---|
6673 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6674 | }
|
---|
6675 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6676 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6677 | if (fUnmasked & fXcpt)
|
---|
6678 | {
|
---|
6679 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6680 | uint32_t fMxcsr3; int32_t i32Out3;
|
---|
6681 | fMxcsr3 = pfn(uMxCsrIn, &i32Out3, &TestData.r32ValIn.u);
|
---|
6682 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6683 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6684 | TestData.i32ValOut = i32Out3;
|
---|
6685 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6686 | }
|
---|
6687 | }
|
---|
6688 | }
|
---|
6689 | }
|
---|
6690 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6691 | }
|
---|
6692 |
|
---|
6693 | return RTEXITCODE_SUCCESS;
|
---|
6694 | }
|
---|
6695 | #endif
|
---|
6696 |
|
---|
6697 |
|
---|
6698 | static void SseBinaryI32R32Test(void)
|
---|
6699 | {
|
---|
6700 | X86FXSTATE State;
|
---|
6701 | RT_ZERO(State);
|
---|
6702 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI32R32); iFn++)
|
---|
6703 | {
|
---|
6704 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI32R32[iFn]))
|
---|
6705 | continue;
|
---|
6706 |
|
---|
6707 | SSE_BINARY_I32_R32_TEST_T const * const paTests = g_aSseBinaryI32R32[iFn].paTests;
|
---|
6708 | uint32_t const cTests = g_aSseBinaryI32R32[iFn].cTests;
|
---|
6709 | PFNIEMAIMPLSSEF2I32U32 pfn = g_aSseBinaryI32R32[iFn].pfn;
|
---|
6710 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI32R32[iFn]);
|
---|
6711 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6712 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6713 | {
|
---|
6714 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6715 | {
|
---|
6716 | int32_t i32Dst = 0;
|
---|
6717 |
|
---|
6718 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &i32Dst, &paTests[iTest].r32ValIn.u);
|
---|
6719 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
6720 | || i32Dst != paTests[iTest].i32ValOut)
|
---|
6721 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n"
|
---|
6722 | "%s -> mxcsr=%#08x %RI32\n"
|
---|
6723 | "%s expected %#08x %RI32%s%s (%s)\n",
|
---|
6724 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6725 | FormatR32(&paTests[iTest].r32ValIn),
|
---|
6726 | iVar ? " " : "", fMxcsr, i32Dst,
|
---|
6727 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i32ValOut,
|
---|
6728 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
6729 | i32Dst != paTests[iTest].i32ValOut
|
---|
6730 | ? " - val" : "",
|
---|
6731 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6732 | }
|
---|
6733 | }
|
---|
6734 |
|
---|
6735 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryI32R32[iFn]);
|
---|
6736 | }
|
---|
6737 | }
|
---|
6738 |
|
---|
6739 |
|
---|
6740 | /*
|
---|
6741 | * SSE operations converting single single-precision floating point values to signed quad-word integers (cvttss2si and friends).
|
---|
6742 | */
|
---|
6743 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_I64_R32_T, SSE_BINARY_I64_R32_TEST_T, PFNIEMAIMPLSSEF2I64U32);
|
---|
6744 |
|
---|
6745 | static SSE_BINARY_I64_R32_T g_aSseBinaryI64R32[] =
|
---|
6746 | {
|
---|
6747 | ENTRY_BIN(cvttss2si_i64_r32),
|
---|
6748 | ENTRY_BIN(cvtss2si_i64_r32),
|
---|
6749 | };
|
---|
6750 |
|
---|
6751 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6752 | DUMP_ALL_FN(SseBinaryI64R32, g_aSseBinaryI64R32)
|
---|
6753 | static RTEXITCODE SseBinaryI64R32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
6754 | {
|
---|
6755 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6756 |
|
---|
6757 | static struct { RTFLOAT32U Val; } const s_aSpecials[] =
|
---|
6758 | {
|
---|
6759 | { RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) },
|
---|
6760 | /** @todo More specials. */
|
---|
6761 | };
|
---|
6762 |
|
---|
6763 | X86FXSTATE State;
|
---|
6764 | RT_ZERO(State);
|
---|
6765 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
6766 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R32); iFn++)
|
---|
6767 | {
|
---|
6768 | PFNIEMAIMPLSSEF2I64U32 const pfn = g_aSseBinaryI64R32[iFn].pfnNative ? g_aSseBinaryI64R32[iFn].pfnNative : g_aSseBinaryI64R32[iFn].pfn;
|
---|
6769 |
|
---|
6770 | IEMBINARYOUTPUT BinOut;
|
---|
6771 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryI64R32[iFn]), RTEXITCODE_FAILURE);
|
---|
6772 |
|
---|
6773 | uint32_t cNormalInputPairs = 0;
|
---|
6774 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6775 | {
|
---|
6776 | SSE_BINARY_I64_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
6777 |
|
---|
6778 | TestData.r32ValIn = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val;
|
---|
6779 |
|
---|
6780 | if (RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn))
|
---|
6781 | cNormalInputPairs++;
|
---|
6782 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
6783 | {
|
---|
6784 | iTest -= 1;
|
---|
6785 | continue;
|
---|
6786 | }
|
---|
6787 |
|
---|
6788 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6789 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6790 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6791 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6792 | {
|
---|
6793 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6794 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6795 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6796 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6797 | | X86_MXCSR_XCPT_MASK;
|
---|
6798 | uint32_t fMxcsrM; int64_t i64OutM;
|
---|
6799 | fMxcsrM = pfn(uMxCsrIn, &i64OutM, &TestData.r32ValIn.u);
|
---|
6800 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6801 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6802 | TestData.i64ValOut = i64OutM;
|
---|
6803 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6804 |
|
---|
6805 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
6806 | uint32_t fMxcsrU; int64_t i64OutU;
|
---|
6807 | fMxcsrU = pfn(uMxCsrIn, &i64OutU, &TestData.r32ValIn.u);
|
---|
6808 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6809 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6810 | TestData.i64ValOut = i64OutU;
|
---|
6811 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6812 |
|
---|
6813 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6814 | if (fXcpt)
|
---|
6815 | {
|
---|
6816 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6817 | uint32_t fMxcsr1; int64_t i64Out1;
|
---|
6818 | fMxcsr1 = pfn(uMxCsrIn, &i64Out1, &TestData.r32ValIn.u);
|
---|
6819 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6820 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6821 | TestData.i64ValOut = i64Out1;
|
---|
6822 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6823 |
|
---|
6824 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6825 | {
|
---|
6826 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6827 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6828 | uint32_t fMxcsr2; int64_t i64Out2;
|
---|
6829 | fMxcsr2 = pfn(uMxCsrIn, &i64Out2, &TestData.r32ValIn.u);
|
---|
6830 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6831 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6832 | TestData.i64ValOut = i64Out2;
|
---|
6833 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6834 | }
|
---|
6835 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6836 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6837 | if (fUnmasked & fXcpt)
|
---|
6838 | {
|
---|
6839 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6840 | uint32_t fMxcsr3; int64_t i64Out3;
|
---|
6841 | fMxcsr3 = pfn(uMxCsrIn, &i64Out3, &TestData.r32ValIn.u);
|
---|
6842 | TestData.fMxcsrIn = State.MXCSR;
|
---|
6843 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6844 | TestData.i64ValOut = i64Out3;
|
---|
6845 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6846 | }
|
---|
6847 | }
|
---|
6848 | }
|
---|
6849 | }
|
---|
6850 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6851 | }
|
---|
6852 |
|
---|
6853 | return RTEXITCODE_SUCCESS;
|
---|
6854 | }
|
---|
6855 | #endif
|
---|
6856 |
|
---|
6857 |
|
---|
6858 | static void SseBinaryI64R32Test(void)
|
---|
6859 | {
|
---|
6860 | X86FXSTATE State;
|
---|
6861 | RT_ZERO(State);
|
---|
6862 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryI64R32); iFn++)
|
---|
6863 | {
|
---|
6864 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryI64R32[iFn]))
|
---|
6865 | continue;
|
---|
6866 |
|
---|
6867 | SSE_BINARY_I64_R32_TEST_T const * const paTests = g_aSseBinaryI64R32[iFn].paTests;
|
---|
6868 | uint32_t const cTests = g_aSseBinaryI64R32[iFn].cTests;
|
---|
6869 | PFNIEMAIMPLSSEF2I64U32 pfn = g_aSseBinaryI64R32[iFn].pfn;
|
---|
6870 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryI64R32[iFn]);
|
---|
6871 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
6872 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
6873 | {
|
---|
6874 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
6875 | {
|
---|
6876 | int64_t i64Dst = 0;
|
---|
6877 |
|
---|
6878 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &i64Dst, &paTests[iTest].r32ValIn.u);
|
---|
6879 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
6880 | || i64Dst != paTests[iTest].i64ValOut)
|
---|
6881 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s\n"
|
---|
6882 | "%s -> mxcsr=%#08x %RI64\n"
|
---|
6883 | "%s expected %#08x %RI64%s%s (%s)\n",
|
---|
6884 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
6885 | FormatR32(&paTests[iTest].r32ValIn),
|
---|
6886 | iVar ? " " : "", fMxcsr, i64Dst,
|
---|
6887 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].i64ValOut,
|
---|
6888 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
6889 | i64Dst != paTests[iTest].i64ValOut
|
---|
6890 | ? " - val" : "",
|
---|
6891 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
6892 | }
|
---|
6893 | }
|
---|
6894 |
|
---|
6895 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryI64R32[iFn]);
|
---|
6896 | }
|
---|
6897 | }
|
---|
6898 |
|
---|
6899 |
|
---|
6900 | /*
|
---|
6901 | * SSE operations converting single signed double-word integers to double-precision floating point values (probably only cvtsi2sd).
|
---|
6902 | */
|
---|
6903 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R64_I32_T, SSE_BINARY_R64_I32_TEST_T, PFNIEMAIMPLSSEF2R64I32);
|
---|
6904 |
|
---|
6905 | static SSE_BINARY_R64_I32_T g_aSseBinaryR64I32[] =
|
---|
6906 | {
|
---|
6907 | ENTRY_BIN(cvtsi2sd_r64_i32)
|
---|
6908 | };
|
---|
6909 |
|
---|
6910 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
6911 | DUMP_ALL_FN(SseBinaryR64I32, g_aSseBinaryR64I32)
|
---|
6912 | static RTEXITCODE SseBinaryR64I32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
6913 | {
|
---|
6914 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
6915 |
|
---|
6916 | static int32_t const s_aSpecials[] =
|
---|
6917 | {
|
---|
6918 | INT32_MIN,
|
---|
6919 | INT32_MAX,
|
---|
6920 | /** @todo More specials. */
|
---|
6921 | };
|
---|
6922 |
|
---|
6923 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I32); iFn++)
|
---|
6924 | {
|
---|
6925 | PFNIEMAIMPLSSEF2R64I32 const pfn = g_aSseBinaryR64I32[iFn].pfnNative ? g_aSseBinaryR64I32[iFn].pfnNative : g_aSseBinaryR64I32[iFn].pfn;
|
---|
6926 |
|
---|
6927 | IEMBINARYOUTPUT BinOut;
|
---|
6928 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR64I32[iFn]), RTEXITCODE_FAILURE);
|
---|
6929 |
|
---|
6930 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
6931 | {
|
---|
6932 | SSE_BINARY_R64_I32_TEST_T TestData; RT_ZERO(TestData);
|
---|
6933 |
|
---|
6934 | TestData.i32ValIn = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
6935 |
|
---|
6936 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
6937 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
6938 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
6939 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
6940 | {
|
---|
6941 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
6942 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
6943 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
6944 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
6945 | | X86_MXCSR_XCPT_MASK;
|
---|
6946 | uint32_t fMxcsrM; RTFLOAT64U r64OutM;
|
---|
6947 | fMxcsrM = pfn(uMxCsrIn, &r64OutM, &TestData.i32ValIn);
|
---|
6948 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6949 | TestData.fMxcsrOut = fMxcsrM;
|
---|
6950 | TestData.r64ValOut = r64OutM;
|
---|
6951 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6952 |
|
---|
6953 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
6954 | uint32_t fMxcsrU; RTFLOAT64U r64OutU;
|
---|
6955 | fMxcsrU = pfn(uMxCsrIn, &r64OutU, &TestData.i32ValIn);
|
---|
6956 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6957 | TestData.fMxcsrOut = fMxcsrU;
|
---|
6958 | TestData.r64ValOut = r64OutU;
|
---|
6959 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6960 |
|
---|
6961 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
6962 | if (fXcpt)
|
---|
6963 | {
|
---|
6964 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
6965 | uint32_t fMxcsr1; RTFLOAT64U r64Out1;
|
---|
6966 | fMxcsr1 = pfn(uMxCsrIn, &r64Out1, &TestData.i32ValIn);
|
---|
6967 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6968 | TestData.fMxcsrOut = fMxcsr1;
|
---|
6969 | TestData.r64ValOut = r64Out1;
|
---|
6970 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6971 |
|
---|
6972 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
6973 | {
|
---|
6974 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
6975 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6976 | uint32_t fMxcsr2; RTFLOAT64U r64Out2;
|
---|
6977 | fMxcsr2 = pfn(uMxCsrIn, &r64Out2, &TestData.i32ValIn);
|
---|
6978 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6979 | TestData.fMxcsrOut = fMxcsr2;
|
---|
6980 | TestData.r64ValOut = r64Out2;
|
---|
6981 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6982 | }
|
---|
6983 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
6984 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
6985 | if (fUnmasked & fXcpt)
|
---|
6986 | {
|
---|
6987 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
6988 | uint32_t fMxcsr3; RTFLOAT64U r64Out3;
|
---|
6989 | fMxcsr3 = pfn(uMxCsrIn, &r64Out3, &TestData.i32ValIn);
|
---|
6990 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
6991 | TestData.fMxcsrOut = fMxcsr3;
|
---|
6992 | TestData.r64ValOut = r64Out3;
|
---|
6993 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
6994 | }
|
---|
6995 | }
|
---|
6996 | }
|
---|
6997 | }
|
---|
6998 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
6999 | }
|
---|
7000 |
|
---|
7001 | return RTEXITCODE_SUCCESS;
|
---|
7002 | }
|
---|
7003 | #endif
|
---|
7004 |
|
---|
7005 |
|
---|
7006 | static void SseBinaryR64I32Test(void)
|
---|
7007 | {
|
---|
7008 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I32); iFn++)
|
---|
7009 | {
|
---|
7010 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR64I32[iFn]))
|
---|
7011 | continue;
|
---|
7012 |
|
---|
7013 | SSE_BINARY_R64_I32_TEST_T const * const paTests = g_aSseBinaryR64I32[iFn].paTests;
|
---|
7014 | uint32_t const cTests = g_aSseBinaryR64I32[iFn].cTests;
|
---|
7015 | PFNIEMAIMPLSSEF2R64I32 pfn = g_aSseBinaryR64I32[iFn].pfn;
|
---|
7016 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR64I32[iFn]);
|
---|
7017 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7018 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7019 | {
|
---|
7020 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7021 | {
|
---|
7022 | RTFLOAT64U r64Dst; RT_ZERO(r64Dst);
|
---|
7023 |
|
---|
7024 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &r64Dst, &paTests[iTest].i32ValIn);
|
---|
7025 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7026 | || !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut))
|
---|
7027 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32\n"
|
---|
7028 | "%s -> mxcsr=%#08x %s\n"
|
---|
7029 | "%s expected %#08x %s%s%s (%s)\n",
|
---|
7030 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
7031 | &paTests[iTest].i32ValIn,
|
---|
7032 | iVar ? " " : "", fMxcsr, FormatR64(&r64Dst),
|
---|
7033 | iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR64(&paTests[iTest].r64ValOut),
|
---|
7034 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7035 | !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut)
|
---|
7036 | ? " - val" : "",
|
---|
7037 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
7038 | }
|
---|
7039 | }
|
---|
7040 |
|
---|
7041 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryR64I32[iFn]);
|
---|
7042 | }
|
---|
7043 | }
|
---|
7044 |
|
---|
7045 |
|
---|
7046 | /*
|
---|
7047 | * SSE operations converting single signed quad-word integers to double-precision floating point values (probably only cvtsi2sd).
|
---|
7048 | */
|
---|
7049 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R64_I64_T, SSE_BINARY_R64_I64_TEST_T, PFNIEMAIMPLSSEF2R64I64);
|
---|
7050 |
|
---|
7051 | static SSE_BINARY_R64_I64_T g_aSseBinaryR64I64[] =
|
---|
7052 | {
|
---|
7053 | ENTRY_BIN(cvtsi2sd_r64_i64),
|
---|
7054 | };
|
---|
7055 |
|
---|
7056 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7057 | DUMP_ALL_FN(SseBinaryR64I64, g_aSseBinaryR64I64)
|
---|
7058 | static RTEXITCODE SseBinaryR64I64Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
7059 | {
|
---|
7060 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7061 |
|
---|
7062 | static int64_t const s_aSpecials[] =
|
---|
7063 | {
|
---|
7064 | INT64_MIN,
|
---|
7065 | INT64_MAX
|
---|
7066 | /** @todo More specials. */
|
---|
7067 | };
|
---|
7068 |
|
---|
7069 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I64); iFn++)
|
---|
7070 | {
|
---|
7071 | PFNIEMAIMPLSSEF2R64I64 const pfn = g_aSseBinaryR64I64[iFn].pfnNative ? g_aSseBinaryR64I64[iFn].pfnNative : g_aSseBinaryR64I64[iFn].pfn;
|
---|
7072 |
|
---|
7073 | IEMBINARYOUTPUT BinOut;
|
---|
7074 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR64I64[iFn]), RTEXITCODE_FAILURE);
|
---|
7075 |
|
---|
7076 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7077 | {
|
---|
7078 | SSE_BINARY_R64_I64_TEST_T TestData; RT_ZERO(TestData);
|
---|
7079 |
|
---|
7080 | TestData.i64ValIn = iTest < cTests ? RandI64Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
7081 |
|
---|
7082 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7083 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7084 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7085 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7086 | {
|
---|
7087 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7088 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7089 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7090 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7091 | | X86_MXCSR_XCPT_MASK;
|
---|
7092 | uint32_t fMxcsrM; RTFLOAT64U r64OutM;
|
---|
7093 | fMxcsrM = pfn(uMxCsrIn, &r64OutM, &TestData.i64ValIn);
|
---|
7094 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7095 | TestData.fMxcsrOut = fMxcsrM;
|
---|
7096 | TestData.r64ValOut = r64OutM;
|
---|
7097 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7098 |
|
---|
7099 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
7100 | uint32_t fMxcsrU; RTFLOAT64U r64OutU;
|
---|
7101 | fMxcsrU = pfn(uMxCsrIn, &r64OutU, &TestData.i64ValIn);
|
---|
7102 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7103 | TestData.fMxcsrOut = fMxcsrU;
|
---|
7104 | TestData.r64ValOut = r64OutU;
|
---|
7105 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7106 |
|
---|
7107 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
7108 | if (fXcpt)
|
---|
7109 | {
|
---|
7110 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7111 | uint32_t fMxcsr1; RTFLOAT64U r64Out1;
|
---|
7112 | fMxcsr1 = pfn(uMxCsrIn, &r64Out1, &TestData.i64ValIn);
|
---|
7113 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7114 | TestData.fMxcsrOut = fMxcsr1;
|
---|
7115 | TestData.r64ValOut = r64Out1;
|
---|
7116 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7117 |
|
---|
7118 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
7119 | {
|
---|
7120 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
7121 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7122 | uint32_t fMxcsr2; RTFLOAT64U r64Out2;
|
---|
7123 | fMxcsr2 = pfn(uMxCsrIn, &r64Out2, &TestData.i64ValIn);
|
---|
7124 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7125 | TestData.fMxcsrOut = fMxcsr2;
|
---|
7126 | TestData.r64ValOut = r64Out2;
|
---|
7127 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7128 | }
|
---|
7129 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7130 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7131 | if (fUnmasked & fXcpt)
|
---|
7132 | {
|
---|
7133 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7134 | uint32_t fMxcsr3; RTFLOAT64U r64Out3;
|
---|
7135 | fMxcsr3 = pfn(uMxCsrIn, &r64Out3, &TestData.i64ValIn);
|
---|
7136 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7137 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7138 | TestData.r64ValOut = r64Out3;
|
---|
7139 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7140 | }
|
---|
7141 | }
|
---|
7142 | }
|
---|
7143 | }
|
---|
7144 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7145 | }
|
---|
7146 |
|
---|
7147 | return RTEXITCODE_SUCCESS;
|
---|
7148 | }
|
---|
7149 | #endif
|
---|
7150 |
|
---|
7151 |
|
---|
7152 | static void SseBinaryR64I64Test(void)
|
---|
7153 | {
|
---|
7154 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64I64); iFn++)
|
---|
7155 | {
|
---|
7156 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR64I64[iFn]))
|
---|
7157 | continue;
|
---|
7158 |
|
---|
7159 | SSE_BINARY_R64_I64_TEST_T const * const paTests = g_aSseBinaryR64I64[iFn].paTests;
|
---|
7160 | uint32_t const cTests = g_aSseBinaryR64I64[iFn].cTests;
|
---|
7161 | PFNIEMAIMPLSSEF2R64I64 pfn = g_aSseBinaryR64I64[iFn].pfn;
|
---|
7162 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR64I64[iFn]);
|
---|
7163 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7164 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7165 | {
|
---|
7166 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7167 | {
|
---|
7168 | RTFLOAT64U r64Dst; RT_ZERO(r64Dst);
|
---|
7169 |
|
---|
7170 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &r64Dst, &paTests[iTest].i64ValIn);
|
---|
7171 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7172 | || !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut))
|
---|
7173 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI64\n"
|
---|
7174 | "%s -> mxcsr=%#08x %s\n"
|
---|
7175 | "%s expected %#08x %s%s%s (%s)\n",
|
---|
7176 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
7177 | &paTests[iTest].i64ValIn,
|
---|
7178 | iVar ? " " : "", fMxcsr, FormatR64(&r64Dst),
|
---|
7179 | iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR64(&paTests[iTest].r64ValOut),
|
---|
7180 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7181 | !RTFLOAT64U_ARE_IDENTICAL(&r64Dst, &paTests[iTest].r64ValOut)
|
---|
7182 | ? " - val" : "",
|
---|
7183 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
7184 | }
|
---|
7185 | }
|
---|
7186 |
|
---|
7187 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryR64I64[iFn]);
|
---|
7188 | }
|
---|
7189 | }
|
---|
7190 |
|
---|
7191 |
|
---|
7192 | /*
|
---|
7193 | * SSE operations converting single signed double-word integers to single-precision floating point values (probably only cvtsi2ss).
|
---|
7194 | */
|
---|
7195 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R32_I32_T, SSE_BINARY_R32_I32_TEST_T, PFNIEMAIMPLSSEF2R32I32);
|
---|
7196 |
|
---|
7197 | static SSE_BINARY_R32_I32_T g_aSseBinaryR32I32[] =
|
---|
7198 | {
|
---|
7199 | ENTRY_BIN(cvtsi2ss_r32_i32),
|
---|
7200 | };
|
---|
7201 |
|
---|
7202 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7203 | DUMP_ALL_FN(SseBinaryR32I32, g_aSseBinaryR32I32)
|
---|
7204 | static RTEXITCODE SseBinaryR32I32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
7205 | {
|
---|
7206 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7207 |
|
---|
7208 | static int32_t const s_aSpecials[] =
|
---|
7209 | {
|
---|
7210 | INT32_MIN,
|
---|
7211 | INT32_MAX,
|
---|
7212 | /** @todo More specials. */
|
---|
7213 | };
|
---|
7214 |
|
---|
7215 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I32); iFn++)
|
---|
7216 | {
|
---|
7217 | PFNIEMAIMPLSSEF2R32I32 const pfn = g_aSseBinaryR32I32[iFn].pfnNative ? g_aSseBinaryR32I32[iFn].pfnNative : g_aSseBinaryR32I32[iFn].pfn;
|
---|
7218 |
|
---|
7219 | IEMBINARYOUTPUT BinOut;
|
---|
7220 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR32I32[iFn]), RTEXITCODE_FAILURE);
|
---|
7221 |
|
---|
7222 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7223 | {
|
---|
7224 | SSE_BINARY_R32_I32_TEST_T TestData; RT_ZERO(TestData);
|
---|
7225 |
|
---|
7226 | TestData.i32ValIn = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
7227 |
|
---|
7228 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7229 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7230 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7231 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7232 | {
|
---|
7233 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7234 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7235 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7236 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7237 | | X86_MXCSR_XCPT_MASK;
|
---|
7238 | uint32_t fMxcsrM; RTFLOAT32U r32OutM;
|
---|
7239 | fMxcsrM = pfn(uMxCsrIn, &r32OutM, &TestData.i32ValIn);
|
---|
7240 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7241 | TestData.fMxcsrOut = fMxcsrM;
|
---|
7242 | TestData.r32ValOut = r32OutM;
|
---|
7243 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7244 |
|
---|
7245 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
7246 | uint32_t fMxcsrU; RTFLOAT32U r32OutU;
|
---|
7247 | fMxcsrU = pfn(uMxCsrIn, &r32OutU, &TestData.i32ValIn);
|
---|
7248 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7249 | TestData.fMxcsrOut = fMxcsrU;
|
---|
7250 | TestData.r32ValOut = r32OutU;
|
---|
7251 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7252 |
|
---|
7253 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
7254 | if (fXcpt)
|
---|
7255 | {
|
---|
7256 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7257 | uint32_t fMxcsr1; RTFLOAT32U r32Out1;
|
---|
7258 | fMxcsr1 = pfn(uMxCsrIn, &r32Out1, &TestData.i32ValIn);
|
---|
7259 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7260 | TestData.fMxcsrOut = fMxcsr1;
|
---|
7261 | TestData.r32ValOut = r32Out1;
|
---|
7262 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7263 |
|
---|
7264 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
7265 | {
|
---|
7266 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
7267 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7268 | uint32_t fMxcsr2; RTFLOAT32U r32Out2;
|
---|
7269 | fMxcsr2 = pfn(uMxCsrIn, &r32Out2, &TestData.i32ValIn);
|
---|
7270 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7271 | TestData.fMxcsrOut = fMxcsr2;
|
---|
7272 | TestData.r32ValOut = r32Out2;
|
---|
7273 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7274 | }
|
---|
7275 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7276 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7277 | if (fUnmasked & fXcpt)
|
---|
7278 | {
|
---|
7279 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7280 | uint32_t fMxcsr3; RTFLOAT32U r32Out3;
|
---|
7281 | fMxcsr3 = pfn(uMxCsrIn, &r32Out3, &TestData.i32ValIn);
|
---|
7282 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7283 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7284 | TestData.r32ValOut = r32Out3;
|
---|
7285 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7286 | }
|
---|
7287 | }
|
---|
7288 | }
|
---|
7289 | }
|
---|
7290 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7291 | }
|
---|
7292 |
|
---|
7293 | return RTEXITCODE_SUCCESS;
|
---|
7294 | }
|
---|
7295 | #endif
|
---|
7296 |
|
---|
7297 |
|
---|
7298 | static void SseBinaryR32I32Test(void)
|
---|
7299 | {
|
---|
7300 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I32); iFn++)
|
---|
7301 | {
|
---|
7302 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR32I32[iFn]))
|
---|
7303 | continue;
|
---|
7304 |
|
---|
7305 | SSE_BINARY_R32_I32_TEST_T const * const paTests = g_aSseBinaryR32I32[iFn].paTests;
|
---|
7306 | uint32_t const cTests = g_aSseBinaryR32I32[iFn].cTests;
|
---|
7307 | PFNIEMAIMPLSSEF2R32I32 pfn = g_aSseBinaryR32I32[iFn].pfn;
|
---|
7308 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR32I32[iFn]);
|
---|
7309 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7310 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7311 | {
|
---|
7312 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7313 | {
|
---|
7314 | RTFLOAT32U r32Dst; RT_ZERO(r32Dst);
|
---|
7315 |
|
---|
7316 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &r32Dst, &paTests[iTest].i32ValIn);
|
---|
7317 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7318 | || !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut))
|
---|
7319 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32\n"
|
---|
7320 | "%s -> mxcsr=%#08x %RI32\n"
|
---|
7321 | "%s expected %#08x %RI32%s%s (%s)\n",
|
---|
7322 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
7323 | &paTests[iTest].i32ValIn,
|
---|
7324 | iVar ? " " : "", fMxcsr, FormatR32(&r32Dst),
|
---|
7325 | iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR32(&paTests[iTest].r32ValOut),
|
---|
7326 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7327 | !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut)
|
---|
7328 | ? " - val" : "",
|
---|
7329 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
7330 | }
|
---|
7331 | }
|
---|
7332 |
|
---|
7333 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryR32I32[iFn]);
|
---|
7334 | }
|
---|
7335 | }
|
---|
7336 |
|
---|
7337 |
|
---|
7338 | /*
|
---|
7339 | * SSE operations converting single signed quad-word integers to single-precision floating point values (probably only cvtsi2ss).
|
---|
7340 | */
|
---|
7341 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R32_I64_T, SSE_BINARY_R32_I64_TEST_T, PFNIEMAIMPLSSEF2R32I64);
|
---|
7342 |
|
---|
7343 | static SSE_BINARY_R32_I64_T g_aSseBinaryR32I64[] =
|
---|
7344 | {
|
---|
7345 | ENTRY_BIN(cvtsi2ss_r32_i64),
|
---|
7346 | };
|
---|
7347 |
|
---|
7348 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7349 | DUMP_ALL_FN(SseBinaryR32I64, g_aSseBinaryR32I64)
|
---|
7350 | static RTEXITCODE SseBinaryR32I64Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
7351 | {
|
---|
7352 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7353 |
|
---|
7354 | static int64_t const s_aSpecials[] =
|
---|
7355 | {
|
---|
7356 | INT64_MIN,
|
---|
7357 | INT64_MAX
|
---|
7358 | /** @todo More specials. */
|
---|
7359 | };
|
---|
7360 |
|
---|
7361 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I64); iFn++)
|
---|
7362 | {
|
---|
7363 | PFNIEMAIMPLSSEF2R32I64 const pfn = g_aSseBinaryR32I64[iFn].pfnNative ? g_aSseBinaryR32I64[iFn].pfnNative : g_aSseBinaryR32I64[iFn].pfn;
|
---|
7364 |
|
---|
7365 | IEMBINARYOUTPUT BinOut;
|
---|
7366 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseBinaryR32I64[iFn]), RTEXITCODE_FAILURE);
|
---|
7367 |
|
---|
7368 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7369 | {
|
---|
7370 | SSE_BINARY_R32_I64_TEST_T TestData; RT_ZERO(TestData);
|
---|
7371 |
|
---|
7372 | TestData.i64ValIn = iTest < cTests ? RandI64Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
7373 |
|
---|
7374 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7375 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7376 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7377 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7378 | {
|
---|
7379 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7380 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7381 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7382 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7383 | | X86_MXCSR_XCPT_MASK;
|
---|
7384 | uint32_t fMxcsrM; RTFLOAT32U r32OutM;
|
---|
7385 | fMxcsrM = pfn(uMxCsrIn, &r32OutM, &TestData.i64ValIn);
|
---|
7386 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7387 | TestData.fMxcsrOut = fMxcsrM;
|
---|
7388 | TestData.r32ValOut = r32OutM;
|
---|
7389 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7390 |
|
---|
7391 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
7392 | uint32_t fMxcsrU; RTFLOAT32U r32OutU;
|
---|
7393 | fMxcsrU = pfn(uMxCsrIn, &r32OutU, &TestData.i64ValIn);
|
---|
7394 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7395 | TestData.fMxcsrOut = fMxcsrU;
|
---|
7396 | TestData.r32ValOut = r32OutU;
|
---|
7397 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7398 |
|
---|
7399 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
7400 | if (fXcpt)
|
---|
7401 | {
|
---|
7402 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7403 | uint32_t fMxcsr1; RTFLOAT32U r32Out1;
|
---|
7404 | fMxcsr1 = pfn(uMxCsrIn, &r32Out1, &TestData.i64ValIn);
|
---|
7405 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7406 | TestData.fMxcsrOut = fMxcsr1;
|
---|
7407 | TestData.r32ValOut = r32Out1;
|
---|
7408 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7409 |
|
---|
7410 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
7411 | {
|
---|
7412 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
7413 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7414 | uint32_t fMxcsr2; RTFLOAT32U r32Out2;
|
---|
7415 | fMxcsr2 = pfn(uMxCsrIn, &r32Out2, &TestData.i64ValIn);
|
---|
7416 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7417 | TestData.fMxcsrOut = fMxcsr2;
|
---|
7418 | TestData.r32ValOut = r32Out2;
|
---|
7419 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7420 | }
|
---|
7421 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7422 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7423 | if (fUnmasked & fXcpt)
|
---|
7424 | {
|
---|
7425 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7426 | uint32_t fMxcsr3; RTFLOAT32U r32Out3;
|
---|
7427 | fMxcsr3 = pfn(uMxCsrIn, &r32Out3, &TestData.i64ValIn);
|
---|
7428 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
7429 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7430 | TestData.r32ValOut = r32Out3;
|
---|
7431 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7432 | }
|
---|
7433 | }
|
---|
7434 | }
|
---|
7435 | }
|
---|
7436 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7437 | }
|
---|
7438 |
|
---|
7439 | return RTEXITCODE_SUCCESS;
|
---|
7440 | }
|
---|
7441 | #endif
|
---|
7442 |
|
---|
7443 |
|
---|
7444 | static void SseBinaryR32I64Test(void)
|
---|
7445 | {
|
---|
7446 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32I64); iFn++)
|
---|
7447 | {
|
---|
7448 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseBinaryR32I64[iFn]))
|
---|
7449 | continue;
|
---|
7450 |
|
---|
7451 | SSE_BINARY_R32_I64_TEST_T const * const paTests = g_aSseBinaryR32I64[iFn].paTests;
|
---|
7452 | uint32_t const cTests = g_aSseBinaryR32I64[iFn].cTests;
|
---|
7453 | PFNIEMAIMPLSSEF2R32I64 pfn = g_aSseBinaryR32I64[iFn].pfn;
|
---|
7454 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR32I64[iFn]);
|
---|
7455 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7456 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7457 | {
|
---|
7458 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7459 | {
|
---|
7460 | RTFLOAT32U r32Dst; RT_ZERO(r32Dst);
|
---|
7461 |
|
---|
7462 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &r32Dst, &paTests[iTest].i64ValIn);
|
---|
7463 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7464 | || !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut))
|
---|
7465 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI64\n"
|
---|
7466 | "%s -> mxcsr=%#08x %RI32\n"
|
---|
7467 | "%s expected %#08x %RI32%s%s (%s)\n",
|
---|
7468 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
7469 | &paTests[iTest].i64ValIn,
|
---|
7470 | iVar ? " " : "", fMxcsr, FormatR32(&r32Dst),
|
---|
7471 | iVar ? " " : "", paTests[iTest].fMxcsrOut, FormatR32(&paTests[iTest].r32ValOut),
|
---|
7472 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7473 | !RTFLOAT32U_ARE_IDENTICAL(&r32Dst, &paTests[iTest].r32ValOut)
|
---|
7474 | ? " - val" : "",
|
---|
7475 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
7476 | }
|
---|
7477 | }
|
---|
7478 |
|
---|
7479 | FREE_DECOMPRESSED_TESTS(g_aSseBinaryR32I64[iFn]);
|
---|
7480 | }
|
---|
7481 | }
|
---|
7482 |
|
---|
7483 |
|
---|
7484 | /*
|
---|
7485 | * Compare SSE operations on single single-precision floating point values - outputting only EFLAGS.
|
---|
7486 | */
|
---|
7487 | TYPEDEF_SUBTEST_TYPE(SSE_COMPARE_EFL_R32_R32_T, SSE_COMPARE_EFL_R32_R32_TEST_T, PFNIEMAIMPLF2EFLMXCSRR32R32);
|
---|
7488 |
|
---|
7489 | static SSE_COMPARE_EFL_R32_R32_T g_aSseCompareEflR32R32[] =
|
---|
7490 | {
|
---|
7491 | ENTRY_BIN(ucomiss_u128),
|
---|
7492 | ENTRY_BIN(comiss_u128),
|
---|
7493 | ENTRY_BIN_AVX(vucomiss_u128),
|
---|
7494 | ENTRY_BIN_AVX(vcomiss_u128),
|
---|
7495 | };
|
---|
7496 |
|
---|
7497 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7498 | DUMP_ALL_FN(SseCompareEflR32R32, g_aSseCompareEflR32R32)
|
---|
7499 | static RTEXITCODE SseCompareEflR32R32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
7500 | {
|
---|
7501 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7502 |
|
---|
7503 | static struct { RTFLOAT32U Val1, Val2; } const s_aSpecials[] =
|
---|
7504 | {
|
---|
7505 | { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) },
|
---|
7506 | { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(1) },
|
---|
7507 | { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(0) },
|
---|
7508 | { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) },
|
---|
7509 | { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) },
|
---|
7510 | { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(1) },
|
---|
7511 | { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(0) },
|
---|
7512 | { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) },
|
---|
7513 | /** @todo More specials. */
|
---|
7514 | };
|
---|
7515 |
|
---|
7516 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
7517 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR32R32); iFn++)
|
---|
7518 | {
|
---|
7519 | PFNIEMAIMPLF2EFLMXCSRR32R32 const pfn = g_aSseCompareEflR32R32[iFn].pfnNative ? g_aSseCompareEflR32R32[iFn].pfnNative : g_aSseCompareEflR32R32[iFn].pfn;
|
---|
7520 |
|
---|
7521 | IEMBINARYOUTPUT BinOut;
|
---|
7522 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseCompareEflR32R32[iFn]), RTEXITCODE_FAILURE);
|
---|
7523 |
|
---|
7524 | uint32_t cNormalInputPairs = 0;
|
---|
7525 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7526 | {
|
---|
7527 | SSE_COMPARE_EFL_R32_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
7528 |
|
---|
7529 | TestData.r32ValIn1 = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7530 | TestData.r32ValIn2 = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7531 |
|
---|
7532 | if ( RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn1)
|
---|
7533 | && RTFLOAT32U_IS_NORMAL(&TestData.r32ValIn2))
|
---|
7534 | cNormalInputPairs++;
|
---|
7535 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
7536 | {
|
---|
7537 | iTest -= 1;
|
---|
7538 | continue;
|
---|
7539 | }
|
---|
7540 |
|
---|
7541 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7542 | uint32_t const fEFlags = RandEFlags();
|
---|
7543 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7544 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7545 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7546 | {
|
---|
7547 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7548 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7549 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7550 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7551 | | X86_MXCSR_XCPT_MASK;
|
---|
7552 | uint32_t fMxcsrM = fMxcsrIn;
|
---|
7553 | uint32_t fEFlagsM = fEFlags;
|
---|
7554 | fMxcsrM = pfn(fMxcsrIn, &fEFlagsM, TestData.r32ValIn1, TestData.r32ValIn2);
|
---|
7555 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7556 | TestData.fMxcsrOut = fMxcsrM;
|
---|
7557 | TestData.fEflIn = fEFlags;
|
---|
7558 | TestData.fEflOut = fEFlagsM;
|
---|
7559 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7560 |
|
---|
7561 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
7562 | uint32_t fMxcsrU = fMxcsrIn;
|
---|
7563 | uint32_t fEFlagsU = fEFlags;
|
---|
7564 | fMxcsrU = pfn(fMxcsrIn, &fEFlagsU, TestData.r32ValIn1, TestData.r32ValIn2);
|
---|
7565 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7566 | TestData.fMxcsrOut = fMxcsrU;
|
---|
7567 | TestData.fEflIn = fEFlags;
|
---|
7568 | TestData.fEflOut = fEFlagsU;
|
---|
7569 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7570 |
|
---|
7571 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
7572 | if (fXcpt)
|
---|
7573 | {
|
---|
7574 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7575 | uint32_t fMxcsr1 = fMxcsrIn;
|
---|
7576 | uint32_t fEFlags1 = fEFlags;
|
---|
7577 | fMxcsr1 = pfn(fMxcsrIn, &fEFlags1, TestData.r32ValIn1, TestData.r32ValIn2);
|
---|
7578 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7579 | TestData.fMxcsrOut = fMxcsr1;
|
---|
7580 | TestData.fEflIn = fEFlags;
|
---|
7581 | TestData.fEflOut = fEFlags1;
|
---|
7582 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7583 |
|
---|
7584 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
7585 | {
|
---|
7586 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
7587 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7588 | uint32_t fMxcsr2 = fMxcsrIn;
|
---|
7589 | uint32_t fEFlags2 = fEFlags;
|
---|
7590 | fMxcsr2 = pfn(fMxcsrIn, &fEFlags2, TestData.r32ValIn1, TestData.r32ValIn2);
|
---|
7591 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7592 | TestData.fMxcsrOut = fMxcsr2;
|
---|
7593 | TestData.fEflIn = fEFlags;
|
---|
7594 | TestData.fEflOut = fEFlags2;
|
---|
7595 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7596 | }
|
---|
7597 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7598 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7599 | if (fUnmasked & fXcpt)
|
---|
7600 | {
|
---|
7601 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7602 | uint32_t fMxcsr3 = fMxcsrIn;
|
---|
7603 | uint32_t fEFlags3 = fEFlags;
|
---|
7604 | fMxcsr3 = pfn(fMxcsrIn, &fEFlags3, TestData.r32ValIn1, TestData.r32ValIn2);
|
---|
7605 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7606 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7607 | TestData.fEflIn = fEFlags;
|
---|
7608 | TestData.fEflOut = fEFlags3;
|
---|
7609 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7610 | }
|
---|
7611 | }
|
---|
7612 | }
|
---|
7613 | }
|
---|
7614 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7615 | }
|
---|
7616 |
|
---|
7617 | return RTEXITCODE_SUCCESS;
|
---|
7618 | }
|
---|
7619 | #endif
|
---|
7620 |
|
---|
7621 | static void SseCompareEflR32R32Test(void)
|
---|
7622 | {
|
---|
7623 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR32R32); iFn++)
|
---|
7624 | {
|
---|
7625 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareEflR32R32[iFn]))
|
---|
7626 | continue;
|
---|
7627 |
|
---|
7628 | SSE_COMPARE_EFL_R32_R32_TEST_T const * const paTests = g_aSseCompareEflR32R32[iFn].paTests;
|
---|
7629 | uint32_t const cTests = g_aSseCompareEflR32R32[iFn].cTests;
|
---|
7630 | PFNIEMAIMPLF2EFLMXCSRR32R32 pfn = g_aSseCompareEflR32R32[iFn].pfn;
|
---|
7631 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareEflR32R32[iFn]);
|
---|
7632 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7633 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7634 | {
|
---|
7635 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7636 | {
|
---|
7637 | uint32_t fEFlags = paTests[iTest].fEflIn;
|
---|
7638 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &fEFlags, paTests[iTest].r32ValIn1, paTests[iTest].r32ValIn2);
|
---|
7639 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7640 | || fEFlags != paTests[iTest].fEflOut)
|
---|
7641 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x efl=%#08x in1=%s in2=%s\n"
|
---|
7642 | "%s -> mxcsr=%#08x %#08x\n"
|
---|
7643 | "%s expected %#08x %#08x%s (%s) (EFL: %s)\n",
|
---|
7644 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, paTests[iTest].fEflIn,
|
---|
7645 | FormatR32(&paTests[iTest].r32ValIn1), FormatR32(&paTests[iTest].r32ValIn2),
|
---|
7646 | iVar ? " " : "", fMxcsr, fEFlags,
|
---|
7647 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].fEflOut,
|
---|
7648 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7649 | FormatMxcsr(paTests[iTest].fMxcsrIn),
|
---|
7650 | EFlagsDiff(fEFlags, paTests[iTest].fEflOut));
|
---|
7651 | }
|
---|
7652 | }
|
---|
7653 |
|
---|
7654 | FREE_DECOMPRESSED_TESTS(g_aSseCompareEflR32R32[iFn]);
|
---|
7655 | }
|
---|
7656 | }
|
---|
7657 |
|
---|
7658 |
|
---|
7659 | /*
|
---|
7660 | * Compare SSE operations on single single-precision floating point values - outputting only EFLAGS.
|
---|
7661 | */
|
---|
7662 | TYPEDEF_SUBTEST_TYPE(SSE_COMPARE_EFL_R64_R64_T, SSE_COMPARE_EFL_R64_R64_TEST_T, PFNIEMAIMPLF2EFLMXCSRR64R64);
|
---|
7663 |
|
---|
7664 | static SSE_COMPARE_EFL_R64_R64_T g_aSseCompareEflR64R64[] =
|
---|
7665 | {
|
---|
7666 | ENTRY_BIN(ucomisd_u128),
|
---|
7667 | ENTRY_BIN(comisd_u128),
|
---|
7668 | ENTRY_BIN_AVX(vucomisd_u128),
|
---|
7669 | ENTRY_BIN_AVX(vcomisd_u128)
|
---|
7670 | };
|
---|
7671 |
|
---|
7672 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7673 | DUMP_ALL_FN(SseCompareEflR64R64, g_aSseCompareEflR64R64)
|
---|
7674 | static RTEXITCODE SseCompareEflR64R64Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
7675 | {
|
---|
7676 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7677 |
|
---|
7678 | static struct { RTFLOAT64U Val1, Val2; } const s_aSpecials[] =
|
---|
7679 | {
|
---|
7680 | { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) },
|
---|
7681 | { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(1) },
|
---|
7682 | { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(0) },
|
---|
7683 | { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) },
|
---|
7684 | { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) },
|
---|
7685 | { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(1) },
|
---|
7686 | { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(0) },
|
---|
7687 | { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) },
|
---|
7688 | /** @todo More specials. */
|
---|
7689 | };
|
---|
7690 |
|
---|
7691 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
7692 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR64R64); iFn++)
|
---|
7693 | {
|
---|
7694 | PFNIEMAIMPLF2EFLMXCSRR64R64 const pfn = g_aSseCompareEflR64R64[iFn].pfnNative ? g_aSseCompareEflR64R64[iFn].pfnNative : g_aSseCompareEflR64R64[iFn].pfn;
|
---|
7695 |
|
---|
7696 | IEMBINARYOUTPUT BinOut;
|
---|
7697 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseCompareEflR64R64[iFn]), RTEXITCODE_FAILURE);
|
---|
7698 |
|
---|
7699 | uint32_t cNormalInputPairs = 0;
|
---|
7700 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7701 | {
|
---|
7702 | SSE_COMPARE_EFL_R64_R64_TEST_T TestData; RT_ZERO(TestData);
|
---|
7703 |
|
---|
7704 | TestData.r64ValIn1 = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7705 | TestData.r64ValIn2 = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7706 |
|
---|
7707 | if ( RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn1)
|
---|
7708 | && RTFLOAT64U_IS_NORMAL(&TestData.r64ValIn2))
|
---|
7709 | cNormalInputPairs++;
|
---|
7710 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
7711 | {
|
---|
7712 | iTest -= 1;
|
---|
7713 | continue;
|
---|
7714 | }
|
---|
7715 |
|
---|
7716 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7717 | uint32_t const fEFlags = RandEFlags();
|
---|
7718 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7719 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7720 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7721 | {
|
---|
7722 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7723 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7724 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7725 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7726 | | X86_MXCSR_XCPT_MASK;
|
---|
7727 | uint32_t fMxcsrM = fMxcsrIn;
|
---|
7728 | uint32_t fEFlagsM = fEFlags;
|
---|
7729 | fMxcsrM = pfn(fMxcsrIn, &fEFlagsM, TestData.r64ValIn1, TestData.r64ValIn2);
|
---|
7730 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7731 | TestData.fMxcsrOut = fMxcsrM;
|
---|
7732 | TestData.fEflIn = fEFlags;
|
---|
7733 | TestData.fEflOut = fEFlagsM;
|
---|
7734 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7735 |
|
---|
7736 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
7737 | uint32_t fMxcsrU = fMxcsrIn;
|
---|
7738 | uint32_t fEFlagsU = fEFlags;
|
---|
7739 | fMxcsrU = pfn(fMxcsrIn, &fEFlagsU, TestData.r64ValIn1, TestData.r64ValIn2);
|
---|
7740 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7741 | TestData.fMxcsrOut = fMxcsrU;
|
---|
7742 | TestData.fEflIn = fEFlags;
|
---|
7743 | TestData.fEflOut = fEFlagsU;
|
---|
7744 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7745 |
|
---|
7746 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
7747 | if (fXcpt)
|
---|
7748 | {
|
---|
7749 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7750 | uint32_t fMxcsr1 = fMxcsrIn;
|
---|
7751 | uint32_t fEFlags1 = fEFlags;
|
---|
7752 | fMxcsr1 = pfn(fMxcsrIn, &fEFlags1, TestData.r64ValIn1, TestData.r64ValIn2);
|
---|
7753 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7754 | TestData.fMxcsrOut = fMxcsr1;
|
---|
7755 | TestData.fEflIn = fEFlags;
|
---|
7756 | TestData.fEflOut = fEFlags1;
|
---|
7757 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7758 |
|
---|
7759 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
7760 | {
|
---|
7761 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
7762 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7763 | uint32_t fMxcsr2 = fMxcsrIn;
|
---|
7764 | uint32_t fEFlags2 = fEFlags;
|
---|
7765 | fMxcsr2 = pfn(fMxcsrIn, &fEFlags2, TestData.r64ValIn1, TestData.r64ValIn2);
|
---|
7766 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7767 | TestData.fMxcsrOut = fMxcsr2;
|
---|
7768 | TestData.fEflIn = fEFlags;
|
---|
7769 | TestData.fEflOut = fEFlags2;
|
---|
7770 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7771 | }
|
---|
7772 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7773 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7774 | if (fUnmasked & fXcpt)
|
---|
7775 | {
|
---|
7776 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7777 | uint32_t fMxcsr3 = fMxcsrIn;
|
---|
7778 | uint32_t fEFlags3 = fEFlags;
|
---|
7779 | fMxcsr3 = pfn(fMxcsrIn, &fEFlags3, TestData.r64ValIn1, TestData.r64ValIn2);
|
---|
7780 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7781 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7782 | TestData.fEflIn = fEFlags;
|
---|
7783 | TestData.fEflOut = fEFlags3;
|
---|
7784 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7785 | }
|
---|
7786 | }
|
---|
7787 | }
|
---|
7788 | }
|
---|
7789 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7790 | }
|
---|
7791 |
|
---|
7792 | return RTEXITCODE_SUCCESS;
|
---|
7793 | }
|
---|
7794 | #endif
|
---|
7795 |
|
---|
7796 | static void SseCompareEflR64R64Test(void)
|
---|
7797 | {
|
---|
7798 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareEflR64R64); iFn++)
|
---|
7799 | {
|
---|
7800 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareEflR64R64[iFn]))
|
---|
7801 | continue;
|
---|
7802 |
|
---|
7803 | SSE_COMPARE_EFL_R64_R64_TEST_T const * const paTests = g_aSseCompareEflR64R64[iFn].paTests;
|
---|
7804 | uint32_t const cTests = g_aSseCompareEflR64R64[iFn].cTests;
|
---|
7805 | PFNIEMAIMPLF2EFLMXCSRR64R64 pfn = g_aSseCompareEflR64R64[iFn].pfn;
|
---|
7806 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareEflR64R64[iFn]);
|
---|
7807 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7808 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7809 | {
|
---|
7810 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7811 | {
|
---|
7812 | uint32_t fEFlags = paTests[iTest].fEflIn;
|
---|
7813 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &fEFlags, paTests[iTest].r64ValIn1, paTests[iTest].r64ValIn2);
|
---|
7814 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
7815 | || fEFlags != paTests[iTest].fEflOut)
|
---|
7816 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x efl=%#08x in1=%s in2=%s\n"
|
---|
7817 | "%s -> mxcsr=%#08x %#08x\n"
|
---|
7818 | "%s expected %#08x %#08x%s (%s) (EFL: %s)\n",
|
---|
7819 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn, paTests[iTest].fEflIn,
|
---|
7820 | FormatR64(&paTests[iTest].r64ValIn1), FormatR64(&paTests[iTest].r64ValIn2),
|
---|
7821 | iVar ? " " : "", fMxcsr, fEFlags,
|
---|
7822 | iVar ? " " : "", paTests[iTest].fMxcsrOut, paTests[iTest].fEflOut,
|
---|
7823 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
7824 | FormatMxcsr(paTests[iTest].fMxcsrIn),
|
---|
7825 | EFlagsDiff(fEFlags, paTests[iTest].fEflOut));
|
---|
7826 | }
|
---|
7827 | }
|
---|
7828 |
|
---|
7829 | FREE_DECOMPRESSED_TESTS(g_aSseCompareEflR64R64[iFn]);
|
---|
7830 | }
|
---|
7831 | }
|
---|
7832 |
|
---|
7833 |
|
---|
7834 | /*
|
---|
7835 | * Compare SSE operations on packed and single single-precision floating point values - outputting a mask.
|
---|
7836 | */
|
---|
7837 | /** Maximum immediate to try to keep the testdata size under control (at least a little bit)- */
|
---|
7838 | #define SSE_COMPARE_F2_XMM_IMM8_MAX 0x1f
|
---|
7839 |
|
---|
7840 | TYPEDEF_SUBTEST_TYPE(SSE_COMPARE_F2_XMM_IMM8_T, SSE_COMPARE_F2_XMM_IMM8_TEST_T, PFNIEMAIMPLMXCSRF2XMMIMM8);
|
---|
7841 |
|
---|
7842 | static SSE_COMPARE_F2_XMM_IMM8_T g_aSseCompareF2XmmR32Imm8[] =
|
---|
7843 | {
|
---|
7844 | ENTRY_BIN(cmpps_u128),
|
---|
7845 | ENTRY_BIN(cmpss_u128)
|
---|
7846 | };
|
---|
7847 |
|
---|
7848 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
7849 | DUMP_ALL_FN(SseCompareF2XmmR32Imm8, g_aSseCompareF2XmmR32Imm8)
|
---|
7850 | static RTEXITCODE SseCompareF2XmmR32Imm8Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
7851 | {
|
---|
7852 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
7853 |
|
---|
7854 | static struct { RTFLOAT32U Val1, Val2; } const s_aSpecials[] =
|
---|
7855 | {
|
---|
7856 | { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) },
|
---|
7857 | { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(1) },
|
---|
7858 | { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(0) },
|
---|
7859 | { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) },
|
---|
7860 | { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) },
|
---|
7861 | { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(1) },
|
---|
7862 | { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(0) },
|
---|
7863 | { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) },
|
---|
7864 | /** @todo More specials. */
|
---|
7865 | };
|
---|
7866 |
|
---|
7867 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
7868 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF2XmmR32Imm8); iFn++)
|
---|
7869 | {
|
---|
7870 | PFNIEMAIMPLMXCSRF2XMMIMM8 const pfn = g_aSseCompareF2XmmR32Imm8[iFn].pfnNative ? g_aSseCompareF2XmmR32Imm8[iFn].pfnNative : g_aSseCompareF2XmmR32Imm8[iFn].pfn;
|
---|
7871 |
|
---|
7872 | IEMBINARYOUTPUT BinOut;
|
---|
7873 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseCompareF2XmmR32Imm8[iFn]), RTEXITCODE_FAILURE);
|
---|
7874 |
|
---|
7875 | uint32_t cNormalInputPairs = 0;
|
---|
7876 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
7877 | {
|
---|
7878 | SSE_COMPARE_F2_XMM_IMM8_TEST_T TestData; RT_ZERO(TestData);
|
---|
7879 |
|
---|
7880 | TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7881 | TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7882 | TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7883 | TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
7884 |
|
---|
7885 | TestData.InVal2.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7886 | TestData.InVal2.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7887 | TestData.InVal2.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7888 | TestData.InVal2.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
7889 |
|
---|
7890 | if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0])
|
---|
7891 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1])
|
---|
7892 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2])
|
---|
7893 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3])
|
---|
7894 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[0])
|
---|
7895 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[1])
|
---|
7896 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[2])
|
---|
7897 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[3]))
|
---|
7898 | cNormalInputPairs++;
|
---|
7899 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
7900 | {
|
---|
7901 | iTest -= 1;
|
---|
7902 | continue;
|
---|
7903 | }
|
---|
7904 |
|
---|
7905 | IEMMEDIAF2XMMSRC Src;
|
---|
7906 | Src.uSrc1 = TestData.InVal1;
|
---|
7907 | Src.uSrc2 = TestData.InVal2;
|
---|
7908 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
7909 | for (uint8_t bImm = 0; bImm <= SSE_COMPARE_F2_XMM_IMM8_MAX; bImm++)
|
---|
7910 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
7911 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
7912 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
7913 | {
|
---|
7914 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
7915 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
7916 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
7917 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
7918 | | X86_MXCSR_XCPT_MASK;
|
---|
7919 | X86XMMREG ResM;
|
---|
7920 | uint32_t fMxcsrM = pfn(fMxcsrIn, &ResM, &Src, bImm);
|
---|
7921 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7922 | TestData.fMxcsrOut = fMxcsrM;
|
---|
7923 | TestData.bImm = bImm;
|
---|
7924 | TestData.OutVal = ResM;
|
---|
7925 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7926 |
|
---|
7927 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
7928 | X86XMMREG ResU;
|
---|
7929 | uint32_t fMxcsrU = pfn(fMxcsrIn, &ResU, &Src, bImm);
|
---|
7930 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7931 | TestData.fMxcsrOut = fMxcsrU;
|
---|
7932 | TestData.bImm = bImm;
|
---|
7933 | TestData.OutVal = ResU;
|
---|
7934 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7935 |
|
---|
7936 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
7937 | if (fXcpt)
|
---|
7938 | {
|
---|
7939 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
7940 | X86XMMREG Res1;
|
---|
7941 | uint32_t fMxcsr1 = pfn(fMxcsrIn, &Res1, &Src, bImm);
|
---|
7942 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7943 | TestData.fMxcsrOut = fMxcsr1;
|
---|
7944 | TestData.bImm = bImm;
|
---|
7945 | TestData.OutVal = Res1;
|
---|
7946 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7947 |
|
---|
7948 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
7949 | {
|
---|
7950 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
7951 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7952 | X86XMMREG Res2;
|
---|
7953 | uint32_t fMxcsr2 = pfn(fMxcsrIn, &Res2, &Src, bImm);
|
---|
7954 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7955 | TestData.fMxcsrOut = fMxcsr2;
|
---|
7956 | TestData.bImm = bImm;
|
---|
7957 | TestData.OutVal = Res2;
|
---|
7958 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7959 | }
|
---|
7960 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
7961 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
7962 | if (fUnmasked & fXcpt)
|
---|
7963 | {
|
---|
7964 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
7965 | X86XMMREG Res3;
|
---|
7966 | uint32_t fMxcsr3 = pfn(fMxcsrIn, &Res3, &Src, bImm);
|
---|
7967 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
7968 | TestData.fMxcsrOut = fMxcsr3;
|
---|
7969 | TestData.bImm = bImm;
|
---|
7970 | TestData.OutVal = Res3;
|
---|
7971 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
7972 | }
|
---|
7973 | }
|
---|
7974 | }
|
---|
7975 | }
|
---|
7976 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
7977 | }
|
---|
7978 |
|
---|
7979 | return RTEXITCODE_SUCCESS;
|
---|
7980 | }
|
---|
7981 | #endif
|
---|
7982 |
|
---|
7983 | static void SseCompareF2XmmR32Imm8Test(void)
|
---|
7984 | {
|
---|
7985 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF2XmmR32Imm8); iFn++)
|
---|
7986 | {
|
---|
7987 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareF2XmmR32Imm8[iFn]))
|
---|
7988 | continue;
|
---|
7989 |
|
---|
7990 | SSE_COMPARE_F2_XMM_IMM8_TEST_T const * const paTests = g_aSseCompareF2XmmR32Imm8[iFn].paTests;
|
---|
7991 | uint32_t const cTests = g_aSseCompareF2XmmR32Imm8[iFn].cTests;
|
---|
7992 | PFNIEMAIMPLMXCSRF2XMMIMM8 pfn = g_aSseCompareF2XmmR32Imm8[iFn].pfn;
|
---|
7993 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareF2XmmR32Imm8[iFn]);
|
---|
7994 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
7995 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
7996 | {
|
---|
7997 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
7998 | {
|
---|
7999 | IEMMEDIAF2XMMSRC Src;
|
---|
8000 | X86XMMREG ValOut;
|
---|
8001 |
|
---|
8002 | Src.uSrc1 = paTests[iTest].InVal1;
|
---|
8003 | Src.uSrc2 = paTests[iTest].InVal2;
|
---|
8004 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut, &Src, paTests[iTest].bImm);
|
---|
8005 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
8006 | || ValOut.au32[0] != paTests[iTest].OutVal.au32[0]
|
---|
8007 | || ValOut.au32[1] != paTests[iTest].OutVal.au32[1]
|
---|
8008 | || ValOut.au32[2] != paTests[iTest].OutVal.au32[2]
|
---|
8009 | || ValOut.au32[3] != paTests[iTest].OutVal.au32[3])
|
---|
8010 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s'%s'%s'%s imm8=%x\n"
|
---|
8011 | "%s -> mxcsr=%#08x %RX32'%RX32'%RX32'%RX32\n"
|
---|
8012 | "%s expected %#08x %RX32'%RX32'%RX32'%RX32%s%s (%s)\n",
|
---|
8013 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8014 | FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]),
|
---|
8015 | FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]),
|
---|
8016 | FormatR32(&paTests[iTest].InVal2.ar32[0]), FormatR32(&paTests[iTest].InVal2.ar32[1]),
|
---|
8017 | FormatR32(&paTests[iTest].InVal2.ar32[2]), FormatR32(&paTests[iTest].InVal2.ar32[3]),
|
---|
8018 | paTests[iTest].bImm,
|
---|
8019 | iVar ? " " : "", fMxcsr, ValOut.au32[0], ValOut.au32[1], ValOut.au32[2], ValOut.au32[3],
|
---|
8020 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8021 | paTests[iTest].OutVal.au32[0], paTests[iTest].OutVal.au32[1],
|
---|
8022 | paTests[iTest].OutVal.au32[2], paTests[iTest].OutVal.au32[3],
|
---|
8023 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
8024 | ( ValOut.au32[0] != paTests[iTest].OutVal.au32[0]
|
---|
8025 | || ValOut.au32[1] != paTests[iTest].OutVal.au32[1]
|
---|
8026 | || ValOut.au32[2] != paTests[iTest].OutVal.au32[2]
|
---|
8027 | || ValOut.au32[3] != paTests[iTest].OutVal.au32[3])
|
---|
8028 | ? " - val" : "",
|
---|
8029 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8030 | }
|
---|
8031 | }
|
---|
8032 |
|
---|
8033 | FREE_DECOMPRESSED_TESTS(g_aSseCompareF2XmmR32Imm8[iFn]);
|
---|
8034 | }
|
---|
8035 | }
|
---|
8036 |
|
---|
8037 |
|
---|
8038 | /*
|
---|
8039 | * Compare SSE operations on packed and single double-precision floating point values - outputting a mask.
|
---|
8040 | */
|
---|
8041 | static SSE_COMPARE_F2_XMM_IMM8_T g_aSseCompareF2XmmR64Imm8[] =
|
---|
8042 | {
|
---|
8043 | ENTRY_BIN(cmppd_u128),
|
---|
8044 | ENTRY_BIN(cmpsd_u128)
|
---|
8045 | };
|
---|
8046 |
|
---|
8047 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8048 | DUMP_ALL_FN(SseCompareF2XmmR64Imm8, g_aSseCompareF2XmmR64Imm8)
|
---|
8049 | static RTEXITCODE SseCompareF2XmmR64Imm8Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
8050 | {
|
---|
8051 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8052 |
|
---|
8053 | static struct { RTFLOAT64U Val1, Val2; } const s_aSpecials[] =
|
---|
8054 | {
|
---|
8055 | { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) },
|
---|
8056 | { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(1) },
|
---|
8057 | { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(0) },
|
---|
8058 | { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) },
|
---|
8059 | { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) },
|
---|
8060 | { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(1) },
|
---|
8061 | { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(0) },
|
---|
8062 | { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) },
|
---|
8063 | /** @todo More specials. */
|
---|
8064 | };
|
---|
8065 |
|
---|
8066 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
8067 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF2XmmR64Imm8); iFn++)
|
---|
8068 | {
|
---|
8069 | PFNIEMAIMPLMXCSRF2XMMIMM8 const pfn = g_aSseCompareF2XmmR64Imm8[iFn].pfnNative ? g_aSseCompareF2XmmR64Imm8[iFn].pfnNative : g_aSseCompareF2XmmR64Imm8[iFn].pfn;
|
---|
8070 |
|
---|
8071 | IEMBINARYOUTPUT BinOut;
|
---|
8072 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseCompareF2XmmR64Imm8[iFn]), RTEXITCODE_FAILURE);
|
---|
8073 |
|
---|
8074 | uint32_t cNormalInputPairs = 0;
|
---|
8075 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8076 | {
|
---|
8077 | SSE_COMPARE_F2_XMM_IMM8_TEST_T TestData; RT_ZERO(TestData);
|
---|
8078 |
|
---|
8079 | TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
8080 | TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
8081 |
|
---|
8082 | TestData.InVal2.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
8083 | TestData.InVal2.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
8084 |
|
---|
8085 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0])
|
---|
8086 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1])
|
---|
8087 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[0])
|
---|
8088 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[1]))
|
---|
8089 | cNormalInputPairs++;
|
---|
8090 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
8091 | {
|
---|
8092 | iTest -= 1;
|
---|
8093 | continue;
|
---|
8094 | }
|
---|
8095 |
|
---|
8096 | IEMMEDIAF2XMMSRC Src;
|
---|
8097 | Src.uSrc1 = TestData.InVal1;
|
---|
8098 | Src.uSrc2 = TestData.InVal2;
|
---|
8099 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8100 | for (uint8_t bImm = 0; bImm <= SSE_COMPARE_F2_XMM_IMM8_MAX; bImm++)
|
---|
8101 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8102 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8103 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8104 | {
|
---|
8105 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8106 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8107 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8108 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8109 | | X86_MXCSR_XCPT_MASK;
|
---|
8110 | X86XMMREG ResM;
|
---|
8111 | uint32_t fMxcsrM = pfn(fMxcsrIn, &ResM, &Src, bImm);
|
---|
8112 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8113 | TestData.fMxcsrOut = fMxcsrM;
|
---|
8114 | TestData.bImm = bImm;
|
---|
8115 | TestData.OutVal = ResM;
|
---|
8116 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8117 |
|
---|
8118 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
8119 | X86XMMREG ResU;
|
---|
8120 | uint32_t fMxcsrU = pfn(fMxcsrIn, &ResU, &Src, bImm);
|
---|
8121 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8122 | TestData.fMxcsrOut = fMxcsrU;
|
---|
8123 | TestData.bImm = bImm;
|
---|
8124 | TestData.OutVal = ResU;
|
---|
8125 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8126 |
|
---|
8127 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
8128 | if (fXcpt)
|
---|
8129 | {
|
---|
8130 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8131 | X86XMMREG Res1;
|
---|
8132 | uint32_t fMxcsr1 = pfn(fMxcsrIn, &Res1, &Src, bImm);
|
---|
8133 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8134 | TestData.fMxcsrOut = fMxcsr1;
|
---|
8135 | TestData.bImm = bImm;
|
---|
8136 | TestData.OutVal = Res1;
|
---|
8137 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8138 |
|
---|
8139 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
8140 | {
|
---|
8141 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
8142 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8143 | X86XMMREG Res2;
|
---|
8144 | uint32_t fMxcsr2 = pfn(fMxcsrIn, &Res2, &Src, bImm);
|
---|
8145 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8146 | TestData.fMxcsrOut = fMxcsr2;
|
---|
8147 | TestData.bImm = bImm;
|
---|
8148 | TestData.OutVal = Res2;
|
---|
8149 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8150 | }
|
---|
8151 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8152 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8153 | if (fUnmasked & fXcpt)
|
---|
8154 | {
|
---|
8155 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8156 | X86XMMREG Res3;
|
---|
8157 | uint32_t fMxcsr3 = pfn(fMxcsrIn, &Res3, &Src, bImm);
|
---|
8158 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8159 | TestData.fMxcsrOut = fMxcsr3;
|
---|
8160 | TestData.bImm = bImm;
|
---|
8161 | TestData.OutVal = Res3;
|
---|
8162 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8163 | }
|
---|
8164 | }
|
---|
8165 | }
|
---|
8166 | }
|
---|
8167 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8168 | }
|
---|
8169 |
|
---|
8170 | return RTEXITCODE_SUCCESS;
|
---|
8171 | }
|
---|
8172 | #endif
|
---|
8173 |
|
---|
8174 | static void SseCompareF2XmmR64Imm8Test(void)
|
---|
8175 | {
|
---|
8176 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseCompareF2XmmR64Imm8); iFn++)
|
---|
8177 | {
|
---|
8178 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseCompareF2XmmR64Imm8[iFn]))
|
---|
8179 | continue;
|
---|
8180 |
|
---|
8181 | SSE_COMPARE_F2_XMM_IMM8_TEST_T const * const paTests = g_aSseCompareF2XmmR64Imm8[iFn].paTests;
|
---|
8182 | uint32_t const cTests = g_aSseCompareF2XmmR64Imm8[iFn].cTests;
|
---|
8183 | PFNIEMAIMPLMXCSRF2XMMIMM8 pfn = g_aSseCompareF2XmmR64Imm8[iFn].pfn;
|
---|
8184 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseCompareF2XmmR64Imm8[iFn]);
|
---|
8185 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8186 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8187 | {
|
---|
8188 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8189 | {
|
---|
8190 | IEMMEDIAF2XMMSRC Src;
|
---|
8191 | X86XMMREG ValOut;
|
---|
8192 |
|
---|
8193 | Src.uSrc1 = paTests[iTest].InVal1;
|
---|
8194 | Src.uSrc2 = paTests[iTest].InVal2;
|
---|
8195 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut, &Src, paTests[iTest].bImm);
|
---|
8196 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
8197 | || ValOut.au64[0] != paTests[iTest].OutVal.au64[0]
|
---|
8198 | || ValOut.au64[1] != paTests[iTest].OutVal.au64[1])
|
---|
8199 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s'%s imm8=%x\n"
|
---|
8200 | "%s -> mxcsr=%#08x %RX64'%RX64\n"
|
---|
8201 | "%s expected %#08x %RX64'%RX64%s%s (%s)\n",
|
---|
8202 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8203 | FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]),
|
---|
8204 | FormatR64(&paTests[iTest].InVal2.ar64[0]), FormatR64(&paTests[iTest].InVal2.ar64[1]),
|
---|
8205 | paTests[iTest].bImm,
|
---|
8206 | iVar ? " " : "", fMxcsr, ValOut.au64[0], ValOut.au64[1],
|
---|
8207 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8208 | paTests[iTest].OutVal.au64[0], paTests[iTest].OutVal.au64[1],
|
---|
8209 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
8210 | ( ValOut.au64[0] != paTests[iTest].OutVal.au64[0]
|
---|
8211 | || ValOut.au64[1] != paTests[iTest].OutVal.au64[1])
|
---|
8212 | ? " - val" : "",
|
---|
8213 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8214 | }
|
---|
8215 | }
|
---|
8216 |
|
---|
8217 | FREE_DECOMPRESSED_TESTS(g_aSseCompareF2XmmR64Imm8[iFn]);
|
---|
8218 | }
|
---|
8219 | }
|
---|
8220 |
|
---|
8221 |
|
---|
8222 | /*
|
---|
8223 | * Convert SSE operations converting signed double-words to single-precision floating point values.
|
---|
8224 | */
|
---|
8225 | TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_XMM_T, SSE_CONVERT_XMM_TEST_T, PFNIEMAIMPLFPSSEF2U128);
|
---|
8226 |
|
---|
8227 | static SSE_CONVERT_XMM_T g_aSseConvertXmmI32R32[] =
|
---|
8228 | {
|
---|
8229 | ENTRY_BIN(cvtdq2ps_u128)
|
---|
8230 | };
|
---|
8231 |
|
---|
8232 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8233 | DUMP_ALL_FN(SseConvertXmmI32R32, g_aSseConvertXmmI32R32)
|
---|
8234 | static RTEXITCODE SseConvertXmmI32R32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
8235 | {
|
---|
8236 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8237 |
|
---|
8238 | static int32_t const s_aSpecials[] =
|
---|
8239 | {
|
---|
8240 | INT32_MIN,
|
---|
8241 | INT32_MIN / 2,
|
---|
8242 | 0,
|
---|
8243 | INT32_MAX / 2,
|
---|
8244 | INT32_MAX,
|
---|
8245 | (int32_t)0x80000000
|
---|
8246 | /** @todo More specials. */
|
---|
8247 | };
|
---|
8248 |
|
---|
8249 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R32); iFn++)
|
---|
8250 | {
|
---|
8251 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmI32R32[iFn].pfnNative ? g_aSseConvertXmmI32R32[iFn].pfnNative : g_aSseConvertXmmI32R32[iFn].pfn;
|
---|
8252 |
|
---|
8253 | IEMBINARYOUTPUT BinOut;
|
---|
8254 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmI32R32[iFn]), RTEXITCODE_FAILURE);
|
---|
8255 |
|
---|
8256 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8257 | {
|
---|
8258 | SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8259 |
|
---|
8260 | TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8261 | TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8262 | TestData.InVal.ai32[2] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8263 | TestData.InVal.ai32[3] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8264 |
|
---|
8265 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8266 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8267 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8268 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8269 | {
|
---|
8270 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8271 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8272 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8273 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8274 | | X86_MXCSR_XCPT_MASK;
|
---|
8275 | uint32_t uMxCsrOutM = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8276 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8277 | TestData.fMxcsrOut = uMxCsrOutM;
|
---|
8278 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8279 |
|
---|
8280 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
8281 | uint32_t uMxCsrOutU = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8282 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8283 | TestData.fMxcsrOut = uMxCsrOutU;
|
---|
8284 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8285 |
|
---|
8286 | uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS;
|
---|
8287 | if (fXcpt)
|
---|
8288 | {
|
---|
8289 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8290 | uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8291 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8292 | TestData.fMxcsrOut = uMxCsrOut1;
|
---|
8293 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8294 |
|
---|
8295 | if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS))
|
---|
8296 | {
|
---|
8297 | fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS;
|
---|
8298 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8299 | uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8300 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8301 | TestData.fMxcsrOut = uMxCsrOut2;
|
---|
8302 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8303 | }
|
---|
8304 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8305 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8306 | if (fUnmasked & fXcpt)
|
---|
8307 | {
|
---|
8308 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8309 | uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8310 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8311 | TestData.fMxcsrOut = uMxCsrOut3;
|
---|
8312 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8313 | }
|
---|
8314 | }
|
---|
8315 | }
|
---|
8316 | }
|
---|
8317 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8318 | }
|
---|
8319 |
|
---|
8320 | return RTEXITCODE_SUCCESS;
|
---|
8321 | }
|
---|
8322 | #endif
|
---|
8323 |
|
---|
8324 | static void SseConvertXmmI32R32Test(void)
|
---|
8325 | {
|
---|
8326 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R32); iFn++)
|
---|
8327 | {
|
---|
8328 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmI32R32[iFn]))
|
---|
8329 | continue;
|
---|
8330 |
|
---|
8331 | SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmI32R32[iFn].paTests;
|
---|
8332 | uint32_t const cTests = g_aSseConvertXmmI32R32[iFn].cTests;
|
---|
8333 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmI32R32[iFn].pfn;
|
---|
8334 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmI32R32[iFn]);
|
---|
8335 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8336 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8337 | {
|
---|
8338 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8339 | {
|
---|
8340 | X86XMMREG Res; RT_ZERO(Res);
|
---|
8341 |
|
---|
8342 | uint32_t fMxCsr = pfn(paTests[iTest].fMxcsrIn, &Res, &Res, &paTests[iTest].InVal);
|
---|
8343 | if ( fMxCsr != paTests[iTest].fMxcsrOut
|
---|
8344 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
8345 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[1], &paTests[iTest].OutVal.ar32[1])
|
---|
8346 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[2], &paTests[iTest].OutVal.ar32[2])
|
---|
8347 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[3], &paTests[iTest].OutVal.ar32[3]))
|
---|
8348 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32'%RI32'%RI32 \n"
|
---|
8349 | "%s -> mxcsr=%#08x %s'%s'%s'%s\n"
|
---|
8350 | "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n",
|
---|
8351 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8352 | paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1],
|
---|
8353 | paTests[iTest].InVal.ai32[2], paTests[iTest].InVal.ai32[3],
|
---|
8354 | iVar ? " " : "", fMxCsr,
|
---|
8355 | FormatR32(&Res.ar32[0]), FormatR32(&Res.ar32[1]),
|
---|
8356 | FormatR32(&Res.ar32[2]), FormatR32(&Res.ar32[3]),
|
---|
8357 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8358 | FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]),
|
---|
8359 | FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]),
|
---|
8360 | MxcsrDiff(fMxCsr, paTests[iTest].fMxcsrOut),
|
---|
8361 | ( !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
8362 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[1], &paTests[iTest].OutVal.ar32[1])
|
---|
8363 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[2], &paTests[iTest].OutVal.ar32[2])
|
---|
8364 | || !RTFLOAT32U_ARE_IDENTICAL(&Res.ar32[3], &paTests[iTest].OutVal.ar32[3]))
|
---|
8365 | ? " - val" : "",
|
---|
8366 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8367 | }
|
---|
8368 | }
|
---|
8369 |
|
---|
8370 | FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmI32R32[iFn]);
|
---|
8371 | }
|
---|
8372 | }
|
---|
8373 |
|
---|
8374 |
|
---|
8375 | /*
|
---|
8376 | * Convert SSE operations converting signed double-words to single-precision floating point values.
|
---|
8377 | */
|
---|
8378 | static SSE_CONVERT_XMM_T g_aSseConvertXmmR32I32[] =
|
---|
8379 | {
|
---|
8380 | ENTRY_BIN(cvtps2dq_u128),
|
---|
8381 | ENTRY_BIN(cvttps2dq_u128)
|
---|
8382 | };
|
---|
8383 |
|
---|
8384 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8385 | DUMP_ALL_FN(SseConvertXmmR32I32, g_aSseConvertXmmR32I32)
|
---|
8386 | static RTEXITCODE SseConvertXmmR32I32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
8387 | {
|
---|
8388 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8389 |
|
---|
8390 | static struct { RTFLOAT32U aVal1[4]; } const s_aSpecials[] =
|
---|
8391 | {
|
---|
8392 | { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) } },
|
---|
8393 | { { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) } },
|
---|
8394 | { { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) } },
|
---|
8395 | { { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) } }
|
---|
8396 | /** @todo More specials. */
|
---|
8397 | };
|
---|
8398 |
|
---|
8399 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
8400 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32I32); iFn++)
|
---|
8401 | {
|
---|
8402 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmR32I32[iFn].pfnNative ? g_aSseConvertXmmR32I32[iFn].pfnNative : g_aSseConvertXmmR32I32[iFn].pfn;
|
---|
8403 |
|
---|
8404 | IEMBINARYOUTPUT BinOut;
|
---|
8405 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmR32I32[iFn]), RTEXITCODE_FAILURE);
|
---|
8406 |
|
---|
8407 | uint32_t cNormalInputPairs = 0;
|
---|
8408 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8409 | {
|
---|
8410 | SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8411 |
|
---|
8412 | TestData.InVal.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
8413 | TestData.InVal.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
8414 | TestData.InVal.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2];
|
---|
8415 | TestData.InVal.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3];
|
---|
8416 |
|
---|
8417 | if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[0])
|
---|
8418 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[1])
|
---|
8419 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[2])
|
---|
8420 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal.ar32[3]))
|
---|
8421 | cNormalInputPairs++;
|
---|
8422 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
8423 | {
|
---|
8424 | iTest -= 1;
|
---|
8425 | continue;
|
---|
8426 | }
|
---|
8427 |
|
---|
8428 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8429 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8430 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8431 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8432 | {
|
---|
8433 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8434 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8435 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8436 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8437 | | X86_MXCSR_XCPT_MASK;
|
---|
8438 | uint32_t uMxCsrOutM = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8439 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8440 | TestData.fMxcsrOut = uMxCsrOutM;
|
---|
8441 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8442 |
|
---|
8443 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
8444 | uint32_t uMxCsrOutU = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8445 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8446 | TestData.fMxcsrOut = uMxCsrOutU;
|
---|
8447 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8448 |
|
---|
8449 | uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS;
|
---|
8450 | if (fXcpt)
|
---|
8451 | {
|
---|
8452 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8453 | uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8454 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8455 | TestData.fMxcsrOut = uMxCsrOut1;
|
---|
8456 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8457 |
|
---|
8458 | if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS))
|
---|
8459 | {
|
---|
8460 | fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS;
|
---|
8461 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8462 | uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8463 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8464 | TestData.fMxcsrOut = uMxCsrOut2;
|
---|
8465 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8466 | }
|
---|
8467 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8468 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8469 | if (fUnmasked & fXcpt)
|
---|
8470 | {
|
---|
8471 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8472 | uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8473 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8474 | TestData.fMxcsrOut = uMxCsrOut3;
|
---|
8475 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8476 | }
|
---|
8477 | }
|
---|
8478 | }
|
---|
8479 | }
|
---|
8480 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8481 | }
|
---|
8482 |
|
---|
8483 | return RTEXITCODE_SUCCESS;
|
---|
8484 | }
|
---|
8485 | #endif
|
---|
8486 |
|
---|
8487 | static void SseConvertXmmR32I32Test(void)
|
---|
8488 | {
|
---|
8489 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32I32); iFn++)
|
---|
8490 | {
|
---|
8491 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR32I32[iFn]))
|
---|
8492 | continue;
|
---|
8493 |
|
---|
8494 | SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmR32I32[iFn].paTests;
|
---|
8495 | uint32_t const cTests = g_aSseConvertXmmR32I32[iFn].cTests;
|
---|
8496 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmR32I32[iFn].pfn;
|
---|
8497 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR32I32[iFn]);
|
---|
8498 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8499 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8500 | {
|
---|
8501 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8502 | {
|
---|
8503 | X86XMMREG Res; RT_ZERO(Res);
|
---|
8504 |
|
---|
8505 | uint32_t fMxCsr = pfn(paTests[iTest].fMxcsrIn, &Res, &Res, &paTests[iTest].InVal);
|
---|
8506 | if ( fMxCsr != paTests[iTest].fMxcsrOut
|
---|
8507 | || Res.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8508 | || Res.ai32[1] != paTests[iTest].OutVal.ai32[1]
|
---|
8509 | || Res.ai32[2] != paTests[iTest].OutVal.ai32[2]
|
---|
8510 | || Res.ai32[3] != paTests[iTest].OutVal.ai32[3])
|
---|
8511 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s \n"
|
---|
8512 | "%s -> mxcsr=%#08x %RI32'%RI32'%RI32'%RI32\n"
|
---|
8513 | "%s expected %#08x %RI32'%RI32'%RI32'%RI32%s%s (%s)\n",
|
---|
8514 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8515 | FormatR32(&paTests[iTest].InVal.ar32[0]), FormatR32(&paTests[iTest].InVal.ar32[1]),
|
---|
8516 | FormatR32(&paTests[iTest].InVal.ar32[2]), FormatR32(&paTests[iTest].InVal.ar32[3]),
|
---|
8517 | iVar ? " " : "", fMxCsr,
|
---|
8518 | Res.ai32[0], Res.ai32[1],
|
---|
8519 | Res.ai32[2], Res.ai32[3],
|
---|
8520 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8521 | paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1],
|
---|
8522 | paTests[iTest].OutVal.ai32[2], paTests[iTest].OutVal.ai32[3],
|
---|
8523 | MxcsrDiff(fMxCsr, paTests[iTest].fMxcsrOut),
|
---|
8524 | ( Res.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8525 | || Res.ai32[1] != paTests[iTest].OutVal.ai32[1]
|
---|
8526 | || Res.ai32[2] != paTests[iTest].OutVal.ai32[2]
|
---|
8527 | || Res.ai32[3] != paTests[iTest].OutVal.ai32[3])
|
---|
8528 | ? " - val" : "",
|
---|
8529 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8530 | }
|
---|
8531 | }
|
---|
8532 |
|
---|
8533 | FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmR32I32[iFn]);
|
---|
8534 | }
|
---|
8535 | }
|
---|
8536 |
|
---|
8537 |
|
---|
8538 | /*
|
---|
8539 | * Convert SSE operations converting signed double-words to double-precision floating point values.
|
---|
8540 | */
|
---|
8541 | static SSE_CONVERT_XMM_T g_aSseConvertXmmI32R64[] =
|
---|
8542 | {
|
---|
8543 | ENTRY_BIN(cvtdq2pd_u128)
|
---|
8544 | };
|
---|
8545 |
|
---|
8546 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8547 | DUMP_ALL_FN(SseConvertXmmI32R64, g_aSseConvertXmmI32R64)
|
---|
8548 | static RTEXITCODE SseConvertXmmI32R64Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
8549 | {
|
---|
8550 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8551 |
|
---|
8552 | static int32_t const s_aSpecials[] =
|
---|
8553 | {
|
---|
8554 | INT32_MIN,
|
---|
8555 | INT32_MIN / 2,
|
---|
8556 | 0,
|
---|
8557 | INT32_MAX / 2,
|
---|
8558 | INT32_MAX,
|
---|
8559 | (int32_t)0x80000000
|
---|
8560 | /** @todo More specials. */
|
---|
8561 | };
|
---|
8562 |
|
---|
8563 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R64); iFn++)
|
---|
8564 | {
|
---|
8565 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmI32R64[iFn].pfnNative ? g_aSseConvertXmmI32R64[iFn].pfnNative : g_aSseConvertXmmI32R64[iFn].pfn;
|
---|
8566 |
|
---|
8567 | IEMBINARYOUTPUT BinOut;
|
---|
8568 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmI32R64[iFn]), RTEXITCODE_FAILURE);
|
---|
8569 |
|
---|
8570 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8571 | {
|
---|
8572 | SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8573 |
|
---|
8574 | TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8575 | TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8576 | TestData.InVal.ai32[2] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8577 | TestData.InVal.ai32[3] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests];
|
---|
8578 |
|
---|
8579 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8580 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8581 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8582 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8583 | {
|
---|
8584 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8585 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8586 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8587 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8588 | | X86_MXCSR_XCPT_MASK;
|
---|
8589 | uint32_t uMxCsrOutM = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8590 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8591 | TestData.fMxcsrOut = uMxCsrOutM;
|
---|
8592 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8593 |
|
---|
8594 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
8595 | uint32_t uMxCsrOutU = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8596 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8597 | TestData.fMxcsrOut = uMxCsrOutU;
|
---|
8598 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8599 |
|
---|
8600 | uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS;
|
---|
8601 | if (fXcpt)
|
---|
8602 | {
|
---|
8603 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8604 | uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8605 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8606 | TestData.fMxcsrOut = uMxCsrOut1;
|
---|
8607 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8608 |
|
---|
8609 | if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS))
|
---|
8610 | {
|
---|
8611 | fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS;
|
---|
8612 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8613 | uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8614 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8615 | TestData.fMxcsrOut = uMxCsrOut2;
|
---|
8616 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8617 | }
|
---|
8618 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8619 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8620 | if (fUnmasked & fXcpt)
|
---|
8621 | {
|
---|
8622 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8623 | uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8624 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8625 | TestData.fMxcsrOut = uMxCsrOut3;
|
---|
8626 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8627 | }
|
---|
8628 | }
|
---|
8629 | }
|
---|
8630 | }
|
---|
8631 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8632 | }
|
---|
8633 |
|
---|
8634 | return RTEXITCODE_SUCCESS;
|
---|
8635 | }
|
---|
8636 | #endif
|
---|
8637 |
|
---|
8638 | static void SseConvertXmmI32R64Test(void)
|
---|
8639 | {
|
---|
8640 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmI32R64); iFn++)
|
---|
8641 | {
|
---|
8642 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmI32R64[iFn]))
|
---|
8643 | continue;
|
---|
8644 |
|
---|
8645 | SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmI32R64[iFn].paTests;
|
---|
8646 | uint32_t const cTests = g_aSseConvertXmmI32R64[iFn].cTests;
|
---|
8647 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmI32R64[iFn].pfn;
|
---|
8648 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmI32R64[iFn]);
|
---|
8649 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8650 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8651 | {
|
---|
8652 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8653 | {
|
---|
8654 | X86XMMREG Res; RT_ZERO(Res);
|
---|
8655 |
|
---|
8656 | uint32_t fMxCsr = pfn(paTests[iTest].fMxcsrIn, &Res, &Res, &paTests[iTest].InVal);
|
---|
8657 | if ( fMxCsr != paTests[iTest].fMxcsrOut
|
---|
8658 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
8659 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
8660 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32'%RI32'%RI32 \n"
|
---|
8661 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
8662 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
8663 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8664 | paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1],
|
---|
8665 | paTests[iTest].InVal.ai32[2], paTests[iTest].InVal.ai32[3],
|
---|
8666 | iVar ? " " : "", fMxCsr,
|
---|
8667 | FormatR64(&Res.ar64[0]), FormatR64(&Res.ar64[1]),
|
---|
8668 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8669 | FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]),
|
---|
8670 | MxcsrDiff(fMxCsr, paTests[iTest].fMxcsrOut),
|
---|
8671 | ( !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
8672 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
8673 | ? " - val" : "",
|
---|
8674 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8675 | }
|
---|
8676 | }
|
---|
8677 |
|
---|
8678 | FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmI32R64[iFn]);
|
---|
8679 | }
|
---|
8680 | }
|
---|
8681 |
|
---|
8682 |
|
---|
8683 | /*
|
---|
8684 | * Convert SSE operations converting signed double-words to double-precision floating point values.
|
---|
8685 | */
|
---|
8686 | static SSE_CONVERT_XMM_T g_aSseConvertXmmR64I32[] =
|
---|
8687 | {
|
---|
8688 | ENTRY_BIN(cvtpd2dq_u128),
|
---|
8689 | ENTRY_BIN(cvttpd2dq_u128)
|
---|
8690 | };
|
---|
8691 |
|
---|
8692 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8693 | DUMP_ALL_FN(SseConvertXmmR64I32, g_aSseConvertXmmR64I32)
|
---|
8694 | static RTEXITCODE SseConvertXmmR64I32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
8695 | {
|
---|
8696 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8697 |
|
---|
8698 | static struct { RTFLOAT64U aVal1[2]; } const s_aSpecials[] =
|
---|
8699 | {
|
---|
8700 | { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) } },
|
---|
8701 | { { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) } },
|
---|
8702 | { { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) } },
|
---|
8703 | { { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) } }
|
---|
8704 | /** @todo More specials. */
|
---|
8705 | };
|
---|
8706 |
|
---|
8707 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
8708 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64I32); iFn++)
|
---|
8709 | {
|
---|
8710 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseConvertXmmR64I32[iFn].pfnNative ? g_aSseConvertXmmR64I32[iFn].pfnNative : g_aSseConvertXmmR64I32[iFn].pfn;
|
---|
8711 |
|
---|
8712 | IEMBINARYOUTPUT BinOut;
|
---|
8713 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmR64I32[iFn]), RTEXITCODE_FAILURE);
|
---|
8714 |
|
---|
8715 | uint32_t cNormalInputPairs = 0;
|
---|
8716 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8717 | {
|
---|
8718 | SSE_CONVERT_XMM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8719 |
|
---|
8720 | TestData.InVal.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
8721 | TestData.InVal.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
8722 |
|
---|
8723 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[0])
|
---|
8724 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[1]))
|
---|
8725 | cNormalInputPairs++;
|
---|
8726 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
8727 | {
|
---|
8728 | iTest -= 1;
|
---|
8729 | continue;
|
---|
8730 | }
|
---|
8731 |
|
---|
8732 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8733 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8734 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8735 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8736 | {
|
---|
8737 | uint32_t uMxCsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8738 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8739 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8740 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8741 | | X86_MXCSR_XCPT_MASK;
|
---|
8742 | uint32_t uMxCsrOutM = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8743 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8744 | TestData.fMxcsrOut = uMxCsrOutM;
|
---|
8745 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8746 |
|
---|
8747 | uMxCsrIn = uMxCsrIn & ~X86_MXCSR_XCPT_MASK;
|
---|
8748 | uint32_t uMxCsrOutU = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8749 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8750 | TestData.fMxcsrOut = uMxCsrOutU;
|
---|
8751 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8752 |
|
---|
8753 | uint16_t fXcpt = (uMxCsrOutM | uMxCsrOutU) & X86_MXCSR_XCPT_FLAGS;
|
---|
8754 | if (fXcpt)
|
---|
8755 | {
|
---|
8756 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8757 | uint32_t uMxCsrOut1 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8758 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8759 | TestData.fMxcsrOut = uMxCsrOut1;
|
---|
8760 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8761 |
|
---|
8762 | if (((uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS))
|
---|
8763 | {
|
---|
8764 | fXcpt |= uMxCsrOut1 & X86_MXCSR_XCPT_FLAGS;
|
---|
8765 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8766 | uint32_t uMxCsrOut2 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8767 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8768 | TestData.fMxcsrOut = uMxCsrOut2;
|
---|
8769 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8770 | }
|
---|
8771 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8772 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8773 | if (fUnmasked & fXcpt)
|
---|
8774 | {
|
---|
8775 | uMxCsrIn = (uMxCsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8776 | uint32_t uMxCsrOut3 = pfn(uMxCsrIn, &TestData.OutVal, &TestData.OutVal, &TestData.InVal);
|
---|
8777 | TestData.fMxcsrIn = uMxCsrIn;
|
---|
8778 | TestData.fMxcsrOut = uMxCsrOut3;
|
---|
8779 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8780 | }
|
---|
8781 | }
|
---|
8782 | }
|
---|
8783 | }
|
---|
8784 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8785 | }
|
---|
8786 |
|
---|
8787 | return RTEXITCODE_SUCCESS;
|
---|
8788 | }
|
---|
8789 | #endif
|
---|
8790 |
|
---|
8791 | static void SseConvertXmmR64I32Test(void)
|
---|
8792 | {
|
---|
8793 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64I32); iFn++)
|
---|
8794 | {
|
---|
8795 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR64I32[iFn]))
|
---|
8796 | continue;
|
---|
8797 |
|
---|
8798 | SSE_CONVERT_XMM_TEST_T const * const paTests = g_aSseConvertXmmR64I32[iFn].paTests;
|
---|
8799 | uint32_t const cTests = g_aSseConvertXmmR64I32[iFn].cTests;
|
---|
8800 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseConvertXmmR64I32[iFn].pfn;
|
---|
8801 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR64I32[iFn]);
|
---|
8802 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8803 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8804 | {
|
---|
8805 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8806 | {
|
---|
8807 | X86XMMREG Res; RT_ZERO(Res);
|
---|
8808 |
|
---|
8809 | uint32_t fMxCsr = pfn(paTests[iTest].fMxcsrIn, &Res, &Res, &paTests[iTest].InVal);
|
---|
8810 | if ( fMxCsr != paTests[iTest].fMxcsrOut
|
---|
8811 | || Res.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8812 | || Res.ai32[1] != paTests[iTest].OutVal.ai32[1]
|
---|
8813 | || Res.ai32[2] != paTests[iTest].OutVal.ai32[2]
|
---|
8814 | || Res.ai32[3] != paTests[iTest].OutVal.ai32[3])
|
---|
8815 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s \n"
|
---|
8816 | "%s -> mxcsr=%#08x %RI32'%RI32'%RI32'%RI32\n"
|
---|
8817 | "%s expected %#08x %RI32'%RI32'%RI32'%RI32%s%s (%s)\n",
|
---|
8818 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8819 | FormatR64(&paTests[iTest].InVal.ar64[0]), FormatR64(&paTests[iTest].InVal.ar64[1]),
|
---|
8820 | iVar ? " " : "", fMxCsr,
|
---|
8821 | Res.ai32[0], Res.ai32[1],
|
---|
8822 | Res.ai32[2], Res.ai32[3],
|
---|
8823 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8824 | paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1],
|
---|
8825 | paTests[iTest].OutVal.ai32[2], paTests[iTest].OutVal.ai32[3],
|
---|
8826 | MxcsrDiff(fMxCsr, paTests[iTest].fMxcsrOut),
|
---|
8827 | ( Res.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8828 | || Res.ai32[1] != paTests[iTest].OutVal.ai32[1]
|
---|
8829 | || Res.ai32[2] != paTests[iTest].OutVal.ai32[2]
|
---|
8830 | || Res.ai32[3] != paTests[iTest].OutVal.ai32[3])
|
---|
8831 | ? " - val" : "",
|
---|
8832 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8833 | }
|
---|
8834 | }
|
---|
8835 |
|
---|
8836 | FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmR64I32[iFn]);
|
---|
8837 | }
|
---|
8838 | }
|
---|
8839 |
|
---|
8840 |
|
---|
8841 | /*
|
---|
8842 | * Convert SSE operations converting double-precision floating point values to signed double-word values.
|
---|
8843 | */
|
---|
8844 | TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_MM_XMM_T, SSE_CONVERT_MM_XMM_TEST_T, PFNIEMAIMPLMXCSRU64U128);
|
---|
8845 |
|
---|
8846 | static SSE_CONVERT_MM_XMM_T g_aSseConvertMmXmm[] =
|
---|
8847 | {
|
---|
8848 | ENTRY_BIN(cvtpd2pi_u128),
|
---|
8849 | ENTRY_BIN(cvttpd2pi_u128)
|
---|
8850 | };
|
---|
8851 |
|
---|
8852 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
8853 | DUMP_ALL_FN(SseConvertMmXmm, g_aSseConvertMmXmm)
|
---|
8854 | static RTEXITCODE SseConvertMmXmmGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
8855 | {
|
---|
8856 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
8857 |
|
---|
8858 | static struct { RTFLOAT64U aVal1[2]; } const s_aSpecials[] =
|
---|
8859 | {
|
---|
8860 | { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) } },
|
---|
8861 | { { RTFLOAT64U_INIT_ZERO(1), RTFLOAT64U_INIT_ZERO(1) } },
|
---|
8862 | { { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(0) } },
|
---|
8863 | { { RTFLOAT64U_INIT_INF(1), RTFLOAT64U_INIT_INF(1) } }
|
---|
8864 | /** @todo More specials. */
|
---|
8865 | };
|
---|
8866 |
|
---|
8867 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
8868 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmXmm); iFn++)
|
---|
8869 | {
|
---|
8870 | PFNIEMAIMPLMXCSRU64U128 const pfn = g_aSseConvertMmXmm[iFn].pfnNative ? g_aSseConvertMmXmm[iFn].pfnNative : g_aSseConvertMmXmm[iFn].pfn;
|
---|
8871 |
|
---|
8872 | IEMBINARYOUTPUT BinOut;
|
---|
8873 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertMmXmm[iFn]), RTEXITCODE_FAILURE);
|
---|
8874 |
|
---|
8875 | uint32_t cNormalInputPairs = 0;
|
---|
8876 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
8877 | {
|
---|
8878 | SSE_CONVERT_MM_XMM_TEST_T TestData; RT_ZERO(TestData);
|
---|
8879 |
|
---|
8880 | TestData.InVal.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
8881 | TestData.InVal.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
8882 |
|
---|
8883 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[0])
|
---|
8884 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal.ar64[1]))
|
---|
8885 | cNormalInputPairs++;
|
---|
8886 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
8887 | {
|
---|
8888 | iTest -= 1;
|
---|
8889 | continue;
|
---|
8890 | }
|
---|
8891 |
|
---|
8892 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
8893 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
8894 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
8895 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
8896 | {
|
---|
8897 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
8898 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
8899 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
8900 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
8901 | | X86_MXCSR_XCPT_MASK;
|
---|
8902 | uint64_t u64ResM;
|
---|
8903 | uint32_t fMxcsrM = pfn(fMxcsrIn, &u64ResM, &TestData.InVal);
|
---|
8904 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8905 | TestData.fMxcsrOut = fMxcsrM;
|
---|
8906 | TestData.OutVal.u = u64ResM;
|
---|
8907 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8908 |
|
---|
8909 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
8910 | uint64_t u64ResU;
|
---|
8911 | uint32_t fMxcsrU = pfn(fMxcsrIn, &u64ResU, &TestData.InVal);
|
---|
8912 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8913 | TestData.fMxcsrOut = fMxcsrU;
|
---|
8914 | TestData.OutVal.u = u64ResU;
|
---|
8915 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8916 |
|
---|
8917 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
8918 | if (fXcpt)
|
---|
8919 | {
|
---|
8920 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
8921 | uint64_t u64Res1;
|
---|
8922 | uint32_t fMxcsr1 = pfn(fMxcsrIn, &u64Res1, &TestData.InVal);
|
---|
8923 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8924 | TestData.fMxcsrOut = fMxcsr1;
|
---|
8925 | TestData.OutVal.u = u64Res1;
|
---|
8926 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8927 |
|
---|
8928 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
8929 | {
|
---|
8930 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
8931 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8932 | uint64_t u64Res2;
|
---|
8933 | uint32_t fMxcsr2 = pfn(fMxcsrIn, &u64Res2, &TestData.InVal);
|
---|
8934 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8935 | TestData.fMxcsrOut = fMxcsr2;
|
---|
8936 | TestData.OutVal.u = u64Res2;
|
---|
8937 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8938 | }
|
---|
8939 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
8940 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
8941 | if (fUnmasked & fXcpt)
|
---|
8942 | {
|
---|
8943 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
8944 | uint64_t u64Res3;
|
---|
8945 | uint32_t fMxcsr3 = pfn(fMxcsrIn, &u64Res3, &TestData.InVal);
|
---|
8946 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
8947 | TestData.fMxcsrOut = fMxcsr3;
|
---|
8948 | TestData.OutVal.u = u64Res3;
|
---|
8949 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
8950 | }
|
---|
8951 | }
|
---|
8952 | }
|
---|
8953 | }
|
---|
8954 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
8955 | }
|
---|
8956 |
|
---|
8957 | return RTEXITCODE_SUCCESS;
|
---|
8958 | }
|
---|
8959 | #endif
|
---|
8960 |
|
---|
8961 | static void SseConvertMmXmmTest(void)
|
---|
8962 | {
|
---|
8963 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmXmm); iFn++)
|
---|
8964 | {
|
---|
8965 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertMmXmm[iFn]))
|
---|
8966 | continue;
|
---|
8967 |
|
---|
8968 | SSE_CONVERT_MM_XMM_TEST_T const * const paTests = g_aSseConvertMmXmm[iFn].paTests;
|
---|
8969 | uint32_t const cTests = g_aSseConvertMmXmm[iFn].cTests;
|
---|
8970 | PFNIEMAIMPLMXCSRU64U128 pfn = g_aSseConvertMmXmm[iFn].pfn;
|
---|
8971 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertMmXmm[iFn]);
|
---|
8972 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
8973 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
8974 | {
|
---|
8975 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
8976 | {
|
---|
8977 | RTUINT64U ValOut;
|
---|
8978 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut.u, &paTests[iTest].InVal);
|
---|
8979 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
8980 | || ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8981 | || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1])
|
---|
8982 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s\n"
|
---|
8983 | "%s -> mxcsr=%#08x %RI32'%RI32\n"
|
---|
8984 | "%s expected %#08x %RI32'%RI32%s%s (%s)\n",
|
---|
8985 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
8986 | FormatR64(&paTests[iTest].InVal.ar64[0]), FormatR64(&paTests[iTest].InVal.ar64[1]),
|
---|
8987 | iVar ? " " : "", fMxcsr, ValOut.ai32[0], ValOut.ai32[1],
|
---|
8988 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
8989 | paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1],
|
---|
8990 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
8991 | ( ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
8992 | || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1])
|
---|
8993 | ? " - val" : "",
|
---|
8994 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
8995 | }
|
---|
8996 | }
|
---|
8997 |
|
---|
8998 | FREE_DECOMPRESSED_TESTS(g_aSseConvertMmXmm[iFn]);
|
---|
8999 | }
|
---|
9000 | }
|
---|
9001 |
|
---|
9002 |
|
---|
9003 | /*
|
---|
9004 | * Convert SSE operations converting signed double-word values to double precision floating-point values (probably only cvtpi2pd).
|
---|
9005 | */
|
---|
9006 | TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_XMM_R64_MM_T, SSE_CONVERT_XMM_MM_TEST_T, PFNIEMAIMPLMXCSRU128U64);
|
---|
9007 |
|
---|
9008 | static SSE_CONVERT_XMM_R64_MM_T g_aSseConvertXmmR64Mm[] =
|
---|
9009 | {
|
---|
9010 | ENTRY_BIN(cvtpi2pd_u128)
|
---|
9011 | };
|
---|
9012 |
|
---|
9013 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9014 | DUMP_ALL_FN(SseConvertXmmR64Mm, g_aSseConvertXmmR64Mm)
|
---|
9015 | static RTEXITCODE SseConvertXmmR64MmGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
9016 | {
|
---|
9017 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9018 |
|
---|
9019 | static struct { int32_t aVal[2]; } const s_aSpecials[] =
|
---|
9020 | {
|
---|
9021 | { { INT32_MIN, INT32_MIN } },
|
---|
9022 | { { INT32_MAX, INT32_MAX } }
|
---|
9023 | /** @todo More specials. */
|
---|
9024 | };
|
---|
9025 |
|
---|
9026 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64Mm); iFn++)
|
---|
9027 | {
|
---|
9028 | PFNIEMAIMPLMXCSRU128U64 const pfn = g_aSseConvertXmmR64Mm[iFn].pfnNative ? g_aSseConvertXmmR64Mm[iFn].pfnNative : g_aSseConvertXmmR64Mm[iFn].pfn;
|
---|
9029 |
|
---|
9030 | IEMBINARYOUTPUT BinOut;
|
---|
9031 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmR64Mm[iFn]), RTEXITCODE_FAILURE);
|
---|
9032 |
|
---|
9033 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9034 | {
|
---|
9035 | SSE_CONVERT_XMM_MM_TEST_T TestData; RT_ZERO(TestData);
|
---|
9036 |
|
---|
9037 | TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[0];
|
---|
9038 | TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[1];
|
---|
9039 |
|
---|
9040 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
9041 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
9042 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
9043 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
9044 | {
|
---|
9045 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
9046 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
9047 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
9048 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
9049 | | X86_MXCSR_XCPT_MASK;
|
---|
9050 | uint32_t fMxcsrM = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u);
|
---|
9051 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9052 | TestData.fMxcsrOut = fMxcsrM;
|
---|
9053 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9054 |
|
---|
9055 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
9056 | uint32_t fMxcsrU = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u);
|
---|
9057 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9058 | TestData.fMxcsrOut = fMxcsrU;
|
---|
9059 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9060 |
|
---|
9061 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
9062 | if (fXcpt)
|
---|
9063 | {
|
---|
9064 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
9065 | uint32_t fMxcsr1 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u);
|
---|
9066 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9067 | TestData.fMxcsrOut = fMxcsr1;
|
---|
9068 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9069 |
|
---|
9070 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
9071 | {
|
---|
9072 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
9073 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
9074 | uint32_t fMxcsr2 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u);
|
---|
9075 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9076 | TestData.fMxcsrOut = fMxcsr2;
|
---|
9077 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9078 | }
|
---|
9079 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
9080 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
9081 | if (fUnmasked & fXcpt)
|
---|
9082 | {
|
---|
9083 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
9084 | uint32_t fMxcsr3 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u);
|
---|
9085 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9086 | TestData.fMxcsrOut = fMxcsr3;
|
---|
9087 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9088 | }
|
---|
9089 | }
|
---|
9090 | }
|
---|
9091 | }
|
---|
9092 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9093 | }
|
---|
9094 |
|
---|
9095 | return RTEXITCODE_SUCCESS;
|
---|
9096 | }
|
---|
9097 | #endif
|
---|
9098 |
|
---|
9099 | static void SseConvertXmmR64MmTest(void)
|
---|
9100 | {
|
---|
9101 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR64Mm); iFn++)
|
---|
9102 | {
|
---|
9103 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR64Mm[iFn]))
|
---|
9104 | continue;
|
---|
9105 |
|
---|
9106 | SSE_CONVERT_XMM_MM_TEST_T const * const paTests = g_aSseConvertXmmR64Mm[iFn].paTests;
|
---|
9107 | uint32_t const cTests = g_aSseConvertXmmR64Mm[iFn].cTests;
|
---|
9108 | PFNIEMAIMPLMXCSRU128U64 pfn = g_aSseConvertXmmR64Mm[iFn].pfn;
|
---|
9109 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR64Mm[iFn]);
|
---|
9110 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9111 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9112 | {
|
---|
9113 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9114 | {
|
---|
9115 | X86XMMREG ValOut;
|
---|
9116 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut, paTests[iTest].InVal.u);
|
---|
9117 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
9118 | || !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
9119 | || !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
9120 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32\n"
|
---|
9121 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
9122 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
9123 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
9124 | paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1],
|
---|
9125 | iVar ? " " : "", fMxcsr,
|
---|
9126 | FormatR64(&ValOut.ar64[0]), FormatR64(&ValOut.ar64[1]),
|
---|
9127 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
9128 | FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]),
|
---|
9129 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
9130 | ( !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
9131 | || !RTFLOAT64U_ARE_IDENTICAL(&ValOut.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
9132 | ? " - val" : "",
|
---|
9133 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
9134 | }
|
---|
9135 | }
|
---|
9136 |
|
---|
9137 | FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmR64Mm[iFn]);
|
---|
9138 | }
|
---|
9139 | }
|
---|
9140 |
|
---|
9141 |
|
---|
9142 | /*
|
---|
9143 | * Convert SSE operations converting signed double-word values to double precision floating-point values (probably only cvtpi2pd).
|
---|
9144 | */
|
---|
9145 | TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_XMM_R32_MM_T, SSE_CONVERT_XMM_MM_TEST_T, PFNIEMAIMPLMXCSRU128U64);
|
---|
9146 |
|
---|
9147 | static SSE_CONVERT_XMM_R32_MM_T g_aSseConvertXmmR32Mm[] =
|
---|
9148 | {
|
---|
9149 | ENTRY_BIN(cvtpi2ps_u128)
|
---|
9150 | };
|
---|
9151 |
|
---|
9152 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9153 | DUMP_ALL_FN(SseConvertXmmR32Mm, g_aSseConvertXmmR32Mm)
|
---|
9154 | static RTEXITCODE SseConvertXmmR32MmGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
9155 | {
|
---|
9156 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9157 |
|
---|
9158 | static struct { int32_t aVal[2]; } const s_aSpecials[] =
|
---|
9159 | {
|
---|
9160 | { { INT32_MIN, INT32_MIN } },
|
---|
9161 | { { INT32_MAX, INT32_MAX } }
|
---|
9162 | /** @todo More specials. */
|
---|
9163 | };
|
---|
9164 |
|
---|
9165 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32Mm); iFn++)
|
---|
9166 | {
|
---|
9167 | PFNIEMAIMPLMXCSRU128U64 const pfn = g_aSseConvertXmmR32Mm[iFn].pfnNative ? g_aSseConvertXmmR32Mm[iFn].pfnNative : g_aSseConvertXmmR32Mm[iFn].pfn;
|
---|
9168 |
|
---|
9169 | IEMBINARYOUTPUT BinOut;
|
---|
9170 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertXmmR32Mm[iFn]), RTEXITCODE_FAILURE);
|
---|
9171 |
|
---|
9172 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9173 | {
|
---|
9174 | SSE_CONVERT_XMM_MM_TEST_T TestData; RT_ZERO(TestData);
|
---|
9175 |
|
---|
9176 | TestData.InVal.ai32[0] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[0];
|
---|
9177 | TestData.InVal.ai32[1] = iTest < cTests ? RandI32Src2(iTest) : s_aSpecials[iTest - cTests].aVal[1];
|
---|
9178 |
|
---|
9179 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
9180 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
9181 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
9182 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
9183 | {
|
---|
9184 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
9185 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
9186 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
9187 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
9188 | | X86_MXCSR_XCPT_MASK;
|
---|
9189 | uint32_t fMxcsrM = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u);
|
---|
9190 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9191 | TestData.fMxcsrOut = fMxcsrM;
|
---|
9192 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9193 |
|
---|
9194 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
9195 | uint32_t fMxcsrU = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u);
|
---|
9196 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9197 | TestData.fMxcsrOut = fMxcsrU;
|
---|
9198 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9199 |
|
---|
9200 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
9201 | if (fXcpt)
|
---|
9202 | {
|
---|
9203 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
9204 | uint32_t fMxcsr1 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u);
|
---|
9205 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9206 | TestData.fMxcsrOut = fMxcsr1;
|
---|
9207 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9208 |
|
---|
9209 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
9210 | {
|
---|
9211 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
9212 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
9213 | uint32_t fMxcsr2 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u);
|
---|
9214 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9215 | TestData.fMxcsrOut = fMxcsr2;
|
---|
9216 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9217 | }
|
---|
9218 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
9219 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
9220 | if (fUnmasked & fXcpt)
|
---|
9221 | {
|
---|
9222 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
9223 | uint32_t fMxcsr3 = pfn(fMxcsrIn, &TestData.OutVal, TestData.InVal.u);
|
---|
9224 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9225 | TestData.fMxcsrOut = fMxcsr3;
|
---|
9226 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9227 | }
|
---|
9228 | }
|
---|
9229 | }
|
---|
9230 | }
|
---|
9231 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9232 | }
|
---|
9233 |
|
---|
9234 | return RTEXITCODE_SUCCESS;
|
---|
9235 | }
|
---|
9236 | #endif
|
---|
9237 |
|
---|
9238 | static void SseConvertXmmR32MmTest(void)
|
---|
9239 | {
|
---|
9240 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertXmmR32Mm); iFn++)
|
---|
9241 | {
|
---|
9242 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertXmmR32Mm[iFn]))
|
---|
9243 | continue;
|
---|
9244 |
|
---|
9245 | SSE_CONVERT_XMM_MM_TEST_T const * const paTests = g_aSseConvertXmmR32Mm[iFn].paTests;
|
---|
9246 | uint32_t const cTests = g_aSseConvertXmmR32Mm[iFn].cTests;
|
---|
9247 | PFNIEMAIMPLMXCSRU128U64 pfn = g_aSseConvertXmmR32Mm[iFn].pfn;
|
---|
9248 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertXmmR32Mm[iFn]);
|
---|
9249 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9250 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9251 | {
|
---|
9252 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9253 | {
|
---|
9254 | X86XMMREG ValOut;
|
---|
9255 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut, paTests[iTest].InVal.u);
|
---|
9256 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
9257 | || !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
9258 | || !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[1], &paTests[iTest].OutVal.ar32[1]))
|
---|
9259 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%RI32'%RI32\n"
|
---|
9260 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
9261 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
9262 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
9263 | paTests[iTest].InVal.ai32[0], paTests[iTest].InVal.ai32[1],
|
---|
9264 | iVar ? " " : "", fMxcsr,
|
---|
9265 | FormatR32(&ValOut.ar32[0]), FormatR32(&ValOut.ar32[1]),
|
---|
9266 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
9267 | FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]),
|
---|
9268 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
9269 | ( !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
9270 | || !RTFLOAT32U_ARE_IDENTICAL(&ValOut.ar32[1], &paTests[iTest].OutVal.ar32[1]))
|
---|
9271 | ? " - val" : "",
|
---|
9272 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
9273 | }
|
---|
9274 | }
|
---|
9275 |
|
---|
9276 | FREE_DECOMPRESSED_TESTS(g_aSseConvertXmmR32Mm[iFn]);
|
---|
9277 | }
|
---|
9278 | }
|
---|
9279 |
|
---|
9280 |
|
---|
9281 | /*
|
---|
9282 | * Convert SSE operations converting single-precision floating point values to signed double-word values.
|
---|
9283 | */
|
---|
9284 | TYPEDEF_SUBTEST_TYPE(SSE_CONVERT_MM_I32_XMM_R32_T, SSE_CONVERT_MM_R32_TEST_T, PFNIEMAIMPLMXCSRU64U64);
|
---|
9285 |
|
---|
9286 | static SSE_CONVERT_MM_I32_XMM_R32_T g_aSseConvertMmI32XmmR32[] =
|
---|
9287 | {
|
---|
9288 | ENTRY_BIN(cvtps2pi_u128),
|
---|
9289 | ENTRY_BIN(cvttps2pi_u128)
|
---|
9290 | };
|
---|
9291 |
|
---|
9292 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9293 | DUMP_ALL_FN(SseConvertMmI32XmmR32, g_aSseConvertMmI32XmmR32)
|
---|
9294 | static RTEXITCODE SseConvertMmI32XmmR32Generate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
9295 | {
|
---|
9296 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9297 |
|
---|
9298 | static struct { RTFLOAT32U aVal1[2]; } const s_aSpecials[] =
|
---|
9299 | {
|
---|
9300 | { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0) } },
|
---|
9301 | { { RTFLOAT32U_INIT_ZERO(1), RTFLOAT32U_INIT_ZERO(1) } },
|
---|
9302 | { { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(0) } },
|
---|
9303 | { { RTFLOAT32U_INIT_INF(1), RTFLOAT32U_INIT_INF(1) } }
|
---|
9304 | /** @todo More specials. */
|
---|
9305 | };
|
---|
9306 |
|
---|
9307 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
9308 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmI32XmmR32); iFn++)
|
---|
9309 | {
|
---|
9310 | PFNIEMAIMPLMXCSRU64U64 const pfn = g_aSseConvertMmI32XmmR32[iFn].pfnNative ? g_aSseConvertMmI32XmmR32[iFn].pfnNative : g_aSseConvertMmI32XmmR32[iFn].pfn;
|
---|
9311 |
|
---|
9312 | IEMBINARYOUTPUT BinOut;
|
---|
9313 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSseConvertMmI32XmmR32[iFn]), RTEXITCODE_FAILURE);
|
---|
9314 |
|
---|
9315 | uint32_t cNormalInputPairs = 0;
|
---|
9316 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9317 | {
|
---|
9318 | SSE_CONVERT_MM_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
9319 |
|
---|
9320 | TestData.ar32InVal[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
9321 | TestData.ar32InVal[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
9322 |
|
---|
9323 | if ( RTFLOAT32U_IS_NORMAL(&TestData.ar32InVal[0])
|
---|
9324 | && RTFLOAT32U_IS_NORMAL(&TestData.ar32InVal[1]))
|
---|
9325 | cNormalInputPairs++;
|
---|
9326 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
9327 | {
|
---|
9328 | iTest -= 1;
|
---|
9329 | continue;
|
---|
9330 | }
|
---|
9331 |
|
---|
9332 | RTFLOAT64U TestVal;
|
---|
9333 | TestVal.au32[0] = TestData.ar32InVal[0].u;
|
---|
9334 | TestVal.au32[1] = TestData.ar32InVal[1].u;
|
---|
9335 |
|
---|
9336 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
9337 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
9338 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
9339 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
9340 | {
|
---|
9341 | uint32_t fMxcsrIn = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
9342 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
9343 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
9344 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
9345 | | X86_MXCSR_XCPT_MASK;
|
---|
9346 | uint64_t u64ResM;
|
---|
9347 | uint32_t fMxcsrM = pfn(fMxcsrIn, &u64ResM, TestVal.u);
|
---|
9348 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9349 | TestData.fMxcsrOut = fMxcsrM;
|
---|
9350 | TestData.OutVal.u = u64ResM;
|
---|
9351 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9352 |
|
---|
9353 | fMxcsrIn &= ~X86_MXCSR_XCPT_MASK;
|
---|
9354 | uint64_t u64ResU;
|
---|
9355 | uint32_t fMxcsrU = pfn(fMxcsrIn, &u64ResU, TestVal.u);
|
---|
9356 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9357 | TestData.fMxcsrOut = fMxcsrU;
|
---|
9358 | TestData.OutVal.u = u64ResU;
|
---|
9359 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9360 |
|
---|
9361 | uint16_t fXcpt = (fMxcsrM | fMxcsrU) & X86_MXCSR_XCPT_FLAGS;
|
---|
9362 | if (fXcpt)
|
---|
9363 | {
|
---|
9364 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
9365 | uint64_t u64Res1;
|
---|
9366 | uint32_t fMxcsr1 = pfn(fMxcsrIn, &u64Res1, TestVal.u);
|
---|
9367 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9368 | TestData.fMxcsrOut = fMxcsr1;
|
---|
9369 | TestData.OutVal.u = u64Res1;
|
---|
9370 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9371 |
|
---|
9372 | if (((fMxcsr1 & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (fMxcsr1 & X86_MXCSR_XCPT_FLAGS))
|
---|
9373 | {
|
---|
9374 | fXcpt |= fMxcsr1 & X86_MXCSR_XCPT_FLAGS;
|
---|
9375 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
9376 | uint64_t u64Res2;
|
---|
9377 | uint32_t fMxcsr2 = pfn(fMxcsrIn, &u64Res2, TestVal.u);
|
---|
9378 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9379 | TestData.fMxcsrOut = fMxcsr2;
|
---|
9380 | TestData.OutVal.u = u64Res2;
|
---|
9381 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9382 | }
|
---|
9383 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
9384 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
9385 | if (fUnmasked & fXcpt)
|
---|
9386 | {
|
---|
9387 | fMxcsrIn = (fMxcsrIn & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
9388 | uint64_t u64Res3;
|
---|
9389 | uint32_t fMxcsr3 = pfn(fMxcsrIn, &u64Res3, TestVal.u);
|
---|
9390 | TestData.fMxcsrIn = fMxcsrIn;
|
---|
9391 | TestData.fMxcsrOut = fMxcsr3;
|
---|
9392 | TestData.OutVal.u = u64Res3;
|
---|
9393 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9394 | }
|
---|
9395 | }
|
---|
9396 | }
|
---|
9397 | }
|
---|
9398 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9399 | }
|
---|
9400 |
|
---|
9401 | return RTEXITCODE_SUCCESS;
|
---|
9402 | }
|
---|
9403 | #endif
|
---|
9404 |
|
---|
9405 | static void SseConvertMmI32XmmR32Test(void)
|
---|
9406 | {
|
---|
9407 | X86FXSTATE State;
|
---|
9408 | RT_ZERO(State);
|
---|
9409 |
|
---|
9410 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseConvertMmI32XmmR32); iFn++)
|
---|
9411 | {
|
---|
9412 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSseConvertMmI32XmmR32[iFn]))
|
---|
9413 | continue;
|
---|
9414 |
|
---|
9415 | SSE_CONVERT_MM_R32_TEST_T const * const paTests = g_aSseConvertMmI32XmmR32[iFn].paTests;
|
---|
9416 | uint32_t const cTests = g_aSseConvertMmI32XmmR32[iFn].cTests;
|
---|
9417 | PFNIEMAIMPLMXCSRU64U64 pfn = g_aSseConvertMmI32XmmR32[iFn].pfn;
|
---|
9418 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseConvertMmI32XmmR32[iFn]);
|
---|
9419 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9420 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9421 | {
|
---|
9422 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9423 | {
|
---|
9424 | RTUINT64U ValOut;
|
---|
9425 | RTUINT64U ValIn;
|
---|
9426 |
|
---|
9427 | ValIn.au32[0] = paTests[iTest].ar32InVal[0].u;
|
---|
9428 | ValIn.au32[1] = paTests[iTest].ar32InVal[1].u;
|
---|
9429 |
|
---|
9430 | uint32_t fMxcsr = pfn(paTests[iTest].fMxcsrIn, &ValOut.u, ValIn.u);
|
---|
9431 | if ( fMxcsr != paTests[iTest].fMxcsrOut
|
---|
9432 | || ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
9433 | || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1])
|
---|
9434 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s \n"
|
---|
9435 | "%s -> mxcsr=%#08x %RI32'%RI32\n"
|
---|
9436 | "%s expected %#08x %RI32'%RI32%s%s (%s)\n",
|
---|
9437 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
9438 | FormatR32(&paTests[iTest].ar32InVal[0]), FormatR32(&paTests[iTest].ar32InVal[1]),
|
---|
9439 | iVar ? " " : "", fMxcsr,
|
---|
9440 | ValOut.ai32[0], ValOut.ai32[1],
|
---|
9441 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
9442 | paTests[iTest].OutVal.ai32[0], paTests[iTest].OutVal.ai32[1],
|
---|
9443 | MxcsrDiff(fMxcsr, paTests[iTest].fMxcsrOut),
|
---|
9444 | ( ValOut.ai32[0] != paTests[iTest].OutVal.ai32[0]
|
---|
9445 | || ValOut.ai32[1] != paTests[iTest].OutVal.ai32[1])
|
---|
9446 | ? " - val" : "",
|
---|
9447 | FormatMxcsr(paTests[iTest].fMxcsrIn));
|
---|
9448 | }
|
---|
9449 | }
|
---|
9450 |
|
---|
9451 | FREE_DECOMPRESSED_TESTS(g_aSseConvertMmI32XmmR32[iFn]);
|
---|
9452 | }
|
---|
9453 | }
|
---|
9454 |
|
---|
9455 |
|
---|
9456 | /*
|
---|
9457 | * SSE 4.2 pcmpxstrx instructions.
|
---|
9458 | */
|
---|
9459 | TYPEDEF_SUBTEST_TYPE(SSE_PCMPISTRI_T, SSE_PCMPISTRI_TEST_T, PFNIEMAIMPLPCMPISTRIU128IMM8);
|
---|
9460 |
|
---|
9461 | static SSE_PCMPISTRI_T g_aSsePcmpistri[] =
|
---|
9462 | {
|
---|
9463 | ENTRY_BIN_SSE_OPT(pcmpistri_u128),
|
---|
9464 | };
|
---|
9465 |
|
---|
9466 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9467 | DUMP_ALL_FN(SseComparePcmpistri, g_aSsePcmpistri)
|
---|
9468 | static RTEXITCODE SseComparePcmpistriGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
9469 | {
|
---|
9470 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9471 |
|
---|
9472 | static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] =
|
---|
9473 | {
|
---|
9474 | { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) },
|
---|
9475 | /** @todo More specials. */
|
---|
9476 | };
|
---|
9477 |
|
---|
9478 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistri); iFn++)
|
---|
9479 | {
|
---|
9480 | PFNIEMAIMPLPCMPISTRIU128IMM8 const pfn = g_aSsePcmpistri[iFn].pfnNative ? g_aSsePcmpistri[iFn].pfnNative : g_aSsePcmpistri[iFn].pfn;
|
---|
9481 |
|
---|
9482 | IEMBINARYOUTPUT BinOut;
|
---|
9483 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSsePcmpistri[iFn]), RTEXITCODE_FAILURE);
|
---|
9484 |
|
---|
9485 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9486 | {
|
---|
9487 | SSE_PCMPISTRI_TEST_T TestData; RT_ZERO(TestData);
|
---|
9488 |
|
---|
9489 | TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1;
|
---|
9490 | TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2;
|
---|
9491 |
|
---|
9492 | IEMPCMPISTRXSRC TestVal;
|
---|
9493 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9494 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9495 |
|
---|
9496 | uint32_t const fEFlagsIn = RandEFlags();
|
---|
9497 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9498 | {
|
---|
9499 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9500 | pfn(&TestData.u32EcxOut, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9501 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9502 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9503 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9504 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9505 | }
|
---|
9506 |
|
---|
9507 | /* Repeat the test with the input value being the same. */
|
---|
9508 | TestData.InVal2.uXmm = TestData.InVal1.uXmm;
|
---|
9509 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9510 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9511 |
|
---|
9512 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9513 | {
|
---|
9514 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9515 | pfn(&TestData.u32EcxOut, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9516 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9517 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9518 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9519 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9520 | }
|
---|
9521 | }
|
---|
9522 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9523 | }
|
---|
9524 |
|
---|
9525 | return RTEXITCODE_SUCCESS;
|
---|
9526 | }
|
---|
9527 | #endif
|
---|
9528 |
|
---|
9529 | static void SseComparePcmpistriTest(void)
|
---|
9530 | {
|
---|
9531 | X86FXSTATE State;
|
---|
9532 | RT_ZERO(State);
|
---|
9533 |
|
---|
9534 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistri); iFn++)
|
---|
9535 | {
|
---|
9536 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpistri[iFn]))
|
---|
9537 | continue;
|
---|
9538 |
|
---|
9539 | SSE_PCMPISTRI_TEST_T const * const paTests = g_aSsePcmpistri[iFn].paTests;
|
---|
9540 | uint32_t const cTests = g_aSsePcmpistri[iFn].cTests;
|
---|
9541 | PFNIEMAIMPLPCMPISTRIU128IMM8 pfn = g_aSsePcmpistri[iFn].pfn;
|
---|
9542 | uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpistri[iFn]);
|
---|
9543 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9544 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9545 | {
|
---|
9546 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9547 | {
|
---|
9548 | IEMPCMPISTRXSRC TestVal;
|
---|
9549 | TestVal.uSrc1 = paTests[iTest].InVal1.uXmm;
|
---|
9550 | TestVal.uSrc2 = paTests[iTest].InVal2.uXmm;
|
---|
9551 |
|
---|
9552 | uint32_t fEFlags = paTests[iTest].fEFlagsIn;
|
---|
9553 | uint32_t u32EcxOut = 0;
|
---|
9554 | pfn(&u32EcxOut, &fEFlags, &TestVal, paTests[iTest].bImm);
|
---|
9555 | if ( fEFlags != paTests[iTest].fEFlagsOut
|
---|
9556 | || u32EcxOut != paTests[iTest].u32EcxOut)
|
---|
9557 | RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s in2=%s bImm=%#x\n"
|
---|
9558 | "%s -> efl=%#08x %RU32\n"
|
---|
9559 | "%s expected %#08x %RU32%s%s\n",
|
---|
9560 | iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn,
|
---|
9561 | FormatU128(&paTests[iTest].InVal1.uXmm), FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].bImm,
|
---|
9562 | iVar ? " " : "", fEFlags, u32EcxOut,
|
---|
9563 | iVar ? " " : "", paTests[iTest].fEFlagsOut, paTests[iTest].u32EcxOut,
|
---|
9564 | EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut),
|
---|
9565 | (u32EcxOut != paTests[iTest].u32EcxOut) ? " - val" : "");
|
---|
9566 | }
|
---|
9567 | }
|
---|
9568 |
|
---|
9569 | FREE_DECOMPRESSED_TESTS(g_aSsePcmpistri[iFn]);
|
---|
9570 | }
|
---|
9571 | }
|
---|
9572 |
|
---|
9573 |
|
---|
9574 | TYPEDEF_SUBTEST_TYPE(SSE_PCMPISTRM_T, SSE_PCMPISTRM_TEST_T, PFNIEMAIMPLPCMPISTRMU128IMM8);
|
---|
9575 |
|
---|
9576 | static SSE_PCMPISTRM_T g_aSsePcmpistrm[] =
|
---|
9577 | {
|
---|
9578 | ENTRY_BIN_SSE_OPT(pcmpistrm_u128),
|
---|
9579 | };
|
---|
9580 |
|
---|
9581 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9582 | DUMP_ALL_FN(SseComparePcmpistrm, g_aSsePcmpistrm)
|
---|
9583 | static RTEXITCODE SseComparePcmpistrmGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
9584 | {
|
---|
9585 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9586 |
|
---|
9587 | static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] =
|
---|
9588 | {
|
---|
9589 | { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) },
|
---|
9590 | /** @todo More specials. */
|
---|
9591 | };
|
---|
9592 |
|
---|
9593 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistrm); iFn++)
|
---|
9594 | {
|
---|
9595 | PFNIEMAIMPLPCMPISTRMU128IMM8 const pfn = g_aSsePcmpistrm[iFn].pfnNative ? g_aSsePcmpistrm[iFn].pfnNative : g_aSsePcmpistrm[iFn].pfn;
|
---|
9596 |
|
---|
9597 | IEMBINARYOUTPUT BinOut;
|
---|
9598 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSsePcmpistrm[iFn]), RTEXITCODE_FAILURE);
|
---|
9599 |
|
---|
9600 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9601 | {
|
---|
9602 | SSE_PCMPISTRM_TEST_T TestData; RT_ZERO(TestData);
|
---|
9603 |
|
---|
9604 | TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1;
|
---|
9605 | TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2;
|
---|
9606 |
|
---|
9607 | IEMPCMPISTRXSRC TestVal;
|
---|
9608 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9609 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9610 |
|
---|
9611 | uint32_t const fEFlagsIn = RandEFlags();
|
---|
9612 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9613 | {
|
---|
9614 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9615 | pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9616 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9617 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9618 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9619 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9620 | }
|
---|
9621 |
|
---|
9622 | /* Repeat the test with the input value being the same. */
|
---|
9623 | TestData.InVal2.uXmm = TestData.InVal1.uXmm;
|
---|
9624 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9625 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9626 |
|
---|
9627 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9628 | {
|
---|
9629 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9630 | pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9631 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9632 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9633 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9634 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9635 | }
|
---|
9636 | }
|
---|
9637 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9638 | }
|
---|
9639 |
|
---|
9640 | return RTEXITCODE_SUCCESS;
|
---|
9641 | }
|
---|
9642 | #endif
|
---|
9643 |
|
---|
9644 | static void SseComparePcmpistrmTest(void)
|
---|
9645 | {
|
---|
9646 | X86FXSTATE State;
|
---|
9647 | RT_ZERO(State);
|
---|
9648 |
|
---|
9649 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpistrm); iFn++)
|
---|
9650 | {
|
---|
9651 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpistrm[iFn]))
|
---|
9652 | continue;
|
---|
9653 |
|
---|
9654 | SSE_PCMPISTRM_TEST_T const * const paTests = g_aSsePcmpistrm[iFn].paTests;
|
---|
9655 | uint32_t const cTests = g_aSsePcmpistrm[iFn].cTests;
|
---|
9656 | PFNIEMAIMPLPCMPISTRMU128IMM8 pfn = g_aSsePcmpistrm[iFn].pfn;
|
---|
9657 | uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpistrm[iFn]);
|
---|
9658 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9659 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9660 | {
|
---|
9661 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9662 | {
|
---|
9663 | IEMPCMPISTRXSRC TestVal;
|
---|
9664 | TestVal.uSrc1 = paTests[iTest].InVal1.uXmm;
|
---|
9665 | TestVal.uSrc2 = paTests[iTest].InVal2.uXmm;
|
---|
9666 |
|
---|
9667 | uint32_t fEFlags = paTests[iTest].fEFlagsIn;
|
---|
9668 | RTUINT128U OutVal;
|
---|
9669 | pfn(&OutVal, &fEFlags, &TestVal, paTests[iTest].bImm);
|
---|
9670 | if ( fEFlags != paTests[iTest].fEFlagsOut
|
---|
9671 | || OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi
|
---|
9672 | || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo)
|
---|
9673 | RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s in2=%s bImm=%#x\n"
|
---|
9674 | "%s -> efl=%#08x %s\n"
|
---|
9675 | "%s expected %#08x %s%s%s\n",
|
---|
9676 | iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn,
|
---|
9677 | FormatU128(&paTests[iTest].InVal1.uXmm), FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].bImm,
|
---|
9678 | iVar ? " " : "", fEFlags, FormatU128(&OutVal),
|
---|
9679 | iVar ? " " : "", paTests[iTest].fEFlagsOut, FormatU128(&paTests[iTest].OutVal.uXmm),
|
---|
9680 | EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut),
|
---|
9681 | ( OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi
|
---|
9682 | || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo) ? " - val" : "");
|
---|
9683 | }
|
---|
9684 | }
|
---|
9685 |
|
---|
9686 | FREE_DECOMPRESSED_TESTS(g_aSsePcmpistrm[iFn]);
|
---|
9687 | }
|
---|
9688 | }
|
---|
9689 |
|
---|
9690 |
|
---|
9691 | TYPEDEF_SUBTEST_TYPE(SSE_PCMPESTRI_T, SSE_PCMPESTRI_TEST_T, PFNIEMAIMPLPCMPESTRIU128IMM8);
|
---|
9692 |
|
---|
9693 | static SSE_PCMPESTRI_T g_aSsePcmpestri[] =
|
---|
9694 | {
|
---|
9695 | ENTRY_BIN_SSE_OPT(pcmpestri_u128),
|
---|
9696 | };
|
---|
9697 |
|
---|
9698 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9699 | DUMP_ALL_FN(SseComparePcmpestri, g_aSsePcmpestri)
|
---|
9700 | static RTEXITCODE SseComparePcmpestriGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
9701 | {
|
---|
9702 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9703 |
|
---|
9704 | static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] =
|
---|
9705 | {
|
---|
9706 | { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) },
|
---|
9707 | /** @todo More specials. */
|
---|
9708 | };
|
---|
9709 |
|
---|
9710 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestri); iFn++)
|
---|
9711 | {
|
---|
9712 | PFNIEMAIMPLPCMPESTRIU128IMM8 const pfn = g_aSsePcmpestri[iFn].pfnNative ? g_aSsePcmpestri[iFn].pfnNative : g_aSsePcmpestri[iFn].pfn;
|
---|
9713 |
|
---|
9714 | IEMBINARYOUTPUT BinOut;
|
---|
9715 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSsePcmpestri[iFn]), RTEXITCODE_FAILURE);
|
---|
9716 |
|
---|
9717 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9718 | {
|
---|
9719 | SSE_PCMPESTRI_TEST_T TestData; RT_ZERO(TestData);
|
---|
9720 |
|
---|
9721 | TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1;
|
---|
9722 | TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2;
|
---|
9723 |
|
---|
9724 | for (int64_t i64Rax = -20; i64Rax < 20; i64Rax += 20)
|
---|
9725 | for (int64_t i64Rdx = -20; i64Rdx < 20; i64Rdx += 20)
|
---|
9726 | {
|
---|
9727 | TestData.u64Rax = (uint64_t)i64Rax;
|
---|
9728 | TestData.u64Rdx = (uint64_t)i64Rdx;
|
---|
9729 |
|
---|
9730 | IEMPCMPESTRXSRC TestVal;
|
---|
9731 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9732 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9733 | TestVal.u64Rax = TestData.u64Rax;
|
---|
9734 | TestVal.u64Rdx = TestData.u64Rdx;
|
---|
9735 |
|
---|
9736 | uint32_t const fEFlagsIn = RandEFlags();
|
---|
9737 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9738 | {
|
---|
9739 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9740 | pfn(&TestData.u32EcxOut, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9741 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9742 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9743 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9744 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9745 | }
|
---|
9746 |
|
---|
9747 | /* Repeat the test with the input value being the same. */
|
---|
9748 | TestData.InVal2.uXmm = TestData.InVal1.uXmm;
|
---|
9749 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9750 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9751 |
|
---|
9752 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9753 | {
|
---|
9754 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9755 | pfn(&TestData.u32EcxOut, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9756 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9757 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9758 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9759 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9760 | }
|
---|
9761 | }
|
---|
9762 | }
|
---|
9763 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9764 | }
|
---|
9765 |
|
---|
9766 | return RTEXITCODE_SUCCESS;
|
---|
9767 | }
|
---|
9768 | #endif
|
---|
9769 |
|
---|
9770 | static void SseComparePcmpestriTest(void)
|
---|
9771 | {
|
---|
9772 | X86FXSTATE State;
|
---|
9773 | RT_ZERO(State);
|
---|
9774 |
|
---|
9775 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestri); iFn++)
|
---|
9776 | {
|
---|
9777 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpestri[iFn]))
|
---|
9778 | continue;
|
---|
9779 |
|
---|
9780 | SSE_PCMPESTRI_TEST_T const * const paTests = g_aSsePcmpestri[iFn].paTests;
|
---|
9781 | uint32_t const cTests = g_aSsePcmpestri[iFn].cTests;
|
---|
9782 | PFNIEMAIMPLPCMPESTRIU128IMM8 pfn = g_aSsePcmpestri[iFn].pfn;
|
---|
9783 | uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpestri[iFn]);
|
---|
9784 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9785 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9786 | {
|
---|
9787 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9788 | {
|
---|
9789 | IEMPCMPESTRXSRC TestVal;
|
---|
9790 | TestVal.uSrc1 = paTests[iTest].InVal1.uXmm;
|
---|
9791 | TestVal.uSrc2 = paTests[iTest].InVal2.uXmm;
|
---|
9792 | TestVal.u64Rax = paTests[iTest].u64Rax;
|
---|
9793 | TestVal.u64Rdx = paTests[iTest].u64Rdx;
|
---|
9794 |
|
---|
9795 | uint32_t fEFlags = paTests[iTest].fEFlagsIn;
|
---|
9796 | uint32_t u32EcxOut = 0;
|
---|
9797 | pfn(&u32EcxOut, &fEFlags, &TestVal, paTests[iTest].bImm);
|
---|
9798 | if ( fEFlags != paTests[iTest].fEFlagsOut
|
---|
9799 | || u32EcxOut != paTests[iTest].u32EcxOut)
|
---|
9800 | RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s rax1=%RI64 in2=%s rdx2=%RI64 bImm=%#x\n"
|
---|
9801 | "%s -> efl=%#08x %RU32\n"
|
---|
9802 | "%s expected %#08x %RU32%s%s\n",
|
---|
9803 | iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn,
|
---|
9804 | FormatU128(&paTests[iTest].InVal1.uXmm), paTests[iTest].u64Rax,
|
---|
9805 | FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].u64Rdx,
|
---|
9806 | paTests[iTest].bImm,
|
---|
9807 | iVar ? " " : "", fEFlags, u32EcxOut,
|
---|
9808 | iVar ? " " : "", paTests[iTest].fEFlagsOut, paTests[iTest].u32EcxOut,
|
---|
9809 | EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut),
|
---|
9810 | (u32EcxOut != paTests[iTest].u32EcxOut) ? " - val" : "");
|
---|
9811 | }
|
---|
9812 | }
|
---|
9813 |
|
---|
9814 | FREE_DECOMPRESSED_TESTS(g_aSsePcmpestri[iFn]);
|
---|
9815 | }
|
---|
9816 | }
|
---|
9817 |
|
---|
9818 |
|
---|
9819 | TYPEDEF_SUBTEST_TYPE(SSE_PCMPESTRM_T, SSE_PCMPESTRM_TEST_T, PFNIEMAIMPLPCMPESTRMU128IMM8);
|
---|
9820 |
|
---|
9821 | static SSE_PCMPESTRM_T g_aSsePcmpestrm[] =
|
---|
9822 | {
|
---|
9823 | ENTRY_BIN_SSE_OPT(pcmpestrm_u128),
|
---|
9824 | };
|
---|
9825 |
|
---|
9826 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
9827 | DUMP_ALL_FN(SseComparePcmpestrm, g_aSsePcmpestrm)
|
---|
9828 | static RTEXITCODE SseComparePcmpestrmGenerate(uint32_t cTests, const char * const *papszNameFmts)
|
---|
9829 | {
|
---|
9830 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
9831 |
|
---|
9832 | static struct { RTUINT128U uSrc1; RTUINT128U uSrc2; } const s_aSpecials[] =
|
---|
9833 | {
|
---|
9834 | { RTUINT128_INIT_C(0, 0), RTUINT128_INIT_C(0, 0) },
|
---|
9835 | /** @todo More specials. */
|
---|
9836 | };
|
---|
9837 |
|
---|
9838 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestrm); iFn++)
|
---|
9839 | {
|
---|
9840 | PFNIEMAIMPLPCMPESTRMU128IMM8 const pfn = g_aSsePcmpestrm[iFn].pfnNative ? g_aSsePcmpestrm[iFn].pfnNative : g_aSsePcmpestrm[iFn].pfn;
|
---|
9841 |
|
---|
9842 | IEMBINARYOUTPUT BinOut;
|
---|
9843 | AssertReturn(GENERATE_BINARY_OPEN(&BinOut, papszNameFmts, g_aSsePcmpestrm[iFn]), RTEXITCODE_FAILURE);
|
---|
9844 |
|
---|
9845 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
9846 | {
|
---|
9847 | SSE_PCMPESTRM_TEST_T TestData; RT_ZERO(TestData);
|
---|
9848 |
|
---|
9849 | TestData.InVal1.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc1;
|
---|
9850 | TestData.InVal2.uXmm = iTest < cTests ? RandU128() : s_aSpecials[iTest - cTests].uSrc2;
|
---|
9851 |
|
---|
9852 | for (int64_t i64Rax = -20; i64Rax < 20; i64Rax += 20)
|
---|
9853 | for (int64_t i64Rdx = -20; i64Rdx < 20; i64Rdx += 20)
|
---|
9854 | {
|
---|
9855 | TestData.u64Rax = (uint64_t)i64Rax;
|
---|
9856 | TestData.u64Rdx = (uint64_t)i64Rdx;
|
---|
9857 |
|
---|
9858 | IEMPCMPESTRXSRC TestVal;
|
---|
9859 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9860 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9861 | TestVal.u64Rax = TestData.u64Rax;
|
---|
9862 | TestVal.u64Rdx = TestData.u64Rdx;
|
---|
9863 |
|
---|
9864 | uint32_t const fEFlagsIn = RandEFlags();
|
---|
9865 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9866 | {
|
---|
9867 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9868 | pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9869 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9870 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9871 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9872 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9873 | }
|
---|
9874 |
|
---|
9875 | /* Repeat the test with the input value being the same. */
|
---|
9876 | TestData.InVal2.uXmm = TestData.InVal1.uXmm;
|
---|
9877 | TestVal.uSrc1 = TestData.InVal1.uXmm;
|
---|
9878 | TestVal.uSrc2 = TestData.InVal2.uXmm;
|
---|
9879 |
|
---|
9880 | for (uint16_t u16Imm = 0; u16Imm < 256; u16Imm++)
|
---|
9881 | {
|
---|
9882 | uint32_t fEFlagsOut = fEFlagsIn;
|
---|
9883 | pfn(&TestData.OutVal.uXmm, &fEFlagsOut, &TestVal, (uint8_t)u16Imm);
|
---|
9884 | TestData.fEFlagsIn = fEFlagsIn;
|
---|
9885 | TestData.fEFlagsOut = fEFlagsOut;
|
---|
9886 | TestData.bImm = (uint8_t)u16Imm;
|
---|
9887 | GenerateBinaryWrite(&BinOut, &TestData, sizeof(TestData));
|
---|
9888 | }
|
---|
9889 | }
|
---|
9890 | }
|
---|
9891 | AssertReturn(GenerateBinaryClose(&BinOut), RTEXITCODE_FAILURE);
|
---|
9892 | }
|
---|
9893 |
|
---|
9894 | return RTEXITCODE_SUCCESS;
|
---|
9895 | }
|
---|
9896 | #endif
|
---|
9897 |
|
---|
9898 | static void SseComparePcmpestrmTest(void)
|
---|
9899 | {
|
---|
9900 | X86FXSTATE State;
|
---|
9901 | RT_ZERO(State);
|
---|
9902 |
|
---|
9903 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSsePcmpestrm); iFn++)
|
---|
9904 | {
|
---|
9905 | if (!SUBTEST_CHECK_IF_ENABLED_AND_DECOMPRESS(g_aSsePcmpestrm[iFn]))
|
---|
9906 | continue;
|
---|
9907 |
|
---|
9908 | SSE_PCMPESTRM_TEST_T const * const paTests = g_aSsePcmpestrm[iFn].paTests;
|
---|
9909 | uint32_t const cTests = g_aSsePcmpestrm[iFn].cTests;
|
---|
9910 | PFNIEMAIMPLPCMPESTRMU128IMM8 pfn = g_aSsePcmpestrm[iFn].pfn;
|
---|
9911 | uint32_t const cVars = COUNT_VARIATIONS(g_aSsePcmpestrm[iFn]);
|
---|
9912 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
9913 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
9914 | {
|
---|
9915 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
9916 | {
|
---|
9917 | IEMPCMPESTRXSRC TestVal;
|
---|
9918 | TestVal.uSrc1 = paTests[iTest].InVal1.uXmm;
|
---|
9919 | TestVal.uSrc2 = paTests[iTest].InVal2.uXmm;
|
---|
9920 | TestVal.u64Rax = paTests[iTest].u64Rax;
|
---|
9921 | TestVal.u64Rdx = paTests[iTest].u64Rdx;
|
---|
9922 |
|
---|
9923 | uint32_t fEFlags = paTests[iTest].fEFlagsIn;
|
---|
9924 | RTUINT128U OutVal;
|
---|
9925 | pfn(&OutVal, &fEFlags, &TestVal, paTests[iTest].bImm);
|
---|
9926 | if ( fEFlags != paTests[iTest].fEFlagsOut
|
---|
9927 | || OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi
|
---|
9928 | || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo)
|
---|
9929 | RTTestFailed(g_hTest, "#%04u%s: efl=%#08x in1=%s rax1=%RI64 in2=%s rdx2=%RI64 bImm=%#x\n"
|
---|
9930 | "%s -> efl=%#08x %s\n"
|
---|
9931 | "%s expected %#08x %s%s%s\n",
|
---|
9932 | iTest, iVar ? "/n" : "", paTests[iTest].fEFlagsIn,
|
---|
9933 | FormatU128(&paTests[iTest].InVal1.uXmm), paTests[iTest].u64Rax,
|
---|
9934 | FormatU128(&paTests[iTest].InVal2.uXmm), paTests[iTest].u64Rdx,
|
---|
9935 | paTests[iTest].bImm,
|
---|
9936 | iVar ? " " : "", fEFlags, FormatU128(&OutVal),
|
---|
9937 | iVar ? " " : "", paTests[iTest].fEFlagsOut, FormatU128(&paTests[iTest].OutVal.uXmm),
|
---|
9938 | EFlagsDiff(fEFlags, paTests[iTest].fEFlagsOut),
|
---|
9939 | ( OutVal.s.Hi != paTests[iTest].OutVal.uXmm.s.Hi
|
---|
9940 | || OutVal.s.Lo != paTests[iTest].OutVal.uXmm.s.Lo) ? " - val" : "");
|
---|
9941 | }
|
---|
9942 | }
|
---|
9943 |
|
---|
9944 | FREE_DECOMPRESSED_TESTS(g_aSsePcmpestrm[iFn]);
|
---|
9945 | }
|
---|
9946 | }
|
---|
9947 |
|
---|
9948 |
|
---|
9949 |
|
---|
9950 | int main(int argc, char **argv)
|
---|
9951 | {
|
---|
9952 | int rc = RTR3InitExe(argc, &argv, 0);
|
---|
9953 | if (RT_FAILURE(rc))
|
---|
9954 | return RTMsgInitFailure(rc);
|
---|
9955 |
|
---|
9956 | /*
|
---|
9957 | * Determin the host CPU.
|
---|
9958 | * If not using the IEMAllAImpl.asm code, this will be set to Intel.
|
---|
9959 | */
|
---|
9960 | #if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
|
---|
9961 | g_idxCpuEflFlavour = ASMIsAmdCpu() || ASMIsHygonCpu()
|
---|
9962 | ? IEMTARGETCPU_EFL_BEHAVIOR_AMD
|
---|
9963 | : IEMTARGETCPU_EFL_BEHAVIOR_INTEL;
|
---|
9964 | #else
|
---|
9965 | g_idxCpuEflFlavour = IEMTARGETCPU_EFL_BEHAVIOR_INTEL;
|
---|
9966 | #endif
|
---|
9967 |
|
---|
9968 | /*
|
---|
9969 | * Parse arguments.
|
---|
9970 | */
|
---|
9971 | enum { kModeNotSet, kModeTest, kModeGenerate, kModeDump }
|
---|
9972 | enmMode = kModeNotSet;
|
---|
9973 | #define CATEGORY_INT RT_BIT_32(0)
|
---|
9974 | #define CATEGORY_FPU_LD_ST RT_BIT_32(1)
|
---|
9975 | #define CATEGORY_FPU_BINARY_1 RT_BIT_32(2)
|
---|
9976 | #define CATEGORY_FPU_BINARY_2 RT_BIT_32(3)
|
---|
9977 | #define CATEGORY_FPU_OTHER RT_BIT_32(4)
|
---|
9978 | #define CATEGORY_SSE_FP_BINARY RT_BIT_32(5)
|
---|
9979 | #define CATEGORY_SSE_FP_OTHER RT_BIT_32(6)
|
---|
9980 | #define CATEGORY_SSE_PCMPXSTRX RT_BIT_32(7)
|
---|
9981 | uint32_t fCategories = UINT32_MAX;
|
---|
9982 | bool fCpuData = true;
|
---|
9983 | bool fCommonData = true;
|
---|
9984 | uint32_t const cDefaultTests = 96;
|
---|
9985 | uint32_t cTests = cDefaultTests;
|
---|
9986 |
|
---|
9987 | RTGETOPTDEF const s_aOptions[] =
|
---|
9988 | {
|
---|
9989 | // mode:
|
---|
9990 | { "--generate", 'g', RTGETOPT_REQ_NOTHING },
|
---|
9991 | { "--dump", 'G', RTGETOPT_REQ_NOTHING },
|
---|
9992 | { "--test", 't', RTGETOPT_REQ_NOTHING },
|
---|
9993 | { "--benchmark", 'b', RTGETOPT_REQ_NOTHING },
|
---|
9994 | // test selection (both)
|
---|
9995 | { "--all", 'a', RTGETOPT_REQ_NOTHING },
|
---|
9996 | { "--none", 'z', RTGETOPT_REQ_NOTHING },
|
---|
9997 | { "--zap", 'z', RTGETOPT_REQ_NOTHING },
|
---|
9998 | { "--fpu-ld-st", 'F', RTGETOPT_REQ_NOTHING }, /* FPU stuff is upper case */
|
---|
9999 | { "--fpu-load-store", 'F', RTGETOPT_REQ_NOTHING },
|
---|
10000 | { "--fpu-binary-1", 'B', RTGETOPT_REQ_NOTHING },
|
---|
10001 | { "--fpu-binary-2", 'P', RTGETOPT_REQ_NOTHING },
|
---|
10002 | { "--fpu-other", 'O', RTGETOPT_REQ_NOTHING },
|
---|
10003 | { "--sse-fp-binary", 'S', RTGETOPT_REQ_NOTHING },
|
---|
10004 | { "--sse-fp-other", 'T', RTGETOPT_REQ_NOTHING },
|
---|
10005 | { "--sse-pcmpxstrx", 'C', RTGETOPT_REQ_NOTHING },
|
---|
10006 | { "--int", 'i', RTGETOPT_REQ_NOTHING },
|
---|
10007 | { "--include", 'I', RTGETOPT_REQ_STRING },
|
---|
10008 | { "--exclude", 'X', RTGETOPT_REQ_STRING },
|
---|
10009 | // generation parameters
|
---|
10010 | { "--common", 'm', RTGETOPT_REQ_NOTHING },
|
---|
10011 | { "--cpu", 'c', RTGETOPT_REQ_NOTHING },
|
---|
10012 | { "--number-of-tests", 'n', RTGETOPT_REQ_UINT32 },
|
---|
10013 | { "--verbose", 'v', RTGETOPT_REQ_NOTHING },
|
---|
10014 | { "--quiet", 'q', RTGETOPT_REQ_NOTHING },
|
---|
10015 | { "--quiet-skipping", 'Q', RTGETOPT_REQ_NOTHING },
|
---|
10016 | };
|
---|
10017 |
|
---|
10018 | RTGETOPTSTATE State;
|
---|
10019 | rc = RTGetOptInit(&State, argc, argv, s_aOptions, RT_ELEMENTS(s_aOptions), 1, 0);
|
---|
10020 | AssertRCReturn(rc, RTEXITCODE_FAILURE);
|
---|
10021 |
|
---|
10022 | RTGETOPTUNION ValueUnion;
|
---|
10023 | while ((rc = RTGetOpt(&State, &ValueUnion)))
|
---|
10024 | {
|
---|
10025 | switch (rc)
|
---|
10026 | {
|
---|
10027 | case 'g':
|
---|
10028 | enmMode = kModeGenerate;
|
---|
10029 | g_cPicoSecBenchmark = 0;
|
---|
10030 | break;
|
---|
10031 | case 'G':
|
---|
10032 | enmMode = kModeDump;
|
---|
10033 | g_cPicoSecBenchmark = 0;
|
---|
10034 | break;
|
---|
10035 | case 't':
|
---|
10036 | enmMode = kModeTest;
|
---|
10037 | g_cPicoSecBenchmark = 0;
|
---|
10038 | break;
|
---|
10039 | case 'b':
|
---|
10040 | enmMode = kModeTest;
|
---|
10041 | g_cPicoSecBenchmark += RT_NS_1SEC / 2 * UINT64_C(1000); /* half a second in pico seconds */
|
---|
10042 | break;
|
---|
10043 |
|
---|
10044 | case 'a':
|
---|
10045 | fCpuData = true;
|
---|
10046 | fCommonData = true;
|
---|
10047 | fCategories = UINT32_MAX;
|
---|
10048 | break;
|
---|
10049 | case 'z':
|
---|
10050 | fCpuData = false;
|
---|
10051 | fCommonData = false;
|
---|
10052 | fCategories = 0;
|
---|
10053 | break;
|
---|
10054 |
|
---|
10055 | case 'F':
|
---|
10056 | fCategories |= CATEGORY_FPU_LD_ST;
|
---|
10057 | break;
|
---|
10058 | case 'O':
|
---|
10059 | fCategories |= CATEGORY_FPU_OTHER;
|
---|
10060 | break;
|
---|
10061 | case 'B':
|
---|
10062 | fCategories |= CATEGORY_FPU_BINARY_1;
|
---|
10063 | break;
|
---|
10064 | case 'P':
|
---|
10065 | fCategories |= CATEGORY_FPU_BINARY_2;
|
---|
10066 | break;
|
---|
10067 | case 'S':
|
---|
10068 | fCategories |= CATEGORY_SSE_FP_BINARY;
|
---|
10069 | break;
|
---|
10070 | case 'T':
|
---|
10071 | fCategories |= CATEGORY_SSE_FP_OTHER;
|
---|
10072 | break;
|
---|
10073 | case 'C':
|
---|
10074 | fCategories |= CATEGORY_SSE_PCMPXSTRX;
|
---|
10075 | break;
|
---|
10076 | case 'i':
|
---|
10077 | fCategories |= CATEGORY_INT;
|
---|
10078 | break;
|
---|
10079 |
|
---|
10080 | case 'I':
|
---|
10081 | if (g_cIncludeTestPatterns >= RT_ELEMENTS(g_apszIncludeTestPatterns))
|
---|
10082 | return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Too many include patterns (max %zu)",
|
---|
10083 | RT_ELEMENTS(g_apszIncludeTestPatterns));
|
---|
10084 | g_apszIncludeTestPatterns[g_cIncludeTestPatterns++] = ValueUnion.psz;
|
---|
10085 | break;
|
---|
10086 | case 'X':
|
---|
10087 | if (g_cExcludeTestPatterns >= RT_ELEMENTS(g_apszExcludeTestPatterns))
|
---|
10088 | return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Too many exclude patterns (max %zu)",
|
---|
10089 | RT_ELEMENTS(g_apszExcludeTestPatterns));
|
---|
10090 | g_apszExcludeTestPatterns[g_cExcludeTestPatterns++] = ValueUnion.psz;
|
---|
10091 | break;
|
---|
10092 |
|
---|
10093 | case 'm':
|
---|
10094 | fCommonData = true;
|
---|
10095 | break;
|
---|
10096 | case 'c':
|
---|
10097 | fCpuData = true;
|
---|
10098 | break;
|
---|
10099 | case 'n':
|
---|
10100 | cTests = ValueUnion.u32;
|
---|
10101 | break;
|
---|
10102 |
|
---|
10103 | case 'q':
|
---|
10104 | g_cVerbosity = 0;
|
---|
10105 | break;
|
---|
10106 | case 'v':
|
---|
10107 | g_cVerbosity++;
|
---|
10108 | break;
|
---|
10109 | case 'Q':
|
---|
10110 | g_fVerboseSkipping = false;
|
---|
10111 | break;
|
---|
10112 |
|
---|
10113 | case 'h':
|
---|
10114 | RTPrintf("usage: %Rbn <-g|-t> [options]\n"
|
---|
10115 | "\n"
|
---|
10116 | "Mode:\n"
|
---|
10117 | " -g, --generate\n"
|
---|
10118 | " Generate test data.\n"
|
---|
10119 | " -t, --test\n"
|
---|
10120 | " Execute tests.\n"
|
---|
10121 | " -b, --benchmark\n"
|
---|
10122 | " Execute tests and do 1/2 seconds of benchmarking.\n"
|
---|
10123 | " Repeating the option increases the benchmark duration by 0.5 seconds.\n"
|
---|
10124 | "\n"
|
---|
10125 | "Test selection (both modes):\n"
|
---|
10126 | " -a, --all\n"
|
---|
10127 | " Enable all tests and generated test data. (default)\n"
|
---|
10128 | " -z, --zap, --none\n"
|
---|
10129 | " Disable all tests and test data types.\n"
|
---|
10130 | " -i, --int\n"
|
---|
10131 | " Enable non-FPU tests.\n"
|
---|
10132 | " -F, --fpu-ld-st\n"
|
---|
10133 | " Enable FPU load and store tests.\n"
|
---|
10134 | " -B, --fpu-binary-1\n"
|
---|
10135 | " Enable FPU binary 80-bit FP tests.\n"
|
---|
10136 | " -P, --fpu-binary-2\n"
|
---|
10137 | " Enable FPU binary 64- and 32-bit FP tests.\n"
|
---|
10138 | " -O, --fpu-other\n"
|
---|
10139 | " Enable FPU binary 64- and 32-bit FP tests.\n"
|
---|
10140 | " -S, --sse-fp-binary\n"
|
---|
10141 | " Enable SSE binary 64- and 32-bit FP tests.\n"
|
---|
10142 | " -T, --sse-fp-other\n"
|
---|
10143 | " Enable misc SSE 64- and 32-bit FP tests.\n"
|
---|
10144 | " -C, --sse-pcmpxstrx\n"
|
---|
10145 | " Enable SSE pcmpxstrx tests.\n"
|
---|
10146 | " -I,--include=<test-patter>\n"
|
---|
10147 | " Enable tests matching the given pattern.\n"
|
---|
10148 | " -X,--exclude=<test-patter>\n"
|
---|
10149 | " Skip tests matching the given pattern (overrides --include).\n"
|
---|
10150 | "\n"
|
---|
10151 | "Generation:\n"
|
---|
10152 | " -m, --common\n"
|
---|
10153 | " Enable generating common test data.\n"
|
---|
10154 | " -c, --only-cpu\n"
|
---|
10155 | " Enable generating CPU specific test data.\n"
|
---|
10156 | " -n, --number-of-test <count>\n"
|
---|
10157 | " Number of tests to generate. Default: %u\n"
|
---|
10158 | "\n"
|
---|
10159 | "Other:\n"
|
---|
10160 | " -v, --verbose\n"
|
---|
10161 | " -q, --quiet\n"
|
---|
10162 | " Noise level. Default: --quiet\n"
|
---|
10163 | " -Q, --quiet-skipping\n"
|
---|
10164 | " Don't display skipped tests.\n"
|
---|
10165 | "\n"
|
---|
10166 | "Tip! When working on a single instruction, use the the -I and -Q options to\n"
|
---|
10167 | " restrict the testing: %Rbn -tiQI \"shr_*\"\n"
|
---|
10168 | , argv[0], cDefaultTests, argv[0]);
|
---|
10169 | return RTEXITCODE_SUCCESS;
|
---|
10170 | default:
|
---|
10171 | return RTGetOptPrintError(rc, &ValueUnion);
|
---|
10172 | }
|
---|
10173 | }
|
---|
10174 |
|
---|
10175 | static const struct
|
---|
10176 | {
|
---|
10177 | uint32_t fCategory;
|
---|
10178 | void (*pfnTest)(void);
|
---|
10179 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
10180 | const char *pszFilenameFmt;
|
---|
10181 | RTEXITCODE (*pfnGenerate)(uint32_t cTests, const char * const *papszNameFmts);
|
---|
10182 | RTEXITCODE (*pfnDumpAll)(const char * const *papszNameFmts);
|
---|
10183 | uint32_t cMinTests;
|
---|
10184 | # define GROUP_ENTRY(a_fCategory, a_BaseNm, a_szFilenameFmt, a_cMinTests) \
|
---|
10185 | { a_fCategory, a_BaseNm ## Test, a_szFilenameFmt, a_BaseNm ## Generate, a_BaseNm ## DumpAll, a_cMinTests }
|
---|
10186 | #else
|
---|
10187 | # define GROUP_ENTRY(a_fCategory, a_BaseNm, a_szFilenameFmt, a_cMinTests) \
|
---|
10188 | { a_fCategory, a_BaseNm ## Test }
|
---|
10189 | #endif
|
---|
10190 | #define GROUP_ENTRY_MANUAL(a_fCategory, a_BaseNm) \
|
---|
10191 | { a_fCategory, a_BaseNm ## Test }
|
---|
10192 | } s_aGroups[] =
|
---|
10193 | {
|
---|
10194 | GROUP_ENTRY(CATEGORY_INT, BinU8, "tstIEMAImplDataInt-%s.bin.gz", 0),
|
---|
10195 | GROUP_ENTRY(CATEGORY_INT, BinU16, "tstIEMAImplDataInt-%s.bin.gz", 0),
|
---|
10196 | GROUP_ENTRY(CATEGORY_INT, BinU32, "tstIEMAImplDataInt-%s.bin.gz", 0),
|
---|
10197 | GROUP_ENTRY(CATEGORY_INT, BinU64, "tstIEMAImplDataInt-%s.bin.gz", 0),
|
---|
10198 | GROUP_ENTRY(CATEGORY_INT, ShiftDbl, "tstIEMAImplDataInt-%s.bin.gz", 128),
|
---|
10199 | GROUP_ENTRY(CATEGORY_INT, Unary, "tstIEMAImplDataInt-%s.bin.gz", 0),
|
---|
10200 | GROUP_ENTRY(CATEGORY_INT, Shift, "tstIEMAImplDataInt-%s.bin.gz", 0),
|
---|
10201 | GROUP_ENTRY(CATEGORY_INT, MulDiv, "tstIEMAImplDataInt-%s.bin.gz", 0),
|
---|
10202 | GROUP_ENTRY_MANUAL(CATEGORY_INT, Xchg),
|
---|
10203 | GROUP_ENTRY_MANUAL(CATEGORY_INT, Xadd),
|
---|
10204 | GROUP_ENTRY_MANUAL(CATEGORY_INT, CmpXchg),
|
---|
10205 | GROUP_ENTRY_MANUAL(CATEGORY_INT, CmpXchg8b),
|
---|
10206 | GROUP_ENTRY_MANUAL(CATEGORY_INT, CmpXchg16b),
|
---|
10207 | GROUP_ENTRY_MANUAL(CATEGORY_INT, Bswap),
|
---|
10208 |
|
---|
10209 | GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuLdConst, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 0),
|
---|
10210 | GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuLdInt, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 0),
|
---|
10211 | GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuLdD80, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 0),
|
---|
10212 | GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuLdMem, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 384), /* needs better coverage */
|
---|
10213 |
|
---|
10214 | GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuStInt, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 0),
|
---|
10215 | GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuStD80, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 0),
|
---|
10216 | GROUP_ENTRY(CATEGORY_FPU_LD_ST, FpuStMem, "tstIEMAImplDataFpuLdSt-%s.bin.gz", 384), /* needs better coverage */
|
---|
10217 |
|
---|
10218 | GROUP_ENTRY(CATEGORY_FPU_BINARY_1, FpuBinaryR80, "tstIEMAImplDataFpuBinary1-%s.bin.gz", 0),
|
---|
10219 | GROUP_ENTRY(CATEGORY_FPU_BINARY_1, FpuBinaryFswR80, "tstIEMAImplDataFpuBinary1-%s.bin.gz", 0),
|
---|
10220 | GROUP_ENTRY(CATEGORY_FPU_BINARY_1, FpuBinaryEflR80, "tstIEMAImplDataFpuBinary1-%s.bin.gz", 0),
|
---|
10221 |
|
---|
10222 | GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryR64, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0),
|
---|
10223 | GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryR32, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0),
|
---|
10224 | GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryI32, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0),
|
---|
10225 | GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryI16, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0),
|
---|
10226 |
|
---|
10227 | GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryFswR64, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0),
|
---|
10228 | GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryFswR32, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0),
|
---|
10229 | GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryFswI32, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0),
|
---|
10230 | GROUP_ENTRY(CATEGORY_FPU_BINARY_2, FpuBinaryFswI16, "tstIEMAImplDataFpuBinary2-%s.bin.gz", 0),
|
---|
10231 |
|
---|
10232 | GROUP_ENTRY(CATEGORY_FPU_OTHER, FpuUnaryR80, "tstIEMAImplDataFpuOther-%s.bin.gz", 0),
|
---|
10233 | GROUP_ENTRY(CATEGORY_FPU_OTHER, FpuUnaryFswR80, "tstIEMAImplDataFpuOther-%s.bin.gz", 0),
|
---|
10234 | GROUP_ENTRY(CATEGORY_FPU_OTHER, FpuUnaryTwoR80, "tstIEMAImplDataFpuOther-%s.bin.gz", 0),
|
---|
10235 |
|
---|
10236 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10237 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10238 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryU128R32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10239 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryU128R64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10240 |
|
---|
10241 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryI32R64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10242 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryI64R64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10243 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryI32R32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10244 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryI64R32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10245 |
|
---|
10246 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR64I32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10247 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR64I64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10248 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR32I32, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10249 | GROUP_ENTRY(CATEGORY_SSE_FP_BINARY, SseBinaryR32I64, "tstIEMAImplDataSseBinary-%s.bin.gz", 0),
|
---|
10250 |
|
---|
10251 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseCompareEflR32R32, "tstIEMAImplDataSseCompare-%s.bin.gz", 0),
|
---|
10252 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseCompareEflR64R64, "tstIEMAImplDataSseCompare-%s.bin.gz", 0),
|
---|
10253 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseCompareF2XmmR32Imm8, "tstIEMAImplDataSseCompare-%s.bin.gz", 0),
|
---|
10254 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseCompareF2XmmR64Imm8, "tstIEMAImplDataSseCompare-%s.bin.gz", 0),
|
---|
10255 |
|
---|
10256 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmI32R32, "tstIEMAImplDataSseConvert-%s.bin.gz", 0),
|
---|
10257 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmR32I32, "tstIEMAImplDataSseConvert-%s.bin.gz", 0),
|
---|
10258 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmI32R64, "tstIEMAImplDataSseConvert-%s.bin.gz", 0),
|
---|
10259 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmR64I32, "tstIEMAImplDataSseConvert-%s.bin.gz", 0),
|
---|
10260 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertMmXmm, "tstIEMAImplDataSseConvert-%s.bin.gz", 0),
|
---|
10261 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmR32Mm, "tstIEMAImplDataSseConvert-%s.bin.gz", 0),
|
---|
10262 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertXmmR64Mm, "tstIEMAImplDataSseConvert-%s.bin.gz", 0),
|
---|
10263 | GROUP_ENTRY(CATEGORY_SSE_FP_OTHER, SseConvertMmI32XmmR32, "tstIEMAImplDataSseConvert-%s.bin.gz", 0),
|
---|
10264 |
|
---|
10265 | GROUP_ENTRY(CATEGORY_SSE_PCMPXSTRX, SseComparePcmpistri, "tstIEMAImplDataSsePcmpxstrx-%s.bin.gz", 0),
|
---|
10266 | GROUP_ENTRY(CATEGORY_SSE_PCMPXSTRX, SseComparePcmpistrm, "tstIEMAImplDataSsePcmpxstrx-%s.bin.gz", 0),
|
---|
10267 | GROUP_ENTRY(CATEGORY_SSE_PCMPXSTRX, SseComparePcmpestri, "tstIEMAImplDataSsePcmpxstrx-%s.bin.gz", 0),
|
---|
10268 | GROUP_ENTRY(CATEGORY_SSE_PCMPXSTRX, SseComparePcmpestrm, "tstIEMAImplDataSsePcmpxstrx-%s.bin.gz", 0),
|
---|
10269 | };
|
---|
10270 |
|
---|
10271 | /*
|
---|
10272 | * Generate data?
|
---|
10273 | */
|
---|
10274 | if (enmMode == kModeGenerate)
|
---|
10275 | {
|
---|
10276 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
10277 | if (cTests == 0)
|
---|
10278 | cTests = cDefaultTests;
|
---|
10279 | g_cZeroDstTests = RT_MIN(cTests / 16, 32);
|
---|
10280 | g_cZeroSrcTests = g_cZeroDstTests * 2;
|
---|
10281 |
|
---|
10282 | RTMpGetDescription(NIL_RTCPUID, g_szCpuDesc, sizeof(g_szCpuDesc));
|
---|
10283 |
|
---|
10284 | /* For the revision, use the highest for this file and VBoxRT. */
|
---|
10285 | static const char s_szRev[] = "$Revision: 104208 $";
|
---|
10286 | const char *pszRev = s_szRev;
|
---|
10287 | while (*pszRev && !RT_C_IS_DIGIT(*pszRev))
|
---|
10288 | pszRev++;
|
---|
10289 | g_uSvnRev = RTStrToUInt32(pszRev);
|
---|
10290 | g_uSvnRev = RT_MAX(g_uSvnRev, RTBldCfgRevision());
|
---|
10291 |
|
---|
10292 | /* Loop thru the groups and call the generate for any that's enabled. */
|
---|
10293 | for (size_t i = 0; i < RT_ELEMENTS(s_aGroups); i++)
|
---|
10294 | if ((s_aGroups[i].fCategory & fCategories) && s_aGroups[i].pfnGenerate)
|
---|
10295 | {
|
---|
10296 | const char * const apszNameFmts[] =
|
---|
10297 | {
|
---|
10298 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? s_aGroups[i].pszFilenameFmt : NULL,
|
---|
10299 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? s_aGroups[i].pszFilenameFmt : NULL,
|
---|
10300 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? s_aGroups[i].pszFilenameFmt : NULL,
|
---|
10301 | };
|
---|
10302 | RTEXITCODE rcExit = s_aGroups[i].pfnGenerate(RT_MAX(cTests, s_aGroups[i].cMinTests), apszNameFmts);
|
---|
10303 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
10304 | return rcExit;
|
---|
10305 | }
|
---|
10306 | return RTEXITCODE_SUCCESS;
|
---|
10307 | #else
|
---|
10308 | return RTMsgErrorExitFailure("Test data generator not compiled in!");
|
---|
10309 | #endif
|
---|
10310 | }
|
---|
10311 |
|
---|
10312 | /*
|
---|
10313 | * Dump tables (used for the conversion, mostly useless now).
|
---|
10314 | */
|
---|
10315 | if (enmMode == kModeDump)
|
---|
10316 | {
|
---|
10317 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
10318 | /* Loop thru the groups and call the generate for any that's enabled. */
|
---|
10319 | for (size_t i = 0; i < RT_ELEMENTS(s_aGroups); i++)
|
---|
10320 | if ((s_aGroups[i].fCategory & fCategories) && s_aGroups[i].pfnDumpAll)
|
---|
10321 | {
|
---|
10322 | const char * const apszNameFmts[] =
|
---|
10323 | {
|
---|
10324 | /*[IEMTARGETCPU_EFL_BEHAVIOR_NATIVE] =*/ fCommonData ? s_aGroups[i].pszFilenameFmt : NULL,
|
---|
10325 | /*[IEMTARGETCPU_EFL_BEHAVIOR_INTEL] =*/ fCpuData ? s_aGroups[i].pszFilenameFmt : NULL,
|
---|
10326 | /*[IEMTARGETCPU_EFL_BEHAVIOR_AMD] =*/ fCpuData ? s_aGroups[i].pszFilenameFmt : NULL,
|
---|
10327 | };
|
---|
10328 | RTEXITCODE rcExit = s_aGroups[i].pfnGenerate(RT_MAX(cTests, s_aGroups[i].cMinTests), apszNameFmts);
|
---|
10329 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
10330 | return rcExit;
|
---|
10331 | }
|
---|
10332 | return RTEXITCODE_SUCCESS;
|
---|
10333 | #else
|
---|
10334 | return RTMsgErrorExitFailure("Test data generator not compiled in!");
|
---|
10335 | #endif
|
---|
10336 | }
|
---|
10337 |
|
---|
10338 |
|
---|
10339 | /*
|
---|
10340 | * Do testing. Currrently disabled by default as data needs to be checked
|
---|
10341 | * on both intel and AMD systems first.
|
---|
10342 | */
|
---|
10343 | rc = RTTestCreate("tstIEMAImpl", &g_hTest);
|
---|
10344 | AssertRCReturn(rc, RTEXITCODE_FAILURE);
|
---|
10345 | if (enmMode == kModeTest)
|
---|
10346 | {
|
---|
10347 | RTTestBanner(g_hTest);
|
---|
10348 |
|
---|
10349 | /* Allocate guarded memory for use in the tests. */
|
---|
10350 | #define ALLOC_GUARDED_VAR(a_puVar) do { \
|
---|
10351 | rc = RTTestGuardedAlloc(g_hTest, sizeof(*a_puVar), sizeof(*a_puVar), false /*fHead*/, (void **)&a_puVar); \
|
---|
10352 | if (RT_FAILURE(rc)) RTTestFailed(g_hTest, "Failed to allocate guarded mem: " #a_puVar); \
|
---|
10353 | } while (0)
|
---|
10354 | ALLOC_GUARDED_VAR(g_pu8);
|
---|
10355 | ALLOC_GUARDED_VAR(g_pu16);
|
---|
10356 | ALLOC_GUARDED_VAR(g_pu32);
|
---|
10357 | ALLOC_GUARDED_VAR(g_pu64);
|
---|
10358 | ALLOC_GUARDED_VAR(g_pu128);
|
---|
10359 | ALLOC_GUARDED_VAR(g_pu8Two);
|
---|
10360 | ALLOC_GUARDED_VAR(g_pu16Two);
|
---|
10361 | ALLOC_GUARDED_VAR(g_pu32Two);
|
---|
10362 | ALLOC_GUARDED_VAR(g_pu64Two);
|
---|
10363 | ALLOC_GUARDED_VAR(g_pu128Two);
|
---|
10364 | ALLOC_GUARDED_VAR(g_pfEfl);
|
---|
10365 | if (RTTestErrorCount(g_hTest) == 0)
|
---|
10366 | {
|
---|
10367 | /* Loop thru the groups and call test function for anything that's enabled. */
|
---|
10368 | for (size_t i = 0; i < RT_ELEMENTS(s_aGroups); i++)
|
---|
10369 | if ((s_aGroups[i].fCategory & fCategories))
|
---|
10370 | s_aGroups[i].pfnTest();
|
---|
10371 | }
|
---|
10372 | return RTTestSummaryAndDestroy(g_hTest);
|
---|
10373 | }
|
---|
10374 | return RTTestSkipAndDestroy(g_hTest, "unfinished testcase");
|
---|
10375 | }
|
---|
10376 |
|
---|