1 | /* $Id: tstIEMAImpl.cpp 96348 2022-08-19 17:00:45Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM Assembly Instruction Helper Testcase.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2022 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #include "../include/IEMInternal.h"
|
---|
23 |
|
---|
24 | #include <iprt/errcore.h>
|
---|
25 | #include <VBox/log.h>
|
---|
26 | #include <iprt/assert.h>
|
---|
27 | #include <iprt/ctype.h>
|
---|
28 | #include <iprt/getopt.h>
|
---|
29 | #include <iprt/initterm.h>
|
---|
30 | #include <iprt/message.h>
|
---|
31 | #include <iprt/mp.h>
|
---|
32 | #include <iprt/rand.h>
|
---|
33 | #include <iprt/stream.h>
|
---|
34 | #include <iprt/string.h>
|
---|
35 | #include <iprt/test.h>
|
---|
36 |
|
---|
37 | #include "tstIEMAImpl.h"
|
---|
38 |
|
---|
39 |
|
---|
40 | /*********************************************************************************************************************************
|
---|
41 | * Defined Constants And Macros *
|
---|
42 | *********************************************************************************************************************************/
|
---|
43 | #define ENTRY(a_Name) ENTRY_EX(a_Name, 0)
|
---|
44 | #define ENTRY_EX(a_Name, a_uExtra) \
|
---|
45 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \
|
---|
46 | g_aTests_ ## a_Name, &g_cTests_ ## a_Name, \
|
---|
47 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
48 |
|
---|
49 | #define ENTRY_BIN(a_Name) ENTRY_EX_BIN(a_Name, 0)
|
---|
50 | #define ENTRY_EX_BIN(a_Name, a_uExtra) \
|
---|
51 | { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \
|
---|
52 | g_aTests_ ## a_Name, &g_cbTests_ ## a_Name, \
|
---|
53 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ }
|
---|
54 |
|
---|
55 | #define ENTRY_INTEL(a_Name, a_fEflUndef) ENTRY_INTEL_EX(a_Name, a_fEflUndef, 0)
|
---|
56 | #define ENTRY_INTEL_EX(a_Name, a_fEflUndef, a_uExtra) \
|
---|
57 | { RT_XSTR(a_Name) "_intel", iemAImpl_ ## a_Name ## _intel, iemAImpl_ ## a_Name, \
|
---|
58 | g_aTests_ ## a_Name ## _intel, &g_cTests_ ## a_Name ## _intel, \
|
---|
59 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_INTEL }
|
---|
60 |
|
---|
61 | #define ENTRY_AMD(a_Name, a_fEflUndef) ENTRY_AMD_EX(a_Name, a_fEflUndef, 0)
|
---|
62 | #define ENTRY_AMD_EX(a_Name, a_fEflUndef, a_uExtra) \
|
---|
63 | { RT_XSTR(a_Name) "_amd", iemAImpl_ ## a_Name ## _amd, iemAImpl_ ## a_Name, \
|
---|
64 | g_aTests_ ## a_Name ## _amd, &g_cTests_ ## a_Name ## _amd, \
|
---|
65 | a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_AMD }
|
---|
66 |
|
---|
67 | #define TYPEDEF_SUBTEST_TYPE(a_TypeName, a_TestType, a_FunctionPtrType) \
|
---|
68 | typedef struct a_TypeName \
|
---|
69 | { \
|
---|
70 | const char *pszName; \
|
---|
71 | a_FunctionPtrType pfn; \
|
---|
72 | a_FunctionPtrType pfnNative; \
|
---|
73 | a_TestType const *paTests; \
|
---|
74 | uint32_t const *pcTests; \
|
---|
75 | uint32_t uExtra; \
|
---|
76 | uint8_t idxCpuEflFlavour; \
|
---|
77 | } a_TypeName
|
---|
78 |
|
---|
79 | #define COUNT_VARIATIONS(a_SubTest) \
|
---|
80 | (1 + ((a_SubTest).idxCpuEflFlavour == g_idxCpuEflFlavour && (a_SubTest).pfnNative) )
|
---|
81 |
|
---|
82 |
|
---|
83 | /*********************************************************************************************************************************
|
---|
84 | * Global Variables *
|
---|
85 | *********************************************************************************************************************************/
|
---|
86 | static RTTEST g_hTest;
|
---|
87 | static uint8_t g_idxCpuEflFlavour = IEMTARGETCPU_EFL_BEHAVIOR_INTEL;
|
---|
88 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
89 | static uint32_t g_cZeroDstTests = 2;
|
---|
90 | static uint32_t g_cZeroSrcTests = 4;
|
---|
91 | #endif
|
---|
92 | static uint8_t *g_pu8, *g_pu8Two;
|
---|
93 | static uint16_t *g_pu16, *g_pu16Two;
|
---|
94 | static uint32_t *g_pu32, *g_pu32Two, *g_pfEfl;
|
---|
95 | static uint64_t *g_pu64, *g_pu64Two;
|
---|
96 | static RTUINT128U *g_pu128, *g_pu128Two;
|
---|
97 |
|
---|
98 | static char g_aszBuf[32][256];
|
---|
99 | static unsigned g_idxBuf = 0;
|
---|
100 |
|
---|
101 | static uint32_t g_cIncludeTestPatterns;
|
---|
102 | static uint32_t g_cExcludeTestPatterns;
|
---|
103 | static const char *g_apszIncludeTestPatterns[64];
|
---|
104 | static const char *g_apszExcludeTestPatterns[64];
|
---|
105 |
|
---|
106 | static unsigned g_cVerbosity = 0;
|
---|
107 |
|
---|
108 |
|
---|
109 | /*********************************************************************************************************************************
|
---|
110 | * Internal Functions *
|
---|
111 | *********************************************************************************************************************************/
|
---|
112 | static const char *FormatR80(PCRTFLOAT80U pr80);
|
---|
113 | static const char *FormatR64(PCRTFLOAT64U pr64);
|
---|
114 | static const char *FormatR32(PCRTFLOAT32U pr32);
|
---|
115 |
|
---|
116 |
|
---|
117 | /*
|
---|
118 | * Random helpers.
|
---|
119 | */
|
---|
120 |
|
---|
121 | static uint32_t RandEFlags(void)
|
---|
122 | {
|
---|
123 | uint32_t fEfl = RTRandU32();
|
---|
124 | return (fEfl & X86_EFL_LIVE_MASK) | X86_EFL_RA1_MASK;
|
---|
125 | }
|
---|
126 |
|
---|
127 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
128 |
|
---|
129 | static uint8_t RandU8(void)
|
---|
130 | {
|
---|
131 | return RTRandU32Ex(0, 0xff);
|
---|
132 | }
|
---|
133 |
|
---|
134 |
|
---|
135 | static uint16_t RandU16(void)
|
---|
136 | {
|
---|
137 | return RTRandU32Ex(0, 0xffff);
|
---|
138 | }
|
---|
139 |
|
---|
140 |
|
---|
141 | static uint32_t RandU32(void)
|
---|
142 | {
|
---|
143 | return RTRandU32();
|
---|
144 | }
|
---|
145 |
|
---|
146 | #endif
|
---|
147 |
|
---|
148 | static uint64_t RandU64(void)
|
---|
149 | {
|
---|
150 | return RTRandU64();
|
---|
151 | }
|
---|
152 |
|
---|
153 |
|
---|
154 | static RTUINT128U RandU128(void)
|
---|
155 | {
|
---|
156 | RTUINT128U Ret;
|
---|
157 | Ret.s.Hi = RTRandU64();
|
---|
158 | Ret.s.Lo = RTRandU64();
|
---|
159 | return Ret;
|
---|
160 | }
|
---|
161 |
|
---|
162 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
163 |
|
---|
164 | static uint8_t RandU8Dst(uint32_t iTest)
|
---|
165 | {
|
---|
166 | if (iTest < g_cZeroDstTests)
|
---|
167 | return 0;
|
---|
168 | return RandU8();
|
---|
169 | }
|
---|
170 |
|
---|
171 |
|
---|
172 | static uint8_t RandU8Src(uint32_t iTest)
|
---|
173 | {
|
---|
174 | if (iTest < g_cZeroSrcTests)
|
---|
175 | return 0;
|
---|
176 | return RandU8();
|
---|
177 | }
|
---|
178 |
|
---|
179 |
|
---|
180 | static uint16_t RandU16Dst(uint32_t iTest)
|
---|
181 | {
|
---|
182 | if (iTest < g_cZeroDstTests)
|
---|
183 | return 0;
|
---|
184 | return RandU16();
|
---|
185 | }
|
---|
186 |
|
---|
187 |
|
---|
188 | static uint16_t RandU16Src(uint32_t iTest)
|
---|
189 | {
|
---|
190 | if (iTest < g_cZeroSrcTests)
|
---|
191 | return 0;
|
---|
192 | return RandU16();
|
---|
193 | }
|
---|
194 |
|
---|
195 |
|
---|
196 | static uint32_t RandU32Dst(uint32_t iTest)
|
---|
197 | {
|
---|
198 | if (iTest < g_cZeroDstTests)
|
---|
199 | return 0;
|
---|
200 | return RandU32();
|
---|
201 | }
|
---|
202 |
|
---|
203 |
|
---|
204 | static uint32_t RandU32Src(uint32_t iTest)
|
---|
205 | {
|
---|
206 | if (iTest < g_cZeroSrcTests)
|
---|
207 | return 0;
|
---|
208 | return RandU32();
|
---|
209 | }
|
---|
210 |
|
---|
211 |
|
---|
212 | static uint64_t RandU64Dst(uint32_t iTest)
|
---|
213 | {
|
---|
214 | if (iTest < g_cZeroDstTests)
|
---|
215 | return 0;
|
---|
216 | return RandU64();
|
---|
217 | }
|
---|
218 |
|
---|
219 |
|
---|
220 | static uint64_t RandU64Src(uint32_t iTest)
|
---|
221 | {
|
---|
222 | if (iTest < g_cZeroSrcTests)
|
---|
223 | return 0;
|
---|
224 | return RandU64();
|
---|
225 | }
|
---|
226 |
|
---|
227 |
|
---|
228 | /** 2nd operand for and FPU instruction, pairing with RandR80Src1. */
|
---|
229 | static int16_t RandI16Src2(uint32_t iTest)
|
---|
230 | {
|
---|
231 | if (iTest < 18 * 4)
|
---|
232 | switch (iTest % 4)
|
---|
233 | {
|
---|
234 | case 0: return 0;
|
---|
235 | case 1: return INT16_MAX;
|
---|
236 | case 2: return INT16_MIN;
|
---|
237 | case 3: break;
|
---|
238 | }
|
---|
239 | return (int16_t)RandU16();
|
---|
240 | }
|
---|
241 |
|
---|
242 |
|
---|
243 | /** 2nd operand for and FPU instruction, pairing with RandR80Src1. */
|
---|
244 | static int32_t RandI32Src2(uint32_t iTest)
|
---|
245 | {
|
---|
246 | if (iTest < 18 * 4)
|
---|
247 | switch (iTest % 4)
|
---|
248 | {
|
---|
249 | case 0: return 0;
|
---|
250 | case 1: return INT32_MAX;
|
---|
251 | case 2: return INT32_MIN;
|
---|
252 | case 3: break;
|
---|
253 | }
|
---|
254 | return (int32_t)RandU32();
|
---|
255 | }
|
---|
256 |
|
---|
257 |
|
---|
258 | #if 0
|
---|
259 | static int64_t RandI64Src(uint32_t iTest)
|
---|
260 | {
|
---|
261 | RT_NOREF(iTest);
|
---|
262 | return (int64_t)RandU64();
|
---|
263 | }
|
---|
264 | #endif
|
---|
265 |
|
---|
266 |
|
---|
267 | static uint16_t RandFcw(void)
|
---|
268 | {
|
---|
269 | return RandU16() & ~X86_FCW_ZERO_MASK;
|
---|
270 | }
|
---|
271 |
|
---|
272 |
|
---|
273 | static uint16_t RandFsw(void)
|
---|
274 | {
|
---|
275 | AssertCompile((X86_FSW_C_MASK | X86_FSW_XCPT_ES_MASK | X86_FSW_TOP_MASK | X86_FSW_B) == 0xffff);
|
---|
276 | return RandU16();
|
---|
277 | }
|
---|
278 |
|
---|
279 |
|
---|
280 | static uint32_t RandMxcsr(void)
|
---|
281 | {
|
---|
282 | return RandU32() & ~X86_MXCSR_ZERO_MASK;
|
---|
283 | }
|
---|
284 |
|
---|
285 |
|
---|
286 | static void SafeR80FractionShift(PRTFLOAT80U pr80, uint8_t cShift)
|
---|
287 | {
|
---|
288 | if (pr80->sj64.uFraction >= RT_BIT_64(cShift))
|
---|
289 | pr80->sj64.uFraction >>= cShift;
|
---|
290 | else
|
---|
291 | pr80->sj64.uFraction = (cShift % 19) + 1;
|
---|
292 | }
|
---|
293 |
|
---|
294 |
|
---|
295 |
|
---|
296 | static RTFLOAT80U RandR80Ex(uint8_t bType, unsigned cTarget = 80, bool fIntTarget = false)
|
---|
297 | {
|
---|
298 | Assert(cTarget == (!fIntTarget ? 80U : 16U) || cTarget == 64U || cTarget == 32U || (cTarget == 59U && fIntTarget));
|
---|
299 |
|
---|
300 | RTFLOAT80U r80;
|
---|
301 | r80.au64[0] = RandU64();
|
---|
302 | r80.au16[4] = RandU16();
|
---|
303 |
|
---|
304 | /*
|
---|
305 | * Adjust the random stuff according to bType.
|
---|
306 | */
|
---|
307 | bType &= 0x1f;
|
---|
308 | if (bType == 0 || bType == 1 || bType == 2 || bType == 3)
|
---|
309 | {
|
---|
310 | /* Zero (0), Pseudo-Infinity (1), Infinity (2), Indefinite (3). We only keep fSign here. */
|
---|
311 | r80.sj64.uExponent = bType == 0 ? 0 : 0x7fff;
|
---|
312 | r80.sj64.uFraction = bType <= 2 ? 0 : RT_BIT_64(62);
|
---|
313 | r80.sj64.fInteger = bType >= 2 ? 1 : 0;
|
---|
314 | AssertMsg(bType != 0 || RTFLOAT80U_IS_ZERO(&r80), ("%s\n", FormatR80(&r80)));
|
---|
315 | AssertMsg(bType != 1 || RTFLOAT80U_IS_PSEUDO_INF(&r80), ("%s\n", FormatR80(&r80)));
|
---|
316 | Assert( bType != 1 || RTFLOAT80U_IS_387_INVALID(&r80));
|
---|
317 | AssertMsg(bType != 2 || RTFLOAT80U_IS_INF(&r80), ("%s\n", FormatR80(&r80)));
|
---|
318 | AssertMsg(bType != 3 || RTFLOAT80U_IS_INDEFINITE(&r80), ("%s\n", FormatR80(&r80)));
|
---|
319 | }
|
---|
320 | else if (bType == 4 || bType == 5 || bType == 6 || bType == 7)
|
---|
321 | {
|
---|
322 | /* Denormals (4,5) and Pseudo denormals (6,7) */
|
---|
323 | if (bType & 1)
|
---|
324 | SafeR80FractionShift(&r80, r80.sj64.uExponent % 62);
|
---|
325 | else if (r80.sj64.uFraction == 0 && bType < 6)
|
---|
326 | r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1);
|
---|
327 | r80.sj64.uExponent = 0;
|
---|
328 | r80.sj64.fInteger = bType >= 6;
|
---|
329 | AssertMsg(bType >= 6 || RTFLOAT80U_IS_DENORMAL(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
330 | AssertMsg(bType < 6 || RTFLOAT80U_IS_PSEUDO_DENORMAL(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
331 | }
|
---|
332 | else if (bType == 8 || bType == 9)
|
---|
333 | {
|
---|
334 | /* Pseudo NaN. */
|
---|
335 | if (bType & 1)
|
---|
336 | SafeR80FractionShift(&r80, r80.sj64.uExponent % 62);
|
---|
337 | else if (r80.sj64.uFraction == 0 && !r80.sj64.fInteger)
|
---|
338 | r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1);
|
---|
339 | r80.sj64.uExponent = 0x7fff;
|
---|
340 | if (r80.sj64.fInteger)
|
---|
341 | r80.sj64.uFraction |= RT_BIT_64(62);
|
---|
342 | else
|
---|
343 | r80.sj64.uFraction &= ~RT_BIT_64(62);
|
---|
344 | r80.sj64.fInteger = 0;
|
---|
345 | AssertMsg(RTFLOAT80U_IS_PSEUDO_NAN(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
346 | AssertMsg(RTFLOAT80U_IS_NAN(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType));
|
---|
347 | Assert(RTFLOAT80U_IS_387_INVALID(&r80));
|
---|
348 | }
|
---|
349 | else if (bType == 10 || bType == 11 || bType == 12 || bType == 13)
|
---|
350 | {
|
---|
351 | /* Quiet and signalling NaNs. */
|
---|
352 | if (bType & 1)
|
---|
353 | SafeR80FractionShift(&r80, r80.sj64.uExponent % 62);
|
---|
354 | else if (r80.sj64.uFraction == 0)
|
---|
355 | r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1);
|
---|
356 | r80.sj64.uExponent = 0x7fff;
|
---|
357 | if (bType < 12)
|
---|
358 | r80.sj64.uFraction |= RT_BIT_64(62); /* quiet */
|
---|
359 | else
|
---|
360 | r80.sj64.uFraction &= ~RT_BIT_64(62); /* signaling */
|
---|
361 | r80.sj64.fInteger = 1;
|
---|
362 | AssertMsg(bType >= 12 || RTFLOAT80U_IS_QUIET_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
363 | AssertMsg(bType < 12 || RTFLOAT80U_IS_SIGNALLING_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
364 | AssertMsg(RTFLOAT80U_IS_SIGNALLING_NAN(&r80) || RTFLOAT80U_IS_QUIET_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
365 | AssertMsg(RTFLOAT80U_IS_QUIET_OR_SIGNALLING_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
366 | AssertMsg(RTFLOAT80U_IS_NAN(&r80), ("%s\n", FormatR80(&r80)));
|
---|
367 | }
|
---|
368 | else if (bType == 14 || bType == 15)
|
---|
369 | {
|
---|
370 | /* Unnormals */
|
---|
371 | if (bType & 1)
|
---|
372 | SafeR80FractionShift(&r80, RandU8() % 62);
|
---|
373 | r80.sj64.fInteger = 0;
|
---|
374 | if (r80.sj64.uExponent == RTFLOAT80U_EXP_MAX || r80.sj64.uExponent == 0)
|
---|
375 | r80.sj64.uExponent = (uint16_t)RTRandU32Ex(1, RTFLOAT80U_EXP_MAX - 1);
|
---|
376 | AssertMsg(RTFLOAT80U_IS_UNNORMAL(&r80), ("%s\n", FormatR80(&r80)));
|
---|
377 | Assert(RTFLOAT80U_IS_387_INVALID(&r80));
|
---|
378 | }
|
---|
379 | else if (bType < 26)
|
---|
380 | {
|
---|
381 | /* Make sure we have lots of normalized values. */
|
---|
382 | if (!fIntTarget)
|
---|
383 | {
|
---|
384 | const unsigned uMinExp = cTarget == 64 ? RTFLOAT80U_EXP_BIAS - RTFLOAT64U_EXP_BIAS
|
---|
385 | : cTarget == 32 ? RTFLOAT80U_EXP_BIAS - RTFLOAT32U_EXP_BIAS : 0;
|
---|
386 | const unsigned uMaxExp = cTarget == 64 ? uMinExp + RTFLOAT64U_EXP_MAX
|
---|
387 | : cTarget == 32 ? uMinExp + RTFLOAT32U_EXP_MAX : RTFLOAT80U_EXP_MAX;
|
---|
388 | r80.sj64.fInteger = 1;
|
---|
389 | if (r80.sj64.uExponent <= uMinExp)
|
---|
390 | r80.sj64.uExponent = uMinExp + 1;
|
---|
391 | else if (r80.sj64.uExponent >= uMaxExp)
|
---|
392 | r80.sj64.uExponent = uMaxExp - 1;
|
---|
393 |
|
---|
394 | if (bType == 16)
|
---|
395 | { /* All 1s is useful to testing rounding. Also try trigger special
|
---|
396 | behaviour by sometimes rounding out of range, while we're at it. */
|
---|
397 | r80.sj64.uFraction = RT_BIT_64(63) - 1;
|
---|
398 | uint8_t bExp = RandU8();
|
---|
399 | if ((bExp & 3) == 0)
|
---|
400 | r80.sj64.uExponent = uMaxExp - 1;
|
---|
401 | else if ((bExp & 3) == 1)
|
---|
402 | r80.sj64.uExponent = uMinExp + 1;
|
---|
403 | else if ((bExp & 3) == 2)
|
---|
404 | r80.sj64.uExponent = uMinExp - (bExp & 15); /* (small numbers are mapped to subnormal values) */
|
---|
405 | }
|
---|
406 | }
|
---|
407 | else
|
---|
408 | {
|
---|
409 | /* integer target: */
|
---|
410 | const unsigned uMinExp = RTFLOAT80U_EXP_BIAS;
|
---|
411 | const unsigned uMaxExp = RTFLOAT80U_EXP_BIAS + cTarget - 2;
|
---|
412 | r80.sj64.fInteger = 1;
|
---|
413 | if (r80.sj64.uExponent < uMinExp)
|
---|
414 | r80.sj64.uExponent = uMinExp;
|
---|
415 | else if (r80.sj64.uExponent > uMaxExp)
|
---|
416 | r80.sj64.uExponent = uMaxExp;
|
---|
417 |
|
---|
418 | if (bType == 16)
|
---|
419 | { /* All 1s is useful to testing rounding. Also try trigger special
|
---|
420 | behaviour by sometimes rounding out of range, while we're at it. */
|
---|
421 | r80.sj64.uFraction = RT_BIT_64(63) - 1;
|
---|
422 | uint8_t bExp = RandU8();
|
---|
423 | if ((bExp & 3) == 0)
|
---|
424 | r80.sj64.uExponent = uMaxExp;
|
---|
425 | else if ((bExp & 3) == 1)
|
---|
426 | r80.sj64.uFraction &= ~(RT_BIT_64(cTarget - 1 - r80.sj64.uExponent) - 1); /* no rounding */
|
---|
427 | }
|
---|
428 | }
|
---|
429 |
|
---|
430 | AssertMsg(RTFLOAT80U_IS_NORMAL(&r80), ("%s\n", FormatR80(&r80)));
|
---|
431 | }
|
---|
432 | return r80;
|
---|
433 | }
|
---|
434 |
|
---|
435 |
|
---|
436 | static RTFLOAT80U RandR80(unsigned cTarget = 80, bool fIntTarget = false)
|
---|
437 | {
|
---|
438 | /*
|
---|
439 | * Make it more likely that we get a good selection of special values.
|
---|
440 | */
|
---|
441 | return RandR80Ex(RandU8(), cTarget, fIntTarget);
|
---|
442 |
|
---|
443 | }
|
---|
444 |
|
---|
445 |
|
---|
446 | static RTFLOAT80U RandR80Src(uint32_t iTest, unsigned cTarget = 80, bool fIntTarget = false)
|
---|
447 | {
|
---|
448 | /* Make sure we cover all the basic types first before going for random selection: */
|
---|
449 | if (iTest <= 18)
|
---|
450 | return RandR80Ex(18 - iTest, cTarget, fIntTarget); /* Starting with 3 normals. */
|
---|
451 | return RandR80(cTarget, fIntTarget);
|
---|
452 | }
|
---|
453 |
|
---|
454 |
|
---|
455 | /**
|
---|
456 | * Helper for RandR80Src1 and RandR80Src2 that converts bType from a 0..11 range
|
---|
457 | * to a 0..17, covering all basic value types.
|
---|
458 | */
|
---|
459 | static uint8_t RandR80Src12RemapType(uint8_t bType)
|
---|
460 | {
|
---|
461 | switch (bType)
|
---|
462 | {
|
---|
463 | case 0: return 18; /* normal */
|
---|
464 | case 1: return 16; /* normal extreme rounding */
|
---|
465 | case 2: return 14; /* unnormal */
|
---|
466 | case 3: return 12; /* Signalling NaN */
|
---|
467 | case 4: return 10; /* Quiet NaN */
|
---|
468 | case 5: return 8; /* PseudoNaN */
|
---|
469 | case 6: return 6; /* Pseudo Denormal */
|
---|
470 | case 7: return 4; /* Denormal */
|
---|
471 | case 8: return 3; /* Indefinite */
|
---|
472 | case 9: return 2; /* Infinity */
|
---|
473 | case 10: return 1; /* Pseudo-Infinity */
|
---|
474 | case 11: return 0; /* Zero */
|
---|
475 | default: AssertFailedReturn(18);
|
---|
476 | }
|
---|
477 | }
|
---|
478 |
|
---|
479 |
|
---|
480 | /**
|
---|
481 | * This works in tandem with RandR80Src2 to make sure we cover all operand
|
---|
482 | * type mixes first before we venture into regular random testing.
|
---|
483 | *
|
---|
484 | * There are 11 basic variations, when we leave out the five odd ones using
|
---|
485 | * SafeR80FractionShift. Because of the special normalized value targetting at
|
---|
486 | * rounding, we make it an even 12. So 144 combinations for two operands.
|
---|
487 | */
|
---|
488 | static RTFLOAT80U RandR80Src1(uint32_t iTest, unsigned cPartnerBits = 80, bool fPartnerInt = false)
|
---|
489 | {
|
---|
490 | if (cPartnerBits == 80)
|
---|
491 | {
|
---|
492 | Assert(!fPartnerInt);
|
---|
493 | if (iTest < 12 * 12)
|
---|
494 | return RandR80Ex(RandR80Src12RemapType(iTest / 12));
|
---|
495 | }
|
---|
496 | else if ((cPartnerBits == 64 || cPartnerBits == 32) && !fPartnerInt)
|
---|
497 | {
|
---|
498 | if (iTest < 12 * 10)
|
---|
499 | return RandR80Ex(RandR80Src12RemapType(iTest / 10));
|
---|
500 | }
|
---|
501 | else if (iTest < 18 * 4 && fPartnerInt)
|
---|
502 | return RandR80Ex(iTest / 4);
|
---|
503 | return RandR80();
|
---|
504 | }
|
---|
505 |
|
---|
506 |
|
---|
507 | /** Partner to RandR80Src1. */
|
---|
508 | static RTFLOAT80U RandR80Src2(uint32_t iTest)
|
---|
509 | {
|
---|
510 | if (iTest < 12 * 12)
|
---|
511 | return RandR80Ex(RandR80Src12RemapType(iTest % 12));
|
---|
512 | return RandR80();
|
---|
513 | }
|
---|
514 |
|
---|
515 |
|
---|
516 | static void SafeR64FractionShift(PRTFLOAT64U pr64, uint8_t cShift)
|
---|
517 | {
|
---|
518 | if (pr64->s64.uFraction >= RT_BIT_64(cShift))
|
---|
519 | pr64->s64.uFraction >>= cShift;
|
---|
520 | else
|
---|
521 | pr64->s64.uFraction = (cShift % 19) + 1;
|
---|
522 | }
|
---|
523 |
|
---|
524 |
|
---|
525 | static RTFLOAT64U RandR64Ex(uint8_t bType)
|
---|
526 | {
|
---|
527 | RTFLOAT64U r64;
|
---|
528 | r64.u = RandU64();
|
---|
529 |
|
---|
530 | /*
|
---|
531 | * Make it more likely that we get a good selection of special values.
|
---|
532 | * On average 6 out of 16 calls should return a special value.
|
---|
533 | */
|
---|
534 | bType &= 0xf;
|
---|
535 | if (bType == 0 || bType == 1)
|
---|
536 | {
|
---|
537 | /* 0 or Infinity. We only keep fSign here. */
|
---|
538 | r64.s.uExponent = bType == 0 ? 0 : 0x7ff;
|
---|
539 | r64.s.uFractionHigh = 0;
|
---|
540 | r64.s.uFractionLow = 0;
|
---|
541 | AssertMsg(bType != 0 || RTFLOAT64U_IS_ZERO(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
542 | AssertMsg(bType != 1 || RTFLOAT64U_IS_INF(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
543 | }
|
---|
544 | else if (bType == 2 || bType == 3)
|
---|
545 | {
|
---|
546 | /* Subnormals */
|
---|
547 | if (bType == 3)
|
---|
548 | SafeR64FractionShift(&r64, r64.s64.uExponent % 51);
|
---|
549 | else if (r64.s64.uFraction == 0)
|
---|
550 | r64.s64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1);
|
---|
551 | r64.s64.uExponent = 0;
|
---|
552 | AssertMsg(RTFLOAT64U_IS_SUBNORMAL(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
553 | }
|
---|
554 | else if (bType == 4 || bType == 5 || bType == 6 || bType == 7)
|
---|
555 | {
|
---|
556 | /* NaNs */
|
---|
557 | if (bType & 1)
|
---|
558 | SafeR64FractionShift(&r64, r64.s64.uExponent % 51);
|
---|
559 | else if (r64.s64.uFraction == 0)
|
---|
560 | r64.s64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1);
|
---|
561 | r64.s64.uExponent = 0x7ff;
|
---|
562 | if (bType < 6)
|
---|
563 | r64.s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); /* quiet */
|
---|
564 | else
|
---|
565 | r64.s64.uFraction &= ~RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); /* signalling */
|
---|
566 | AssertMsg(bType >= 6 || RTFLOAT64U_IS_QUIET_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
567 | AssertMsg(bType < 6 || RTFLOAT64U_IS_SIGNALLING_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
568 | AssertMsg(RTFLOAT64U_IS_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
569 | }
|
---|
570 | else if (bType < 12)
|
---|
571 | {
|
---|
572 | /* Make sure we have lots of normalized values. */
|
---|
573 | if (r64.s.uExponent == 0)
|
---|
574 | r64.s.uExponent = 1;
|
---|
575 | else if (r64.s.uExponent == 0x7ff)
|
---|
576 | r64.s.uExponent = 0x7fe;
|
---|
577 | AssertMsg(RTFLOAT64U_IS_NORMAL(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType));
|
---|
578 | }
|
---|
579 | return r64;
|
---|
580 | }
|
---|
581 |
|
---|
582 |
|
---|
583 | static RTFLOAT64U RandR64Src(uint32_t iTest)
|
---|
584 | {
|
---|
585 | if (iTest < 16)
|
---|
586 | return RandR64Ex(iTest);
|
---|
587 | return RandR64Ex(RandU8());
|
---|
588 | }
|
---|
589 |
|
---|
590 |
|
---|
591 | /** Pairing with a 80-bit floating point arg. */
|
---|
592 | static RTFLOAT64U RandR64Src2(uint32_t iTest)
|
---|
593 | {
|
---|
594 | if (iTest < 12 * 10)
|
---|
595 | return RandR64Ex(9 - iTest % 10); /* start with normal values */
|
---|
596 | return RandR64Ex(RandU8());
|
---|
597 | }
|
---|
598 |
|
---|
599 |
|
---|
600 | static void SafeR32FractionShift(PRTFLOAT32U pr32, uint8_t cShift)
|
---|
601 | {
|
---|
602 | if (pr32->s.uFraction >= RT_BIT_32(cShift))
|
---|
603 | pr32->s.uFraction >>= cShift;
|
---|
604 | else
|
---|
605 | pr32->s.uFraction = (cShift % 19) + 1;
|
---|
606 | }
|
---|
607 |
|
---|
608 |
|
---|
609 | static RTFLOAT32U RandR32Ex(uint8_t bType)
|
---|
610 | {
|
---|
611 | RTFLOAT32U r32;
|
---|
612 | r32.u = RandU32();
|
---|
613 |
|
---|
614 | /*
|
---|
615 | * Make it more likely that we get a good selection of special values.
|
---|
616 | * On average 6 out of 16 calls should return a special value.
|
---|
617 | */
|
---|
618 | bType &= 0xf;
|
---|
619 | if (bType == 0 || bType == 1)
|
---|
620 | {
|
---|
621 | /* 0 or Infinity. We only keep fSign here. */
|
---|
622 | r32.s.uExponent = bType == 0 ? 0 : 0xff;
|
---|
623 | r32.s.uFraction = 0;
|
---|
624 | AssertMsg(bType != 0 || RTFLOAT32U_IS_ZERO(&r32), ("%s\n", FormatR32(&r32)));
|
---|
625 | AssertMsg(bType != 1 || RTFLOAT32U_IS_INF(&r32), ("%s\n", FormatR32(&r32)));
|
---|
626 | }
|
---|
627 | else if (bType == 2 || bType == 3)
|
---|
628 | {
|
---|
629 | /* Subnormals */
|
---|
630 | if (bType == 3)
|
---|
631 | SafeR32FractionShift(&r32, r32.s.uExponent % 22);
|
---|
632 | else if (r32.s.uFraction == 0)
|
---|
633 | r32.s.uFraction = RTRandU32Ex(1, RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1);
|
---|
634 | r32.s.uExponent = 0;
|
---|
635 | AssertMsg(RTFLOAT32U_IS_SUBNORMAL(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
636 | }
|
---|
637 | else if (bType == 4 || bType == 5 || bType == 6 || bType == 7)
|
---|
638 | {
|
---|
639 | /* NaNs */
|
---|
640 | if (bType & 1)
|
---|
641 | SafeR32FractionShift(&r32, r32.s.uExponent % 22);
|
---|
642 | else if (r32.s.uFraction == 0)
|
---|
643 | r32.s.uFraction = RTRandU32Ex(1, RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1);
|
---|
644 | r32.s.uExponent = 0xff;
|
---|
645 | if (bType < 6)
|
---|
646 | r32.s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); /* quiet */
|
---|
647 | else
|
---|
648 | r32.s.uFraction &= ~RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); /* signalling */
|
---|
649 | AssertMsg(bType >= 6 || RTFLOAT32U_IS_QUIET_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
650 | AssertMsg(bType < 6 || RTFLOAT32U_IS_SIGNALLING_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
651 | AssertMsg(RTFLOAT32U_IS_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
652 | }
|
---|
653 | else if (bType < 12)
|
---|
654 | {
|
---|
655 | /* Make sure we have lots of normalized values. */
|
---|
656 | if (r32.s.uExponent == 0)
|
---|
657 | r32.s.uExponent = 1;
|
---|
658 | else if (r32.s.uExponent == 0xff)
|
---|
659 | r32.s.uExponent = 0xfe;
|
---|
660 | AssertMsg(RTFLOAT32U_IS_NORMAL(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType));
|
---|
661 | }
|
---|
662 | return r32;
|
---|
663 | }
|
---|
664 |
|
---|
665 |
|
---|
666 | static RTFLOAT32U RandR32Src(uint32_t iTest)
|
---|
667 | {
|
---|
668 | if (iTest < 16)
|
---|
669 | return RandR32Ex(iTest);
|
---|
670 | return RandR32Ex(RandU8());
|
---|
671 | }
|
---|
672 |
|
---|
673 |
|
---|
674 | /** Pairing with a 80-bit floating point arg. */
|
---|
675 | static RTFLOAT32U RandR32Src2(uint32_t iTest)
|
---|
676 | {
|
---|
677 | if (iTest < 12 * 10)
|
---|
678 | return RandR32Ex(9 - iTest % 10); /* start with normal values */
|
---|
679 | return RandR32Ex(RandU8());
|
---|
680 | }
|
---|
681 |
|
---|
682 |
|
---|
683 | static RTPBCD80U RandD80Src(uint32_t iTest)
|
---|
684 | {
|
---|
685 | if (iTest < 3)
|
---|
686 | {
|
---|
687 | RTPBCD80U d80Zero = RTPBCD80U_INIT_ZERO(!(iTest & 1));
|
---|
688 | return d80Zero;
|
---|
689 | }
|
---|
690 | if (iTest < 5)
|
---|
691 | {
|
---|
692 | RTPBCD80U d80Ind = RTPBCD80U_INIT_INDEFINITE();
|
---|
693 | return d80Ind;
|
---|
694 | }
|
---|
695 |
|
---|
696 | RTPBCD80U d80;
|
---|
697 | uint8_t b = RandU8();
|
---|
698 | d80.s.fSign = b & 1;
|
---|
699 |
|
---|
700 | if ((iTest & 7) >= 6)
|
---|
701 | {
|
---|
702 | /* Illegal */
|
---|
703 | d80.s.uPad = (iTest & 7) == 7 ? b >> 1 : 0;
|
---|
704 | for (size_t iPair = 0; iPair < RT_ELEMENTS(d80.s.abPairs); iPair++)
|
---|
705 | d80.s.abPairs[iPair] = RandU8();
|
---|
706 | }
|
---|
707 | else
|
---|
708 | {
|
---|
709 | /* Normal */
|
---|
710 | d80.s.uPad = 0;
|
---|
711 | for (size_t iPair = 0; iPair < RT_ELEMENTS(d80.s.abPairs); iPair++)
|
---|
712 | {
|
---|
713 | uint8_t const uLo = (uint8_t)RTRandU32Ex(0, 9);
|
---|
714 | uint8_t const uHi = (uint8_t)RTRandU32Ex(0, 9);
|
---|
715 | d80.s.abPairs[iPair] = RTPBCD80U_MAKE_PAIR(uHi, uLo);
|
---|
716 | }
|
---|
717 | }
|
---|
718 | return d80;
|
---|
719 | }
|
---|
720 |
|
---|
721 |
|
---|
722 | const char *GenFormatR80(PCRTFLOAT80U plrd)
|
---|
723 | {
|
---|
724 | if (RTFLOAT80U_IS_ZERO(plrd))
|
---|
725 | return plrd->s.fSign ? "RTFLOAT80U_INIT_ZERO(1)" : "RTFLOAT80U_INIT_ZERO(0)";
|
---|
726 | if (RTFLOAT80U_IS_INF(plrd))
|
---|
727 | return plrd->s.fSign ? "RTFLOAT80U_INIT_INF(1)" : "RTFLOAT80U_INIT_INF(0)";
|
---|
728 | if (RTFLOAT80U_IS_INDEFINITE(plrd))
|
---|
729 | return plrd->s.fSign ? "RTFLOAT80U_INIT_IND(1)" : "RTFLOAT80U_INIT_IND(0)";
|
---|
730 | if (RTFLOAT80U_IS_QUIET_NAN(plrd) && (plrd->s.uMantissa & (RT_BIT_64(62) - 1)) == 1)
|
---|
731 | return plrd->s.fSign ? "RTFLOAT80U_INIT_QNAN(1)" : "RTFLOAT80U_INIT_QNAN(0)";
|
---|
732 | if (RTFLOAT80U_IS_SIGNALLING_NAN(plrd) && (plrd->s.uMantissa & (RT_BIT_64(62) - 1)) == 1)
|
---|
733 | return plrd->s.fSign ? "RTFLOAT80U_INIT_SNAN(1)" : "RTFLOAT80U_INIT_SNAN(0)";
|
---|
734 |
|
---|
735 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
736 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT80U_INIT_C(%d,%#RX64,%u)",
|
---|
737 | plrd->s.fSign, plrd->s.uMantissa, plrd->s.uExponent);
|
---|
738 | return pszBuf;
|
---|
739 | }
|
---|
740 |
|
---|
741 | const char *GenFormatR64(PCRTFLOAT64U prd)
|
---|
742 | {
|
---|
743 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
744 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT64U_INIT_C(%d,%#RX64,%u)",
|
---|
745 | prd->s.fSign, RT_MAKE_U64(prd->s.uFractionLow, prd->s.uFractionHigh), prd->s.uExponent);
|
---|
746 | return pszBuf;
|
---|
747 | }
|
---|
748 |
|
---|
749 |
|
---|
750 | const char *GenFormatR32(PCRTFLOAT32U pr)
|
---|
751 | {
|
---|
752 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
753 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT32U_INIT_C(%d,%#RX32,%u)", pr->s.fSign, pr->s.uFraction, pr->s.uExponent);
|
---|
754 | return pszBuf;
|
---|
755 | }
|
---|
756 |
|
---|
757 |
|
---|
758 | const char *GenFormatD80(PCRTPBCD80U pd80)
|
---|
759 | {
|
---|
760 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
761 | size_t off;
|
---|
762 | if (pd80->s.uPad == 0)
|
---|
763 | off = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTPBCD80U_INIT_C(%d", pd80->s.fSign);
|
---|
764 | else
|
---|
765 | off = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTPBCD80U_INIT_EX_C(%#x,%d", pd80->s.uPad, pd80->s.fSign);
|
---|
766 | size_t iPair = RT_ELEMENTS(pd80->s.abPairs);
|
---|
767 | while (iPair-- > 0)
|
---|
768 | off += RTStrPrintf(&pszBuf[off], sizeof(g_aszBuf[0]) - off, ",%d,%d",
|
---|
769 | RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair]),
|
---|
770 | RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair]));
|
---|
771 | pszBuf[off++] = ')';
|
---|
772 | pszBuf[off++] = '\0';
|
---|
773 | return pszBuf;
|
---|
774 | }
|
---|
775 |
|
---|
776 |
|
---|
777 | const char *GenFormatI64(int64_t i64)
|
---|
778 | {
|
---|
779 | if (i64 == INT64_MIN) /* This one is problematic */
|
---|
780 | return "INT64_MIN";
|
---|
781 | if (i64 == INT64_MAX)
|
---|
782 | return "INT64_MAX";
|
---|
783 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
784 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT64_C(%RI64)", i64);
|
---|
785 | return pszBuf;
|
---|
786 | }
|
---|
787 |
|
---|
788 |
|
---|
789 | const char *GenFormatI64(int64_t const *pi64)
|
---|
790 | {
|
---|
791 | return GenFormatI64(*pi64);
|
---|
792 | }
|
---|
793 |
|
---|
794 |
|
---|
795 | const char *GenFormatI32(int32_t i32)
|
---|
796 | {
|
---|
797 | if (i32 == INT32_MIN) /* This one is problematic */
|
---|
798 | return "INT32_MIN";
|
---|
799 | if (i32 == INT32_MAX)
|
---|
800 | return "INT32_MAX";
|
---|
801 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
802 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT32_C(%RI32)", i32);
|
---|
803 | return pszBuf;
|
---|
804 | }
|
---|
805 |
|
---|
806 |
|
---|
807 | const char *GenFormatI32(int32_t const *pi32)
|
---|
808 | {
|
---|
809 | return GenFormatI32(*pi32);
|
---|
810 | }
|
---|
811 |
|
---|
812 |
|
---|
813 | const char *GenFormatI16(int16_t i16)
|
---|
814 | {
|
---|
815 | if (i16 == INT16_MIN) /* This one is problematic */
|
---|
816 | return "INT16_MIN";
|
---|
817 | if (i16 == INT16_MAX)
|
---|
818 | return "INT16_MAX";
|
---|
819 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
820 | RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT16_C(%RI16)", i16);
|
---|
821 | return pszBuf;
|
---|
822 | }
|
---|
823 |
|
---|
824 |
|
---|
825 | const char *GenFormatI16(int16_t const *pi16)
|
---|
826 | {
|
---|
827 | return GenFormatI16(*pi16);
|
---|
828 | }
|
---|
829 |
|
---|
830 |
|
---|
831 | static void GenerateHeader(PRTSTREAM pOut, const char *pszCpuDesc, const char *pszCpuType)
|
---|
832 | {
|
---|
833 | /* We want to tag the generated source code with the revision that produced it. */
|
---|
834 | static char s_szRev[] = "$Revision: 96348 $";
|
---|
835 | const char *pszRev = RTStrStripL(strchr(s_szRev, ':') + 1);
|
---|
836 | size_t cchRev = 0;
|
---|
837 | while (RT_C_IS_DIGIT(pszRev[cchRev]))
|
---|
838 | cchRev++;
|
---|
839 |
|
---|
840 | RTStrmPrintf(pOut,
|
---|
841 | "/* $Id: tstIEMAImpl.cpp 96348 2022-08-19 17:00:45Z vboxsync $ */\n"
|
---|
842 | "/** @file\n"
|
---|
843 | " * IEM Assembly Instruction Helper Testcase Data%s%s - r%.*s on %s.\n"
|
---|
844 | " */\n"
|
---|
845 | "\n"
|
---|
846 | "/*\n"
|
---|
847 | " * Copyright (C) 2022 Oracle Corporation\n"
|
---|
848 | " *\n"
|
---|
849 | " * This file is part of VirtualBox Open Source Edition (OSE), as\n"
|
---|
850 | " * available from http://www.virtualbox.org. This file is free software;\n"
|
---|
851 | " * you can redistribute it and/or modify it under the terms of the GNU\n"
|
---|
852 | " * General Public License (GPL) as published by the Free Software\n"
|
---|
853 | " * Foundation, in version 2 as it comes in the \"COPYING\" file of the\n"
|
---|
854 | " * VirtualBox OSE distribution. VirtualBox OSE is distributed in the\n"
|
---|
855 | " * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.\n"
|
---|
856 | " */\n"
|
---|
857 | "\n"
|
---|
858 | "#include \"tstIEMAImpl.h\"\n"
|
---|
859 | "\n"
|
---|
860 | ,
|
---|
861 | pszCpuType ? " " : "", pszCpuType ? pszCpuType : "", cchRev, pszRev, pszCpuDesc);
|
---|
862 | }
|
---|
863 |
|
---|
864 |
|
---|
865 | static PRTSTREAM GenerateOpenWithHdr(const char *pszFilename, const char *pszCpuDesc, const char *pszCpuType)
|
---|
866 | {
|
---|
867 | PRTSTREAM pOut = NULL;
|
---|
868 | int rc = RTStrmOpen(pszFilename, "w", &pOut);
|
---|
869 | if (RT_SUCCESS(rc))
|
---|
870 | {
|
---|
871 | GenerateHeader(pOut, pszCpuDesc, pszCpuType);
|
---|
872 | return pOut;
|
---|
873 | }
|
---|
874 | RTMsgError("Failed to open %s for writing: %Rrc", pszFilename, rc);
|
---|
875 | return NULL;
|
---|
876 | }
|
---|
877 |
|
---|
878 |
|
---|
879 | static RTEXITCODE GenerateFooterAndClose(PRTSTREAM pOut, const char *pszFilename, RTEXITCODE rcExit)
|
---|
880 | {
|
---|
881 | RTStrmPrintf(pOut,
|
---|
882 | "\n"
|
---|
883 | "/* end of file */\n");
|
---|
884 | int rc = RTStrmClose(pOut);
|
---|
885 | if (RT_SUCCESS(rc))
|
---|
886 | return rcExit;
|
---|
887 | return RTMsgErrorExitFailure("RTStrmClose failed on %s: %Rrc", pszFilename, rc);
|
---|
888 | }
|
---|
889 |
|
---|
890 |
|
---|
891 | static void GenerateArrayStart(PRTSTREAM pOut, const char *pszName, const char *pszType)
|
---|
892 | {
|
---|
893 | RTStrmPrintf(pOut, "%s const g_aTests_%s[] =\n{\n", pszType, pszName);
|
---|
894 | }
|
---|
895 |
|
---|
896 |
|
---|
897 | static void GenerateArrayEnd(PRTSTREAM pOut, const char *pszName)
|
---|
898 | {
|
---|
899 | RTStrmPrintf(pOut,
|
---|
900 | "};\n"
|
---|
901 | "uint32_t const g_cTests_%s = RT_ELEMENTS(g_aTests_%s);\n"
|
---|
902 | "\n",
|
---|
903 | pszName, pszName);
|
---|
904 | }
|
---|
905 |
|
---|
906 | #endif /* TSTIEMAIMPL_WITH_GENERATOR */
|
---|
907 |
|
---|
908 |
|
---|
909 | /*
|
---|
910 | * Test helpers.
|
---|
911 | */
|
---|
912 | static bool IsTestEnabled(const char *pszName)
|
---|
913 | {
|
---|
914 | /* Process excludes first: */
|
---|
915 | uint32_t i = g_cExcludeTestPatterns;
|
---|
916 | while (i-- > 0)
|
---|
917 | if (RTStrSimplePatternMultiMatch(g_apszExcludeTestPatterns[i], RTSTR_MAX, pszName, RTSTR_MAX, NULL))
|
---|
918 | return false;
|
---|
919 |
|
---|
920 | /* If no include patterns, everything is included: */
|
---|
921 | i = g_cIncludeTestPatterns;
|
---|
922 | if (!i)
|
---|
923 | return true;
|
---|
924 |
|
---|
925 | /* Otherwise only tests in the include patters gets tested: */
|
---|
926 | while (i-- > 0)
|
---|
927 | if (RTStrSimplePatternMultiMatch(g_apszIncludeTestPatterns[i], RTSTR_MAX, pszName, RTSTR_MAX, NULL))
|
---|
928 | return true;
|
---|
929 |
|
---|
930 | return false;
|
---|
931 | }
|
---|
932 |
|
---|
933 |
|
---|
934 | static bool SubTestAndCheckIfEnabled(const char *pszName)
|
---|
935 | {
|
---|
936 | RTTestSub(g_hTest, pszName);
|
---|
937 | if (IsTestEnabled(pszName))
|
---|
938 | return true;
|
---|
939 | RTTestSkipped(g_hTest, g_cVerbosity > 0 ? "excluded" : NULL);
|
---|
940 | return false;
|
---|
941 | }
|
---|
942 |
|
---|
943 |
|
---|
944 | static const char *EFlagsDiff(uint32_t fActual, uint32_t fExpected)
|
---|
945 | {
|
---|
946 | if (fActual == fExpected)
|
---|
947 | return "";
|
---|
948 |
|
---|
949 | uint32_t const fXor = fActual ^ fExpected;
|
---|
950 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
951 | size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor);
|
---|
952 |
|
---|
953 | static struct
|
---|
954 | {
|
---|
955 | const char *pszName;
|
---|
956 | uint32_t fFlag;
|
---|
957 | } const s_aFlags[] =
|
---|
958 | {
|
---|
959 | #define EFL_ENTRY(a_Flags) { #a_Flags, X86_EFL_ ## a_Flags }
|
---|
960 | EFL_ENTRY(CF),
|
---|
961 | EFL_ENTRY(PF),
|
---|
962 | EFL_ENTRY(AF),
|
---|
963 | EFL_ENTRY(ZF),
|
---|
964 | EFL_ENTRY(SF),
|
---|
965 | EFL_ENTRY(TF),
|
---|
966 | EFL_ENTRY(IF),
|
---|
967 | EFL_ENTRY(DF),
|
---|
968 | EFL_ENTRY(OF),
|
---|
969 | EFL_ENTRY(IOPL),
|
---|
970 | EFL_ENTRY(NT),
|
---|
971 | EFL_ENTRY(RF),
|
---|
972 | EFL_ENTRY(VM),
|
---|
973 | EFL_ENTRY(AC),
|
---|
974 | EFL_ENTRY(VIF),
|
---|
975 | EFL_ENTRY(VIP),
|
---|
976 | EFL_ENTRY(ID),
|
---|
977 | };
|
---|
978 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
979 | if (s_aFlags[i].fFlag & fXor)
|
---|
980 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch,
|
---|
981 | s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName);
|
---|
982 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
983 | return pszBuf;
|
---|
984 | }
|
---|
985 |
|
---|
986 |
|
---|
987 | static const char *FswDiff(uint16_t fActual, uint16_t fExpected)
|
---|
988 | {
|
---|
989 | if (fActual == fExpected)
|
---|
990 | return "";
|
---|
991 |
|
---|
992 | uint16_t const fXor = fActual ^ fExpected;
|
---|
993 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
994 | size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor);
|
---|
995 |
|
---|
996 | static struct
|
---|
997 | {
|
---|
998 | const char *pszName;
|
---|
999 | uint32_t fFlag;
|
---|
1000 | } const s_aFlags[] =
|
---|
1001 | {
|
---|
1002 | #define FSW_ENTRY(a_Flags) { #a_Flags, X86_FSW_ ## a_Flags }
|
---|
1003 | FSW_ENTRY(IE),
|
---|
1004 | FSW_ENTRY(DE),
|
---|
1005 | FSW_ENTRY(ZE),
|
---|
1006 | FSW_ENTRY(OE),
|
---|
1007 | FSW_ENTRY(UE),
|
---|
1008 | FSW_ENTRY(PE),
|
---|
1009 | FSW_ENTRY(SF),
|
---|
1010 | FSW_ENTRY(ES),
|
---|
1011 | FSW_ENTRY(C0),
|
---|
1012 | FSW_ENTRY(C1),
|
---|
1013 | FSW_ENTRY(C2),
|
---|
1014 | FSW_ENTRY(C3),
|
---|
1015 | FSW_ENTRY(B),
|
---|
1016 | };
|
---|
1017 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1018 | if (s_aFlags[i].fFlag & fXor)
|
---|
1019 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch,
|
---|
1020 | s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName);
|
---|
1021 | if (fXor & X86_FSW_TOP_MASK)
|
---|
1022 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "/TOP%u!%u",
|
---|
1023 | X86_FSW_TOP_GET(fActual), X86_FSW_TOP_GET(fExpected));
|
---|
1024 | #if 0 /* For debugging fprem & fprem1 */
|
---|
1025 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " - Q=%d (vs %d)",
|
---|
1026 | X86_FSW_CX_TO_QUOTIENT(fActual), X86_FSW_CX_TO_QUOTIENT(fExpected));
|
---|
1027 | #endif
|
---|
1028 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1029 | return pszBuf;
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 |
|
---|
1033 | static const char *MxcsrDiff(uint32_t fActual, uint32_t fExpected)
|
---|
1034 | {
|
---|
1035 | if (fActual == fExpected)
|
---|
1036 | return "";
|
---|
1037 |
|
---|
1038 | uint16_t const fXor = fActual ^ fExpected;
|
---|
1039 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1040 | size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor);
|
---|
1041 |
|
---|
1042 | static struct
|
---|
1043 | {
|
---|
1044 | const char *pszName;
|
---|
1045 | uint32_t fFlag;
|
---|
1046 | } const s_aFlags[] =
|
---|
1047 | {
|
---|
1048 | #define MXCSR_ENTRY(a_Flags) { #a_Flags, X86_MXCSR_ ## a_Flags }
|
---|
1049 | MXCSR_ENTRY(IE),
|
---|
1050 | MXCSR_ENTRY(DE),
|
---|
1051 | MXCSR_ENTRY(ZE),
|
---|
1052 | MXCSR_ENTRY(OE),
|
---|
1053 | MXCSR_ENTRY(UE),
|
---|
1054 | MXCSR_ENTRY(PE),
|
---|
1055 |
|
---|
1056 | MXCSR_ENTRY(IM),
|
---|
1057 | MXCSR_ENTRY(DM),
|
---|
1058 | MXCSR_ENTRY(ZM),
|
---|
1059 | MXCSR_ENTRY(OM),
|
---|
1060 | MXCSR_ENTRY(UM),
|
---|
1061 | MXCSR_ENTRY(PM),
|
---|
1062 |
|
---|
1063 | MXCSR_ENTRY(DAZ),
|
---|
1064 | MXCSR_ENTRY(FZ),
|
---|
1065 | #undef MXCSR_ENTRY
|
---|
1066 | };
|
---|
1067 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1068 | if (s_aFlags[i].fFlag & fXor)
|
---|
1069 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch,
|
---|
1070 | s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName);
|
---|
1071 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1072 | return pszBuf;
|
---|
1073 | }
|
---|
1074 |
|
---|
1075 |
|
---|
1076 | static const char *FormatFcw(uint16_t fFcw)
|
---|
1077 | {
|
---|
1078 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1079 |
|
---|
1080 | const char *pszPC = NULL; /* (msc+gcc are too stupid) */
|
---|
1081 | switch (fFcw & X86_FCW_PC_MASK)
|
---|
1082 | {
|
---|
1083 | case X86_FCW_PC_24: pszPC = "PC24"; break;
|
---|
1084 | case X86_FCW_PC_RSVD: pszPC = "PCRSVD!"; break;
|
---|
1085 | case X86_FCW_PC_53: pszPC = "PC53"; break;
|
---|
1086 | case X86_FCW_PC_64: pszPC = "PC64"; break;
|
---|
1087 | }
|
---|
1088 |
|
---|
1089 | const char *pszRC = NULL; /* (msc+gcc are too stupid) */
|
---|
1090 | switch (fFcw & X86_FCW_RC_MASK)
|
---|
1091 | {
|
---|
1092 | case X86_FCW_RC_NEAREST: pszRC = "NEAR"; break;
|
---|
1093 | case X86_FCW_RC_DOWN: pszRC = "DOWN"; break;
|
---|
1094 | case X86_FCW_RC_UP: pszRC = "UP"; break;
|
---|
1095 | case X86_FCW_RC_ZERO: pszRC = "ZERO"; break;
|
---|
1096 | }
|
---|
1097 | size_t cch = RTStrPrintf(&pszBuf[0], sizeof(g_aszBuf[0]), "%s %s", pszPC, pszRC);
|
---|
1098 |
|
---|
1099 | static struct
|
---|
1100 | {
|
---|
1101 | const char *pszName;
|
---|
1102 | uint32_t fFlag;
|
---|
1103 | } const s_aFlags[] =
|
---|
1104 | {
|
---|
1105 | #define FCW_ENTRY(a_Flags) { #a_Flags, X86_FCW_ ## a_Flags }
|
---|
1106 | FCW_ENTRY(IM),
|
---|
1107 | FCW_ENTRY(DM),
|
---|
1108 | FCW_ENTRY(ZM),
|
---|
1109 | FCW_ENTRY(OM),
|
---|
1110 | FCW_ENTRY(UM),
|
---|
1111 | FCW_ENTRY(PM),
|
---|
1112 | { "6M", 64 },
|
---|
1113 | };
|
---|
1114 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1115 | if (fFcw & s_aFlags[i].fFlag)
|
---|
1116 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " %s", s_aFlags[i].pszName);
|
---|
1117 |
|
---|
1118 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1119 | return pszBuf;
|
---|
1120 | }
|
---|
1121 |
|
---|
1122 |
|
---|
1123 | static const char *FormatMxcsr(uint32_t fMxcsr)
|
---|
1124 | {
|
---|
1125 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1126 |
|
---|
1127 | const char *pszRC = NULL; /* (msc+gcc are too stupid) */
|
---|
1128 | switch (fMxcsr & X86_MXCSR_RC_MASK)
|
---|
1129 | {
|
---|
1130 | case X86_MXCSR_RC_NEAREST: pszRC = "NEAR"; break;
|
---|
1131 | case X86_MXCSR_RC_DOWN: pszRC = "DOWN"; break;
|
---|
1132 | case X86_MXCSR_RC_UP: pszRC = "UP"; break;
|
---|
1133 | case X86_MXCSR_RC_ZERO: pszRC = "ZERO"; break;
|
---|
1134 | }
|
---|
1135 |
|
---|
1136 | const char *pszDAZ = fMxcsr & X86_MXCSR_DAZ ? " DAZ" : "";
|
---|
1137 | const char *pszFZ = fMxcsr & X86_MXCSR_FZ ? " FZ" : "";
|
---|
1138 | size_t cch = RTStrPrintf(&pszBuf[0], sizeof(g_aszBuf[0]), "%s%s%s", pszRC, pszDAZ, pszFZ);
|
---|
1139 |
|
---|
1140 | static struct
|
---|
1141 | {
|
---|
1142 | const char *pszName;
|
---|
1143 | uint32_t fFlag;
|
---|
1144 | } const s_aFlags[] =
|
---|
1145 | {
|
---|
1146 | #define MXCSR_ENTRY(a_Flags) { #a_Flags, X86_MXCSR_ ## a_Flags }
|
---|
1147 | MXCSR_ENTRY(IE),
|
---|
1148 | MXCSR_ENTRY(DE),
|
---|
1149 | MXCSR_ENTRY(ZE),
|
---|
1150 | MXCSR_ENTRY(OE),
|
---|
1151 | MXCSR_ENTRY(UE),
|
---|
1152 | MXCSR_ENTRY(PE),
|
---|
1153 |
|
---|
1154 | MXCSR_ENTRY(IM),
|
---|
1155 | MXCSR_ENTRY(DM),
|
---|
1156 | MXCSR_ENTRY(ZM),
|
---|
1157 | MXCSR_ENTRY(OM),
|
---|
1158 | MXCSR_ENTRY(UM),
|
---|
1159 | MXCSR_ENTRY(PM),
|
---|
1160 | { "6M", 64 },
|
---|
1161 | };
|
---|
1162 | for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1163 | if (fMxcsr & s_aFlags[i].fFlag)
|
---|
1164 | cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " %s", s_aFlags[i].pszName);
|
---|
1165 |
|
---|
1166 | RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "");
|
---|
1167 | return pszBuf;
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 |
|
---|
1171 | static const char *FormatR80(PCRTFLOAT80U pr80)
|
---|
1172 | {
|
---|
1173 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1174 | RTStrFormatR80(pszBuf, sizeof(g_aszBuf[0]), pr80, 0, 0, RTSTR_F_SPECIAL);
|
---|
1175 | return pszBuf;
|
---|
1176 | }
|
---|
1177 |
|
---|
1178 |
|
---|
1179 | static const char *FormatR64(PCRTFLOAT64U pr64)
|
---|
1180 | {
|
---|
1181 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1182 | RTStrFormatR64(pszBuf, sizeof(g_aszBuf[0]), pr64, 0, 0, RTSTR_F_SPECIAL);
|
---|
1183 | return pszBuf;
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 |
|
---|
1187 | static const char *FormatR32(PCRTFLOAT32U pr32)
|
---|
1188 | {
|
---|
1189 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1190 | RTStrFormatR32(pszBuf, sizeof(g_aszBuf[0]), pr32, 0, 0, RTSTR_F_SPECIAL);
|
---|
1191 | return pszBuf;
|
---|
1192 | }
|
---|
1193 |
|
---|
1194 |
|
---|
1195 | static const char *FormatD80(PCRTPBCD80U pd80)
|
---|
1196 | {
|
---|
1197 | /* There is only one indefinite endcoding (same as for 80-bit
|
---|
1198 | floating point), so get it out of the way first: */
|
---|
1199 | if (RTPBCD80U_IS_INDEFINITE(pd80))
|
---|
1200 | return "Ind";
|
---|
1201 |
|
---|
1202 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1203 | size_t off = 0;
|
---|
1204 | pszBuf[off++] = pd80->s.fSign ? '-' : '+';
|
---|
1205 | unsigned cBadDigits = 0;
|
---|
1206 | size_t iPair = RT_ELEMENTS(pd80->s.abPairs);
|
---|
1207 | while (iPair-- > 0)
|
---|
1208 | {
|
---|
1209 | static const char s_szDigits[] = "0123456789abcdef";
|
---|
1210 | static const uint8_t s_bBadDigits[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 };
|
---|
1211 | pszBuf[off++] = s_szDigits[RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair])];
|
---|
1212 | pszBuf[off++] = s_szDigits[RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])];
|
---|
1213 | cBadDigits += s_bBadDigits[RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair])]
|
---|
1214 | + s_bBadDigits[RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])];
|
---|
1215 | }
|
---|
1216 | if (cBadDigits || pd80->s.uPad != 0)
|
---|
1217 | off += RTStrPrintf(&pszBuf[off], sizeof(g_aszBuf[0]) - off, "[%u,%#x]", cBadDigits, pd80->s.uPad);
|
---|
1218 | pszBuf[off] = '\0';
|
---|
1219 | return pszBuf;
|
---|
1220 | }
|
---|
1221 |
|
---|
1222 |
|
---|
1223 | #if 0
|
---|
1224 | static const char *FormatI64(int64_t const *piVal)
|
---|
1225 | {
|
---|
1226 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1227 | RTStrFormatU64(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED);
|
---|
1228 | return pszBuf;
|
---|
1229 | }
|
---|
1230 | #endif
|
---|
1231 |
|
---|
1232 |
|
---|
1233 | static const char *FormatI32(int32_t const *piVal)
|
---|
1234 | {
|
---|
1235 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1236 | RTStrFormatU32(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED);
|
---|
1237 | return pszBuf;
|
---|
1238 | }
|
---|
1239 |
|
---|
1240 |
|
---|
1241 | static const char *FormatI16(int16_t const *piVal)
|
---|
1242 | {
|
---|
1243 | char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)];
|
---|
1244 | RTStrFormatU16(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED);
|
---|
1245 | return pszBuf;
|
---|
1246 | }
|
---|
1247 |
|
---|
1248 |
|
---|
1249 | /*
|
---|
1250 | * Binary operations.
|
---|
1251 | */
|
---|
1252 | TYPEDEF_SUBTEST_TYPE(BINU8_T, BINU8_TEST_T, PFNIEMAIMPLBINU8);
|
---|
1253 | TYPEDEF_SUBTEST_TYPE(BINU16_T, BINU16_TEST_T, PFNIEMAIMPLBINU16);
|
---|
1254 | TYPEDEF_SUBTEST_TYPE(BINU32_T, BINU32_TEST_T, PFNIEMAIMPLBINU32);
|
---|
1255 | TYPEDEF_SUBTEST_TYPE(BINU64_T, BINU64_TEST_T, PFNIEMAIMPLBINU64);
|
---|
1256 |
|
---|
1257 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1258 | # define GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) \
|
---|
1259 | static void BinU ## a_cBits ## Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests) \
|
---|
1260 | { \
|
---|
1261 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aBinU ## a_cBits); iFn++) \
|
---|
1262 | { \
|
---|
1263 | PFNIEMAIMPLBINU ## a_cBits const pfn = g_aBinU ## a_cBits[iFn].pfnNative \
|
---|
1264 | ? g_aBinU ## a_cBits[iFn].pfnNative : g_aBinU ## a_cBits[iFn].pfn; \
|
---|
1265 | PRTSTREAM pOutFn = pOut; \
|
---|
1266 | if (g_aBinU ## a_cBits[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE) \
|
---|
1267 | { \
|
---|
1268 | if (g_aBinU ## a_cBits[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
1269 | continue; \
|
---|
1270 | pOutFn = pOutCpu; \
|
---|
1271 | } \
|
---|
1272 | \
|
---|
1273 | GenerateArrayStart(pOutFn, g_aBinU ## a_cBits[iFn].pszName, #a_TestType); \
|
---|
1274 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
1275 | { \
|
---|
1276 | a_TestType Test; \
|
---|
1277 | Test.fEflIn = RandEFlags(); \
|
---|
1278 | Test.fEflOut = Test.fEflIn; \
|
---|
1279 | Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \
|
---|
1280 | Test.uDstOut = Test.uDstIn; \
|
---|
1281 | Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \
|
---|
1282 | if (g_aBinU ## a_cBits[iFn].uExtra) \
|
---|
1283 | Test.uSrcIn &= a_cBits - 1; /* Restrict bit index according to operand width */ \
|
---|
1284 | Test.uMisc = 0; \
|
---|
1285 | pfn(&Test.uDstOut, Test.uSrcIn, &Test.fEflOut); \
|
---|
1286 | RTStrmPrintf(pOutFn, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", " a_Fmt ", %#x }, /* #%u */\n", \
|
---|
1287 | Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, Test.uSrcIn, Test.uMisc, iTest); \
|
---|
1288 | } \
|
---|
1289 | GenerateArrayEnd(pOutFn, g_aBinU ## a_cBits[iFn].pszName); \
|
---|
1290 | } \
|
---|
1291 | }
|
---|
1292 | #else
|
---|
1293 | # define GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType)
|
---|
1294 | #endif
|
---|
1295 |
|
---|
1296 | #define TEST_BINARY_OPS(a_cBits, a_uType, a_Fmt, a_TestType, a_aSubTests) \
|
---|
1297 | GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) \
|
---|
1298 | \
|
---|
1299 | static void BinU ## a_cBits ## Test(void) \
|
---|
1300 | { \
|
---|
1301 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
1302 | { \
|
---|
1303 | if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \
|
---|
1304 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
1305 | uint32_t const cTests = *a_aSubTests[iFn].pcTests; \
|
---|
1306 | PFNIEMAIMPLBINU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
1307 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
1308 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
1309 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
1310 | { \
|
---|
1311 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
1312 | { \
|
---|
1313 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
1314 | a_uType uDst = paTests[iTest].uDstIn; \
|
---|
1315 | pfn(&uDst, paTests[iTest].uSrcIn, &fEfl); \
|
---|
1316 | if ( uDst != paTests[iTest].uDstOut \
|
---|
1317 | || fEfl != paTests[iTest].fEflOut) \
|
---|
1318 | RTTestFailed(g_hTest, "#%u%s: efl=%#08x dst=" a_Fmt " src=" a_Fmt " -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s - %s\n", \
|
---|
1319 | iTest, !iVar ? "" : "/n", paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, \
|
---|
1320 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
1321 | EFlagsDiff(fEfl, paTests[iTest].fEflOut), \
|
---|
1322 | uDst == paTests[iTest].uDstOut ? "eflags" : fEfl == paTests[iTest].fEflOut ? "dst" : "both"); \
|
---|
1323 | else \
|
---|
1324 | { \
|
---|
1325 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
1326 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
1327 | pfn(g_pu ## a_cBits, paTests[iTest].uSrcIn, g_pfEfl); \
|
---|
1328 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
1329 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
1330 | } \
|
---|
1331 | } \
|
---|
1332 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
1333 | } \
|
---|
1334 | } \
|
---|
1335 | }
|
---|
1336 |
|
---|
1337 |
|
---|
1338 | /*
|
---|
1339 | * 8-bit binary operations.
|
---|
1340 | */
|
---|
1341 | static const BINU8_T g_aBinU8[] =
|
---|
1342 | {
|
---|
1343 | ENTRY(add_u8),
|
---|
1344 | ENTRY(add_u8_locked),
|
---|
1345 | ENTRY(adc_u8),
|
---|
1346 | ENTRY(adc_u8_locked),
|
---|
1347 | ENTRY(sub_u8),
|
---|
1348 | ENTRY(sub_u8_locked),
|
---|
1349 | ENTRY(sbb_u8),
|
---|
1350 | ENTRY(sbb_u8_locked),
|
---|
1351 | ENTRY(or_u8),
|
---|
1352 | ENTRY(or_u8_locked),
|
---|
1353 | ENTRY(xor_u8),
|
---|
1354 | ENTRY(xor_u8_locked),
|
---|
1355 | ENTRY(and_u8),
|
---|
1356 | ENTRY(and_u8_locked),
|
---|
1357 | ENTRY(cmp_u8),
|
---|
1358 | ENTRY(test_u8),
|
---|
1359 | };
|
---|
1360 | TEST_BINARY_OPS(8, uint8_t, "%#04x", BINU8_TEST_T, g_aBinU8)
|
---|
1361 |
|
---|
1362 |
|
---|
1363 | /*
|
---|
1364 | * 16-bit binary operations.
|
---|
1365 | */
|
---|
1366 | static const BINU16_T g_aBinU16[] =
|
---|
1367 | {
|
---|
1368 | ENTRY(add_u16),
|
---|
1369 | ENTRY(add_u16_locked),
|
---|
1370 | ENTRY(adc_u16),
|
---|
1371 | ENTRY(adc_u16_locked),
|
---|
1372 | ENTRY(sub_u16),
|
---|
1373 | ENTRY(sub_u16_locked),
|
---|
1374 | ENTRY(sbb_u16),
|
---|
1375 | ENTRY(sbb_u16_locked),
|
---|
1376 | ENTRY(or_u16),
|
---|
1377 | ENTRY(or_u16_locked),
|
---|
1378 | ENTRY(xor_u16),
|
---|
1379 | ENTRY(xor_u16_locked),
|
---|
1380 | ENTRY(and_u16),
|
---|
1381 | ENTRY(and_u16_locked),
|
---|
1382 | ENTRY(cmp_u16),
|
---|
1383 | ENTRY(test_u16),
|
---|
1384 | ENTRY_EX(bt_u16, 1),
|
---|
1385 | ENTRY_EX(btc_u16, 1),
|
---|
1386 | ENTRY_EX(btc_u16_locked, 1),
|
---|
1387 | ENTRY_EX(btr_u16, 1),
|
---|
1388 | ENTRY_EX(btr_u16_locked, 1),
|
---|
1389 | ENTRY_EX(bts_u16, 1),
|
---|
1390 | ENTRY_EX(bts_u16_locked, 1),
|
---|
1391 | ENTRY_AMD( bsf_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1392 | ENTRY_INTEL(bsf_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1393 | ENTRY_AMD( bsr_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1394 | ENTRY_INTEL(bsr_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1395 | ENTRY_AMD( imul_two_u16, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1396 | ENTRY_INTEL(imul_two_u16, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1397 | ENTRY(arpl),
|
---|
1398 | };
|
---|
1399 | TEST_BINARY_OPS(16, uint16_t, "%#06x", BINU16_TEST_T, g_aBinU16)
|
---|
1400 |
|
---|
1401 |
|
---|
1402 | /*
|
---|
1403 | * 32-bit binary operations.
|
---|
1404 | */
|
---|
1405 | static const BINU32_T g_aBinU32[] =
|
---|
1406 | {
|
---|
1407 | ENTRY(add_u32),
|
---|
1408 | ENTRY(add_u32_locked),
|
---|
1409 | ENTRY(adc_u32),
|
---|
1410 | ENTRY(adc_u32_locked),
|
---|
1411 | ENTRY(sub_u32),
|
---|
1412 | ENTRY(sub_u32_locked),
|
---|
1413 | ENTRY(sbb_u32),
|
---|
1414 | ENTRY(sbb_u32_locked),
|
---|
1415 | ENTRY(or_u32),
|
---|
1416 | ENTRY(or_u32_locked),
|
---|
1417 | ENTRY(xor_u32),
|
---|
1418 | ENTRY(xor_u32_locked),
|
---|
1419 | ENTRY(and_u32),
|
---|
1420 | ENTRY(and_u32_locked),
|
---|
1421 | ENTRY(cmp_u32),
|
---|
1422 | ENTRY(test_u32),
|
---|
1423 | ENTRY_EX(bt_u32, 1),
|
---|
1424 | ENTRY_EX(btc_u32, 1),
|
---|
1425 | ENTRY_EX(btc_u32_locked, 1),
|
---|
1426 | ENTRY_EX(btr_u32, 1),
|
---|
1427 | ENTRY_EX(btr_u32_locked, 1),
|
---|
1428 | ENTRY_EX(bts_u32, 1),
|
---|
1429 | ENTRY_EX(bts_u32_locked, 1),
|
---|
1430 | ENTRY_AMD( bsf_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1431 | ENTRY_INTEL(bsf_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1432 | ENTRY_AMD( bsr_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1433 | ENTRY_INTEL(bsr_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1434 | ENTRY_AMD( imul_two_u32, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1435 | ENTRY_INTEL(imul_two_u32, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1436 | };
|
---|
1437 | TEST_BINARY_OPS(32, uint32_t, "%#010RX32", BINU32_TEST_T, g_aBinU32)
|
---|
1438 |
|
---|
1439 |
|
---|
1440 | /*
|
---|
1441 | * 64-bit binary operations.
|
---|
1442 | */
|
---|
1443 | static const BINU64_T g_aBinU64[] =
|
---|
1444 | {
|
---|
1445 | ENTRY(add_u64),
|
---|
1446 | ENTRY(add_u64_locked),
|
---|
1447 | ENTRY(adc_u64),
|
---|
1448 | ENTRY(adc_u64_locked),
|
---|
1449 | ENTRY(sub_u64),
|
---|
1450 | ENTRY(sub_u64_locked),
|
---|
1451 | ENTRY(sbb_u64),
|
---|
1452 | ENTRY(sbb_u64_locked),
|
---|
1453 | ENTRY(or_u64),
|
---|
1454 | ENTRY(or_u64_locked),
|
---|
1455 | ENTRY(xor_u64),
|
---|
1456 | ENTRY(xor_u64_locked),
|
---|
1457 | ENTRY(and_u64),
|
---|
1458 | ENTRY(and_u64_locked),
|
---|
1459 | ENTRY(cmp_u64),
|
---|
1460 | ENTRY(test_u64),
|
---|
1461 | ENTRY_EX(bt_u64, 1),
|
---|
1462 | ENTRY_EX(btc_u64, 1),
|
---|
1463 | ENTRY_EX(btc_u64_locked, 1),
|
---|
1464 | ENTRY_EX(btr_u64, 1),
|
---|
1465 | ENTRY_EX(btr_u64_locked, 1),
|
---|
1466 | ENTRY_EX(bts_u64, 1),
|
---|
1467 | ENTRY_EX(bts_u64_locked, 1),
|
---|
1468 | ENTRY_AMD( bsf_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1469 | ENTRY_INTEL(bsf_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1470 | ENTRY_AMD( bsr_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1471 | ENTRY_INTEL(bsr_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF),
|
---|
1472 | ENTRY_AMD( imul_two_u64, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1473 | ENTRY_INTEL(imul_two_u64, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF),
|
---|
1474 | };
|
---|
1475 | TEST_BINARY_OPS(64, uint64_t, "%#018RX64", BINU64_TEST_T, g_aBinU64)
|
---|
1476 |
|
---|
1477 |
|
---|
1478 | /*
|
---|
1479 | * XCHG
|
---|
1480 | */
|
---|
1481 | static void XchgTest(void)
|
---|
1482 | {
|
---|
1483 | if (!SubTestAndCheckIfEnabled("xchg"))
|
---|
1484 | return;
|
---|
1485 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU8, (uint8_t *pu8Mem, uint8_t *pu8Reg));
|
---|
1486 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU16,(uint16_t *pu16Mem, uint16_t *pu16Reg));
|
---|
1487 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU32,(uint32_t *pu32Mem, uint32_t *pu32Reg));
|
---|
1488 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU64,(uint64_t *pu64Mem, uint64_t *pu64Reg));
|
---|
1489 |
|
---|
1490 | static struct
|
---|
1491 | {
|
---|
1492 | uint8_t cb; uint64_t fMask;
|
---|
1493 | union
|
---|
1494 | {
|
---|
1495 | uintptr_t pfn;
|
---|
1496 | FNIEMAIMPLXCHGU8 *pfnU8;
|
---|
1497 | FNIEMAIMPLXCHGU16 *pfnU16;
|
---|
1498 | FNIEMAIMPLXCHGU32 *pfnU32;
|
---|
1499 | FNIEMAIMPLXCHGU64 *pfnU64;
|
---|
1500 | } u;
|
---|
1501 | }
|
---|
1502 | s_aXchgWorkers[] =
|
---|
1503 | {
|
---|
1504 | { 1, UINT8_MAX, { (uintptr_t)iemAImpl_xchg_u8_locked } },
|
---|
1505 | { 2, UINT16_MAX, { (uintptr_t)iemAImpl_xchg_u16_locked } },
|
---|
1506 | { 4, UINT32_MAX, { (uintptr_t)iemAImpl_xchg_u32_locked } },
|
---|
1507 | { 8, UINT64_MAX, { (uintptr_t)iemAImpl_xchg_u64_locked } },
|
---|
1508 | { 1, UINT8_MAX, { (uintptr_t)iemAImpl_xchg_u8_unlocked } },
|
---|
1509 | { 2, UINT16_MAX, { (uintptr_t)iemAImpl_xchg_u16_unlocked } },
|
---|
1510 | { 4, UINT32_MAX, { (uintptr_t)iemAImpl_xchg_u32_unlocked } },
|
---|
1511 | { 8, UINT64_MAX, { (uintptr_t)iemAImpl_xchg_u64_unlocked } },
|
---|
1512 | };
|
---|
1513 | for (size_t i = 0; i < RT_ELEMENTS(s_aXchgWorkers); i++)
|
---|
1514 | {
|
---|
1515 | RTUINT64U uIn1, uIn2, uMem, uDst;
|
---|
1516 | uMem.u = uIn1.u = RTRandU64Ex(0, s_aXchgWorkers[i].fMask);
|
---|
1517 | uDst.u = uIn2.u = RTRandU64Ex(0, s_aXchgWorkers[i].fMask);
|
---|
1518 | if (uIn1.u == uIn2.u)
|
---|
1519 | uDst.u = uIn2.u = ~uIn2.u;
|
---|
1520 |
|
---|
1521 | switch (s_aXchgWorkers[i].cb)
|
---|
1522 | {
|
---|
1523 | case 1:
|
---|
1524 | s_aXchgWorkers[i].u.pfnU8(g_pu8, g_pu8Two);
|
---|
1525 | s_aXchgWorkers[i].u.pfnU8(&uMem.au8[0], &uDst.au8[0]);
|
---|
1526 | break;
|
---|
1527 | case 2:
|
---|
1528 | s_aXchgWorkers[i].u.pfnU16(g_pu16, g_pu16Two);
|
---|
1529 | s_aXchgWorkers[i].u.pfnU16(&uMem.Words.w0, &uDst.Words.w0);
|
---|
1530 | break;
|
---|
1531 | case 4:
|
---|
1532 | s_aXchgWorkers[i].u.pfnU32(g_pu32, g_pu32Two);
|
---|
1533 | s_aXchgWorkers[i].u.pfnU32(&uMem.DWords.dw0, &uDst.DWords.dw0);
|
---|
1534 | break;
|
---|
1535 | case 8:
|
---|
1536 | s_aXchgWorkers[i].u.pfnU64(g_pu64, g_pu64Two);
|
---|
1537 | s_aXchgWorkers[i].u.pfnU64(&uMem.u, &uDst.u);
|
---|
1538 | break;
|
---|
1539 | default: RTTestFailed(g_hTest, "%d\n", s_aXchgWorkers[i].cb); break;
|
---|
1540 | }
|
---|
1541 |
|
---|
1542 | if (uMem.u != uIn2.u || uDst.u != uIn1.u)
|
---|
1543 | RTTestFailed(g_hTest, "i=%u: %#RX64, %#RX64 -> %#RX64, %#RX64\n", i, uIn1.u, uIn2.u, uMem.u, uDst.u);
|
---|
1544 | }
|
---|
1545 | }
|
---|
1546 |
|
---|
1547 |
|
---|
1548 | /*
|
---|
1549 | * XADD
|
---|
1550 | */
|
---|
1551 | static void XaddTest(void)
|
---|
1552 | {
|
---|
1553 | #define TEST_XADD(a_cBits, a_Type, a_Fmt) do { \
|
---|
1554 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXADDU ## a_cBits, (a_Type *, a_Type *, uint32_t *)); \
|
---|
1555 | static struct \
|
---|
1556 | { \
|
---|
1557 | const char *pszName; \
|
---|
1558 | FNIEMAIMPLXADDU ## a_cBits *pfn; \
|
---|
1559 | BINU ## a_cBits ## _TEST_T const *paTests; \
|
---|
1560 | uint32_t const *pcTests; \
|
---|
1561 | } const s_aFuncs[] = \
|
---|
1562 | { \
|
---|
1563 | { "xadd_u" # a_cBits, iemAImpl_xadd_u ## a_cBits, \
|
---|
1564 | g_aTests_add_u ## a_cBits, &g_cTests_add_u ## a_cBits }, \
|
---|
1565 | { "xadd_u" # a_cBits "8_locked", iemAImpl_xadd_u ## a_cBits ## _locked, \
|
---|
1566 | g_aTests_add_u ## a_cBits, &g_cTests_add_u ## a_cBits }, \
|
---|
1567 | }; \
|
---|
1568 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) \
|
---|
1569 | { \
|
---|
1570 | if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName)) continue; \
|
---|
1571 | uint32_t const cTests = *s_aFuncs[iFn].pcTests; \
|
---|
1572 | BINU ## a_cBits ## _TEST_T const * const paTests = s_aFuncs[iFn].paTests; \
|
---|
1573 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
1574 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
1575 | { \
|
---|
1576 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
1577 | a_Type uSrc = paTests[iTest].uSrcIn; \
|
---|
1578 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
1579 | s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uSrc, &fEfl); \
|
---|
1580 | if ( fEfl != paTests[iTest].fEflOut \
|
---|
1581 | || *g_pu ## a_cBits != paTests[iTest].uDstOut \
|
---|
1582 | || uSrc != paTests[iTest].uDstIn) \
|
---|
1583 | RTTestFailed(g_hTest, "%s/#%u: efl=%#08x dst=" a_Fmt " src=" a_Fmt " -> efl=%#08x dst=" a_Fmt " src=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \
|
---|
1584 | s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, \
|
---|
1585 | fEfl, *g_pu ## a_cBits, uSrc, paTests[iTest].fEflOut, paTests[iTest].uDstOut, paTests[iTest].uDstIn, \
|
---|
1586 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
1587 | } \
|
---|
1588 | } \
|
---|
1589 | } while(0)
|
---|
1590 | TEST_XADD(8, uint8_t, "%#04x");
|
---|
1591 | TEST_XADD(16, uint16_t, "%#06x");
|
---|
1592 | TEST_XADD(32, uint32_t, "%#010RX32");
|
---|
1593 | TEST_XADD(64, uint64_t, "%#010RX64");
|
---|
1594 | }
|
---|
1595 |
|
---|
1596 |
|
---|
1597 | /*
|
---|
1598 | * CMPXCHG
|
---|
1599 | */
|
---|
1600 |
|
---|
1601 | static void CmpXchgTest(void)
|
---|
1602 | {
|
---|
1603 | #define TEST_CMPXCHG(a_cBits, a_Type, a_Fmt) do {\
|
---|
1604 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHGU ## a_cBits, (a_Type *, a_Type *, a_Type, uint32_t *)); \
|
---|
1605 | static struct \
|
---|
1606 | { \
|
---|
1607 | const char *pszName; \
|
---|
1608 | FNIEMAIMPLCMPXCHGU ## a_cBits *pfn; \
|
---|
1609 | PFNIEMAIMPLBINU ## a_cBits pfnSub; \
|
---|
1610 | BINU ## a_cBits ## _TEST_T const *paTests; \
|
---|
1611 | uint32_t const *pcTests; \
|
---|
1612 | } const s_aFuncs[] = \
|
---|
1613 | { \
|
---|
1614 | { "cmpxchg_u" # a_cBits, iemAImpl_cmpxchg_u ## a_cBits, iemAImpl_sub_u ## a_cBits, \
|
---|
1615 | g_aTests_cmp_u ## a_cBits, &g_cTests_cmp_u ## a_cBits }, \
|
---|
1616 | { "cmpxchg_u" # a_cBits "_locked", iemAImpl_cmpxchg_u ## a_cBits ## _locked, iemAImpl_sub_u ## a_cBits, \
|
---|
1617 | g_aTests_cmp_u ## a_cBits, &g_cTests_cmp_u ## a_cBits }, \
|
---|
1618 | }; \
|
---|
1619 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) \
|
---|
1620 | { \
|
---|
1621 | if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName)) continue; \
|
---|
1622 | BINU ## a_cBits ## _TEST_T const * const paTests = s_aFuncs[iFn].paTests; \
|
---|
1623 | uint32_t const cTests = *s_aFuncs[iFn].pcTests; \
|
---|
1624 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
1625 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
1626 | { \
|
---|
1627 | /* as is (99% likely to be negative). */ \
|
---|
1628 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
1629 | a_Type const uNew = paTests[iTest].uSrcIn + 0x42; \
|
---|
1630 | a_Type uA = paTests[iTest].uDstIn; \
|
---|
1631 | *g_pu ## a_cBits = paTests[iTest].uSrcIn; \
|
---|
1632 | a_Type const uExpect = uA != paTests[iTest].uSrcIn ? paTests[iTest].uSrcIn : uNew; \
|
---|
1633 | s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uA, uNew, &fEfl); \
|
---|
1634 | if ( fEfl != paTests[iTest].fEflOut \
|
---|
1635 | || *g_pu ## a_cBits != uExpect \
|
---|
1636 | || uA != paTests[iTest].uSrcIn) \
|
---|
1637 | RTTestFailed(g_hTest, "%s/#%ua: efl=%#08x dst=" a_Fmt " cmp=" a_Fmt " new=" a_Fmt " -> efl=%#08x dst=" a_Fmt " old=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \
|
---|
1638 | s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uSrcIn, paTests[iTest].uDstIn, \
|
---|
1639 | uNew, fEfl, *g_pu ## a_cBits, uA, paTests[iTest].fEflOut, uExpect, paTests[iTest].uSrcIn, \
|
---|
1640 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
1641 | /* positive */ \
|
---|
1642 | uint32_t fEflExpect = paTests[iTest].fEflIn; \
|
---|
1643 | uA = paTests[iTest].uDstIn; \
|
---|
1644 | s_aFuncs[iFn].pfnSub(&uA, uA, &fEflExpect); \
|
---|
1645 | fEfl = paTests[iTest].fEflIn; \
|
---|
1646 | uA = paTests[iTest].uDstIn; \
|
---|
1647 | *g_pu ## a_cBits = uA; \
|
---|
1648 | s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uA, uNew, &fEfl); \
|
---|
1649 | if ( fEfl != fEflExpect \
|
---|
1650 | || *g_pu ## a_cBits != uNew \
|
---|
1651 | || uA != paTests[iTest].uDstIn) \
|
---|
1652 | RTTestFailed(g_hTest, "%s/#%ua: efl=%#08x dst=" a_Fmt " cmp=" a_Fmt " new=" a_Fmt " -> efl=%#08x dst=" a_Fmt " old=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \
|
---|
1653 | s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uDstIn, \
|
---|
1654 | uNew, fEfl, *g_pu ## a_cBits, uA, fEflExpect, uNew, paTests[iTest].uDstIn, \
|
---|
1655 | EFlagsDiff(fEfl, fEflExpect)); \
|
---|
1656 | } \
|
---|
1657 | } \
|
---|
1658 | } while(0)
|
---|
1659 | TEST_CMPXCHG(8, uint8_t, "%#04RX8");
|
---|
1660 | TEST_CMPXCHG(16, uint16_t, "%#06x");
|
---|
1661 | TEST_CMPXCHG(32, uint32_t, "%#010RX32");
|
---|
1662 | #if ARCH_BITS != 32 /* calling convension issue, skipping as it's an unsupported host */
|
---|
1663 | TEST_CMPXCHG(64, uint64_t, "%#010RX64");
|
---|
1664 | #endif
|
---|
1665 | }
|
---|
1666 |
|
---|
1667 | static void CmpXchg8bTest(void)
|
---|
1668 | {
|
---|
1669 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHG8B,(uint64_t *, PRTUINT64U, PRTUINT64U, uint32_t *));
|
---|
1670 | static struct
|
---|
1671 | {
|
---|
1672 | const char *pszName;
|
---|
1673 | FNIEMAIMPLCMPXCHG8B *pfn;
|
---|
1674 | } const s_aFuncs[] =
|
---|
1675 | {
|
---|
1676 | { "cmpxchg8b", iemAImpl_cmpxchg8b },
|
---|
1677 | { "cmpxchg8b_locked", iemAImpl_cmpxchg8b_locked },
|
---|
1678 | };
|
---|
1679 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++)
|
---|
1680 | {
|
---|
1681 | if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName))
|
---|
1682 | continue;
|
---|
1683 | for (uint32_t iTest = 0; iTest < 4; iTest += 2)
|
---|
1684 | {
|
---|
1685 | uint64_t const uOldValue = RandU64();
|
---|
1686 | uint64_t const uNewValue = RandU64();
|
---|
1687 |
|
---|
1688 | /* positive test. */
|
---|
1689 | RTUINT64U uA, uB;
|
---|
1690 | uB.u = uNewValue;
|
---|
1691 | uA.u = uOldValue;
|
---|
1692 | *g_pu64 = uOldValue;
|
---|
1693 | uint32_t fEflIn = RandEFlags();
|
---|
1694 | uint32_t fEfl = fEflIn;
|
---|
1695 | s_aFuncs[iFn].pfn(g_pu64, &uA, &uB, &fEfl);
|
---|
1696 | if ( fEfl != (fEflIn | X86_EFL_ZF)
|
---|
1697 | || *g_pu64 != uNewValue
|
---|
1698 | || uA.u != uOldValue)
|
---|
1699 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64 cmp=%#018RX64 new=%#018RX64\n -> efl=%#08x dst=%#018RX64 old=%#018RX64,\n wanted %#08x, %#018RX64, %#018RX64%s\n",
|
---|
1700 | iTest, fEflIn, uOldValue, uOldValue, uNewValue,
|
---|
1701 | fEfl, *g_pu64, uA.u,
|
---|
1702 | (fEflIn | X86_EFL_ZF), uNewValue, uOldValue, EFlagsDiff(fEfl, fEflIn | X86_EFL_ZF));
|
---|
1703 | RTTEST_CHECK(g_hTest, uB.u == uNewValue);
|
---|
1704 |
|
---|
1705 | /* negative */
|
---|
1706 | uint64_t const uExpect = ~uOldValue;
|
---|
1707 | *g_pu64 = uExpect;
|
---|
1708 | uA.u = uOldValue;
|
---|
1709 | uB.u = uNewValue;
|
---|
1710 | fEfl = fEflIn = RandEFlags();
|
---|
1711 | s_aFuncs[iFn].pfn(g_pu64, &uA, &uB, &fEfl);
|
---|
1712 | if ( fEfl != (fEflIn & ~X86_EFL_ZF)
|
---|
1713 | || *g_pu64 != uExpect
|
---|
1714 | || uA.u != uExpect)
|
---|
1715 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64 cmp=%#018RX64 new=%#018RX64\n -> efl=%#08x dst=%#018RX64 old=%#018RX64,\n wanted %#08x, %#018RX64, %#018RX64%s\n",
|
---|
1716 | iTest + 1, fEflIn, uExpect, uOldValue, uNewValue,
|
---|
1717 | fEfl, *g_pu64, uA.u,
|
---|
1718 | (fEflIn & ~X86_EFL_ZF), uExpect, uExpect, EFlagsDiff(fEfl, fEflIn & ~X86_EFL_ZF));
|
---|
1719 | RTTEST_CHECK(g_hTest, uB.u == uNewValue);
|
---|
1720 | }
|
---|
1721 | }
|
---|
1722 | }
|
---|
1723 |
|
---|
1724 | static void CmpXchg16bTest(void)
|
---|
1725 | {
|
---|
1726 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHG16B,(PRTUINT128U, PRTUINT128U, PRTUINT128U, uint32_t *));
|
---|
1727 | static struct
|
---|
1728 | {
|
---|
1729 | const char *pszName;
|
---|
1730 | FNIEMAIMPLCMPXCHG16B *pfn;
|
---|
1731 | } const s_aFuncs[] =
|
---|
1732 | {
|
---|
1733 | { "cmpxchg16b", iemAImpl_cmpxchg16b },
|
---|
1734 | { "cmpxchg16b_locked", iemAImpl_cmpxchg16b_locked },
|
---|
1735 | #if !defined(RT_ARCH_ARM64)
|
---|
1736 | { "cmpxchg16b_fallback", iemAImpl_cmpxchg16b_fallback },
|
---|
1737 | #endif
|
---|
1738 | };
|
---|
1739 | for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++)
|
---|
1740 | {
|
---|
1741 | if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName))
|
---|
1742 | continue;
|
---|
1743 | #if !defined(IEM_WITHOUT_ASSEMBLY) && defined(RT_ARCH_AMD64)
|
---|
1744 | if (!(ASMCpuId_ECX(1) & X86_CPUID_FEATURE_ECX_CX16))
|
---|
1745 | {
|
---|
1746 | RTTestSkipped(g_hTest, "no hardware cmpxchg16b");
|
---|
1747 | continue;
|
---|
1748 | }
|
---|
1749 | #endif
|
---|
1750 | for (uint32_t iTest = 0; iTest < 4; iTest += 2)
|
---|
1751 | {
|
---|
1752 | RTUINT128U const uOldValue = RandU128();
|
---|
1753 | RTUINT128U const uNewValue = RandU128();
|
---|
1754 |
|
---|
1755 | /* positive test. */
|
---|
1756 | RTUINT128U uA, uB;
|
---|
1757 | uB = uNewValue;
|
---|
1758 | uA = uOldValue;
|
---|
1759 | *g_pu128 = uOldValue;
|
---|
1760 | uint32_t fEflIn = RandEFlags();
|
---|
1761 | uint32_t fEfl = fEflIn;
|
---|
1762 | s_aFuncs[iFn].pfn(g_pu128, &uA, &uB, &fEfl);
|
---|
1763 | if ( fEfl != (fEflIn | X86_EFL_ZF)
|
---|
1764 | || g_pu128->s.Lo != uNewValue.s.Lo
|
---|
1765 | || g_pu128->s.Hi != uNewValue.s.Hi
|
---|
1766 | || uA.s.Lo != uOldValue.s.Lo
|
---|
1767 | || uA.s.Hi != uOldValue.s.Hi)
|
---|
1768 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64'%016RX64 cmp=%#018RX64'%016RX64 new=%#018RX64'%016RX64\n"
|
---|
1769 | " -> efl=%#08x dst=%#018RX64'%016RX64 old=%#018RX64'%016RX64,\n"
|
---|
1770 | " wanted %#08x, %#018RX64'%016RX64, %#018RX64'%016RX64%s\n",
|
---|
1771 | iTest, fEflIn, uOldValue.s.Hi, uOldValue.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, uNewValue.s.Hi, uNewValue.s.Lo,
|
---|
1772 | fEfl, g_pu128->s.Hi, g_pu128->s.Lo, uA.s.Hi, uA.s.Lo,
|
---|
1773 | (fEflIn | X86_EFL_ZF), uNewValue.s.Hi, uNewValue.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo,
|
---|
1774 | EFlagsDiff(fEfl, fEflIn | X86_EFL_ZF));
|
---|
1775 | RTTEST_CHECK(g_hTest, uB.s.Lo == uNewValue.s.Lo && uB.s.Hi == uNewValue.s.Hi);
|
---|
1776 |
|
---|
1777 | /* negative */
|
---|
1778 | RTUINT128U const uExpect = RTUINT128_INIT(~uOldValue.s.Hi, ~uOldValue.s.Lo);
|
---|
1779 | *g_pu128 = uExpect;
|
---|
1780 | uA = uOldValue;
|
---|
1781 | uB = uNewValue;
|
---|
1782 | fEfl = fEflIn = RandEFlags();
|
---|
1783 | s_aFuncs[iFn].pfn(g_pu128, &uA, &uB, &fEfl);
|
---|
1784 | if ( fEfl != (fEflIn & ~X86_EFL_ZF)
|
---|
1785 | || g_pu128->s.Lo != uExpect.s.Lo
|
---|
1786 | || g_pu128->s.Hi != uExpect.s.Hi
|
---|
1787 | || uA.s.Lo != uExpect.s.Lo
|
---|
1788 | || uA.s.Hi != uExpect.s.Hi)
|
---|
1789 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64'%016RX64 cmp=%#018RX64'%016RX64 new=%#018RX64'%016RX64\n"
|
---|
1790 | " -> efl=%#08x dst=%#018RX64'%016RX64 old=%#018RX64'%016RX64,\n"
|
---|
1791 | " wanted %#08x, %#018RX64'%016RX64, %#018RX64'%016RX64%s\n",
|
---|
1792 | iTest + 1, fEflIn, uExpect.s.Hi, uExpect.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, uNewValue.s.Hi, uNewValue.s.Lo,
|
---|
1793 | fEfl, g_pu128->s.Hi, g_pu128->s.Lo, uA.s.Hi, uA.s.Lo,
|
---|
1794 | (fEflIn & ~X86_EFL_ZF), uExpect.s.Hi, uExpect.s.Lo, uExpect.s.Hi, uExpect.s.Lo,
|
---|
1795 | EFlagsDiff(fEfl, fEflIn & ~X86_EFL_ZF));
|
---|
1796 | RTTEST_CHECK(g_hTest, uB.s.Lo == uNewValue.s.Lo && uB.s.Hi == uNewValue.s.Hi);
|
---|
1797 | }
|
---|
1798 | }
|
---|
1799 | }
|
---|
1800 |
|
---|
1801 |
|
---|
1802 | /*
|
---|
1803 | * Double shifts.
|
---|
1804 | *
|
---|
1805 | * Note! We use BINUxx_TEST_T with the shift value in the uMisc field.
|
---|
1806 | */
|
---|
1807 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1808 | # define GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
1809 | void ShiftDblU ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \
|
---|
1810 | { \
|
---|
1811 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
1812 | { \
|
---|
1813 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
1814 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
1815 | continue; \
|
---|
1816 | GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \
|
---|
1817 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
1818 | { \
|
---|
1819 | a_TestType Test; \
|
---|
1820 | Test.fEflIn = RandEFlags(); \
|
---|
1821 | Test.fEflOut = Test.fEflIn; \
|
---|
1822 | Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \
|
---|
1823 | Test.uDstOut = Test.uDstIn; \
|
---|
1824 | Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \
|
---|
1825 | Test.uMisc = RandU8() & (a_cBits * 4 - 1); /* need to go way beyond the a_cBits limit */ \
|
---|
1826 | a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, Test.uMisc, &Test.fEflOut); \
|
---|
1827 | RTStrmPrintf(pOut, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", " a_Fmt ", %2u }, /* #%u */\n", \
|
---|
1828 | Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, Test.uSrcIn, Test.uMisc, iTest); \
|
---|
1829 | } \
|
---|
1830 | GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \
|
---|
1831 | } \
|
---|
1832 | }
|
---|
1833 | #else
|
---|
1834 | # define GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests)
|
---|
1835 | #endif
|
---|
1836 |
|
---|
1837 | #define TEST_SHIFT_DBL(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \
|
---|
1838 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLSHIFTDBLU ## a_cBits); \
|
---|
1839 | \
|
---|
1840 | static a_SubTestType const a_aSubTests[] = \
|
---|
1841 | { \
|
---|
1842 | ENTRY_AMD(shld_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
1843 | ENTRY_INTEL(shld_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
1844 | ENTRY_AMD(shrd_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
1845 | ENTRY_INTEL(shrd_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \
|
---|
1846 | }; \
|
---|
1847 | \
|
---|
1848 | GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
1849 | \
|
---|
1850 | static void ShiftDblU ## a_cBits ## Test(void) \
|
---|
1851 | { \
|
---|
1852 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
1853 | { \
|
---|
1854 | if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \
|
---|
1855 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
1856 | PFNIEMAIMPLSHIFTDBLU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
1857 | uint32_t const cTests = *a_aSubTests[iFn].pcTests; \
|
---|
1858 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
1859 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
1860 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
1861 | { \
|
---|
1862 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
1863 | { \
|
---|
1864 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
1865 | a_Type uDst = paTests[iTest].uDstIn; \
|
---|
1866 | pfn(&uDst, paTests[iTest].uSrcIn, paTests[iTest].uMisc, &fEfl); \
|
---|
1867 | if ( uDst != paTests[iTest].uDstOut \
|
---|
1868 | || fEfl != paTests[iTest].fEflOut) \
|
---|
1869 | RTTestFailed(g_hTest, "#%03u%s: efl=%#08x dst=" a_Fmt " src=" a_Fmt " shift=%-2u -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s%s\n", \
|
---|
1870 | iTest, iVar == 0 ? "" : "/n", paTests[iTest].fEflIn, \
|
---|
1871 | paTests[iTest].uDstIn, paTests[iTest].uSrcIn, (unsigned)paTests[iTest].uMisc, \
|
---|
1872 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
1873 | EFlagsDiff(fEfl, paTests[iTest].fEflOut), uDst == paTests[iTest].uDstOut ? "" : " dst!"); \
|
---|
1874 | else \
|
---|
1875 | { \
|
---|
1876 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
1877 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
1878 | pfn(g_pu ## a_cBits, paTests[iTest].uSrcIn, paTests[iTest].uMisc, g_pfEfl); \
|
---|
1879 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
1880 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
1881 | } \
|
---|
1882 | } \
|
---|
1883 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
1884 | } \
|
---|
1885 | } \
|
---|
1886 | }
|
---|
1887 | TEST_SHIFT_DBL(16, uint16_t, "%#06RX16", BINU16_TEST_T, SHIFT_DBL_U16_T, g_aShiftDblU16)
|
---|
1888 | TEST_SHIFT_DBL(32, uint32_t, "%#010RX32", BINU32_TEST_T, SHIFT_DBL_U32_T, g_aShiftDblU32)
|
---|
1889 | TEST_SHIFT_DBL(64, uint64_t, "%#018RX64", BINU64_TEST_T, SHIFT_DBL_U64_T, g_aShiftDblU64)
|
---|
1890 |
|
---|
1891 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1892 | static void ShiftDblGenerate(PRTSTREAM pOut, uint32_t cTests)
|
---|
1893 | {
|
---|
1894 | ShiftDblU16Generate(pOut, cTests);
|
---|
1895 | ShiftDblU32Generate(pOut, cTests);
|
---|
1896 | ShiftDblU64Generate(pOut, cTests);
|
---|
1897 | }
|
---|
1898 | #endif
|
---|
1899 |
|
---|
1900 | static void ShiftDblTest(void)
|
---|
1901 | {
|
---|
1902 | ShiftDblU16Test();
|
---|
1903 | ShiftDblU32Test();
|
---|
1904 | ShiftDblU64Test();
|
---|
1905 | }
|
---|
1906 |
|
---|
1907 |
|
---|
1908 | /*
|
---|
1909 | * Unary operators.
|
---|
1910 | *
|
---|
1911 | * Note! We use BINUxx_TEST_T ignoreing uSrcIn and uMisc.
|
---|
1912 | */
|
---|
1913 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1914 | # define GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \
|
---|
1915 | void UnaryU ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \
|
---|
1916 | { \
|
---|
1917 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aUnaryU ## a_cBits); iFn++) \
|
---|
1918 | { \
|
---|
1919 | GenerateArrayStart(pOut, g_aUnaryU ## a_cBits[iFn].pszName, #a_TestType); \
|
---|
1920 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
1921 | { \
|
---|
1922 | a_TestType Test; \
|
---|
1923 | Test.fEflIn = RandEFlags(); \
|
---|
1924 | Test.fEflOut = Test.fEflIn; \
|
---|
1925 | Test.uDstIn = RandU ## a_cBits(); \
|
---|
1926 | Test.uDstOut = Test.uDstIn; \
|
---|
1927 | Test.uSrcIn = 0; \
|
---|
1928 | Test.uMisc = 0; \
|
---|
1929 | g_aUnaryU ## a_cBits[iFn].pfn(&Test.uDstOut, &Test.fEflOut); \
|
---|
1930 | RTStrmPrintf(pOut, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", 0, 0 }, /* #%u */\n", \
|
---|
1931 | Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, iTest); \
|
---|
1932 | } \
|
---|
1933 | GenerateArrayEnd(pOut, g_aUnaryU ## a_cBits[iFn].pszName); \
|
---|
1934 | } \
|
---|
1935 | }
|
---|
1936 | #else
|
---|
1937 | # define GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType)
|
---|
1938 | #endif
|
---|
1939 |
|
---|
1940 | #define TEST_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \
|
---|
1941 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLUNARYU ## a_cBits); \
|
---|
1942 | static a_SubTestType const g_aUnaryU ## a_cBits [] = \
|
---|
1943 | { \
|
---|
1944 | ENTRY(inc_u ## a_cBits), \
|
---|
1945 | ENTRY(inc_u ## a_cBits ## _locked), \
|
---|
1946 | ENTRY(dec_u ## a_cBits), \
|
---|
1947 | ENTRY(dec_u ## a_cBits ## _locked), \
|
---|
1948 | ENTRY(not_u ## a_cBits), \
|
---|
1949 | ENTRY(not_u ## a_cBits ## _locked), \
|
---|
1950 | ENTRY(neg_u ## a_cBits), \
|
---|
1951 | ENTRY(neg_u ## a_cBits ## _locked), \
|
---|
1952 | }; \
|
---|
1953 | \
|
---|
1954 | GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \
|
---|
1955 | \
|
---|
1956 | static void UnaryU ## a_cBits ## Test(void) \
|
---|
1957 | { \
|
---|
1958 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aUnaryU ## a_cBits); iFn++) \
|
---|
1959 | { \
|
---|
1960 | if (!SubTestAndCheckIfEnabled(g_aUnaryU ## a_cBits[iFn].pszName)) continue; \
|
---|
1961 | a_TestType const * const paTests = g_aUnaryU ## a_cBits[iFn].paTests; \
|
---|
1962 | uint32_t const cTests = *g_aUnaryU ## a_cBits[iFn].pcTests; \
|
---|
1963 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
1964 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
1965 | { \
|
---|
1966 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
1967 | a_Type uDst = paTests[iTest].uDstIn; \
|
---|
1968 | g_aUnaryU ## a_cBits[iFn].pfn(&uDst, &fEfl); \
|
---|
1969 | if ( uDst != paTests[iTest].uDstOut \
|
---|
1970 | || fEfl != paTests[iTest].fEflOut) \
|
---|
1971 | RTTestFailed(g_hTest, "#%u: efl=%#08x dst=" a_Fmt " -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s\n", \
|
---|
1972 | iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, \
|
---|
1973 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
1974 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
1975 | else \
|
---|
1976 | { \
|
---|
1977 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
1978 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
1979 | g_aUnaryU ## a_cBits[iFn].pfn(g_pu ## a_cBits, g_pfEfl); \
|
---|
1980 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
1981 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
1982 | } \
|
---|
1983 | } \
|
---|
1984 | } \
|
---|
1985 | }
|
---|
1986 | TEST_UNARY(8, uint8_t, "%#04RX8", BINU8_TEST_T, INT_UNARY_U8_T)
|
---|
1987 | TEST_UNARY(16, uint16_t, "%#06RX16", BINU16_TEST_T, INT_UNARY_U16_T)
|
---|
1988 | TEST_UNARY(32, uint32_t, "%#010RX32", BINU32_TEST_T, INT_UNARY_U32_T)
|
---|
1989 | TEST_UNARY(64, uint64_t, "%#018RX64", BINU64_TEST_T, INT_UNARY_U64_T)
|
---|
1990 |
|
---|
1991 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
1992 | static void UnaryGenerate(PRTSTREAM pOut, uint32_t cTests)
|
---|
1993 | {
|
---|
1994 | UnaryU8Generate(pOut, cTests);
|
---|
1995 | UnaryU16Generate(pOut, cTests);
|
---|
1996 | UnaryU32Generate(pOut, cTests);
|
---|
1997 | UnaryU64Generate(pOut, cTests);
|
---|
1998 | }
|
---|
1999 | #endif
|
---|
2000 |
|
---|
2001 | static void UnaryTest(void)
|
---|
2002 | {
|
---|
2003 | UnaryU8Test();
|
---|
2004 | UnaryU16Test();
|
---|
2005 | UnaryU32Test();
|
---|
2006 | UnaryU64Test();
|
---|
2007 | }
|
---|
2008 |
|
---|
2009 |
|
---|
2010 | /*
|
---|
2011 | * Shifts.
|
---|
2012 | *
|
---|
2013 | * Note! We use BINUxx_TEST_T with the shift count in uMisc and uSrcIn unused.
|
---|
2014 | */
|
---|
2015 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2016 | # define GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2017 | void ShiftU ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \
|
---|
2018 | { \
|
---|
2019 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2020 | { \
|
---|
2021 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
2022 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
2023 | continue; \
|
---|
2024 | GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \
|
---|
2025 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2026 | { \
|
---|
2027 | a_TestType Test; \
|
---|
2028 | Test.fEflIn = RandEFlags(); \
|
---|
2029 | Test.fEflOut = Test.fEflIn; \
|
---|
2030 | Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \
|
---|
2031 | Test.uDstOut = Test.uDstIn; \
|
---|
2032 | Test.uSrcIn = 0; \
|
---|
2033 | Test.uMisc = RandU8() & (a_cBits * 4 - 1); /* need to go way beyond the a_cBits limit */ \
|
---|
2034 | a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uMisc, &Test.fEflOut); \
|
---|
2035 | RTStrmPrintf(pOut, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", 0, %-2u }, /* #%u */\n", \
|
---|
2036 | Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, Test.uMisc, iTest); \
|
---|
2037 | \
|
---|
2038 | Test.fEflIn = (~Test.fEflIn & X86_EFL_LIVE_MASK) | X86_EFL_RA1_MASK; \
|
---|
2039 | Test.fEflOut = Test.fEflIn; \
|
---|
2040 | Test.uDstOut = Test.uDstIn; \
|
---|
2041 | a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uMisc, &Test.fEflOut); \
|
---|
2042 | RTStrmPrintf(pOut, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", 0, %-2u }, /* #%u b */\n", \
|
---|
2043 | Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, Test.uMisc, iTest); \
|
---|
2044 | } \
|
---|
2045 | GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \
|
---|
2046 | } \
|
---|
2047 | }
|
---|
2048 | #else
|
---|
2049 | # define GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests)
|
---|
2050 | #endif
|
---|
2051 |
|
---|
2052 | #define TEST_SHIFT(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \
|
---|
2053 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLSHIFTU ## a_cBits); \
|
---|
2054 | static a_SubTestType const a_aSubTests[] = \
|
---|
2055 | { \
|
---|
2056 | ENTRY_AMD( rol_u ## a_cBits, X86_EFL_OF), \
|
---|
2057 | ENTRY_INTEL(rol_u ## a_cBits, X86_EFL_OF), \
|
---|
2058 | ENTRY_AMD( ror_u ## a_cBits, X86_EFL_OF), \
|
---|
2059 | ENTRY_INTEL(ror_u ## a_cBits, X86_EFL_OF), \
|
---|
2060 | ENTRY_AMD( rcl_u ## a_cBits, X86_EFL_OF), \
|
---|
2061 | ENTRY_INTEL(rcl_u ## a_cBits, X86_EFL_OF), \
|
---|
2062 | ENTRY_AMD( rcr_u ## a_cBits, X86_EFL_OF), \
|
---|
2063 | ENTRY_INTEL(rcr_u ## a_cBits, X86_EFL_OF), \
|
---|
2064 | ENTRY_AMD( shl_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2065 | ENTRY_INTEL(shl_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2066 | ENTRY_AMD( shr_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2067 | ENTRY_INTEL(shr_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2068 | ENTRY_AMD( sar_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2069 | ENTRY_INTEL(sar_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \
|
---|
2070 | }; \
|
---|
2071 | \
|
---|
2072 | GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2073 | \
|
---|
2074 | static void ShiftU ## a_cBits ## Test(void) \
|
---|
2075 | { \
|
---|
2076 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2077 | { \
|
---|
2078 | if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \
|
---|
2079 | PFNIEMAIMPLSHIFTU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
2080 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2081 | uint32_t const cTests = *a_aSubTests[iFn].pcTests; \
|
---|
2082 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
2083 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2084 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
2085 | { \
|
---|
2086 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2087 | { \
|
---|
2088 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2089 | a_Type uDst = paTests[iTest].uDstIn; \
|
---|
2090 | pfn(&uDst, paTests[iTest].uMisc, &fEfl); \
|
---|
2091 | if ( uDst != paTests[iTest].uDstOut \
|
---|
2092 | || fEfl != paTests[iTest].fEflOut ) \
|
---|
2093 | RTTestFailed(g_hTest, "#%u%s: efl=%#08x dst=" a_Fmt " shift=%2u -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s\n", \
|
---|
2094 | iTest, iVar == 0 ? "" : "/n", \
|
---|
2095 | paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uMisc, \
|
---|
2096 | fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \
|
---|
2097 | EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \
|
---|
2098 | else \
|
---|
2099 | { \
|
---|
2100 | *g_pu ## a_cBits = paTests[iTest].uDstIn; \
|
---|
2101 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
2102 | pfn(g_pu ## a_cBits, paTests[iTest].uMisc, g_pfEfl); \
|
---|
2103 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \
|
---|
2104 | RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \
|
---|
2105 | } \
|
---|
2106 | } \
|
---|
2107 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
2108 | } \
|
---|
2109 | } \
|
---|
2110 | }
|
---|
2111 | TEST_SHIFT(8, uint8_t, "%#04RX8", BINU8_TEST_T, INT_BINARY_U8_T, g_aShiftU8)
|
---|
2112 | TEST_SHIFT(16, uint16_t, "%#06RX16", BINU16_TEST_T, INT_BINARY_U16_T, g_aShiftU16)
|
---|
2113 | TEST_SHIFT(32, uint32_t, "%#010RX32", BINU32_TEST_T, INT_BINARY_U32_T, g_aShiftU32)
|
---|
2114 | TEST_SHIFT(64, uint64_t, "%#018RX64", BINU64_TEST_T, INT_BINARY_U64_T, g_aShiftU64)
|
---|
2115 |
|
---|
2116 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2117 | static void ShiftGenerate(PRTSTREAM pOut, uint32_t cTests)
|
---|
2118 | {
|
---|
2119 | ShiftU8Generate(pOut, cTests);
|
---|
2120 | ShiftU16Generate(pOut, cTests);
|
---|
2121 | ShiftU32Generate(pOut, cTests);
|
---|
2122 | ShiftU64Generate(pOut, cTests);
|
---|
2123 | }
|
---|
2124 | #endif
|
---|
2125 |
|
---|
2126 | static void ShiftTest(void)
|
---|
2127 | {
|
---|
2128 | ShiftU8Test();
|
---|
2129 | ShiftU16Test();
|
---|
2130 | ShiftU32Test();
|
---|
2131 | ShiftU64Test();
|
---|
2132 | }
|
---|
2133 |
|
---|
2134 |
|
---|
2135 | /*
|
---|
2136 | * Multiplication and division.
|
---|
2137 | *
|
---|
2138 | * Note! The 8-bit functions has a different format, so we need to duplicate things.
|
---|
2139 | * Note! Currently ignoring undefined bits.
|
---|
2140 | */
|
---|
2141 |
|
---|
2142 | /* U8 */
|
---|
2143 | TYPEDEF_SUBTEST_TYPE(INT_MULDIV_U8_T, MULDIVU8_TEST_T, PFNIEMAIMPLMULDIVU8);
|
---|
2144 | static INT_MULDIV_U8_T const g_aMulDivU8[] =
|
---|
2145 | {
|
---|
2146 | ENTRY_AMD_EX(mul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF,
|
---|
2147 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF),
|
---|
2148 | ENTRY_INTEL_EX(mul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0),
|
---|
2149 | ENTRY_AMD_EX(imul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF,
|
---|
2150 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF),
|
---|
2151 | ENTRY_INTEL_EX(imul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0),
|
---|
2152 | ENTRY_AMD_EX(div_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2153 | ENTRY_INTEL_EX(div_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2154 | ENTRY_AMD_EX(idiv_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2155 | ENTRY_INTEL_EX(idiv_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0),
|
---|
2156 | };
|
---|
2157 |
|
---|
2158 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2159 | static void MulDivU8Generate(PRTSTREAM pOut, uint32_t cTests)
|
---|
2160 | {
|
---|
2161 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++)
|
---|
2162 | {
|
---|
2163 | if ( g_aMulDivU8[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE
|
---|
2164 | && g_aMulDivU8[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
2165 | continue;
|
---|
2166 | GenerateArrayStart(pOut, g_aMulDivU8[iFn].pszName, "MULDIVU8_TEST_T"); \
|
---|
2167 | for (uint32_t iTest = 0; iTest < cTests; iTest++ )
|
---|
2168 | {
|
---|
2169 | MULDIVU8_TEST_T Test;
|
---|
2170 | Test.fEflIn = RandEFlags();
|
---|
2171 | Test.fEflOut = Test.fEflIn;
|
---|
2172 | Test.uDstIn = RandU16Dst(iTest);
|
---|
2173 | Test.uDstOut = Test.uDstIn;
|
---|
2174 | Test.uSrcIn = RandU8Src(iTest);
|
---|
2175 | Test.rc = g_aMulDivU8[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, &Test.fEflOut);
|
---|
2176 | RTStrmPrintf(pOut, " { %#08x, %#08x, %#06RX16, %#06RX16, %#04RX8, %d }, /* #%u */\n",
|
---|
2177 | Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, Test.uSrcIn, Test.rc, iTest);
|
---|
2178 | }
|
---|
2179 | GenerateArrayEnd(pOut, g_aMulDivU8[iFn].pszName);
|
---|
2180 | }
|
---|
2181 | }
|
---|
2182 | #endif
|
---|
2183 |
|
---|
2184 | static void MulDivU8Test(void)
|
---|
2185 | {
|
---|
2186 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++)
|
---|
2187 | {
|
---|
2188 | if (!SubTestAndCheckIfEnabled(g_aMulDivU8[iFn].pszName)) continue; \
|
---|
2189 | MULDIVU8_TEST_T const * const paTests = g_aMulDivU8[iFn].paTests;
|
---|
2190 | uint32_t const cTests = *g_aMulDivU8[iFn].pcTests;
|
---|
2191 | uint32_t const fEflIgn = g_aMulDivU8[iFn].uExtra;
|
---|
2192 | PFNIEMAIMPLMULDIVU8 pfn = g_aMulDivU8[iFn].pfn;
|
---|
2193 | uint32_t const cVars = COUNT_VARIATIONS(g_aMulDivU8[iFn]); \
|
---|
2194 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
2195 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
2196 | {
|
---|
2197 | for (uint32_t iTest = 0; iTest < cTests; iTest++ )
|
---|
2198 | {
|
---|
2199 | uint32_t fEfl = paTests[iTest].fEflIn;
|
---|
2200 | uint16_t uDst = paTests[iTest].uDstIn;
|
---|
2201 | int rc = g_aMulDivU8[iFn].pfn(&uDst, paTests[iTest].uSrcIn, &fEfl);
|
---|
2202 | if ( uDst != paTests[iTest].uDstOut
|
---|
2203 | || (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn)
|
---|
2204 | || rc != paTests[iTest].rc)
|
---|
2205 | RTTestFailed(g_hTest, "#%02u%s: efl=%#08x dst=%#06RX16 src=%#04RX8\n"
|
---|
2206 | " %s-> efl=%#08x dst=%#06RX16 rc=%d\n"
|
---|
2207 | "%sexpected %#08x %#06RX16 %d%s\n",
|
---|
2208 | iTest, iVar ? "/n" : "", paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn,
|
---|
2209 | iVar ? " " : "", fEfl, uDst, rc,
|
---|
2210 | iVar ? " " : "", paTests[iTest].fEflOut, paTests[iTest].uDstOut, paTests[iTest].rc,
|
---|
2211 | EFlagsDiff(fEfl | fEflIgn, paTests[iTest].fEflOut | fEflIgn));
|
---|
2212 | else
|
---|
2213 | {
|
---|
2214 | *g_pu16 = paTests[iTest].uDstIn;
|
---|
2215 | *g_pfEfl = paTests[iTest].fEflIn;
|
---|
2216 | rc = g_aMulDivU8[iFn].pfn(g_pu16, paTests[iTest].uSrcIn, g_pfEfl);
|
---|
2217 | RTTEST_CHECK(g_hTest, *g_pu16 == paTests[iTest].uDstOut);
|
---|
2218 | RTTEST_CHECK(g_hTest, (*g_pfEfl | fEflIgn) == (paTests[iTest].fEflOut | fEflIgn));
|
---|
2219 | RTTEST_CHECK(g_hTest, rc == paTests[iTest].rc);
|
---|
2220 | }
|
---|
2221 | }
|
---|
2222 | pfn = g_aMulDivU8[iFn].pfnNative;
|
---|
2223 | }
|
---|
2224 | }
|
---|
2225 | }
|
---|
2226 |
|
---|
2227 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2228 | # define GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2229 | void MulDivU ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \
|
---|
2230 | { \
|
---|
2231 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2232 | { \
|
---|
2233 | if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \
|
---|
2234 | && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
2235 | continue; \
|
---|
2236 | GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \
|
---|
2237 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2238 | { \
|
---|
2239 | a_TestType Test; \
|
---|
2240 | Test.fEflIn = RandEFlags(); \
|
---|
2241 | Test.fEflOut = Test.fEflIn; \
|
---|
2242 | Test.uDst1In = RandU ## a_cBits ## Dst(iTest); \
|
---|
2243 | Test.uDst1Out = Test.uDst1In; \
|
---|
2244 | Test.uDst2In = RandU ## a_cBits ## Dst(iTest); \
|
---|
2245 | Test.uDst2Out = Test.uDst2In; \
|
---|
2246 | Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \
|
---|
2247 | Test.rc = a_aSubTests[iFn].pfnNative(&Test.uDst1Out, &Test.uDst2Out, Test.uSrcIn, &Test.fEflOut); \
|
---|
2248 | RTStrmPrintf(pOut, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", " a_Fmt ", " a_Fmt ", " a_Fmt ", %d }, /* #%u */\n", \
|
---|
2249 | Test.fEflIn, Test.fEflOut, Test.uDst1In, Test.uDst1Out, Test.uDst2In, Test.uDst2Out, Test.uSrcIn, \
|
---|
2250 | Test.rc, iTest); \
|
---|
2251 | } \
|
---|
2252 | GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \
|
---|
2253 | } \
|
---|
2254 | }
|
---|
2255 | #else
|
---|
2256 | # define GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests)
|
---|
2257 | #endif
|
---|
2258 |
|
---|
2259 | #define TEST_MULDIV(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \
|
---|
2260 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLMULDIVU ## a_cBits); \
|
---|
2261 | static a_SubTestType const a_aSubTests [] = \
|
---|
2262 | { \
|
---|
2263 | ENTRY_AMD_EX(mul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
2264 | ENTRY_INTEL_EX(mul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
2265 | ENTRY_AMD_EX(imul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
2266 | ENTRY_INTEL_EX(imul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \
|
---|
2267 | ENTRY_AMD_EX(div_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
2268 | ENTRY_INTEL_EX(div_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
2269 | ENTRY_AMD_EX(idiv_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
2270 | ENTRY_INTEL_EX(idiv_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \
|
---|
2271 | }; \
|
---|
2272 | \
|
---|
2273 | GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) \
|
---|
2274 | \
|
---|
2275 | static void MulDivU ## a_cBits ## Test(void) \
|
---|
2276 | { \
|
---|
2277 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2278 | { \
|
---|
2279 | if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \
|
---|
2280 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2281 | uint32_t const cTests = *a_aSubTests[iFn].pcTests; \
|
---|
2282 | uint32_t const fEflIgn = a_aSubTests[iFn].uExtra; \
|
---|
2283 | PFNIEMAIMPLMULDIVU ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
2284 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
2285 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2286 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
2287 | { \
|
---|
2288 | for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \
|
---|
2289 | { \
|
---|
2290 | uint32_t fEfl = paTests[iTest].fEflIn; \
|
---|
2291 | a_Type uDst1 = paTests[iTest].uDst1In; \
|
---|
2292 | a_Type uDst2 = paTests[iTest].uDst2In; \
|
---|
2293 | int rc = pfn(&uDst1, &uDst2, paTests[iTest].uSrcIn, &fEfl); \
|
---|
2294 | if ( uDst1 != paTests[iTest].uDst1Out \
|
---|
2295 | || uDst2 != paTests[iTest].uDst2Out \
|
---|
2296 | || (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn)\
|
---|
2297 | || rc != paTests[iTest].rc) \
|
---|
2298 | RTTestFailed(g_hTest, "#%02u%s: efl=%#08x dst1=" a_Fmt " dst2=" a_Fmt " src=" a_Fmt "\n" \
|
---|
2299 | " -> efl=%#08x dst1=" a_Fmt " dst2=" a_Fmt " rc=%d\n" \
|
---|
2300 | "expected %#08x " a_Fmt " " a_Fmt " %d%s -%s%s%s\n", \
|
---|
2301 | iTest, iVar == 0 ? "" : "/n", \
|
---|
2302 | paTests[iTest].fEflIn, paTests[iTest].uDst1In, paTests[iTest].uDst2In, paTests[iTest].uSrcIn, \
|
---|
2303 | fEfl, uDst1, uDst2, rc, \
|
---|
2304 | paTests[iTest].fEflOut, paTests[iTest].uDst1Out, paTests[iTest].uDst2Out, paTests[iTest].rc, \
|
---|
2305 | EFlagsDiff(fEfl | fEflIgn, paTests[iTest].fEflOut | fEflIgn), \
|
---|
2306 | uDst1 != paTests[iTest].uDst1Out ? " dst1" : "", uDst2 != paTests[iTest].uDst2Out ? " dst2" : "", \
|
---|
2307 | (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn) ? " eflags" : ""); \
|
---|
2308 | else \
|
---|
2309 | { \
|
---|
2310 | *g_pu ## a_cBits = paTests[iTest].uDst1In; \
|
---|
2311 | *g_pu ## a_cBits ## Two = paTests[iTest].uDst2In; \
|
---|
2312 | *g_pfEfl = paTests[iTest].fEflIn; \
|
---|
2313 | rc = pfn(g_pu ## a_cBits, g_pu ## a_cBits ## Two, paTests[iTest].uSrcIn, g_pfEfl); \
|
---|
2314 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDst1Out); \
|
---|
2315 | RTTEST_CHECK(g_hTest, *g_pu ## a_cBits ## Two == paTests[iTest].uDst2Out); \
|
---|
2316 | RTTEST_CHECK(g_hTest, (*g_pfEfl | fEflIgn) == (paTests[iTest].fEflOut | fEflIgn)); \
|
---|
2317 | RTTEST_CHECK(g_hTest, rc == paTests[iTest].rc); \
|
---|
2318 | } \
|
---|
2319 | } \
|
---|
2320 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
2321 | } \
|
---|
2322 | } \
|
---|
2323 | }
|
---|
2324 | TEST_MULDIV(16, uint16_t, "%#06RX16", MULDIVU16_TEST_T, INT_MULDIV_U16_T, g_aMulDivU16)
|
---|
2325 | TEST_MULDIV(32, uint32_t, "%#010RX32", MULDIVU32_TEST_T, INT_MULDIV_U32_T, g_aMulDivU32)
|
---|
2326 | TEST_MULDIV(64, uint64_t, "%#018RX64", MULDIVU64_TEST_T, INT_MULDIV_U64_T, g_aMulDivU64)
|
---|
2327 |
|
---|
2328 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2329 | static void MulDivGenerate(PRTSTREAM pOut, uint32_t cTests)
|
---|
2330 | {
|
---|
2331 | MulDivU8Generate(pOut, cTests);
|
---|
2332 | MulDivU16Generate(pOut, cTests);
|
---|
2333 | MulDivU32Generate(pOut, cTests);
|
---|
2334 | MulDivU64Generate(pOut, cTests);
|
---|
2335 | }
|
---|
2336 | #endif
|
---|
2337 |
|
---|
2338 | static void MulDivTest(void)
|
---|
2339 | {
|
---|
2340 | MulDivU8Test();
|
---|
2341 | MulDivU16Test();
|
---|
2342 | MulDivU32Test();
|
---|
2343 | MulDivU64Test();
|
---|
2344 | }
|
---|
2345 |
|
---|
2346 |
|
---|
2347 | /*
|
---|
2348 | * BSWAP
|
---|
2349 | */
|
---|
2350 | static void BswapTest(void)
|
---|
2351 | {
|
---|
2352 | if (SubTestAndCheckIfEnabled("bswap_u16"))
|
---|
2353 | {
|
---|
2354 | *g_pu32 = UINT32_C(0x12345678);
|
---|
2355 | iemAImpl_bswap_u16(g_pu32);
|
---|
2356 | #if 0
|
---|
2357 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0x12347856), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
2358 | #else
|
---|
2359 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0x12340000), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
2360 | #endif
|
---|
2361 | *g_pu32 = UINT32_C(0xffff1122);
|
---|
2362 | iemAImpl_bswap_u16(g_pu32);
|
---|
2363 | #if 0
|
---|
2364 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0xffff2211), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
2365 | #else
|
---|
2366 | RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0xffff0000), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32));
|
---|
2367 | #endif
|
---|
2368 | }
|
---|
2369 |
|
---|
2370 | if (SubTestAndCheckIfEnabled("bswap_u32"))
|
---|
2371 | {
|
---|
2372 | *g_pu32 = UINT32_C(0x12345678);
|
---|
2373 | iemAImpl_bswap_u32(g_pu32);
|
---|
2374 | RTTEST_CHECK(g_hTest, *g_pu32 == UINT32_C(0x78563412));
|
---|
2375 | }
|
---|
2376 |
|
---|
2377 | if (SubTestAndCheckIfEnabled("bswap_u64"))
|
---|
2378 | {
|
---|
2379 | *g_pu64 = UINT64_C(0x0123456789abcdef);
|
---|
2380 | iemAImpl_bswap_u64(g_pu64);
|
---|
2381 | RTTEST_CHECK(g_hTest, *g_pu64 == UINT64_C(0xefcdab8967452301));
|
---|
2382 | }
|
---|
2383 | }
|
---|
2384 |
|
---|
2385 |
|
---|
2386 |
|
---|
2387 | /*********************************************************************************************************************************
|
---|
2388 | * Floating point (x87 style) *
|
---|
2389 | *********************************************************************************************************************************/
|
---|
2390 |
|
---|
2391 | /*
|
---|
2392 | * FPU constant loading.
|
---|
2393 | */
|
---|
2394 | TYPEDEF_SUBTEST_TYPE(FPU_LD_CONST_T, FPU_LD_CONST_TEST_T, PFNIEMAIMPLFPUR80LDCONST);
|
---|
2395 |
|
---|
2396 | static const FPU_LD_CONST_T g_aFpuLdConst[] =
|
---|
2397 | {
|
---|
2398 | ENTRY(fld1),
|
---|
2399 | ENTRY(fldl2t),
|
---|
2400 | ENTRY(fldl2e),
|
---|
2401 | ENTRY(fldpi),
|
---|
2402 | ENTRY(fldlg2),
|
---|
2403 | ENTRY(fldln2),
|
---|
2404 | ENTRY(fldz),
|
---|
2405 | };
|
---|
2406 |
|
---|
2407 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2408 | static void FpuLdConstGenerate(PRTSTREAM pOut, uint32_t cTests)
|
---|
2409 | {
|
---|
2410 | X86FXSTATE State;
|
---|
2411 | RT_ZERO(State);
|
---|
2412 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++)
|
---|
2413 | {
|
---|
2414 | GenerateArrayStart(pOut, g_aFpuLdConst[iFn].pszName, "FPU_LD_CONST_TEST_T");
|
---|
2415 | for (uint32_t iTest = 0; iTest < cTests; iTest += 4)
|
---|
2416 | {
|
---|
2417 | State.FCW = RandFcw();
|
---|
2418 | State.FSW = RandFsw();
|
---|
2419 |
|
---|
2420 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
2421 | {
|
---|
2422 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
2423 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT);
|
---|
2424 | g_aFpuLdConst[iFn].pfn(&State, &Res);
|
---|
2425 | RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s }, /* #%u */\n",
|
---|
2426 | State.FCW, State.FSW, Res.FSW, GenFormatR80(&Res.r80Result), iTest + iRounding);
|
---|
2427 | }
|
---|
2428 | }
|
---|
2429 | GenerateArrayEnd(pOut, g_aFpuLdConst[iFn].pszName);
|
---|
2430 | }
|
---|
2431 | }
|
---|
2432 | #endif
|
---|
2433 |
|
---|
2434 | static void FpuLoadConstTest(void)
|
---|
2435 | {
|
---|
2436 | /*
|
---|
2437 | * Inputs:
|
---|
2438 | * - FSW: C0, C1, C2, C3
|
---|
2439 | * - FCW: Exception masks, Precision control, Rounding control.
|
---|
2440 | *
|
---|
2441 | * C1 set to 1 on stack overflow, zero otherwise. C0, C2, and C3 are "undefined".
|
---|
2442 | */
|
---|
2443 | X86FXSTATE State;
|
---|
2444 | RT_ZERO(State);
|
---|
2445 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++)
|
---|
2446 | {
|
---|
2447 | if (!SubTestAndCheckIfEnabled(g_aFpuLdConst[iFn].pszName))
|
---|
2448 | continue;
|
---|
2449 |
|
---|
2450 | uint32_t const cTests = *g_aFpuLdConst[iFn].pcTests;
|
---|
2451 | FPU_LD_CONST_TEST_T const *paTests = g_aFpuLdConst[iFn].paTests;
|
---|
2452 | PFNIEMAIMPLFPUR80LDCONST pfn = g_aFpuLdConst[iFn].pfn;
|
---|
2453 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuLdConst[iFn]); \
|
---|
2454 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
2455 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
2456 | {
|
---|
2457 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
2458 | {
|
---|
2459 | State.FCW = paTests[iTest].fFcw;
|
---|
2460 | State.FSW = paTests[iTest].fFswIn;
|
---|
2461 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
2462 | pfn(&State, &Res);
|
---|
2463 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
2464 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult))
|
---|
2465 | RTTestFailed(g_hTest, "#%u%s: fcw=%#06x fsw=%#06x -> fsw=%#06x %s, expected %#06x %s%s%s (%s)\n",
|
---|
2466 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
2467 | Res.FSW, FormatR80(&Res.r80Result),
|
---|
2468 | paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult),
|
---|
2469 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
2470 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "",
|
---|
2471 | FormatFcw(paTests[iTest].fFcw) );
|
---|
2472 | }
|
---|
2473 | pfn = g_aFpuLdConst[iFn].pfnNative;
|
---|
2474 | }
|
---|
2475 | }
|
---|
2476 | }
|
---|
2477 |
|
---|
2478 |
|
---|
2479 | /*
|
---|
2480 | * Load floating point values from memory.
|
---|
2481 | */
|
---|
2482 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2483 | # define GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) \
|
---|
2484 | static void FpuLdR ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \
|
---|
2485 | { \
|
---|
2486 | X86FXSTATE State; \
|
---|
2487 | RT_ZERO(State); \
|
---|
2488 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2489 | { \
|
---|
2490 | GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \
|
---|
2491 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
2492 | { \
|
---|
2493 | State.FCW = RandFcw(); \
|
---|
2494 | State.FSW = RandFsw(); \
|
---|
2495 | a_rdTypeIn InVal = RandR ## a_cBits ## Src(iTest); \
|
---|
2496 | \
|
---|
2497 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
2498 | { \
|
---|
2499 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
2500 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
2501 | a_aSubTests[iFn].pfn(&State, &Res, &InVal); \
|
---|
2502 | RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u */\n", \
|
---|
2503 | State.FCW, State.FSW, Res.FSW, GenFormatR80(&Res.r80Result), \
|
---|
2504 | GenFormatR ## a_cBits(&InVal), iTest, iRounding); \
|
---|
2505 | } \
|
---|
2506 | } \
|
---|
2507 | GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \
|
---|
2508 | } \
|
---|
2509 | }
|
---|
2510 | #else
|
---|
2511 | # define GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType)
|
---|
2512 | #endif
|
---|
2513 |
|
---|
2514 | #define TEST_FPU_LOAD(a_cBits, a_rdTypeIn, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
2515 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROM ## a_cBits,(PCX86FXSTATE, PIEMFPURESULT, PC ## a_rdTypeIn)); \
|
---|
2516 | typedef FNIEMAIMPLFPULDR80FROM ## a_cBits *PFNIEMAIMPLFPULDR80FROM ## a_cBits; \
|
---|
2517 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPULDR80FROM ## a_cBits); \
|
---|
2518 | \
|
---|
2519 | static const a_SubTestType a_aSubTests[] = \
|
---|
2520 | { \
|
---|
2521 | ENTRY(RT_CONCAT(fld_r80_from_r,a_cBits)) \
|
---|
2522 | }; \
|
---|
2523 | GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) \
|
---|
2524 | \
|
---|
2525 | static void FpuLdR ## a_cBits ## Test(void) \
|
---|
2526 | { \
|
---|
2527 | X86FXSTATE State; \
|
---|
2528 | RT_ZERO(State); \
|
---|
2529 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2530 | { \
|
---|
2531 | if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \
|
---|
2532 | \
|
---|
2533 | uint32_t const cTests = *a_aSubTests[iFn].pcTests; \
|
---|
2534 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2535 | PFNIEMAIMPLFPULDR80FROM ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
2536 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
2537 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2538 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
2539 | { \
|
---|
2540 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
2541 | { \
|
---|
2542 | a_rdTypeIn const InVal = paTests[iTest].InVal; \
|
---|
2543 | State.FCW = paTests[iTest].fFcw; \
|
---|
2544 | State.FSW = paTests[iTest].fFswIn; \
|
---|
2545 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
2546 | pfn(&State, &Res, &InVal); \
|
---|
2547 | if ( Res.FSW != paTests[iTest].fFswOut \
|
---|
2548 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) \
|
---|
2549 | RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=%s\n" \
|
---|
2550 | "%s -> fsw=%#06x %s\n" \
|
---|
2551 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
2552 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
2553 | FormatR ## a_cBits(&paTests[iTest].InVal), \
|
---|
2554 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \
|
---|
2555 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), \
|
---|
2556 | FswDiff(Res.FSW, paTests[iTest].fFswOut), \
|
---|
2557 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", \
|
---|
2558 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
2559 | } \
|
---|
2560 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
2561 | } \
|
---|
2562 | } \
|
---|
2563 | }
|
---|
2564 |
|
---|
2565 | TEST_FPU_LOAD(80, RTFLOAT80U, FPU_LD_R80_T, g_aFpuLdR80, FPU_R80_IN_TEST_T)
|
---|
2566 | TEST_FPU_LOAD(64, RTFLOAT64U, FPU_LD_R64_T, g_aFpuLdR64, FPU_R64_IN_TEST_T)
|
---|
2567 | TEST_FPU_LOAD(32, RTFLOAT32U, FPU_LD_R32_T, g_aFpuLdR32, FPU_R32_IN_TEST_T)
|
---|
2568 |
|
---|
2569 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2570 | static void FpuLdMemGenerate(PRTSTREAM pOut, uint32_t cTests)
|
---|
2571 | {
|
---|
2572 | FpuLdR80Generate(pOut, cTests);
|
---|
2573 | FpuLdR64Generate(pOut, cTests);
|
---|
2574 | FpuLdR32Generate(pOut, cTests);
|
---|
2575 | }
|
---|
2576 | #endif
|
---|
2577 |
|
---|
2578 | static void FpuLdMemTest(void)
|
---|
2579 | {
|
---|
2580 | FpuLdR80Test();
|
---|
2581 | FpuLdR64Test();
|
---|
2582 | FpuLdR32Test();
|
---|
2583 | }
|
---|
2584 |
|
---|
2585 |
|
---|
2586 | /*
|
---|
2587 | * Load integer values from memory.
|
---|
2588 | */
|
---|
2589 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2590 | # define GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) \
|
---|
2591 | static void FpuLdI ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \
|
---|
2592 | { \
|
---|
2593 | X86FXSTATE State; \
|
---|
2594 | RT_ZERO(State); \
|
---|
2595 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2596 | { \
|
---|
2597 | GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \
|
---|
2598 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
2599 | { \
|
---|
2600 | State.FCW = RandFcw(); \
|
---|
2601 | State.FSW = RandFsw(); \
|
---|
2602 | a_iTypeIn InVal = (a_iTypeIn)RandU ## a_cBits ## Src(iTest); \
|
---|
2603 | \
|
---|
2604 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
2605 | { \
|
---|
2606 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
2607 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
2608 | a_aSubTests[iFn].pfn(&State, &Res, &InVal); \
|
---|
2609 | RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, " a_szFmtIn " }, /* #%u/%u */\n", \
|
---|
2610 | State.FCW, State.FSW, Res.FSW, GenFormatR80(&Res.r80Result), InVal, iTest, iRounding); \
|
---|
2611 | } \
|
---|
2612 | } \
|
---|
2613 | GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \
|
---|
2614 | } \
|
---|
2615 | }
|
---|
2616 | #else
|
---|
2617 | # define GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType)
|
---|
2618 | #endif
|
---|
2619 |
|
---|
2620 | #define TEST_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
2621 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROMI ## a_cBits,(PCX86FXSTATE, PIEMFPURESULT, a_iTypeIn const *)); \
|
---|
2622 | typedef FNIEMAIMPLFPULDR80FROMI ## a_cBits *PFNIEMAIMPLFPULDR80FROMI ## a_cBits; \
|
---|
2623 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPULDR80FROMI ## a_cBits); \
|
---|
2624 | \
|
---|
2625 | static const a_SubTestType a_aSubTests[] = \
|
---|
2626 | { \
|
---|
2627 | ENTRY(RT_CONCAT(fild_r80_from_i,a_cBits)) \
|
---|
2628 | }; \
|
---|
2629 | GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) \
|
---|
2630 | \
|
---|
2631 | static void FpuLdI ## a_cBits ## Test(void) \
|
---|
2632 | { \
|
---|
2633 | X86FXSTATE State; \
|
---|
2634 | RT_ZERO(State); \
|
---|
2635 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2636 | { \
|
---|
2637 | if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \
|
---|
2638 | \
|
---|
2639 | uint32_t const cTests = *a_aSubTests[iFn].pcTests; \
|
---|
2640 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2641 | PFNIEMAIMPLFPULDR80FROMI ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
2642 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
2643 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2644 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
2645 | { \
|
---|
2646 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
2647 | { \
|
---|
2648 | a_iTypeIn const iInVal = paTests[iTest].iInVal; \
|
---|
2649 | State.FCW = paTests[iTest].fFcw; \
|
---|
2650 | State.FSW = paTests[iTest].fFswIn; \
|
---|
2651 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
2652 | pfn(&State, &Res, &iInVal); \
|
---|
2653 | if ( Res.FSW != paTests[iTest].fFswOut \
|
---|
2654 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) \
|
---|
2655 | RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=" a_szFmtIn "\n" \
|
---|
2656 | "%s -> fsw=%#06x %s\n" \
|
---|
2657 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
2658 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, paTests[iTest].iInVal, \
|
---|
2659 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \
|
---|
2660 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), \
|
---|
2661 | FswDiff(Res.FSW, paTests[iTest].fFswOut), \
|
---|
2662 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", \
|
---|
2663 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
2664 | } \
|
---|
2665 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
2666 | } \
|
---|
2667 | } \
|
---|
2668 | }
|
---|
2669 |
|
---|
2670 | TEST_FPU_LOAD_INT(64, int64_t, "%RI64", FPU_LD_I64_T, g_aFpuLdU64, FPU_I64_IN_TEST_T)
|
---|
2671 | TEST_FPU_LOAD_INT(32, int32_t, "%RI32", FPU_LD_I32_T, g_aFpuLdU32, FPU_I32_IN_TEST_T)
|
---|
2672 | TEST_FPU_LOAD_INT(16, int16_t, "%RI16", FPU_LD_I16_T, g_aFpuLdU16, FPU_I16_IN_TEST_T)
|
---|
2673 |
|
---|
2674 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2675 | static void FpuLdIntGenerate(PRTSTREAM pOut, uint32_t cTests)
|
---|
2676 | {
|
---|
2677 | FpuLdI64Generate(pOut, cTests);
|
---|
2678 | FpuLdI32Generate(pOut, cTests);
|
---|
2679 | FpuLdI16Generate(pOut, cTests);
|
---|
2680 | }
|
---|
2681 | #endif
|
---|
2682 |
|
---|
2683 | static void FpuLdIntTest(void)
|
---|
2684 | {
|
---|
2685 | FpuLdI64Test();
|
---|
2686 | FpuLdI32Test();
|
---|
2687 | FpuLdI16Test();
|
---|
2688 | }
|
---|
2689 |
|
---|
2690 |
|
---|
2691 | /*
|
---|
2692 | * Load binary coded decimal values from memory.
|
---|
2693 | */
|
---|
2694 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROMD80,(PCX86FXSTATE, PIEMFPURESULT, PCRTPBCD80U));
|
---|
2695 | typedef FNIEMAIMPLFPULDR80FROMD80 *PFNIEMAIMPLFPULDR80FROMD80;
|
---|
2696 | TYPEDEF_SUBTEST_TYPE(FPU_LD_D80_T, FPU_D80_IN_TEST_T, PFNIEMAIMPLFPULDR80FROMD80);
|
---|
2697 |
|
---|
2698 | static const FPU_LD_D80_T g_aFpuLdD80[] =
|
---|
2699 | {
|
---|
2700 | ENTRY(fld_r80_from_d80)
|
---|
2701 | };
|
---|
2702 |
|
---|
2703 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2704 | static void FpuLdD80Generate(PRTSTREAM pOut, uint32_t cTests)
|
---|
2705 | {
|
---|
2706 | X86FXSTATE State;
|
---|
2707 | RT_ZERO(State);
|
---|
2708 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++)
|
---|
2709 | {
|
---|
2710 | GenerateArrayStart(pOut, g_aFpuLdD80[iFn].pszName, "FPU_D80_IN_TEST_T");
|
---|
2711 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
2712 | {
|
---|
2713 | State.FCW = RandFcw();
|
---|
2714 | State.FSW = RandFsw();
|
---|
2715 | RTPBCD80U InVal = RandD80Src(iTest);
|
---|
2716 |
|
---|
2717 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
2718 | {
|
---|
2719 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
2720 | State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT);
|
---|
2721 | g_aFpuLdD80[iFn].pfn(&State, &Res, &InVal);
|
---|
2722 | RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u */\n",
|
---|
2723 | State.FCW, State.FSW, Res.FSW, GenFormatR80(&Res.r80Result), GenFormatD80(&InVal),
|
---|
2724 | iTest, iRounding);
|
---|
2725 | }
|
---|
2726 | }
|
---|
2727 | GenerateArrayEnd(pOut, g_aFpuLdD80[iFn].pszName);
|
---|
2728 | }
|
---|
2729 | }
|
---|
2730 | #endif
|
---|
2731 |
|
---|
2732 | static void FpuLdD80Test(void)
|
---|
2733 | {
|
---|
2734 | X86FXSTATE State;
|
---|
2735 | RT_ZERO(State);
|
---|
2736 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++)
|
---|
2737 | {
|
---|
2738 | if (!SubTestAndCheckIfEnabled(g_aFpuLdD80[iFn].pszName))
|
---|
2739 | continue;
|
---|
2740 |
|
---|
2741 | uint32_t const cTests = *g_aFpuLdD80[iFn].pcTests;
|
---|
2742 | FPU_D80_IN_TEST_T const * const paTests = g_aFpuLdD80[iFn].paTests;
|
---|
2743 | PFNIEMAIMPLFPULDR80FROMD80 pfn = g_aFpuLdD80[iFn].pfn;
|
---|
2744 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuLdD80[iFn]);
|
---|
2745 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
2746 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
2747 | {
|
---|
2748 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
2749 | {
|
---|
2750 | RTPBCD80U const InVal = paTests[iTest].InVal;
|
---|
2751 | State.FCW = paTests[iTest].fFcw;
|
---|
2752 | State.FSW = paTests[iTest].fFswIn;
|
---|
2753 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
2754 | pfn(&State, &Res, &InVal);
|
---|
2755 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
2756 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult))
|
---|
2757 | RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
2758 | "%s -> fsw=%#06x %s\n"
|
---|
2759 | "%s expected %#06x %s%s%s (%s)\n",
|
---|
2760 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
2761 | FormatD80(&paTests[iTest].InVal),
|
---|
2762 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result),
|
---|
2763 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult),
|
---|
2764 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
2765 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "",
|
---|
2766 | FormatFcw(paTests[iTest].fFcw) );
|
---|
2767 | }
|
---|
2768 | pfn = g_aFpuLdD80[iFn].pfnNative;
|
---|
2769 | }
|
---|
2770 | }
|
---|
2771 | }
|
---|
2772 |
|
---|
2773 |
|
---|
2774 | /*
|
---|
2775 | * Store values floating point values to memory.
|
---|
2776 | */
|
---|
2777 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2778 | static const RTFLOAT80U g_aFpuStR32Specials[] =
|
---|
2779 | {
|
---|
2780 | RTFLOAT80U_INIT_C(0, 0xffffff8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
2781 | RTFLOAT80U_INIT_C(1, 0xffffff8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
2782 | RTFLOAT80U_INIT_C(0, 0xfffffe8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
2783 | RTFLOAT80U_INIT_C(1, 0xfffffe8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
2784 | };
|
---|
2785 | static const RTFLOAT80U g_aFpuStR64Specials[] =
|
---|
2786 | {
|
---|
2787 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffc00, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
2788 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffc00, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */
|
---|
2789 | RTFLOAT80U_INIT_C(0, 0xfffffffffffff400, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
2790 | RTFLOAT80U_INIT_C(1, 0xfffffffffffff400, RTFLOAT80U_EXP_BIAS), /* near rounding */
|
---|
2791 | RTFLOAT80U_INIT_C(0, 0xd0b9e6fdda887400, 687 + RTFLOAT80U_EXP_BIAS), /* random example for this */
|
---|
2792 | };
|
---|
2793 | static const RTFLOAT80U g_aFpuStR80Specials[] =
|
---|
2794 | {
|
---|
2795 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* placeholder */
|
---|
2796 | };
|
---|
2797 | # define GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) \
|
---|
2798 | static void FpuStR ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \
|
---|
2799 | { \
|
---|
2800 | uint32_t const cTotalTests = cTests + RT_ELEMENTS(g_aFpuStR ## a_cBits ## Specials); \
|
---|
2801 | X86FXSTATE State; \
|
---|
2802 | RT_ZERO(State); \
|
---|
2803 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2804 | { \
|
---|
2805 | GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \
|
---|
2806 | for (uint32_t iTest = 0; iTest < cTotalTests; iTest++) \
|
---|
2807 | { \
|
---|
2808 | uint16_t const fFcw = RandFcw(); \
|
---|
2809 | State.FSW = RandFsw(); \
|
---|
2810 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, a_cBits) \
|
---|
2811 | : g_aFpuStR ## a_cBits ## Specials[iTest - cTests]; \
|
---|
2812 | \
|
---|
2813 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
2814 | { \
|
---|
2815 | /* PC doesn't influence these, so leave as is. */ \
|
---|
2816 | AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); \
|
---|
2817 | for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) \
|
---|
2818 | { \
|
---|
2819 | uint16_t uFswOut = 0; \
|
---|
2820 | a_rdType OutVal; \
|
---|
2821 | RT_ZERO(OutVal); \
|
---|
2822 | memset(&OutVal, 0xfe, sizeof(OutVal)); \
|
---|
2823 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) \
|
---|
2824 | | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
2825 | /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ \
|
---|
2826 | State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; \
|
---|
2827 | a_aSubTests[iFn].pfn(&State, &uFswOut, &OutVal, &InVal); \
|
---|
2828 | RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u */\n", \
|
---|
2829 | State.FCW, State.FSW, uFswOut, GenFormatR80(&InVal), \
|
---|
2830 | GenFormatR ## a_cBits(&OutVal), iTest, iRounding, iMask); \
|
---|
2831 | } \
|
---|
2832 | } \
|
---|
2833 | } \
|
---|
2834 | GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \
|
---|
2835 | } \
|
---|
2836 | }
|
---|
2837 | #else
|
---|
2838 | # define GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType)
|
---|
2839 | #endif
|
---|
2840 |
|
---|
2841 | #define TEST_FPU_STORE(a_cBits, a_rdType, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
2842 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOR ## a_cBits,(PCX86FXSTATE, uint16_t *, \
|
---|
2843 | PRTFLOAT ## a_cBits ## U, PCRTFLOAT80U)); \
|
---|
2844 | typedef FNIEMAIMPLFPUSTR80TOR ## a_cBits *PFNIEMAIMPLFPUSTR80TOR ## a_cBits; \
|
---|
2845 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPUSTR80TOR ## a_cBits); \
|
---|
2846 | \
|
---|
2847 | static const a_SubTestType a_aSubTests[] = \
|
---|
2848 | { \
|
---|
2849 | ENTRY(RT_CONCAT(fst_r80_to_r,a_cBits)) \
|
---|
2850 | }; \
|
---|
2851 | GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) \
|
---|
2852 | \
|
---|
2853 | static void FpuStR ## a_cBits ## Test(void) \
|
---|
2854 | { \
|
---|
2855 | X86FXSTATE State; \
|
---|
2856 | RT_ZERO(State); \
|
---|
2857 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
2858 | { \
|
---|
2859 | if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \
|
---|
2860 | \
|
---|
2861 | uint32_t const cTests = *a_aSubTests[iFn].pcTests; \
|
---|
2862 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
2863 | PFNIEMAIMPLFPUSTR80TOR ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
2864 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
2865 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
2866 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
2867 | { \
|
---|
2868 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
2869 | { \
|
---|
2870 | RTFLOAT80U const InVal = paTests[iTest].InVal; \
|
---|
2871 | uint16_t uFswOut = 0; \
|
---|
2872 | a_rdType OutVal; \
|
---|
2873 | RT_ZERO(OutVal); \
|
---|
2874 | memset(&OutVal, 0xfe, sizeof(OutVal)); \
|
---|
2875 | State.FCW = paTests[iTest].fFcw; \
|
---|
2876 | State.FSW = paTests[iTest].fFswIn; \
|
---|
2877 | pfn(&State, &uFswOut, &OutVal, &InVal); \
|
---|
2878 | if ( uFswOut != paTests[iTest].fFswOut \
|
---|
2879 | || !RTFLOAT ## a_cBits ## U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal)) \
|
---|
2880 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" \
|
---|
2881 | "%s -> fsw=%#06x %s\n" \
|
---|
2882 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
2883 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
2884 | FormatR80(&paTests[iTest].InVal), \
|
---|
2885 | iVar ? " " : "", uFswOut, FormatR ## a_cBits(&OutVal), \
|
---|
2886 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR ## a_cBits(&paTests[iTest].OutVal), \
|
---|
2887 | FswDiff(uFswOut, paTests[iTest].fFswOut), \
|
---|
2888 | !RTFLOAT ## a_cBits ## U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal) ? " - val" : "", \
|
---|
2889 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
2890 | } \
|
---|
2891 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
2892 | } \
|
---|
2893 | } \
|
---|
2894 | }
|
---|
2895 |
|
---|
2896 | TEST_FPU_STORE(80, RTFLOAT80U, FPU_ST_R80_T, g_aFpuStR80, FPU_ST_R80_TEST_T)
|
---|
2897 | TEST_FPU_STORE(64, RTFLOAT64U, FPU_ST_R64_T, g_aFpuStR64, FPU_ST_R64_TEST_T)
|
---|
2898 | TEST_FPU_STORE(32, RTFLOAT32U, FPU_ST_R32_T, g_aFpuStR32, FPU_ST_R32_TEST_T)
|
---|
2899 |
|
---|
2900 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2901 | static void FpuStMemGenerate(PRTSTREAM pOut, uint32_t cTests)
|
---|
2902 | {
|
---|
2903 | FpuStR80Generate(pOut, cTests);
|
---|
2904 | FpuStR64Generate(pOut, cTests);
|
---|
2905 | FpuStR32Generate(pOut, cTests);
|
---|
2906 | }
|
---|
2907 | #endif
|
---|
2908 |
|
---|
2909 | static void FpuStMemTest(void)
|
---|
2910 | {
|
---|
2911 | FpuStR80Test();
|
---|
2912 | FpuStR64Test();
|
---|
2913 | FpuStR32Test();
|
---|
2914 | }
|
---|
2915 |
|
---|
2916 |
|
---|
2917 | /*
|
---|
2918 | * Store integer values to memory or register.
|
---|
2919 | */
|
---|
2920 | TYPEDEF_SUBTEST_TYPE(FPU_ST_I16_T, FPU_ST_I16_TEST_T, PFNIEMAIMPLFPUSTR80TOI16);
|
---|
2921 | TYPEDEF_SUBTEST_TYPE(FPU_ST_I32_T, FPU_ST_I32_TEST_T, PFNIEMAIMPLFPUSTR80TOI32);
|
---|
2922 | TYPEDEF_SUBTEST_TYPE(FPU_ST_I64_T, FPU_ST_I64_TEST_T, PFNIEMAIMPLFPUSTR80TOI64);
|
---|
2923 |
|
---|
2924 | static const FPU_ST_I16_T g_aFpuStI16[] =
|
---|
2925 | {
|
---|
2926 | ENTRY(fist_r80_to_i16),
|
---|
2927 | ENTRY_AMD( fistt_r80_to_i16, 0),
|
---|
2928 | ENTRY_INTEL(fistt_r80_to_i16, 0),
|
---|
2929 | };
|
---|
2930 | static const FPU_ST_I32_T g_aFpuStI32[] =
|
---|
2931 | {
|
---|
2932 | ENTRY(fist_r80_to_i32),
|
---|
2933 | ENTRY(fistt_r80_to_i32),
|
---|
2934 | };
|
---|
2935 | static const FPU_ST_I64_T g_aFpuStI64[] =
|
---|
2936 | {
|
---|
2937 | ENTRY(fist_r80_to_i64),
|
---|
2938 | ENTRY(fistt_r80_to_i64),
|
---|
2939 | };
|
---|
2940 |
|
---|
2941 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
2942 | static const RTFLOAT80U g_aFpuStI16Specials[] = /* 16-bit variant borrows properties from the 32-bit one, thus all this stuff. */
|
---|
2943 | {
|
---|
2944 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 13 + RTFLOAT80U_EXP_BIAS),
|
---|
2945 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 13 + RTFLOAT80U_EXP_BIAS),
|
---|
2946 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2947 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2948 | RTFLOAT80U_INIT_C(0, 0x8000080000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2949 | RTFLOAT80U_INIT_C(1, 0x8000080000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2950 | RTFLOAT80U_INIT_C(0, 0x8000100000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2951 | RTFLOAT80U_INIT_C(1, 0x8000100000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2952 | RTFLOAT80U_INIT_C(0, 0x8000200000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2953 | RTFLOAT80U_INIT_C(1, 0x8000200000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2954 | RTFLOAT80U_INIT_C(0, 0x8000400000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2955 | RTFLOAT80U_INIT_C(1, 0x8000400000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2956 | RTFLOAT80U_INIT_C(0, 0x8000800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2957 | RTFLOAT80U_INIT_C(1, 0x8000800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2958 | RTFLOAT80U_INIT_C(1, 0x8000ffffffffffff, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2959 | RTFLOAT80U_INIT_C(0, 0x8001000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2960 | RTFLOAT80U_INIT_C(1, 0x8001000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2961 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2962 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2963 | RTFLOAT80U_INIT_C(0, 0xffff800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2964 | RTFLOAT80U_INIT_C(0, 0xffff000000000000, 14 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
2965 | RTFLOAT80U_INIT_C(0, 0xfffe000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2966 | RTFLOAT80U_INIT_C(1, 0xffff800000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2967 | RTFLOAT80U_INIT_C(1, 0xffff000000000000, 14 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
2968 | RTFLOAT80U_INIT_C(1, 0xfffe000000000000, 14 + RTFLOAT80U_EXP_BIAS),
|
---|
2969 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 15 + RTFLOAT80U_EXP_BIAS),
|
---|
2970 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 15 + RTFLOAT80U_EXP_BIAS),
|
---|
2971 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 16 + RTFLOAT80U_EXP_BIAS),
|
---|
2972 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 17 + RTFLOAT80U_EXP_BIAS),
|
---|
2973 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 20 + RTFLOAT80U_EXP_BIAS),
|
---|
2974 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 24 + RTFLOAT80U_EXP_BIAS),
|
---|
2975 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 28 + RTFLOAT80U_EXP_BIAS),
|
---|
2976 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
2977 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
2978 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
2979 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
2980 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
2981 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
2982 | RTFLOAT80U_INIT_C(0, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
2983 | RTFLOAT80U_INIT_C(1, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
2984 | RTFLOAT80U_INIT_C(0, 0x8000ffffffffffff, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
2985 | RTFLOAT80U_INIT_C(1, 0x8000ffffffffffff, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
2986 | RTFLOAT80U_INIT_C(0, 0x8001000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
2987 | RTFLOAT80U_INIT_C(1, 0x8001000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
2988 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
2989 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
2990 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 32 + RTFLOAT80U_EXP_BIAS),
|
---|
2991 | };
|
---|
2992 | static const RTFLOAT80U g_aFpuStI32Specials[] =
|
---|
2993 | {
|
---|
2994 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
2995 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
2996 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
2997 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
2998 | RTFLOAT80U_INIT_C(0, 0xffffffff80000000, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
2999 | RTFLOAT80U_INIT_C(1, 0xffffffff80000000, 30 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
3000 | RTFLOAT80U_INIT_C(0, 0xffffffff00000000, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
3001 | RTFLOAT80U_INIT_C(1, 0xffffffff00000000, 30 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
3002 | RTFLOAT80U_INIT_C(0, 0xfffffffe00000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
3003 | RTFLOAT80U_INIT_C(1, 0xfffffffe00000000, 30 + RTFLOAT80U_EXP_BIAS),
|
---|
3004 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3005 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3006 | RTFLOAT80U_INIT_C(0, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3007 | RTFLOAT80U_INIT_C(1, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3008 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3009 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS),
|
---|
3010 | };
|
---|
3011 | static const RTFLOAT80U g_aFpuStI64Specials[] =
|
---|
3012 | {
|
---|
3013 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 61 + RTFLOAT80U_EXP_BIAS),
|
---|
3014 | RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, 61 + RTFLOAT80U_EXP_BIAS),
|
---|
3015 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3016 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3017 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3018 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3019 | RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, 62 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */
|
---|
3020 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, 62 + RTFLOAT80U_EXP_BIAS), /* min */
|
---|
3021 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffffe, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3022 | RTFLOAT80U_INIT_C(1, 0xfffffffffffffffe, 62 + RTFLOAT80U_EXP_BIAS),
|
---|
3023 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3024 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3025 | RTFLOAT80U_INIT_C(0, 0x8000000000000001, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3026 | RTFLOAT80U_INIT_C(1, 0x8000000000000001, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3027 | RTFLOAT80U_INIT_C(0, 0x8000000000000002, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3028 | RTFLOAT80U_INIT_C(1, 0x8000000000000002, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3029 | RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 63 + RTFLOAT80U_EXP_BIAS),
|
---|
3030 | };
|
---|
3031 |
|
---|
3032 | # define GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) \
|
---|
3033 | static void FpuStI ## a_cBits ## Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests) \
|
---|
3034 | { \
|
---|
3035 | X86FXSTATE State; \
|
---|
3036 | RT_ZERO(State); \
|
---|
3037 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3038 | { \
|
---|
3039 | PFNIEMAIMPLFPUSTR80TOI ## a_cBits const pfn = a_aSubTests[iFn].pfnNative \
|
---|
3040 | ? a_aSubTests[iFn].pfnNative : a_aSubTests[iFn].pfn; \
|
---|
3041 | PRTSTREAM pOutFn = pOut; \
|
---|
3042 | if (a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE) \
|
---|
3043 | { \
|
---|
3044 | if (a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \
|
---|
3045 | continue; \
|
---|
3046 | pOutFn = pOutCpu; \
|
---|
3047 | } \
|
---|
3048 | \
|
---|
3049 | GenerateArrayStart(pOutFn, a_aSubTests[iFn].pszName, #a_TestType); \
|
---|
3050 | uint32_t const cTotalTests = cTests + RT_ELEMENTS(g_aFpuStI ## a_cBits ## Specials); \
|
---|
3051 | for (uint32_t iTest = 0; iTest < cTotalTests; iTest++) \
|
---|
3052 | { \
|
---|
3053 | uint16_t const fFcw = RandFcw(); \
|
---|
3054 | State.FSW = RandFsw(); \
|
---|
3055 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, a_cBits, true) \
|
---|
3056 | : g_aFpuStI ## a_cBits ## Specials[iTest - cTests]; \
|
---|
3057 | \
|
---|
3058 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
3059 | { \
|
---|
3060 | /* PC doesn't influence these, so leave as is. */ \
|
---|
3061 | AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); \
|
---|
3062 | for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) \
|
---|
3063 | { \
|
---|
3064 | uint16_t uFswOut = 0; \
|
---|
3065 | a_iType iOutVal = ~(a_iType)2; \
|
---|
3066 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) \
|
---|
3067 | | (iRounding << X86_FCW_RC_SHIFT); \
|
---|
3068 | /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ \
|
---|
3069 | State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; \
|
---|
3070 | pfn(&State, &uFswOut, &iOutVal, &InVal); \
|
---|
3071 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u */\n", \
|
---|
3072 | State.FCW, State.FSW, uFswOut, GenFormatR80(&InVal), \
|
---|
3073 | GenFormatI ## a_cBits(iOutVal), iTest, iRounding, iMask); \
|
---|
3074 | } \
|
---|
3075 | } \
|
---|
3076 | } \
|
---|
3077 | GenerateArrayEnd(pOutFn, a_aSubTests[iFn].pszName); \
|
---|
3078 | } \
|
---|
3079 | }
|
---|
3080 | #else
|
---|
3081 | # define GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType)
|
---|
3082 | #endif
|
---|
3083 |
|
---|
3084 | #define TEST_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
3085 | GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) \
|
---|
3086 | \
|
---|
3087 | static void FpuStI ## a_cBits ## Test(void) \
|
---|
3088 | { \
|
---|
3089 | X86FXSTATE State; \
|
---|
3090 | RT_ZERO(State); \
|
---|
3091 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3092 | { \
|
---|
3093 | if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \
|
---|
3094 | \
|
---|
3095 | uint32_t const cTests = *a_aSubTests[iFn].pcTests; \
|
---|
3096 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3097 | PFNIEMAIMPLFPUSTR80TOI ## a_cBits pfn = a_aSubTests[iFn].pfn; \
|
---|
3098 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3099 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3100 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3101 | { \
|
---|
3102 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3103 | { \
|
---|
3104 | RTFLOAT80U const InVal = paTests[iTest].InVal; \
|
---|
3105 | uint16_t uFswOut = 0; \
|
---|
3106 | a_iType iOutVal = ~(a_iType)2; \
|
---|
3107 | State.FCW = paTests[iTest].fFcw; \
|
---|
3108 | State.FSW = paTests[iTest].fFswIn; \
|
---|
3109 | pfn(&State, &uFswOut, &iOutVal, &InVal); \
|
---|
3110 | if ( uFswOut != paTests[iTest].fFswOut \
|
---|
3111 | || iOutVal != paTests[iTest].iOutVal) \
|
---|
3112 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" \
|
---|
3113 | "%s -> fsw=%#06x " a_szFmt "\n" \
|
---|
3114 | "%s expected %#06x " a_szFmt "%s%s (%s)\n", \
|
---|
3115 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
3116 | FormatR80(&paTests[iTest].InVal), \
|
---|
3117 | iVar ? " " : "", uFswOut, iOutVal, \
|
---|
3118 | iVar ? " " : "", paTests[iTest].fFswOut, paTests[iTest].iOutVal, \
|
---|
3119 | FswDiff(uFswOut, paTests[iTest].fFswOut), \
|
---|
3120 | iOutVal != paTests[iTest].iOutVal ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); \
|
---|
3121 | } \
|
---|
3122 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3123 | } \
|
---|
3124 | } \
|
---|
3125 | }
|
---|
3126 |
|
---|
3127 | //fistt_r80_to_i16 diffs for AMD, of course :-)
|
---|
3128 |
|
---|
3129 | TEST_FPU_STORE_INT(64, int64_t, "%RI64", FPU_ST_I64_T, g_aFpuStI64, FPU_ST_I64_TEST_T)
|
---|
3130 | TEST_FPU_STORE_INT(32, int32_t, "%RI32", FPU_ST_I32_T, g_aFpuStI32, FPU_ST_I32_TEST_T)
|
---|
3131 | TEST_FPU_STORE_INT(16, int16_t, "%RI16", FPU_ST_I16_T, g_aFpuStI16, FPU_ST_I16_TEST_T)
|
---|
3132 |
|
---|
3133 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3134 | static void FpuStIntGenerate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests)
|
---|
3135 | {
|
---|
3136 | FpuStI64Generate(pOut, pOutCpu, cTests);
|
---|
3137 | FpuStI32Generate(pOut, pOutCpu, cTests);
|
---|
3138 | FpuStI16Generate(pOut, pOutCpu, cTests);
|
---|
3139 | }
|
---|
3140 | #endif
|
---|
3141 |
|
---|
3142 | static void FpuStIntTest(void)
|
---|
3143 | {
|
---|
3144 | FpuStI64Test();
|
---|
3145 | FpuStI32Test();
|
---|
3146 | FpuStI16Test();
|
---|
3147 | }
|
---|
3148 |
|
---|
3149 |
|
---|
3150 | /*
|
---|
3151 | * Store as packed BCD value (memory).
|
---|
3152 | */
|
---|
3153 | typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOD80,(PCX86FXSTATE, uint16_t *, PRTPBCD80U, PCRTFLOAT80U));
|
---|
3154 | typedef FNIEMAIMPLFPUSTR80TOD80 *PFNIEMAIMPLFPUSTR80TOD80;
|
---|
3155 | TYPEDEF_SUBTEST_TYPE(FPU_ST_D80_T, FPU_ST_D80_TEST_T, PFNIEMAIMPLFPUSTR80TOD80);
|
---|
3156 |
|
---|
3157 | static const FPU_ST_D80_T g_aFpuStD80[] =
|
---|
3158 | {
|
---|
3159 | ENTRY(fst_r80_to_d80),
|
---|
3160 | };
|
---|
3161 |
|
---|
3162 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3163 | static void FpuStD80Generate(PRTSTREAM pOut, uint32_t cTests)
|
---|
3164 | {
|
---|
3165 | static RTFLOAT80U const s_aSpecials[] =
|
---|
3166 | {
|
---|
3167 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763fffe0, RTFLOAT80U_EXP_BIAS + 59), /* 1 below max */
|
---|
3168 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763fffe0, RTFLOAT80U_EXP_BIAS + 59), /* 1 above min */
|
---|
3169 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff0, RTFLOAT80U_EXP_BIAS + 59), /* exact max */
|
---|
3170 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff0, RTFLOAT80U_EXP_BIAS + 59), /* exact min */
|
---|
3171 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763fffff, RTFLOAT80U_EXP_BIAS + 59), /* max & all rounded off bits set */
|
---|
3172 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763fffff, RTFLOAT80U_EXP_BIAS + 59), /* min & all rounded off bits set */
|
---|
3173 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff8, RTFLOAT80U_EXP_BIAS + 59), /* max & some rounded off bits set */
|
---|
3174 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff8, RTFLOAT80U_EXP_BIAS + 59), /* min & some rounded off bits set */
|
---|
3175 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff1, RTFLOAT80U_EXP_BIAS + 59), /* max & some other rounded off bits set */
|
---|
3176 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff1, RTFLOAT80U_EXP_BIAS + 59), /* min & some other rounded off bits set */
|
---|
3177 | RTFLOAT80U_INIT_C(0, 0xde0b6b3a76400000, RTFLOAT80U_EXP_BIAS + 59), /* 1 above max */
|
---|
3178 | RTFLOAT80U_INIT_C(1, 0xde0b6b3a76400000, RTFLOAT80U_EXP_BIAS + 59), /* 1 below min */
|
---|
3179 | };
|
---|
3180 |
|
---|
3181 | X86FXSTATE State;
|
---|
3182 | RT_ZERO(State);
|
---|
3183 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++)
|
---|
3184 | {
|
---|
3185 | GenerateArrayStart(pOut, g_aFpuStD80[iFn].pszName, "FPU_ST_D80_TEST_T");
|
---|
3186 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
3187 | {
|
---|
3188 | uint16_t const fFcw = RandFcw();
|
---|
3189 | State.FSW = RandFsw();
|
---|
3190 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, 59, true) : s_aSpecials[iTest - cTests];
|
---|
3191 |
|
---|
3192 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
3193 | {
|
---|
3194 | /* PC doesn't influence these, so leave as is. */
|
---|
3195 | AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT);
|
---|
3196 | for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/)
|
---|
3197 | {
|
---|
3198 | uint16_t uFswOut = 0;
|
---|
3199 | RTPBCD80U OutVal = RTPBCD80U_INIT_ZERO(0);
|
---|
3200 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM))
|
---|
3201 | | (iRounding << X86_FCW_RC_SHIFT);
|
---|
3202 | /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/
|
---|
3203 | State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT;
|
---|
3204 | g_aFpuStD80[iFn].pfn(&State, &uFswOut, &OutVal, &InVal);
|
---|
3205 | RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u */\n",
|
---|
3206 | State.FCW, State.FSW, uFswOut, GenFormatR80(&InVal),
|
---|
3207 | GenFormatD80(&OutVal), iTest, iRounding, iMask);
|
---|
3208 | }
|
---|
3209 | }
|
---|
3210 | }
|
---|
3211 | GenerateArrayEnd(pOut, g_aFpuStD80[iFn].pszName);
|
---|
3212 | }
|
---|
3213 | }
|
---|
3214 | #endif
|
---|
3215 |
|
---|
3216 |
|
---|
3217 | static void FpuStD80Test(void)
|
---|
3218 | {
|
---|
3219 | X86FXSTATE State;
|
---|
3220 | RT_ZERO(State);
|
---|
3221 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++)
|
---|
3222 | {
|
---|
3223 | if (!SubTestAndCheckIfEnabled(g_aFpuStD80[iFn].pszName))
|
---|
3224 | continue;
|
---|
3225 |
|
---|
3226 | uint32_t const cTests = *g_aFpuStD80[iFn].pcTests;
|
---|
3227 | FPU_ST_D80_TEST_T const * const paTests = g_aFpuStD80[iFn].paTests;
|
---|
3228 | PFNIEMAIMPLFPUSTR80TOD80 pfn = g_aFpuStD80[iFn].pfn;
|
---|
3229 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuStD80[iFn]);
|
---|
3230 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
3231 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
3232 | {
|
---|
3233 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
3234 | {
|
---|
3235 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
3236 | uint16_t uFswOut = 0;
|
---|
3237 | RTPBCD80U OutVal = RTPBCD80U_INIT_ZERO(0);
|
---|
3238 | State.FCW = paTests[iTest].fFcw;
|
---|
3239 | State.FSW = paTests[iTest].fFswIn;
|
---|
3240 | pfn(&State, &uFswOut, &OutVal, &InVal);
|
---|
3241 | if ( uFswOut != paTests[iTest].fFswOut
|
---|
3242 | || !RTPBCD80U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal))
|
---|
3243 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
3244 | "%s -> fsw=%#06x %s\n"
|
---|
3245 | "%s expected %#06x %s%s%s (%s)\n",
|
---|
3246 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
3247 | FormatR80(&paTests[iTest].InVal),
|
---|
3248 | iVar ? " " : "", uFswOut, FormatD80(&OutVal),
|
---|
3249 | iVar ? " " : "", paTests[iTest].fFswOut, FormatD80(&paTests[iTest].OutVal),
|
---|
3250 | FswDiff(uFswOut, paTests[iTest].fFswOut),
|
---|
3251 | RTPBCD80U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal) ? " - val" : "",
|
---|
3252 | FormatFcw(paTests[iTest].fFcw) );
|
---|
3253 | }
|
---|
3254 | pfn = g_aFpuStD80[iFn].pfnNative;
|
---|
3255 | }
|
---|
3256 | }
|
---|
3257 | }
|
---|
3258 |
|
---|
3259 |
|
---|
3260 |
|
---|
3261 | /*********************************************************************************************************************************
|
---|
3262 | * x87 FPU Binary Operations *
|
---|
3263 | *********************************************************************************************************************************/
|
---|
3264 |
|
---|
3265 | /*
|
---|
3266 | * Binary FPU operations on two 80-bit floating point values.
|
---|
3267 | */
|
---|
3268 | TYPEDEF_SUBTEST_TYPE(FPU_BINARY_R80_T, FPU_BINARY_R80_TEST_T, PFNIEMAIMPLFPUR80);
|
---|
3269 | enum { kFpuBinaryHint_fprem = 1, };
|
---|
3270 |
|
---|
3271 | static const FPU_BINARY_R80_T g_aFpuBinaryR80[] =
|
---|
3272 | {
|
---|
3273 | ENTRY(fadd_r80_by_r80),
|
---|
3274 | ENTRY(fsub_r80_by_r80),
|
---|
3275 | ENTRY(fsubr_r80_by_r80),
|
---|
3276 | ENTRY(fmul_r80_by_r80),
|
---|
3277 | ENTRY(fdiv_r80_by_r80),
|
---|
3278 | ENTRY(fdivr_r80_by_r80),
|
---|
3279 | ENTRY_EX(fprem_r80_by_r80, kFpuBinaryHint_fprem),
|
---|
3280 | ENTRY_EX(fprem1_r80_by_r80, kFpuBinaryHint_fprem),
|
---|
3281 | ENTRY(fscale_r80_by_r80),
|
---|
3282 | ENTRY_AMD( fpatan_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3283 | ENTRY_INTEL(fpatan_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3284 | ENTRY_AMD( fyl2x_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3285 | ENTRY_INTEL(fyl2x_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3286 | ENTRY_AMD( fyl2xp1_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3287 | ENTRY_INTEL(fyl2xp1_r80_by_r80, 0), // C1 and rounding differs on AMD
|
---|
3288 | };
|
---|
3289 |
|
---|
3290 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3291 | static void FpuBinaryR80Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests)
|
---|
3292 | {
|
---|
3293 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
3294 |
|
---|
3295 | static struct { RTFLOAT80U Val1, Val2; } const s_aSpecials[] =
|
---|
3296 | {
|
---|
3297 | { RTFLOAT80U_INIT_C(1, 0xdd762f07f2e80eef, 30142), /* causes weird overflows with DOWN and NEAR rounding. */
|
---|
3298 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) },
|
---|
3299 | { RTFLOAT80U_INIT_ZERO(0), /* causes weird overflows with UP and NEAR rounding when precision is lower than 64. */
|
---|
3300 | RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) },
|
---|
3301 | { RTFLOAT80U_INIT_ZERO(0), /* minus variant */
|
---|
3302 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) },
|
---|
3303 | { RTFLOAT80U_INIT_C(0, 0xcef238bb9a0afd86, 577 + RTFLOAT80U_EXP_BIAS), /* for fprem and fprem1, max sequence length */
|
---|
3304 | RTFLOAT80U_INIT_C(0, 0xf11684ec0beaad94, 1 + RTFLOAT80U_EXP_BIAS) },
|
---|
3305 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, -13396 + RTFLOAT80U_EXP_BIAS), /* for fdiv. We missed PE. */
|
---|
3306 | RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, 16383 + RTFLOAT80U_EXP_BIAS) },
|
---|
3307 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS), /* for fprem/fprem1 */
|
---|
3308 | RTFLOAT80U_INIT_C(0, 0xe000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
3309 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS), /* for fprem/fprem1 */
|
---|
3310 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
3311 | /* fscale: This may seriously increase the exponent, and it turns out overflow and underflow behaviour changes
|
---|
3312 | once RTFLOAT80U_EXP_BIAS_ADJUST is exceeded. */
|
---|
3313 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1 */
|
---|
3314 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
3315 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^64 */
|
---|
3316 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 6 + RTFLOAT80U_EXP_BIAS) },
|
---|
3317 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1024 */
|
---|
3318 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 10 + RTFLOAT80U_EXP_BIAS) },
|
---|
3319 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^4096 */
|
---|
3320 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 12 + RTFLOAT80U_EXP_BIAS) },
|
---|
3321 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^16384 */
|
---|
3322 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 49150 */
|
---|
3323 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3324 | RTFLOAT80U_INIT_C(0, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57342 - within 10980XE range */
|
---|
3325 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24577 */
|
---|
3326 | RTFLOAT80U_INIT_C(0, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57343 - outside 10980XE range, behaviour changes! */
|
---|
3327 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^32768 - result is within range on 10980XE */
|
---|
3328 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 15 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 65534 */
|
---|
3329 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^65536 */
|
---|
3330 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 16 + RTFLOAT80U_EXP_BIAS) },
|
---|
3331 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1048576 */
|
---|
3332 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 20 + RTFLOAT80U_EXP_BIAS) },
|
---|
3333 | { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^16777216 */
|
---|
3334 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 24 + RTFLOAT80U_EXP_BIAS) },
|
---|
3335 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1), /* for fscale: min * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3336 | RTFLOAT80U_INIT_C(1, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -24575 - within 10980XE range */
|
---|
3337 | { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1), /* for fscale: max * 2^-24577 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3338 | RTFLOAT80U_INIT_C(1, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -24576 - outside 10980XE range, behaviour changes! */
|
---|
3339 | /* fscale: Negative variants for the essentials of the above. */
|
---|
3340 | { RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3341 | RTFLOAT80U_INIT_C(0, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57342 - within 10980XE range */
|
---|
3342 | { RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24577 */
|
---|
3343 | RTFLOAT80U_INIT_C(0, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57343 - outside 10980XE range, behaviour changes! */
|
---|
3344 | { RTFLOAT80U_INIT_C(1, 0x8000000000000000, 1), /* for fscale: min * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3345 | RTFLOAT80U_INIT_C(1, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -57342 - within 10980XE range */
|
---|
3346 | { RTFLOAT80U_INIT_C(1, 0x8000000000000000, 1), /* for fscale: max * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */
|
---|
3347 | RTFLOAT80U_INIT_C(1, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -57343 - outside 10980XE range, behaviour changes! */
|
---|
3348 | /* fscale: Some fun with denormals and pseudo-denormals. */
|
---|
3349 | { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), /* for fscale: max * 2^-4 */
|
---|
3350 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) },
|
---|
3351 | { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), /* for fscale: max * 2^+1 */
|
---|
3352 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
3353 | { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), RTFLOAT80U_INIT_ZERO(0) }, /* for fscale: max * 2^+0 */
|
---|
3354 | { RTFLOAT80U_INIT_C(0, 0x0000000000000008, 0), /* for fscale: max * 2^-4 => underflow */
|
---|
3355 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) },
|
---|
3356 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), RTFLOAT80U_INIT_ZERO(0) }, /* pseudo-normal number * 2^+0. */
|
---|
3357 | { RTFLOAT80U_INIT_C(1, 0x8005000300020001, 0), RTFLOAT80U_INIT_ZERO(0) }, /* pseudo-normal number * 2^+0. */
|
---|
3358 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^-4 */
|
---|
3359 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) },
|
---|
3360 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^+0 */
|
---|
3361 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) },
|
---|
3362 | { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^+1 */
|
---|
3363 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS) },
|
---|
3364 | };
|
---|
3365 |
|
---|
3366 | X86FXSTATE State;
|
---|
3367 | RT_ZERO(State);
|
---|
3368 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
3369 | uint32_t cMinTargetRangeInputs = cMinNormalPairs / 2;
|
---|
3370 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++)
|
---|
3371 | {
|
---|
3372 | PFNIEMAIMPLFPUR80 const pfn = g_aFpuBinaryR80[iFn].pfnNative ? g_aFpuBinaryR80[iFn].pfnNative : g_aFpuBinaryR80[iFn].pfn;
|
---|
3373 | PRTSTREAM pOutFn = pOut;
|
---|
3374 | if (g_aFpuBinaryR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE)
|
---|
3375 | {
|
---|
3376 | if (g_aFpuBinaryR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
3377 | continue;
|
---|
3378 | pOutFn = pOutCpu;
|
---|
3379 | }
|
---|
3380 |
|
---|
3381 | GenerateArrayStart(pOutFn, g_aFpuBinaryR80[iFn].pszName, "FPU_BINARY_R80_TEST_T");
|
---|
3382 | uint32_t iTestOutput = 0;
|
---|
3383 | uint32_t cNormalInputPairs = 0;
|
---|
3384 | uint32_t cTargetRangeInputs = 0;
|
---|
3385 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
3386 | {
|
---|
3387 | RTFLOAT80U InVal1 = iTest < cTests ? RandR80Src1(iTest) : s_aSpecials[iTest - cTests].Val1;
|
---|
3388 | RTFLOAT80U InVal2 = iTest < cTests ? RandR80Src2(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
3389 | bool fTargetRange = false;
|
---|
3390 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && RTFLOAT80U_IS_NORMAL(&InVal2))
|
---|
3391 | {
|
---|
3392 | cNormalInputPairs++;
|
---|
3393 | if ( g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem
|
---|
3394 | && (uint32_t)InVal1.s.uExponent - (uint32_t)InVal2.s.uExponent - (uint32_t)64 <= (uint32_t)512)
|
---|
3395 | cTargetRangeInputs += fTargetRange = true;
|
---|
3396 | else if (cTargetRangeInputs < cMinTargetRangeInputs && iTest < cTests)
|
---|
3397 | if (g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem)
|
---|
3398 | { /* The aim is two values with an exponent difference between 64 and 640 so we can do the whole sequence. */
|
---|
3399 | InVal2.s.uExponent = RTRandU32Ex(1, RTFLOAT80U_EXP_MAX - 66);
|
---|
3400 | InVal1.s.uExponent = RTRandU32Ex(InVal2.s.uExponent + 64, RT_MIN(InVal2.s.uExponent + 512, RTFLOAT80U_EXP_MAX - 1));
|
---|
3401 | cTargetRangeInputs += fTargetRange = true;
|
---|
3402 | }
|
---|
3403 | }
|
---|
3404 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
3405 | {
|
---|
3406 | iTest -= 1;
|
---|
3407 | continue;
|
---|
3408 | }
|
---|
3409 |
|
---|
3410 | uint16_t const fFcwExtra = 0;
|
---|
3411 | uint16_t const fFcw = RandFcw();
|
---|
3412 | State.FSW = RandFsw();
|
---|
3413 |
|
---|
3414 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
3415 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
3416 | {
|
---|
3417 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
3418 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
3419 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
3420 | | X86_FCW_MASK_ALL;
|
---|
3421 | IEMFPURESULT ResM = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3422 | pfn(&State, &ResM, &InVal1, &InVal2);
|
---|
3423 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/m = #%u */\n",
|
---|
3424 | State.FCW | fFcwExtra, State.FSW, ResM.FSW, GenFormatR80(&InVal1), GenFormatR80(&InVal2),
|
---|
3425 | GenFormatR80(&ResM.r80Result), iTest, iRounding, iPrecision, iTestOutput++);
|
---|
3426 |
|
---|
3427 | State.FCW = State.FCW & ~X86_FCW_MASK_ALL;
|
---|
3428 | IEMFPURESULT ResU = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3429 | pfn(&State, &ResU, &InVal1, &InVal2);
|
---|
3430 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/u = #%u */\n",
|
---|
3431 | State.FCW | fFcwExtra, State.FSW, ResU.FSW, GenFormatR80(&InVal1), GenFormatR80(&InVal2),
|
---|
3432 | GenFormatR80(&ResU.r80Result), iTest, iRounding, iPrecision, iTestOutput++);
|
---|
3433 |
|
---|
3434 | uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF;
|
---|
3435 | if (fXcpt)
|
---|
3436 | {
|
---|
3437 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
3438 | IEMFPURESULT Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3439 | pfn(&State, &Res1, &InVal1, &InVal2);
|
---|
3440 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/%#x = #%u */\n",
|
---|
3441 | State.FCW | fFcwExtra, State.FSW, Res1.FSW, GenFormatR80(&InVal1), GenFormatR80(&InVal2),
|
---|
3442 | GenFormatR80(&Res1.r80Result), iTest, iRounding, iPrecision, fXcpt, iTestOutput++);
|
---|
3443 | if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK))
|
---|
3444 | {
|
---|
3445 | fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK;
|
---|
3446 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
3447 | IEMFPURESULT Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3448 | pfn(&State, &Res2, &InVal1, &InVal2);
|
---|
3449 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/%#x[!] = #%u */\n",
|
---|
3450 | State.FCW | fFcwExtra, State.FSW, Res2.FSW, GenFormatR80(&InVal1), GenFormatR80(&InVal2),
|
---|
3451 | GenFormatR80(&Res2.r80Result), iTest, iRounding, iPrecision, fXcpt, iTestOutput++);
|
---|
3452 | }
|
---|
3453 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
3454 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1)
|
---|
3455 | if (fUnmasked & fXcpt)
|
---|
3456 | {
|
---|
3457 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked);
|
---|
3458 | IEMFPURESULT Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3459 | pfn(&State, &Res3, &InVal1, &InVal2);
|
---|
3460 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/u%#x = #%u */\n",
|
---|
3461 | State.FCW | fFcwExtra, State.FSW, Res3.FSW, GenFormatR80(&InVal1), GenFormatR80(&InVal2),
|
---|
3462 | GenFormatR80(&Res3.r80Result), iTest, iRounding, iPrecision, fUnmasked, iTestOutput++);
|
---|
3463 | }
|
---|
3464 | }
|
---|
3465 |
|
---|
3466 | /* If the values are in range and caused no exceptions, do the whole series of
|
---|
3467 | partial reminders till we get the non-partial one or run into an exception. */
|
---|
3468 | if (fTargetRange && fXcpt == 0 && g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem)
|
---|
3469 | {
|
---|
3470 | IEMFPURESULT ResPrev = ResM;
|
---|
3471 | for (unsigned i = 0; i < 32 && (ResPrev.FSW & (X86_FSW_C2 | X86_FSW_XCPT_MASK)) == X86_FSW_C2; i++)
|
---|
3472 | {
|
---|
3473 | State.FCW = State.FCW | X86_FCW_MASK_ALL;
|
---|
3474 | State.FSW = ResPrev.FSW;
|
---|
3475 | IEMFPURESULT ResSeq = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3476 | pfn(&State, &ResSeq, &ResPrev.r80Result, &InVal2);
|
---|
3477 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/seq%u = #%u */\n",
|
---|
3478 | State.FCW | fFcwExtra, State.FSW, ResSeq.FSW, GenFormatR80(&ResPrev.r80Result),
|
---|
3479 | GenFormatR80(&InVal2), GenFormatR80(&ResSeq.r80Result),
|
---|
3480 | iTest, iRounding, iPrecision, i + 1, iTestOutput++);
|
---|
3481 | ResPrev = ResSeq;
|
---|
3482 | }
|
---|
3483 | }
|
---|
3484 | }
|
---|
3485 | }
|
---|
3486 | GenerateArrayEnd(pOutFn, g_aFpuBinaryR80[iFn].pszName);
|
---|
3487 | }
|
---|
3488 | }
|
---|
3489 | #endif
|
---|
3490 |
|
---|
3491 |
|
---|
3492 | static void FpuBinaryR80Test(void)
|
---|
3493 | {
|
---|
3494 | X86FXSTATE State;
|
---|
3495 | RT_ZERO(State);
|
---|
3496 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++)
|
---|
3497 | {
|
---|
3498 | if (!SubTestAndCheckIfEnabled(g_aFpuBinaryR80[iFn].pszName))
|
---|
3499 | continue;
|
---|
3500 |
|
---|
3501 | uint32_t const cTests = *g_aFpuBinaryR80[iFn].pcTests;
|
---|
3502 | FPU_BINARY_R80_TEST_T const * const paTests = g_aFpuBinaryR80[iFn].paTests;
|
---|
3503 | PFNIEMAIMPLFPUR80 pfn = g_aFpuBinaryR80[iFn].pfn;
|
---|
3504 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuBinaryR80[iFn]);
|
---|
3505 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
3506 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
3507 | {
|
---|
3508 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
3509 | {
|
---|
3510 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1;
|
---|
3511 | RTFLOAT80U const InVal2 = paTests[iTest].InVal2;
|
---|
3512 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
3513 | State.FCW = paTests[iTest].fFcw;
|
---|
3514 | State.FSW = paTests[iTest].fFswIn;
|
---|
3515 | pfn(&State, &Res, &InVal1, &InVal2);
|
---|
3516 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
3517 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal))
|
---|
3518 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n"
|
---|
3519 | "%s -> fsw=%#06x %s\n"
|
---|
3520 | "%s expected %#06x %s%s%s (%s)\n",
|
---|
3521 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
3522 | FormatR80(&paTests[iTest].InVal1), FormatR80(&paTests[iTest].InVal2),
|
---|
3523 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result),
|
---|
3524 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal),
|
---|
3525 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
3526 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "",
|
---|
3527 | FormatFcw(paTests[iTest].fFcw) );
|
---|
3528 | }
|
---|
3529 | pfn = g_aFpuBinaryR80[iFn].pfnNative;
|
---|
3530 | }
|
---|
3531 | }
|
---|
3532 | }
|
---|
3533 |
|
---|
3534 |
|
---|
3535 | /*
|
---|
3536 | * Binary FPU operations on one 80-bit floating point value and one 64-bit or 32-bit one.
|
---|
3537 | */
|
---|
3538 | #define int64_t_IS_NORMAL(a) 1
|
---|
3539 | #define int32_t_IS_NORMAL(a) 1
|
---|
3540 | #define int16_t_IS_NORMAL(a) 1
|
---|
3541 |
|
---|
3542 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3543 | static struct { RTFLOAT80U Val1; RTFLOAT64U Val2; } const s_aFpuBinaryR64Specials[] =
|
---|
3544 | {
|
---|
3545 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
3546 | RTFLOAT64U_INIT_C(0, 0xfeeeeddddcccc, RTFLOAT64U_EXP_BIAS) }, /* whatever */
|
---|
3547 | };
|
---|
3548 | static struct { RTFLOAT80U Val1; RTFLOAT32U Val2; } const s_aFpuBinaryR32Specials[] =
|
---|
3549 | {
|
---|
3550 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
3551 | RTFLOAT32U_INIT_C(0, 0x7fffee, RTFLOAT32U_EXP_BIAS) }, /* whatever */
|
---|
3552 | };
|
---|
3553 | static struct { RTFLOAT80U Val1; int32_t Val2; } const s_aFpuBinaryI32Specials[] =
|
---|
3554 | {
|
---|
3555 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT32_MAX }, /* whatever */
|
---|
3556 | };
|
---|
3557 | static struct { RTFLOAT80U Val1; int16_t Val2; } const s_aFpuBinaryI16Specials[] =
|
---|
3558 | {
|
---|
3559 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT16_MAX }, /* whatever */
|
---|
3560 | };
|
---|
3561 |
|
---|
3562 | # define GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
3563 | static void FpuBinary ## a_UpBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \
|
---|
3564 | { \
|
---|
3565 | cTests = RT_MAX(160, cTests); /* there are 144 standard input variations for r80 by r80 */ \
|
---|
3566 | \
|
---|
3567 | X86FXSTATE State; \
|
---|
3568 | RT_ZERO(State); \
|
---|
3569 | uint32_t cMinNormalPairs = (cTests - 144) / 4; \
|
---|
3570 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3571 | { \
|
---|
3572 | GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \
|
---|
3573 | uint32_t cNormalInputPairs = 0; \
|
---|
3574 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinary ## a_UpBits ## Specials); iTest += 1) \
|
---|
3575 | { \
|
---|
3576 | RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest, a_cBits, a_fIntType) \
|
---|
3577 | : s_aFpuBinary ## a_UpBits ## Specials[iTest - cTests].Val1; \
|
---|
3578 | a_Type2 const InVal2 = iTest < cTests ? Rand ## a_UpBits ## Src2(iTest) \
|
---|
3579 | : s_aFpuBinary ## a_UpBits ## Specials[iTest - cTests].Val2; \
|
---|
3580 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && a_Type2 ## _IS_NORMAL(&InVal2)) \
|
---|
3581 | cNormalInputPairs++; \
|
---|
3582 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) \
|
---|
3583 | { \
|
---|
3584 | iTest -= 1; \
|
---|
3585 | continue; \
|
---|
3586 | } \
|
---|
3587 | \
|
---|
3588 | uint16_t const fFcw = RandFcw(); \
|
---|
3589 | State.FSW = RandFsw(); \
|
---|
3590 | \
|
---|
3591 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \
|
---|
3592 | { \
|
---|
3593 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) \
|
---|
3594 | { \
|
---|
3595 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) \
|
---|
3596 | { \
|
---|
3597 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) \
|
---|
3598 | | (iRounding << X86_FCW_RC_SHIFT) \
|
---|
3599 | | (iPrecision << X86_FCW_PC_SHIFT) \
|
---|
3600 | | iMask; \
|
---|
3601 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
3602 | a_aSubTests[iFn].pfn(&State, &Res, &InVal1, &InVal2); \
|
---|
3603 | RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/%c */\n", \
|
---|
3604 | State.FCW, State.FSW, Res.FSW, GenFormatR80(&InVal1), GenFormat ## a_UpBits(&InVal2), \
|
---|
3605 | GenFormatR80(&Res.r80Result), iTest, iRounding, iPrecision, iMask ? 'c' : 'u'); \
|
---|
3606 | } \
|
---|
3607 | } \
|
---|
3608 | } \
|
---|
3609 | } \
|
---|
3610 | GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \
|
---|
3611 | } \
|
---|
3612 | }
|
---|
3613 | #else
|
---|
3614 | # define GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType)
|
---|
3615 | #endif
|
---|
3616 |
|
---|
3617 | #define TEST_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_I, a_Type2, a_SubTestType, a_aSubTests, a_TestType) \
|
---|
3618 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPU ## a_UpBits); \
|
---|
3619 | \
|
---|
3620 | static const a_SubTestType a_aSubTests[] = \
|
---|
3621 | { \
|
---|
3622 | ENTRY(RT_CONCAT4(f, a_I, add_r80_by_, a_LoBits)), \
|
---|
3623 | ENTRY(RT_CONCAT4(f, a_I, mul_r80_by_, a_LoBits)), \
|
---|
3624 | ENTRY(RT_CONCAT4(f, a_I, sub_r80_by_, a_LoBits)), \
|
---|
3625 | ENTRY(RT_CONCAT4(f, a_I, subr_r80_by_, a_LoBits)), \
|
---|
3626 | ENTRY(RT_CONCAT4(f, a_I, div_r80_by_, a_LoBits)), \
|
---|
3627 | ENTRY(RT_CONCAT4(f, a_I, divr_r80_by_, a_LoBits)), \
|
---|
3628 | }; \
|
---|
3629 | \
|
---|
3630 | GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
3631 | \
|
---|
3632 | static void FpuBinary ## a_UpBits ## Test(void) \
|
---|
3633 | { \
|
---|
3634 | X86FXSTATE State; \
|
---|
3635 | RT_ZERO(State); \
|
---|
3636 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3637 | { \
|
---|
3638 | if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \
|
---|
3639 | \
|
---|
3640 | uint32_t const cTests = *a_aSubTests[iFn].pcTests; \
|
---|
3641 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3642 | PFNIEMAIMPLFPU ## a_UpBits pfn = a_aSubTests[iFn].pfn; \
|
---|
3643 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3644 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3645 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3646 | { \
|
---|
3647 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3648 | { \
|
---|
3649 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1; \
|
---|
3650 | a_Type2 const InVal2 = paTests[iTest].InVal2; \
|
---|
3651 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \
|
---|
3652 | State.FCW = paTests[iTest].fFcw; \
|
---|
3653 | State.FSW = paTests[iTest].fFswIn; \
|
---|
3654 | pfn(&State, &Res, &InVal1, &InVal2); \
|
---|
3655 | if ( Res.FSW != paTests[iTest].fFswOut \
|
---|
3656 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal)) \
|
---|
3657 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" \
|
---|
3658 | "%s -> fsw=%#06x %s\n" \
|
---|
3659 | "%s expected %#06x %s%s%s (%s)\n", \
|
---|
3660 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
3661 | FormatR80(&paTests[iTest].InVal1), Format ## a_UpBits(&paTests[iTest].InVal2), \
|
---|
3662 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \
|
---|
3663 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal), \
|
---|
3664 | FswDiff(Res.FSW, paTests[iTest].fFswOut), \
|
---|
3665 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "", \
|
---|
3666 | FormatFcw(paTests[iTest].fFcw) ); \
|
---|
3667 | } \
|
---|
3668 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3669 | } \
|
---|
3670 | } \
|
---|
3671 | }
|
---|
3672 |
|
---|
3673 | TEST_FPU_BINARY_SMALL(0, 64, r64, R64, RT_NOTHING, RTFLOAT64U, FPU_BINARY_R64_T, g_aFpuBinaryR64, FPU_BINARY_R64_TEST_T)
|
---|
3674 | TEST_FPU_BINARY_SMALL(0, 32, r32, R32, RT_NOTHING, RTFLOAT32U, FPU_BINARY_R32_T, g_aFpuBinaryR32, FPU_BINARY_R32_TEST_T)
|
---|
3675 | TEST_FPU_BINARY_SMALL(1, 32, i32, I32, i, int32_t, FPU_BINARY_I32_T, g_aFpuBinaryI32, FPU_BINARY_I32_TEST_T)
|
---|
3676 | TEST_FPU_BINARY_SMALL(1, 16, i16, I16, i, int16_t, FPU_BINARY_I16_T, g_aFpuBinaryI16, FPU_BINARY_I16_TEST_T)
|
---|
3677 |
|
---|
3678 |
|
---|
3679 | /*
|
---|
3680 | * Binary operations on 80-, 64- and 32-bit floating point only affecting FSW.
|
---|
3681 | */
|
---|
3682 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3683 | static struct { RTFLOAT80U Val1, Val2; } const s_aFpuBinaryFswR80Specials[] =
|
---|
3684 | {
|
---|
3685 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
3686 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS) }, /* whatever */
|
---|
3687 | };
|
---|
3688 | static struct { RTFLOAT80U Val1; RTFLOAT64U Val2; } const s_aFpuBinaryFswR64Specials[] =
|
---|
3689 | {
|
---|
3690 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
3691 | RTFLOAT64U_INIT_C(0, 0xfeeeeddddcccc, RTFLOAT64U_EXP_BIAS) }, /* whatever */
|
---|
3692 | };
|
---|
3693 | static struct { RTFLOAT80U Val1; RTFLOAT32U Val2; } const s_aFpuBinaryFswR32Specials[] =
|
---|
3694 | {
|
---|
3695 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
3696 | RTFLOAT32U_INIT_C(0, 0x7fffee, RTFLOAT32U_EXP_BIAS) }, /* whatever */
|
---|
3697 | };
|
---|
3698 | static struct { RTFLOAT80U Val1; int32_t Val2; } const s_aFpuBinaryFswI32Specials[] =
|
---|
3699 | {
|
---|
3700 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT32_MAX }, /* whatever */
|
---|
3701 | };
|
---|
3702 | static struct { RTFLOAT80U Val1; int16_t Val2; } const s_aFpuBinaryFswI16Specials[] =
|
---|
3703 | {
|
---|
3704 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT16_MAX }, /* whatever */
|
---|
3705 | };
|
---|
3706 |
|
---|
3707 | # define GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
3708 | static void FpuBinaryFsw ## a_UpBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \
|
---|
3709 | { \
|
---|
3710 | cTests = RT_MAX(160, cTests); /* there are 144 standard input variations for r80 by r80 */ \
|
---|
3711 | \
|
---|
3712 | X86FXSTATE State; \
|
---|
3713 | RT_ZERO(State); \
|
---|
3714 | uint32_t cMinNormalPairs = (cTests - 144) / 4; \
|
---|
3715 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3716 | { \
|
---|
3717 | GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \
|
---|
3718 | uint32_t cNormalInputPairs = 0; \
|
---|
3719 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinaryFsw ## a_UpBits ## Specials); iTest += 1) \
|
---|
3720 | { \
|
---|
3721 | RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest, a_cBits, a_fIntType) \
|
---|
3722 | : s_aFpuBinaryFsw ## a_UpBits ## Specials[iTest - cTests].Val1; \
|
---|
3723 | a_Type2 const InVal2 = iTest < cTests ? Rand ## a_UpBits ## Src2(iTest) \
|
---|
3724 | : s_aFpuBinaryFsw ## a_UpBits ## Specials[iTest - cTests].Val2; \
|
---|
3725 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && a_Type2 ## _IS_NORMAL(&InVal2)) \
|
---|
3726 | cNormalInputPairs++; \
|
---|
3727 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) \
|
---|
3728 | { \
|
---|
3729 | iTest -= 1; \
|
---|
3730 | continue; \
|
---|
3731 | } \
|
---|
3732 | \
|
---|
3733 | uint16_t const fFcw = RandFcw(); \
|
---|
3734 | State.FSW = RandFsw(); \
|
---|
3735 | \
|
---|
3736 | /* Guess these aren't affected by precision or rounding, so just flip the exception mask. */ \
|
---|
3737 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) \
|
---|
3738 | { \
|
---|
3739 | State.FCW = (fFcw & ~(X86_FCW_MASK_ALL)) | iMask; \
|
---|
3740 | uint16_t fFswOut = 0; \
|
---|
3741 | a_aSubTests[iFn].pfn(&State, &fFswOut, &InVal1, &InVal2); \
|
---|
3742 | RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%c */\n", \
|
---|
3743 | State.FCW, State.FSW, fFswOut, GenFormatR80(&InVal1), GenFormat ## a_UpBits(&InVal2), \
|
---|
3744 | iTest, iMask ? 'c' : 'u'); \
|
---|
3745 | } \
|
---|
3746 | } \
|
---|
3747 | GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \
|
---|
3748 | } \
|
---|
3749 | }
|
---|
3750 | #else
|
---|
3751 | # define GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType)
|
---|
3752 | #endif
|
---|
3753 |
|
---|
3754 | #define TEST_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_SubTestType, a_aSubTests, a_TestType, ...) \
|
---|
3755 | TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPU ## a_UpBits ## FSW); \
|
---|
3756 | \
|
---|
3757 | static const a_SubTestType a_aSubTests[] = \
|
---|
3758 | { \
|
---|
3759 | __VA_ARGS__ \
|
---|
3760 | }; \
|
---|
3761 | \
|
---|
3762 | GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \
|
---|
3763 | \
|
---|
3764 | static void FpuBinaryFsw ## a_UpBits ## Test(void) \
|
---|
3765 | { \
|
---|
3766 | X86FXSTATE State; \
|
---|
3767 | RT_ZERO(State); \
|
---|
3768 | for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \
|
---|
3769 | { \
|
---|
3770 | if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \
|
---|
3771 | \
|
---|
3772 | uint32_t const cTests = *a_aSubTests[iFn].pcTests; \
|
---|
3773 | a_TestType const * const paTests = a_aSubTests[iFn].paTests; \
|
---|
3774 | PFNIEMAIMPLFPU ## a_UpBits ## FSW pfn = a_aSubTests[iFn].pfn; \
|
---|
3775 | uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \
|
---|
3776 | if (!cTests) RTTestSkipped(g_hTest, "no tests"); \
|
---|
3777 | for (uint32_t iVar = 0; iVar < cVars; iVar++) \
|
---|
3778 | { \
|
---|
3779 | for (uint32_t iTest = 0; iTest < cTests; iTest++) \
|
---|
3780 | { \
|
---|
3781 | uint16_t fFswOut = 0; \
|
---|
3782 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1; \
|
---|
3783 | a_Type2 const InVal2 = paTests[iTest].InVal2; \
|
---|
3784 | State.FCW = paTests[iTest].fFcw; \
|
---|
3785 | State.FSW = paTests[iTest].fFswIn; \
|
---|
3786 | pfn(&State, &fFswOut, &InVal1, &InVal2); \
|
---|
3787 | if (fFswOut != paTests[iTest].fFswOut) \
|
---|
3788 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" \
|
---|
3789 | "%s -> fsw=%#06x\n" \
|
---|
3790 | "%s expected %#06x %s (%s)\n", \
|
---|
3791 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \
|
---|
3792 | FormatR80(&paTests[iTest].InVal1), Format ## a_UpBits(&paTests[iTest].InVal2), \
|
---|
3793 | iVar ? " " : "", fFswOut, \
|
---|
3794 | iVar ? " " : "", paTests[iTest].fFswOut, \
|
---|
3795 | FswDiff(fFswOut, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw) ); \
|
---|
3796 | } \
|
---|
3797 | pfn = a_aSubTests[iFn].pfnNative; \
|
---|
3798 | } \
|
---|
3799 | } \
|
---|
3800 | }
|
---|
3801 |
|
---|
3802 | TEST_FPU_BINARY_FSW(0, 80, R80, RTFLOAT80U, FPU_BINARY_FSW_R80_T, g_aFpuBinaryFswR80, FPU_BINARY_R80_TEST_T, ENTRY(fcom_r80_by_r80), ENTRY(fucom_r80_by_r80))
|
---|
3803 | TEST_FPU_BINARY_FSW(0, 64, R64, RTFLOAT64U, FPU_BINARY_FSW_R64_T, g_aFpuBinaryFswR64, FPU_BINARY_R64_TEST_T, ENTRY(fcom_r80_by_r64))
|
---|
3804 | TEST_FPU_BINARY_FSW(0, 32, R32, RTFLOAT32U, FPU_BINARY_FSW_R32_T, g_aFpuBinaryFswR32, FPU_BINARY_R32_TEST_T, ENTRY(fcom_r80_by_r32))
|
---|
3805 | TEST_FPU_BINARY_FSW(1, 32, I32, int32_t, FPU_BINARY_FSW_I32_T, g_aFpuBinaryFswI32, FPU_BINARY_I32_TEST_T, ENTRY(ficom_r80_by_i32))
|
---|
3806 | TEST_FPU_BINARY_FSW(1, 16, I16, int16_t, FPU_BINARY_FSW_I16_T, g_aFpuBinaryFswI16, FPU_BINARY_I16_TEST_T, ENTRY(ficom_r80_by_i16))
|
---|
3807 |
|
---|
3808 |
|
---|
3809 | /*
|
---|
3810 | * Binary operations on 80-bit floating point that effects only EFLAGS and possibly FSW.
|
---|
3811 | */
|
---|
3812 | TYPEDEF_SUBTEST_TYPE(FPU_BINARY_EFL_R80_T, FPU_BINARY_EFL_R80_TEST_T, PFNIEMAIMPLFPUR80EFL);
|
---|
3813 |
|
---|
3814 | static const FPU_BINARY_EFL_R80_T g_aFpuBinaryEflR80[] =
|
---|
3815 | {
|
---|
3816 | ENTRY(fcomi_r80_by_r80),
|
---|
3817 | ENTRY(fucomi_r80_by_r80),
|
---|
3818 | };
|
---|
3819 |
|
---|
3820 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3821 | static struct { RTFLOAT80U Val1, Val2; } const s_aFpuBinaryEflR80Specials[] =
|
---|
3822 | {
|
---|
3823 | { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS),
|
---|
3824 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS) }, /* whatever */
|
---|
3825 | };
|
---|
3826 |
|
---|
3827 | static void FpuBinaryEflR80Generate(PRTSTREAM pOut, uint32_t cTests)
|
---|
3828 | {
|
---|
3829 | cTests = RT_MAX(160, cTests); /* there are 144 standard input variations */
|
---|
3830 |
|
---|
3831 | X86FXSTATE State;
|
---|
3832 | RT_ZERO(State);
|
---|
3833 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
3834 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++)
|
---|
3835 | {
|
---|
3836 | GenerateArrayStart(pOut, g_aFpuBinaryEflR80[iFn].pszName, "FPU_BINARY_EFL_R80_TEST_T");
|
---|
3837 | uint32_t cNormalInputPairs = 0;
|
---|
3838 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinaryEflR80Specials); iTest += 1)
|
---|
3839 | {
|
---|
3840 | RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest) : s_aFpuBinaryEflR80Specials[iTest - cTests].Val1;
|
---|
3841 | RTFLOAT80U const InVal2 = iTest < cTests ? RandR80Src2(iTest) : s_aFpuBinaryEflR80Specials[iTest - cTests].Val2;
|
---|
3842 | if (RTFLOAT80U_IS_NORMAL(&InVal1) && RTFLOAT80U_IS_NORMAL(&InVal2))
|
---|
3843 | cNormalInputPairs++;
|
---|
3844 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
3845 | {
|
---|
3846 | iTest -= 1;
|
---|
3847 | continue;
|
---|
3848 | }
|
---|
3849 |
|
---|
3850 | uint16_t const fFcw = RandFcw();
|
---|
3851 | State.FSW = RandFsw();
|
---|
3852 |
|
---|
3853 | /* Guess these aren't affected by precision or rounding, so just flip the exception mask. */
|
---|
3854 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL)
|
---|
3855 | {
|
---|
3856 | State.FCW = (fFcw & ~(X86_FCW_MASK_ALL)) | iMask;
|
---|
3857 | uint16_t uFswOut = 0;
|
---|
3858 | uint32_t fEflOut = g_aFpuBinaryEflR80[iFn].pfn(&State, &uFswOut, &InVal1, &InVal2);
|
---|
3859 | RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s, %#08x }, /* #%u/%c */\n",
|
---|
3860 | State.FCW, State.FSW, uFswOut, GenFormatR80(&InVal1), GenFormatR80(&InVal2), fEflOut,
|
---|
3861 | iTest, iMask ? 'c' : 'u');
|
---|
3862 | }
|
---|
3863 | }
|
---|
3864 | GenerateArrayEnd(pOut, g_aFpuBinaryEflR80[iFn].pszName);
|
---|
3865 | }
|
---|
3866 | }
|
---|
3867 | #endif /*TSTIEMAIMPL_WITH_GENERATOR*/
|
---|
3868 |
|
---|
3869 | static void FpuBinaryEflR80Test(void)
|
---|
3870 | {
|
---|
3871 | X86FXSTATE State;
|
---|
3872 | RT_ZERO(State);
|
---|
3873 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++)
|
---|
3874 | {
|
---|
3875 | if (!SubTestAndCheckIfEnabled(g_aFpuBinaryEflR80[iFn].pszName))
|
---|
3876 | continue;
|
---|
3877 |
|
---|
3878 | uint32_t const cTests = *g_aFpuBinaryEflR80[iFn].pcTests;
|
---|
3879 | FPU_BINARY_EFL_R80_TEST_T const * const paTests = g_aFpuBinaryEflR80[iFn].paTests;
|
---|
3880 | PFNIEMAIMPLFPUR80EFL pfn = g_aFpuBinaryEflR80[iFn].pfn;
|
---|
3881 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuBinaryEflR80[iFn]);
|
---|
3882 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
3883 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
3884 | {
|
---|
3885 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
3886 | {
|
---|
3887 | RTFLOAT80U const InVal1 = paTests[iTest].InVal1;
|
---|
3888 | RTFLOAT80U const InVal2 = paTests[iTest].InVal2;
|
---|
3889 | State.FCW = paTests[iTest].fFcw;
|
---|
3890 | State.FSW = paTests[iTest].fFswIn;
|
---|
3891 | uint16_t uFswOut = 0;
|
---|
3892 | uint32_t fEflOut = pfn(&State, &uFswOut, &InVal1, &InVal2);
|
---|
3893 | if ( uFswOut != paTests[iTest].fFswOut
|
---|
3894 | || fEflOut != paTests[iTest].fEflOut)
|
---|
3895 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n"
|
---|
3896 | "%s -> fsw=%#06x efl=%#08x\n"
|
---|
3897 | "%s expected %#06x %#08x %s%s (%s)\n",
|
---|
3898 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
3899 | FormatR80(&paTests[iTest].InVal1), FormatR80(&paTests[iTest].InVal2),
|
---|
3900 | iVar ? " " : "", uFswOut, fEflOut,
|
---|
3901 | iVar ? " " : "", paTests[iTest].fFswOut, paTests[iTest].fEflOut,
|
---|
3902 | FswDiff(uFswOut, paTests[iTest].fFswOut), EFlagsDiff(fEflOut, paTests[iTest].fEflOut),
|
---|
3903 | FormatFcw(paTests[iTest].fFcw));
|
---|
3904 | }
|
---|
3905 | pfn = g_aFpuBinaryEflR80[iFn].pfnNative;
|
---|
3906 | }
|
---|
3907 | }
|
---|
3908 | }
|
---|
3909 |
|
---|
3910 |
|
---|
3911 | /*********************************************************************************************************************************
|
---|
3912 | * x87 FPU Unary Operations *
|
---|
3913 | *********************************************************************************************************************************/
|
---|
3914 |
|
---|
3915 | /*
|
---|
3916 | * Unary FPU operations on one 80-bit floating point value.
|
---|
3917 | *
|
---|
3918 | * Note! The FCW reserved bit 7 is used to indicate whether a test may produce
|
---|
3919 | * a rounding error or not.
|
---|
3920 | */
|
---|
3921 | TYPEDEF_SUBTEST_TYPE(FPU_UNARY_R80_T, FPU_UNARY_R80_TEST_T, PFNIEMAIMPLFPUR80UNARY);
|
---|
3922 |
|
---|
3923 | enum { kUnary_Accurate = 0, kUnary_Accurate_Trigonometry /*probably not accurate, but need impl to know*/, kUnary_Rounding_F2xm1 };
|
---|
3924 | static const FPU_UNARY_R80_T g_aFpuUnaryR80[] =
|
---|
3925 | {
|
---|
3926 | ENTRY_EX( fabs_r80, kUnary_Accurate),
|
---|
3927 | ENTRY_EX( fchs_r80, kUnary_Accurate),
|
---|
3928 | ENTRY_AMD_EX( f2xm1_r80, 0, kUnary_Accurate), // C1 differs for -1m0x3fb263cc2c331e15^-2654 (different ln2 constant?)
|
---|
3929 | ENTRY_INTEL_EX(f2xm1_r80, 0, kUnary_Rounding_F2xm1),
|
---|
3930 | ENTRY_EX( fsqrt_r80, kUnary_Accurate),
|
---|
3931 | ENTRY_EX( frndint_r80, kUnary_Accurate),
|
---|
3932 | ENTRY_AMD_EX( fsin_r80, 0, kUnary_Accurate_Trigonometry), // value & C1 differences for pseudo denormals and others (e.g. -1m0x2b1e5683cbca5725^-3485)
|
---|
3933 | ENTRY_INTEL_EX(fsin_r80, 0, kUnary_Accurate_Trigonometry),
|
---|
3934 | ENTRY_AMD_EX( fcos_r80, 0, kUnary_Accurate_Trigonometry), // value & C1 differences
|
---|
3935 | ENTRY_INTEL_EX(fcos_r80, 0, kUnary_Accurate_Trigonometry),
|
---|
3936 | };
|
---|
3937 |
|
---|
3938 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
3939 |
|
---|
3940 | static bool FpuUnaryR80MayHaveRoundingError(PCRTFLOAT80U pr80Val, int enmKind)
|
---|
3941 | {
|
---|
3942 | if ( enmKind == kUnary_Rounding_F2xm1
|
---|
3943 | && RTFLOAT80U_IS_NORMAL(pr80Val)
|
---|
3944 | && pr80Val->s.uExponent < RTFLOAT80U_EXP_BIAS
|
---|
3945 | && pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS - 69)
|
---|
3946 | return true;
|
---|
3947 | return false;
|
---|
3948 | }
|
---|
3949 |
|
---|
3950 | static void FpuUnaryR80Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests)
|
---|
3951 | {
|
---|
3952 | static RTFLOAT80U const s_aSpecials[] =
|
---|
3953 | {
|
---|
3954 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS - 1), /* 0.5 (for f2xm1) */
|
---|
3955 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, RTFLOAT80U_EXP_BIAS - 1), /* -0.5 (for f2xm1) */
|
---|
3956 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* 1.0 (for f2xm1) */
|
---|
3957 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* -1.0 (for f2xm1) */
|
---|
3958 | RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0), /* +1.0^-16382 */
|
---|
3959 | RTFLOAT80U_INIT_C(1, 0x8000000000000000, 0), /* -1.0^-16382 */
|
---|
3960 | RTFLOAT80U_INIT_C(0, 0xc000000000000000, 0), /* +1.1^-16382 */
|
---|
3961 | RTFLOAT80U_INIT_C(1, 0xc000000000000000, 0), /* -1.1^-16382 */
|
---|
3962 | RTFLOAT80U_INIT_C(0, 0xc000100000000000, 0), /* +1.1xxx1^-16382 */
|
---|
3963 | RTFLOAT80U_INIT_C(1, 0xc000100000000000, 0), /* -1.1xxx1^-16382 */
|
---|
3964 | };
|
---|
3965 | X86FXSTATE State;
|
---|
3966 | RT_ZERO(State);
|
---|
3967 | uint32_t cMinNormals = cTests / 4;
|
---|
3968 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++)
|
---|
3969 | {
|
---|
3970 | PFNIEMAIMPLFPUR80UNARY const pfn = g_aFpuUnaryR80[iFn].pfnNative ? g_aFpuUnaryR80[iFn].pfnNative : g_aFpuUnaryR80[iFn].pfn;
|
---|
3971 | PRTSTREAM pOutFn = pOut;
|
---|
3972 | if (g_aFpuUnaryR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE)
|
---|
3973 | {
|
---|
3974 | if (g_aFpuUnaryR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
3975 | continue;
|
---|
3976 | pOutFn = pOutCpu;
|
---|
3977 | }
|
---|
3978 |
|
---|
3979 | GenerateArrayStart(pOutFn, g_aFpuUnaryR80[iFn].pszName, "FPU_UNARY_R80_TEST_T");
|
---|
3980 | uint32_t iTestOutput = 0;
|
---|
3981 | uint32_t cNormalInputs = 0;
|
---|
3982 | uint32_t cTargetRangeInputs = 0;
|
---|
3983 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
3984 | {
|
---|
3985 | RTFLOAT80U InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
3986 | if (RTFLOAT80U_IS_NORMAL(&InVal))
|
---|
3987 | {
|
---|
3988 | if (g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1)
|
---|
3989 | {
|
---|
3990 | unsigned uTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1
|
---|
3991 | ? RTFLOAT80U_EXP_BIAS /* 2^0..2^-69 */ : RTFLOAT80U_EXP_BIAS + 63 + 1 /* 2^64..2^-64 */;
|
---|
3992 | unsigned cTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? 69 : 63*2 + 2;
|
---|
3993 | if (InVal.s.uExponent <= uTargetExp && InVal.s.uExponent >= uTargetExp - cTargetExp)
|
---|
3994 | cTargetRangeInputs++;
|
---|
3995 | else if (cTargetRangeInputs < cMinNormals / 2 && iTest + cMinNormals / 2 >= cTests && iTest < cTests)
|
---|
3996 | {
|
---|
3997 | InVal.s.uExponent = RTRandU32Ex(uTargetExp - cTargetExp, uTargetExp);
|
---|
3998 | cTargetRangeInputs++;
|
---|
3999 | }
|
---|
4000 | }
|
---|
4001 | cNormalInputs++;
|
---|
4002 | }
|
---|
4003 | else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests)
|
---|
4004 | {
|
---|
4005 | iTest -= 1;
|
---|
4006 | continue;
|
---|
4007 | }
|
---|
4008 |
|
---|
4009 | uint16_t const fFcwExtra = FpuUnaryR80MayHaveRoundingError(&InVal, g_aFpuUnaryR80[iFn].uExtra) ? 0x80 : 0;
|
---|
4010 | uint16_t const fFcw = RandFcw();
|
---|
4011 | State.FSW = RandFsw();
|
---|
4012 |
|
---|
4013 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4014 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
4015 | {
|
---|
4016 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
4017 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
4018 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
4019 | | X86_FCW_MASK_ALL;
|
---|
4020 | IEMFPURESULT ResM = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4021 | pfn(&State, &ResM, &InVal);
|
---|
4022 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u/m = #%u */\n",
|
---|
4023 | State.FCW | fFcwExtra, State.FSW, ResM.FSW, GenFormatR80(&InVal),
|
---|
4024 | GenFormatR80(&ResM.r80Result), iTest, iRounding, iPrecision, iTestOutput++);
|
---|
4025 |
|
---|
4026 | State.FCW = State.FCW & ~X86_FCW_MASK_ALL;
|
---|
4027 | IEMFPURESULT ResU = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4028 | pfn(&State, &ResU, &InVal);
|
---|
4029 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u/u = #%u */\n",
|
---|
4030 | State.FCW | fFcwExtra, State.FSW, ResU.FSW, GenFormatR80(&InVal),
|
---|
4031 | GenFormatR80(&ResU.r80Result), iTest, iRounding, iPrecision, iTestOutput++);
|
---|
4032 |
|
---|
4033 | uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF;
|
---|
4034 | if (fXcpt)
|
---|
4035 | {
|
---|
4036 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
4037 | IEMFPURESULT Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4038 | pfn(&State, &Res1, &InVal);
|
---|
4039 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u/%#x = #%u */\n",
|
---|
4040 | State.FCW | fFcwExtra, State.FSW, Res1.FSW, GenFormatR80(&InVal),
|
---|
4041 | GenFormatR80(&Res1.r80Result), iTest, iRounding, iPrecision, fXcpt, iTestOutput++);
|
---|
4042 | if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK))
|
---|
4043 | {
|
---|
4044 | fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK;
|
---|
4045 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
4046 | IEMFPURESULT Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4047 | pfn(&State, &Res2, &InVal);
|
---|
4048 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u/%#x[!] = #%u */\n",
|
---|
4049 | State.FCW | fFcwExtra, State.FSW, Res2.FSW, GenFormatR80(&InVal),
|
---|
4050 | GenFormatR80(&Res2.r80Result), iTest, iRounding, iPrecision, fXcpt, iTestOutput++);
|
---|
4051 | }
|
---|
4052 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
4053 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1)
|
---|
4054 | if (fUnmasked & fXcpt)
|
---|
4055 | {
|
---|
4056 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked);
|
---|
4057 | IEMFPURESULT Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4058 | pfn(&State, &Res3, &InVal);
|
---|
4059 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u/u%#x = #%u */\n",
|
---|
4060 | State.FCW | fFcwExtra, State.FSW, Res3.FSW, GenFormatR80(&InVal),
|
---|
4061 | GenFormatR80(&Res3.r80Result), iTest, iRounding, iPrecision, fUnmasked, iTestOutput++);
|
---|
4062 | }
|
---|
4063 | }
|
---|
4064 | }
|
---|
4065 | }
|
---|
4066 | GenerateArrayEnd(pOutFn, g_aFpuUnaryR80[iFn].pszName);
|
---|
4067 | }
|
---|
4068 | }
|
---|
4069 | #endif
|
---|
4070 |
|
---|
4071 | static bool FpuIsEqualFcwMaybeIgnoreRoundErr(uint16_t fFcw1, uint16_t fFcw2, bool fRndErrOk, bool *pfRndErr)
|
---|
4072 | {
|
---|
4073 | if (fFcw1 == fFcw2)
|
---|
4074 | return true;
|
---|
4075 | if (fRndErrOk && (fFcw1 & ~X86_FSW_C1) == (fFcw2 & ~X86_FSW_C1))
|
---|
4076 | {
|
---|
4077 | *pfRndErr = true;
|
---|
4078 | return true;
|
---|
4079 | }
|
---|
4080 | return false;
|
---|
4081 | }
|
---|
4082 |
|
---|
4083 | static bool FpuIsEqualR80MaybeIgnoreRoundErr(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, bool fRndErrOk, bool *pfRndErr)
|
---|
4084 | {
|
---|
4085 | if (RTFLOAT80U_ARE_IDENTICAL(pr80Val1, pr80Val2))
|
---|
4086 | return true;
|
---|
4087 | if ( fRndErrOk
|
---|
4088 | && pr80Val1->s.fSign == pr80Val2->s.fSign)
|
---|
4089 | {
|
---|
4090 | if ( ( pr80Val1->s.uExponent == pr80Val2->s.uExponent
|
---|
4091 | && ( pr80Val1->s.uMantissa > pr80Val2->s.uMantissa
|
---|
4092 | ? pr80Val1->s.uMantissa - pr80Val2->s.uMantissa == 1
|
---|
4093 | : pr80Val2->s.uMantissa - pr80Val1->s.uMantissa == 1))
|
---|
4094 | ||
|
---|
4095 | ( pr80Val1->s.uExponent + 1 == pr80Val2->s.uExponent
|
---|
4096 | && pr80Val1->s.uMantissa == UINT64_MAX
|
---|
4097 | && pr80Val2->s.uMantissa == RT_BIT_64(63))
|
---|
4098 | ||
|
---|
4099 | ( pr80Val1->s.uExponent == pr80Val2->s.uExponent + 1
|
---|
4100 | && pr80Val2->s.uMantissa == UINT64_MAX
|
---|
4101 | && pr80Val1->s.uMantissa == RT_BIT_64(63)) )
|
---|
4102 | {
|
---|
4103 | *pfRndErr = true;
|
---|
4104 | return true;
|
---|
4105 | }
|
---|
4106 | }
|
---|
4107 | return false;
|
---|
4108 | }
|
---|
4109 |
|
---|
4110 |
|
---|
4111 | static void FpuUnaryR80Test(void)
|
---|
4112 | {
|
---|
4113 | X86FXSTATE State;
|
---|
4114 | RT_ZERO(State);
|
---|
4115 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++)
|
---|
4116 | {
|
---|
4117 | if (!SubTestAndCheckIfEnabled(g_aFpuUnaryR80[iFn].pszName))
|
---|
4118 | continue;
|
---|
4119 |
|
---|
4120 | uint32_t const cTests = *g_aFpuUnaryR80[iFn].pcTests;
|
---|
4121 | FPU_UNARY_R80_TEST_T const * const paTests = g_aFpuUnaryR80[iFn].paTests;
|
---|
4122 | PFNIEMAIMPLFPUR80UNARY pfn = g_aFpuUnaryR80[iFn].pfn;
|
---|
4123 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryR80[iFn]);
|
---|
4124 | uint32_t cRndErrs = 0;
|
---|
4125 | uint32_t cPossibleRndErrs = 0;
|
---|
4126 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4127 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4128 | {
|
---|
4129 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
4130 | {
|
---|
4131 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
4132 | IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 };
|
---|
4133 | bool const fRndErrOk = RT_BOOL(paTests[iTest].fFcw & 0x80);
|
---|
4134 | State.FCW = paTests[iTest].fFcw & ~(uint16_t)0x80;
|
---|
4135 | State.FSW = paTests[iTest].fFswIn;
|
---|
4136 | pfn(&State, &Res, &InVal);
|
---|
4137 | bool fRndErr = false;
|
---|
4138 | if ( !FpuIsEqualFcwMaybeIgnoreRoundErr(Res.FSW, paTests[iTest].fFswOut, fRndErrOk, &fRndErr)
|
---|
4139 | || !FpuIsEqualR80MaybeIgnoreRoundErr(&Res.r80Result, &paTests[iTest].OutVal, fRndErrOk, &fRndErr))
|
---|
4140 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
4141 | "%s -> fsw=%#06x %s\n"
|
---|
4142 | "%s expected %#06x %s%s%s%s (%s)\n",
|
---|
4143 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
4144 | FormatR80(&paTests[iTest].InVal),
|
---|
4145 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result),
|
---|
4146 | iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal),
|
---|
4147 | FswDiff(Res.FSW, paTests[iTest].fFswOut),
|
---|
4148 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "",
|
---|
4149 | fRndErrOk ? " - rounding errors ok" : "", FormatFcw(paTests[iTest].fFcw));
|
---|
4150 | cRndErrs += fRndErr;
|
---|
4151 | cPossibleRndErrs += fRndErrOk;
|
---|
4152 | }
|
---|
4153 | pfn = g_aFpuUnaryR80[iFn].pfnNative;
|
---|
4154 | }
|
---|
4155 | if (cPossibleRndErrs > 0)
|
---|
4156 | RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "rounding errors: %u out of %u\n", cRndErrs, cPossibleRndErrs);
|
---|
4157 | }
|
---|
4158 | }
|
---|
4159 |
|
---|
4160 |
|
---|
4161 | /*
|
---|
4162 | * Unary FPU operations on one 80-bit floating point value, but only affects the FSW.
|
---|
4163 | */
|
---|
4164 | TYPEDEF_SUBTEST_TYPE(FPU_UNARY_FSW_R80_T, FPU_UNARY_R80_TEST_T, PFNIEMAIMPLFPUR80UNARYFSW);
|
---|
4165 |
|
---|
4166 | static const FPU_UNARY_FSW_R80_T g_aFpuUnaryFswR80[] =
|
---|
4167 | {
|
---|
4168 | ENTRY(ftst_r80),
|
---|
4169 | ENTRY_EX(fxam_r80, 1),
|
---|
4170 | };
|
---|
4171 |
|
---|
4172 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4173 | static void FpuUnaryFswR80Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests)
|
---|
4174 | {
|
---|
4175 | static RTFLOAT80U const s_aSpecials[] =
|
---|
4176 | {
|
---|
4177 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), /* whatever */
|
---|
4178 | };
|
---|
4179 |
|
---|
4180 | X86FXSTATE State;
|
---|
4181 | RT_ZERO(State);
|
---|
4182 | uint32_t cMinNormals = cTests / 4;
|
---|
4183 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++)
|
---|
4184 | {
|
---|
4185 | bool const fIsFxam = g_aFpuUnaryFswR80[iFn].uExtra == 1;
|
---|
4186 | PFNIEMAIMPLFPUR80UNARYFSW const pfn = g_aFpuUnaryFswR80[iFn].pfnNative ? g_aFpuUnaryFswR80[iFn].pfnNative : g_aFpuUnaryFswR80[iFn].pfn;
|
---|
4187 | PRTSTREAM pOutFn = pOut;
|
---|
4188 | if (g_aFpuUnaryFswR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE)
|
---|
4189 | {
|
---|
4190 | if (g_aFpuUnaryFswR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
4191 | continue;
|
---|
4192 | pOutFn = pOutCpu;
|
---|
4193 | }
|
---|
4194 | State.FTW = 0;
|
---|
4195 |
|
---|
4196 | GenerateArrayStart(pOutFn, g_aFpuUnaryFswR80[iFn].pszName, "FPU_UNARY_R80_TEST_T");
|
---|
4197 | uint32_t cNormalInputs = 0;
|
---|
4198 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
4199 | {
|
---|
4200 | RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
4201 | if (RTFLOAT80U_IS_NORMAL(&InVal))
|
---|
4202 | cNormalInputs++;
|
---|
4203 | else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests)
|
---|
4204 | {
|
---|
4205 | iTest -= 1;
|
---|
4206 | continue;
|
---|
4207 | }
|
---|
4208 |
|
---|
4209 | uint16_t const fFcw = RandFcw();
|
---|
4210 | State.FSW = RandFsw();
|
---|
4211 | if (!fIsFxam)
|
---|
4212 | {
|
---|
4213 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4214 | {
|
---|
4215 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
4216 | {
|
---|
4217 | for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL)
|
---|
4218 | {
|
---|
4219 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
4220 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
4221 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
4222 | | iMask;
|
---|
4223 | uint16_t fFswOut = 0;
|
---|
4224 | pfn(&State, &fFswOut, &InVal);
|
---|
4225 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s }, /* #%u/%u/%u/%c */\n",
|
---|
4226 | State.FCW, State.FSW, fFswOut, GenFormatR80(&InVal),
|
---|
4227 | iTest, iRounding, iPrecision, iMask ? 'c' : 'u');
|
---|
4228 | }
|
---|
4229 | }
|
---|
4230 | }
|
---|
4231 | }
|
---|
4232 | else
|
---|
4233 | {
|
---|
4234 | uint16_t fFswOut = 0;
|
---|
4235 | uint16_t const fEmpty = RTRandU32Ex(0, 3) == 3 ? 0x80 : 0; /* Using MBZ bit 7 in FCW to indicate empty tag value. */
|
---|
4236 | State.FTW = !fEmpty ? 1 << X86_FSW_TOP_GET(State.FSW) : 0;
|
---|
4237 | State.FCW = fFcw;
|
---|
4238 | pfn(&State, &fFswOut, &InVal);
|
---|
4239 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s }, /* #%u%s */\n",
|
---|
4240 | fFcw | fEmpty, State.FSW, fFswOut, GenFormatR80(&InVal), iTest, fEmpty ? "/empty" : "");
|
---|
4241 | }
|
---|
4242 | }
|
---|
4243 | GenerateArrayEnd(pOutFn, g_aFpuUnaryFswR80[iFn].pszName);
|
---|
4244 | }
|
---|
4245 | }
|
---|
4246 | #endif
|
---|
4247 |
|
---|
4248 |
|
---|
4249 | static void FpuUnaryFswR80Test(void)
|
---|
4250 | {
|
---|
4251 | X86FXSTATE State;
|
---|
4252 | RT_ZERO(State);
|
---|
4253 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++)
|
---|
4254 | {
|
---|
4255 | if (!SubTestAndCheckIfEnabled(g_aFpuUnaryFswR80[iFn].pszName))
|
---|
4256 | continue;
|
---|
4257 |
|
---|
4258 | uint32_t const cTests = *g_aFpuUnaryFswR80[iFn].pcTests;
|
---|
4259 | FPU_UNARY_R80_TEST_T const * const paTests = g_aFpuUnaryFswR80[iFn].paTests;
|
---|
4260 | PFNIEMAIMPLFPUR80UNARYFSW pfn = g_aFpuUnaryFswR80[iFn].pfn;
|
---|
4261 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryFswR80[iFn]);
|
---|
4262 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4263 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4264 | {
|
---|
4265 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
4266 | {
|
---|
4267 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
4268 | uint16_t fFswOut = 0;
|
---|
4269 | State.FSW = paTests[iTest].fFswIn;
|
---|
4270 | State.FCW = paTests[iTest].fFcw & ~(uint16_t)0x80; /* see generator code */
|
---|
4271 | State.FTW = paTests[iTest].fFcw & 0x80 ? 0 : 1 << X86_FSW_TOP_GET(paTests[iTest].fFswIn);
|
---|
4272 | pfn(&State, &fFswOut, &InVal);
|
---|
4273 | if (fFswOut != paTests[iTest].fFswOut)
|
---|
4274 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
4275 | "%s -> fsw=%#06x\n"
|
---|
4276 | "%s expected %#06x %s (%s%s)\n",
|
---|
4277 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
4278 | FormatR80(&paTests[iTest].InVal),
|
---|
4279 | iVar ? " " : "", fFswOut,
|
---|
4280 | iVar ? " " : "", paTests[iTest].fFswOut,
|
---|
4281 | FswDiff(fFswOut, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw),
|
---|
4282 | paTests[iTest].fFcw & 0x80 ? " empty" : "");
|
---|
4283 | }
|
---|
4284 | pfn = g_aFpuUnaryFswR80[iFn].pfnNative;
|
---|
4285 | }
|
---|
4286 | }
|
---|
4287 | }
|
---|
4288 |
|
---|
4289 | /*
|
---|
4290 | * Unary FPU operations on one 80-bit floating point value, but with two outputs.
|
---|
4291 | */
|
---|
4292 | TYPEDEF_SUBTEST_TYPE(FPU_UNARY_TWO_R80_T, FPU_UNARY_TWO_R80_TEST_T, PFNIEMAIMPLFPUR80UNARYTWO);
|
---|
4293 |
|
---|
4294 | static const FPU_UNARY_TWO_R80_T g_aFpuUnaryTwoR80[] =
|
---|
4295 | {
|
---|
4296 | ENTRY(fxtract_r80_r80),
|
---|
4297 | ENTRY_AMD( fptan_r80_r80, 0), // rounding differences
|
---|
4298 | ENTRY_INTEL(fptan_r80_r80, 0),
|
---|
4299 | ENTRY_AMD( fsincos_r80_r80, 0), // C1 differences & value differences (e.g. -1m0x235cf2f580244a27^-1696)
|
---|
4300 | ENTRY_INTEL(fsincos_r80_r80, 0),
|
---|
4301 | };
|
---|
4302 |
|
---|
4303 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4304 | static void FpuUnaryTwoR80Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests)
|
---|
4305 | {
|
---|
4306 | static RTFLOAT80U const s_aSpecials[] =
|
---|
4307 | {
|
---|
4308 | RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), /* whatever */
|
---|
4309 | };
|
---|
4310 |
|
---|
4311 | X86FXSTATE State;
|
---|
4312 | RT_ZERO(State);
|
---|
4313 | uint32_t cMinNormals = cTests / 4;
|
---|
4314 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++)
|
---|
4315 | {
|
---|
4316 | PFNIEMAIMPLFPUR80UNARYTWO const pfn = g_aFpuUnaryTwoR80[iFn].pfnNative ? g_aFpuUnaryTwoR80[iFn].pfnNative : g_aFpuUnaryTwoR80[iFn].pfn;
|
---|
4317 | PRTSTREAM pOutFn = pOut;
|
---|
4318 | if (g_aFpuUnaryTwoR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE)
|
---|
4319 | {
|
---|
4320 | if (g_aFpuUnaryTwoR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour)
|
---|
4321 | continue;
|
---|
4322 | pOutFn = pOutCpu;
|
---|
4323 | }
|
---|
4324 |
|
---|
4325 | GenerateArrayStart(pOutFn, g_aFpuUnaryTwoR80[iFn].pszName, "FPU_UNARY_TWO_R80_TEST_T");
|
---|
4326 | uint32_t iTestOutput = 0;
|
---|
4327 | uint32_t cNormalInputs = 0;
|
---|
4328 | uint32_t cTargetRangeInputs = 0;
|
---|
4329 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
4330 | {
|
---|
4331 | RTFLOAT80U InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests];
|
---|
4332 | if (RTFLOAT80U_IS_NORMAL(&InVal))
|
---|
4333 | {
|
---|
4334 | if (iFn != 0)
|
---|
4335 | {
|
---|
4336 | unsigned uTargetExp = RTFLOAT80U_EXP_BIAS + 63 + 1 /* 2^64..2^-64 */;
|
---|
4337 | unsigned cTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? 69 : 63*2 + 2;
|
---|
4338 | if (InVal.s.uExponent <= uTargetExp && InVal.s.uExponent >= uTargetExp - cTargetExp)
|
---|
4339 | cTargetRangeInputs++;
|
---|
4340 | else if (cTargetRangeInputs < cMinNormals / 2 && iTest + cMinNormals / 2 >= cTests && iTest < cTests)
|
---|
4341 | {
|
---|
4342 | InVal.s.uExponent = RTRandU32Ex(uTargetExp - cTargetExp, uTargetExp);
|
---|
4343 | cTargetRangeInputs++;
|
---|
4344 | }
|
---|
4345 | }
|
---|
4346 | cNormalInputs++;
|
---|
4347 | }
|
---|
4348 | else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests)
|
---|
4349 | {
|
---|
4350 | iTest -= 1;
|
---|
4351 | continue;
|
---|
4352 | }
|
---|
4353 |
|
---|
4354 | uint16_t const fFcwExtra = 0; /* for rounding error indication */
|
---|
4355 | uint16_t const fFcw = RandFcw();
|
---|
4356 | State.FSW = RandFsw();
|
---|
4357 |
|
---|
4358 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4359 | for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++)
|
---|
4360 | {
|
---|
4361 | State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL))
|
---|
4362 | | (iRounding << X86_FCW_RC_SHIFT)
|
---|
4363 | | (iPrecision << X86_FCW_PC_SHIFT)
|
---|
4364 | | X86_FCW_MASK_ALL;
|
---|
4365 | IEMFPURESULTTWO ResM = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
4366 | pfn(&State, &ResM, &InVal);
|
---|
4367 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/m = #%u */\n",
|
---|
4368 | State.FCW | fFcwExtra, State.FSW, ResM.FSW, GenFormatR80(&InVal), GenFormatR80(&ResM.r80Result1),
|
---|
4369 | GenFormatR80(&ResM.r80Result2), iTest, iRounding, iPrecision, iTestOutput++);
|
---|
4370 |
|
---|
4371 | State.FCW = State.FCW & ~X86_FCW_MASK_ALL;
|
---|
4372 | IEMFPURESULTTWO ResU = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
4373 | pfn(&State, &ResU, &InVal);
|
---|
4374 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/u = #%u */\n",
|
---|
4375 | State.FCW | fFcwExtra, State.FSW, ResU.FSW, GenFormatR80(&InVal), GenFormatR80(&ResU.r80Result1),
|
---|
4376 | GenFormatR80(&ResU.r80Result2), iTest, iRounding, iPrecision, iTestOutput++);
|
---|
4377 |
|
---|
4378 | uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF;
|
---|
4379 | if (fXcpt)
|
---|
4380 | {
|
---|
4381 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
4382 | IEMFPURESULTTWO Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
4383 | pfn(&State, &Res1, &InVal);
|
---|
4384 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/%#x = #%u */\n",
|
---|
4385 | State.FCW | fFcwExtra, State.FSW, Res1.FSW, GenFormatR80(&InVal), GenFormatR80(&Res1.r80Result1),
|
---|
4386 | GenFormatR80(&Res1.r80Result2), iTest, iRounding, iPrecision, fXcpt, iTestOutput++);
|
---|
4387 | if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK))
|
---|
4388 | {
|
---|
4389 | fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK;
|
---|
4390 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt;
|
---|
4391 | IEMFPURESULTTWO Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
4392 | pfn(&State, &Res2, &InVal);
|
---|
4393 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/%#x[!] = #%u */\n",
|
---|
4394 | State.FCW | fFcwExtra, State.FSW, Res2.FSW, GenFormatR80(&InVal), GenFormatR80(&Res2.r80Result1),
|
---|
4395 | GenFormatR80(&Res2.r80Result2), iTest, iRounding, iPrecision, fXcpt, iTestOutput++);
|
---|
4396 | }
|
---|
4397 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
4398 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1)
|
---|
4399 | if (fUnmasked & fXcpt)
|
---|
4400 | {
|
---|
4401 | State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked);
|
---|
4402 | IEMFPURESULTTWO Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
4403 | pfn(&State, &Res3, &InVal);
|
---|
4404 | RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/u%#x = #%u */\n",
|
---|
4405 | State.FCW | fFcwExtra, State.FSW, Res3.FSW, GenFormatR80(&InVal), GenFormatR80(&Res3.r80Result1),
|
---|
4406 | GenFormatR80(&Res3.r80Result2), iTest, iRounding, iPrecision, fUnmasked, iTestOutput++);
|
---|
4407 | }
|
---|
4408 | }
|
---|
4409 | }
|
---|
4410 | }
|
---|
4411 | GenerateArrayEnd(pOutFn, g_aFpuUnaryTwoR80[iFn].pszName);
|
---|
4412 | }
|
---|
4413 | }
|
---|
4414 | #endif
|
---|
4415 |
|
---|
4416 |
|
---|
4417 | static void FpuUnaryTwoR80Test(void)
|
---|
4418 | {
|
---|
4419 | X86FXSTATE State;
|
---|
4420 | RT_ZERO(State);
|
---|
4421 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++)
|
---|
4422 | {
|
---|
4423 | if (!SubTestAndCheckIfEnabled(g_aFpuUnaryTwoR80[iFn].pszName))
|
---|
4424 | continue;
|
---|
4425 |
|
---|
4426 | uint32_t const cTests = *g_aFpuUnaryTwoR80[iFn].pcTests;
|
---|
4427 | FPU_UNARY_TWO_R80_TEST_T const * const paTests = g_aFpuUnaryTwoR80[iFn].paTests;
|
---|
4428 | PFNIEMAIMPLFPUR80UNARYTWO pfn = g_aFpuUnaryTwoR80[iFn].pfn;
|
---|
4429 | uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryTwoR80[iFn]);
|
---|
4430 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4431 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4432 | {
|
---|
4433 | for (uint32_t iTest = 0; iTest < cTests; iTest++)
|
---|
4434 | {
|
---|
4435 | IEMFPURESULTTWO Res = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) };
|
---|
4436 | RTFLOAT80U const InVal = paTests[iTest].InVal;
|
---|
4437 | State.FCW = paTests[iTest].fFcw;
|
---|
4438 | State.FSW = paTests[iTest].fFswIn;
|
---|
4439 | pfn(&State, &Res, &InVal);
|
---|
4440 | if ( Res.FSW != paTests[iTest].fFswOut
|
---|
4441 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result1, &paTests[iTest].OutVal1)
|
---|
4442 | || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result2, &paTests[iTest].OutVal2) )
|
---|
4443 | RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n"
|
---|
4444 | "%s -> fsw=%#06x %s %s\n"
|
---|
4445 | "%s expected %#06x %s %s %s%s%s (%s)\n",
|
---|
4446 | iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn,
|
---|
4447 | FormatR80(&paTests[iTest].InVal),
|
---|
4448 | iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result1), FormatR80(&Res.r80Result2),
|
---|
4449 | iVar ? " " : "", paTests[iTest].fFswOut,
|
---|
4450 | FormatR80(&paTests[iTest].OutVal1), FormatR80(&paTests[iTest].OutVal2),
|
---|
4451 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result1, &paTests[iTest].OutVal1) ? " - val1" : "",
|
---|
4452 | !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result2, &paTests[iTest].OutVal2) ? " - val2" : "",
|
---|
4453 | FswDiff(Res.FSW, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw) );
|
---|
4454 | }
|
---|
4455 | pfn = g_aFpuUnaryTwoR80[iFn].pfnNative;
|
---|
4456 | }
|
---|
4457 | }
|
---|
4458 | }
|
---|
4459 |
|
---|
4460 |
|
---|
4461 | /*********************************************************************************************************************************
|
---|
4462 | * SSE floating point Binary Operations *
|
---|
4463 | *********************************************************************************************************************************/
|
---|
4464 |
|
---|
4465 | /*
|
---|
4466 | * Binary SSE operations on packed single precision floating point values.
|
---|
4467 | */
|
---|
4468 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R32_T, SSE_BINARY_TEST_T, PFNIEMAIMPLFPSSEF2U128);
|
---|
4469 |
|
---|
4470 | static const SSE_BINARY_R32_T g_aSseBinaryR32[] =
|
---|
4471 | {
|
---|
4472 | ENTRY_BIN(addps_u128),
|
---|
4473 | ENTRY_BIN(mulps_u128),
|
---|
4474 | ENTRY_BIN(subps_u128),
|
---|
4475 | ENTRY_BIN(minps_u128),
|
---|
4476 | ENTRY_BIN(divps_u128),
|
---|
4477 | ENTRY_BIN(maxps_u128),
|
---|
4478 | };
|
---|
4479 |
|
---|
4480 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4481 | static RTEXITCODE SseBinaryR32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
4482 | {
|
---|
4483 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
4484 |
|
---|
4485 | static struct { RTFLOAT32U aVal1[4], aVal2[4]; } const s_aSpecials[] =
|
---|
4486 | {
|
---|
4487 | { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), },
|
---|
4488 | { RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1), RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) } },
|
---|
4489 | /** @todo More specials. */
|
---|
4490 | };
|
---|
4491 |
|
---|
4492 | X86FXSTATE State;
|
---|
4493 | RT_ZERO(State);
|
---|
4494 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
4495 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32); iFn++)
|
---|
4496 | {
|
---|
4497 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseBinaryR32[iFn].pfnNative ? g_aSseBinaryR32[iFn].pfnNative : g_aSseBinaryR32[iFn].pfn;
|
---|
4498 |
|
---|
4499 | PRTSTREAM pStrmOut = NULL;
|
---|
4500 | int rc = RTStrmOpenF("wb", &pStrmOut, pszDataFileFmt, g_aSseBinaryR32[iFn].pszName);
|
---|
4501 | if (RT_FAILURE(rc))
|
---|
4502 | {
|
---|
4503 | RTMsgError("Failed to open data file for %s for writing: %Rrc", g_aSseBinaryR32[iFn].pszName, rc);
|
---|
4504 | return RTEXITCODE_FAILURE;
|
---|
4505 | }
|
---|
4506 |
|
---|
4507 | uint32_t cNormalInputPairs = 0;
|
---|
4508 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
4509 | {
|
---|
4510 | SSE_BINARY_TEST_T TestData; RT_ZERO(TestData);
|
---|
4511 |
|
---|
4512 | TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
4513 | TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
4514 | TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2];
|
---|
4515 | TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3];
|
---|
4516 |
|
---|
4517 | TestData.InVal2.ar32[0] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0];
|
---|
4518 | TestData.InVal2.ar32[1] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[1];
|
---|
4519 | TestData.InVal2.ar32[2] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[2];
|
---|
4520 | TestData.InVal2.ar32[3] = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[3];
|
---|
4521 |
|
---|
4522 | if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[0])
|
---|
4523 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[1])
|
---|
4524 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[2])
|
---|
4525 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3]) && RTFLOAT32U_IS_NORMAL(&TestData.InVal2.ar32[3]))
|
---|
4526 | cNormalInputPairs++;
|
---|
4527 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
4528 | {
|
---|
4529 | iTest -= 1;
|
---|
4530 | continue;
|
---|
4531 | }
|
---|
4532 |
|
---|
4533 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
4534 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4535 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
4536 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
4537 | {
|
---|
4538 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
4539 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
4540 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
4541 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
4542 | | X86_MXCSR_XCPT_MASK;
|
---|
4543 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
4544 | pfn(&State, &ResM, &TestData.InVal1, &TestData.InVal2);
|
---|
4545 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4546 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
4547 | TestData.OutVal = ResM.uResult;
|
---|
4548 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4549 |
|
---|
4550 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
4551 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
4552 | pfn(&State, &ResU, &TestData.InVal1, &TestData.InVal2);
|
---|
4553 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4554 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
4555 | TestData.OutVal = ResU.uResult;
|
---|
4556 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4557 |
|
---|
4558 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
4559 | if (fXcpt)
|
---|
4560 | {
|
---|
4561 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
4562 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
4563 | pfn(&State, &Res1, &TestData.InVal1, &TestData.InVal2);
|
---|
4564 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4565 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
4566 | TestData.OutVal = Res1.uResult;
|
---|
4567 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4568 |
|
---|
4569 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
4570 | {
|
---|
4571 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
4572 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
4573 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
4574 | pfn(&State, &Res2, &TestData.InVal1, &TestData.InVal2);
|
---|
4575 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4576 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
4577 | TestData.OutVal = Res2.uResult;
|
---|
4578 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4579 | }
|
---|
4580 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
4581 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
4582 | if (fUnmasked & fXcpt)
|
---|
4583 | {
|
---|
4584 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
4585 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
4586 | pfn(&State, &Res3, &TestData.InVal1, &TestData.InVal2);
|
---|
4587 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4588 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
4589 | TestData.OutVal = Res3.uResult;
|
---|
4590 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4591 | }
|
---|
4592 | }
|
---|
4593 | }
|
---|
4594 | }
|
---|
4595 | rc = RTStrmClose(pStrmOut);
|
---|
4596 | if (RT_FAILURE(rc))
|
---|
4597 | {
|
---|
4598 | RTMsgError("Failed to close data file for %s: %Rrc", g_aSseBinaryR32[iFn].pszName, rc);
|
---|
4599 | return RTEXITCODE_FAILURE;
|
---|
4600 | }
|
---|
4601 | }
|
---|
4602 |
|
---|
4603 | return RTEXITCODE_SUCCESS;
|
---|
4604 | }
|
---|
4605 | #endif
|
---|
4606 |
|
---|
4607 | static void SseBinaryR32Test(void)
|
---|
4608 | {
|
---|
4609 | X86FXSTATE State;
|
---|
4610 | RT_ZERO(State);
|
---|
4611 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR32); iFn++)
|
---|
4612 | {
|
---|
4613 | if (!SubTestAndCheckIfEnabled(g_aSseBinaryR32[iFn].pszName))
|
---|
4614 | continue;
|
---|
4615 |
|
---|
4616 | uint32_t const cTests = *g_aSseBinaryR32[iFn].pcTests;
|
---|
4617 | SSE_BINARY_TEST_T const * const paTests = g_aSseBinaryR32[iFn].paTests;
|
---|
4618 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseBinaryR32[iFn].pfn;
|
---|
4619 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR32[iFn]);
|
---|
4620 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4621 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4622 | {
|
---|
4623 | for (uint32_t iTest = 0; iTest < cTests / sizeof(SSE_BINARY_TEST_T); iTest++)
|
---|
4624 | {
|
---|
4625 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
4626 |
|
---|
4627 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
4628 | pfn(&State, &Res, &paTests[iTest].InVal1, &paTests[iTest].InVal2);
|
---|
4629 | bool fValsIdentical = RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
4630 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[1], &paTests[iTest].OutVal.ar32[1])
|
---|
4631 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[2], &paTests[iTest].OutVal.ar32[2])
|
---|
4632 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[3], &paTests[iTest].OutVal.ar32[3]);
|
---|
4633 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
4634 | || !fValsIdentical)
|
---|
4635 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s'%s'%s'%s\n"
|
---|
4636 | "%s -> mxcsr=%#08x %s'%s'%s'%s\n"
|
---|
4637 | "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n",
|
---|
4638 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
4639 | FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]),
|
---|
4640 | FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]),
|
---|
4641 | FormatR32(&paTests[iTest].InVal2.ar32[0]), FormatR32(&paTests[iTest].InVal2.ar32[1]),
|
---|
4642 | FormatR32(&paTests[iTest].InVal2.ar32[2]), FormatR32(&paTests[iTest].InVal2.ar32[3]),
|
---|
4643 | iVar ? " " : "", Res.MXCSR,
|
---|
4644 | FormatR32(&Res.uResult.ar32[0]), FormatR32(&Res.uResult.ar32[1]),
|
---|
4645 | FormatR32(&Res.uResult.ar32[2]), FormatR32(&Res.uResult.ar32[3]),
|
---|
4646 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
4647 | FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]),
|
---|
4648 | FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]),
|
---|
4649 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
4650 | !fValsIdentical ? " - val" : "",
|
---|
4651 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
4652 | }
|
---|
4653 | pfn = g_aSseBinaryR32[iFn].pfnNative;
|
---|
4654 | }
|
---|
4655 | }
|
---|
4656 | }
|
---|
4657 |
|
---|
4658 |
|
---|
4659 | /*
|
---|
4660 | * Binary SSE operations on packed single precision floating point values.
|
---|
4661 | */
|
---|
4662 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_R64_T, SSE_BINARY_TEST_T, PFNIEMAIMPLFPSSEF2U128);
|
---|
4663 |
|
---|
4664 | static const SSE_BINARY_R64_T g_aSseBinaryR64[] =
|
---|
4665 | {
|
---|
4666 | ENTRY_BIN(addpd_u128),
|
---|
4667 | ENTRY_BIN(mulpd_u128),
|
---|
4668 | ENTRY_BIN(subpd_u128),
|
---|
4669 | ENTRY_BIN(minpd_u128),
|
---|
4670 | ENTRY_BIN(divpd_u128),
|
---|
4671 | ENTRY_BIN(maxpd_u128),
|
---|
4672 | };
|
---|
4673 |
|
---|
4674 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4675 | static RTEXITCODE SseBinaryR64Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
4676 | {
|
---|
4677 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
4678 |
|
---|
4679 | static struct { RTFLOAT64U aVal1[2], aVal2[2]; } const s_aSpecials[] =
|
---|
4680 | {
|
---|
4681 | { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) },
|
---|
4682 | { RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1), RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) } },
|
---|
4683 | /** @todo More specials. */
|
---|
4684 | };
|
---|
4685 |
|
---|
4686 | X86FXSTATE State;
|
---|
4687 | RT_ZERO(State);
|
---|
4688 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
4689 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64); iFn++)
|
---|
4690 | {
|
---|
4691 | PFNIEMAIMPLFPSSEF2U128 const pfn = g_aSseBinaryR64[iFn].pfnNative ? g_aSseBinaryR64[iFn].pfnNative : g_aSseBinaryR64[iFn].pfn;
|
---|
4692 |
|
---|
4693 | PRTSTREAM pStrmOut = NULL;
|
---|
4694 | int rc = RTStrmOpenF("wb", &pStrmOut, pszDataFileFmt, g_aSseBinaryR64[iFn].pszName);
|
---|
4695 | if (RT_FAILURE(rc))
|
---|
4696 | {
|
---|
4697 | RTMsgError("Failed to open data file for %s for writing: %Rrc", g_aSseBinaryR64[iFn].pszName, rc);
|
---|
4698 | return RTEXITCODE_FAILURE;
|
---|
4699 | }
|
---|
4700 |
|
---|
4701 | uint32_t cNormalInputPairs = 0;
|
---|
4702 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
4703 | {
|
---|
4704 | SSE_BINARY_TEST_T TestData; RT_ZERO(TestData);
|
---|
4705 |
|
---|
4706 | TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
4707 | TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
4708 | TestData.InVal2.ar64[0] = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0];
|
---|
4709 | TestData.InVal2.ar64[1] = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].aVal2[0];
|
---|
4710 |
|
---|
4711 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1])
|
---|
4712 | && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal2.ar64[1]))
|
---|
4713 | cNormalInputPairs++;
|
---|
4714 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
4715 | {
|
---|
4716 | iTest -= 1;
|
---|
4717 | continue;
|
---|
4718 | }
|
---|
4719 |
|
---|
4720 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
4721 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4722 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
4723 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
4724 | {
|
---|
4725 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
4726 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
4727 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
4728 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
4729 | | X86_MXCSR_XCPT_MASK;
|
---|
4730 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
4731 | pfn(&State, &ResM, &TestData.InVal1, &TestData.InVal2);
|
---|
4732 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4733 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
4734 | TestData.OutVal = ResM.uResult;
|
---|
4735 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4736 |
|
---|
4737 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
4738 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
4739 | pfn(&State, &ResU, &TestData.InVal1, &TestData.InVal2);
|
---|
4740 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4741 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
4742 | TestData.OutVal = ResU.uResult;
|
---|
4743 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4744 |
|
---|
4745 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
4746 | if (fXcpt)
|
---|
4747 | {
|
---|
4748 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
4749 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
4750 | pfn(&State, &Res1, &TestData.InVal1, &TestData.InVal2);
|
---|
4751 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4752 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
4753 | TestData.OutVal = Res1.uResult;
|
---|
4754 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4755 |
|
---|
4756 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
4757 | {
|
---|
4758 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
4759 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
4760 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
4761 | pfn(&State, &Res2, &TestData.InVal1, &TestData.InVal2);
|
---|
4762 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4763 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
4764 | TestData.OutVal = Res2.uResult;
|
---|
4765 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4766 | }
|
---|
4767 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
4768 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
4769 | if (fUnmasked & fXcpt)
|
---|
4770 | {
|
---|
4771 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
4772 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
4773 | pfn(&State, &Res3, &TestData.InVal1, &TestData.InVal2);
|
---|
4774 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4775 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
4776 | TestData.OutVal = Res3.uResult;
|
---|
4777 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4778 | }
|
---|
4779 | }
|
---|
4780 | }
|
---|
4781 | }
|
---|
4782 | rc = RTStrmClose(pStrmOut);
|
---|
4783 | if (RT_FAILURE(rc))
|
---|
4784 | {
|
---|
4785 | RTMsgError("Failed to close data file for %s: %Rrc", g_aSseBinaryR64[iFn].pszName, rc);
|
---|
4786 | return RTEXITCODE_FAILURE;
|
---|
4787 | }
|
---|
4788 | }
|
---|
4789 |
|
---|
4790 | return RTEXITCODE_SUCCESS;
|
---|
4791 | }
|
---|
4792 | #endif
|
---|
4793 |
|
---|
4794 |
|
---|
4795 | static void SseBinaryR64Test(void)
|
---|
4796 | {
|
---|
4797 | X86FXSTATE State;
|
---|
4798 | RT_ZERO(State);
|
---|
4799 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryR64); iFn++)
|
---|
4800 | {
|
---|
4801 | if (!SubTestAndCheckIfEnabled(g_aSseBinaryR64[iFn].pszName))
|
---|
4802 | continue;
|
---|
4803 |
|
---|
4804 | uint32_t const cTests = *g_aSseBinaryR64[iFn].pcTests;
|
---|
4805 | SSE_BINARY_TEST_T const * const paTests = g_aSseBinaryR64[iFn].paTests;
|
---|
4806 | PFNIEMAIMPLFPSSEF2U128 pfn = g_aSseBinaryR64[iFn].pfn;
|
---|
4807 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryR64[iFn]);
|
---|
4808 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4809 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4810 | {
|
---|
4811 | for (uint32_t iTest = 0; iTest < cTests / sizeof(SSE_BINARY_TEST_T); iTest++)
|
---|
4812 | {
|
---|
4813 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
4814 |
|
---|
4815 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
4816 | pfn(&State, &Res, &paTests[iTest].InVal1, &paTests[iTest].InVal2);
|
---|
4817 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
4818 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
4819 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
4820 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s'%s\n"
|
---|
4821 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
4822 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
4823 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
4824 | FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]),
|
---|
4825 | FormatR64(&paTests[iTest].InVal2.ar64[0]), FormatR64(&paTests[iTest].InVal2.ar64[1]),
|
---|
4826 | iVar ? " " : "", Res.MXCSR,
|
---|
4827 | FormatR64(&Res.uResult.ar64[0]), FormatR64(&Res.uResult.ar64[1]),
|
---|
4828 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
4829 | FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]),
|
---|
4830 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
4831 | ( !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
4832 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
4833 | ? " - val" : "",
|
---|
4834 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
4835 | }
|
---|
4836 | pfn = g_aSseBinaryR64[iFn].pfnNative;
|
---|
4837 | }
|
---|
4838 | }
|
---|
4839 | }
|
---|
4840 |
|
---|
4841 |
|
---|
4842 | /*
|
---|
4843 | * Binary SSE operations on packed single precision floating point values.
|
---|
4844 | */
|
---|
4845 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_U128_R32_T, SSE_BINARY_U128_R32_TEST_T, PFNIEMAIMPLFPSSEF2U128R32);
|
---|
4846 |
|
---|
4847 | static const SSE_BINARY_U128_R32_T g_aSseBinaryU128R32[] =
|
---|
4848 | {
|
---|
4849 | ENTRY_BIN(addss_u128_r32),
|
---|
4850 | ENTRY_BIN(mulss_u128_r32),
|
---|
4851 | ENTRY_BIN(subss_u128_r32),
|
---|
4852 | ENTRY_BIN(minss_u128_r32),
|
---|
4853 | };
|
---|
4854 |
|
---|
4855 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
4856 | static RTEXITCODE SseBinaryU128R32Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
4857 | {
|
---|
4858 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
4859 |
|
---|
4860 | static struct { RTFLOAT32U aVal1[4], Val2; } const s_aSpecials[] =
|
---|
4861 | {
|
---|
4862 | { { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(0), }, RTFLOAT32U_INIT_C(0, 8388607, RTFLOAT32U_EXP_MAX - 1) },
|
---|
4863 | /** @todo More specials. */
|
---|
4864 | };
|
---|
4865 |
|
---|
4866 | X86FXSTATE State;
|
---|
4867 | RT_ZERO(State);
|
---|
4868 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
4869 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R32); iFn++)
|
---|
4870 | {
|
---|
4871 | PFNIEMAIMPLFPSSEF2U128R32 const pfn = g_aSseBinaryU128R32[iFn].pfnNative ? g_aSseBinaryU128R32[iFn].pfnNative : g_aSseBinaryU128R32[iFn].pfn;
|
---|
4872 |
|
---|
4873 | PRTSTREAM pStrmOut = NULL;
|
---|
4874 | int rc = RTStrmOpenF("wb", &pStrmOut, pszDataFileFmt, g_aSseBinaryU128R32[iFn].pszName);
|
---|
4875 | if (RT_FAILURE(rc))
|
---|
4876 | {
|
---|
4877 | RTMsgError("Failed to open data file for %s for writing: %Rrc", g_aSseBinaryU128R32[iFn].pszName, rc);
|
---|
4878 | return RTEXITCODE_FAILURE;
|
---|
4879 | }
|
---|
4880 |
|
---|
4881 | uint32_t cNormalInputPairs = 0;
|
---|
4882 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
4883 | {
|
---|
4884 | SSE_BINARY_U128_R32_TEST_T TestData; RT_ZERO(TestData);
|
---|
4885 |
|
---|
4886 | TestData.InVal1.ar32[0] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
4887 | TestData.InVal1.ar32[1] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
4888 | TestData.InVal1.ar32[2] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[2];
|
---|
4889 | TestData.InVal1.ar32[3] = iTest < cTests ? RandR32Src(iTest) : s_aSpecials[iTest - cTests].aVal1[3];
|
---|
4890 |
|
---|
4891 | TestData.r32Val2 = iTest < cTests ? RandR32Src2(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
4892 |
|
---|
4893 | if ( RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[0])
|
---|
4894 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[1])
|
---|
4895 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[2])
|
---|
4896 | && RTFLOAT32U_IS_NORMAL(&TestData.InVal1.ar32[3])
|
---|
4897 | && RTFLOAT32U_IS_NORMAL(&TestData.r32Val2))
|
---|
4898 | cNormalInputPairs++;
|
---|
4899 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
4900 | {
|
---|
4901 | iTest -= 1;
|
---|
4902 | continue;
|
---|
4903 | }
|
---|
4904 |
|
---|
4905 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
4906 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
4907 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
4908 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
4909 | {
|
---|
4910 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
4911 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
4912 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
4913 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
4914 | | X86_MXCSR_XCPT_MASK;
|
---|
4915 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
4916 | pfn(&State, &ResM, &TestData.InVal1, &TestData.r32Val2);
|
---|
4917 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4918 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
4919 | TestData.OutVal = ResM.uResult;
|
---|
4920 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4921 |
|
---|
4922 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
4923 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
4924 | pfn(&State, &ResU, &TestData.InVal1, &TestData.r32Val2);
|
---|
4925 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4926 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
4927 | TestData.OutVal = ResU.uResult;
|
---|
4928 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4929 |
|
---|
4930 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
4931 | if (fXcpt)
|
---|
4932 | {
|
---|
4933 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
4934 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
4935 | pfn(&State, &Res1, &TestData.InVal1, &TestData.r32Val2);
|
---|
4936 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4937 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
4938 | TestData.OutVal = Res1.uResult;
|
---|
4939 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4940 |
|
---|
4941 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
4942 | {
|
---|
4943 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
4944 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
4945 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
4946 | pfn(&State, &Res2, &TestData.InVal1, &TestData.r32Val2);
|
---|
4947 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4948 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
4949 | TestData.OutVal = Res2.uResult;
|
---|
4950 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4951 | }
|
---|
4952 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
4953 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
4954 | if (fUnmasked & fXcpt)
|
---|
4955 | {
|
---|
4956 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
4957 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
4958 | pfn(&State, &Res3, &TestData.InVal1, &TestData.r32Val2);
|
---|
4959 | TestData.fMxcsrIn = State.MXCSR;
|
---|
4960 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
4961 | TestData.OutVal = Res3.uResult;
|
---|
4962 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
4963 | }
|
---|
4964 | }
|
---|
4965 | }
|
---|
4966 | }
|
---|
4967 | rc = RTStrmClose(pStrmOut);
|
---|
4968 | if (RT_FAILURE(rc))
|
---|
4969 | {
|
---|
4970 | RTMsgError("Failed to close data file for %s: %Rrc", g_aSseBinaryU128R32[iFn].pszName, rc);
|
---|
4971 | return RTEXITCODE_FAILURE;
|
---|
4972 | }
|
---|
4973 | }
|
---|
4974 |
|
---|
4975 | return RTEXITCODE_SUCCESS;
|
---|
4976 | }
|
---|
4977 | #endif
|
---|
4978 |
|
---|
4979 | static void SseBinaryU128R32Test(void)
|
---|
4980 | {
|
---|
4981 | X86FXSTATE State;
|
---|
4982 | RT_ZERO(State);
|
---|
4983 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R32); iFn++)
|
---|
4984 | {
|
---|
4985 | if (!SubTestAndCheckIfEnabled(g_aSseBinaryU128R32[iFn].pszName))
|
---|
4986 | continue;
|
---|
4987 |
|
---|
4988 | uint32_t const cTests = *g_aSseBinaryU128R32[iFn].pcTests;
|
---|
4989 | SSE_BINARY_U128_R32_TEST_T const * const paTests = g_aSseBinaryU128R32[iFn].paTests;
|
---|
4990 | PFNIEMAIMPLFPSSEF2U128R32 pfn = g_aSseBinaryU128R32[iFn].pfn;
|
---|
4991 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryU128R32[iFn]);
|
---|
4992 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
4993 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
4994 | {
|
---|
4995 | for (uint32_t iTest = 0; iTest < cTests / sizeof(SSE_BINARY_TEST_T); iTest++)
|
---|
4996 | {
|
---|
4997 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
4998 |
|
---|
4999 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
5000 | pfn(&State, &Res, &paTests[iTest].InVal1, &paTests[iTest].r32Val2);
|
---|
5001 | bool fValsIdentical = RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[0], &paTests[iTest].OutVal.ar32[0])
|
---|
5002 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[1], &paTests[iTest].OutVal.ar32[1])
|
---|
5003 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[2], &paTests[iTest].OutVal.ar32[2])
|
---|
5004 | && RTFLOAT32U_ARE_IDENTICAL(&Res.uResult.ar32[3], &paTests[iTest].OutVal.ar32[3]);
|
---|
5005 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
5006 | || !fValsIdentical)
|
---|
5007 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s'%s'%s in2=%s\n"
|
---|
5008 | "%s -> mxcsr=%#08x %s'%s'%s'%s\n"
|
---|
5009 | "%s expected %#08x %s'%s'%s'%s%s%s (%s)\n",
|
---|
5010 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
5011 | FormatR32(&paTests[iTest].InVal1.ar32[0]), FormatR32(&paTests[iTest].InVal1.ar32[1]),
|
---|
5012 | FormatR32(&paTests[iTest].InVal1.ar32[2]), FormatR32(&paTests[iTest].InVal1.ar32[3]),
|
---|
5013 | FormatR32(&paTests[iTest].r32Val2),
|
---|
5014 | iVar ? " " : "", Res.MXCSR,
|
---|
5015 | FormatR32(&Res.uResult.ar32[0]), FormatR32(&Res.uResult.ar32[1]),
|
---|
5016 | FormatR32(&Res.uResult.ar32[2]), FormatR32(&Res.uResult.ar32[3]),
|
---|
5017 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
5018 | FormatR32(&paTests[iTest].OutVal.ar32[0]), FormatR32(&paTests[iTest].OutVal.ar32[1]),
|
---|
5019 | FormatR32(&paTests[iTest].OutVal.ar32[2]), FormatR32(&paTests[iTest].OutVal.ar32[3]),
|
---|
5020 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
5021 | !fValsIdentical ? " - val" : "",
|
---|
5022 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
5023 | }
|
---|
5024 | }
|
---|
5025 | }
|
---|
5026 | }
|
---|
5027 |
|
---|
5028 |
|
---|
5029 | /*
|
---|
5030 | * Binary SSE operations on packed single precision floating point values (xxxsd xmm1, r/m64).
|
---|
5031 | */
|
---|
5032 | TYPEDEF_SUBTEST_TYPE(SSE_BINARY_U128_R64_T, SSE_BINARY_U128_R64_TEST_T, PFNIEMAIMPLFPSSEF2U128R64);
|
---|
5033 |
|
---|
5034 | static const SSE_BINARY_U128_R64_T g_aSseBinaryU128R64[] =
|
---|
5035 | {
|
---|
5036 | ENTRY_BIN(addsd_u128_r64),
|
---|
5037 | ENTRY_BIN(mulsd_u128_r64),
|
---|
5038 | ENTRY_BIN(subsd_u128_r64),
|
---|
5039 | ENTRY_BIN(minsd_u128_r64),
|
---|
5040 | };
|
---|
5041 |
|
---|
5042 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5043 | static RTEXITCODE SseBinaryU128R64Generate(const char *pszDataFileFmt, uint32_t cTests)
|
---|
5044 | {
|
---|
5045 | cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */
|
---|
5046 |
|
---|
5047 | static struct { RTFLOAT64U aVal1[2], Val2; } const s_aSpecials[] =
|
---|
5048 | {
|
---|
5049 | { { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(0) }, RTFLOAT64U_INIT_C(0, 8388607, RTFLOAT64U_EXP_MAX - 1) },
|
---|
5050 | /** @todo More specials. */
|
---|
5051 | };
|
---|
5052 |
|
---|
5053 | X86FXSTATE State;
|
---|
5054 | RT_ZERO(State);
|
---|
5055 | uint32_t cMinNormalPairs = (cTests - 144) / 4;
|
---|
5056 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R64); iFn++)
|
---|
5057 | {
|
---|
5058 | PFNIEMAIMPLFPSSEF2U128R64 const pfn = g_aSseBinaryU128R64[iFn].pfnNative ? g_aSseBinaryU128R64[iFn].pfnNative : g_aSseBinaryU128R64[iFn].pfn;
|
---|
5059 |
|
---|
5060 | PRTSTREAM pStrmOut = NULL;
|
---|
5061 | int rc = RTStrmOpenF("wb", &pStrmOut, pszDataFileFmt, g_aSseBinaryU128R64[iFn].pszName);
|
---|
5062 | if (RT_FAILURE(rc))
|
---|
5063 | {
|
---|
5064 | RTMsgError("Failed to open data file for %s for writing: %Rrc", g_aSseBinaryU128R64[iFn].pszName, rc);
|
---|
5065 | return RTEXITCODE_FAILURE;
|
---|
5066 | }
|
---|
5067 |
|
---|
5068 | uint32_t cNormalInputPairs = 0;
|
---|
5069 | for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1)
|
---|
5070 | {
|
---|
5071 | SSE_BINARY_U128_R64_TEST_T TestData; RT_ZERO(TestData);
|
---|
5072 |
|
---|
5073 | TestData.InVal1.ar64[0] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[0];
|
---|
5074 | TestData.InVal1.ar64[1] = iTest < cTests ? RandR64Src(iTest) : s_aSpecials[iTest - cTests].aVal1[1];
|
---|
5075 | TestData.r64Val2 = iTest < cTests ? RandR64Src2(iTest) : s_aSpecials[iTest - cTests].Val2;
|
---|
5076 |
|
---|
5077 | if ( RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[0]) && RTFLOAT64U_IS_NORMAL(&TestData.InVal1.ar64[1])
|
---|
5078 | && RTFLOAT64U_IS_NORMAL(&TestData.r64Val2))
|
---|
5079 | cNormalInputPairs++;
|
---|
5080 | else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests)
|
---|
5081 | {
|
---|
5082 | iTest -= 1;
|
---|
5083 | continue;
|
---|
5084 | }
|
---|
5085 |
|
---|
5086 | uint32_t const fMxcsr = RandMxcsr() & X86_MXCSR_XCPT_FLAGS;
|
---|
5087 | for (uint16_t iRounding = 0; iRounding < 4; iRounding++)
|
---|
5088 | for (uint8_t iDaz = 0; iDaz < 2; iDaz++)
|
---|
5089 | for (uint8_t iFz = 0; iFz < 2; iFz++)
|
---|
5090 | {
|
---|
5091 | State.MXCSR = (fMxcsr & ~X86_MXCSR_RC_MASK)
|
---|
5092 | | (iRounding << X86_MXCSR_RC_SHIFT)
|
---|
5093 | | (iDaz ? X86_MXCSR_DAZ : 0)
|
---|
5094 | | (iFz ? X86_MXCSR_FZ : 0)
|
---|
5095 | | X86_MXCSR_XCPT_MASK;
|
---|
5096 | IEMSSERESULT ResM; RT_ZERO(ResM);
|
---|
5097 | pfn(&State, &ResM, &TestData.InVal1, &TestData.r64Val2);
|
---|
5098 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5099 | TestData.fMxcsrOut = ResM.MXCSR;
|
---|
5100 | TestData.OutVal = ResM.uResult;
|
---|
5101 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
5102 |
|
---|
5103 | State.MXCSR = State.MXCSR & ~X86_MXCSR_XCPT_MASK;
|
---|
5104 | IEMSSERESULT ResU; RT_ZERO(ResU);
|
---|
5105 | pfn(&State, &ResU, &TestData.InVal1, &TestData.r64Val2);
|
---|
5106 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5107 | TestData.fMxcsrOut = ResU.MXCSR;
|
---|
5108 | TestData.OutVal = ResU.uResult;
|
---|
5109 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
5110 |
|
---|
5111 | uint16_t fXcpt = (ResM.MXCSR | ResU.MXCSR) & X86_MXCSR_XCPT_FLAGS;
|
---|
5112 | if (fXcpt)
|
---|
5113 | {
|
---|
5114 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | fXcpt;
|
---|
5115 | IEMSSERESULT Res1; RT_ZERO(Res1);
|
---|
5116 | pfn(&State, &Res1, &TestData.InVal1, &TestData.r64Val2);
|
---|
5117 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5118 | TestData.fMxcsrOut = Res1.MXCSR;
|
---|
5119 | TestData.OutVal = Res1.uResult;
|
---|
5120 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
5121 |
|
---|
5122 | if (((Res1.MXCSR & X86_MXCSR_XCPT_FLAGS) & fXcpt) != (Res1.MXCSR & X86_MXCSR_XCPT_FLAGS))
|
---|
5123 | {
|
---|
5124 | fXcpt |= Res1.MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
5125 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | (fXcpt << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5126 | IEMSSERESULT Res2; RT_ZERO(Res2);
|
---|
5127 | pfn(&State, &Res2, &TestData.InVal1, &TestData.r64Val2);
|
---|
5128 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5129 | TestData.fMxcsrOut = Res2.MXCSR;
|
---|
5130 | TestData.OutVal = Res2.uResult;
|
---|
5131 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
5132 | }
|
---|
5133 | if (!RT_IS_POWER_OF_TWO(fXcpt))
|
---|
5134 | for (uint16_t fUnmasked = 1; fUnmasked <= X86_MXCSR_PE; fUnmasked <<= 1)
|
---|
5135 | if (fUnmasked & fXcpt)
|
---|
5136 | {
|
---|
5137 | State.MXCSR = (State.MXCSR & ~X86_MXCSR_XCPT_MASK) | ((fXcpt & ~fUnmasked) << X86_MXCSR_XCPT_MASK_SHIFT);
|
---|
5138 | IEMSSERESULT Res3; RT_ZERO(Res3);
|
---|
5139 | pfn(&State, &Res3, &TestData.InVal1, &TestData.r64Val2);
|
---|
5140 | TestData.fMxcsrIn = State.MXCSR;
|
---|
5141 | TestData.fMxcsrOut = Res3.MXCSR;
|
---|
5142 | TestData.OutVal = Res3.uResult;
|
---|
5143 | RTStrmWrite(pStrmOut, &TestData, sizeof(TestData));
|
---|
5144 | }
|
---|
5145 | }
|
---|
5146 | }
|
---|
5147 | }
|
---|
5148 | rc = RTStrmClose(pStrmOut);
|
---|
5149 | if (RT_FAILURE(rc))
|
---|
5150 | {
|
---|
5151 | RTMsgError("Failed to close data file for %s: %Rrc", g_aSseBinaryU128R64[iFn].pszName, rc);
|
---|
5152 | return RTEXITCODE_FAILURE;
|
---|
5153 | }
|
---|
5154 | }
|
---|
5155 |
|
---|
5156 | return RTEXITCODE_SUCCESS;
|
---|
5157 | }
|
---|
5158 | #endif
|
---|
5159 |
|
---|
5160 |
|
---|
5161 | static void SseBinaryU128R64Test(void)
|
---|
5162 | {
|
---|
5163 | X86FXSTATE State;
|
---|
5164 | RT_ZERO(State);
|
---|
5165 | for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aSseBinaryU128R64); iFn++)
|
---|
5166 | {
|
---|
5167 | if (!SubTestAndCheckIfEnabled(g_aSseBinaryU128R64[iFn].pszName))
|
---|
5168 | continue;
|
---|
5169 |
|
---|
5170 | uint32_t const cTests = *g_aSseBinaryU128R64[iFn].pcTests;
|
---|
5171 | SSE_BINARY_U128_R64_TEST_T const * const paTests = g_aSseBinaryU128R64[iFn].paTests;
|
---|
5172 | PFNIEMAIMPLFPSSEF2U128R64 pfn = g_aSseBinaryU128R64[iFn].pfn;
|
---|
5173 | uint32_t const cVars = COUNT_VARIATIONS(g_aSseBinaryU128R64[iFn]);
|
---|
5174 | if (!cTests) RTTestSkipped(g_hTest, "no tests");
|
---|
5175 | for (uint32_t iVar = 0; iVar < cVars; iVar++)
|
---|
5176 | {
|
---|
5177 | for (uint32_t iTest = 0; iTest < cTests / sizeof(SSE_BINARY_U128_R64_TEST_T); iTest++)
|
---|
5178 | {
|
---|
5179 | IEMSSERESULT Res; RT_ZERO(Res);
|
---|
5180 |
|
---|
5181 | State.MXCSR = paTests[iTest].fMxcsrIn;
|
---|
5182 | pfn(&State, &Res, &paTests[iTest].InVal1, &paTests[iTest].r64Val2);
|
---|
5183 | if ( Res.MXCSR != paTests[iTest].fMxcsrOut
|
---|
5184 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
5185 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
5186 | RTTestFailed(g_hTest, "#%04u%s: mxcsr=%#08x in1=%s'%s in2=%s\n"
|
---|
5187 | "%s -> mxcsr=%#08x %s'%s\n"
|
---|
5188 | "%s expected %#08x %s'%s%s%s (%s)\n",
|
---|
5189 | iTest, iVar ? "/n" : "", paTests[iTest].fMxcsrIn,
|
---|
5190 | FormatR64(&paTests[iTest].InVal1.ar64[0]), FormatR64(&paTests[iTest].InVal1.ar64[1]),
|
---|
5191 | FormatR64(&paTests[iTest].r64Val2),
|
---|
5192 | iVar ? " " : "", Res.MXCSR,
|
---|
5193 | FormatR64(&Res.uResult.ar64[0]), FormatR64(&Res.uResult.ar64[1]),
|
---|
5194 | iVar ? " " : "", paTests[iTest].fMxcsrOut,
|
---|
5195 | FormatR64(&paTests[iTest].OutVal.ar64[0]), FormatR64(&paTests[iTest].OutVal.ar64[1]),
|
---|
5196 | MxcsrDiff(Res.MXCSR, paTests[iTest].fMxcsrOut),
|
---|
5197 | ( !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[0], &paTests[iTest].OutVal.ar64[0])
|
---|
5198 | || !RTFLOAT64U_ARE_IDENTICAL(&Res.uResult.ar64[1], &paTests[iTest].OutVal.ar64[1]))
|
---|
5199 | ? " - val" : "",
|
---|
5200 | FormatMxcsr(paTests[iTest].fMxcsrIn) );
|
---|
5201 | }
|
---|
5202 | }
|
---|
5203 | }
|
---|
5204 | }
|
---|
5205 |
|
---|
5206 |
|
---|
5207 |
|
---|
5208 | int main(int argc, char **argv)
|
---|
5209 | {
|
---|
5210 | int rc = RTR3InitExe(argc, &argv, 0);
|
---|
5211 | if (RT_FAILURE(rc))
|
---|
5212 | return RTMsgInitFailure(rc);
|
---|
5213 |
|
---|
5214 | /*
|
---|
5215 | * Determin the host CPU.
|
---|
5216 | * If not using the IEMAllAImpl.asm code, this will be set to Intel.
|
---|
5217 | */
|
---|
5218 | #if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
|
---|
5219 | g_idxCpuEflFlavour = ASMIsAmdCpu() || ASMIsHygonCpu()
|
---|
5220 | ? IEMTARGETCPU_EFL_BEHAVIOR_AMD
|
---|
5221 | : IEMTARGETCPU_EFL_BEHAVIOR_INTEL;
|
---|
5222 | #else
|
---|
5223 | g_idxCpuEflFlavour = IEMTARGETCPU_EFL_BEHAVIOR_INTEL;
|
---|
5224 | #endif
|
---|
5225 |
|
---|
5226 | /*
|
---|
5227 | * Parse arguments.
|
---|
5228 | */
|
---|
5229 | enum { kModeNotSet, kModeTest, kModeGenerate }
|
---|
5230 | enmMode = kModeNotSet;
|
---|
5231 | bool fInt = true;
|
---|
5232 | bool fFpuLdSt = true;
|
---|
5233 | bool fFpuBinary1 = true;
|
---|
5234 | bool fFpuBinary2 = true;
|
---|
5235 | bool fFpuOther = true;
|
---|
5236 | bool fCpuData = true;
|
---|
5237 | bool fCommonData = true;
|
---|
5238 | bool fSseFpBinary = true;
|
---|
5239 | uint32_t const cDefaultTests = 96;
|
---|
5240 | uint32_t cTests = cDefaultTests;
|
---|
5241 | RTGETOPTDEF const s_aOptions[] =
|
---|
5242 | {
|
---|
5243 | // mode:
|
---|
5244 | { "--generate", 'g', RTGETOPT_REQ_NOTHING },
|
---|
5245 | { "--test", 't', RTGETOPT_REQ_NOTHING },
|
---|
5246 | // test selection (both)
|
---|
5247 | { "--all", 'a', RTGETOPT_REQ_NOTHING },
|
---|
5248 | { "--none", 'z', RTGETOPT_REQ_NOTHING },
|
---|
5249 | { "--zap", 'z', RTGETOPT_REQ_NOTHING },
|
---|
5250 | { "--fpu-ld-st", 'F', RTGETOPT_REQ_NOTHING }, /* FPU stuff is upper case */
|
---|
5251 | { "--fpu-load-store", 'F', RTGETOPT_REQ_NOTHING },
|
---|
5252 | { "--fpu-binary-1", 'B', RTGETOPT_REQ_NOTHING },
|
---|
5253 | { "--fpu-binary-2", 'P', RTGETOPT_REQ_NOTHING },
|
---|
5254 | { "--fpu-other", 'O', RTGETOPT_REQ_NOTHING },
|
---|
5255 | { "--sse-fp-binary", 'S', RTGETOPT_REQ_NOTHING },
|
---|
5256 | { "--int", 'i', RTGETOPT_REQ_NOTHING },
|
---|
5257 | { "--include", 'I', RTGETOPT_REQ_STRING },
|
---|
5258 | { "--exclude", 'X', RTGETOPT_REQ_STRING },
|
---|
5259 | // generation parameters
|
---|
5260 | { "--common", 'm', RTGETOPT_REQ_NOTHING },
|
---|
5261 | { "--cpu", 'c', RTGETOPT_REQ_NOTHING },
|
---|
5262 | { "--number-of-tests", 'n', RTGETOPT_REQ_UINT32 },
|
---|
5263 | { "--verbose", 'v', RTGETOPT_REQ_NOTHING },
|
---|
5264 | { "--quiet", 'q', RTGETOPT_REQ_NOTHING },
|
---|
5265 | };
|
---|
5266 |
|
---|
5267 | RTGETOPTSTATE State;
|
---|
5268 | rc = RTGetOptInit(&State, argc, argv, s_aOptions, RT_ELEMENTS(s_aOptions), 1, 0);
|
---|
5269 | AssertRCReturn(rc, RTEXITCODE_FAILURE);
|
---|
5270 |
|
---|
5271 | RTGETOPTUNION ValueUnion;
|
---|
5272 | while ((rc = RTGetOpt(&State, &ValueUnion)))
|
---|
5273 | {
|
---|
5274 | switch (rc)
|
---|
5275 | {
|
---|
5276 | case 'g':
|
---|
5277 | enmMode = kModeGenerate;
|
---|
5278 | break;
|
---|
5279 | case 't':
|
---|
5280 | enmMode = kModeTest;
|
---|
5281 | break;
|
---|
5282 |
|
---|
5283 | case 'a':
|
---|
5284 | fCpuData = true;
|
---|
5285 | fCommonData = true;
|
---|
5286 | fInt = true;
|
---|
5287 | fFpuLdSt = true;
|
---|
5288 | fFpuBinary1 = true;
|
---|
5289 | fFpuBinary2 = true;
|
---|
5290 | fFpuOther = true;
|
---|
5291 | fSseFpBinary = true;
|
---|
5292 | break;
|
---|
5293 | case 'z':
|
---|
5294 | fCpuData = false;
|
---|
5295 | fCommonData = false;
|
---|
5296 | fInt = false;
|
---|
5297 | fFpuLdSt = false;
|
---|
5298 | fFpuBinary1 = false;
|
---|
5299 | fFpuBinary2 = false;
|
---|
5300 | fFpuOther = false;
|
---|
5301 | fSseFpBinary = false;
|
---|
5302 | break;
|
---|
5303 |
|
---|
5304 | case 'F':
|
---|
5305 | fFpuLdSt = true;
|
---|
5306 | break;
|
---|
5307 | case 'O':
|
---|
5308 | fFpuOther = true;
|
---|
5309 | break;
|
---|
5310 | case 'B':
|
---|
5311 | fFpuBinary1 = true;
|
---|
5312 | break;
|
---|
5313 | case 'P':
|
---|
5314 | fFpuBinary2 = true;
|
---|
5315 | break;
|
---|
5316 | case 'S':
|
---|
5317 | fSseFpBinary = true;
|
---|
5318 | break;
|
---|
5319 | case 'i':
|
---|
5320 | fInt = true;
|
---|
5321 | break;
|
---|
5322 |
|
---|
5323 | case 'I':
|
---|
5324 | if (g_cIncludeTestPatterns >= RT_ELEMENTS(g_apszIncludeTestPatterns))
|
---|
5325 | return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Too many include patterns (max %zu)",
|
---|
5326 | RT_ELEMENTS(g_apszIncludeTestPatterns));
|
---|
5327 | g_apszIncludeTestPatterns[g_cIncludeTestPatterns++] = ValueUnion.psz;
|
---|
5328 | break;
|
---|
5329 | case 'X':
|
---|
5330 | if (g_cExcludeTestPatterns >= RT_ELEMENTS(g_apszExcludeTestPatterns))
|
---|
5331 | return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Too many exclude patterns (max %zu)",
|
---|
5332 | RT_ELEMENTS(g_apszExcludeTestPatterns));
|
---|
5333 | g_apszExcludeTestPatterns[g_cExcludeTestPatterns++] = ValueUnion.psz;
|
---|
5334 | break;
|
---|
5335 |
|
---|
5336 | case 'm':
|
---|
5337 | fCommonData = true;
|
---|
5338 | break;
|
---|
5339 | case 'c':
|
---|
5340 | fCpuData = true;
|
---|
5341 | break;
|
---|
5342 | case 'n':
|
---|
5343 | cTests = ValueUnion.u32;
|
---|
5344 | break;
|
---|
5345 |
|
---|
5346 | case 'q':
|
---|
5347 | g_cVerbosity = 0;
|
---|
5348 | break;
|
---|
5349 | case 'v':
|
---|
5350 | g_cVerbosity++;
|
---|
5351 | break;
|
---|
5352 |
|
---|
5353 | case 'h':
|
---|
5354 | RTPrintf("usage: %s <-g|-t> [options]\n"
|
---|
5355 | "\n"
|
---|
5356 | "Mode:\n"
|
---|
5357 | " -g, --generate\n"
|
---|
5358 | " Generate test data.\n"
|
---|
5359 | " -t, --test\n"
|
---|
5360 | " Execute tests.\n"
|
---|
5361 | "\n"
|
---|
5362 | "Test selection (both modes):\n"
|
---|
5363 | " -a, --all\n"
|
---|
5364 | " Enable all tests and generated test data. (default)\n"
|
---|
5365 | " -z, --zap, --none\n"
|
---|
5366 | " Disable all tests and test data types.\n"
|
---|
5367 | " -i, --int\n"
|
---|
5368 | " Enable non-FPU tests.\n"
|
---|
5369 | " -F, --fpu-ld-st\n"
|
---|
5370 | " Enable FPU load and store tests.\n"
|
---|
5371 | " -B, --fpu-binary-1\n"
|
---|
5372 | " Enable FPU binary 80-bit FP tests.\n"
|
---|
5373 | " -P, --fpu-binary-2\n"
|
---|
5374 | " Enable FPU binary 64- and 32-bit FP tests.\n"
|
---|
5375 | " -O, --fpu-other\n"
|
---|
5376 | " Enable FPU binary 64- and 32-bit FP tests.\n"
|
---|
5377 | " -S, --sse-fp-binary\n"
|
---|
5378 | " Enable SSE binary 64- and 32-bit FP tests.\n"
|
---|
5379 | " -I,--include=<test-patter>\n"
|
---|
5380 | " Enable tests matching the given pattern.\n"
|
---|
5381 | " -X,--exclude=<test-patter>\n"
|
---|
5382 | " Skip tests matching the given pattern (overrides --include).\n"
|
---|
5383 | "\n"
|
---|
5384 | "Generation:\n"
|
---|
5385 | " -m, --common\n"
|
---|
5386 | " Enable generating common test data.\n"
|
---|
5387 | " -c, --only-cpu\n"
|
---|
5388 | " Enable generating CPU specific test data.\n"
|
---|
5389 | " -n, --number-of-test <count>\n"
|
---|
5390 | " Number of tests to generate. Default: %u\n"
|
---|
5391 | "\n"
|
---|
5392 | "Other:\n"
|
---|
5393 | " -v, --verbose\n"
|
---|
5394 | " -q, --quiet\n"
|
---|
5395 | " Noise level. Default: --quiet\n"
|
---|
5396 | , argv[0], cDefaultTests);
|
---|
5397 | return RTEXITCODE_SUCCESS;
|
---|
5398 | default:
|
---|
5399 | return RTGetOptPrintError(rc, &ValueUnion);
|
---|
5400 | }
|
---|
5401 | }
|
---|
5402 |
|
---|
5403 | /*
|
---|
5404 | * Generate data?
|
---|
5405 | */
|
---|
5406 | if (enmMode == kModeGenerate)
|
---|
5407 | {
|
---|
5408 | #ifdef TSTIEMAIMPL_WITH_GENERATOR
|
---|
5409 | char szCpuDesc[256] = {0};
|
---|
5410 | RTMpGetDescription(NIL_RTCPUID, szCpuDesc, sizeof(szCpuDesc));
|
---|
5411 | const char * const pszCpuType = g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD ? "Amd" : "Intel";
|
---|
5412 | # if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
|
---|
5413 | const char * const pszBitBucket = "NUL";
|
---|
5414 | # else
|
---|
5415 | const char * const pszBitBucket = "/dev/null";
|
---|
5416 | # endif
|
---|
5417 |
|
---|
5418 | if (cTests == 0)
|
---|
5419 | cTests = cDefaultTests;
|
---|
5420 | g_cZeroDstTests = RT_MIN(cTests / 16, 32);
|
---|
5421 | g_cZeroSrcTests = g_cZeroDstTests * 2;
|
---|
5422 |
|
---|
5423 | if (fInt)
|
---|
5424 | {
|
---|
5425 | const char *pszDataFile = fCommonData ? "tstIEMAImplDataInt.cpp" : pszBitBucket;
|
---|
5426 | PRTSTREAM pStrmData = GenerateOpenWithHdr(pszDataFile, szCpuDesc, NULL);
|
---|
5427 | const char *pszDataCpuFile = !fCpuData ? pszBitBucket : g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD
|
---|
5428 | ? "tstIEMAImplDataInt-Amd.cpp" : "tstIEMAImplDataInt-Intel.cpp";
|
---|
5429 | PRTSTREAM pStrmDataCpu = GenerateOpenWithHdr(pszDataCpuFile, szCpuDesc, pszCpuType);
|
---|
5430 | if (!pStrmData || !pStrmDataCpu)
|
---|
5431 | return RTEXITCODE_FAILURE;
|
---|
5432 |
|
---|
5433 | BinU8Generate( pStrmData, pStrmDataCpu, cTests);
|
---|
5434 | BinU16Generate(pStrmData, pStrmDataCpu, cTests);
|
---|
5435 | BinU32Generate(pStrmData, pStrmDataCpu, cTests);
|
---|
5436 | BinU64Generate(pStrmData, pStrmDataCpu, cTests);
|
---|
5437 | ShiftDblGenerate(pStrmDataCpu, RT_MAX(cTests, 128));
|
---|
5438 | UnaryGenerate(pStrmData, cTests);
|
---|
5439 | ShiftGenerate(pStrmDataCpu, cTests);
|
---|
5440 | MulDivGenerate(pStrmDataCpu, cTests);
|
---|
5441 |
|
---|
5442 | RTEXITCODE rcExit = GenerateFooterAndClose(pStrmDataCpu, pszDataCpuFile,
|
---|
5443 | GenerateFooterAndClose(pStrmData, pszDataFile, RTEXITCODE_SUCCESS));
|
---|
5444 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
5445 | return rcExit;
|
---|
5446 | }
|
---|
5447 |
|
---|
5448 | if (fFpuLdSt)
|
---|
5449 | {
|
---|
5450 | const char *pszDataFile = fCommonData ? "tstIEMAImplDataFpuLdSt.cpp" : pszBitBucket;
|
---|
5451 | PRTSTREAM pStrmData = GenerateOpenWithHdr(pszDataFile, szCpuDesc, NULL);
|
---|
5452 | const char *pszDataCpuFile = !fCpuData ? pszBitBucket : g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD
|
---|
5453 | ? "tstIEMAImplDataFpuLdSt-Amd.cpp" : "tstIEMAImplDataFpuLdSt-Intel.cpp";
|
---|
5454 | PRTSTREAM pStrmDataCpu = GenerateOpenWithHdr(pszDataCpuFile, szCpuDesc, pszCpuType);
|
---|
5455 | if (!pStrmData || !pStrmDataCpu)
|
---|
5456 | return RTEXITCODE_FAILURE;
|
---|
5457 |
|
---|
5458 | FpuLdConstGenerate(pStrmData, cTests);
|
---|
5459 | FpuLdIntGenerate(pStrmData, cTests);
|
---|
5460 | FpuLdD80Generate(pStrmData, cTests);
|
---|
5461 | FpuStIntGenerate(pStrmData, pStrmDataCpu, cTests);
|
---|
5462 | FpuStD80Generate(pStrmData, cTests);
|
---|
5463 | uint32_t const cTests2 = RT_MAX(cTests, 384); /* need better coverage for the next ones. */
|
---|
5464 | FpuLdMemGenerate(pStrmData, cTests2);
|
---|
5465 | FpuStMemGenerate(pStrmData, cTests2);
|
---|
5466 |
|
---|
5467 | RTEXITCODE rcExit = GenerateFooterAndClose(pStrmDataCpu, pszDataCpuFile,
|
---|
5468 | GenerateFooterAndClose(pStrmData, pszDataFile, RTEXITCODE_SUCCESS));
|
---|
5469 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
5470 | return rcExit;
|
---|
5471 | }
|
---|
5472 |
|
---|
5473 | if (fFpuBinary1)
|
---|
5474 | {
|
---|
5475 | const char *pszDataFile = fCommonData ? "tstIEMAImplDataFpuBinary1.cpp" : pszBitBucket;
|
---|
5476 | PRTSTREAM pStrmData = GenerateOpenWithHdr(pszDataFile, szCpuDesc, NULL);
|
---|
5477 | const char *pszDataCpuFile = !fCpuData ? pszBitBucket : g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD
|
---|
5478 | ? "tstIEMAImplDataFpuBinary1-Amd.cpp" : "tstIEMAImplDataFpuBinary1-Intel.cpp";
|
---|
5479 | PRTSTREAM pStrmDataCpu = GenerateOpenWithHdr(pszDataCpuFile, szCpuDesc, pszCpuType);
|
---|
5480 | if (!pStrmData || !pStrmDataCpu)
|
---|
5481 | return RTEXITCODE_FAILURE;
|
---|
5482 |
|
---|
5483 | FpuBinaryR80Generate(pStrmData, pStrmDataCpu, cTests);
|
---|
5484 | FpuBinaryFswR80Generate(pStrmData, cTests);
|
---|
5485 | FpuBinaryEflR80Generate(pStrmData, cTests);
|
---|
5486 |
|
---|
5487 | RTEXITCODE rcExit = GenerateFooterAndClose(pStrmDataCpu, pszDataCpuFile,
|
---|
5488 | GenerateFooterAndClose(pStrmData, pszDataFile, RTEXITCODE_SUCCESS));
|
---|
5489 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
5490 | return rcExit;
|
---|
5491 | }
|
---|
5492 |
|
---|
5493 | if (fFpuBinary2)
|
---|
5494 | {
|
---|
5495 | const char *pszDataFile = fCommonData ? "tstIEMAImplDataFpuBinary2.cpp" : pszBitBucket;
|
---|
5496 | PRTSTREAM pStrmData = GenerateOpenWithHdr(pszDataFile, szCpuDesc, NULL);
|
---|
5497 | const char *pszDataCpuFile = pszBitBucket; /*!fCpuData ? pszBitBucket : g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD
|
---|
5498 | ? "tstIEMAImplDataFpuBinary2-Amd.cpp" : "tstIEMAImplDataFpuBinary2-Intel.cpp"; */
|
---|
5499 | PRTSTREAM pStrmDataCpu = GenerateOpenWithHdr(pszDataCpuFile, szCpuDesc, pszCpuType);
|
---|
5500 | if (!pStrmData || !pStrmDataCpu)
|
---|
5501 | return RTEXITCODE_FAILURE;
|
---|
5502 |
|
---|
5503 | FpuBinaryR64Generate(pStrmData, cTests);
|
---|
5504 | FpuBinaryR32Generate(pStrmData, cTests);
|
---|
5505 | FpuBinaryI32Generate(pStrmData, cTests);
|
---|
5506 | FpuBinaryI16Generate(pStrmData, cTests);
|
---|
5507 | FpuBinaryFswR64Generate(pStrmData, cTests);
|
---|
5508 | FpuBinaryFswR32Generate(pStrmData, cTests);
|
---|
5509 | FpuBinaryFswI32Generate(pStrmData, cTests);
|
---|
5510 | FpuBinaryFswI16Generate(pStrmData, cTests);
|
---|
5511 |
|
---|
5512 | RTEXITCODE rcExit = GenerateFooterAndClose(pStrmDataCpu, pszDataCpuFile,
|
---|
5513 | GenerateFooterAndClose(pStrmData, pszDataFile, RTEXITCODE_SUCCESS));
|
---|
5514 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
5515 | return rcExit;
|
---|
5516 | }
|
---|
5517 |
|
---|
5518 | if (fFpuOther)
|
---|
5519 | {
|
---|
5520 | const char *pszDataFile = fCommonData ? "tstIEMAImplDataFpuOther.cpp" : pszBitBucket;
|
---|
5521 | PRTSTREAM pStrmData = GenerateOpenWithHdr(pszDataFile, szCpuDesc, NULL);
|
---|
5522 | const char *pszDataCpuFile = !fCpuData ? pszBitBucket : g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD
|
---|
5523 | ? "tstIEMAImplDataFpuOther-Amd.cpp" : "tstIEMAImplDataFpuOther-Intel.cpp";
|
---|
5524 | PRTSTREAM pStrmDataCpu = GenerateOpenWithHdr(pszDataCpuFile, szCpuDesc, pszCpuType);
|
---|
5525 | if (!pStrmData || !pStrmDataCpu)
|
---|
5526 | return RTEXITCODE_FAILURE;
|
---|
5527 |
|
---|
5528 | FpuUnaryR80Generate(pStrmData, pStrmDataCpu, cTests);
|
---|
5529 | FpuUnaryFswR80Generate(pStrmData, pStrmDataCpu, cTests);
|
---|
5530 | FpuUnaryTwoR80Generate(pStrmData, pStrmDataCpu, cTests);
|
---|
5531 |
|
---|
5532 | RTEXITCODE rcExit = GenerateFooterAndClose(pStrmDataCpu, pszDataCpuFile,
|
---|
5533 | GenerateFooterAndClose(pStrmData, pszDataFile, RTEXITCODE_SUCCESS));
|
---|
5534 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
5535 | return rcExit;
|
---|
5536 | }
|
---|
5537 |
|
---|
5538 | if (fSseFpBinary)
|
---|
5539 | {
|
---|
5540 | const char *pszDataFileFmt = fCommonData ? "tstIEMAImplDataSseBinary-%s.bin" : pszBitBucket;
|
---|
5541 |
|
---|
5542 | RTEXITCODE rcExit = SseBinaryR32Generate(pszDataFileFmt, cTests);
|
---|
5543 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
5544 | rcExit = SseBinaryR64Generate(pszDataFileFmt, cTests);
|
---|
5545 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
5546 | rcExit = SseBinaryU128R32Generate(pszDataFileFmt, cTests);
|
---|
5547 | if (rcExit == RTEXITCODE_SUCCESS)
|
---|
5548 | rcExit = SseBinaryU128R64Generate(pszDataFileFmt, cTests);
|
---|
5549 | if (rcExit != RTEXITCODE_SUCCESS)
|
---|
5550 | return rcExit;
|
---|
5551 | }
|
---|
5552 |
|
---|
5553 | return RTEXITCODE_SUCCESS;
|
---|
5554 | #else
|
---|
5555 | return RTMsgErrorExitFailure("Test data generator not compiled in!");
|
---|
5556 | #endif
|
---|
5557 | }
|
---|
5558 |
|
---|
5559 | /*
|
---|
5560 | * Do testing. Currrently disabled by default as data needs to be checked
|
---|
5561 | * on both intel and AMD systems first.
|
---|
5562 | */
|
---|
5563 | rc = RTTestCreate("tstIEMAimpl", &g_hTest);
|
---|
5564 | AssertRCReturn(rc, RTEXITCODE_FAILURE);
|
---|
5565 | if (enmMode == kModeTest)
|
---|
5566 | {
|
---|
5567 | RTTestBanner(g_hTest);
|
---|
5568 |
|
---|
5569 | /* Allocate guarded memory for use in the tests. */
|
---|
5570 | #define ALLOC_GUARDED_VAR(a_puVar) do { \
|
---|
5571 | rc = RTTestGuardedAlloc(g_hTest, sizeof(*a_puVar), sizeof(*a_puVar), false /*fHead*/, (void **)&a_puVar); \
|
---|
5572 | if (RT_FAILURE(rc)) RTTestFailed(g_hTest, "Failed to allocate guarded mem: " #a_puVar); \
|
---|
5573 | } while (0)
|
---|
5574 | ALLOC_GUARDED_VAR(g_pu8);
|
---|
5575 | ALLOC_GUARDED_VAR(g_pu16);
|
---|
5576 | ALLOC_GUARDED_VAR(g_pu32);
|
---|
5577 | ALLOC_GUARDED_VAR(g_pu64);
|
---|
5578 | ALLOC_GUARDED_VAR(g_pu128);
|
---|
5579 | ALLOC_GUARDED_VAR(g_pu8Two);
|
---|
5580 | ALLOC_GUARDED_VAR(g_pu16Two);
|
---|
5581 | ALLOC_GUARDED_VAR(g_pu32Two);
|
---|
5582 | ALLOC_GUARDED_VAR(g_pu64Two);
|
---|
5583 | ALLOC_GUARDED_VAR(g_pu128Two);
|
---|
5584 | ALLOC_GUARDED_VAR(g_pfEfl);
|
---|
5585 | if (RTTestErrorCount(g_hTest) == 0)
|
---|
5586 | {
|
---|
5587 | if (fInt)
|
---|
5588 | {
|
---|
5589 | BinU8Test();
|
---|
5590 | BinU16Test();
|
---|
5591 | BinU32Test();
|
---|
5592 | BinU64Test();
|
---|
5593 | XchgTest();
|
---|
5594 | XaddTest();
|
---|
5595 | CmpXchgTest();
|
---|
5596 | CmpXchg8bTest();
|
---|
5597 | CmpXchg16bTest();
|
---|
5598 | ShiftDblTest();
|
---|
5599 | UnaryTest();
|
---|
5600 | ShiftTest();
|
---|
5601 | MulDivTest();
|
---|
5602 | BswapTest();
|
---|
5603 | }
|
---|
5604 |
|
---|
5605 | if (fFpuLdSt)
|
---|
5606 | {
|
---|
5607 | FpuLoadConstTest();
|
---|
5608 | FpuLdMemTest();
|
---|
5609 | FpuLdIntTest();
|
---|
5610 | FpuLdD80Test();
|
---|
5611 | FpuStMemTest();
|
---|
5612 | FpuStIntTest();
|
---|
5613 | FpuStD80Test();
|
---|
5614 | }
|
---|
5615 |
|
---|
5616 | if (fFpuBinary1)
|
---|
5617 | {
|
---|
5618 | FpuBinaryR80Test();
|
---|
5619 | FpuBinaryFswR80Test();
|
---|
5620 | FpuBinaryEflR80Test();
|
---|
5621 | }
|
---|
5622 |
|
---|
5623 | if (fFpuBinary2)
|
---|
5624 | {
|
---|
5625 | FpuBinaryR64Test();
|
---|
5626 | FpuBinaryR32Test();
|
---|
5627 | FpuBinaryI32Test();
|
---|
5628 | FpuBinaryI16Test();
|
---|
5629 | FpuBinaryFswR64Test();
|
---|
5630 | FpuBinaryFswR32Test();
|
---|
5631 | FpuBinaryFswI32Test();
|
---|
5632 | FpuBinaryFswI16Test();
|
---|
5633 | }
|
---|
5634 |
|
---|
5635 | if (fFpuOther)
|
---|
5636 | {
|
---|
5637 | FpuUnaryR80Test();
|
---|
5638 | FpuUnaryFswR80Test();
|
---|
5639 | FpuUnaryTwoR80Test();
|
---|
5640 | }
|
---|
5641 |
|
---|
5642 | if (fSseFpBinary)
|
---|
5643 | {
|
---|
5644 | SseBinaryR32Test();
|
---|
5645 | SseBinaryR64Test();
|
---|
5646 | SseBinaryU128R32Test();
|
---|
5647 | SseBinaryU128R64Test();
|
---|
5648 | }
|
---|
5649 | }
|
---|
5650 | return RTTestSummaryAndDestroy(g_hTest);
|
---|
5651 | }
|
---|
5652 | return RTTestSkipAndDestroy(g_hTest, "unfinished testcase");
|
---|
5653 | }
|
---|
5654 |
|
---|