/* $Id: TestExecService.cpp 73097 2018-07-12 21:06:33Z vboxsync $ */ /** @file * TestExecServ - Basic Remote Execution Service. */ /* * Copyright (C) 2010-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP RTLOGGROUP_DEFAULT #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "TestExecServiceInternal.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * Handle IDs used by txsDoExec for the poll set. */ typedef enum TXSEXECHNDID { TXSEXECHNDID_STDIN = 0, TXSEXECHNDID_STDOUT, TXSEXECHNDID_STDERR, TXSEXECHNDID_TESTPIPE, TXSEXECHNDID_STDIN_WRITABLE, TXSEXECHNDID_TRANSPORT, TXSEXECHNDID_THREAD } TXSEXECHNDID; /** * For buffering process input supplied by the client. */ typedef struct TXSEXECSTDINBUF { /** The mount of buffered data. */ size_t cb; /** The current data offset. */ size_t off; /** The data buffer. */ char *pch; /** The amount of allocated buffer space. */ size_t cbAllocated; /** Send further input into the bit bucket (stdin is dead). */ bool fBitBucket; /** The CRC-32 for standard input (received part). */ uint32_t uCrc32; } TXSEXECSTDINBUF; /** Pointer to a standard input buffer. */ typedef TXSEXECSTDINBUF *PTXSEXECSTDINBUF; /** * TXS child process info. */ typedef struct TXSEXEC { PCTXSPKTHDR pPktHdr; RTMSINTERVAL cMsTimeout; int rcReplySend; RTPOLLSET hPollSet; RTPIPE hStdInW; RTPIPE hStdOutR; RTPIPE hStdErrR; RTPIPE hTestPipeR; RTPIPE hWakeUpPipeR; RTTHREAD hThreadWaiter; /** @name For the setup phase * @{ */ struct StdPipe { RTHANDLE hChild; PRTHANDLE phChild; } StdIn, StdOut, StdErr; RTPIPE hTestPipeW; RTENV hEnv; /** @} */ /** For serializating some access. */ RTCRITSECT CritSect; /** @name Members protected by the critical section. * @{ */ RTPROCESS hProcess; /** The process status. Only valid when fProcessAlive is cleared. */ RTPROCSTATUS ProcessStatus; /** Set when the process is alive, clear when dead. */ bool volatile fProcessAlive; /** The end of the pipe that hThreadWaiter writes to. */ RTPIPE hWakeUpPipeW; /** @} */ } TXSEXEC; /** Pointer to a the TXS child process info. */ typedef TXSEXEC *PTXSEXEC; /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** * Transport layers. */ static const PCTXSTRANSPORT g_apTransports[] = { &g_TcpTransport, #ifndef RT_OS_OS2 &g_SerialTransport, #endif //&g_FileSysTransport, //&g_GuestPropTransport, //&g_TestDevTransport, }; /** The select transport layer. */ static PCTXSTRANSPORT g_pTransport; /** The scratch path. */ static char g_szScratchPath[RTPATH_MAX]; /** The default scratch path. */ static char g_szDefScratchPath[RTPATH_MAX]; /** The CD/DVD-ROM path. */ static char g_szCdRomPath[RTPATH_MAX]; /** The default CD/DVD-ROM path. */ static char g_szDefCdRomPath[RTPATH_MAX]; /** The operating system short name. */ static char g_szOsShortName[16]; /** The CPU architecture short name. */ static char g_szArchShortName[16]; /** The combined "OS.arch" name. */ static char g_szOsDotArchShortName[32]; /** The combined "OS/arch" name. */ static char g_szOsSlashArchShortName[32]; /** The executable suffix. */ static char g_szExeSuff[8]; /** The shell script suffix. */ static char g_szScriptSuff[8]; /** UUID identifying this TXS instance. This can be used to see if TXS * has been restarted or not. */ static RTUUID g_InstanceUuid; /** Whether to display the output of the child process or not. */ static bool g_fDisplayOutput = true; /** Whether to terminate or not. * @todo implement signals and stuff. */ static bool volatile g_fTerminate = false; /** Verbosity level. */ uint32_t g_cVerbose = 1; /** * Calculates the checksum value, zero any padding space and send the packet. * * @returns IPRT status code. * @param pPkt The packet to send. Must point to a correctly * aligned buffer. */ static int txsSendPkt(PTXSPKTHDR pPkt) { Assert(pPkt->cb >= sizeof(*pPkt)); pPkt->uCrc32 = RTCrc32(pPkt->achOpcode, pPkt->cb - RT_UOFFSETOF(TXSPKTHDR, achOpcode)); if (pPkt->cb != RT_ALIGN_32(pPkt->cb, TXSPKT_ALIGNMENT)) memset((uint8_t *)pPkt + pPkt->cb, '\0', RT_ALIGN_32(pPkt->cb, TXSPKT_ALIGNMENT) - pPkt->cb); Log(("txsSendPkt: cb=%#x opcode=%.8s\n", pPkt->cb, pPkt->achOpcode)); Log2(("%.*Rhxd\n", RT_MIN(pPkt->cb, 256), pPkt)); int rc = g_pTransport->pfnSendPkt(pPkt); while (RT_UNLIKELY(rc == VERR_INTERRUPTED) && !g_fTerminate) rc = g_pTransport->pfnSendPkt(pPkt); if (RT_FAILURE(rc)) Log(("txsSendPkt: rc=%Rrc\n", rc)); return rc; } /** * Sends a babble reply and disconnects the client (if applicable). * * @param pszOpcode The BABBLE opcode. */ static void txsReplyBabble(const char *pszOpcode) { TXSPKTHDR Reply; Reply.cb = sizeof(Reply); Reply.uCrc32 = 0; memcpy(Reply.achOpcode, pszOpcode, sizeof(Reply.achOpcode)); g_pTransport->pfnBabble(&Reply, 20*1000); } /** * Receive and validate a packet. * * Will send bable responses to malformed packets that results in a error status * code. * * @returns IPRT status code. * @param ppPktHdr Where to return the packet on success. Free * with RTMemFree. * @param fAutoRetryOnFailure Whether to retry on error. */ static int txsRecvPkt(PPTXSPKTHDR ppPktHdr, bool fAutoRetryOnFailure) { for (;;) { PTXSPKTHDR pPktHdr; int rc = g_pTransport->pfnRecvPkt(&pPktHdr); if (RT_SUCCESS(rc)) { /* validate the packet. */ if ( pPktHdr->cb >= sizeof(TXSPKTHDR) && pPktHdr->cb < TXSPKT_MAX_SIZE) { Log2(("txsRecvPkt: pPktHdr=%p cb=%#x crc32=%#x opcode=%.8s\n" "%.*Rhxd\n", pPktHdr, pPktHdr->cb, pPktHdr->uCrc32, pPktHdr->achOpcode, RT_MIN(pPktHdr->cb, 256), pPktHdr)); uint32_t uCrc32Calc = pPktHdr->uCrc32 != 0 ? RTCrc32(&pPktHdr->achOpcode[0], pPktHdr->cb - RT_UOFFSETOF(TXSPKTHDR, achOpcode)) : 0; if (pPktHdr->uCrc32 == uCrc32Calc) { AssertCompileMemberSize(TXSPKTHDR, achOpcode, 8); if ( RT_C_IS_UPPER(pPktHdr->achOpcode[0]) && RT_C_IS_UPPER(pPktHdr->achOpcode[1]) && (RT_C_IS_UPPER(pPktHdr->achOpcode[2]) || pPktHdr->achOpcode[2] == ' ') && (RT_C_IS_PRINT(pPktHdr->achOpcode[3]) || pPktHdr->achOpcode[3] == ' ') && (RT_C_IS_PRINT(pPktHdr->achOpcode[4]) || pPktHdr->achOpcode[4] == ' ') && (RT_C_IS_PRINT(pPktHdr->achOpcode[5]) || pPktHdr->achOpcode[5] == ' ') && (RT_C_IS_PRINT(pPktHdr->achOpcode[6]) || pPktHdr->achOpcode[6] == ' ') && (RT_C_IS_PRINT(pPktHdr->achOpcode[7]) || pPktHdr->achOpcode[7] == ' ') ) { Log(("txsRecvPkt: cb=%#x opcode=%.8s\n", pPktHdr->cb, pPktHdr->achOpcode)); *ppPktHdr = pPktHdr; return rc; } rc = VERR_IO_BAD_COMMAND; } else { Log(("txsRecvPkt: cb=%#x opcode=%.8s crc32=%#x actual=%#x\n", pPktHdr->cb, pPktHdr->achOpcode, pPktHdr->uCrc32, uCrc32Calc)); rc = VERR_IO_CRC; } } else rc = VERR_IO_BAD_LENGTH; /* Send babble reply and disconnect the client if the transport is connection oriented. */ if (rc == VERR_IO_BAD_LENGTH) txsReplyBabble("BABBLE L"); else if (rc == VERR_IO_CRC) txsReplyBabble("BABBLE C"); else if (rc == VERR_IO_BAD_COMMAND) txsReplyBabble("BABBLE O"); else txsReplyBabble("BABBLE "); RTMemFree(pPktHdr); } /* Try again or return failure? */ if ( g_fTerminate || rc != VERR_INTERRUPTED || !fAutoRetryOnFailure ) { Log(("txsRecvPkt: rc=%Rrc\n", rc)); return rc; } } } /** * Make a simple reply, only status opcode. * * @returns IPRT status code of the send. * @param pReply The reply packet. * @param pszOpcode The status opcode. Exactly 8 chars long, padd * with space. * @param cbExtra Bytes in addition to the header. */ static int txsReplyInternal(PTXSPKTHDR pReply, const char *pszOpcode, size_t cbExtra) { /* copy the opcode, don't be too strict in case of a padding screw up. */ size_t cchOpcode = strlen(pszOpcode); if (RT_LIKELY(cchOpcode == sizeof(pReply->achOpcode))) memcpy(pReply->achOpcode, pszOpcode, sizeof(pReply->achOpcode)); else { Assert(cchOpcode == sizeof(pReply->achOpcode)); while (cchOpcode > 0 && pszOpcode[cchOpcode - 1] == ' ') cchOpcode--; AssertMsgReturn(cchOpcode < sizeof(pReply->achOpcode), ("%d/'%.8s'\n", cchOpcode, pszOpcode), VERR_INTERNAL_ERROR_4); memcpy(pReply->achOpcode, pszOpcode, cchOpcode); memset(&pReply->achOpcode[cchOpcode], ' ', sizeof(pReply->achOpcode) - cchOpcode); } pReply->cb = (uint32_t)sizeof(TXSPKTHDR) + (uint32_t)cbExtra; pReply->uCrc32 = 0; return txsSendPkt(pReply); } /** * Make a simple reply, only status opcode. * * @returns IPRT status code of the send. * @param pPktHdr The original packet (for future use). * @param pszOpcode The status opcode. Exactly 8 chars long, padd * with space. */ static int txsReplySimple(PCTXSPKTHDR pPktHdr, const char *pszOpcode) { TXSPKTHDR Pkt; NOREF(pPktHdr); return txsReplyInternal(&Pkt, pszOpcode, 0); } /** * Acknowledges a packet with success. * * @returns IPRT status code of the send. * @param pPktHdr The original packet (for future use). */ static int txsReplyAck(PCTXSPKTHDR pPktHdr) { return txsReplySimple(pPktHdr, "ACK "); } /** * Replies with a failure. * * @returns IPRT status code of the send. * @param pPktHdr The original packet (for future use). * @param pszOpcode The status opcode. Exactly 8 chars long, padd * with space. * @param pszDetailFmt Longer description of the problem (format * string). * @param va Format arguments. */ static int txsReplyFailureV(PCTXSPKTHDR pPktHdr, const char *pszOpcode, const char *pszDetailFmt, va_list va) { NOREF(pPktHdr); union { TXSPKTHDR Hdr; char ach[256]; } uPkt; size_t cchDetail = RTStrPrintfV(&uPkt.ach[sizeof(TXSPKTHDR)], sizeof(uPkt) - sizeof(TXSPKTHDR), pszDetailFmt, va); return txsReplyInternal(&uPkt.Hdr, pszOpcode, cchDetail + 1); } /** * Replies with a failure. * * @returns IPRT status code of the send. * @param pPktHdr The original packet (for future use). * @param pszOpcode The status opcode. Exactly 8 chars long, padd * with space. * @param pszDetailFmt Longer description of the problem (format * string). * @param ... Format arguments. */ static int txsReplyFailure(PCTXSPKTHDR pPktHdr, const char *pszOpcode, const char *pszDetailFmt, ...) { va_list va; va_start(va, pszDetailFmt); int rc = txsReplyFailureV(pPktHdr, pszOpcode, pszDetailFmt, va); va_end(va); return rc; } /** * Replies according to the return code. * * @returns IPRT status code of the send. * @param pPktHdr The packet to reply to. * @param rcOperation The status code to report. * @param pszOperationFmt The operation that failed. Typically giving the * function call with important arguments. * @param ... Arguments to the format string. */ static int txsReplyRC(PCTXSPKTHDR pPktHdr, int rcOperation, const char *pszOperationFmt, ...) { if (RT_SUCCESS(rcOperation)) return txsReplyAck(pPktHdr); char szOperation[128]; va_list va; va_start(va, pszOperationFmt); RTStrPrintfV(szOperation, sizeof(szOperation), pszOperationFmt, va); va_end(va); return txsReplyFailure(pPktHdr, "FAILED ", "%s failed with rc=%Rrc (opcode '%.8s')", szOperation, rcOperation, pPktHdr->achOpcode); } /** * Signal a bad packet minum size. * * @returns IPRT status code of the send. * @param pPktHdr The packet to reply to. * @param cbMin The minimum size. */ static int txsReplyBadMinSize(PCTXSPKTHDR pPktHdr, size_t cbMin) { return txsReplyFailure(pPktHdr, "BAD SIZE", "Expected at least %zu bytes, got %u (opcode '%.8s')", cbMin, pPktHdr->cb, pPktHdr->achOpcode); } /** * Signal a bad packet exact size. * * @returns IPRT status code of the send. * @param pPktHdr The packet to reply to. * @param cb The wanted size. */ static int txsReplyBadSize(PCTXSPKTHDR pPktHdr, size_t cb) { return txsReplyFailure(pPktHdr, "BAD SIZE", "Expected at %zu bytes, got %u (opcode '%.8s')", cb, pPktHdr->cb, pPktHdr->achOpcode); } /** * Deals with a command that isn't implemented yet. * @returns IPRT status code of the send. * @param pPktHdr The packet which opcode isn't implemented. */ static int txsReplyNotImplemented(PCTXSPKTHDR pPktHdr) { return txsReplyFailure(pPktHdr, "NOT IMPL", "Opcode '%.8s' is not implemented", pPktHdr->achOpcode); } /** * Deals with a unknown command. * @returns IPRT status code of the send. * @param pPktHdr The packet to reply to. */ static int txsReplyUnknown(PCTXSPKTHDR pPktHdr) { return txsReplyFailure(pPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known", pPktHdr->achOpcode); } /** * Replaces a variable with its value. * * @returns VINF_SUCCESS or VERR_NO_STR_MEMORY. * @param ppszNew In/Out. * @param pcchNew In/Out. (Messed up on failure.) * @param offVar Variable offset. * @param cchVar Variable length. * @param pszValue The value. * @param cchValue Value length. */ static int txsReplaceStringVariable(char **ppszNew, size_t *pcchNew, size_t offVar, size_t cchVar, const char *pszValue, size_t cchValue) { size_t const cchAfter = *pcchNew - offVar - cchVar; if (cchVar < cchValue) { *pcchNew += cchValue - cchVar; int rc = RTStrRealloc(ppszNew, *pcchNew + 1); if (RT_FAILURE(rc)) return rc; } char *pszNew = *ppszNew; memmove(&pszNew[offVar + cchValue], &pszNew[offVar + cchVar], cchAfter + 1); memcpy(&pszNew[offVar], pszValue, cchValue); return VINF_SUCCESS; } /** * Replace the variables found in the source string, returning a new string that * lives on the string heap. * * @returns Boolean success indicator. Will reply to the client with all the * gory detail on failure. * @param pPktHdr The packet the string relates to. For replying * on error. * @param pszSrc The source string. * @param ppszNew Where to return the new string. * @param prcSend Where to return the status code of the send on * failure. */ static int txsReplaceStringVariables(PCTXSPKTHDR pPktHdr, const char *pszSrc, char **ppszNew, int *prcSend) { /* Lazy approach that employs memmove. */ size_t cchNew = strlen(pszSrc); char *pszNew = RTStrDup(pszSrc); char *pszDollar = pszNew; while ((pszDollar = strchr(pszDollar, '$')) != NULL) { if (pszDollar[1] == '{') { const char *pszEnd = strchr(&pszDollar[2], '}'); if (pszEnd) { #define IF_VARIABLE_DO(pszDollar, szVarExpr, pszValue) \ if ( cchVar == sizeof(szVarExpr) - 1 \ && !memcmp(pszDollar, szVarExpr, sizeof(szVarExpr) - 1) ) \ { \ size_t const cchValue = strlen(pszValue); \ rc = txsReplaceStringVariable(&pszNew, &cchNew, offDollar, \ sizeof(szVarExpr) - 1, pszValue, cchValue); \ offDollar += cchValue; \ } int rc; size_t const cchVar = pszEnd - pszDollar + 1; /* includes "${}" */ size_t offDollar = pszDollar - pszNew; IF_VARIABLE_DO(pszDollar, "${CDROM}", g_szCdRomPath) else IF_VARIABLE_DO(pszDollar, "${SCRATCH}", g_szScratchPath) else IF_VARIABLE_DO(pszDollar, "${ARCH}", g_szArchShortName) else IF_VARIABLE_DO(pszDollar, "${OS}", g_szOsShortName) else IF_VARIABLE_DO(pszDollar, "${OS.ARCH}", g_szOsDotArchShortName) else IF_VARIABLE_DO(pszDollar, "${OS/ARCH}", g_szOsSlashArchShortName) else IF_VARIABLE_DO(pszDollar, "${EXESUFF}", g_szExeSuff) else IF_VARIABLE_DO(pszDollar, "${SCRIPTSUFF}", g_szScriptSuff) else { RTStrFree(pszNew); *prcSend = txsReplyFailure(pPktHdr, "UNKN VAR", "Unknown variable '%.*s' encountered in '%s'", cchVar, pszDollar, pszSrc); *ppszNew = NULL; return false; } pszDollar = &pszNew[offDollar]; if (RT_FAILURE(rc)) { RTStrFree(pszNew); *prcSend = txsReplyRC(pPktHdr, rc, "RTStrRealloc"); *ppszNew = NULL; return false; } #undef IF_VARIABLE_DO } } } *ppszNew = pszNew; *prcSend = VINF_SUCCESS; return true; } /** * Checks if the string is valid and returns the expanded version. * * @returns true if valid, false if invalid. * @param pPktHdr The packet being unpacked. * @param pszArgName The argument name. * @param psz Pointer to the string within pPktHdr. * @param ppszExp Where to return the expanded string. Must be * freed by calling RTStrFree(). * @param ppszNext Where to return the pointer to the next field. * If NULL, then we assume this string is at the * end of the packet and will make sure it has the * advertised length. * @param prcSend Where to return the status code of the send on * failure. */ static bool txsIsStringValid(PCTXSPKTHDR pPktHdr, const char *pszArgName, const char *psz, char **ppszExp, const char **ppszNext, int *prcSend) { *ppszExp = NULL; if (ppszNext) *ppszNext = NULL; size_t const off = psz - (const char *)pPktHdr; if (pPktHdr->cb <= off) { *prcSend = txsReplyFailure(pPktHdr, "STR MISS", "Missing string argument '%s' in '%.8s'", pszArgName, pPktHdr->achOpcode); return false; } size_t const cchMax = pPktHdr->cb - off; const char *pszEnd = RTStrEnd(psz, cchMax); if (!pszEnd) { *prcSend = txsReplyFailure(pPktHdr, "STR TERM", "The string argument '%s' in '%.8s' is unterminated", pszArgName, pPktHdr->achOpcode); return false; } if (!ppszNext && (size_t)(pszEnd - psz) != cchMax - 1) { *prcSend = txsReplyFailure(pPktHdr, "STR SHRT", "The string argument '%s' in '%.8s' is shorter than advertised", pszArgName, pPktHdr->achOpcode); return false; } if (!txsReplaceStringVariables(pPktHdr, psz, ppszExp, prcSend)) return false; if (ppszNext) *ppszNext = pszEnd + 1; return true; } /** * Validates a packet with a single string after the header. * * @returns true if valid, false if invalid. * @param pPktHdr The packet. * @param pszArgName The argument name. * @param ppszExp Where to return the string pointer. Variables * will be replaced and it must therefore be freed * by calling RTStrFree(). * @param prcSend Where to return the status code of the send on * failure. */ static bool txsIsStringPktValid(PCTXSPKTHDR pPktHdr, const char *pszArgName, char **ppszExp, int *prcSend) { if (pPktHdr->cb < sizeof(TXSPKTHDR) + 2) { *ppszExp = NULL; *prcSend = txsReplyBadMinSize(pPktHdr, sizeof(TXSPKTHDR) + 2); return false; } return txsIsStringValid(pPktHdr, pszArgName, (const char *)(pPktHdr + 1), ppszExp, NULL, prcSend); } /** * Checks if the two opcodes match. * * @returns true on match, false on mismatch. * @param pPktHdr The packet header. * @param pszOpcode2 The opcode we're comparing with. Does not have * to be the whole 8 chars long. */ DECLINLINE(bool) txsIsSameOpcode(PCTXSPKTHDR pPktHdr, const char *pszOpcode2) { if (pPktHdr->achOpcode[0] != pszOpcode2[0]) return false; if (pPktHdr->achOpcode[1] != pszOpcode2[1]) return false; unsigned i = 2; while ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode) && pszOpcode2[i] != '\0') { if (pPktHdr->achOpcode[i] != pszOpcode2[i]) break; i++; } if ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode) && pszOpcode2[i] == '\0') { while ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode) && pPktHdr->achOpcode[i] == ' ') i++; } return i == RT_SIZEOFMEMB(TXSPKTHDR, achOpcode); } /** * Used by txsDoGetFile to wait for a reply ACK from the client. * * @returns VINF_SUCCESS on ACK, VERR_GENERAL_FAILURE on NACK, * VERR_NET_NOT_CONNECTED on unknown response (sending a bable reply), * or whatever txsRecvPkt returns. * @param pPktHdr The original packet (for future use). */ static int txsWaitForAck(PCTXSPKTHDR pPktHdr) { NOREF(pPktHdr); /** @todo timeout? */ PTXSPKTHDR pReply; int rc = txsRecvPkt(&pReply, false /*fAutoRetryOnFailure*/); if (RT_SUCCESS(rc)) { if (txsIsSameOpcode(pReply, "ACK")) rc = VINF_SUCCESS; else if (txsIsSameOpcode(pReply, "NACK")) rc = VERR_GENERAL_FAILURE; else { txsReplyBabble("BABBLE "); rc = VERR_NET_NOT_CONNECTED; } RTMemFree(pReply); } return rc; } /** * Unpacks a tar file. * * @returns IPRT status code from send. * @param pPktHdr The unpack file packet. */ static int txsDoUnpackFile(PCTXSPKTHDR pPktHdr) { int rc; char *pszFile = NULL; char *pszDirectory = NULL; /* Packet cursor. */ const char *pch = (const char *)(pPktHdr + 1); if (txsIsStringValid(pPktHdr, "file", pch, &pszFile, &pch, &rc)) { if (txsIsStringValid(pPktHdr, "directory", pch, &pszDirectory, &pch, &rc)) { char *pszSuff = RTPathSuffix(pszFile); const char *apszArgs[7]; unsigned cArgs = 0; apszArgs[cArgs++] = "RTTar"; apszArgs[cArgs++] = "--extract"; apszArgs[cArgs++] = "--file"; apszArgs[cArgs++] = pszFile; apszArgs[cArgs++] = "--directory"; apszArgs[cArgs++] = pszDirectory; if ( pszSuff && ( !RTStrICmp(pszSuff, ".gz") || !RTStrICmp(pszSuff, ".tgz"))) apszArgs[cArgs++] = "--gunzip"; RTEXITCODE rcExit = RTZipTarCmd(cArgs, (char **)apszArgs); if (rcExit != RTEXITCODE_SUCCESS) rc = VERR_GENERAL_FAILURE; /** @todo proper return code. */ else rc = VINF_SUCCESS; rc = txsReplyRC(pPktHdr, rc, "RTZipTarCmd(\"%s\",\"%s\")", pszFile, pszDirectory); RTStrFree(pszDirectory); } RTStrFree(pszFile); } return rc; } /** * Downloads a file to the client. * * The transfer sends a stream of DATA packets (0 or more) and ends it all with * a ACK packet. If an error occurs, a FAILURE packet is sent and the transfer * aborted. * * @returns IPRT status code from send. * @param pPktHdr The get file packet. */ static int txsDoGetFile(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc)) return rc; RTFILE hFile; rc = RTFileOpen(&hFile, pszPath, RTFILE_O_READ | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN); if (RT_SUCCESS(rc)) { uint32_t uMyCrc32 = RTCrc32Start(); for (;;) { struct { TXSPKTHDR Hdr; uint32_t uCrc32; char ab[_64K]; char abPadding[TXSPKT_ALIGNMENT]; } Pkt; size_t cbRead; rc = RTFileRead(hFile, &Pkt.ab[0], _64K, &cbRead); if (RT_FAILURE(rc) || cbRead == 0) { if (rc == VERR_EOF || (RT_SUCCESS(rc) && cbRead == 0)) { Pkt.uCrc32 = RTCrc32Finish(uMyCrc32); rc = txsReplyInternal(&Pkt.Hdr, "DATA EOF", sizeof(uint32_t)); if (RT_SUCCESS(rc)) rc = txsWaitForAck(&Pkt.Hdr); } else rc = txsReplyRC(pPktHdr, rc, "RTFileRead"); break; } uMyCrc32 = RTCrc32Process(uMyCrc32, &Pkt.ab[0], cbRead); Pkt.uCrc32 = RTCrc32Finish(uMyCrc32); rc = txsReplyInternal(&Pkt.Hdr, "DATA ", cbRead + sizeof(uint32_t)); if (RT_FAILURE(rc)) break; rc = txsWaitForAck(&Pkt.Hdr); if (RT_FAILURE(rc)) break; } RTFileClose(hFile); } else rc = txsReplyRC(pPktHdr, rc, "RTFileOpen(,\"%s\",)", pszPath); RTStrFree(pszPath); return rc; } /** * Uploads a file from the client. * * The transfer sends a stream of DATA packets (0 or more) and ends it all with * a DATA EOF packet. We ACK each of these, so that if a write error occurs we * can abort the transfer straight away. * * @returns IPRT status code from send. * @param pPktHdr The put file packet. */ static int txsDoPutFile(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc)) return rc; RTFILE hFile; rc = RTFileOpen(&hFile, pszPath, RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE); if (RT_SUCCESS(rc)) { bool fSuccess = false; rc = txsReplyAck(pPktHdr); if (RT_SUCCESS(rc)) { /* * Read client command packets and process them. */ uint32_t uMyCrc32 = RTCrc32Start(); for (;;) { PTXSPKTHDR pDataPktHdr; rc = txsRecvPkt(&pDataPktHdr, false /*fAutoRetryOnFailure*/); if (RT_FAILURE(rc)) break; if (txsIsSameOpcode(pDataPktHdr, "DATA")) { size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(uint32_t); if (pDataPktHdr->cb >= cbMin) { size_t cbData = pDataPktHdr->cb - cbMin; const void *pvData = (const char *)pDataPktHdr + cbMin; uint32_t uCrc32 = *(uint32_t const *)(pDataPktHdr + 1); uMyCrc32 = RTCrc32Process(uMyCrc32, pvData, cbData); if (RTCrc32Finish(uMyCrc32) == uCrc32) { rc = RTFileWrite(hFile, pvData, cbData, NULL); if (RT_SUCCESS(rc)) { rc = txsReplyAck(pDataPktHdr); RTMemFree(pDataPktHdr); continue; } rc = txsReplyRC(pDataPktHdr, rc, "RTFileWrite"); } else rc = txsReplyFailure(pDataPktHdr, "BAD DCRC", "mycrc=%#x your=%#x", uMyCrc32, uCrc32); } else rc = txsReplyBadMinSize(pPktHdr, cbMin); } else if (txsIsSameOpcode(pDataPktHdr, "DATA EOF")) { if (pDataPktHdr->cb == sizeof(TXSPKTHDR) + sizeof(uint32_t)) { uint32_t uCrc32 = *(uint32_t const *)(pDataPktHdr + 1); if (RTCrc32Finish(uMyCrc32) == uCrc32) { rc = txsReplyAck(pDataPktHdr); fSuccess = RT_SUCCESS(rc); } else rc = txsReplyFailure(pDataPktHdr, "BAD DCRC", "mycrc=%#x your=%#x", uMyCrc32, uCrc32); } else rc = txsReplyAck(pDataPktHdr); } else if (txsIsSameOpcode(pDataPktHdr, "ABORT")) rc = txsReplyAck(pDataPktHdr); else rc = txsReplyFailure(pDataPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known or not recognized during PUT FILE", pDataPktHdr->achOpcode); RTMemFree(pDataPktHdr); break; } } RTFileClose(hFile); /* * Delete the file on failure. */ if (!fSuccess) RTFileDelete(pszPath); } else rc = txsReplyRC(pPktHdr, rc, "RTFileOpen(,\"%s\",)", pszPath); RTStrFree(pszPath); return rc; } /** * List the entries in the specified directory. * * @returns IPRT status code from send. * @param pPktHdr The list packet. */ static int txsDoList(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc)) return rc; rc = txsReplyNotImplemented(pPktHdr); RTStrFree(pszPath); return rc; } /** * Get info about a file system object, following all but the symbolic links * except in the final path component. * * @returns IPRT status code from send. * @param pPktHdr The lstat packet. */ static int txsDoLStat(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "path", &pszPath, &rc)) return rc; RTFSOBJINFO Info; rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_UNIX, RTPATH_F_ON_LINK); if (RT_SUCCESS(rc)) /** @todo figure out how to format the return buffer here. */ rc = txsReplyNotImplemented(pPktHdr); else rc = txsReplyRC(pPktHdr, rc, "RTPathQueryInfoEx(\"%s\",,UNIX,ON_LINK)", pszPath); RTStrFree(pszPath); return rc; } /** * Get info about a file system object, following all symbolic links. * * @returns IPRT status code from send. * @param pPktHdr The stat packet. */ static int txsDoStat(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "path", &pszPath, &rc)) return rc; RTFSOBJINFO Info; rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_UNIX, RTPATH_F_FOLLOW_LINK); if (RT_SUCCESS(rc)) /** @todo figure out how to format the return buffer here. */ rc = txsReplyNotImplemented(pPktHdr); else rc = txsReplyRC(pPktHdr, rc, "RTPathQueryInfoEx(\"%s\",,UNIX,FOLLOW_LINK)", pszPath); RTStrFree(pszPath); return rc; } /** * Checks if the specified path is a symbolic link. * * @returns IPRT status code from send. * @param pPktHdr The issymlnk packet. */ static int txsDoIsSymlnk(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "symlink", &pszPath, &rc)) return rc; RTFSOBJINFO Info; rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK); if (RT_SUCCESS(rc) && RTFS_IS_SYMLINK(Info.Attr.fMode)) rc = txsReplySimple(pPktHdr, "TRUE "); else rc = txsReplySimple(pPktHdr, "FALSE "); RTStrFree(pszPath); return rc; } /** * Checks if the specified path is a file or not. * * If the final path element is a symbolic link to a file, we'll return * FALSE. * * @returns IPRT status code from send. * @param pPktHdr The isfile packet. */ static int txsDoIsFile(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc)) return rc; RTFSOBJINFO Info; rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK); if (RT_SUCCESS(rc) && RTFS_IS_FILE(Info.Attr.fMode)) rc = txsReplySimple(pPktHdr, "TRUE "); else rc = txsReplySimple(pPktHdr, "FALSE "); RTStrFree(pszPath); return rc; } /** * Checks if the specified path is a directory or not. * * If the final path element is a symbolic link to a directory, we'll return * FALSE. * * @returns IPRT status code from send. * @param pPktHdr The isdir packet. */ static int txsDoIsDir(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc)) return rc; RTFSOBJINFO Info; rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK); if (RT_SUCCESS(rc) && RTFS_IS_DIRECTORY(Info.Attr.fMode)) rc = txsReplySimple(pPktHdr, "TRUE "); else rc = txsReplySimple(pPktHdr, "FALSE "); RTStrFree(pszPath); return rc; } /** * Changes the group of a file, directory of symbolic link. * * @returns IPRT status code from send. * @param pPktHdr The chmod packet. */ static int txsDoChGrp(PCTXSPKTHDR pPktHdr) { return txsReplyNotImplemented(pPktHdr); } /** * Changes the owner of a file, directory of symbolic link. * * @returns IPRT status code from send. * @param pPktHdr The chmod packet. */ static int txsDoChOwn(PCTXSPKTHDR pPktHdr) { return txsReplyNotImplemented(pPktHdr); } /** * Changes the mode of a file or directory. * * @returns IPRT status code from send. * @param pPktHdr The chmod packet. */ static int txsDoChMod(PCTXSPKTHDR pPktHdr) { return txsReplyNotImplemented(pPktHdr); } /** * Removes a directory tree. * * @returns IPRT status code from send. * @param pPktHdr The rmtree packet. */ static int txsDoRmTree(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc)) return rc; rc = RTDirRemoveRecursive(pszPath, 0 /*fFlags*/); rc = txsReplyRC(pPktHdr, rc, "RTDirRemoveRecusive(\"%s\",0)", pszPath); RTStrFree(pszPath); return rc; } /** * Removes a symbolic link. * * @returns IPRT status code from send. * @param pPktHdr The rmsymlink packet. */ static int txsDoRmSymlnk(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "symlink", &pszPath, &rc)) return rc; rc = VERR_NOT_IMPLEMENTED; /// @todo RTSymlinkDelete(pszPath); rc = txsReplyRC(pPktHdr, rc, "RTSymlinkDelete(\"%s\")", pszPath); RTStrFree(pszPath); return rc; } /** * Removes a file. * * @returns IPRT status code from send. * @param pPktHdr The rmfile packet. */ static int txsDoRmFile(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc)) return rc; rc = RTFileDelete(pszPath); rc = txsReplyRC(pPktHdr, rc, "RTFileDelete(\"%s\")", pszPath); RTStrFree(pszPath); return rc; } /** * Removes a directory. * * @returns IPRT status code from send. * @param pPktHdr The rmdir packet. */ static int txsDoRmDir(PCTXSPKTHDR pPktHdr) { int rc; char *pszPath; if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc)) return rc; rc = RTDirRemove(pszPath); rc = txsReplyRC(pPktHdr, rc, "RTDirRemove(\"%s\")", pszPath); RTStrFree(pszPath); return rc; } /** * Creates a symbolic link. * * @returns IPRT status code from send. * @param pPktHdr The mksymlnk packet. */ static int txsDoMkSymlnk(PCTXSPKTHDR pPktHdr) { return txsReplyNotImplemented(pPktHdr); } /** * Creates a directory and all its parents. * * @returns IPRT status code from send. * @param pPktHdr The mkdir -p packet. */ static int txsDoMkDrPath(PCTXSPKTHDR pPktHdr) { /* The same format as the MKDIR command. */ if (pPktHdr->cb < sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2) return txsReplyBadMinSize(pPktHdr, sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2); int rc; char *pszPath; if (!txsIsStringValid(pPktHdr, "dir", (const char *)(pPktHdr + 1) + sizeof(RTFMODE), &pszPath, NULL, &rc)) return rc; RTFMODE fMode = *(RTFMODE const *)(pPktHdr + 1); rc = RTDirCreateFullPath(pszPath, fMode); rc = txsReplyRC(pPktHdr, rc, "RTDirCreateFullPath(\"%s\", %#x)", pszPath, fMode); RTStrFree(pszPath); return rc; } /** * Creates a directory. * * @returns IPRT status code from send. * @param pPktHdr The mkdir packet. */ static int txsDoMkDir(PCTXSPKTHDR pPktHdr) { /* After the packet header follows a mode mask and the remainder of the packet is the zero terminated directory name. */ size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2; if (pPktHdr->cb < cbMin) return txsReplyBadMinSize(pPktHdr, cbMin); int rc; char *pszPath; if (!txsIsStringValid(pPktHdr, "dir", (const char *)(pPktHdr + 1) + sizeof(RTFMODE), &pszPath, NULL, &rc)) return rc; RTFMODE fMode = *(RTFMODE const *)(pPktHdr + 1); rc = RTDirCreate(pszPath, fMode, 0); rc = txsReplyRC(pPktHdr, rc, "RTDirCreate(\"%s\", %#x)", pszPath, fMode); RTStrFree(pszPath); return rc; } /** * Cleans up the scratch area. * * @returns IPRT status code from send. * @param pPktHdr The shutdown packet. */ static int txsDoCleanup(PCTXSPKTHDR pPktHdr) { int rc = RTDirRemoveRecursive(g_szScratchPath, RTDIRRMREC_F_CONTENT_ONLY); return txsReplyRC(pPktHdr, rc, "RTDirRemoveRecursive(\"%s\", CONTENT_ONLY)", g_szScratchPath); } /** * Ejects the specified DVD/CD drive. * * @returns IPRT status code from send. * @param pPktHdr The eject packet. */ static int txsDoCdEject(PCTXSPKTHDR pPktHdr) { /* After the packet header follows a uint32_t ordinal. */ size_t const cbExpected = sizeof(TXSPKTHDR) + sizeof(uint32_t); if (pPktHdr->cb != cbExpected) return txsReplyBadSize(pPktHdr, cbExpected); uint32_t iOrdinal = *(uint32_t const *)(pPktHdr + 1); RTCDROM hCdrom; int rc = RTCdromOpenByOrdinal(iOrdinal, RTCDROM_O_CONTROL, &hCdrom); if (RT_FAILURE(rc)) return txsReplyRC(pPktHdr, rc, "RTCdromOpenByOrdinal(%u, RTCDROM_O_CONTROL, )", iOrdinal); rc = RTCdromEject(hCdrom, true /*fForce*/); RTCdromRelease(hCdrom); return txsReplyRC(pPktHdr, rc, "RTCdromEject(ord=%u, fForce=true)", iOrdinal); } /** * Common worker for txsDoShutdown and txsDoReboot. * * @returns IPRT status code from send. * @param pPktHdr The reboot packet. * @param fAction Which action to take. */ static int txsCommonShutdownReboot(PCTXSPKTHDR pPktHdr, uint32_t fAction) { /* * We ACK the reboot & shutdown before actually performing them, then we * terminate the transport layer. * * This is to make sure the client isn't stuck with a dead connection. The * transport layer termination also make sure we won't accept new * connections in case the client is too eager to reconnect to a rebooted * test victim. On the down side, we cannot easily report RTSystemShutdown * failures failures this way. But the client can kind of figure it out by * reconnecting and seeing that our UUID was unchanged. */ int rc; if (pPktHdr->cb != sizeof(TXSPKTHDR)) return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR)); g_pTransport->pfnNotifyReboot(); rc = txsReplyAck(pPktHdr); RTThreadSleep(2560); /* fudge factor */ g_pTransport->pfnTerm(); /* * Do the job, if it fails we'll restart the transport layer. */ #if 0 rc = VINF_SUCCESS; #else rc = RTSystemShutdown(0 /*cMsDelay*/, fAction | RTSYSTEM_SHUTDOWN_PLANNED | RTSYSTEM_SHUTDOWN_FORCE, "Test Execution Service"); #endif if (RT_SUCCESS(rc)) { RTMsgInfo(fAction == RTSYSTEM_SHUTDOWN_REBOOT ? "Rebooting...\n" : "Shutting down...\n"); g_fTerminate = true; } else { RTMsgError("RTSystemShutdown w/ fAction=%#x failed: %Rrc", fAction, rc); int rc2 = g_pTransport->pfnInit(); if (RT_FAILURE(rc2)) { g_fTerminate = true; rc = rc2; } } return rc; } /** * Shuts down the machine, powering it off if possible. * * @returns IPRT status code from send. * @param pPktHdr The shutdown packet. */ static int txsDoShutdown(PCTXSPKTHDR pPktHdr) { return txsCommonShutdownReboot(pPktHdr, RTSYSTEM_SHUTDOWN_POWER_OFF_HALT); } /** * Reboots the machine. * * @returns IPRT status code from send. * @param pPktHdr The reboot packet. */ static int txsDoReboot(PCTXSPKTHDR pPktHdr) { return txsCommonShutdownReboot(pPktHdr, RTSYSTEM_SHUTDOWN_REBOOT); } /** * Verifies and acknowledges a "UUID" request. * * @returns IPRT status code. * @param pPktHdr The howdy packet. */ static int txsDoUuid(PCTXSPKTHDR pPktHdr) { if (pPktHdr->cb != sizeof(TXSPKTHDR)) return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR)); struct { TXSPKTHDR Hdr; char szUuid[RTUUID_STR_LENGTH]; char abPadding[TXSPKT_ALIGNMENT]; } Pkt; int rc = RTUuidToStr(&g_InstanceUuid, Pkt.szUuid, sizeof(Pkt.szUuid)); if (RT_FAILURE(rc)) return txsReplyRC(pPktHdr, rc, "RTUuidToStr"); return txsReplyInternal(&Pkt.Hdr, "ACK UUID", strlen(Pkt.szUuid) + 1); } /** * Verifies and acknowledges a "BYE" request. * * @returns IPRT status code. * @param pPktHdr The howdy packet. */ static int txsDoBye(PCTXSPKTHDR pPktHdr) { int rc; if (pPktHdr->cb == sizeof(TXSPKTHDR)) rc = txsReplyAck(pPktHdr); else rc = txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR)); g_pTransport->pfnNotifyBye(); return rc; } /** * Verifies and acknowledges a "HOWDY" request. * * @returns IPRT status code. * @param pPktHdr The howdy packet. */ static int txsDoHowdy(PCTXSPKTHDR pPktHdr) { if (pPktHdr->cb != sizeof(TXSPKTHDR)) return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR)); int rc = txsReplyAck(pPktHdr); if (RT_SUCCESS(rc)) { g_pTransport->pfnNotifyHowdy(); RTDirRemoveRecursive(g_szScratchPath, RTDIRRMREC_F_CONTENT_ONLY); } return rc; } /** * Replies according to the return code. * * @returns rcOperation and pTxsExec->rcReplySend. * @param pTxsExec The TXSEXEC instance. * @param rcOperation The status code to report. * @param pszOperationFmt The operation that failed. Typically giving the * function call with important arguments. * @param ... Arguments to the format string. */ static int txsExecReplyRC(PTXSEXEC pTxsExec, int rcOperation, const char *pszOperationFmt, ...) { AssertStmt(RT_FAILURE_NP(rcOperation), rcOperation = VERR_IPE_UNEXPECTED_INFO_STATUS); char szOperation[128]; va_list va; va_start(va, pszOperationFmt); RTStrPrintfV(szOperation, sizeof(szOperation), pszOperationFmt, va); va_end(va); pTxsExec->rcReplySend = txsReplyFailure(pTxsExec->pPktHdr, "FAILED ", "%s failed with rc=%Rrc (opcode '%.8s')", szOperation, rcOperation, pTxsExec->pPktHdr->achOpcode); return rcOperation; } /** * Sends the process exit status reply to the TXS client. * * @returns IPRT status code of the send. * @param pTxsExec The TXSEXEC instance. * @param fProcessAlive Whether the process is still alive (against our * will). * @param fProcessTimedOut Whether the process timed out. * @param MsProcessKilled When the process was killed, UINT64_MAX if not. */ static int txsExecSendExitStatus(PTXSEXEC pTxsExec, bool fProcessAlive, bool fProcessTimedOut, uint64_t MsProcessKilled) { int rc; if ( fProcessTimedOut && !fProcessAlive && MsProcessKilled != UINT64_MAX) { rc = txsReplySimple(pTxsExec->pPktHdr, "PROC TOK"); if (g_fDisplayOutput) RTPrintf("txs: Process timed out and was killed\n"); } else if (fProcessTimedOut && fProcessAlive && MsProcessKilled != UINT64_MAX) { rc = txsReplySimple(pTxsExec->pPktHdr, "PROC TOA"); if (g_fDisplayOutput) RTPrintf("txs: Process timed out and was not killed successfully\n"); } else if (g_fTerminate && (fProcessAlive || MsProcessKilled != UINT64_MAX)) rc = txsReplySimple(pTxsExec->pPktHdr, "PROC DWN"); else if (fProcessAlive) { rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "Doofus! process is alive when it should not"); AssertFailed(); } else if (MsProcessKilled != UINT64_MAX) { rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "Doofus! process has been killed when it should not"); AssertFailed(); } else if ( pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_NORMAL && pTxsExec->ProcessStatus.iStatus == 0) { rc = txsReplySimple(pTxsExec->pPktHdr, "PROC OK "); if (g_fDisplayOutput) RTPrintf("txs: Process exited with status: 0\n"); } else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_NORMAL) { rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC NOK", "%d", pTxsExec->ProcessStatus.iStatus); if (g_fDisplayOutput) RTPrintf("txs: Process exited with status: %d\n", pTxsExec->ProcessStatus.iStatus); } else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_SIGNAL) { rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC SIG", "%d", pTxsExec->ProcessStatus.iStatus); if (g_fDisplayOutput) RTPrintf("txs: Process exited with status: signal %d\n", pTxsExec->ProcessStatus.iStatus); } else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_ABEND) { rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC ABD", ""); if (g_fDisplayOutput) RTPrintf("txs: Process exited with status: abend\n"); } else { rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "enmReason=%d iStatus=%d", pTxsExec->ProcessStatus.enmReason, pTxsExec->ProcessStatus.iStatus); AssertMsgFailed(("enmReason=%d iStatus=%d", pTxsExec->ProcessStatus.enmReason, pTxsExec->ProcessStatus.iStatus)); } return rc; } /** * Handle pending output data or error on standard out, standard error or the * test pipe. * * @returns IPRT status code from client send. * @param hPollSet The polling set. * @param fPollEvt The event mask returned by RTPollNoResume. * @param phPipeR The pipe handle. * @param puCrc32 The current CRC-32 of the stream. (In/Out) * @param enmHndId The handle ID. * @param pszOpcode The opcode for the data upload. * * @todo Put the last 4 parameters into a struct! */ static int txsDoExecHlpHandleOutputEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phPipeR, uint32_t *puCrc32, TXSEXECHNDID enmHndId, const char *pszOpcode) { Log(("txsDoExecHlpHandleOutputEvent: %s fPollEvt=%#x\n", pszOpcode, fPollEvt)); /* * Try drain the pipe before acting on any errors. */ int rc = VINF_SUCCESS; struct { TXSPKTHDR Hdr; uint32_t uCrc32; char abBuf[_64K]; char abPadding[TXSPKT_ALIGNMENT]; } Pkt; size_t cbRead; int rc2 = RTPipeRead(*phPipeR, Pkt.abBuf, sizeof(Pkt.abBuf), &cbRead); if (RT_SUCCESS(rc2) && cbRead) { Log(("Crc32=%#x ", *puCrc32)); *puCrc32 = RTCrc32Process(*puCrc32, Pkt.abBuf, cbRead); Log(("cbRead=%#x Crc32=%#x \n", cbRead, *puCrc32)); Pkt.uCrc32 = RTCrc32Finish(*puCrc32); if (g_fDisplayOutput) { if (enmHndId == TXSEXECHNDID_STDOUT) RTStrmPrintf(g_pStdErr, "%.*s", cbRead, Pkt.abBuf); else if (enmHndId == TXSEXECHNDID_STDERR) RTStrmPrintf(g_pStdErr, "%.*s", cbRead, Pkt.abBuf); } rc = txsReplyInternal(&Pkt.Hdr, pszOpcode, cbRead + sizeof(uint32_t)); /* Make sure we go another poll round in case there was too much data for the buffer to hold. */ fPollEvt &= RTPOLL_EVT_ERROR; } else if (RT_FAILURE(rc2)) { fPollEvt |= RTPOLL_EVT_ERROR; AssertMsg(rc2 == VERR_BROKEN_PIPE, ("%Rrc\n", rc)); } /* * If an error was raised signalled, */ if (fPollEvt & RTPOLL_EVT_ERROR) { rc2 = RTPollSetRemove(hPollSet, enmHndId); AssertRC(rc2); rc2 = RTPipeClose(*phPipeR); AssertRC(rc2); *phPipeR = NIL_RTPIPE; } return rc; } /** * Try write some more data to the standard input of the child. * * @returns IPRT status code. * @param pStdInBuf The standard input buffer. * @param hStdInW The standard input pipe. */ static int txsDoExecHlpWriteStdIn(PTXSEXECSTDINBUF pStdInBuf, RTPIPE hStdInW) { size_t cbToWrite = pStdInBuf->cb - pStdInBuf->off; size_t cbWritten; int rc = RTPipeWrite(hStdInW, &pStdInBuf->pch[pStdInBuf->off], cbToWrite, &cbWritten); if (RT_SUCCESS(rc)) { Assert(cbWritten == cbToWrite); pStdInBuf->off += cbWritten; } return rc; } /** * Handle an error event on standard input. * * @param hPollSet The polling set. * @param fPollEvt The event mask returned by RTPollNoResume. * @param phStdInW The standard input pipe handle. * @param pStdInBuf The standard input buffer. */ static void txsDoExecHlpHandleStdInErrorEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phStdInW, PTXSEXECSTDINBUF pStdInBuf) { NOREF(fPollEvt); int rc2; if (pStdInBuf->off < pStdInBuf->cb) { rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE); AssertRC(rc2); } rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN); AssertRC(rc2); rc2 = RTPipeClose(*phStdInW); AssertRC(rc2); *phStdInW = NIL_RTPIPE; RTMemFree(pStdInBuf->pch); pStdInBuf->pch = NULL; pStdInBuf->off = 0; pStdInBuf->cb = 0; pStdInBuf->cbAllocated = 0; pStdInBuf->fBitBucket = true; } /** * Handle an event indicating we can write to the standard input pipe of the * child process. * * @param hPollSet The polling set. * @param fPollEvt The event mask returned by RTPollNoResume. * @param phStdInW The standard input pipe. * @param pStdInBuf The standard input buffer. */ static void txsDoExecHlpHandleStdInWritableEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phStdInW, PTXSEXECSTDINBUF pStdInBuf) { int rc; if (!(fPollEvt & RTPOLL_EVT_ERROR)) { rc = txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW); if (RT_FAILURE(rc) && rc != VERR_BAD_PIPE) { /** @todo do we need to do something about this error condition? */ AssertRC(rc); } if (pStdInBuf->off < pStdInBuf->cb) { rc = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE); AssertRC(rc); } } else txsDoExecHlpHandleStdInErrorEvent(hPollSet, fPollEvt, phStdInW, pStdInBuf); } /** * Handle a transport event or successful pfnPollIn() call. * * @returns IPRT status code from client send. * @retval VINF_EOF indicates ABORT command. * * @param hPollSet The polling set. * @param fPollEvt The event mask returned by RTPollNoResume. * @param idPollHnd The handle ID. * @param phStdInW The standard input pipe. * @param pStdInBuf The standard input buffer. */ static int txsDoExecHlpHandleTransportEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, uint32_t idPollHnd, PRTPIPE phStdInW, PTXSEXECSTDINBUF pStdInBuf) { /* ASSUMES the transport layer will detect or clear any error condition. */ NOREF(fPollEvt); NOREF(idPollHnd); Log(("txsDoExecHlpHandleTransportEvent\n")); /** @todo Use a callback for this case? */ /* * Read client command packet and process it. */ /** @todo Sometimes this hangs on windows because there isn't any data pending. * We probably get woken up at the wrong time or in the wrong way, i.e. RTPoll() * is busted for sockets. * * Temporary workaround: Poll for input before trying to read it. */ if (!g_pTransport->pfnPollIn()) { Log(("Bad transport event\n")); RTThreadYield(); return VINF_SUCCESS; } PTXSPKTHDR pPktHdr; int rc = txsRecvPkt(&pPktHdr, false /*fAutoRetryOnFailure*/); if (RT_FAILURE(rc)) return rc; Log(("Bad transport event\n")); /* * The most common thing here would be a STDIN request with data * for the child process. */ if (txsIsSameOpcode(pPktHdr, "STDIN")) { if ( !pStdInBuf->fBitBucket && pPktHdr->cb >= sizeof(TXSPKTHDR) + sizeof(uint32_t)) { uint32_t uCrc32 = *(uint32_t *)(pPktHdr + 1); const char *pch = (const char *)(pPktHdr + 1) + sizeof(uint32_t); size_t cb = pPktHdr->cb - sizeof(TXSPKTHDR) - sizeof(uint32_t); /* Check the CRC */ pStdInBuf->uCrc32 = RTCrc32Process(pStdInBuf->uCrc32, pch, cb); if (RTCrc32Finish(pStdInBuf->uCrc32) == uCrc32) { /* Rewind the buffer if it's empty. */ size_t cbInBuf = pStdInBuf->cb - pStdInBuf->off; bool const fAddToSet = cbInBuf == 0; if (fAddToSet) pStdInBuf->cb = pStdInBuf->off = 0; /* Try and see if we can simply append the data. */ if (cb + pStdInBuf->cb <= pStdInBuf->cbAllocated) { memcpy(&pStdInBuf->pch[pStdInBuf->cb], pch, cb); pStdInBuf->cb += cb; rc = txsReplyAck(pPktHdr); } else { /* Try write a bit or two before we move+realloc the buffer. */ if (cbInBuf > 0) txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW); /* Move any buffered data to the front. */ cbInBuf = pStdInBuf->cb - pStdInBuf->off; if (cbInBuf == 0) pStdInBuf->cb = pStdInBuf->off = 0; else { memmove(pStdInBuf->pch, &pStdInBuf->pch[pStdInBuf->off], cbInBuf); pStdInBuf->cb = cbInBuf; pStdInBuf->off = 0; } /* Do we need to grow the buffer? */ if (cb + pStdInBuf->cb > pStdInBuf->cbAllocated) { size_t cbAlloc = pStdInBuf->cb + cb; cbAlloc = RT_ALIGN_Z(cbAlloc, _64K); void *pvNew = RTMemRealloc(pStdInBuf->pch, cbAlloc); if (pvNew) { pStdInBuf->pch = (char *)pvNew; pStdInBuf->cbAllocated = cbAlloc; } } /* Finally, copy the data. */ if (cb + pStdInBuf->cb <= pStdInBuf->cbAllocated) { memcpy(&pStdInBuf->pch[pStdInBuf->cb], pch, cb); pStdInBuf->cb += cb; rc = txsReplyAck(pPktHdr); } else rc = txsReplySimple(pPktHdr, "STDINMEM"); } /* * Flush the buffered data and add/remove the standard input * handle from the set. */ txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW); if (fAddToSet && pStdInBuf->off < pStdInBuf->cb) { int rc2 = RTPollSetAddPipe(hPollSet, *phStdInW, RTPOLL_EVT_WRITE, TXSEXECHNDID_STDIN_WRITABLE); AssertRC(rc2); } else if (!fAddToSet && pStdInBuf->off >= pStdInBuf->cb) { int rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE); AssertRC(rc2); } } else rc = txsReplyFailure(pPktHdr, "STDINCRC", "Invalid CRC checksum expected %#x got %#x", pStdInBuf->uCrc32, uCrc32); } else if (pPktHdr->cb < sizeof(TXSPKTHDR) + sizeof(uint32_t)) rc = txsReplySimple(pPktHdr, "STDINBAD"); else rc = txsReplySimple(pPktHdr, "STDINIGN"); } /* * Marks the end of the stream for stdin. */ else if (txsIsSameOpcode(pPktHdr, "STDINEOS")) { if (RT_LIKELY(pPktHdr->cb == sizeof(TXSPKTHDR))) { /* Close the pipe. */ txsDoExecHlpHandleStdInErrorEvent(hPollSet, fPollEvt, phStdInW, pStdInBuf); rc = txsReplyAck(pPktHdr); } else rc = txsReplySimple(pPktHdr, "STDINBAD"); } /* * The only other two requests are connection oriented and we return a error * code so that we unwind the whole EXEC shebang and start afresh. */ else if (txsIsSameOpcode(pPktHdr, "BYE")) { rc = txsDoBye(pPktHdr); if (RT_SUCCESS(rc)) rc = VERR_NET_NOT_CONNECTED; } else if (txsIsSameOpcode(pPktHdr, "HOWDY")) { rc = txsDoHowdy(pPktHdr); if (RT_SUCCESS(rc)) rc = VERR_NET_NOT_CONNECTED; } else if (txsIsSameOpcode(pPktHdr, "ABORT")) { rc = txsReplyAck(pPktHdr); if (RT_SUCCESS(rc)) rc = VINF_EOF; /* this is but ugly! */ } else rc = txsReplyFailure(pPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known or not recognized during EXEC", pPktHdr->achOpcode); RTMemFree(pPktHdr); return rc; } /** * Handles the output and input of the process, waits for it finish up. * * @returns IPRT status code from reply send. * @param pTxsExec The TXSEXEC instance. */ static int txsDoExecHlp2(PTXSEXEC pTxsExec) { int rc; /* client send. */ int rc2; TXSEXECSTDINBUF StdInBuf = { 0, 0, NULL, 0, pTxsExec->hStdInW == NIL_RTPIPE, RTCrc32Start() }; uint32_t uStdOutCrc32 = RTCrc32Start(); uint32_t uStdErrCrc32 = uStdOutCrc32; uint32_t uTestPipeCrc32 = uStdOutCrc32; uint64_t const MsStart = RTTimeMilliTS(); bool fProcessTimedOut = false; uint64_t MsProcessKilled = UINT64_MAX; RTMSINTERVAL const cMsPollBase = g_pTransport->pfnPollSetAdd || pTxsExec->hStdInW == NIL_RTPIPE ? 5000 : 100; RTMSINTERVAL cMsPollCur = 0; /* * Before entering the loop, tell the client that we've started the guest * and that it's now OK to send input to the process. (This is not the * final ACK, so the packet header is NULL ... kind of bogus.) */ rc = txsReplyAck(NULL); /* * Process input, output, the test pipe and client requests. */ while ( RT_SUCCESS(rc) && RT_UNLIKELY(!g_fTerminate)) { /* * Wait/Process all pending events. */ uint32_t idPollHnd; uint32_t fPollEvt; Log3(("Calling RTPollNoResume(,%u,)...\n", cMsPollCur)); rc2 = RTPollNoResume(pTxsExec->hPollSet, cMsPollCur, &fPollEvt, &idPollHnd); Log3(("RTPollNoResume -> fPollEvt=%#x idPollHnd=%u\n", fPollEvt, idPollHnd)); if (g_fTerminate) continue; cMsPollCur = 0; /* no rest until we've checked everything. */ if (RT_SUCCESS(rc2)) { switch (idPollHnd) { case TXSEXECHNDID_STDOUT: rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdOutR, &uStdOutCrc32, TXSEXECHNDID_STDOUT, "STDOUT "); break; case TXSEXECHNDID_STDERR: rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdErrR, &uStdErrCrc32, TXSEXECHNDID_STDERR, "STDERR "); break; case TXSEXECHNDID_TESTPIPE: rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hTestPipeR, &uTestPipeCrc32, TXSEXECHNDID_TESTPIPE, "TESTPIPE"); break; case TXSEXECHNDID_STDIN: txsDoExecHlpHandleStdInErrorEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdInW, &StdInBuf); break; case TXSEXECHNDID_STDIN_WRITABLE: txsDoExecHlpHandleStdInWritableEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdInW, &StdInBuf); break; case TXSEXECHNDID_THREAD: rc2 = RTPollSetRemove(pTxsExec->hPollSet, TXSEXECHNDID_THREAD); AssertRC(rc2); break; default: rc = txsDoExecHlpHandleTransportEvent(pTxsExec->hPollSet, fPollEvt, idPollHnd, &pTxsExec->hStdInW, &StdInBuf); break; } if (RT_FAILURE(rc) || rc == VINF_EOF) break; /* abort command, or client dead or something */ continue; } /* * Check for incoming data. */ if (g_pTransport->pfnPollIn()) { rc = txsDoExecHlpHandleTransportEvent(pTxsExec->hPollSet, 0, UINT32_MAX, &pTxsExec->hStdInW, &StdInBuf); if (RT_FAILURE(rc) || rc == VINF_EOF) break; /* abort command, or client dead or something */ continue; } /* * If the process has terminated, we're should head out. */ if (!ASMAtomicReadBool(&pTxsExec->fProcessAlive)) break; /* * Check for timed out, killing the process. */ uint32_t cMilliesLeft = RT_INDEFINITE_WAIT; if (pTxsExec->cMsTimeout != RT_INDEFINITE_WAIT) { uint64_t u64Now = RTTimeMilliTS(); uint64_t cMsElapsed = u64Now - MsStart; if (cMsElapsed >= pTxsExec->cMsTimeout) { fProcessTimedOut = true; if ( MsProcessKilled == UINT64_MAX || u64Now - MsProcessKilled > 1000) { if (u64Now - MsProcessKilled > 20*60*1000) break; /* give up after 20 mins */ RTCritSectEnter(&pTxsExec->CritSect); if (pTxsExec->fProcessAlive) RTProcTerminate(pTxsExec->hProcess); RTCritSectLeave(&pTxsExec->CritSect); MsProcessKilled = u64Now; continue; } cMilliesLeft = 10000; } else cMilliesLeft = pTxsExec->cMsTimeout - (uint32_t)cMsElapsed; } /* Reset the polling interval since we've done all pending work. */ cMsPollCur = cMilliesLeft >= cMsPollBase ? cMsPollBase : cMilliesLeft; } /* * At this point we should hopefully only have to wait 0 ms on the thread * to release the handle... But if for instance the process refuses to die, * we'll have to try kill it again. Bothersome. */ for (size_t i = 0; i < 22; i++) { rc2 = RTThreadWait(pTxsExec->hThreadWaiter, 500, NULL); if (RT_SUCCESS(rc)) { pTxsExec->hThreadWaiter = NIL_RTTHREAD; Assert(!pTxsExec->fProcessAlive); break; } if (i == 0 || i == 10 || i == 15 || i == 18 || i > 20) { RTCritSectEnter(&pTxsExec->CritSect); if (pTxsExec->fProcessAlive) RTProcTerminate(pTxsExec->hProcess); RTCritSectLeave(&pTxsExec->CritSect); } } /* * If we don't have a client problem (RT_FAILURE(rc) we'll reply to the * clients exec packet now. */ if (RT_SUCCESS(rc)) rc = txsExecSendExitStatus(pTxsExec, pTxsExec->fProcessAlive, fProcessTimedOut, MsProcessKilled); RTMemFree(StdInBuf.pch); return rc; } /** * Creates a poll set for the pipes and let the transport layer add stuff to it * as well. * * @returns IPRT status code, reply to client made on error. * @param pTxsExec The TXSEXEC instance. */ static int txsExecSetupPollSet(PTXSEXEC pTxsExec) { int rc = RTPollSetCreate(&pTxsExec->hPollSet); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTPollSetCreate"); rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdInW, RTPOLL_EVT_ERROR, TXSEXECHNDID_STDIN); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stdin"); rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdOutR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR, TXSEXECHNDID_STDOUT); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stdout"); rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdErrR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR, TXSEXECHNDID_STDERR); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stderr"); rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hTestPipeR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR, TXSEXECHNDID_TESTPIPE); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/test"); rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hWakeUpPipeR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR, TXSEXECHNDID_THREAD); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/wakeup"); if (g_pTransport->pfnPollSetAdd) { rc = g_pTransport->pfnPollSetAdd(pTxsExec->hPollSet, TXSEXECHNDID_TRANSPORT); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "%s->pfnPollSetAdd/stdin", g_pTransport->szName); } return VINF_SUCCESS; } /** * Thread that calls RTProcWait and signals the main thread when it returns. * * The thread is created before the process is started and is waiting for a user * signal from the main thread before it calls RTProcWait. * * @returns VINF_SUCCESS (ignored). * @param hThreadSelf The thread handle. * @param pvUser The TXEEXEC structure. */ static DECLCALLBACK(int) txsExecWaitThreadProc(RTTHREAD hThreadSelf, void *pvUser) { PTXSEXEC pTxsExec = (PTXSEXEC)pvUser; /* Wait for the go ahead... */ int rc = RTThreadUserWait(hThreadSelf, RT_INDEFINITE_WAIT); AssertRC(rc); RTCritSectEnter(&pTxsExec->CritSect); for (;;) { RTCritSectLeave(&pTxsExec->CritSect); rc = RTProcWaitNoResume(pTxsExec->hProcess, RTPROCWAIT_FLAGS_BLOCK, &pTxsExec->ProcessStatus); RTCritSectEnter(&pTxsExec->CritSect); /* If the pipe is NIL, the destructor wants us to get lost ASAP. */ if (pTxsExec->hWakeUpPipeW == NIL_RTPIPE) break; if (RT_FAILURE(rc)) { rc = RTProcWait(pTxsExec->hProcess, RTPROCWAIT_FLAGS_NOBLOCK, &pTxsExec->ProcessStatus); if (rc == VERR_PROCESS_RUNNING) continue; if (RT_FAILURE(rc)) { AssertRC(rc); pTxsExec->ProcessStatus.iStatus = rc; pTxsExec->ProcessStatus.enmReason = RTPROCEXITREASON_ABEND; } } /* The process finished, signal the main thread over the pipe. */ ASMAtomicWriteBool(&pTxsExec->fProcessAlive, false); size_t cbIgnored; RTPipeWrite(pTxsExec->hWakeUpPipeW, "done", 4, &cbIgnored); RTPipeClose(pTxsExec->hWakeUpPipeW); pTxsExec->hWakeUpPipeW = NIL_RTPIPE; break; } RTCritSectLeave(&pTxsExec->CritSect); return VINF_SUCCESS; } /** * Sets up the thread that waits for the process to complete. * * @returns IPRT status code, reply to client made on error. * @param pTxsExec The TXSEXEC instance. */ static int txsExecSetupThread(PTXSEXEC pTxsExec) { int rc = RTPipeCreate(&pTxsExec->hWakeUpPipeR, &pTxsExec->hWakeUpPipeW, 0 /*fFlags*/); if (RT_FAILURE(rc)) { pTxsExec->hWakeUpPipeR = pTxsExec->hWakeUpPipeW = NIL_RTPIPE; return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/wait"); } rc = RTThreadCreate(&pTxsExec->hThreadWaiter, txsExecWaitThreadProc, pTxsExec, 0 /*cbStack */, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "TxsProcW"); if (RT_FAILURE(rc)) { pTxsExec->hThreadWaiter = NIL_RTTHREAD; return txsExecReplyRC(pTxsExec, rc, "RTThreadCreate"); } return VINF_SUCCESS; } /** * Sets up the test pipe. * * @returns IPRT status code, reply to client made on error. * @param pTxsExec The TXSEXEC instance. * @param pszTestPipe How to set up the test pipe. */ static int txsExecSetupTestPipe(PTXSEXEC pTxsExec, const char *pszTestPipe) { if (strcmp(pszTestPipe, "|")) return VINF_SUCCESS; int rc = RTPipeCreate(&pTxsExec->hTestPipeR, &pTxsExec->hTestPipeW, RTPIPE_C_INHERIT_WRITE); if (RT_FAILURE(rc)) { pTxsExec->hTestPipeR = pTxsExec->hTestPipeW = NIL_RTPIPE; return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/test/%s", pszTestPipe); } char szVal[64]; RTStrPrintf(szVal, sizeof(szVal), "%#llx", (uint64_t)RTPipeToNative(pTxsExec->hTestPipeW)); rc = RTEnvSetEx(pTxsExec->hEnv, "IPRT_TEST_PIPE", szVal); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTEnvSetEx/test/%s", pszTestPipe); return VINF_SUCCESS; } /** * Sets up the redirection / pipe / nothing for one of the standard handles. * * @returns IPRT status code, reply to client made on error. * @param pTxsExec The TXSEXEC instance. * @param pszHowTo How to set up this standard handle. * @param pszStdWhat For what to setup redirection (stdin/stdout/stderr). * @param fd Which standard handle it is (0 == stdin, 1 == * stdout, 2 == stderr). * @param ph The generic handle that @a pph may be set * pointing to. Always set. * @param pph Pointer to the RTProcCreateExec argument. * Always set. * @param phPipe Where to return the end of the pipe that we * should service. Always set. */ static int txsExecSetupRedir(PTXSEXEC pTxsExec, const char *pszHowTo, const char *pszStdWhat, int fd, PRTHANDLE ph, PRTHANDLE *pph, PRTPIPE phPipe) { ph->enmType = RTHANDLETYPE_PIPE; ph->u.hPipe = NIL_RTPIPE; *pph = NULL; *phPipe = NIL_RTPIPE; int rc; if (!strcmp(pszHowTo, "|")) { /* * Setup a pipe for forwarding to/from the client. */ if (fd == 0) rc = RTPipeCreate(&ph->u.hPipe, phPipe, RTPIPE_C_INHERIT_READ); else rc = RTPipeCreate(phPipe, &ph->u.hPipe, RTPIPE_C_INHERIT_WRITE); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/%s/%s", pszStdWhat, pszHowTo); ph->enmType = RTHANDLETYPE_PIPE; *pph = ph; } else if (!strcmp(pszHowTo, "/dev/null")) { /* * Redirect to/from /dev/null. */ RTFILE hFile; rc = RTFileOpenBitBucket(&hFile, fd == 0 ? RTFILE_O_READ : RTFILE_O_WRITE); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTFileOpenBitBucket/%s/%s", pszStdWhat, pszHowTo); ph->enmType = RTHANDLETYPE_FILE; ph->u.hFile = hFile; *pph = ph; } else if (*pszHowTo) { /* * Redirect to/from file. */ uint32_t fFlags; if (fd == 0) fFlags = RTFILE_O_READ | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN; else { if (pszHowTo[0] != '>' || pszHowTo[1] != '>') fFlags = RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE; else { /* append */ pszHowTo += 2; fFlags = RTFILE_O_WRITE | RTFILE_O_DENY_NONE | RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND; } } RTFILE hFile; rc = RTFileOpen(&hFile, pszHowTo, fFlags); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTFileOpen/%s/%s", pszStdWhat, pszHowTo); ph->enmType = RTHANDLETYPE_FILE; ph->u.hFile = hFile; *pph = ph; } else /* same as parent (us) */ rc = VINF_SUCCESS; return rc; } /** * Create the environment. * * @returns IPRT status code, reply to client made on error. * @param pTxsExec The TXSEXEC instance. * @param cEnvVars The number of environment variables. * @param papszEnv The environment variables (var=value). */ static int txsExecSetupEnv(PTXSEXEC pTxsExec, uint32_t cEnvVars, const char * const *papszEnv) { /* * Create the environment. */ int rc = RTEnvClone(&pTxsExec->hEnv, RTENV_DEFAULT); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTEnvClone"); for (size_t i = 0; i < cEnvVars; i++) { rc = RTEnvPutEx(pTxsExec->hEnv, papszEnv[i]); if (RT_FAILURE(rc)) return txsExecReplyRC(pTxsExec, rc, "RTEnvPutEx(,'%s')", papszEnv[i]); } return VINF_SUCCESS; } /** * Deletes the TXSEXEC structure and frees the memory backing it. * * @param pTxsExec The structure to destroy. */ static void txsExecDestroy(PTXSEXEC pTxsExec) { int rc2; rc2 = RTEnvDestroy(pTxsExec->hEnv); AssertRC(rc2); pTxsExec->hEnv = NIL_RTENV; rc2 = RTPipeClose(pTxsExec->hTestPipeW); AssertRC(rc2); pTxsExec->hTestPipeW = NIL_RTPIPE; rc2 = RTHandleClose(pTxsExec->StdErr.phChild); AssertRC(rc2); pTxsExec->StdErr.phChild = NULL; rc2 = RTHandleClose(pTxsExec->StdOut.phChild); AssertRC(rc2); pTxsExec->StdOut.phChild = NULL; rc2 = RTHandleClose(pTxsExec->StdIn.phChild); AssertRC(rc2); pTxsExec->StdIn.phChild = NULL; rc2 = RTPipeClose(pTxsExec->hTestPipeR); AssertRC(rc2); pTxsExec->hTestPipeR = NIL_RTPIPE; rc2 = RTPipeClose(pTxsExec->hStdErrR); AssertRC(rc2); pTxsExec->hStdErrR = NIL_RTPIPE; rc2 = RTPipeClose(pTxsExec->hStdOutR); AssertRC(rc2); pTxsExec->hStdOutR = NIL_RTPIPE; rc2 = RTPipeClose(pTxsExec->hStdInW); AssertRC(rc2); pTxsExec->hStdInW = NIL_RTPIPE; RTPollSetDestroy(pTxsExec->hPollSet); pTxsExec->hPollSet = NIL_RTPOLLSET; /* * If the process is still running we're in a bit of a fix... Try kill it, * although that's potentially racing process termination and reusage of * the pid. */ RTCritSectEnter(&pTxsExec->CritSect); RTPipeClose(pTxsExec->hWakeUpPipeW); pTxsExec->hWakeUpPipeW = NIL_RTPIPE; RTPipeClose(pTxsExec->hWakeUpPipeR); pTxsExec->hWakeUpPipeR = NIL_RTPIPE; if ( pTxsExec->hProcess != NIL_RTPROCESS && pTxsExec->fProcessAlive) RTProcTerminate(pTxsExec->hProcess); RTCritSectLeave(&pTxsExec->CritSect); int rcThread = VINF_SUCCESS; if (pTxsExec->hThreadWaiter != NIL_RTTHREAD) rcThread = RTThreadWait(pTxsExec->hThreadWaiter, 5000, NULL); if (RT_SUCCESS(rcThread)) { pTxsExec->hThreadWaiter = NIL_RTTHREAD; RTCritSectDelete(&pTxsExec->CritSect); RTMemFree(pTxsExec); } /* else: leak it or RTThreadWait may cause heap corruption later. */ } /** * Initializes the TXSEXEC structure. * * @returns VINF_SUCCESS and non-NULL *ppTxsExec on success, reply send status * and *ppTxsExec set to NULL on failure. * @param pPktHdr The exec packet. * @param cMsTimeout The time parameter. * @param ppTxsExec Where to return the structure. */ static int txsExecCreate(PCTXSPKTHDR pPktHdr, RTMSINTERVAL cMsTimeout, PTXSEXEC *ppTxsExec) { *ppTxsExec = NULL; /* * Allocate the basic resources. */ PTXSEXEC pTxsExec = (PTXSEXEC)RTMemAlloc(sizeof(*pTxsExec)); if (!pTxsExec) return txsReplyRC(pPktHdr, VERR_NO_MEMORY, "RTMemAlloc(%zu)", sizeof(*pTxsExec)); int rc = RTCritSectInit(&pTxsExec->CritSect); if (RT_FAILURE(rc)) { RTMemFree(pTxsExec); return txsReplyRC(pPktHdr, rc, "RTCritSectInit"); } /* * Initialize the member to NIL values. */ pTxsExec->pPktHdr = pPktHdr; pTxsExec->cMsTimeout = cMsTimeout; pTxsExec->rcReplySend = VINF_SUCCESS; pTxsExec->hPollSet = NIL_RTPOLLSET; pTxsExec->hStdInW = NIL_RTPIPE; pTxsExec->hStdOutR = NIL_RTPIPE; pTxsExec->hStdErrR = NIL_RTPIPE; pTxsExec->hTestPipeR = NIL_RTPIPE; pTxsExec->hWakeUpPipeR = NIL_RTPIPE; pTxsExec->hThreadWaiter = NIL_RTTHREAD; pTxsExec->StdIn.phChild = NULL; pTxsExec->StdOut.phChild = NULL; pTxsExec->StdErr.phChild = NULL; pTxsExec->hTestPipeW = NIL_RTPIPE; pTxsExec->hEnv = NIL_RTENV; pTxsExec->hProcess = NIL_RTPROCESS; pTxsExec->ProcessStatus.iStatus = 254; pTxsExec->ProcessStatus.enmReason = RTPROCEXITREASON_ABEND; pTxsExec->fProcessAlive = false; pTxsExec->hWakeUpPipeW = NIL_RTPIPE; *ppTxsExec = pTxsExec; return VINF_SUCCESS; } /** * txsDoExec helper that takes over when txsDoExec has expanded the packet. * * @returns IPRT status code from send. * @param pPktHdr The exec packet. * @param fFlags Flags, reserved for future use. * @param pszExecName The executable name. * @param cArgs The argument count. * @param papszArgs The arguments. * @param cEnvVars The environment variable count. * @param papszEnv The environment variables. * @param pszStdIn How to deal with standard in. * @param pszStdOut How to deal with standard out. * @param pszStdErr How to deal with standard err. * @param pszTestPipe How to deal with the test pipe. * @param pszUsername The user to run the program as. * @param cMillies The process time limit in milliseconds. */ static int txsDoExecHlp(PCTXSPKTHDR pPktHdr, uint32_t fFlags, const char *pszExecName, uint32_t cArgs, const char * const *papszArgs, uint32_t cEnvVars, const char * const *papszEnv, const char *pszStdIn, const char *pszStdOut, const char *pszStdErr, const char *pszTestPipe, const char *pszUsername, RTMSINTERVAL cMillies) { int rc2; RT_NOREF_PV(fFlags); /* * Input validation, filter out things we don't yet support.. */ Assert(!fFlags); if (!*pszExecName) return txsReplyFailure(pPktHdr, "STR ZERO", "Executable name is empty"); if (!*pszStdIn) return txsReplyFailure(pPktHdr, "STR ZERO", "The stdin howto is empty"); if (!*pszStdOut) return txsReplyFailure(pPktHdr, "STR ZERO", "The stdout howto is empty"); if (!*pszStdErr) return txsReplyFailure(pPktHdr, "STR ZERO", "The stderr howto is empty"); if (!*pszTestPipe) return txsReplyFailure(pPktHdr, "STR ZERO", "The testpipe howto is empty"); if (strcmp(pszTestPipe, "|") && strcmp(pszTestPipe, "/dev/null")) return txsReplyFailure(pPktHdr, "BAD TSTP", "Only \"|\" and \"/dev/null\" are allowed as testpipe howtos ('%s')", pszTestPipe); if (*pszUsername) return txsReplyFailure(pPktHdr, "NOT IMPL", "Executing as a specific user is not implemented ('%s')", pszUsername); /* * Prepare for process launch. */ PTXSEXEC pTxsExec; int rc = txsExecCreate(pPktHdr, cMillies, &pTxsExec); if (pTxsExec == NULL) return rc; rc = txsExecSetupEnv(pTxsExec, cEnvVars, papszEnv); if (RT_SUCCESS(rc)) rc = txsExecSetupRedir(pTxsExec, pszStdIn, "StdIn", 0, &pTxsExec->StdIn.hChild, &pTxsExec->StdIn.phChild, &pTxsExec->hStdInW); if (RT_SUCCESS(rc)) rc = txsExecSetupRedir(pTxsExec, pszStdOut, "StdOut", 1, &pTxsExec->StdOut.hChild, &pTxsExec->StdOut.phChild, &pTxsExec->hStdOutR); if (RT_SUCCESS(rc)) rc = txsExecSetupRedir(pTxsExec, pszStdErr, "StdErr", 2, &pTxsExec->StdErr.hChild, &pTxsExec->StdErr.phChild, &pTxsExec->hStdErrR); if (RT_SUCCESS(rc)) rc = txsExecSetupTestPipe(pTxsExec, pszTestPipe); if (RT_SUCCESS(rc)) rc = txsExecSetupThread(pTxsExec); if (RT_SUCCESS(rc)) rc = txsExecSetupPollSet(pTxsExec); if (RT_SUCCESS(rc)) { /* * Create the process. */ if (g_fDisplayOutput) { RTPrintf("txs: Executing \"%s\": ", pszExecName); for (uint32_t i = 0; i < cArgs; i++) RTPrintf(" \"%s\"", papszArgs[i]); RTPrintf("\n"); } rc = RTProcCreateEx(pszExecName, papszArgs, pTxsExec->hEnv, 0 /*fFlags*/, pTxsExec->StdIn.phChild, pTxsExec->StdOut.phChild, pTxsExec->StdErr.phChild, *pszUsername ? pszUsername : NULL, NULL, &pTxsExec->hProcess); if (RT_SUCCESS(rc)) { ASMAtomicWriteBool(&pTxsExec->fProcessAlive, true); rc2 = RTThreadUserSignal(pTxsExec->hThreadWaiter); AssertRC(rc2); /* * Close the child ends of any pipes and redirected files. */ rc2 = RTHandleClose(pTxsExec->StdIn.phChild); AssertRC(rc2); pTxsExec->StdIn.phChild = NULL; rc2 = RTHandleClose(pTxsExec->StdOut.phChild); AssertRC(rc2); pTxsExec->StdOut.phChild = NULL; rc2 = RTHandleClose(pTxsExec->StdErr.phChild); AssertRC(rc2); pTxsExec->StdErr.phChild = NULL; rc2 = RTPipeClose(pTxsExec->hTestPipeW); AssertRC(rc2); pTxsExec->hTestPipeW = NIL_RTPIPE; /* * Let another worker function funnel output and input to the * client as well as the process exit code. */ rc = txsDoExecHlp2(pTxsExec); } else rc = txsReplyFailure(pPktHdr, "FAILED ", "Executing process \"%s\" failed with %Rrc", pszExecName, rc); } else rc = pTxsExec->rcReplySend; txsExecDestroy(pTxsExec); return rc; } /** * Execute a program. * * @returns IPRT status code from send. * @param pPktHdr The exec packet. */ static int txsDoExec(PCTXSPKTHDR pPktHdr) { /* * This packet has a lot of parameters, most of which are zero terminated * strings. The strings used in items 7 thru 10 are either file names, * "/dev/null" or a pipe char (|). * * Packet content: * 1. Flags reserved for future use (32-bit unsigned). * 2. The executable name (string). * 3. The argument count given as a 32-bit unsigned integer. * 4. The arguments strings. * 5. The number of environment strings (32-bit unsigned). * 6. The environment strings (var=val) to apply the environment. * 7. What to do about standard in (string). * 8. What to do about standard out (string). * 9. What to do about standard err (string). * 10. What to do about the test pipe (string). * 11. The name of the user to run the program as (string). Empty string * means running it as the current user. * 12. Process time limit in milliseconds (32-bit unsigned). Max == no limit. */ size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(uint32_t) /* flags */ + 2 + sizeof(uint32_t) /* argc */ + 2 /* argv */ + sizeof(uint32_t) + 0 /* environ */ + 4 * 1 + sizeof(uint32_t) /* timeout */; if (pPktHdr->cb < cbMin) return txsReplyBadMinSize(pPktHdr, cbMin); /* unpack the packet */ char const *pchEnd = (char const *)pPktHdr + pPktHdr->cb; char const *pch = (char const *)(pPktHdr + 1); /* cursor */ /* 1. flags */ uint32_t const fFlags = *(uint32_t const *)pch; pch += sizeof(uint32_t); if (fFlags != 0) return txsReplyFailure(pPktHdr, "BAD FLAG", "Invalid EXEC flags %#x, expected 0", fFlags); /* 2. exec name */ int rc; char *pszExecName = NULL; if (!txsIsStringValid(pPktHdr, "execname", pch, &pszExecName, &pch, &rc)) return rc; /* 3. argc */ uint32_t const cArgs = (size_t)(pchEnd - pch) > sizeof(uint32_t) ? *(uint32_t const *)pch : 0xff; pch += sizeof(uint32_t); if (cArgs * 1 >= (size_t)(pchEnd - pch)) rc = txsReplyFailure(pPktHdr, "BAD ARGC", "Bad or missing argument count (%#x)", cArgs); else if (cArgs > 128) rc = txsReplyFailure(pPktHdr, "BAD ARGC", "Too many arguments (%#x)", cArgs); else { char **papszArgs = (char **)RTMemTmpAllocZ(sizeof(char *) * (cArgs + 1)); if (papszArgs) { /* 4. argv */ bool fOk = true; for (size_t i = 0; i < cArgs && fOk; i++) { fOk = txsIsStringValid(pPktHdr, "argvN", pch, &papszArgs[i], &pch, &rc); if (!fOk) break; } if (fOk) { /* 5. cEnvVars */ uint32_t const cEnvVars = (size_t)(pchEnd - pch) > sizeof(uint32_t) ? *(uint32_t const *)pch : 0xfff; pch += sizeof(uint32_t); if (cEnvVars * 1 >= (size_t)(pchEnd - pch)) rc = txsReplyFailure(pPktHdr, "BAD ENVC", "Bad or missing environment variable count (%#x)", cEnvVars); else if (cEnvVars > 256) rc = txsReplyFailure(pPktHdr, "BAD ENVC", "Too many environment variables (%#x)", cEnvVars); else { char **papszEnv = (char **)RTMemTmpAllocZ(sizeof(char *) * (cEnvVars + 1)); if (papszEnv) { /* 6. environ */ for (size_t i = 0; i < cEnvVars && fOk; i++) { fOk = txsIsStringValid(pPktHdr, "envN", pch, &papszEnv[i], &pch, &rc); if (!fOk) /* Bail out on error. */ break; } if (fOk) { /* 7. stdout */ char *pszStdIn; if (txsIsStringValid(pPktHdr, "stdin", pch, &pszStdIn, &pch, &rc)) { /* 8. stdout */ char *pszStdOut; if (txsIsStringValid(pPktHdr, "stdout", pch, &pszStdOut, &pch, &rc)) { /* 9. stderr */ char *pszStdErr; if (txsIsStringValid(pPktHdr, "stderr", pch, &pszStdErr, &pch, &rc)) { /* 10. testpipe */ char *pszTestPipe; if (txsIsStringValid(pPktHdr, "testpipe", pch, &pszTestPipe, &pch, &rc)) { /* 11. username */ char *pszUsername; if (txsIsStringValid(pPktHdr, "username", pch, &pszUsername, &pch, &rc)) { /** @todo No password value? */ /* 12. time limit */ uint32_t const cMillies = (size_t)(pchEnd - pch) >= sizeof(uint32_t) ? *(uint32_t const *)pch : 0; if ((size_t)(pchEnd - pch) > sizeof(uint32_t)) rc = txsReplyFailure(pPktHdr, "BAD END ", "Timeout argument not at end of packet (%#x)", (size_t)(pchEnd - pch)); else if ((size_t)(pchEnd - pch) < sizeof(uint32_t)) rc = txsReplyFailure(pPktHdr, "BAD NOTO", "No timeout argument"); else if (cMillies < 1000) rc = txsReplyFailure(pPktHdr, "BAD TO ", "Timeout is less than a second (%#x)", cMillies); else { pch += sizeof(uint32_t); /* * Time to employ a helper here before we go way beyond * the right margin... */ rc = txsDoExecHlp(pPktHdr, fFlags, pszExecName, cArgs, papszArgs, cEnvVars, papszEnv, pszStdIn, pszStdOut, pszStdErr, pszTestPipe, pszUsername, cMillies == UINT32_MAX ? RT_INDEFINITE_WAIT : cMillies); } RTStrFree(pszUsername); } RTStrFree(pszTestPipe); } RTStrFree(pszStdErr); } RTStrFree(pszStdOut); } RTStrFree(pszStdIn); } } for (size_t i = 0; i < cEnvVars; i++) RTStrFree(papszEnv[i]); RTMemTmpFree(papszEnv); } else rc = txsReplyFailure(pPktHdr, "NO MEM ", "Failed to allocate %zu bytes environ", sizeof(char *) * (cEnvVars + 1)); } } for (size_t i = 0; i < cArgs; i++) RTStrFree(papszArgs[i]); RTMemTmpFree(papszArgs); } else rc = txsReplyFailure(pPktHdr, "NO MEM ", "Failed to allocate %zu bytes for argv", sizeof(char *) * (cArgs + 1)); } RTStrFree(pszExecName); return rc; } /** * The main loop. * * @returns exit code. */ static RTEXITCODE txsMainLoop(void) { if (g_cVerbose > 0) RTMsgInfo("txsMainLoop: start...\n"); RTEXITCODE enmExitCode = RTEXITCODE_SUCCESS; while (!g_fTerminate) { /* * Read client command packet and process it. */ PTXSPKTHDR pPktHdr; int rc = txsRecvPkt(&pPktHdr, true /*fAutoRetryOnFailure*/); if (RT_FAILURE(rc)) continue; if (g_cVerbose > 0) RTMsgInfo("txsMainLoop: CMD: %.8s...", pPktHdr->achOpcode); /* * Do a string switch on the opcode bit. */ /* Connection: */ if ( txsIsSameOpcode(pPktHdr, "HOWDY ")) rc = txsDoHowdy(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "BYE ")) rc = txsDoBye(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "UUID ")) rc = txsDoUuid(pPktHdr); /* Process: */ else if (txsIsSameOpcode(pPktHdr, "EXEC ")) rc = txsDoExec(pPktHdr); /* Admin: */ else if (txsIsSameOpcode(pPktHdr, "REBOOT ")) rc = txsDoReboot(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "SHUTDOWN")) rc = txsDoShutdown(pPktHdr); /* CD/DVD control: */ else if (txsIsSameOpcode(pPktHdr, "CD EJECT")) rc = txsDoCdEject(pPktHdr); /* File system: */ else if (txsIsSameOpcode(pPktHdr, "CLEANUP ")) rc = txsDoCleanup(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "MKDIR ")) rc = txsDoMkDir(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "MKDRPATH")) rc = txsDoMkDrPath(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "MKSYMLNK")) rc = txsDoMkSymlnk(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "RMDIR ")) rc = txsDoRmDir(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "RMFILE ")) rc = txsDoRmFile(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "RMSYMLNK")) rc = txsDoRmSymlnk(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "RMTREE ")) rc = txsDoRmTree(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "CHMOD ")) rc = txsDoChMod(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "CHOWN ")) rc = txsDoChOwn(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "CHGRP ")) rc = txsDoChGrp(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "ISDIR ")) rc = txsDoIsDir(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "ISFILE ")) rc = txsDoIsFile(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "ISSYMLNK")) rc = txsDoIsSymlnk(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "STAT ")) rc = txsDoStat(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "LSTAT ")) rc = txsDoLStat(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "LIST ")) rc = txsDoList(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "PUT FILE")) rc = txsDoPutFile(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "GET FILE")) rc = txsDoGetFile(pPktHdr); else if (txsIsSameOpcode(pPktHdr, "UNPKFILE")) rc = txsDoUnpackFile(pPktHdr); /* Misc: */ else rc = txsReplyUnknown(pPktHdr); if (g_cVerbose > 0) RTMsgInfo("txsMainLoop: CMD: %.8s -> %Rrc", pPktHdr->achOpcode, rc); RTMemFree(pPktHdr); } if (g_cVerbose > 0) RTMsgInfo("txsMainLoop: end\n"); return enmExitCode; } /** * Finalizes the scratch directory, making sure it exists. * * @returns exit code. */ static RTEXITCODE txsFinalizeScratch(void) { RTPathStripTrailingSlash(g_szScratchPath); char *pszFilename = RTPathFilename(g_szScratchPath); if (!pszFilename) return RTMsgErrorExit(RTEXITCODE_FAILURE, "cannot use root for scratch (%s)\n", g_szScratchPath); int rc; if (strchr(pszFilename, 'X')) { char ch = *pszFilename; rc = RTDirCreateFullPath(g_szScratchPath, 0700); *pszFilename = ch; if (RT_SUCCESS(rc)) rc = RTDirCreateTemp(g_szScratchPath, 0700); } else { if (RTDirExists(g_szScratchPath)) rc = VINF_SUCCESS; else rc = RTDirCreateFullPath(g_szScratchPath, 0700); } if (RT_FAILURE(rc)) return RTMsgErrorExit(RTEXITCODE_FAILURE, "failed to create scratch directory: %Rrc (%s)\n", rc, g_szScratchPath); return RTEXITCODE_SUCCESS; } /** * Attempts to complete an upgrade by updating the original and relaunching * ourselves from there again. * * On failure, we'll continue running as the temporary copy. * * @returns Exit code. Exit if this is non-zero or @a *pfExit is set. * @param argc The number of arguments. * @param argv The argument vector. * @param pfExit For indicating exit when the exit code is zero. * @param pszUpgrading The upgraded image path. */ static RTEXITCODE txsAutoUpdateStage2(int argc, char **argv, bool *pfExit, const char *pszUpgrading) { if (g_cVerbose > 0) RTMsgInfo("Auto update stage 2..."); /* * Copy the current executable onto the original. * Note that we're racing the original program on some platforms, thus the * 60 sec sleep mess. */ char szUpgradePath[RTPATH_MAX]; if (!RTProcGetExecutablePath(szUpgradePath, sizeof(szUpgradePath))) { RTMsgError("RTProcGetExecutablePath failed (step 2)\n"); return RTEXITCODE_SUCCESS; } void *pvUpgrade; size_t cbUpgrade; int rc = RTFileReadAll(szUpgradePath, &pvUpgrade, &cbUpgrade); if (RT_FAILURE(rc)) { RTMsgError("RTFileReadAllEx(\"%s\"): %Rrc (step 2)\n", szUpgradePath, rc); return RTEXITCODE_SUCCESS; } uint64_t StartMilliTS = RTTimeMilliTS(); RTFILE hFile; rc = RTFileOpen(&hFile, pszUpgrading, RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN_CREATE | RTFILE_O_TRUNCATE | (0755 << RTFILE_O_CREATE_MODE_SHIFT)); while ( RT_FAILURE(rc) && RTTimeMilliTS() - StartMilliTS < 60000) { RTThreadSleep(1000); rc = RTFileOpen(&hFile, pszUpgrading, RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN_CREATE | RTFILE_O_TRUNCATE | (0755 << RTFILE_O_CREATE_MODE_SHIFT)); } if (RT_SUCCESS(rc)) { rc = RTFileWrite(hFile, pvUpgrade, cbUpgrade, NULL); RTFileClose(hFile); if (RT_SUCCESS(rc)) { /* * Relaunch the service with the original name, foricbly barring * further upgrade cycles in case of bugs (and simplifying the code). */ const char **papszArgs = (const char **)RTMemAlloc((argc + 1 + 1) * sizeof(char **)); if (papszArgs) { papszArgs[0] = pszUpgrading; for (int i = 1; i < argc; i++) papszArgs[i] = argv[i]; papszArgs[argc] = "--no-auto-upgrade"; papszArgs[argc + 1] = NULL; RTMsgInfo("Launching upgraded image: \"%s\"\n", pszUpgrading); RTPROCESS hProc; rc = RTProcCreate(pszUpgrading, papszArgs, RTENV_DEFAULT, 0 /*fFlags*/, &hProc); if (RT_SUCCESS(rc)) *pfExit = true; else RTMsgError("RTProcCreate(\"%s\"): %Rrc (upgrade stage 2)\n", pszUpgrading, rc); RTMemFree(papszArgs); } else RTMsgError("RTMemAlloc failed during upgrade attempt (stage 2)\n"); } else RTMsgError("RTFileWrite(%s,,%zu): %Rrc (step 2) - BAD\n", pszUpgrading, cbUpgrade, rc); } else RTMsgError("RTFileOpen(,%s,): %Rrc\n", pszUpgrading, rc); RTFileReadAllFree(pvUpgrade, cbUpgrade); return RTEXITCODE_SUCCESS; } /** * Checks for an upgrade and respawns if there is. * * @returns Exit code. Exit if this is non-zero or @a *pfExit is set. * @param argc The number of arguments. * @param argv The argument vector. * @param cSecsCdWait Number of seconds to wait on the CD. * @param pfExit For indicating exit when the exit code is zero. */ static RTEXITCODE txsAutoUpdateStage1(int argc, char **argv, uint32_t cSecsCdWait, bool *pfExit) { if (g_cVerbose > 1) RTMsgInfo("Auto update stage 1..."); /* * Figure names of the current service image and the potential upgrade. */ char szOrgPath[RTPATH_MAX]; if (!RTProcGetExecutablePath(szOrgPath, sizeof(szOrgPath))) { RTMsgError("RTProcGetExecutablePath failed\n"); return RTEXITCODE_SUCCESS; } char szUpgradePath[RTPATH_MAX]; int rc = RTPathJoin(szUpgradePath, sizeof(szUpgradePath), g_szCdRomPath, g_szOsSlashArchShortName); if (RT_SUCCESS(rc)) rc = RTPathAppend(szUpgradePath, sizeof(szUpgradePath), RTPathFilename(szOrgPath)); if (RT_FAILURE(rc)) { RTMsgError("Failed to construct path to potential service upgrade: %Rrc\n", rc); return RTEXITCODE_SUCCESS; } /* * Query information about the two images and read the entire potential source file. * Because the CD may take a little time to be mounted when the system boots, we * need to do some fudging here. */ uint64_t nsStart = RTTimeNanoTS(); RTFSOBJINFO UpgradeInfo; for (;;) { rc = RTPathQueryInfo(szUpgradePath, &UpgradeInfo, RTFSOBJATTRADD_NOTHING); if (RT_SUCCESS(rc)) break; if ( rc != VERR_FILE_NOT_FOUND && rc != VERR_PATH_NOT_FOUND && rc != VERR_MEDIA_NOT_PRESENT && rc != VERR_MEDIA_NOT_RECOGNIZED) { RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (upgrade)\n", szUpgradePath, rc); return RTEXITCODE_SUCCESS; } uint64_t cNsElapsed = RTTimeNanoTS() - nsStart; if (cNsElapsed >= cSecsCdWait * RT_NS_1SEC_64) { if (g_cVerbose > 0) RTMsgInfo("Auto update: Giving up waiting for media."); return RTEXITCODE_SUCCESS; } RTThreadSleep(500); } RTFSOBJINFO OrgInfo; rc = RTPathQueryInfo(szOrgPath, &OrgInfo, RTFSOBJATTRADD_NOTHING); if (RT_FAILURE(rc)) { RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (old)\n", szOrgPath, rc); return RTEXITCODE_SUCCESS; } void *pvUpgrade; size_t cbUpgrade; rc = RTFileReadAllEx(szUpgradePath, 0, UpgradeInfo.cbObject, RTFILE_RDALL_O_DENY_NONE, &pvUpgrade, &cbUpgrade); if (RT_FAILURE(rc)) { RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (old)\n", szOrgPath, rc); return RTEXITCODE_SUCCESS; } /* * Compare and see if we've got a different service image or not. */ if (OrgInfo.cbObject == UpgradeInfo.cbObject) { /* must compare bytes. */ void *pvOrg; size_t cbOrg; rc = RTFileReadAllEx(szOrgPath, 0, OrgInfo.cbObject, RTFILE_RDALL_O_DENY_NONE, &pvOrg, &cbOrg); if (RT_FAILURE(rc)) { RTMsgError("RTFileReadAllEx(\"%s\"): %Rrc\n", szOrgPath, rc); RTFileReadAllFree(pvUpgrade, cbUpgrade); return RTEXITCODE_SUCCESS; } bool fSame = !memcmp(pvUpgrade, pvOrg, OrgInfo.cbObject); RTFileReadAllFree(pvOrg, cbOrg); if (fSame) { RTFileReadAllFree(pvUpgrade, cbUpgrade); if (g_cVerbose > 0) RTMsgInfo("Auto update: Not necessary."); return RTEXITCODE_SUCCESS; } } /* * Should upgrade. Start by creating an executable copy of the update * image in the scratch area. */ RTEXITCODE rcExit = txsFinalizeScratch(); if (rcExit == RTEXITCODE_SUCCESS) { char szTmpPath[RTPATH_MAX]; rc = RTPathJoin(szTmpPath, sizeof(szTmpPath), g_szScratchPath, RTPathFilename(szOrgPath)); if (RT_SUCCESS(rc)) { RTFileDelete(szTmpPath); /* shouldn't hurt. */ RTFILE hFile; rc = RTFileOpen(&hFile, szTmpPath, RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE | (0755 << RTFILE_O_CREATE_MODE_SHIFT)); if (RT_SUCCESS(rc)) { rc = RTFileWrite(hFile, pvUpgrade, UpgradeInfo.cbObject, NULL); RTFileClose(hFile); if (RT_SUCCESS(rc)) { /* * Try execute the new image and quit if it works. */ const char **papszArgs = (const char **)RTMemAlloc((argc + 2 + 1) * sizeof(char **)); if (papszArgs) { papszArgs[0] = szTmpPath; for (int i = 1; i < argc; i++) papszArgs[i] = argv[i]; papszArgs[argc] = "--upgrading"; papszArgs[argc + 1] = szOrgPath; papszArgs[argc + 2] = NULL; RTMsgInfo("Launching intermediate automatic upgrade stage: \"%s\"\n", szTmpPath); RTPROCESS hProc; rc = RTProcCreate(szTmpPath, papszArgs, RTENV_DEFAULT, 0 /*fFlags*/, &hProc); if (RT_SUCCESS(rc)) *pfExit = true; else RTMsgError("RTProcCreate(\"%s\"): %Rrc (upgrade stage 1)\n", szTmpPath, rc); RTMemFree(papszArgs); } else RTMsgError("RTMemAlloc failed during upgrade attempt (stage)\n"); } else RTMsgError("RTFileWrite(%s,,%zu): %Rrc\n", szTmpPath, UpgradeInfo.cbObject, rc); } else RTMsgError("RTFileOpen(,%s,): %Rrc\n", szTmpPath, rc); } else RTMsgError("Failed to construct path to temporary upgrade image: %Rrc\n", rc); } RTFileReadAllFree(pvUpgrade, cbUpgrade); return rcExit; } /** * Determines the default configuration. */ static void txsSetDefaults(void) { /* * OS and ARCH. */ AssertCompile(sizeof(KBUILD_TARGET) <= sizeof(g_szOsShortName)); strcpy(g_szOsShortName, KBUILD_TARGET); AssertCompile(sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szArchShortName)); strcpy(g_szArchShortName, KBUILD_TARGET_ARCH); AssertCompile(sizeof(KBUILD_TARGET) + sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szOsDotArchShortName)); strcpy(g_szOsDotArchShortName, KBUILD_TARGET); g_szOsDotArchShortName[sizeof(KBUILD_TARGET) - 1] = '.'; strcpy(&g_szOsDotArchShortName[sizeof(KBUILD_TARGET)], KBUILD_TARGET_ARCH); AssertCompile(sizeof(KBUILD_TARGET) + sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szOsSlashArchShortName)); strcpy(g_szOsSlashArchShortName, KBUILD_TARGET); g_szOsSlashArchShortName[sizeof(KBUILD_TARGET) - 1] = '/'; strcpy(&g_szOsSlashArchShortName[sizeof(KBUILD_TARGET)], KBUILD_TARGET_ARCH); #if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2) strcpy(g_szExeSuff, ".exe"); strcpy(g_szScriptSuff, ".cmd"); #else strcpy(g_szExeSuff, ""); strcpy(g_szScriptSuff, ".sh"); #endif /* * The CD/DVD-ROM location. */ /** @todo do a better job here :-) */ #ifdef RT_OS_WINDOWS strcpy(g_szDefCdRomPath, "D:/"); #elif defined(RT_OS_OS2) strcpy(g_szDefCdRomPath, "D:/"); #else if (RTDirExists("/media")) strcpy(g_szDefCdRomPath, "/media/cdrom"); else strcpy(g_szDefCdRomPath, "/mnt/cdrom"); #endif strcpy(g_szCdRomPath, g_szDefCdRomPath); /* * Temporary directory. */ int rc = RTPathTemp(g_szDefScratchPath, sizeof(g_szDefScratchPath)); if (RT_SUCCESS(rc)) #if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS) || defined(RT_OS_DOS) rc = RTPathAppend(g_szDefScratchPath, sizeof(g_szDefScratchPath), "txs-XXXX.tmp"); #else rc = RTPathAppend(g_szDefScratchPath, sizeof(g_szDefScratchPath), "txs-XXXXXXXXX.tmp"); #endif if (RT_FAILURE(rc)) { RTMsgError("RTPathTemp/Append failed when constructing scratch path: %Rrc\n", rc); strcpy(g_szDefScratchPath, "/tmp/txs-XXXX.tmp"); } strcpy(g_szScratchPath, g_szDefScratchPath); /* * The default transporter is the first one. */ g_pTransport = g_apTransports[0]; } /** * Prints the usage. * * @param pStrm Where to print it. * @param pszArgv0 The program name (argv[0]). */ static void txsUsage(PRTSTREAM pStrm, const char *pszArgv0) { RTStrmPrintf(pStrm, "Usage: %Rbn [options]\n" "\n" "Options:\n" " --cdrom \n" " Where the CD/DVD-ROM will be mounted.\n" " Default: %s\n" " --scratch \n" " Where to put scratch files.\n" " Default: %s \n" , pszArgv0, g_szDefCdRomPath, g_szDefScratchPath); RTStrmPrintf(pStrm, " --transport \n" " Use the specified transport layer, one of the following:\n"); for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++) RTStrmPrintf(pStrm, " %s - %s\n", g_apTransports[i]->szName, g_apTransports[i]->pszDesc); RTStrmPrintf(pStrm, " Default: %s\n", g_pTransport->szName); RTStrmPrintf(pStrm, " --auto-upgrade, --no-auto-upgrade\n" " To enable or disable the automatic upgrade mechanism where any different\n" " version found on the CD-ROM on startup will replace the initial copy.\n" " Default: --auto-upgrade\n" " --wait-cdrom \n" " Number of seconds to wait for the CD-ROM to be mounted before giving up\n" " on automatic upgrading.\n" " Default: --wait-cdrom 1; solaris: --wait-cdrom 8\n" " --upgrading \n" " Internal use only.\n"); RTStrmPrintf(pStrm, " --display-output, --no-display-output\n" " Display the output and the result of all child processes.\n"); RTStrmPrintf(pStrm, " --foreground\n" " Don't daemonize, run in the foreground.\n"); RTStrmPrintf(pStrm, " --help, -h, -?\n" " Display this message and exit.\n" " --version, -V\n" " Display the version and exit.\n"); for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++) if (g_apTransports[i]->cOpts) { RTStrmPrintf(pStrm, "\n" "Options for %s:\n", g_apTransports[i]->szName); g_apTransports[i]->pfnUsage(g_pStdOut); } } /** * Parses the arguments. * * @returns Exit code. Exit if this is non-zero or @a *pfExit is set. * @param argc The number of arguments. * @param argv The argument vector. * @param pfExit For indicating exit when the exit code is zero. */ static RTEXITCODE txsParseArgv(int argc, char **argv, bool *pfExit) { *pfExit = false; /* * Storage for locally handled options. */ bool fAutoUpgrade = true; bool fDaemonize = true; bool fDaemonized = false; const char *pszUpgrading = NULL; #ifdef RT_OS_SOLARIS uint32_t cSecsCdWait = 8; #else uint32_t cSecsCdWait = 1; #endif /* * Combine the base and transport layer option arrays. */ static const RTGETOPTDEF s_aBaseOptions[] = { { "--transport", 't', RTGETOPT_REQ_STRING }, { "--cdrom", 'c', RTGETOPT_REQ_STRING }, { "--wait-cdrom", 'w', RTGETOPT_REQ_UINT32 }, { "--scratch", 's', RTGETOPT_REQ_STRING }, { "--auto-upgrade", 'a', RTGETOPT_REQ_NOTHING }, { "--no-auto-upgrade", 'A', RTGETOPT_REQ_NOTHING }, { "--upgrading", 'U', RTGETOPT_REQ_STRING }, { "--display-output", 'd', RTGETOPT_REQ_NOTHING }, { "--no-display-output",'D', RTGETOPT_REQ_NOTHING }, { "--foreground", 'f', RTGETOPT_REQ_NOTHING }, { "--daemonized", 'Z', RTGETOPT_REQ_NOTHING }, { "--quiet", 'q', RTGETOPT_REQ_NOTHING }, { "--verbose", 'v', RTGETOPT_REQ_NOTHING }, }; size_t cOptions = RT_ELEMENTS(s_aBaseOptions); for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++) cOptions += g_apTransports[i]->cOpts; PRTGETOPTDEF paOptions = (PRTGETOPTDEF)alloca(cOptions * sizeof(RTGETOPTDEF)); if (!paOptions) return RTMsgErrorExit(RTEXITCODE_FAILURE, "alloca failed\n"); memcpy(paOptions, s_aBaseOptions, sizeof(s_aBaseOptions)); cOptions = RT_ELEMENTS(s_aBaseOptions); for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++) { memcpy(&paOptions[cOptions], g_apTransports[i]->paOpts, g_apTransports[i]->cOpts * sizeof(RTGETOPTDEF)); cOptions += g_apTransports[i]->cOpts; } /* * Parse the arguments. */ RTGETOPTSTATE GetState; int rc = RTGetOptInit(&GetState, argc, argv, paOptions, cOptions, 1, 0 /* fFlags */); AssertRC(rc); int ch; RTGETOPTUNION Val; while ((ch = RTGetOpt(&GetState, &Val))) { switch (ch) { case 'a': fAutoUpgrade = true; break; case 'A': fAutoUpgrade = false; break; case 'c': rc = RTStrCopy(g_szCdRomPath, sizeof(g_szCdRomPath), Val.psz); if (RT_FAILURE(rc)) return RTMsgErrorExit(RTEXITCODE_FAILURE, "CD/DVD-ROM is path too long (%Rrc)\n", rc); break; case 'd': g_fDisplayOutput = true; break; case 'D': g_fDisplayOutput = false; break; case 'f': fDaemonize = false; break; case 'h': txsUsage(g_pStdOut, argv[0]); *pfExit = true; return RTEXITCODE_SUCCESS; case 's': rc = RTStrCopy(g_szScratchPath, sizeof(g_szScratchPath), Val.psz); if (RT_FAILURE(rc)) return RTMsgErrorExit(RTEXITCODE_FAILURE, "scratch path is too long (%Rrc)\n", rc); break; case 't': { PCTXSTRANSPORT pTransport = NULL; for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++) if (!strcmp(g_apTransports[i]->szName, Val.psz)) { pTransport = g_apTransports[i]; break; } if (!pTransport) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Unknown transport layer name '%s'\n", Val.psz); g_pTransport = pTransport; break; } case 'U': pszUpgrading = Val.psz; break; case 'w': cSecsCdWait = Val.u32; break; case 'q': g_cVerbose = 0; break; case 'v': g_cVerbose++; break; case 'V': RTPrintf("$Revision: 73097 $\n"); *pfExit = true; return RTEXITCODE_SUCCESS; case 'Z': fDaemonized = true; fDaemonize = false; break; default: { rc = VERR_TRY_AGAIN; for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++) if (g_apTransports[i]->cOpts) { rc = g_apTransports[i]->pfnOption(ch, &Val); if (RT_SUCCESS(rc)) break; if (rc != VERR_TRY_AGAIN) { *pfExit = true; return RTEXITCODE_SYNTAX; } } if (rc == VERR_TRY_AGAIN) { *pfExit = true; return RTGetOptPrintError(ch, &Val); } break; } } } /* * Handle automatic upgrading of the service. */ if (fAutoUpgrade && !*pfExit) { RTEXITCODE rcExit; if (pszUpgrading) rcExit = txsAutoUpdateStage2(argc, argv, pfExit, pszUpgrading); else rcExit = txsAutoUpdateStage1(argc, argv, cSecsCdWait, pfExit); if ( *pfExit || rcExit != RTEXITCODE_SUCCESS) return rcExit; } /* * Daemonize ourselves if asked to. */ if (fDaemonize && !*pfExit) { if (g_cVerbose > 0) RTMsgInfo("Daemonizing..."); rc = RTProcDaemonize(argv, "--daemonized"); if (RT_FAILURE(rc)) return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTProcDaemonize: %Rrc\n", rc); *pfExit = true; } return RTEXITCODE_SUCCESS; } int main(int argc, char **argv) { /* * Initialize the runtime. */ int rc = RTR3InitExe(argc, &argv, 0); if (RT_FAILURE(rc)) return RTMsgInitFailure(rc); /* * Determine defaults and parse the arguments. */ txsSetDefaults(); bool fExit; RTEXITCODE rcExit = txsParseArgv(argc, argv, &fExit); if (rcExit != RTEXITCODE_SUCCESS || fExit) return rcExit; /* * Generate a UUID for this TXS instance. */ rc = RTUuidCreate(&g_InstanceUuid); if (RT_FAILURE(rc)) return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTUuidCreate failed: %Rrc", rc); if (g_cVerbose > 0) RTMsgInfo("Instance UUID: %RTuuid", &g_InstanceUuid); /* * Finalize the scratch directory and initialize the transport layer. */ rcExit = txsFinalizeScratch(); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; rc = g_pTransport->pfnInit(); if (RT_FAILURE(rc)) return RTEXITCODE_FAILURE; /* * Ok, start working */ rcExit = txsMainLoop(); /* * Cleanup. */ g_pTransport->pfnTerm(); return rcExit; }