VirtualBox

source: vbox/trunk/src/VBox/ValidationKit/utils/TestExecServ/TestExecService.cpp@ 71000

Last change on this file since 71000 was 71000, checked in by vboxsync, 7 years ago

ValidationKit/TestExecService: Started implementing a serial port based transport backend which can be used if networking is not available

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 122.5 KB
Line 
1/* $Id: TestExecService.cpp 71000 2018-02-13 16:45:53Z vboxsync $ */
2/** @file
3 * TestExecServ - Basic Remote Execution Service.
4 */
5
6/*
7 * Copyright (C) 2010-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP RTLOGGROUP_DEFAULT
32#include <iprt/alloca.h>
33#include <iprt/asm.h>
34#include <iprt/assert.h>
35#include <iprt/cdrom.h>
36#include <iprt/critsect.h>
37#include <iprt/crc.h>
38#include <iprt/ctype.h>
39#include <iprt/dir.h>
40#include <iprt/env.h>
41#include <iprt/err.h>
42#include <iprt/file.h>
43#include <iprt/getopt.h>
44#include <iprt/handle.h>
45#include <iprt/initterm.h>
46#include <iprt/log.h>
47#include <iprt/mem.h>
48#include <iprt/message.h>
49#include <iprt/param.h>
50#include <iprt/path.h>
51#include <iprt/pipe.h>
52#include <iprt/poll.h>
53#include <iprt/process.h>
54#include <iprt/stream.h>
55#include <iprt/string.h>
56#include <iprt/system.h>
57#include <iprt/thread.h>
58#include <iprt/time.h>
59#include <iprt/uuid.h>
60#include <iprt/zip.h>
61
62#include "TestExecServiceInternal.h"
63
64
65
66/*********************************************************************************************************************************
67* Structures and Typedefs *
68*********************************************************************************************************************************/
69/**
70 * Handle IDs used by txsDoExec for the poll set.
71 */
72typedef enum TXSEXECHNDID
73{
74 TXSEXECHNDID_STDIN = 0,
75 TXSEXECHNDID_STDOUT,
76 TXSEXECHNDID_STDERR,
77 TXSEXECHNDID_TESTPIPE,
78 TXSEXECHNDID_STDIN_WRITABLE,
79 TXSEXECHNDID_TRANSPORT,
80 TXSEXECHNDID_THREAD
81} TXSEXECHNDID;
82
83
84/**
85 * For buffering process input supplied by the client.
86 */
87typedef struct TXSEXECSTDINBUF
88{
89 /** The mount of buffered data. */
90 size_t cb;
91 /** The current data offset. */
92 size_t off;
93 /** The data buffer. */
94 char *pch;
95 /** The amount of allocated buffer space. */
96 size_t cbAllocated;
97 /** Send further input into the bit bucket (stdin is dead). */
98 bool fBitBucket;
99 /** The CRC-32 for standard input (received part). */
100 uint32_t uCrc32;
101} TXSEXECSTDINBUF;
102/** Pointer to a standard input buffer. */
103typedef TXSEXECSTDINBUF *PTXSEXECSTDINBUF;
104
105/**
106 * TXS child process info.
107 */
108typedef struct TXSEXEC
109{
110 PCTXSPKTHDR pPktHdr;
111 RTMSINTERVAL cMsTimeout;
112 int rcReplySend;
113
114 RTPOLLSET hPollSet;
115 RTPIPE hStdInW;
116 RTPIPE hStdOutR;
117 RTPIPE hStdErrR;
118 RTPIPE hTestPipeR;
119 RTPIPE hWakeUpPipeR;
120 RTTHREAD hThreadWaiter;
121
122 /** @name For the setup phase
123 * @{ */
124 struct StdPipe
125 {
126 RTHANDLE hChild;
127 PRTHANDLE phChild;
128 } StdIn,
129 StdOut,
130 StdErr;
131 RTPIPE hTestPipeW;
132 RTENV hEnv;
133 /** @} */
134
135 /** For serializating some access. */
136 RTCRITSECT CritSect;
137 /** @name Members protected by the critical section.
138 * @{ */
139 RTPROCESS hProcess;
140 /** The process status. Only valid when fProcessAlive is cleared. */
141 RTPROCSTATUS ProcessStatus;
142 /** Set when the process is alive, clear when dead. */
143 bool volatile fProcessAlive;
144 /** The end of the pipe that hThreadWaiter writes to. */
145 RTPIPE hWakeUpPipeW;
146 /** @} */
147} TXSEXEC;
148/** Pointer to a the TXS child process info. */
149typedef TXSEXEC *PTXSEXEC;
150
151
152/*********************************************************************************************************************************
153* Global Variables *
154*********************************************************************************************************************************/
155/**
156 * Transport layers.
157 */
158static const PCTXSTRANSPORT g_apTransports[] =
159{
160 &g_TcpTransport,
161#ifndef RT_OS_OS2
162 &g_SerialTransport,
163#endif
164 //&g_FileSysTransport,
165 //&g_GuestPropTransport,
166 //&g_TestDevTransport,
167};
168
169/** The select transport layer. */
170static PCTXSTRANSPORT g_pTransport;
171/** The scratch path. */
172static char g_szScratchPath[RTPATH_MAX];
173/** The default scratch path. */
174static char g_szDefScratchPath[RTPATH_MAX];
175/** The CD/DVD-ROM path. */
176static char g_szCdRomPath[RTPATH_MAX];
177/** The default CD/DVD-ROM path. */
178static char g_szDefCdRomPath[RTPATH_MAX];
179/** The operating system short name. */
180static char g_szOsShortName[16];
181/** The CPU architecture short name. */
182static char g_szArchShortName[16];
183/** The combined "OS.arch" name. */
184static char g_szOsDotArchShortName[32];
185/** The combined "OS/arch" name. */
186static char g_szOsSlashArchShortName[32];
187/** The executable suffix. */
188static char g_szExeSuff[8];
189/** The shell script suffix. */
190static char g_szScriptSuff[8];
191/** UUID identifying this TXS instance. This can be used to see if TXS
192 * has been restarted or not. */
193static RTUUID g_InstanceUuid;
194/** Whether to display the output of the child process or not. */
195static bool g_fDisplayOutput = true;
196/** Whether to terminate or not.
197 * @todo implement signals and stuff. */
198static bool volatile g_fTerminate = false;
199/** Verbosity level. */
200uint32_t g_cVerbose = 1;
201
202
203/**
204 * Calculates the checksum value, zero any padding space and send the packet.
205 *
206 * @returns IPRT status code.
207 * @param pPkt The packet to send. Must point to a correctly
208 * aligned buffer.
209 */
210static int txsSendPkt(PTXSPKTHDR pPkt)
211{
212 Assert(pPkt->cb >= sizeof(*pPkt));
213 pPkt->uCrc32 = RTCrc32(pPkt->achOpcode, pPkt->cb - RT_OFFSETOF(TXSPKTHDR, achOpcode));
214 if (pPkt->cb != RT_ALIGN_32(pPkt->cb, TXSPKT_ALIGNMENT))
215 memset((uint8_t *)pPkt + pPkt->cb, '\0', RT_ALIGN_32(pPkt->cb, TXSPKT_ALIGNMENT) - pPkt->cb);
216
217 Log(("txsSendPkt: cb=%#x opcode=%.8s\n", pPkt->cb, pPkt->achOpcode));
218 Log2(("%.*Rhxd\n", RT_MIN(pPkt->cb, 256), pPkt));
219 int rc = g_pTransport->pfnSendPkt(pPkt);
220 while (RT_UNLIKELY(rc == VERR_INTERRUPTED) && !g_fTerminate)
221 rc = g_pTransport->pfnSendPkt(pPkt);
222 if (RT_FAILURE(rc))
223 Log(("txsSendPkt: rc=%Rrc\n", rc));
224
225 return rc;
226}
227
228/**
229 * Sends a babble reply and disconnects the client (if applicable).
230 *
231 * @param pszOpcode The BABBLE opcode.
232 */
233static void txsReplyBabble(const char *pszOpcode)
234{
235 TXSPKTHDR Reply;
236 Reply.cb = sizeof(Reply);
237 Reply.uCrc32 = 0;
238 memcpy(Reply.achOpcode, pszOpcode, sizeof(Reply.achOpcode));
239
240 g_pTransport->pfnBabble(&Reply, 20*1000);
241}
242
243/**
244 * Receive and validate a packet.
245 *
246 * Will send bable responses to malformed packets that results in a error status
247 * code.
248 *
249 * @returns IPRT status code.
250 * @param ppPktHdr Where to return the packet on success. Free
251 * with RTMemFree.
252 * @param fAutoRetryOnFailure Whether to retry on error.
253 */
254static int txsRecvPkt(PPTXSPKTHDR ppPktHdr, bool fAutoRetryOnFailure)
255{
256 for (;;)
257 {
258 PTXSPKTHDR pPktHdr;
259 int rc = g_pTransport->pfnRecvPkt(&pPktHdr);
260 if (RT_SUCCESS(rc))
261 {
262 /* validate the packet. */
263 if ( pPktHdr->cb >= sizeof(TXSPKTHDR)
264 && pPktHdr->cb < TXSPKT_MAX_SIZE)
265 {
266 Log2(("txsRecvPkt: pPktHdr=%p cb=%#x crc32=%#x opcode=%.8s\n"
267 "%.*Rhxd\n",
268 pPktHdr, pPktHdr->cb, pPktHdr->uCrc32, pPktHdr->achOpcode, RT_MIN(pPktHdr->cb, 256), pPktHdr));
269 uint32_t uCrc32Calc = pPktHdr->uCrc32 != 0
270 ? RTCrc32(&pPktHdr->achOpcode[0], pPktHdr->cb - RT_OFFSETOF(TXSPKTHDR, achOpcode))
271 : 0;
272 if (pPktHdr->uCrc32 == uCrc32Calc)
273 {
274 AssertCompileMemberSize(TXSPKTHDR, achOpcode, 8);
275 if ( RT_C_IS_UPPER(pPktHdr->achOpcode[0])
276 && RT_C_IS_UPPER(pPktHdr->achOpcode[1])
277 && (RT_C_IS_UPPER(pPktHdr->achOpcode[2]) || pPktHdr->achOpcode[2] == ' ')
278 && (RT_C_IS_PRINT(pPktHdr->achOpcode[3]) || pPktHdr->achOpcode[3] == ' ')
279 && (RT_C_IS_PRINT(pPktHdr->achOpcode[4]) || pPktHdr->achOpcode[4] == ' ')
280 && (RT_C_IS_PRINT(pPktHdr->achOpcode[5]) || pPktHdr->achOpcode[5] == ' ')
281 && (RT_C_IS_PRINT(pPktHdr->achOpcode[6]) || pPktHdr->achOpcode[6] == ' ')
282 && (RT_C_IS_PRINT(pPktHdr->achOpcode[7]) || pPktHdr->achOpcode[7] == ' ')
283 )
284 {
285 Log(("txsRecvPkt: cb=%#x opcode=%.8s\n", pPktHdr->cb, pPktHdr->achOpcode));
286 *ppPktHdr = pPktHdr;
287 return rc;
288 }
289
290 rc = VERR_IO_BAD_COMMAND;
291 }
292 else
293 {
294 Log(("txsRecvPkt: cb=%#x opcode=%.8s crc32=%#x actual=%#x\n",
295 pPktHdr->cb, pPktHdr->achOpcode, pPktHdr->uCrc32, uCrc32Calc));
296 rc = VERR_IO_CRC;
297 }
298 }
299 else
300 rc = VERR_IO_BAD_LENGTH;
301
302 /* Send babble reply and disconnect the client if the transport is
303 connection oriented. */
304 if (rc == VERR_IO_BAD_LENGTH)
305 txsReplyBabble("BABBLE L");
306 else if (rc == VERR_IO_CRC)
307 txsReplyBabble("BABBLE C");
308 else if (rc == VERR_IO_BAD_COMMAND)
309 txsReplyBabble("BABBLE O");
310 else
311 txsReplyBabble("BABBLE ");
312 RTMemFree(pPktHdr);
313 }
314
315 /* Try again or return failure? */
316 if ( g_fTerminate
317 || rc != VERR_INTERRUPTED
318 || !fAutoRetryOnFailure
319 )
320 {
321 Log(("txsRecvPkt: rc=%Rrc\n", rc));
322 return rc;
323 }
324 }
325}
326
327/**
328 * Make a simple reply, only status opcode.
329 *
330 * @returns IPRT status code of the send.
331 * @param pReply The reply packet.
332 * @param pszOpcode The status opcode. Exactly 8 chars long, padd
333 * with space.
334 * @param cbExtra Bytes in addition to the header.
335 */
336static int txsReplyInternal(PTXSPKTHDR pReply, const char *pszOpcode, size_t cbExtra)
337{
338 /* copy the opcode, don't be too strict in case of a padding screw up. */
339 size_t cchOpcode = strlen(pszOpcode);
340 if (RT_LIKELY(cchOpcode == sizeof(pReply->achOpcode)))
341 memcpy(pReply->achOpcode, pszOpcode, sizeof(pReply->achOpcode));
342 else
343 {
344 Assert(cchOpcode == sizeof(pReply->achOpcode));
345 while (cchOpcode > 0 && pszOpcode[cchOpcode - 1] == ' ')
346 cchOpcode--;
347 AssertMsgReturn(cchOpcode < sizeof(pReply->achOpcode), ("%d/'%.8s'\n", cchOpcode, pszOpcode), VERR_INTERNAL_ERROR_4);
348 memcpy(pReply->achOpcode, pszOpcode, cchOpcode);
349 memset(&pReply->achOpcode[cchOpcode], ' ', sizeof(pReply->achOpcode) - cchOpcode);
350 }
351
352 pReply->cb = (uint32_t)sizeof(TXSPKTHDR) + (uint32_t)cbExtra;
353 pReply->uCrc32 = 0;
354
355 return txsSendPkt(pReply);
356}
357
358/**
359 * Make a simple reply, only status opcode.
360 *
361 * @returns IPRT status code of the send.
362 * @param pPktHdr The original packet (for future use).
363 * @param pszOpcode The status opcode. Exactly 8 chars long, padd
364 * with space.
365 */
366static int txsReplySimple(PCTXSPKTHDR pPktHdr, const char *pszOpcode)
367{
368 TXSPKTHDR Pkt;
369 NOREF(pPktHdr);
370 return txsReplyInternal(&Pkt, pszOpcode, 0);
371}
372
373/**
374 * Acknowledges a packet with success.
375 *
376 * @returns IPRT status code of the send.
377 * @param pPktHdr The original packet (for future use).
378 */
379static int txsReplyAck(PCTXSPKTHDR pPktHdr)
380{
381 return txsReplySimple(pPktHdr, "ACK ");
382}
383
384/**
385 * Replies with a failure.
386 *
387 * @returns IPRT status code of the send.
388 * @param pPktHdr The original packet (for future use).
389 * @param pszOpcode The status opcode. Exactly 8 chars long, padd
390 * with space.
391 * @param pszDetailFmt Longer description of the problem (format
392 * string).
393 * @param va Format arguments.
394 */
395static int txsReplyFailureV(PCTXSPKTHDR pPktHdr, const char *pszOpcode, const char *pszDetailFmt, va_list va)
396{
397 NOREF(pPktHdr);
398 union
399 {
400 TXSPKTHDR Hdr;
401 char ach[256];
402 } uPkt;
403
404 size_t cchDetail = RTStrPrintfV(&uPkt.ach[sizeof(TXSPKTHDR)],
405 sizeof(uPkt) - sizeof(TXSPKTHDR),
406 pszDetailFmt, va);
407 return txsReplyInternal(&uPkt.Hdr, pszOpcode, cchDetail + 1);
408}
409
410/**
411 * Replies with a failure.
412 *
413 * @returns IPRT status code of the send.
414 * @param pPktHdr The original packet (for future use).
415 * @param pszOpcode The status opcode. Exactly 8 chars long, padd
416 * with space.
417 * @param pszDetailFmt Longer description of the problem (format
418 * string).
419 * @param ... Format arguments.
420 */
421static int txsReplyFailure(PCTXSPKTHDR pPktHdr, const char *pszOpcode, const char *pszDetailFmt, ...)
422{
423 va_list va;
424 va_start(va, pszDetailFmt);
425 int rc = txsReplyFailureV(pPktHdr, pszOpcode, pszDetailFmt, va);
426 va_end(va);
427 return rc;
428}
429
430/**
431 * Replies according to the return code.
432 *
433 * @returns IPRT status code of the send.
434 * @param pPktHdr The packet to reply to.
435 * @param rcOperation The status code to report.
436 * @param pszOperationFmt The operation that failed. Typically giving the
437 * function call with important arguments.
438 * @param ... Arguments to the format string.
439 */
440static int txsReplyRC(PCTXSPKTHDR pPktHdr, int rcOperation, const char *pszOperationFmt, ...)
441{
442 if (RT_SUCCESS(rcOperation))
443 return txsReplyAck(pPktHdr);
444
445 char szOperation[128];
446 va_list va;
447 va_start(va, pszOperationFmt);
448 RTStrPrintfV(szOperation, sizeof(szOperation), pszOperationFmt, va);
449 va_end(va);
450
451 return txsReplyFailure(pPktHdr, "FAILED ", "%s failed with rc=%Rrc (opcode '%.8s')",
452 szOperation, rcOperation, pPktHdr->achOpcode);
453}
454
455/**
456 * Signal a bad packet minum size.
457 *
458 * @returns IPRT status code of the send.
459 * @param pPktHdr The packet to reply to.
460 * @param cbMin The minimum size.
461 */
462static int txsReplyBadMinSize(PCTXSPKTHDR pPktHdr, size_t cbMin)
463{
464 return txsReplyFailure(pPktHdr, "BAD SIZE", "Expected at least %zu bytes, got %u (opcode '%.8s')",
465 cbMin, pPktHdr->cb, pPktHdr->achOpcode);
466}
467
468/**
469 * Signal a bad packet exact size.
470 *
471 * @returns IPRT status code of the send.
472 * @param pPktHdr The packet to reply to.
473 * @param cb The wanted size.
474 */
475static int txsReplyBadSize(PCTXSPKTHDR pPktHdr, size_t cb)
476{
477 return txsReplyFailure(pPktHdr, "BAD SIZE", "Expected at %zu bytes, got %u (opcode '%.8s')",
478 cb, pPktHdr->cb, pPktHdr->achOpcode);
479}
480
481/**
482 * Deals with a command that isn't implemented yet.
483 * @returns IPRT status code of the send.
484 * @param pPktHdr The packet which opcode isn't implemented.
485 */
486static int txsReplyNotImplemented(PCTXSPKTHDR pPktHdr)
487{
488 return txsReplyFailure(pPktHdr, "NOT IMPL", "Opcode '%.8s' is not implemented", pPktHdr->achOpcode);
489}
490
491/**
492 * Deals with a unknown command.
493 * @returns IPRT status code of the send.
494 * @param pPktHdr The packet to reply to.
495 */
496static int txsReplyUnknown(PCTXSPKTHDR pPktHdr)
497{
498 return txsReplyFailure(pPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known", pPktHdr->achOpcode);
499}
500
501/**
502 * Replaces a variable with its value.
503 *
504 * @returns VINF_SUCCESS or VERR_NO_STR_MEMORY.
505 * @param ppszNew In/Out.
506 * @param pcchNew In/Out. (Messed up on failure.)
507 * @param offVar Variable offset.
508 * @param cchVar Variable length.
509 * @param pszValue The value.
510 * @param cchValue Value length.
511 */
512static int txsReplaceStringVariable(char **ppszNew, size_t *pcchNew, size_t offVar, size_t cchVar,
513 const char *pszValue, size_t cchValue)
514{
515 size_t const cchAfter = *pcchNew - offVar - cchVar;
516 if (cchVar < cchValue)
517 {
518 *pcchNew += cchValue - cchVar;
519 int rc = RTStrRealloc(ppszNew, *pcchNew + 1);
520 if (RT_FAILURE(rc))
521 return rc;
522 }
523
524 char *pszNew = *ppszNew;
525 memmove(&pszNew[offVar + cchValue], &pszNew[offVar + cchVar], cchAfter + 1);
526 memcpy(&pszNew[offVar], pszValue, cchValue);
527 return VINF_SUCCESS;
528}
529
530/**
531 * Replace the variables found in the source string, returning a new string that
532 * lives on the string heap.
533 *
534 * @returns Boolean success indicator. Will reply to the client with all the
535 * gory detail on failure.
536 * @param pPktHdr The packet the string relates to. For replying
537 * on error.
538 * @param pszSrc The source string.
539 * @param ppszNew Where to return the new string.
540 * @param prcSend Where to return the status code of the send on
541 * failure.
542 */
543static int txsReplaceStringVariables(PCTXSPKTHDR pPktHdr, const char *pszSrc, char **ppszNew, int *prcSend)
544{
545 /* Lazy approach that employs memmove. */
546 size_t cchNew = strlen(pszSrc);
547 char *pszNew = RTStrDup(pszSrc);
548 char *pszDollar = pszNew;
549 while ((pszDollar = strchr(pszDollar, '$')) != NULL)
550 {
551 if (pszDollar[1] == '{')
552 {
553 const char *pszEnd = strchr(&pszDollar[2], '}');
554 if (pszEnd)
555 {
556#define IF_VARIABLE_DO(pszDollar, szVarExpr, pszValue) \
557 if ( cchVar == sizeof(szVarExpr) - 1 \
558 && !memcmp(pszDollar, szVarExpr, sizeof(szVarExpr) - 1) ) \
559 { \
560 size_t const cchValue = strlen(pszValue); \
561 rc = txsReplaceStringVariable(&pszNew, &cchNew, offDollar, \
562 sizeof(szVarExpr) - 1, pszValue, cchValue); \
563 offDollar += cchValue; \
564 }
565 int rc;
566 size_t const cchVar = pszEnd - pszDollar + 1; /* includes "${}" */
567 size_t offDollar = pszDollar - pszNew;
568 IF_VARIABLE_DO(pszDollar, "${CDROM}", g_szCdRomPath)
569 else IF_VARIABLE_DO(pszDollar, "${SCRATCH}", g_szScratchPath)
570 else IF_VARIABLE_DO(pszDollar, "${ARCH}", g_szArchShortName)
571 else IF_VARIABLE_DO(pszDollar, "${OS}", g_szOsShortName)
572 else IF_VARIABLE_DO(pszDollar, "${OS.ARCH}", g_szOsDotArchShortName)
573 else IF_VARIABLE_DO(pszDollar, "${OS/ARCH}", g_szOsSlashArchShortName)
574 else IF_VARIABLE_DO(pszDollar, "${EXESUFF}", g_szExeSuff)
575 else IF_VARIABLE_DO(pszDollar, "${SCRIPTSUFF}", g_szScriptSuff)
576 else
577 {
578 RTStrFree(pszNew);
579 *prcSend = txsReplyFailure(pPktHdr, "UNKN VAR", "Unknown variable '%.*s' encountered in '%s'",
580 cchVar, pszDollar, pszSrc);
581 *ppszNew = NULL;
582 return false;
583 }
584 pszDollar = &pszNew[offDollar];
585
586 if (RT_FAILURE(rc))
587 {
588 RTStrFree(pszNew);
589 *prcSend = txsReplyRC(pPktHdr, rc, "RTStrRealloc");
590 *ppszNew = NULL;
591 return false;
592 }
593#undef IF_VARIABLE_DO
594 }
595 }
596 }
597
598 *ppszNew = pszNew;
599 *prcSend = VINF_SUCCESS;
600 return true;
601}
602
603/**
604 * Checks if the string is valid and returns the expanded version.
605 *
606 * @returns true if valid, false if invalid.
607 * @param pPktHdr The packet being unpacked.
608 * @param pszArgName The argument name.
609 * @param psz Pointer to the string within pPktHdr.
610 * @param ppszExp Where to return the expanded string. Must be
611 * freed by calling RTStrFree().
612 * @param ppszNext Where to return the pointer to the next field.
613 * If NULL, then we assume this string is at the
614 * end of the packet and will make sure it has the
615 * advertised length.
616 * @param prcSend Where to return the status code of the send on
617 * failure.
618 */
619static bool txsIsStringValid(PCTXSPKTHDR pPktHdr, const char *pszArgName, const char *psz,
620 char **ppszExp, const char **ppszNext, int *prcSend)
621{
622 *ppszExp = NULL;
623 if (ppszNext)
624 *ppszNext = NULL;
625
626 size_t const off = psz - (const char *)pPktHdr;
627 if (pPktHdr->cb <= off)
628 {
629 *prcSend = txsReplyFailure(pPktHdr, "STR MISS", "Missing string argument '%s' in '%.8s'",
630 pszArgName, pPktHdr->achOpcode);
631 return false;
632 }
633
634 size_t const cchMax = pPktHdr->cb - off;
635 const char *pszEnd = RTStrEnd(psz, cchMax);
636 if (!pszEnd)
637 {
638 *prcSend = txsReplyFailure(pPktHdr, "STR TERM", "The string argument '%s' in '%.8s' is unterminated",
639 pszArgName, pPktHdr->achOpcode);
640 return false;
641 }
642
643 if (!ppszNext && (size_t)(pszEnd - psz) != cchMax - 1)
644 {
645 *prcSend = txsReplyFailure(pPktHdr, "STR SHRT", "The string argument '%s' in '%.8s' is shorter than advertised",
646 pszArgName, pPktHdr->achOpcode);
647 return false;
648 }
649
650 if (!txsReplaceStringVariables(pPktHdr, psz, ppszExp, prcSend))
651 return false;
652 if (ppszNext)
653 *ppszNext = pszEnd + 1;
654 return true;
655}
656
657/**
658 * Validates a packet with a single string after the header.
659 *
660 * @returns true if valid, false if invalid.
661 * @param pPktHdr The packet.
662 * @param pszArgName The argument name.
663 * @param ppszExp Where to return the string pointer. Variables
664 * will be replaced and it must therefore be freed
665 * by calling RTStrFree().
666 * @param prcSend Where to return the status code of the send on
667 * failure.
668 */
669static bool txsIsStringPktValid(PCTXSPKTHDR pPktHdr, const char *pszArgName, char **ppszExp, int *prcSend)
670{
671 if (pPktHdr->cb < sizeof(TXSPKTHDR) + 2)
672 {
673 *ppszExp = NULL;
674 *prcSend = txsReplyBadMinSize(pPktHdr, sizeof(TXSPKTHDR) + 2);
675 return false;
676 }
677
678 return txsIsStringValid(pPktHdr, pszArgName, (const char *)(pPktHdr + 1), ppszExp, NULL, prcSend);
679}
680
681/**
682 * Checks if the two opcodes match.
683 *
684 * @returns true on match, false on mismatch.
685 * @param pPktHdr The packet header.
686 * @param pszOpcode2 The opcode we're comparing with. Does not have
687 * to be the whole 8 chars long.
688 */
689DECLINLINE(bool) txsIsSameOpcode(PCTXSPKTHDR pPktHdr, const char *pszOpcode2)
690{
691 if (pPktHdr->achOpcode[0] != pszOpcode2[0])
692 return false;
693 if (pPktHdr->achOpcode[1] != pszOpcode2[1])
694 return false;
695
696 unsigned i = 2;
697 while ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode)
698 && pszOpcode2[i] != '\0')
699 {
700 if (pPktHdr->achOpcode[i] != pszOpcode2[i])
701 break;
702 i++;
703 }
704
705 if ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode)
706 && pszOpcode2[i] == '\0')
707 {
708 while ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode)
709 && pPktHdr->achOpcode[i] == ' ')
710 i++;
711 }
712
713 return i == RT_SIZEOFMEMB(TXSPKTHDR, achOpcode);
714}
715
716/**
717 * Used by txsDoGetFile to wait for a reply ACK from the client.
718 *
719 * @returns VINF_SUCCESS on ACK, VERR_GENERAL_FAILURE on NACK,
720 * VERR_NET_NOT_CONNECTED on unknown response (sending a bable reply),
721 * or whatever txsRecvPkt returns.
722 * @param pPktHdr The original packet (for future use).
723 */
724static int txsWaitForAck(PCTXSPKTHDR pPktHdr)
725{
726 NOREF(pPktHdr);
727 /** @todo timeout? */
728 PTXSPKTHDR pReply;
729 int rc = txsRecvPkt(&pReply, false /*fAutoRetryOnFailure*/);
730 if (RT_SUCCESS(rc))
731 {
732 if (txsIsSameOpcode(pReply, "ACK"))
733 rc = VINF_SUCCESS;
734 else if (txsIsSameOpcode(pReply, "NACK"))
735 rc = VERR_GENERAL_FAILURE;
736 else
737 {
738 txsReplyBabble("BABBLE ");
739 rc = VERR_NET_NOT_CONNECTED;
740 }
741 RTMemFree(pReply);
742 }
743 return rc;
744}
745
746/**
747 * Unpacks a tar file.
748 *
749 * @returns IPRT status code from send.
750 * @param pPktHdr The unpack file packet.
751 */
752static int txsDoUnpackFile(PCTXSPKTHDR pPktHdr)
753{
754 int rc;
755 char *pszFile = NULL;
756 char *pszDirectory = NULL;
757
758 /* Packet cursor. */
759 const char *pch = (const char *)(pPktHdr + 1);
760
761 if (txsIsStringValid(pPktHdr, "file", pch, &pszFile, &pch, &rc))
762 {
763 if (txsIsStringValid(pPktHdr, "directory", pch, &pszDirectory, &pch, &rc))
764 {
765 char *pszSuff = RTPathSuffix(pszFile);
766
767 const char *apszArgs[7];
768 unsigned cArgs = 0;
769
770 apszArgs[cArgs++] = "RTTar";
771 apszArgs[cArgs++] = "--extract";
772
773 apszArgs[cArgs++] = "--file";
774 apszArgs[cArgs++] = pszFile;
775
776 apszArgs[cArgs++] = "--directory";
777 apszArgs[cArgs++] = pszDirectory;
778
779 if ( pszSuff
780 && ( !RTStrICmp(pszSuff, ".gz")
781 || !RTStrICmp(pszSuff, ".tgz")))
782 apszArgs[cArgs++] = "--gunzip";
783
784 RTEXITCODE rcExit = RTZipTarCmd(cArgs, (char **)apszArgs);
785 if (rcExit != RTEXITCODE_SUCCESS)
786 rc = VERR_GENERAL_FAILURE; /** @todo proper return code. */
787 else
788 rc = VINF_SUCCESS;
789
790 rc = txsReplyRC(pPktHdr, rc, "RTZipTarCmd(\"%s\",\"%s\")",
791 pszFile, pszDirectory);
792
793 RTStrFree(pszDirectory);
794 }
795 RTStrFree(pszFile);
796 }
797
798 return rc;
799}
800
801/**
802 * Downloads a file to the client.
803 *
804 * The transfer sends a stream of DATA packets (0 or more) and ends it all with
805 * a ACK packet. If an error occurs, a FAILURE packet is sent and the transfer
806 * aborted.
807 *
808 * @returns IPRT status code from send.
809 * @param pPktHdr The get file packet.
810 */
811static int txsDoGetFile(PCTXSPKTHDR pPktHdr)
812{
813 int rc;
814 char *pszPath;
815 if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc))
816 return rc;
817
818 RTFILE hFile;
819 rc = RTFileOpen(&hFile, pszPath, RTFILE_O_READ | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN);
820 if (RT_SUCCESS(rc))
821 {
822 uint32_t uMyCrc32 = RTCrc32Start();
823 for (;;)
824 {
825 struct
826 {
827 TXSPKTHDR Hdr;
828 uint32_t uCrc32;
829 char ab[_64K];
830 char abPadding[TXSPKT_ALIGNMENT];
831 } Pkt;
832 size_t cbRead;
833 rc = RTFileRead(hFile, &Pkt.ab[0], _64K, &cbRead);
834 if (RT_FAILURE(rc) || cbRead == 0)
835 {
836 if (rc == VERR_EOF || (RT_SUCCESS(rc) && cbRead == 0))
837 {
838 Pkt.uCrc32 = RTCrc32Finish(uMyCrc32);
839 rc = txsReplyInternal(&Pkt.Hdr, "DATA EOF", sizeof(uint32_t));
840 if (RT_SUCCESS(rc))
841 rc = txsWaitForAck(&Pkt.Hdr);
842 }
843 else
844 rc = txsReplyRC(pPktHdr, rc, "RTFileRead");
845 break;
846 }
847
848 uMyCrc32 = RTCrc32Process(uMyCrc32, &Pkt.ab[0], cbRead);
849 Pkt.uCrc32 = RTCrc32Finish(uMyCrc32);
850 rc = txsReplyInternal(&Pkt.Hdr, "DATA ", cbRead + sizeof(uint32_t));
851 if (RT_FAILURE(rc))
852 break;
853 rc = txsWaitForAck(&Pkt.Hdr);
854 if (RT_FAILURE(rc))
855 break;
856 }
857
858 RTFileClose(hFile);
859 }
860 else
861 rc = txsReplyRC(pPktHdr, rc, "RTFileOpen(,\"%s\",)", pszPath);
862
863 RTStrFree(pszPath);
864 return rc;
865}
866
867/**
868 * Uploads a file from the client.
869 *
870 * The transfer sends a stream of DATA packets (0 or more) and ends it all with
871 * a DATA EOF packet. We ACK each of these, so that if a write error occurs we
872 * can abort the transfer straight away.
873 *
874 * @returns IPRT status code from send.
875 * @param pPktHdr The put file packet.
876 */
877static int txsDoPutFile(PCTXSPKTHDR pPktHdr)
878{
879 int rc;
880 char *pszPath;
881 if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc))
882 return rc;
883
884 RTFILE hFile;
885 rc = RTFileOpen(&hFile, pszPath, RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE);
886 if (RT_SUCCESS(rc))
887 {
888 bool fSuccess = false;
889 rc = txsReplyAck(pPktHdr);
890 if (RT_SUCCESS(rc))
891 {
892 /*
893 * Read client command packets and process them.
894 */
895 uint32_t uMyCrc32 = RTCrc32Start();
896 for (;;)
897 {
898 PTXSPKTHDR pDataPktHdr;
899 rc = txsRecvPkt(&pDataPktHdr, false /*fAutoRetryOnFailure*/);
900 if (RT_FAILURE(rc))
901 break;
902
903 if (txsIsSameOpcode(pDataPktHdr, "DATA"))
904 {
905 size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(uint32_t);
906 if (pDataPktHdr->cb >= cbMin)
907 {
908 size_t cbData = pDataPktHdr->cb - cbMin;
909 const void *pvData = (const char *)pDataPktHdr + cbMin;
910 uint32_t uCrc32 = *(uint32_t const *)(pDataPktHdr + 1);
911
912 uMyCrc32 = RTCrc32Process(uMyCrc32, pvData, cbData);
913 if (RTCrc32Finish(uMyCrc32) == uCrc32)
914 {
915 rc = RTFileWrite(hFile, pvData, cbData, NULL);
916 if (RT_SUCCESS(rc))
917 {
918 rc = txsReplyAck(pDataPktHdr);
919 RTMemFree(pDataPktHdr);
920 continue;
921 }
922
923 rc = txsReplyRC(pDataPktHdr, rc, "RTFileWrite");
924 }
925 else
926 rc = txsReplyFailure(pDataPktHdr, "BAD DCRC", "mycrc=%#x your=%#x", uMyCrc32, uCrc32);
927 }
928 else
929 rc = txsReplyBadMinSize(pPktHdr, cbMin);
930 }
931 else if (txsIsSameOpcode(pDataPktHdr, "DATA EOF"))
932 {
933 if (pDataPktHdr->cb == sizeof(TXSPKTHDR) + sizeof(uint32_t))
934 {
935 uint32_t uCrc32 = *(uint32_t const *)(pDataPktHdr + 1);
936 if (RTCrc32Finish(uMyCrc32) == uCrc32)
937 {
938 rc = txsReplyAck(pDataPktHdr);
939 fSuccess = RT_SUCCESS(rc);
940 }
941 else
942 rc = txsReplyFailure(pDataPktHdr, "BAD DCRC", "mycrc=%#x your=%#x", uMyCrc32, uCrc32);
943 }
944 else
945 rc = txsReplyAck(pDataPktHdr);
946 }
947 else if (txsIsSameOpcode(pDataPktHdr, "ABORT"))
948 rc = txsReplyAck(pDataPktHdr);
949 else
950 rc = txsReplyFailure(pDataPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known or not recognized during PUT FILE", pDataPktHdr->achOpcode);
951 RTMemFree(pDataPktHdr);
952 break;
953 }
954 }
955
956 RTFileClose(hFile);
957
958 /*
959 * Delete the file on failure.
960 */
961 if (!fSuccess)
962 RTFileDelete(pszPath);
963 }
964 else
965 rc = txsReplyRC(pPktHdr, rc, "RTFileOpen(,\"%s\",)", pszPath);
966
967 RTStrFree(pszPath);
968 return rc;
969}
970
971/**
972 * List the entries in the specified directory.
973 *
974 * @returns IPRT status code from send.
975 * @param pPktHdr The list packet.
976 */
977static int txsDoList(PCTXSPKTHDR pPktHdr)
978{
979 int rc;
980 char *pszPath;
981 if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
982 return rc;
983
984 rc = txsReplyNotImplemented(pPktHdr);
985
986 RTStrFree(pszPath);
987 return rc;
988}
989
990
991/**
992 * Get info about a file system object, following all but the symbolic links
993 * except in the final path component.
994 *
995 * @returns IPRT status code from send.
996 * @param pPktHdr The lstat packet.
997 */
998static int txsDoLStat(PCTXSPKTHDR pPktHdr)
999{
1000 int rc;
1001 char *pszPath;
1002 if (!txsIsStringPktValid(pPktHdr, "path", &pszPath, &rc))
1003 return rc;
1004
1005 RTFSOBJINFO Info;
1006 rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_UNIX, RTPATH_F_ON_LINK);
1007 if (RT_SUCCESS(rc))
1008 /** @todo figure out how to format the return buffer here. */
1009 rc = txsReplyNotImplemented(pPktHdr);
1010 else
1011 rc = txsReplyRC(pPktHdr, rc, "RTPathQueryInfoEx(\"%s\",,UNIX,ON_LINK)", pszPath);
1012
1013 RTStrFree(pszPath);
1014 return rc;
1015}
1016
1017/**
1018 * Get info about a file system object, following all symbolic links.
1019 *
1020 * @returns IPRT status code from send.
1021 * @param pPktHdr The stat packet.
1022 */
1023static int txsDoStat(PCTXSPKTHDR pPktHdr)
1024{
1025 int rc;
1026 char *pszPath;
1027 if (!txsIsStringPktValid(pPktHdr, "path", &pszPath, &rc))
1028 return rc;
1029
1030 RTFSOBJINFO Info;
1031 rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_UNIX, RTPATH_F_FOLLOW_LINK);
1032 if (RT_SUCCESS(rc))
1033 /** @todo figure out how to format the return buffer here. */
1034 rc = txsReplyNotImplemented(pPktHdr);
1035 else
1036 rc = txsReplyRC(pPktHdr, rc, "RTPathQueryInfoEx(\"%s\",,UNIX,FOLLOW_LINK)", pszPath);
1037
1038 RTStrFree(pszPath);
1039 return rc;
1040}
1041
1042/**
1043 * Checks if the specified path is a symbolic link.
1044 *
1045 * @returns IPRT status code from send.
1046 * @param pPktHdr The issymlnk packet.
1047 */
1048static int txsDoIsSymlnk(PCTXSPKTHDR pPktHdr)
1049{
1050 int rc;
1051 char *pszPath;
1052 if (!txsIsStringPktValid(pPktHdr, "symlink", &pszPath, &rc))
1053 return rc;
1054
1055 RTFSOBJINFO Info;
1056 rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK);
1057 if (RT_SUCCESS(rc) && RTFS_IS_SYMLINK(Info.Attr.fMode))
1058 rc = txsReplySimple(pPktHdr, "TRUE ");
1059 else
1060 rc = txsReplySimple(pPktHdr, "FALSE ");
1061
1062 RTStrFree(pszPath);
1063 return rc;
1064}
1065
1066/**
1067 * Checks if the specified path is a file or not.
1068 *
1069 * If the final path element is a symbolic link to a file, we'll return
1070 * FALSE.
1071 *
1072 * @returns IPRT status code from send.
1073 * @param pPktHdr The isfile packet.
1074 */
1075static int txsDoIsFile(PCTXSPKTHDR pPktHdr)
1076{
1077 int rc;
1078 char *pszPath;
1079 if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
1080 return rc;
1081
1082 RTFSOBJINFO Info;
1083 rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK);
1084 if (RT_SUCCESS(rc) && RTFS_IS_FILE(Info.Attr.fMode))
1085 rc = txsReplySimple(pPktHdr, "TRUE ");
1086 else
1087 rc = txsReplySimple(pPktHdr, "FALSE ");
1088
1089 RTStrFree(pszPath);
1090 return rc;
1091}
1092
1093/**
1094 * Checks if the specified path is a directory or not.
1095 *
1096 * If the final path element is a symbolic link to a directory, we'll return
1097 * FALSE.
1098 *
1099 * @returns IPRT status code from send.
1100 * @param pPktHdr The isdir packet.
1101 */
1102static int txsDoIsDir(PCTXSPKTHDR pPktHdr)
1103{
1104 int rc;
1105 char *pszPath;
1106 if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
1107 return rc;
1108
1109 RTFSOBJINFO Info;
1110 rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK);
1111 if (RT_SUCCESS(rc) && RTFS_IS_DIRECTORY(Info.Attr.fMode))
1112 rc = txsReplySimple(pPktHdr, "TRUE ");
1113 else
1114 rc = txsReplySimple(pPktHdr, "FALSE ");
1115
1116 RTStrFree(pszPath);
1117 return rc;
1118}
1119
1120/**
1121 * Changes the group of a file, directory of symbolic link.
1122 *
1123 * @returns IPRT status code from send.
1124 * @param pPktHdr The chmod packet.
1125 */
1126static int txsDoChGrp(PCTXSPKTHDR pPktHdr)
1127{
1128 return txsReplyNotImplemented(pPktHdr);
1129}
1130
1131/**
1132 * Changes the owner of a file, directory of symbolic link.
1133 *
1134 * @returns IPRT status code from send.
1135 * @param pPktHdr The chmod packet.
1136 */
1137static int txsDoChOwn(PCTXSPKTHDR pPktHdr)
1138{
1139 return txsReplyNotImplemented(pPktHdr);
1140}
1141
1142/**
1143 * Changes the mode of a file or directory.
1144 *
1145 * @returns IPRT status code from send.
1146 * @param pPktHdr The chmod packet.
1147 */
1148static int txsDoChMod(PCTXSPKTHDR pPktHdr)
1149{
1150 return txsReplyNotImplemented(pPktHdr);
1151}
1152
1153/**
1154 * Removes a directory tree.
1155 *
1156 * @returns IPRT status code from send.
1157 * @param pPktHdr The rmtree packet.
1158 */
1159static int txsDoRmTree(PCTXSPKTHDR pPktHdr)
1160{
1161 int rc;
1162 char *pszPath;
1163 if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
1164 return rc;
1165
1166 rc = RTDirRemoveRecursive(pszPath, 0 /*fFlags*/);
1167
1168 rc = txsReplyRC(pPktHdr, rc, "RTDirRemoveRecusive(\"%s\",0)", pszPath);
1169 RTStrFree(pszPath);
1170 return rc;
1171}
1172
1173/**
1174 * Removes a symbolic link.
1175 *
1176 * @returns IPRT status code from send.
1177 * @param pPktHdr The rmsymlink packet.
1178 */
1179static int txsDoRmSymlnk(PCTXSPKTHDR pPktHdr)
1180{
1181 int rc;
1182 char *pszPath;
1183 if (!txsIsStringPktValid(pPktHdr, "symlink", &pszPath, &rc))
1184 return rc;
1185
1186 rc = VERR_NOT_IMPLEMENTED; /// @todo RTSymlinkDelete(pszPath);
1187
1188 rc = txsReplyRC(pPktHdr, rc, "RTSymlinkDelete(\"%s\")", pszPath);
1189 RTStrFree(pszPath);
1190 return rc;
1191}
1192
1193/**
1194 * Removes a file.
1195 *
1196 * @returns IPRT status code from send.
1197 * @param pPktHdr The rmfile packet.
1198 */
1199static int txsDoRmFile(PCTXSPKTHDR pPktHdr)
1200{
1201 int rc;
1202 char *pszPath;
1203 if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc))
1204 return rc;
1205
1206 rc = RTFileDelete(pszPath);
1207
1208 rc = txsReplyRC(pPktHdr, rc, "RTFileDelete(\"%s\")", pszPath);
1209 RTStrFree(pszPath);
1210 return rc;
1211}
1212
1213/**
1214 * Removes a directory.
1215 *
1216 * @returns IPRT status code from send.
1217 * @param pPktHdr The rmdir packet.
1218 */
1219static int txsDoRmDir(PCTXSPKTHDR pPktHdr)
1220{
1221 int rc;
1222 char *pszPath;
1223 if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
1224 return rc;
1225
1226 rc = RTDirRemove(pszPath);
1227
1228 rc = txsReplyRC(pPktHdr, rc, "RTDirRemove(\"%s\")", pszPath);
1229 RTStrFree(pszPath);
1230 return rc;
1231}
1232
1233/**
1234 * Creates a symbolic link.
1235 *
1236 * @returns IPRT status code from send.
1237 * @param pPktHdr The mksymlnk packet.
1238 */
1239static int txsDoMkSymlnk(PCTXSPKTHDR pPktHdr)
1240{
1241 return txsReplyNotImplemented(pPktHdr);
1242}
1243
1244/**
1245 * Creates a directory and all its parents.
1246 *
1247 * @returns IPRT status code from send.
1248 * @param pPktHdr The mkdir -p packet.
1249 */
1250static int txsDoMkDrPath(PCTXSPKTHDR pPktHdr)
1251{
1252 /* The same format as the MKDIR command. */
1253 if (pPktHdr->cb < sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2)
1254 return txsReplyBadMinSize(pPktHdr, sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2);
1255
1256 int rc;
1257 char *pszPath;
1258 if (!txsIsStringValid(pPktHdr, "dir", (const char *)(pPktHdr + 1) + sizeof(RTFMODE), &pszPath, NULL, &rc))
1259 return rc;
1260
1261 RTFMODE fMode = *(RTFMODE const *)(pPktHdr + 1);
1262 rc = RTDirCreateFullPath(pszPath, fMode);
1263
1264 rc = txsReplyRC(pPktHdr, rc, "RTDirCreateFullPath(\"%s\", %#x)", pszPath, fMode);
1265 RTStrFree(pszPath);
1266 return rc;
1267}
1268
1269/**
1270 * Creates a directory.
1271 *
1272 * @returns IPRT status code from send.
1273 * @param pPktHdr The mkdir packet.
1274 */
1275static int txsDoMkDir(PCTXSPKTHDR pPktHdr)
1276{
1277 /* After the packet header follows a mode mask and the remainder of
1278 the packet is the zero terminated directory name. */
1279 size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2;
1280 if (pPktHdr->cb < cbMin)
1281 return txsReplyBadMinSize(pPktHdr, cbMin);
1282
1283 int rc;
1284 char *pszPath;
1285 if (!txsIsStringValid(pPktHdr, "dir", (const char *)(pPktHdr + 1) + sizeof(RTFMODE), &pszPath, NULL, &rc))
1286 return rc;
1287
1288 RTFMODE fMode = *(RTFMODE const *)(pPktHdr + 1);
1289 rc = RTDirCreate(pszPath, fMode, 0);
1290
1291 rc = txsReplyRC(pPktHdr, rc, "RTDirCreate(\"%s\", %#x)", pszPath, fMode);
1292 RTStrFree(pszPath);
1293 return rc;
1294}
1295
1296/**
1297 * Cleans up the scratch area.
1298 *
1299 * @returns IPRT status code from send.
1300 * @param pPktHdr The shutdown packet.
1301 */
1302static int txsDoCleanup(PCTXSPKTHDR pPktHdr)
1303{
1304 int rc = RTDirRemoveRecursive(g_szScratchPath, RTDIRRMREC_F_CONTENT_ONLY);
1305 return txsReplyRC(pPktHdr, rc, "RTDirRemoveRecursive(\"%s\", CONTENT_ONLY)", g_szScratchPath);
1306}
1307
1308/**
1309 * Ejects the specified DVD/CD drive.
1310 *
1311 * @returns IPRT status code from send.
1312 * @param pPktHdr The eject packet.
1313 */
1314static int txsDoCdEject(PCTXSPKTHDR pPktHdr)
1315{
1316 /* After the packet header follows a uint32_t ordinal. */
1317 size_t const cbExpected = sizeof(TXSPKTHDR) + sizeof(uint32_t);
1318 if (pPktHdr->cb != cbExpected)
1319 return txsReplyBadSize(pPktHdr, cbExpected);
1320 uint32_t iOrdinal = *(uint32_t const *)(pPktHdr + 1);
1321
1322 RTCDROM hCdrom;
1323 int rc = RTCdromOpenByOrdinal(iOrdinal, RTCDROM_O_CONTROL, &hCdrom);
1324 if (RT_FAILURE(rc))
1325 return txsReplyRC(pPktHdr, rc, "RTCdromOpenByOrdinal(%u, RTCDROM_O_CONTROL, )", iOrdinal);
1326 rc = RTCdromEject(hCdrom, true /*fForce*/);
1327 RTCdromRelease(hCdrom);
1328
1329 return txsReplyRC(pPktHdr, rc, "RTCdromEject(ord=%u, fForce=true)", iOrdinal);
1330}
1331
1332/**
1333 * Common worker for txsDoShutdown and txsDoReboot.
1334 *
1335 * @returns IPRT status code from send.
1336 * @param pPktHdr The reboot packet.
1337 * @param fAction Which action to take.
1338 */
1339static int txsCommonShutdownReboot(PCTXSPKTHDR pPktHdr, uint32_t fAction)
1340{
1341 /*
1342 * We ACK the reboot & shutdown before actually performing them, then we
1343 * terminate the transport layer.
1344 *
1345 * This is to make sure the client isn't stuck with a dead connection. The
1346 * transport layer termination also make sure we won't accept new
1347 * connections in case the client is too eager to reconnect to a rebooted
1348 * test victim. On the down side, we cannot easily report RTSystemShutdown
1349 * failures failures this way. But the client can kind of figure it out by
1350 * reconnecting and seeing that our UUID was unchanged.
1351 */
1352 int rc;
1353 if (pPktHdr->cb != sizeof(TXSPKTHDR))
1354 return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
1355 g_pTransport->pfnNotifyReboot();
1356 rc = txsReplyAck(pPktHdr);
1357 RTThreadSleep(2560); /* fudge factor */
1358 g_pTransport->pfnTerm();
1359
1360 /*
1361 * Do the job, if it fails we'll restart the transport layer.
1362 */
1363#if 0
1364 rc = VINF_SUCCESS;
1365#else
1366 rc = RTSystemShutdown(0 /*cMsDelay*/,
1367 fAction | RTSYSTEM_SHUTDOWN_PLANNED | RTSYSTEM_SHUTDOWN_FORCE,
1368 "Test Execution Service");
1369#endif
1370 if (RT_SUCCESS(rc))
1371 {
1372 RTMsgInfo(fAction == RTSYSTEM_SHUTDOWN_REBOOT ? "Rebooting...\n" : "Shutting down...\n");
1373 g_fTerminate = true;
1374 }
1375 else
1376 {
1377 RTMsgError("RTSystemShutdown w/ fAction=%#x failed: %Rrc", fAction, rc);
1378
1379 int rc2 = g_pTransport->pfnInit();
1380 if (RT_FAILURE(rc2))
1381 {
1382 g_fTerminate = true;
1383 rc = rc2;
1384 }
1385 }
1386 return rc;
1387}
1388
1389/**
1390 * Shuts down the machine, powering it off if possible.
1391 *
1392 * @returns IPRT status code from send.
1393 * @param pPktHdr The shutdown packet.
1394 */
1395static int txsDoShutdown(PCTXSPKTHDR pPktHdr)
1396{
1397 return txsCommonShutdownReboot(pPktHdr, RTSYSTEM_SHUTDOWN_POWER_OFF_HALT);
1398}
1399
1400/**
1401 * Reboots the machine.
1402 *
1403 * @returns IPRT status code from send.
1404 * @param pPktHdr The reboot packet.
1405 */
1406static int txsDoReboot(PCTXSPKTHDR pPktHdr)
1407{
1408 return txsCommonShutdownReboot(pPktHdr, RTSYSTEM_SHUTDOWN_REBOOT);
1409}
1410
1411/**
1412 * Verifies and acknowledges a "UUID" request.
1413 *
1414 * @returns IPRT status code.
1415 * @param pPktHdr The howdy packet.
1416 */
1417static int txsDoUuid(PCTXSPKTHDR pPktHdr)
1418{
1419 if (pPktHdr->cb != sizeof(TXSPKTHDR))
1420 return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
1421
1422 struct
1423 {
1424 TXSPKTHDR Hdr;
1425 char szUuid[RTUUID_STR_LENGTH];
1426 char abPadding[TXSPKT_ALIGNMENT];
1427 } Pkt;
1428
1429 int rc = RTUuidToStr(&g_InstanceUuid, Pkt.szUuid, sizeof(Pkt.szUuid));
1430 if (RT_FAILURE(rc))
1431 return txsReplyRC(pPktHdr, rc, "RTUuidToStr");
1432 return txsReplyInternal(&Pkt.Hdr, "ACK UUID", strlen(Pkt.szUuid) + 1);
1433}
1434
1435/**
1436 * Verifies and acknowledges a "BYE" request.
1437 *
1438 * @returns IPRT status code.
1439 * @param pPktHdr The howdy packet.
1440 */
1441static int txsDoBye(PCTXSPKTHDR pPktHdr)
1442{
1443 int rc;
1444 if (pPktHdr->cb == sizeof(TXSPKTHDR))
1445 rc = txsReplyAck(pPktHdr);
1446 else
1447 rc = txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
1448 g_pTransport->pfnNotifyBye();
1449 return rc;
1450}
1451
1452/**
1453 * Verifies and acknowledges a "HOWDY" request.
1454 *
1455 * @returns IPRT status code.
1456 * @param pPktHdr The howdy packet.
1457 */
1458static int txsDoHowdy(PCTXSPKTHDR pPktHdr)
1459{
1460 if (pPktHdr->cb != sizeof(TXSPKTHDR))
1461 return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
1462 int rc = txsReplyAck(pPktHdr);
1463 if (RT_SUCCESS(rc))
1464 {
1465 g_pTransport->pfnNotifyHowdy();
1466 RTDirRemoveRecursive(g_szScratchPath, RTDIRRMREC_F_CONTENT_ONLY);
1467 }
1468 return rc;
1469}
1470
1471/**
1472 * Replies according to the return code.
1473 *
1474 * @returns rcOperation and pTxsExec->rcReplySend.
1475 * @param pTxsExec The TXSEXEC instance.
1476 * @param rcOperation The status code to report.
1477 * @param pszOperationFmt The operation that failed. Typically giving the
1478 * function call with important arguments.
1479 * @param ... Arguments to the format string.
1480 */
1481static int txsExecReplyRC(PTXSEXEC pTxsExec, int rcOperation, const char *pszOperationFmt, ...)
1482{
1483 AssertStmt(RT_FAILURE_NP(rcOperation), rcOperation = VERR_IPE_UNEXPECTED_INFO_STATUS);
1484
1485 char szOperation[128];
1486 va_list va;
1487 va_start(va, pszOperationFmt);
1488 RTStrPrintfV(szOperation, sizeof(szOperation), pszOperationFmt, va);
1489 va_end(va);
1490
1491 pTxsExec->rcReplySend = txsReplyFailure(pTxsExec->pPktHdr, "FAILED ",
1492 "%s failed with rc=%Rrc (opcode '%.8s')",
1493 szOperation, rcOperation, pTxsExec->pPktHdr->achOpcode);
1494 return rcOperation;
1495}
1496
1497
1498/**
1499 * Sends the process exit status reply to the TXS client.
1500 *
1501 * @returns IPRT status code of the send.
1502 * @param pTxsExec The TXSEXEC instance.
1503 * @param fProcessAlive Whether the process is still alive (against our
1504 * will).
1505 * @param fProcessTimedOut Whether the process timed out.
1506 * @param MsProcessKilled When the process was killed, UINT64_MAX if not.
1507 */
1508static int txsExecSendExitStatus(PTXSEXEC pTxsExec, bool fProcessAlive, bool fProcessTimedOut, uint64_t MsProcessKilled)
1509{
1510 int rc;
1511 if ( fProcessTimedOut && !fProcessAlive && MsProcessKilled != UINT64_MAX)
1512 {
1513 rc = txsReplySimple(pTxsExec->pPktHdr, "PROC TOK");
1514 if (g_fDisplayOutput)
1515 RTPrintf("txs: Process timed out and was killed\n");
1516 }
1517 else if (fProcessTimedOut && fProcessAlive && MsProcessKilled != UINT64_MAX)
1518 {
1519 rc = txsReplySimple(pTxsExec->pPktHdr, "PROC TOA");
1520 if (g_fDisplayOutput)
1521 RTPrintf("txs: Process timed out and was not killed successfully\n");
1522 }
1523 else if (g_fTerminate && (fProcessAlive || MsProcessKilled != UINT64_MAX))
1524 rc = txsReplySimple(pTxsExec->pPktHdr, "PROC DWN");
1525 else if (fProcessAlive)
1526 {
1527 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "Doofus! process is alive when it should not");
1528 AssertFailed();
1529 }
1530 else if (MsProcessKilled != UINT64_MAX)
1531 {
1532 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "Doofus! process has been killed when it should not");
1533 AssertFailed();
1534 }
1535 else if ( pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_NORMAL
1536 && pTxsExec->ProcessStatus.iStatus == 0)
1537 {
1538 rc = txsReplySimple(pTxsExec->pPktHdr, "PROC OK ");
1539 if (g_fDisplayOutput)
1540 RTPrintf("txs: Process exited with status: 0\n");
1541 }
1542 else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_NORMAL)
1543 {
1544 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC NOK", "%d", pTxsExec->ProcessStatus.iStatus);
1545 if (g_fDisplayOutput)
1546 RTPrintf("txs: Process exited with status: %d\n", pTxsExec->ProcessStatus.iStatus);
1547 }
1548 else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_SIGNAL)
1549 {
1550 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC SIG", "%d", pTxsExec->ProcessStatus.iStatus);
1551 if (g_fDisplayOutput)
1552 RTPrintf("txs: Process exited with status: signal %d\n", pTxsExec->ProcessStatus.iStatus);
1553 }
1554 else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_ABEND)
1555 {
1556 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC ABD", "");
1557 if (g_fDisplayOutput)
1558 RTPrintf("txs: Process exited with status: abend\n");
1559 }
1560 else
1561 {
1562 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "enmReason=%d iStatus=%d",
1563 pTxsExec->ProcessStatus.enmReason, pTxsExec->ProcessStatus.iStatus);
1564 AssertMsgFailed(("enmReason=%d iStatus=%d", pTxsExec->ProcessStatus.enmReason, pTxsExec->ProcessStatus.iStatus));
1565 }
1566 return rc;
1567}
1568
1569/**
1570 * Handle pending output data or error on standard out, standard error or the
1571 * test pipe.
1572 *
1573 * @returns IPRT status code from client send.
1574 * @param hPollSet The polling set.
1575 * @param fPollEvt The event mask returned by RTPollNoResume.
1576 * @param phPipeR The pipe handle.
1577 * @param puCrc32 The current CRC-32 of the stream. (In/Out)
1578 * @param enmHndId The handle ID.
1579 * @param pszOpcode The opcode for the data upload.
1580 *
1581 * @todo Put the last 4 parameters into a struct!
1582 */
1583static int txsDoExecHlpHandleOutputEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phPipeR,
1584 uint32_t *puCrc32, TXSEXECHNDID enmHndId, const char *pszOpcode)
1585{
1586 Log(("txsDoExecHlpHandleOutputEvent: %s fPollEvt=%#x\n", pszOpcode, fPollEvt));
1587
1588 /*
1589 * Try drain the pipe before acting on any errors.
1590 */
1591 int rc = VINF_SUCCESS;
1592 struct
1593 {
1594 TXSPKTHDR Hdr;
1595 uint32_t uCrc32;
1596 char abBuf[_64K];
1597 char abPadding[TXSPKT_ALIGNMENT];
1598 } Pkt;
1599 size_t cbRead;
1600 int rc2 = RTPipeRead(*phPipeR, Pkt.abBuf, sizeof(Pkt.abBuf), &cbRead);
1601 if (RT_SUCCESS(rc2) && cbRead)
1602 {
1603 Log(("Crc32=%#x ", *puCrc32));
1604 *puCrc32 = RTCrc32Process(*puCrc32, Pkt.abBuf, cbRead);
1605 Log(("cbRead=%#x Crc32=%#x \n", cbRead, *puCrc32));
1606 Pkt.uCrc32 = RTCrc32Finish(*puCrc32);
1607 if (g_fDisplayOutput)
1608 {
1609 if (enmHndId == TXSEXECHNDID_STDOUT)
1610 RTStrmPrintf(g_pStdErr, "%.*s", cbRead, Pkt.abBuf);
1611 else if (enmHndId == TXSEXECHNDID_STDERR)
1612 RTStrmPrintf(g_pStdErr, "%.*s", cbRead, Pkt.abBuf);
1613 }
1614
1615 rc = txsReplyInternal(&Pkt.Hdr, pszOpcode, cbRead + sizeof(uint32_t));
1616
1617 /* Make sure we go another poll round in case there was too much data
1618 for the buffer to hold. */
1619 fPollEvt &= RTPOLL_EVT_ERROR;
1620 }
1621 else if (RT_FAILURE(rc2))
1622 {
1623 fPollEvt |= RTPOLL_EVT_ERROR;
1624 AssertMsg(rc2 == VERR_BROKEN_PIPE, ("%Rrc\n", rc));
1625 }
1626
1627 /*
1628 * If an error was raised signalled,
1629 */
1630 if (fPollEvt & RTPOLL_EVT_ERROR)
1631 {
1632 rc2 = RTPollSetRemove(hPollSet, enmHndId);
1633 AssertRC(rc2);
1634
1635 rc2 = RTPipeClose(*phPipeR);
1636 AssertRC(rc2);
1637 *phPipeR = NIL_RTPIPE;
1638 }
1639 return rc;
1640}
1641
1642/**
1643 * Try write some more data to the standard input of the child.
1644 *
1645 * @returns IPRT status code.
1646 * @param pStdInBuf The standard input buffer.
1647 * @param hStdInW The standard input pipe.
1648 */
1649static int txsDoExecHlpWriteStdIn(PTXSEXECSTDINBUF pStdInBuf, RTPIPE hStdInW)
1650{
1651 size_t cbToWrite = pStdInBuf->cb - pStdInBuf->off;
1652 size_t cbWritten;
1653 int rc = RTPipeWrite(hStdInW, &pStdInBuf->pch[pStdInBuf->off], cbToWrite, &cbWritten);
1654 if (RT_SUCCESS(rc))
1655 {
1656 Assert(cbWritten == cbToWrite);
1657 pStdInBuf->off += cbWritten;
1658 }
1659 return rc;
1660}
1661
1662/**
1663 * Handle an error event on standard input.
1664 *
1665 * @param hPollSet The polling set.
1666 * @param fPollEvt The event mask returned by RTPollNoResume.
1667 * @param phStdInW The standard input pipe handle.
1668 * @param pStdInBuf The standard input buffer.
1669 */
1670static void txsDoExecHlpHandleStdInErrorEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phStdInW,
1671 PTXSEXECSTDINBUF pStdInBuf)
1672{
1673 NOREF(fPollEvt);
1674 int rc2;
1675 if (pStdInBuf->off < pStdInBuf->cb)
1676 {
1677 rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE);
1678 AssertRC(rc2);
1679 }
1680
1681 rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN);
1682 AssertRC(rc2);
1683
1684 rc2 = RTPipeClose(*phStdInW);
1685 AssertRC(rc2);
1686 *phStdInW = NIL_RTPIPE;
1687
1688 RTMemFree(pStdInBuf->pch);
1689 pStdInBuf->pch = NULL;
1690 pStdInBuf->off = 0;
1691 pStdInBuf->cb = 0;
1692 pStdInBuf->cbAllocated = 0;
1693 pStdInBuf->fBitBucket = true;
1694}
1695
1696/**
1697 * Handle an event indicating we can write to the standard input pipe of the
1698 * child process.
1699 *
1700 * @param hPollSet The polling set.
1701 * @param fPollEvt The event mask returned by RTPollNoResume.
1702 * @param phStdInW The standard input pipe.
1703 * @param pStdInBuf The standard input buffer.
1704 */
1705static void txsDoExecHlpHandleStdInWritableEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phStdInW,
1706 PTXSEXECSTDINBUF pStdInBuf)
1707{
1708 int rc;
1709 if (!(fPollEvt & RTPOLL_EVT_ERROR))
1710 {
1711 rc = txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW);
1712 if (RT_FAILURE(rc) && rc != VERR_BAD_PIPE)
1713 {
1714 /** @todo do we need to do something about this error condition? */
1715 AssertRC(rc);
1716 }
1717
1718 if (pStdInBuf->off < pStdInBuf->cb)
1719 {
1720 rc = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE);
1721 AssertRC(rc);
1722 }
1723 }
1724 else
1725 txsDoExecHlpHandleStdInErrorEvent(hPollSet, fPollEvt, phStdInW, pStdInBuf);
1726}
1727
1728/**
1729 * Handle a transport event or successful pfnPollIn() call.
1730 *
1731 * @returns IPRT status code from client send.
1732 * @retval VINF_EOF indicates ABORT command.
1733 *
1734 * @param hPollSet The polling set.
1735 * @param fPollEvt The event mask returned by RTPollNoResume.
1736 * @param idPollHnd The handle ID.
1737 * @param phStdInW The standard input pipe.
1738 * @param pStdInBuf The standard input buffer.
1739 */
1740static int txsDoExecHlpHandleTransportEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, uint32_t idPollHnd,
1741 PRTPIPE phStdInW, PTXSEXECSTDINBUF pStdInBuf)
1742{
1743 /* ASSUMES the transport layer will detect or clear any error condition. */
1744 NOREF(fPollEvt); NOREF(idPollHnd);
1745 Log(("txsDoExecHlpHandleTransportEvent\n"));
1746 /** @todo Use a callback for this case? */
1747
1748 /*
1749 * Read client command packet and process it.
1750 */
1751 /** @todo Sometimes this hangs on windows because there isn't any data pending.
1752 * We probably get woken up at the wrong time or in the wrong way, i.e. RTPoll()
1753 * is busted for sockets.
1754 *
1755 * Temporary workaround: Poll for input before trying to read it. */
1756 if (!g_pTransport->pfnPollIn())
1757 {
1758 Log(("Bad transport event\n"));
1759 RTThreadYield();
1760 return VINF_SUCCESS;
1761 }
1762 PTXSPKTHDR pPktHdr;
1763 int rc = txsRecvPkt(&pPktHdr, false /*fAutoRetryOnFailure*/);
1764 if (RT_FAILURE(rc))
1765 return rc;
1766 Log(("Bad transport event\n"));
1767
1768 /*
1769 * The most common thing here would be a STDIN request with data
1770 * for the child process.
1771 */
1772 if (txsIsSameOpcode(pPktHdr, "STDIN"))
1773 {
1774 if ( !pStdInBuf->fBitBucket
1775 && pPktHdr->cb >= sizeof(TXSPKTHDR) + sizeof(uint32_t))
1776 {
1777 uint32_t uCrc32 = *(uint32_t *)(pPktHdr + 1);
1778 const char *pch = (const char *)(pPktHdr + 1) + sizeof(uint32_t);
1779 size_t cb = pPktHdr->cb - sizeof(TXSPKTHDR) - sizeof(uint32_t);
1780
1781 /* Check the CRC */
1782 pStdInBuf->uCrc32 = RTCrc32Process(pStdInBuf->uCrc32, pch, cb);
1783 if (RTCrc32Finish(pStdInBuf->uCrc32) == uCrc32)
1784 {
1785
1786 /* Rewind the buffer if it's empty. */
1787 size_t cbInBuf = pStdInBuf->cb - pStdInBuf->off;
1788 bool const fAddToSet = cbInBuf == 0;
1789 if (fAddToSet)
1790 pStdInBuf->cb = pStdInBuf->off = 0;
1791
1792 /* Try and see if we can simply append the data. */
1793 if (cb + pStdInBuf->cb <= pStdInBuf->cbAllocated)
1794 {
1795 memcpy(&pStdInBuf->pch[pStdInBuf->cb], pch, cb);
1796 pStdInBuf->cb += cb;
1797 rc = txsReplyAck(pPktHdr);
1798 }
1799 else
1800 {
1801 /* Try write a bit or two before we move+realloc the buffer. */
1802 if (cbInBuf > 0)
1803 txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW);
1804
1805 /* Move any buffered data to the front. */
1806 cbInBuf = pStdInBuf->cb - pStdInBuf->off;
1807 if (cbInBuf == 0)
1808 pStdInBuf->cb = pStdInBuf->off = 0;
1809 else
1810 {
1811 memmove(pStdInBuf->pch, &pStdInBuf->pch[pStdInBuf->off], cbInBuf);
1812 pStdInBuf->cb = cbInBuf;
1813 pStdInBuf->off = 0;
1814 }
1815
1816 /* Do we need to grow the buffer? */
1817 if (cb + pStdInBuf->cb > pStdInBuf->cbAllocated)
1818 {
1819 size_t cbAlloc = pStdInBuf->cb + cb;
1820 cbAlloc = RT_ALIGN_Z(cbAlloc, _64K);
1821 void *pvNew = RTMemRealloc(pStdInBuf->pch, cbAlloc);
1822 if (pvNew)
1823 {
1824 pStdInBuf->pch = (char *)pvNew;
1825 pStdInBuf->cbAllocated = cbAlloc;
1826 }
1827 }
1828
1829 /* Finally, copy the data. */
1830 if (cb + pStdInBuf->cb <= pStdInBuf->cbAllocated)
1831 {
1832 memcpy(&pStdInBuf->pch[pStdInBuf->cb], pch, cb);
1833 pStdInBuf->cb += cb;
1834 rc = txsReplyAck(pPktHdr);
1835 }
1836 else
1837 rc = txsReplySimple(pPktHdr, "STDINMEM");
1838 }
1839
1840 /*
1841 * Flush the buffered data and add/remove the standard input
1842 * handle from the set.
1843 */
1844 txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW);
1845 if (fAddToSet && pStdInBuf->off < pStdInBuf->cb)
1846 {
1847 int rc2 = RTPollSetAddPipe(hPollSet, *phStdInW, RTPOLL_EVT_WRITE, TXSEXECHNDID_STDIN_WRITABLE);
1848 AssertRC(rc2);
1849 }
1850 else if (!fAddToSet && pStdInBuf->off >= pStdInBuf->cb)
1851 {
1852 int rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE);
1853 AssertRC(rc2);
1854 }
1855 }
1856 else
1857 rc = txsReplyFailure(pPktHdr, "STDINCRC", "Invalid CRC checksum expected %#x got %#x",
1858 pStdInBuf->uCrc32, uCrc32);
1859 }
1860 else if (pPktHdr->cb < sizeof(TXSPKTHDR) + sizeof(uint32_t))
1861 rc = txsReplySimple(pPktHdr, "STDINBAD");
1862 else
1863 rc = txsReplySimple(pPktHdr, "STDINIGN");
1864 }
1865 /*
1866 * Marks the end of the stream for stdin.
1867 */
1868 else if (txsIsSameOpcode(pPktHdr, "STDINEOS"))
1869 {
1870 if (RT_LIKELY(pPktHdr->cb == sizeof(TXSPKTHDR)))
1871 {
1872 /* Close the pipe. */
1873 txsDoExecHlpHandleStdInErrorEvent(hPollSet, fPollEvt, phStdInW, pStdInBuf);
1874 rc = txsReplyAck(pPktHdr);
1875 }
1876 else
1877 rc = txsReplySimple(pPktHdr, "STDINBAD");
1878 }
1879 /*
1880 * The only other two requests are connection oriented and we return a error
1881 * code so that we unwind the whole EXEC shebang and start afresh.
1882 */
1883 else if (txsIsSameOpcode(pPktHdr, "BYE"))
1884 {
1885 rc = txsDoBye(pPktHdr);
1886 if (RT_SUCCESS(rc))
1887 rc = VERR_NET_NOT_CONNECTED;
1888 }
1889 else if (txsIsSameOpcode(pPktHdr, "HOWDY"))
1890 {
1891 rc = txsDoHowdy(pPktHdr);
1892 if (RT_SUCCESS(rc))
1893 rc = VERR_NET_NOT_CONNECTED;
1894 }
1895 else if (txsIsSameOpcode(pPktHdr, "ABORT"))
1896 {
1897 rc = txsReplyAck(pPktHdr);
1898 if (RT_SUCCESS(rc))
1899 rc = VINF_EOF; /* this is but ugly! */
1900 }
1901 else
1902 rc = txsReplyFailure(pPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known or not recognized during EXEC", pPktHdr->achOpcode);
1903
1904 RTMemFree(pPktHdr);
1905 return rc;
1906}
1907
1908/**
1909 * Handles the output and input of the process, waits for it finish up.
1910 *
1911 * @returns IPRT status code from reply send.
1912 * @param pTxsExec The TXSEXEC instance.
1913 */
1914static int txsDoExecHlp2(PTXSEXEC pTxsExec)
1915{
1916 int rc; /* client send. */
1917 int rc2;
1918 TXSEXECSTDINBUF StdInBuf = { 0, 0, NULL, 0, pTxsExec->hStdInW == NIL_RTPIPE, RTCrc32Start() };
1919 uint32_t uStdOutCrc32 = RTCrc32Start();
1920 uint32_t uStdErrCrc32 = uStdOutCrc32;
1921 uint32_t uTestPipeCrc32 = uStdOutCrc32;
1922 uint64_t const MsStart = RTTimeMilliTS();
1923 bool fProcessTimedOut = false;
1924 uint64_t MsProcessKilled = UINT64_MAX;
1925 RTMSINTERVAL const cMsPollBase = g_pTransport->pfnPollSetAdd || pTxsExec->hStdInW == NIL_RTPIPE
1926 ? 5000 : 100;
1927 RTMSINTERVAL cMsPollCur = 0;
1928
1929 /*
1930 * Before entering the loop, tell the client that we've started the guest
1931 * and that it's now OK to send input to the process. (This is not the
1932 * final ACK, so the packet header is NULL ... kind of bogus.)
1933 */
1934 rc = txsReplyAck(NULL);
1935
1936 /*
1937 * Process input, output, the test pipe and client requests.
1938 */
1939 while ( RT_SUCCESS(rc)
1940 && RT_UNLIKELY(!g_fTerminate))
1941 {
1942 /*
1943 * Wait/Process all pending events.
1944 */
1945 uint32_t idPollHnd;
1946 uint32_t fPollEvt;
1947 Log3(("Calling RTPollNoResume(,%u,)...\n", cMsPollCur));
1948 rc2 = RTPollNoResume(pTxsExec->hPollSet, cMsPollCur, &fPollEvt, &idPollHnd);
1949 Log3(("RTPollNoResume -> fPollEvt=%#x idPollHnd=%u\n", fPollEvt, idPollHnd));
1950 if (g_fTerminate)
1951 continue;
1952 cMsPollCur = 0; /* no rest until we've checked everything. */
1953
1954 if (RT_SUCCESS(rc2))
1955 {
1956 switch (idPollHnd)
1957 {
1958 case TXSEXECHNDID_STDOUT:
1959 rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdOutR, &uStdOutCrc32,
1960 TXSEXECHNDID_STDOUT, "STDOUT ");
1961 break;
1962
1963 case TXSEXECHNDID_STDERR:
1964 rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdErrR, &uStdErrCrc32,
1965 TXSEXECHNDID_STDERR, "STDERR ");
1966 break;
1967
1968 case TXSEXECHNDID_TESTPIPE:
1969 rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hTestPipeR, &uTestPipeCrc32,
1970 TXSEXECHNDID_TESTPIPE, "TESTPIPE");
1971 break;
1972
1973 case TXSEXECHNDID_STDIN:
1974 txsDoExecHlpHandleStdInErrorEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdInW, &StdInBuf);
1975 break;
1976
1977 case TXSEXECHNDID_STDIN_WRITABLE:
1978 txsDoExecHlpHandleStdInWritableEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdInW, &StdInBuf);
1979 break;
1980
1981 case TXSEXECHNDID_THREAD:
1982 rc2 = RTPollSetRemove(pTxsExec->hPollSet, TXSEXECHNDID_THREAD); AssertRC(rc2);
1983 break;
1984
1985 default:
1986 rc = txsDoExecHlpHandleTransportEvent(pTxsExec->hPollSet, fPollEvt, idPollHnd, &pTxsExec->hStdInW,
1987 &StdInBuf);
1988 break;
1989 }
1990 if (RT_FAILURE(rc) || rc == VINF_EOF)
1991 break; /* abort command, or client dead or something */
1992 continue;
1993 }
1994
1995 /*
1996 * Check for incoming data.
1997 */
1998 if (g_pTransport->pfnPollIn())
1999 {
2000 rc = txsDoExecHlpHandleTransportEvent(pTxsExec->hPollSet, 0, UINT32_MAX, &pTxsExec->hStdInW, &StdInBuf);
2001 if (RT_FAILURE(rc) || rc == VINF_EOF)
2002 break; /* abort command, or client dead or something */
2003 continue;
2004 }
2005
2006 /*
2007 * If the process has terminated, we're should head out.
2008 */
2009 if (!ASMAtomicReadBool(&pTxsExec->fProcessAlive))
2010 break;
2011
2012 /*
2013 * Check for timed out, killing the process.
2014 */
2015 uint32_t cMilliesLeft = RT_INDEFINITE_WAIT;
2016 if (pTxsExec->cMsTimeout != RT_INDEFINITE_WAIT)
2017 {
2018 uint64_t u64Now = RTTimeMilliTS();
2019 uint64_t cMsElapsed = u64Now - MsStart;
2020 if (cMsElapsed >= pTxsExec->cMsTimeout)
2021 {
2022 fProcessTimedOut = true;
2023 if ( MsProcessKilled == UINT64_MAX
2024 || u64Now - MsProcessKilled > 1000)
2025 {
2026 if (u64Now - MsProcessKilled > 20*60*1000)
2027 break; /* give up after 20 mins */
2028 RTCritSectEnter(&pTxsExec->CritSect);
2029 if (pTxsExec->fProcessAlive)
2030 RTProcTerminate(pTxsExec->hProcess);
2031 RTCritSectLeave(&pTxsExec->CritSect);
2032 MsProcessKilled = u64Now;
2033 continue;
2034 }
2035 cMilliesLeft = 10000;
2036 }
2037 else
2038 cMilliesLeft = pTxsExec->cMsTimeout - (uint32_t)cMsElapsed;
2039 }
2040
2041 /* Reset the polling interval since we've done all pending work. */
2042 cMsPollCur = cMilliesLeft >= cMsPollBase ? cMsPollBase : cMilliesLeft;
2043 }
2044
2045 /*
2046 * At this point we should hopefully only have to wait 0 ms on the thread
2047 * to release the handle... But if for instance the process refuses to die,
2048 * we'll have to try kill it again. Bothersome.
2049 */
2050 for (size_t i = 0; i < 22; i++)
2051 {
2052 rc2 = RTThreadWait(pTxsExec->hThreadWaiter, 500, NULL);
2053 if (RT_SUCCESS(rc))
2054 {
2055 pTxsExec->hThreadWaiter = NIL_RTTHREAD;
2056 Assert(!pTxsExec->fProcessAlive);
2057 break;
2058 }
2059 if (i == 0 || i == 10 || i == 15 || i == 18 || i > 20)
2060 {
2061 RTCritSectEnter(&pTxsExec->CritSect);
2062 if (pTxsExec->fProcessAlive)
2063 RTProcTerminate(pTxsExec->hProcess);
2064 RTCritSectLeave(&pTxsExec->CritSect);
2065 }
2066 }
2067
2068 /*
2069 * If we don't have a client problem (RT_FAILURE(rc) we'll reply to the
2070 * clients exec packet now.
2071 */
2072 if (RT_SUCCESS(rc))
2073 rc = txsExecSendExitStatus(pTxsExec, pTxsExec->fProcessAlive, fProcessTimedOut, MsProcessKilled);
2074
2075 RTMemFree(StdInBuf.pch);
2076 return rc;
2077}
2078
2079/**
2080 * Creates a poll set for the pipes and let the transport layer add stuff to it
2081 * as well.
2082 *
2083 * @returns IPRT status code, reply to client made on error.
2084 * @param pTxsExec The TXSEXEC instance.
2085 */
2086static int txsExecSetupPollSet(PTXSEXEC pTxsExec)
2087{
2088 int rc = RTPollSetCreate(&pTxsExec->hPollSet);
2089 if (RT_FAILURE(rc))
2090 return txsExecReplyRC(pTxsExec, rc, "RTPollSetCreate");
2091
2092 rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdInW, RTPOLL_EVT_ERROR, TXSEXECHNDID_STDIN);
2093 if (RT_FAILURE(rc))
2094 return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stdin");
2095
2096 rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdOutR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
2097 TXSEXECHNDID_STDOUT);
2098 if (RT_FAILURE(rc))
2099 return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stdout");
2100
2101 rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdErrR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
2102 TXSEXECHNDID_STDERR);
2103 if (RT_FAILURE(rc))
2104 return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stderr");
2105
2106 rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hTestPipeR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
2107 TXSEXECHNDID_TESTPIPE);
2108 if (RT_FAILURE(rc))
2109 return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/test");
2110
2111 rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hWakeUpPipeR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
2112 TXSEXECHNDID_THREAD);
2113 if (RT_FAILURE(rc))
2114 return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/wakeup");
2115
2116 if (g_pTransport->pfnPollSetAdd)
2117 {
2118 rc = g_pTransport->pfnPollSetAdd(pTxsExec->hPollSet, TXSEXECHNDID_TRANSPORT);
2119 if (RT_FAILURE(rc))
2120 return txsExecReplyRC(pTxsExec, rc, "%s->pfnPollSetAdd/stdin", g_pTransport->szName);
2121 }
2122
2123 return VINF_SUCCESS;
2124}
2125
2126/**
2127 * Thread that calls RTProcWait and signals the main thread when it returns.
2128 *
2129 * The thread is created before the process is started and is waiting for a user
2130 * signal from the main thread before it calls RTProcWait.
2131 *
2132 * @returns VINF_SUCCESS (ignored).
2133 * @param hThreadSelf The thread handle.
2134 * @param pvUser The TXEEXEC structure.
2135 */
2136static DECLCALLBACK(int) txsExecWaitThreadProc(RTTHREAD hThreadSelf, void *pvUser)
2137{
2138 PTXSEXEC pTxsExec = (PTXSEXEC)pvUser;
2139
2140 /* Wait for the go ahead... */
2141 int rc = RTThreadUserWait(hThreadSelf, RT_INDEFINITE_WAIT); AssertRC(rc);
2142
2143 RTCritSectEnter(&pTxsExec->CritSect);
2144 for (;;)
2145 {
2146 RTCritSectLeave(&pTxsExec->CritSect);
2147 rc = RTProcWaitNoResume(pTxsExec->hProcess, RTPROCWAIT_FLAGS_BLOCK, &pTxsExec->ProcessStatus);
2148 RTCritSectEnter(&pTxsExec->CritSect);
2149
2150 /* If the pipe is NIL, the destructor wants us to get lost ASAP. */
2151 if (pTxsExec->hWakeUpPipeW == NIL_RTPIPE)
2152 break;
2153
2154 if (RT_FAILURE(rc))
2155 {
2156 rc = RTProcWait(pTxsExec->hProcess, RTPROCWAIT_FLAGS_NOBLOCK, &pTxsExec->ProcessStatus);
2157 if (rc == VERR_PROCESS_RUNNING)
2158 continue;
2159
2160 if (RT_FAILURE(rc))
2161 {
2162 AssertRC(rc);
2163 pTxsExec->ProcessStatus.iStatus = rc;
2164 pTxsExec->ProcessStatus.enmReason = RTPROCEXITREASON_ABEND;
2165 }
2166 }
2167
2168 /* The process finished, signal the main thread over the pipe. */
2169 ASMAtomicWriteBool(&pTxsExec->fProcessAlive, false);
2170 size_t cbIgnored;
2171 RTPipeWrite(pTxsExec->hWakeUpPipeW, "done", 4, &cbIgnored);
2172 RTPipeClose(pTxsExec->hWakeUpPipeW);
2173 pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
2174 break;
2175 }
2176 RTCritSectLeave(&pTxsExec->CritSect);
2177
2178 return VINF_SUCCESS;
2179}
2180
2181/**
2182 * Sets up the thread that waits for the process to complete.
2183 *
2184 * @returns IPRT status code, reply to client made on error.
2185 * @param pTxsExec The TXSEXEC instance.
2186 */
2187static int txsExecSetupThread(PTXSEXEC pTxsExec)
2188{
2189 int rc = RTPipeCreate(&pTxsExec->hWakeUpPipeR, &pTxsExec->hWakeUpPipeW, 0 /*fFlags*/);
2190 if (RT_FAILURE(rc))
2191 {
2192 pTxsExec->hWakeUpPipeR = pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
2193 return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/wait");
2194 }
2195
2196 rc = RTThreadCreate(&pTxsExec->hThreadWaiter, txsExecWaitThreadProc,
2197 pTxsExec, 0 /*cbStack */, RTTHREADTYPE_DEFAULT,
2198 RTTHREADFLAGS_WAITABLE, "TxsProcW");
2199 if (RT_FAILURE(rc))
2200 {
2201 pTxsExec->hThreadWaiter = NIL_RTTHREAD;
2202 return txsExecReplyRC(pTxsExec, rc, "RTThreadCreate");
2203 }
2204
2205 return VINF_SUCCESS;
2206}
2207
2208/**
2209 * Sets up the test pipe.
2210 *
2211 * @returns IPRT status code, reply to client made on error.
2212 * @param pTxsExec The TXSEXEC instance.
2213 * @param pszTestPipe How to set up the test pipe.
2214 */
2215static int txsExecSetupTestPipe(PTXSEXEC pTxsExec, const char *pszTestPipe)
2216{
2217 if (strcmp(pszTestPipe, "|"))
2218 return VINF_SUCCESS;
2219
2220 int rc = RTPipeCreate(&pTxsExec->hTestPipeR, &pTxsExec->hTestPipeW, RTPIPE_C_INHERIT_WRITE);
2221 if (RT_FAILURE(rc))
2222 {
2223 pTxsExec->hTestPipeR = pTxsExec->hTestPipeW = NIL_RTPIPE;
2224 return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/test/%s", pszTestPipe);
2225 }
2226
2227 char szVal[64];
2228 RTStrPrintf(szVal, sizeof(szVal), "%#llx", (uint64_t)RTPipeToNative(pTxsExec->hTestPipeW));
2229 rc = RTEnvSetEx(pTxsExec->hEnv, "IPRT_TEST_PIPE", szVal);
2230 if (RT_FAILURE(rc))
2231 return txsExecReplyRC(pTxsExec, rc, "RTEnvSetEx/test/%s", pszTestPipe);
2232
2233 return VINF_SUCCESS;
2234}
2235
2236/**
2237 * Sets up the redirection / pipe / nothing for one of the standard handles.
2238 *
2239 * @returns IPRT status code, reply to client made on error.
2240 * @param pTxsExec The TXSEXEC instance.
2241 * @param pszHowTo How to set up this standard handle.
2242 * @param pszStdWhat For what to setup redirection (stdin/stdout/stderr).
2243 * @param fd Which standard handle it is (0 == stdin, 1 ==
2244 * stdout, 2 == stderr).
2245 * @param ph The generic handle that @a pph may be set
2246 * pointing to. Always set.
2247 * @param pph Pointer to the RTProcCreateExec argument.
2248 * Always set.
2249 * @param phPipe Where to return the end of the pipe that we
2250 * should service. Always set.
2251 */
2252static int txsExecSetupRedir(PTXSEXEC pTxsExec, const char *pszHowTo, const char *pszStdWhat, int fd, PRTHANDLE ph, PRTHANDLE *pph, PRTPIPE phPipe)
2253{
2254 ph->enmType = RTHANDLETYPE_PIPE;
2255 ph->u.hPipe = NIL_RTPIPE;
2256 *pph = NULL;
2257 *phPipe = NIL_RTPIPE;
2258
2259 int rc;
2260 if (!strcmp(pszHowTo, "|"))
2261 {
2262 /*
2263 * Setup a pipe for forwarding to/from the client.
2264 */
2265 if (fd == 0)
2266 rc = RTPipeCreate(&ph->u.hPipe, phPipe, RTPIPE_C_INHERIT_READ);
2267 else
2268 rc = RTPipeCreate(phPipe, &ph->u.hPipe, RTPIPE_C_INHERIT_WRITE);
2269 if (RT_FAILURE(rc))
2270 return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/%s/%s", pszStdWhat, pszHowTo);
2271 ph->enmType = RTHANDLETYPE_PIPE;
2272 *pph = ph;
2273 }
2274 else if (!strcmp(pszHowTo, "/dev/null"))
2275 {
2276 /*
2277 * Redirect to/from /dev/null.
2278 */
2279 RTFILE hFile;
2280 rc = RTFileOpenBitBucket(&hFile, fd == 0 ? RTFILE_O_READ : RTFILE_O_WRITE);
2281 if (RT_FAILURE(rc))
2282 return txsExecReplyRC(pTxsExec, rc, "RTFileOpenBitBucket/%s/%s", pszStdWhat, pszHowTo);
2283
2284 ph->enmType = RTHANDLETYPE_FILE;
2285 ph->u.hFile = hFile;
2286 *pph = ph;
2287 }
2288 else if (*pszHowTo)
2289 {
2290 /*
2291 * Redirect to/from file.
2292 */
2293 uint32_t fFlags;
2294 if (fd == 0)
2295 fFlags = RTFILE_O_READ | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN;
2296 else
2297 {
2298 if (pszHowTo[0] != '>' || pszHowTo[1] != '>')
2299 fFlags = RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE;
2300 else
2301 {
2302 /* append */
2303 pszHowTo += 2;
2304 fFlags = RTFILE_O_WRITE | RTFILE_O_DENY_NONE | RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND;
2305 }
2306 }
2307
2308 RTFILE hFile;
2309 rc = RTFileOpen(&hFile, pszHowTo, fFlags);
2310 if (RT_FAILURE(rc))
2311 return txsExecReplyRC(pTxsExec, rc, "RTFileOpen/%s/%s", pszStdWhat, pszHowTo);
2312
2313 ph->enmType = RTHANDLETYPE_FILE;
2314 ph->u.hFile = hFile;
2315 *pph = ph;
2316 }
2317 else
2318 /* same as parent (us) */
2319 rc = VINF_SUCCESS;
2320 return rc;
2321}
2322
2323/**
2324 * Create the environment.
2325 *
2326 * @returns IPRT status code, reply to client made on error.
2327 * @param pTxsExec The TXSEXEC instance.
2328 * @param cEnvVars The number of environment variables.
2329 * @param papszEnv The environment variables (var=value).
2330 */
2331static int txsExecSetupEnv(PTXSEXEC pTxsExec, uint32_t cEnvVars, const char * const *papszEnv)
2332{
2333 /*
2334 * Create the environment.
2335 */
2336 int rc = RTEnvClone(&pTxsExec->hEnv, RTENV_DEFAULT);
2337 if (RT_FAILURE(rc))
2338 return txsExecReplyRC(pTxsExec, rc, "RTEnvClone");
2339
2340 for (size_t i = 0; i < cEnvVars; i++)
2341 {
2342 rc = RTEnvPutEx(pTxsExec->hEnv, papszEnv[i]);
2343 if (RT_FAILURE(rc))
2344 return txsExecReplyRC(pTxsExec, rc, "RTEnvPutEx(,'%s')", papszEnv[i]);
2345 }
2346 return VINF_SUCCESS;
2347}
2348
2349/**
2350 * Deletes the TXSEXEC structure and frees the memory backing it.
2351 *
2352 * @param pTxsExec The structure to destroy.
2353 */
2354static void txsExecDestroy(PTXSEXEC pTxsExec)
2355{
2356 int rc2;
2357
2358 rc2 = RTEnvDestroy(pTxsExec->hEnv); AssertRC(rc2);
2359 pTxsExec->hEnv = NIL_RTENV;
2360 rc2 = RTPipeClose(pTxsExec->hTestPipeW); AssertRC(rc2);
2361 pTxsExec->hTestPipeW = NIL_RTPIPE;
2362 rc2 = RTHandleClose(pTxsExec->StdErr.phChild); AssertRC(rc2);
2363 pTxsExec->StdErr.phChild = NULL;
2364 rc2 = RTHandleClose(pTxsExec->StdOut.phChild); AssertRC(rc2);
2365 pTxsExec->StdOut.phChild = NULL;
2366 rc2 = RTHandleClose(pTxsExec->StdIn.phChild); AssertRC(rc2);
2367 pTxsExec->StdIn.phChild = NULL;
2368
2369 rc2 = RTPipeClose(pTxsExec->hTestPipeR); AssertRC(rc2);
2370 pTxsExec->hTestPipeR = NIL_RTPIPE;
2371 rc2 = RTPipeClose(pTxsExec->hStdErrR); AssertRC(rc2);
2372 pTxsExec->hStdErrR = NIL_RTPIPE;
2373 rc2 = RTPipeClose(pTxsExec->hStdOutR); AssertRC(rc2);
2374 pTxsExec->hStdOutR = NIL_RTPIPE;
2375 rc2 = RTPipeClose(pTxsExec->hStdInW); AssertRC(rc2);
2376 pTxsExec->hStdInW = NIL_RTPIPE;
2377
2378 RTPollSetDestroy(pTxsExec->hPollSet);
2379 pTxsExec->hPollSet = NIL_RTPOLLSET;
2380
2381 /*
2382 * If the process is still running we're in a bit of a fix... Try kill it,
2383 * although that's potentially racing process termination and reusage of
2384 * the pid.
2385 */
2386 RTCritSectEnter(&pTxsExec->CritSect);
2387
2388 RTPipeClose(pTxsExec->hWakeUpPipeW);
2389 pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
2390 RTPipeClose(pTxsExec->hWakeUpPipeR);
2391 pTxsExec->hWakeUpPipeR = NIL_RTPIPE;
2392
2393 if ( pTxsExec->hProcess != NIL_RTPROCESS
2394 && pTxsExec->fProcessAlive)
2395 RTProcTerminate(pTxsExec->hProcess);
2396
2397 RTCritSectLeave(&pTxsExec->CritSect);
2398
2399 int rcThread = VINF_SUCCESS;
2400 if (pTxsExec->hThreadWaiter != NIL_RTTHREAD)
2401 rcThread = RTThreadWait(pTxsExec->hThreadWaiter, 5000, NULL);
2402 if (RT_SUCCESS(rcThread))
2403 {
2404 pTxsExec->hThreadWaiter = NIL_RTTHREAD;
2405 RTCritSectDelete(&pTxsExec->CritSect);
2406 RTMemFree(pTxsExec);
2407 }
2408 /* else: leak it or RTThreadWait may cause heap corruption later. */
2409}
2410
2411/**
2412 * Initializes the TXSEXEC structure.
2413 *
2414 * @returns VINF_SUCCESS and non-NULL *ppTxsExec on success, reply send status
2415 * and *ppTxsExec set to NULL on failure.
2416 * @param pPktHdr The exec packet.
2417 * @param cMsTimeout The time parameter.
2418 * @param ppTxsExec Where to return the structure.
2419 */
2420static int txsExecCreate(PCTXSPKTHDR pPktHdr, RTMSINTERVAL cMsTimeout, PTXSEXEC *ppTxsExec)
2421{
2422 *ppTxsExec = NULL;
2423
2424 /*
2425 * Allocate the basic resources.
2426 */
2427 PTXSEXEC pTxsExec = (PTXSEXEC)RTMemAlloc(sizeof(*pTxsExec));
2428 if (!pTxsExec)
2429 return txsReplyRC(pPktHdr, VERR_NO_MEMORY, "RTMemAlloc(%zu)", sizeof(*pTxsExec));
2430 int rc = RTCritSectInit(&pTxsExec->CritSect);
2431 if (RT_FAILURE(rc))
2432 {
2433 RTMemFree(pTxsExec);
2434 return txsReplyRC(pPktHdr, rc, "RTCritSectInit");
2435 }
2436
2437 /*
2438 * Initialize the member to NIL values.
2439 */
2440 pTxsExec->pPktHdr = pPktHdr;
2441 pTxsExec->cMsTimeout = cMsTimeout;
2442 pTxsExec->rcReplySend = VINF_SUCCESS;
2443
2444 pTxsExec->hPollSet = NIL_RTPOLLSET;
2445 pTxsExec->hStdInW = NIL_RTPIPE;
2446 pTxsExec->hStdOutR = NIL_RTPIPE;
2447 pTxsExec->hStdErrR = NIL_RTPIPE;
2448 pTxsExec->hTestPipeR = NIL_RTPIPE;
2449 pTxsExec->hWakeUpPipeR = NIL_RTPIPE;
2450 pTxsExec->hThreadWaiter = NIL_RTTHREAD;
2451
2452 pTxsExec->StdIn.phChild = NULL;
2453 pTxsExec->StdOut.phChild = NULL;
2454 pTxsExec->StdErr.phChild = NULL;
2455 pTxsExec->hTestPipeW = NIL_RTPIPE;
2456 pTxsExec->hEnv = NIL_RTENV;
2457
2458 pTxsExec->hProcess = NIL_RTPROCESS;
2459 pTxsExec->ProcessStatus.iStatus = 254;
2460 pTxsExec->ProcessStatus.enmReason = RTPROCEXITREASON_ABEND;
2461 pTxsExec->fProcessAlive = false;
2462 pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
2463
2464 *ppTxsExec = pTxsExec;
2465 return VINF_SUCCESS;
2466}
2467
2468/**
2469 * txsDoExec helper that takes over when txsDoExec has expanded the packet.
2470 *
2471 * @returns IPRT status code from send.
2472 * @param pPktHdr The exec packet.
2473 * @param fFlags Flags, reserved for future use.
2474 * @param pszExecName The executable name.
2475 * @param cArgs The argument count.
2476 * @param papszArgs The arguments.
2477 * @param cEnvVars The environment variable count.
2478 * @param papszEnv The environment variables.
2479 * @param pszStdIn How to deal with standard in.
2480 * @param pszStdOut How to deal with standard out.
2481 * @param pszStdErr How to deal with standard err.
2482 * @param pszTestPipe How to deal with the test pipe.
2483 * @param pszUsername The user to run the program as.
2484 * @param cMillies The process time limit in milliseconds.
2485 */
2486static int txsDoExecHlp(PCTXSPKTHDR pPktHdr, uint32_t fFlags, const char *pszExecName,
2487 uint32_t cArgs, const char * const *papszArgs,
2488 uint32_t cEnvVars, const char * const *papszEnv,
2489 const char *pszStdIn, const char *pszStdOut, const char *pszStdErr, const char *pszTestPipe,
2490 const char *pszUsername, RTMSINTERVAL cMillies)
2491{
2492 int rc2;
2493 RT_NOREF_PV(fFlags);
2494
2495 /*
2496 * Input validation, filter out things we don't yet support..
2497 */
2498 Assert(!fFlags);
2499 if (!*pszExecName)
2500 return txsReplyFailure(pPktHdr, "STR ZERO", "Executable name is empty");
2501 if (!*pszStdIn)
2502 return txsReplyFailure(pPktHdr, "STR ZERO", "The stdin howto is empty");
2503 if (!*pszStdOut)
2504 return txsReplyFailure(pPktHdr, "STR ZERO", "The stdout howto is empty");
2505 if (!*pszStdErr)
2506 return txsReplyFailure(pPktHdr, "STR ZERO", "The stderr howto is empty");
2507 if (!*pszTestPipe)
2508 return txsReplyFailure(pPktHdr, "STR ZERO", "The testpipe howto is empty");
2509 if (strcmp(pszTestPipe, "|") && strcmp(pszTestPipe, "/dev/null"))
2510 return txsReplyFailure(pPktHdr, "BAD TSTP", "Only \"|\" and \"/dev/null\" are allowed as testpipe howtos ('%s')",
2511 pszTestPipe);
2512 if (*pszUsername)
2513 return txsReplyFailure(pPktHdr, "NOT IMPL", "Executing as a specific user is not implemented ('%s')", pszUsername);
2514
2515 /*
2516 * Prepare for process launch.
2517 */
2518 PTXSEXEC pTxsExec;
2519 int rc = txsExecCreate(pPktHdr, cMillies, &pTxsExec);
2520 if (pTxsExec == NULL)
2521 return rc;
2522 rc = txsExecSetupEnv(pTxsExec, cEnvVars, papszEnv);
2523 if (RT_SUCCESS(rc))
2524 rc = txsExecSetupRedir(pTxsExec, pszStdIn, "StdIn", 0, &pTxsExec->StdIn.hChild, &pTxsExec->StdIn.phChild, &pTxsExec->hStdInW);
2525 if (RT_SUCCESS(rc))
2526 rc = txsExecSetupRedir(pTxsExec, pszStdOut, "StdOut", 1, &pTxsExec->StdOut.hChild, &pTxsExec->StdOut.phChild, &pTxsExec->hStdOutR);
2527 if (RT_SUCCESS(rc))
2528 rc = txsExecSetupRedir(pTxsExec, pszStdErr, "StdErr", 2, &pTxsExec->StdErr.hChild, &pTxsExec->StdErr.phChild, &pTxsExec->hStdErrR);
2529 if (RT_SUCCESS(rc))
2530 rc = txsExecSetupTestPipe(pTxsExec, pszTestPipe);
2531 if (RT_SUCCESS(rc))
2532 rc = txsExecSetupThread(pTxsExec);
2533 if (RT_SUCCESS(rc))
2534 rc = txsExecSetupPollSet(pTxsExec);
2535 if (RT_SUCCESS(rc))
2536 {
2537 /*
2538 * Create the process.
2539 */
2540 if (g_fDisplayOutput)
2541 {
2542 RTPrintf("txs: Executing \"%s\": ", pszExecName);
2543 for (uint32_t i = 0; i < cArgs; i++)
2544 RTPrintf(" \"%s\"", papszArgs[i]);
2545 RTPrintf("\n");
2546 }
2547 rc = RTProcCreateEx(pszExecName, papszArgs, pTxsExec->hEnv, 0 /*fFlags*/,
2548 pTxsExec->StdIn.phChild, pTxsExec->StdOut.phChild, pTxsExec->StdErr.phChild,
2549 *pszUsername ? pszUsername : NULL, NULL,
2550 &pTxsExec->hProcess);
2551 if (RT_SUCCESS(rc))
2552 {
2553 ASMAtomicWriteBool(&pTxsExec->fProcessAlive, true);
2554 rc2 = RTThreadUserSignal(pTxsExec->hThreadWaiter); AssertRC(rc2);
2555
2556 /*
2557 * Close the child ends of any pipes and redirected files.
2558 */
2559 rc2 = RTHandleClose(pTxsExec->StdIn.phChild); AssertRC(rc2);
2560 pTxsExec->StdIn.phChild = NULL;
2561 rc2 = RTHandleClose(pTxsExec->StdOut.phChild); AssertRC(rc2);
2562 pTxsExec->StdOut.phChild = NULL;
2563 rc2 = RTHandleClose(pTxsExec->StdErr.phChild); AssertRC(rc2);
2564 pTxsExec->StdErr.phChild = NULL;
2565 rc2 = RTPipeClose(pTxsExec->hTestPipeW); AssertRC(rc2);
2566 pTxsExec->hTestPipeW = NIL_RTPIPE;
2567
2568 /*
2569 * Let another worker function funnel output and input to the
2570 * client as well as the process exit code.
2571 */
2572 rc = txsDoExecHlp2(pTxsExec);
2573 }
2574 else
2575 rc = txsReplyFailure(pPktHdr, "FAILED ", "Executing process \"%s\" failed with %Rrc",
2576 pszExecName, rc);
2577 }
2578 else
2579 rc = pTxsExec->rcReplySend;
2580 txsExecDestroy(pTxsExec);
2581 return rc;
2582}
2583
2584/**
2585 * Execute a program.
2586 *
2587 * @returns IPRT status code from send.
2588 * @param pPktHdr The exec packet.
2589 */
2590static int txsDoExec(PCTXSPKTHDR pPktHdr)
2591{
2592 /*
2593 * This packet has a lot of parameters, most of which are zero terminated
2594 * strings. The strings used in items 7 thru 10 are either file names,
2595 * "/dev/null" or a pipe char (|).
2596 *
2597 * Packet content:
2598 * 1. Flags reserved for future use (32-bit unsigned).
2599 * 2. The executable name (string).
2600 * 3. The argument count given as a 32-bit unsigned integer.
2601 * 4. The arguments strings.
2602 * 5. The number of environment strings (32-bit unsigned).
2603 * 6. The environment strings (var=val) to apply the environment.
2604 * 7. What to do about standard in (string).
2605 * 8. What to do about standard out (string).
2606 * 9. What to do about standard err (string).
2607 * 10. What to do about the test pipe (string).
2608 * 11. The name of the user to run the program as (string). Empty string
2609 * means running it as the current user.
2610 * 12. Process time limit in milliseconds (32-bit unsigned). Max == no limit.
2611 */
2612 size_t const cbMin = sizeof(TXSPKTHDR)
2613 + sizeof(uint32_t) /* flags */ + 2
2614 + sizeof(uint32_t) /* argc */ + 2 /* argv */
2615 + sizeof(uint32_t) + 0 /* environ */
2616 + 4 * 1
2617 + sizeof(uint32_t) /* timeout */;
2618 if (pPktHdr->cb < cbMin)
2619 return txsReplyBadMinSize(pPktHdr, cbMin);
2620
2621 /* unpack the packet */
2622 char const *pchEnd = (char const *)pPktHdr + pPktHdr->cb;
2623 char const *pch = (char const *)(pPktHdr + 1); /* cursor */
2624
2625 /* 1. flags */
2626 uint32_t const fFlags = *(uint32_t const *)pch;
2627 pch += sizeof(uint32_t);
2628 if (fFlags != 0)
2629 return txsReplyFailure(pPktHdr, "BAD FLAG", "Invalid EXEC flags %#x, expected 0", fFlags);
2630
2631 /* 2. exec name */
2632 int rc;
2633 char *pszExecName = NULL;
2634 if (!txsIsStringValid(pPktHdr, "execname", pch, &pszExecName, &pch, &rc))
2635 return rc;
2636
2637 /* 3. argc */
2638 uint32_t const cArgs = (size_t)(pchEnd - pch) > sizeof(uint32_t) ? *(uint32_t const *)pch : 0xff;
2639 pch += sizeof(uint32_t);
2640 if (cArgs * 1 >= (size_t)(pchEnd - pch))
2641 rc = txsReplyFailure(pPktHdr, "BAD ARGC", "Bad or missing argument count (%#x)", cArgs);
2642 else if (cArgs > 128)
2643 rc = txsReplyFailure(pPktHdr, "BAD ARGC", "Too many arguments (%#x)", cArgs);
2644 else
2645 {
2646 char **papszArgs = (char **)RTMemTmpAllocZ(sizeof(char *) * (cArgs + 1));
2647 if (papszArgs)
2648 {
2649 /* 4. argv */
2650 bool fOk = true;
2651 for (size_t i = 0; i < cArgs && fOk; i++)
2652 {
2653 fOk = txsIsStringValid(pPktHdr, "argvN", pch, &papszArgs[i], &pch, &rc);
2654 if (!fOk)
2655 break;
2656 }
2657 if (fOk)
2658 {
2659 /* 5. cEnvVars */
2660 uint32_t const cEnvVars = (size_t)(pchEnd - pch) > sizeof(uint32_t) ? *(uint32_t const *)pch : 0xfff;
2661 pch += sizeof(uint32_t);
2662 if (cEnvVars * 1 >= (size_t)(pchEnd - pch))
2663 rc = txsReplyFailure(pPktHdr, "BAD ENVC", "Bad or missing environment variable count (%#x)", cEnvVars);
2664 else if (cEnvVars > 256)
2665 rc = txsReplyFailure(pPktHdr, "BAD ENVC", "Too many environment variables (%#x)", cEnvVars);
2666 else
2667 {
2668 char **papszEnv = (char **)RTMemTmpAllocZ(sizeof(char *) * (cEnvVars + 1));
2669 if (papszEnv)
2670 {
2671 /* 6. environ */
2672 for (size_t i = 0; i < cEnvVars && fOk; i++)
2673 {
2674 fOk = txsIsStringValid(pPktHdr, "envN", pch, &papszEnv[i], &pch, &rc);
2675 if (!fOk) /* Bail out on error. */
2676 break;
2677 }
2678 if (fOk)
2679 {
2680 /* 7. stdout */
2681 char *pszStdIn;
2682 if (txsIsStringValid(pPktHdr, "stdin", pch, &pszStdIn, &pch, &rc))
2683 {
2684 /* 8. stdout */
2685 char *pszStdOut;
2686 if (txsIsStringValid(pPktHdr, "stdout", pch, &pszStdOut, &pch, &rc))
2687 {
2688 /* 9. stderr */
2689 char *pszStdErr;
2690 if (txsIsStringValid(pPktHdr, "stderr", pch, &pszStdErr, &pch, &rc))
2691 {
2692 /* 10. testpipe */
2693 char *pszTestPipe;
2694 if (txsIsStringValid(pPktHdr, "testpipe", pch, &pszTestPipe, &pch, &rc))
2695 {
2696 /* 11. username */
2697 char *pszUsername;
2698 if (txsIsStringValid(pPktHdr, "username", pch, &pszUsername, &pch, &rc))
2699 {
2700 /** @todo No password value? */
2701
2702 /* 12. time limit */
2703 uint32_t const cMillies = (size_t)(pchEnd - pch) >= sizeof(uint32_t)
2704 ? *(uint32_t const *)pch
2705 : 0;
2706 if ((size_t)(pchEnd - pch) > sizeof(uint32_t))
2707 rc = txsReplyFailure(pPktHdr, "BAD END ", "Timeout argument not at end of packet (%#x)", (size_t)(pchEnd - pch));
2708 else if ((size_t)(pchEnd - pch) < sizeof(uint32_t))
2709 rc = txsReplyFailure(pPktHdr, "BAD NOTO", "No timeout argument");
2710 else if (cMillies < 1000)
2711 rc = txsReplyFailure(pPktHdr, "BAD TO ", "Timeout is less than a second (%#x)", cMillies);
2712 else
2713 {
2714 pch += sizeof(uint32_t);
2715
2716 /*
2717 * Time to employ a helper here before we go way beyond
2718 * the right margin...
2719 */
2720 rc = txsDoExecHlp(pPktHdr, fFlags, pszExecName,
2721 cArgs, papszArgs,
2722 cEnvVars, papszEnv,
2723 pszStdIn, pszStdOut, pszStdErr, pszTestPipe,
2724 pszUsername,
2725 cMillies == UINT32_MAX ? RT_INDEFINITE_WAIT : cMillies);
2726 }
2727 RTStrFree(pszUsername);
2728 }
2729 RTStrFree(pszTestPipe);
2730 }
2731 RTStrFree(pszStdErr);
2732 }
2733 RTStrFree(pszStdOut);
2734 }
2735 RTStrFree(pszStdIn);
2736 }
2737 }
2738 for (size_t i = 0; i < cEnvVars; i++)
2739 RTStrFree(papszEnv[i]);
2740 RTMemTmpFree(papszEnv);
2741 }
2742 else
2743 rc = txsReplyFailure(pPktHdr, "NO MEM ", "Failed to allocate %zu bytes environ", sizeof(char *) * (cEnvVars + 1));
2744 }
2745 }
2746 for (size_t i = 0; i < cArgs; i++)
2747 RTStrFree(papszArgs[i]);
2748 RTMemTmpFree(papszArgs);
2749 }
2750 else
2751 rc = txsReplyFailure(pPktHdr, "NO MEM ", "Failed to allocate %zu bytes for argv", sizeof(char *) * (cArgs + 1));
2752 }
2753 RTStrFree(pszExecName);
2754
2755 return rc;
2756}
2757
2758/**
2759 * The main loop.
2760 *
2761 * @returns exit code.
2762 */
2763static RTEXITCODE txsMainLoop(void)
2764{
2765 if (g_cVerbose > 0)
2766 RTMsgInfo("txsMainLoop: start...\n");
2767 RTEXITCODE enmExitCode = RTEXITCODE_SUCCESS;
2768 while (!g_fTerminate)
2769 {
2770 /*
2771 * Read client command packet and process it.
2772 */
2773 PTXSPKTHDR pPktHdr;
2774 int rc = txsRecvPkt(&pPktHdr, true /*fAutoRetryOnFailure*/);
2775 if (RT_FAILURE(rc))
2776 continue;
2777 if (g_cVerbose > 0)
2778 RTMsgInfo("txsMainLoop: CMD: %.8s...", pPktHdr->achOpcode);
2779
2780 /*
2781 * Do a string switch on the opcode bit.
2782 */
2783 /* Connection: */
2784 if ( txsIsSameOpcode(pPktHdr, "HOWDY "))
2785 rc = txsDoHowdy(pPktHdr);
2786 else if (txsIsSameOpcode(pPktHdr, "BYE "))
2787 rc = txsDoBye(pPktHdr);
2788 else if (txsIsSameOpcode(pPktHdr, "UUID "))
2789 rc = txsDoUuid(pPktHdr);
2790 /* Process: */
2791 else if (txsIsSameOpcode(pPktHdr, "EXEC "))
2792 rc = txsDoExec(pPktHdr);
2793 /* Admin: */
2794 else if (txsIsSameOpcode(pPktHdr, "REBOOT "))
2795 rc = txsDoReboot(pPktHdr);
2796 else if (txsIsSameOpcode(pPktHdr, "SHUTDOWN"))
2797 rc = txsDoShutdown(pPktHdr);
2798 /* CD/DVD control: */
2799 else if (txsIsSameOpcode(pPktHdr, "CD EJECT"))
2800 rc = txsDoCdEject(pPktHdr);
2801 /* File system: */
2802 else if (txsIsSameOpcode(pPktHdr, "CLEANUP "))
2803 rc = txsDoCleanup(pPktHdr);
2804 else if (txsIsSameOpcode(pPktHdr, "MKDIR "))
2805 rc = txsDoMkDir(pPktHdr);
2806 else if (txsIsSameOpcode(pPktHdr, "MKDRPATH"))
2807 rc = txsDoMkDrPath(pPktHdr);
2808 else if (txsIsSameOpcode(pPktHdr, "MKSYMLNK"))
2809 rc = txsDoMkSymlnk(pPktHdr);
2810 else if (txsIsSameOpcode(pPktHdr, "RMDIR "))
2811 rc = txsDoRmDir(pPktHdr);
2812 else if (txsIsSameOpcode(pPktHdr, "RMFILE "))
2813 rc = txsDoRmFile(pPktHdr);
2814 else if (txsIsSameOpcode(pPktHdr, "RMSYMLNK"))
2815 rc = txsDoRmSymlnk(pPktHdr);
2816 else if (txsIsSameOpcode(pPktHdr, "RMTREE "))
2817 rc = txsDoRmTree(pPktHdr);
2818 else if (txsIsSameOpcode(pPktHdr, "CHMOD "))
2819 rc = txsDoChMod(pPktHdr);
2820 else if (txsIsSameOpcode(pPktHdr, "CHOWN "))
2821 rc = txsDoChOwn(pPktHdr);
2822 else if (txsIsSameOpcode(pPktHdr, "CHGRP "))
2823 rc = txsDoChGrp(pPktHdr);
2824 else if (txsIsSameOpcode(pPktHdr, "ISDIR "))
2825 rc = txsDoIsDir(pPktHdr);
2826 else if (txsIsSameOpcode(pPktHdr, "ISFILE "))
2827 rc = txsDoIsFile(pPktHdr);
2828 else if (txsIsSameOpcode(pPktHdr, "ISSYMLNK"))
2829 rc = txsDoIsSymlnk(pPktHdr);
2830 else if (txsIsSameOpcode(pPktHdr, "STAT "))
2831 rc = txsDoStat(pPktHdr);
2832 else if (txsIsSameOpcode(pPktHdr, "LSTAT "))
2833 rc = txsDoLStat(pPktHdr);
2834 else if (txsIsSameOpcode(pPktHdr, "LIST "))
2835 rc = txsDoList(pPktHdr);
2836 else if (txsIsSameOpcode(pPktHdr, "PUT FILE"))
2837 rc = txsDoPutFile(pPktHdr);
2838 else if (txsIsSameOpcode(pPktHdr, "GET FILE"))
2839 rc = txsDoGetFile(pPktHdr);
2840 else if (txsIsSameOpcode(pPktHdr, "UNPKFILE"))
2841 rc = txsDoUnpackFile(pPktHdr);
2842 /* Misc: */
2843 else
2844 rc = txsReplyUnknown(pPktHdr);
2845
2846 if (g_cVerbose > 0)
2847 RTMsgInfo("txsMainLoop: CMD: %.8s -> %Rrc", pPktHdr->achOpcode, rc);
2848 RTMemFree(pPktHdr);
2849 }
2850
2851 if (g_cVerbose > 0)
2852 RTMsgInfo("txsMainLoop: end\n");
2853 return enmExitCode;
2854}
2855
2856
2857/**
2858 * Finalizes the scratch directory, making sure it exists.
2859 *
2860 * @returns exit code.
2861 */
2862static RTEXITCODE txsFinalizeScratch(void)
2863{
2864 RTPathStripTrailingSlash(g_szScratchPath);
2865 char *pszFilename = RTPathFilename(g_szScratchPath);
2866 if (!pszFilename)
2867 return RTMsgErrorExit(RTEXITCODE_FAILURE, "cannot use root for scratch (%s)\n", g_szScratchPath);
2868
2869 int rc;
2870 if (strchr(pszFilename, 'X'))
2871 {
2872 char ch = *pszFilename;
2873 rc = RTDirCreateFullPath(g_szScratchPath, 0700);
2874 *pszFilename = ch;
2875 if (RT_SUCCESS(rc))
2876 rc = RTDirCreateTemp(g_szScratchPath, 0700);
2877 }
2878 else
2879 {
2880 if (RTDirExists(g_szScratchPath))
2881 rc = VINF_SUCCESS;
2882 else
2883 rc = RTDirCreateFullPath(g_szScratchPath, 0700);
2884 }
2885 if (RT_FAILURE(rc))
2886 return RTMsgErrorExit(RTEXITCODE_FAILURE, "failed to create scratch directory: %Rrc (%s)\n", rc, g_szScratchPath);
2887 return RTEXITCODE_SUCCESS;
2888}
2889
2890/**
2891 * Attempts to complete an upgrade by updating the original and relaunching
2892 * ourselves from there again.
2893 *
2894 * On failure, we'll continue running as the temporary copy.
2895 *
2896 * @returns Exit code. Exit if this is non-zero or @a *pfExit is set.
2897 * @param argc The number of arguments.
2898 * @param argv The argument vector.
2899 * @param pfExit For indicating exit when the exit code is zero.
2900 * @param pszUpgrading The upgraded image path.
2901 */
2902static RTEXITCODE txsAutoUpdateStage2(int argc, char **argv, bool *pfExit, const char *pszUpgrading)
2903{
2904 if (g_cVerbose > 0)
2905 RTMsgInfo("Auto update stage 2...");
2906
2907 /*
2908 * Copy the current executable onto the original.
2909 * Note that we're racing the original program on some platforms, thus the
2910 * 60 sec sleep mess.
2911 */
2912 char szUpgradePath[RTPATH_MAX];
2913 if (!RTProcGetExecutablePath(szUpgradePath, sizeof(szUpgradePath)))
2914 {
2915 RTMsgError("RTProcGetExecutablePath failed (step 2)\n");
2916 return RTEXITCODE_SUCCESS;
2917 }
2918 void *pvUpgrade;
2919 size_t cbUpgrade;
2920 int rc = RTFileReadAll(szUpgradePath, &pvUpgrade, &cbUpgrade);
2921 if (RT_FAILURE(rc))
2922 {
2923 RTMsgError("RTFileReadAllEx(\"%s\"): %Rrc (step 2)\n", szUpgradePath, rc);
2924 return RTEXITCODE_SUCCESS;
2925 }
2926
2927 uint64_t StartMilliTS = RTTimeMilliTS();
2928 RTFILE hFile;
2929 rc = RTFileOpen(&hFile, pszUpgrading,
2930 RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN_CREATE | RTFILE_O_TRUNCATE
2931 | (0755 << RTFILE_O_CREATE_MODE_SHIFT));
2932 while ( RT_FAILURE(rc)
2933 && RTTimeMilliTS() - StartMilliTS < 60000)
2934 {
2935 RTThreadSleep(1000);
2936 rc = RTFileOpen(&hFile, pszUpgrading,
2937 RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN_CREATE | RTFILE_O_TRUNCATE
2938 | (0755 << RTFILE_O_CREATE_MODE_SHIFT));
2939 }
2940 if (RT_SUCCESS(rc))
2941 {
2942 rc = RTFileWrite(hFile, pvUpgrade, cbUpgrade, NULL);
2943 RTFileClose(hFile);
2944 if (RT_SUCCESS(rc))
2945 {
2946 /*
2947 * Relaunch the service with the original name, foricbly barring
2948 * further upgrade cycles in case of bugs (and simplifying the code).
2949 */
2950 const char **papszArgs = (const char **)RTMemAlloc((argc + 1 + 1) * sizeof(char **));
2951 if (papszArgs)
2952 {
2953 papszArgs[0] = pszUpgrading;
2954 for (int i = 1; i < argc; i++)
2955 papszArgs[i] = argv[i];
2956 papszArgs[argc] = "--no-auto-upgrade";
2957 papszArgs[argc + 1] = NULL;
2958
2959 RTMsgInfo("Launching upgraded image: \"%s\"\n", pszUpgrading);
2960 RTPROCESS hProc;
2961 rc = RTProcCreate(pszUpgrading, papszArgs, RTENV_DEFAULT, 0 /*fFlags*/, &hProc);
2962 if (RT_SUCCESS(rc))
2963 *pfExit = true;
2964 else
2965 RTMsgError("RTProcCreate(\"%s\"): %Rrc (upgrade stage 2)\n", pszUpgrading, rc);
2966 RTMemFree(papszArgs);
2967 }
2968 else
2969 RTMsgError("RTMemAlloc failed during upgrade attempt (stage 2)\n");
2970 }
2971 else
2972 RTMsgError("RTFileWrite(%s,,%zu): %Rrc (step 2) - BAD\n", pszUpgrading, cbUpgrade, rc);
2973 }
2974 else
2975 RTMsgError("RTFileOpen(,%s,): %Rrc\n", pszUpgrading, rc);
2976 RTFileReadAllFree(pvUpgrade, cbUpgrade);
2977 return RTEXITCODE_SUCCESS;
2978}
2979
2980/**
2981 * Checks for an upgrade and respawns if there is.
2982 *
2983 * @returns Exit code. Exit if this is non-zero or @a *pfExit is set.
2984 * @param argc The number of arguments.
2985 * @param argv The argument vector.
2986 * @param cSecsCdWait Number of seconds to wait on the CD.
2987 * @param pfExit For indicating exit when the exit code is zero.
2988 */
2989static RTEXITCODE txsAutoUpdateStage1(int argc, char **argv, uint32_t cSecsCdWait, bool *pfExit)
2990{
2991 if (g_cVerbose > 1)
2992 RTMsgInfo("Auto update stage 1...");
2993
2994 /*
2995 * Figure names of the current service image and the potential upgrade.
2996 */
2997 char szOrgPath[RTPATH_MAX];
2998 if (!RTProcGetExecutablePath(szOrgPath, sizeof(szOrgPath)))
2999 {
3000 RTMsgError("RTProcGetExecutablePath failed\n");
3001 return RTEXITCODE_SUCCESS;
3002 }
3003
3004 char szUpgradePath[RTPATH_MAX];
3005 int rc = RTPathJoin(szUpgradePath, sizeof(szUpgradePath), g_szCdRomPath, g_szOsSlashArchShortName);
3006 if (RT_SUCCESS(rc))
3007 rc = RTPathAppend(szUpgradePath, sizeof(szUpgradePath), RTPathFilename(szOrgPath));
3008 if (RT_FAILURE(rc))
3009 {
3010 RTMsgError("Failed to construct path to potential service upgrade: %Rrc\n", rc);
3011 return RTEXITCODE_SUCCESS;
3012 }
3013
3014 /*
3015 * Query information about the two images and read the entire potential source file.
3016 * Because the CD may take a little time to be mounted when the system boots, we
3017 * need to do some fudging here.
3018 */
3019 uint64_t nsStart = RTTimeNanoTS();
3020 RTFSOBJINFO UpgradeInfo;
3021 for (;;)
3022 {
3023 rc = RTPathQueryInfo(szUpgradePath, &UpgradeInfo, RTFSOBJATTRADD_NOTHING);
3024 if (RT_SUCCESS(rc))
3025 break;
3026 if ( rc != VERR_FILE_NOT_FOUND
3027 && rc != VERR_PATH_NOT_FOUND
3028 && rc != VERR_MEDIA_NOT_PRESENT
3029 && rc != VERR_MEDIA_NOT_RECOGNIZED)
3030 {
3031 RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (upgrade)\n", szUpgradePath, rc);
3032 return RTEXITCODE_SUCCESS;
3033 }
3034 uint64_t cNsElapsed = RTTimeNanoTS() - nsStart;
3035 if (cNsElapsed >= cSecsCdWait * RT_NS_1SEC_64)
3036 {
3037 if (g_cVerbose > 0)
3038 RTMsgInfo("Auto update: Giving up waiting for media.");
3039 return RTEXITCODE_SUCCESS;
3040 }
3041 RTThreadSleep(500);
3042 }
3043
3044 RTFSOBJINFO OrgInfo;
3045 rc = RTPathQueryInfo(szOrgPath, &OrgInfo, RTFSOBJATTRADD_NOTHING);
3046 if (RT_FAILURE(rc))
3047 {
3048 RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (old)\n", szOrgPath, rc);
3049 return RTEXITCODE_SUCCESS;
3050 }
3051
3052 void *pvUpgrade;
3053 size_t cbUpgrade;
3054 rc = RTFileReadAllEx(szUpgradePath, 0, UpgradeInfo.cbObject, RTFILE_RDALL_O_DENY_NONE, &pvUpgrade, &cbUpgrade);
3055 if (RT_FAILURE(rc))
3056 {
3057 RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (old)\n", szOrgPath, rc);
3058 return RTEXITCODE_SUCCESS;
3059 }
3060
3061 /*
3062 * Compare and see if we've got a different service image or not.
3063 */
3064 if (OrgInfo.cbObject == UpgradeInfo.cbObject)
3065 {
3066 /* must compare bytes. */
3067 void *pvOrg;
3068 size_t cbOrg;
3069 rc = RTFileReadAllEx(szOrgPath, 0, OrgInfo.cbObject, RTFILE_RDALL_O_DENY_NONE, &pvOrg, &cbOrg);
3070 if (RT_FAILURE(rc))
3071 {
3072 RTMsgError("RTFileReadAllEx(\"%s\"): %Rrc\n", szOrgPath, rc);
3073 RTFileReadAllFree(pvUpgrade, cbUpgrade);
3074 return RTEXITCODE_SUCCESS;
3075 }
3076 bool fSame = !memcmp(pvUpgrade, pvOrg, OrgInfo.cbObject);
3077 RTFileReadAllFree(pvOrg, cbOrg);
3078 if (fSame)
3079 {
3080 RTFileReadAllFree(pvUpgrade, cbUpgrade);
3081 if (g_cVerbose > 0)
3082 RTMsgInfo("Auto update: Not necessary.");
3083 return RTEXITCODE_SUCCESS;
3084 }
3085 }
3086
3087 /*
3088 * Should upgrade. Start by creating an executable copy of the update
3089 * image in the scratch area.
3090 */
3091 RTEXITCODE rcExit = txsFinalizeScratch();
3092 if (rcExit == RTEXITCODE_SUCCESS)
3093 {
3094 char szTmpPath[RTPATH_MAX];
3095 rc = RTPathJoin(szTmpPath, sizeof(szTmpPath), g_szScratchPath, RTPathFilename(szOrgPath));
3096 if (RT_SUCCESS(rc))
3097 {
3098 RTFileDelete(szTmpPath); /* shouldn't hurt. */
3099
3100 RTFILE hFile;
3101 rc = RTFileOpen(&hFile, szTmpPath,
3102 RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE
3103 | (0755 << RTFILE_O_CREATE_MODE_SHIFT));
3104 if (RT_SUCCESS(rc))
3105 {
3106 rc = RTFileWrite(hFile, pvUpgrade, UpgradeInfo.cbObject, NULL);
3107 RTFileClose(hFile);
3108 if (RT_SUCCESS(rc))
3109 {
3110 /*
3111 * Try execute the new image and quit if it works.
3112 */
3113 const char **papszArgs = (const char **)RTMemAlloc((argc + 2 + 1) * sizeof(char **));
3114 if (papszArgs)
3115 {
3116 papszArgs[0] = szTmpPath;
3117 for (int i = 1; i < argc; i++)
3118 papszArgs[i] = argv[i];
3119 papszArgs[argc] = "--upgrading";
3120 papszArgs[argc + 1] = szOrgPath;
3121 papszArgs[argc + 2] = NULL;
3122
3123 RTMsgInfo("Launching intermediate automatic upgrade stage: \"%s\"\n", szTmpPath);
3124 RTPROCESS hProc;
3125 rc = RTProcCreate(szTmpPath, papszArgs, RTENV_DEFAULT, 0 /*fFlags*/, &hProc);
3126 if (RT_SUCCESS(rc))
3127 *pfExit = true;
3128 else
3129 RTMsgError("RTProcCreate(\"%s\"): %Rrc (upgrade stage 1)\n", szTmpPath, rc);
3130 RTMemFree(papszArgs);
3131 }
3132 else
3133 RTMsgError("RTMemAlloc failed during upgrade attempt (stage)\n");
3134 }
3135 else
3136 RTMsgError("RTFileWrite(%s,,%zu): %Rrc\n", szTmpPath, UpgradeInfo.cbObject, rc);
3137 }
3138 else
3139 RTMsgError("RTFileOpen(,%s,): %Rrc\n", szTmpPath, rc);
3140 }
3141 else
3142 RTMsgError("Failed to construct path to temporary upgrade image: %Rrc\n", rc);
3143 }
3144
3145 RTFileReadAllFree(pvUpgrade, cbUpgrade);
3146 return rcExit;
3147}
3148
3149/**
3150 * Determines the default configuration.
3151 */
3152static void txsSetDefaults(void)
3153{
3154 /*
3155 * OS and ARCH.
3156 */
3157 AssertCompile(sizeof(KBUILD_TARGET) <= sizeof(g_szOsShortName));
3158 strcpy(g_szOsShortName, KBUILD_TARGET);
3159
3160 AssertCompile(sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szArchShortName));
3161 strcpy(g_szArchShortName, KBUILD_TARGET_ARCH);
3162
3163 AssertCompile(sizeof(KBUILD_TARGET) + sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szOsDotArchShortName));
3164 strcpy(g_szOsDotArchShortName, KBUILD_TARGET);
3165 g_szOsDotArchShortName[sizeof(KBUILD_TARGET) - 1] = '.';
3166 strcpy(&g_szOsDotArchShortName[sizeof(KBUILD_TARGET)], KBUILD_TARGET_ARCH);
3167
3168 AssertCompile(sizeof(KBUILD_TARGET) + sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szOsSlashArchShortName));
3169 strcpy(g_szOsSlashArchShortName, KBUILD_TARGET);
3170 g_szOsSlashArchShortName[sizeof(KBUILD_TARGET) - 1] = '/';
3171 strcpy(&g_szOsSlashArchShortName[sizeof(KBUILD_TARGET)], KBUILD_TARGET_ARCH);
3172
3173#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
3174 strcpy(g_szExeSuff, ".exe");
3175 strcpy(g_szScriptSuff, ".cmd");
3176#else
3177 strcpy(g_szExeSuff, "");
3178 strcpy(g_szScriptSuff, ".sh");
3179#endif
3180
3181 /*
3182 * The CD/DVD-ROM location.
3183 */
3184 /** @todo do a better job here :-) */
3185#ifdef RT_OS_WINDOWS
3186 strcpy(g_szDefCdRomPath, "D:/");
3187#elif defined(RT_OS_OS2)
3188 strcpy(g_szDefCdRomPath, "D:/");
3189#else
3190 if (RTDirExists("/media"))
3191 strcpy(g_szDefCdRomPath, "/media/cdrom");
3192 else
3193 strcpy(g_szDefCdRomPath, "/mnt/cdrom");
3194#endif
3195 strcpy(g_szCdRomPath, g_szDefCdRomPath);
3196
3197 /*
3198 * Temporary directory.
3199 */
3200 int rc = RTPathTemp(g_szDefScratchPath, sizeof(g_szDefScratchPath));
3201 if (RT_SUCCESS(rc))
3202#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS) || defined(RT_OS_DOS)
3203 rc = RTPathAppend(g_szDefScratchPath, sizeof(g_szDefScratchPath), "txs-XXXX.tmp");
3204#else
3205 rc = RTPathAppend(g_szDefScratchPath, sizeof(g_szDefScratchPath), "txs-XXXXXXXXX.tmp");
3206#endif
3207 if (RT_FAILURE(rc))
3208 {
3209 RTMsgError("RTPathTemp/Append failed when constructing scratch path: %Rrc\n", rc);
3210 strcpy(g_szDefScratchPath, "/tmp/txs-XXXX.tmp");
3211 }
3212 strcpy(g_szScratchPath, g_szDefScratchPath);
3213
3214 /*
3215 * The default transporter is the first one.
3216 */
3217 g_pTransport = g_apTransports[0];
3218}
3219
3220/**
3221 * Prints the usage.
3222 *
3223 * @param pStrm Where to print it.
3224 * @param pszArgv0 The program name (argv[0]).
3225 */
3226static void txsUsage(PRTSTREAM pStrm, const char *pszArgv0)
3227{
3228 RTStrmPrintf(pStrm,
3229 "Usage: %Rbn [options]\n"
3230 "\n"
3231 "Options:\n"
3232 " --cdrom <path>\n"
3233 " Where the CD/DVD-ROM will be mounted.\n"
3234 " Default: %s\n"
3235 " --scratch <path>\n"
3236 " Where to put scratch files.\n"
3237 " Default: %s \n"
3238 ,
3239 pszArgv0,
3240 g_szDefCdRomPath,
3241 g_szDefScratchPath);
3242 RTStrmPrintf(pStrm,
3243 " --transport <name>\n"
3244 " Use the specified transport layer, one of the following:\n");
3245 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3246 RTStrmPrintf(pStrm, " %s - %s\n", g_apTransports[i]->szName, g_apTransports[i]->pszDesc);
3247 RTStrmPrintf(pStrm, " Default: %s\n", g_pTransport->szName);
3248 RTStrmPrintf(pStrm,
3249 " --auto-upgrade, --no-auto-upgrade\n"
3250 " To enable or disable the automatic upgrade mechanism where any different\n"
3251 " version found on the CD-ROM on startup will replace the initial copy.\n"
3252 " Default: --auto-upgrade\n"
3253 " --wait-cdrom <secs>\n"
3254 " Number of seconds to wait for the CD-ROM to be mounted before giving up\n"
3255 " on automatic upgrading.\n"
3256 " Default: --wait-cdrom 1; solaris: --wait-cdrom 8\n"
3257 " --upgrading <org-path>\n"
3258 " Internal use only.\n");
3259 RTStrmPrintf(pStrm,
3260 " --display-output, --no-display-output\n"
3261 " Display the output and the result of all child processes.\n");
3262 RTStrmPrintf(pStrm,
3263 " --foreground\n"
3264 " Don't daemonize, run in the foreground.\n");
3265 RTStrmPrintf(pStrm,
3266 " --help, -h, -?\n"
3267 " Display this message and exit.\n"
3268 " --version, -V\n"
3269 " Display the version and exit.\n");
3270
3271 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3272 if (g_apTransports[i]->cOpts)
3273 {
3274 RTStrmPrintf(pStrm,
3275 "\n"
3276 "Options for %s:\n", g_apTransports[i]->szName);
3277 g_apTransports[i]->pfnUsage(g_pStdOut);
3278 }
3279}
3280
3281/**
3282 * Parses the arguments.
3283 *
3284 * @returns Exit code. Exit if this is non-zero or @a *pfExit is set.
3285 * @param argc The number of arguments.
3286 * @param argv The argument vector.
3287 * @param pfExit For indicating exit when the exit code is zero.
3288 */
3289static RTEXITCODE txsParseArgv(int argc, char **argv, bool *pfExit)
3290{
3291 *pfExit = false;
3292
3293 /*
3294 * Storage for locally handled options.
3295 */
3296 bool fAutoUpgrade = true;
3297 bool fDaemonize = true;
3298 bool fDaemonized = false;
3299 const char *pszUpgrading = NULL;
3300#ifdef RT_OS_SOLARIS
3301 uint32_t cSecsCdWait = 8;
3302#else
3303 uint32_t cSecsCdWait = 1;
3304#endif
3305
3306 /*
3307 * Combine the base and transport layer option arrays.
3308 */
3309 static const RTGETOPTDEF s_aBaseOptions[] =
3310 {
3311 { "--transport", 't', RTGETOPT_REQ_STRING },
3312 { "--cdrom", 'c', RTGETOPT_REQ_STRING },
3313 { "--wait-cdrom", 'w', RTGETOPT_REQ_UINT32 },
3314 { "--scratch", 's', RTGETOPT_REQ_STRING },
3315 { "--auto-upgrade", 'a', RTGETOPT_REQ_NOTHING },
3316 { "--no-auto-upgrade", 'A', RTGETOPT_REQ_NOTHING },
3317 { "--upgrading", 'U', RTGETOPT_REQ_STRING },
3318 { "--display-output", 'd', RTGETOPT_REQ_NOTHING },
3319 { "--no-display-output",'D', RTGETOPT_REQ_NOTHING },
3320 { "--foreground", 'f', RTGETOPT_REQ_NOTHING },
3321 { "--daemonized", 'Z', RTGETOPT_REQ_NOTHING },
3322 { "--quiet", 'q', RTGETOPT_REQ_NOTHING },
3323 { "--verbose", 'v', RTGETOPT_REQ_NOTHING },
3324 };
3325
3326 size_t cOptions = RT_ELEMENTS(s_aBaseOptions);
3327 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3328 cOptions += g_apTransports[i]->cOpts;
3329
3330 PRTGETOPTDEF paOptions = (PRTGETOPTDEF)alloca(cOptions * sizeof(RTGETOPTDEF));
3331 if (!paOptions)
3332 return RTMsgErrorExit(RTEXITCODE_FAILURE, "alloca failed\n");
3333
3334 memcpy(paOptions, s_aBaseOptions, sizeof(s_aBaseOptions));
3335 cOptions = RT_ELEMENTS(s_aBaseOptions);
3336 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3337 {
3338 memcpy(&paOptions[cOptions], g_apTransports[i]->paOpts, g_apTransports[i]->cOpts * sizeof(RTGETOPTDEF));
3339 cOptions += g_apTransports[i]->cOpts;
3340 }
3341
3342 /*
3343 * Parse the arguments.
3344 */
3345 RTGETOPTSTATE GetState;
3346 int rc = RTGetOptInit(&GetState, argc, argv, paOptions, cOptions, 1, 0 /* fFlags */);
3347 AssertRC(rc);
3348
3349 int ch;
3350 RTGETOPTUNION Val;
3351 while ((ch = RTGetOpt(&GetState, &Val)))
3352 {
3353 switch (ch)
3354 {
3355 case 'a':
3356 fAutoUpgrade = true;
3357 break;
3358
3359 case 'A':
3360 fAutoUpgrade = false;
3361 break;
3362
3363 case 'c':
3364 rc = RTStrCopy(g_szCdRomPath, sizeof(g_szCdRomPath), Val.psz);
3365 if (RT_FAILURE(rc))
3366 return RTMsgErrorExit(RTEXITCODE_FAILURE, "CD/DVD-ROM is path too long (%Rrc)\n", rc);
3367 break;
3368
3369 case 'd':
3370 g_fDisplayOutput = true;
3371 break;
3372
3373 case 'D':
3374 g_fDisplayOutput = false;
3375 break;
3376
3377 case 'f':
3378 fDaemonize = false;
3379 break;
3380
3381 case 'h':
3382 txsUsage(g_pStdOut, argv[0]);
3383 *pfExit = true;
3384 return RTEXITCODE_SUCCESS;
3385
3386 case 's':
3387 rc = RTStrCopy(g_szScratchPath, sizeof(g_szScratchPath), Val.psz);
3388 if (RT_FAILURE(rc))
3389 return RTMsgErrorExit(RTEXITCODE_FAILURE, "scratch path is too long (%Rrc)\n", rc);
3390 break;
3391
3392 case 't':
3393 {
3394 PCTXSTRANSPORT pTransport = NULL;
3395 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3396 if (!strcmp(g_apTransports[i]->szName, Val.psz))
3397 {
3398 pTransport = g_apTransports[i];
3399 break;
3400 }
3401 if (!pTransport)
3402 return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Unknown transport layer name '%s'\n", Val.psz);
3403 g_pTransport = pTransport;
3404 break;
3405 }
3406
3407 case 'U':
3408 pszUpgrading = Val.psz;
3409 break;
3410
3411 case 'w':
3412 cSecsCdWait = Val.u32;
3413 break;
3414
3415 case 'q':
3416 g_cVerbose = 0;
3417 break;
3418
3419 case 'v':
3420 g_cVerbose++;
3421 break;
3422
3423 case 'V':
3424 RTPrintf("$Revision: 71000 $\n");
3425 *pfExit = true;
3426 return RTEXITCODE_SUCCESS;
3427
3428 case 'Z':
3429 fDaemonized = true;
3430 fDaemonize = false;
3431 break;
3432
3433 default:
3434 {
3435 rc = VERR_TRY_AGAIN;
3436 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3437 if (g_apTransports[i]->cOpts)
3438 {
3439 rc = g_apTransports[i]->pfnOption(ch, &Val);
3440 if (RT_SUCCESS(rc))
3441 break;
3442 if (rc != VERR_TRY_AGAIN)
3443 {
3444 *pfExit = true;
3445 return RTEXITCODE_SYNTAX;
3446 }
3447 }
3448 if (rc == VERR_TRY_AGAIN)
3449 {
3450 *pfExit = true;
3451 return RTGetOptPrintError(ch, &Val);
3452 }
3453 break;
3454 }
3455 }
3456 }
3457
3458 /*
3459 * Handle automatic upgrading of the service.
3460 */
3461 if (fAutoUpgrade && !*pfExit)
3462 {
3463 RTEXITCODE rcExit;
3464 if (pszUpgrading)
3465 rcExit = txsAutoUpdateStage2(argc, argv, pfExit, pszUpgrading);
3466 else
3467 rcExit = txsAutoUpdateStage1(argc, argv, cSecsCdWait, pfExit);
3468 if ( *pfExit
3469 || rcExit != RTEXITCODE_SUCCESS)
3470 return rcExit;
3471 }
3472
3473 /*
3474 * Daemonize ourselves if asked to.
3475 */
3476 if (fDaemonize && !*pfExit)
3477 {
3478 if (g_cVerbose > 0)
3479 RTMsgInfo("Daemonizing...");
3480 rc = RTProcDaemonize(argv, "--daemonized");
3481 if (RT_FAILURE(rc))
3482 return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTProcDaemonize: %Rrc\n", rc);
3483 *pfExit = true;
3484 }
3485
3486 return RTEXITCODE_SUCCESS;
3487}
3488
3489
3490int main(int argc, char **argv)
3491{
3492 /*
3493 * Initialize the runtime.
3494 */
3495 int rc = RTR3InitExe(argc, &argv, 0);
3496 if (RT_FAILURE(rc))
3497 return RTMsgInitFailure(rc);
3498
3499 /*
3500 * Determine defaults and parse the arguments.
3501 */
3502 txsSetDefaults();
3503 bool fExit;
3504 RTEXITCODE rcExit = txsParseArgv(argc, argv, &fExit);
3505 if (rcExit != RTEXITCODE_SUCCESS || fExit)
3506 return rcExit;
3507
3508 /*
3509 * Generate a UUID for this TXS instance.
3510 */
3511 rc = RTUuidCreate(&g_InstanceUuid);
3512 if (RT_FAILURE(rc))
3513 return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTUuidCreate failed: %Rrc", rc);
3514 if (g_cVerbose > 0)
3515 RTMsgInfo("Instance UUID: %RTuuid", &g_InstanceUuid);
3516
3517 /*
3518 * Finalize the scratch directory and initialize the transport layer.
3519 */
3520 rcExit = txsFinalizeScratch();
3521 if (rcExit != RTEXITCODE_SUCCESS)
3522 return rcExit;
3523
3524 rc = g_pTransport->pfnInit();
3525 if (RT_FAILURE(rc))
3526 return RTEXITCODE_FAILURE;
3527
3528 /*
3529 * Ok, start working
3530 */
3531 rcExit = txsMainLoop();
3532
3533 /*
3534 * Cleanup.
3535 */
3536 g_pTransport->pfnTerm();
3537
3538 return rcExit;
3539}
3540
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette