VirtualBox

source: vbox/trunk/src/VBox/ValidationKit/utils/TestExecServ/TestExecService.cpp@ 84923

Last change on this file since 84923 was 84923, checked in by vboxsync, 5 years ago

Validation Kit/TXS: Resolve executables for EXEC command before feeding into into RTProcCreateEx().

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 132.8 KB
Line 
1/* $Id: TestExecService.cpp 84923 2020-06-24 08:57:02Z vboxsync $ */
2/** @file
3 * TestExecServ - Basic Remote Execution Service.
4 */
5
6/*
7 * Copyright (C) 2010-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP RTLOGGROUP_DEFAULT
32#include <iprt/alloca.h>
33#include <iprt/asm.h>
34#include <iprt/assert.h>
35#include <iprt/buildconfig.h>
36#include <iprt/cdrom.h>
37#include <iprt/critsect.h>
38#include <iprt/crc.h>
39#include <iprt/ctype.h>
40#include <iprt/dir.h>
41#include <iprt/env.h>
42#include <iprt/err.h>
43#include <iprt/file.h>
44#include <iprt/getopt.h>
45#include <iprt/handle.h>
46#include <iprt/initterm.h>
47#include <iprt/log.h>
48#include <iprt/mem.h>
49#include <iprt/message.h>
50#include <iprt/param.h>
51#include <iprt/path.h>
52#include <iprt/pipe.h>
53#include <iprt/poll.h>
54#include <iprt/process.h>
55#include <iprt/stream.h>
56#include <iprt/string.h>
57#include <iprt/system.h>
58#include <iprt/thread.h>
59#include <iprt/time.h>
60#include <iprt/uuid.h>
61#include <iprt/zip.h>
62
63#include "product-generated.h"
64#include "TestExecServiceInternal.h"
65
66
67
68/*********************************************************************************************************************************
69* Structures and Typedefs *
70*********************************************************************************************************************************/
71/**
72 * Handle IDs used by txsDoExec for the poll set.
73 */
74typedef enum TXSEXECHNDID
75{
76 TXSEXECHNDID_STDIN = 0,
77 TXSEXECHNDID_STDOUT,
78 TXSEXECHNDID_STDERR,
79 TXSEXECHNDID_TESTPIPE,
80 TXSEXECHNDID_STDIN_WRITABLE,
81 TXSEXECHNDID_TRANSPORT,
82 TXSEXECHNDID_THREAD
83} TXSEXECHNDID;
84
85
86/**
87 * For buffering process input supplied by the client.
88 */
89typedef struct TXSEXECSTDINBUF
90{
91 /** The mount of buffered data. */
92 size_t cb;
93 /** The current data offset. */
94 size_t off;
95 /** The data buffer. */
96 char *pch;
97 /** The amount of allocated buffer space. */
98 size_t cbAllocated;
99 /** Send further input into the bit bucket (stdin is dead). */
100 bool fBitBucket;
101 /** The CRC-32 for standard input (received part). */
102 uint32_t uCrc32;
103} TXSEXECSTDINBUF;
104/** Pointer to a standard input buffer. */
105typedef TXSEXECSTDINBUF *PTXSEXECSTDINBUF;
106
107/**
108 * TXS child process info.
109 */
110typedef struct TXSEXEC
111{
112 PCTXSPKTHDR pPktHdr;
113 RTMSINTERVAL cMsTimeout;
114 int rcReplySend;
115
116 RTPOLLSET hPollSet;
117 RTPIPE hStdInW;
118 RTPIPE hStdOutR;
119 RTPIPE hStdErrR;
120 RTPIPE hTestPipeR;
121 RTPIPE hWakeUpPipeR;
122 RTTHREAD hThreadWaiter;
123
124 /** @name For the setup phase
125 * @{ */
126 struct StdPipe
127 {
128 RTHANDLE hChild;
129 PRTHANDLE phChild;
130 } StdIn,
131 StdOut,
132 StdErr;
133 RTPIPE hTestPipeW;
134 RTENV hEnv;
135 /** @} */
136
137 /** For serializating some access. */
138 RTCRITSECT CritSect;
139 /** @name Members protected by the critical section.
140 * @{ */
141 RTPROCESS hProcess;
142 /** The process status. Only valid when fProcessAlive is cleared. */
143 RTPROCSTATUS ProcessStatus;
144 /** Set when the process is alive, clear when dead. */
145 bool volatile fProcessAlive;
146 /** The end of the pipe that hThreadWaiter writes to. */
147 RTPIPE hWakeUpPipeW;
148 /** @} */
149} TXSEXEC;
150/** Pointer to a the TXS child process info. */
151typedef TXSEXEC *PTXSEXEC;
152
153
154/*********************************************************************************************************************************
155* Global Variables *
156*********************************************************************************************************************************/
157/**
158 * Transport layers.
159 */
160static const PCTXSTRANSPORT g_apTransports[] =
161{
162 &g_TcpTransport,
163#ifndef RT_OS_OS2
164 &g_SerialTransport,
165#endif
166 //&g_FileSysTransport,
167 //&g_GuestPropTransport,
168 //&g_TestDevTransport,
169};
170
171/** The select transport layer. */
172static PCTXSTRANSPORT g_pTransport;
173/** The scratch path. */
174static char g_szScratchPath[RTPATH_MAX];
175/** The default scratch path. */
176static char g_szDefScratchPath[RTPATH_MAX];
177/** The CD/DVD-ROM path. */
178static char g_szCdRomPath[RTPATH_MAX];
179/** The default CD/DVD-ROM path. */
180static char g_szDefCdRomPath[RTPATH_MAX];
181/** The directory containing the TXS executable. */
182static char g_szTxsDir[RTPATH_MAX];
183/** The current working directory for TXS (doesn't change). */
184static char g_szCwd[RTPATH_MAX];
185/** The operating system short name. */
186static char g_szOsShortName[16];
187/** The CPU architecture short name. */
188static char g_szArchShortName[16];
189/** The combined "OS.arch" name. */
190static char g_szOsDotArchShortName[32];
191/** The combined "OS/arch" name. */
192static char g_szOsSlashArchShortName[32];
193/** The executable suffix. */
194static char g_szExeSuff[8];
195/** The shell script suffix. */
196static char g_szScriptSuff[8];
197/** UUID identifying this TXS instance. This can be used to see if TXS
198 * has been restarted or not. */
199static RTUUID g_InstanceUuid;
200/** Whether to display the output of the child process or not. */
201static bool g_fDisplayOutput = true;
202/** Whether to terminate or not.
203 * @todo implement signals and stuff. */
204static bool volatile g_fTerminate = false;
205/** Verbosity level. */
206uint32_t g_cVerbose = 1;
207
208
209/**
210 * Calculates the checksum value, zero any padding space and send the packet.
211 *
212 * @returns IPRT status code.
213 * @param pPkt The packet to send. Must point to a correctly
214 * aligned buffer.
215 */
216static int txsSendPkt(PTXSPKTHDR pPkt)
217{
218 Assert(pPkt->cb >= sizeof(*pPkt));
219 pPkt->uCrc32 = RTCrc32(pPkt->achOpcode, pPkt->cb - RT_UOFFSETOF(TXSPKTHDR, achOpcode));
220 if (pPkt->cb != RT_ALIGN_32(pPkt->cb, TXSPKT_ALIGNMENT))
221 memset((uint8_t *)pPkt + pPkt->cb, '\0', RT_ALIGN_32(pPkt->cb, TXSPKT_ALIGNMENT) - pPkt->cb);
222
223 Log(("txsSendPkt: cb=%#x opcode=%.8s\n", pPkt->cb, pPkt->achOpcode));
224 Log2(("%.*Rhxd\n", RT_MIN(pPkt->cb, 256), pPkt));
225 int rc = g_pTransport->pfnSendPkt(pPkt);
226 while (RT_UNLIKELY(rc == VERR_INTERRUPTED) && !g_fTerminate)
227 rc = g_pTransport->pfnSendPkt(pPkt);
228 if (RT_FAILURE(rc))
229 Log(("txsSendPkt: rc=%Rrc\n", rc));
230
231 return rc;
232}
233
234/**
235 * Sends a babble reply and disconnects the client (if applicable).
236 *
237 * @param pszOpcode The BABBLE opcode.
238 */
239static void txsReplyBabble(const char *pszOpcode)
240{
241 TXSPKTHDR Reply;
242 Reply.cb = sizeof(Reply);
243 Reply.uCrc32 = 0;
244 memcpy(Reply.achOpcode, pszOpcode, sizeof(Reply.achOpcode));
245
246 g_pTransport->pfnBabble(&Reply, 20*1000);
247}
248
249/**
250 * Receive and validate a packet.
251 *
252 * Will send bable responses to malformed packets that results in a error status
253 * code.
254 *
255 * @returns IPRT status code.
256 * @param ppPktHdr Where to return the packet on success. Free
257 * with RTMemFree.
258 * @param fAutoRetryOnFailure Whether to retry on error.
259 */
260static int txsRecvPkt(PPTXSPKTHDR ppPktHdr, bool fAutoRetryOnFailure)
261{
262 for (;;)
263 {
264 PTXSPKTHDR pPktHdr;
265 int rc = g_pTransport->pfnRecvPkt(&pPktHdr);
266 if (RT_SUCCESS(rc))
267 {
268 /* validate the packet. */
269 if ( pPktHdr->cb >= sizeof(TXSPKTHDR)
270 && pPktHdr->cb < TXSPKT_MAX_SIZE)
271 {
272 Log2(("txsRecvPkt: pPktHdr=%p cb=%#x crc32=%#x opcode=%.8s\n"
273 "%.*Rhxd\n",
274 pPktHdr, pPktHdr->cb, pPktHdr->uCrc32, pPktHdr->achOpcode, RT_MIN(pPktHdr->cb, 256), pPktHdr));
275 uint32_t uCrc32Calc = pPktHdr->uCrc32 != 0
276 ? RTCrc32(&pPktHdr->achOpcode[0], pPktHdr->cb - RT_UOFFSETOF(TXSPKTHDR, achOpcode))
277 : 0;
278 if (pPktHdr->uCrc32 == uCrc32Calc)
279 {
280 AssertCompileMemberSize(TXSPKTHDR, achOpcode, 8);
281 if ( RT_C_IS_UPPER(pPktHdr->achOpcode[0])
282 && RT_C_IS_UPPER(pPktHdr->achOpcode[1])
283 && (RT_C_IS_UPPER(pPktHdr->achOpcode[2]) || pPktHdr->achOpcode[2] == ' ')
284 && (RT_C_IS_PRINT(pPktHdr->achOpcode[3]) || pPktHdr->achOpcode[3] == ' ')
285 && (RT_C_IS_PRINT(pPktHdr->achOpcode[4]) || pPktHdr->achOpcode[4] == ' ')
286 && (RT_C_IS_PRINT(pPktHdr->achOpcode[5]) || pPktHdr->achOpcode[5] == ' ')
287 && (RT_C_IS_PRINT(pPktHdr->achOpcode[6]) || pPktHdr->achOpcode[6] == ' ')
288 && (RT_C_IS_PRINT(pPktHdr->achOpcode[7]) || pPktHdr->achOpcode[7] == ' ')
289 )
290 {
291 Log(("txsRecvPkt: cb=%#x opcode=%.8s\n", pPktHdr->cb, pPktHdr->achOpcode));
292 *ppPktHdr = pPktHdr;
293 return rc;
294 }
295
296 rc = VERR_IO_BAD_COMMAND;
297 }
298 else
299 {
300 Log(("txsRecvPkt: cb=%#x opcode=%.8s crc32=%#x actual=%#x\n",
301 pPktHdr->cb, pPktHdr->achOpcode, pPktHdr->uCrc32, uCrc32Calc));
302 rc = VERR_IO_CRC;
303 }
304 }
305 else
306 rc = VERR_IO_BAD_LENGTH;
307
308 /* Send babble reply and disconnect the client if the transport is
309 connection oriented. */
310 if (rc == VERR_IO_BAD_LENGTH)
311 txsReplyBabble("BABBLE L");
312 else if (rc == VERR_IO_CRC)
313 txsReplyBabble("BABBLE C");
314 else if (rc == VERR_IO_BAD_COMMAND)
315 txsReplyBabble("BABBLE O");
316 else
317 txsReplyBabble("BABBLE ");
318 RTMemFree(pPktHdr);
319 }
320
321 /* Try again or return failure? */
322 if ( g_fTerminate
323 || rc != VERR_INTERRUPTED
324 || !fAutoRetryOnFailure
325 )
326 {
327 Log(("txsRecvPkt: rc=%Rrc\n", rc));
328 return rc;
329 }
330 }
331}
332
333/**
334 * Make a simple reply, only status opcode.
335 *
336 * @returns IPRT status code of the send.
337 * @param pReply The reply packet.
338 * @param pszOpcode The status opcode. Exactly 8 chars long, padd
339 * with space.
340 * @param cbExtra Bytes in addition to the header.
341 */
342static int txsReplyInternal(PTXSPKTHDR pReply, const char *pszOpcode, size_t cbExtra)
343{
344 /* copy the opcode, don't be too strict in case of a padding screw up. */
345 size_t cchOpcode = strlen(pszOpcode);
346 if (RT_LIKELY(cchOpcode == sizeof(pReply->achOpcode)))
347 memcpy(pReply->achOpcode, pszOpcode, sizeof(pReply->achOpcode));
348 else
349 {
350 Assert(cchOpcode == sizeof(pReply->achOpcode));
351 while (cchOpcode > 0 && pszOpcode[cchOpcode - 1] == ' ')
352 cchOpcode--;
353 AssertMsgReturn(cchOpcode < sizeof(pReply->achOpcode), ("%d/'%.8s'\n", cchOpcode, pszOpcode), VERR_INTERNAL_ERROR_4);
354 memcpy(pReply->achOpcode, pszOpcode, cchOpcode);
355 memset(&pReply->achOpcode[cchOpcode], ' ', sizeof(pReply->achOpcode) - cchOpcode);
356 }
357
358 pReply->cb = (uint32_t)sizeof(TXSPKTHDR) + (uint32_t)cbExtra;
359 pReply->uCrc32 = 0; /* (txsSendPkt sets it) */
360
361 return txsSendPkt(pReply);
362}
363
364/**
365 * Make a simple reply, only status opcode.
366 *
367 * @returns IPRT status code of the send.
368 * @param pPktHdr The original packet (for future use).
369 * @param pszOpcode The status opcode. Exactly 8 chars long, padd
370 * with space.
371 */
372static int txsReplySimple(PCTXSPKTHDR pPktHdr, const char *pszOpcode)
373{
374 TXSPKTHDR Pkt;
375 NOREF(pPktHdr);
376 return txsReplyInternal(&Pkt, pszOpcode, 0);
377}
378
379/**
380 * Acknowledges a packet with success.
381 *
382 * @returns IPRT status code of the send.
383 * @param pPktHdr The original packet (for future use).
384 */
385static int txsReplyAck(PCTXSPKTHDR pPktHdr)
386{
387 return txsReplySimple(pPktHdr, "ACK ");
388}
389
390/**
391 * Replies with a failure.
392 *
393 * @returns IPRT status code of the send.
394 * @param pPktHdr The original packet (for future use).
395 * @param pszOpcode The status opcode. Exactly 8 chars long, padd
396 * with space.
397 * @param pszDetailFmt Longer description of the problem (format
398 * string).
399 * @param va Format arguments.
400 */
401static int txsReplyFailureV(PCTXSPKTHDR pPktHdr, const char *pszOpcode, const char *pszDetailFmt, va_list va)
402{
403 NOREF(pPktHdr);
404 union
405 {
406 TXSPKTHDR Hdr;
407 char ach[256];
408 } uPkt;
409
410 size_t cchDetail = RTStrPrintfV(&uPkt.ach[sizeof(TXSPKTHDR)],
411 sizeof(uPkt) - sizeof(TXSPKTHDR),
412 pszDetailFmt, va);
413 return txsReplyInternal(&uPkt.Hdr, pszOpcode, cchDetail + 1);
414}
415
416/**
417 * Replies with a failure.
418 *
419 * @returns IPRT status code of the send.
420 * @param pPktHdr The original packet (for future use).
421 * @param pszOpcode The status opcode. Exactly 8 chars long, padd
422 * with space.
423 * @param pszDetailFmt Longer description of the problem (format
424 * string).
425 * @param ... Format arguments.
426 */
427static int txsReplyFailure(PCTXSPKTHDR pPktHdr, const char *pszOpcode, const char *pszDetailFmt, ...)
428{
429 va_list va;
430 va_start(va, pszDetailFmt);
431 int rc = txsReplyFailureV(pPktHdr, pszOpcode, pszDetailFmt, va);
432 va_end(va);
433 return rc;
434}
435
436/**
437 * Replies according to the return code.
438 *
439 * @returns IPRT status code of the send.
440 * @param pPktHdr The packet to reply to.
441 * @param rcOperation The status code to report.
442 * @param pszOperationFmt The operation that failed. Typically giving the
443 * function call with important arguments.
444 * @param ... Arguments to the format string.
445 */
446static int txsReplyRC(PCTXSPKTHDR pPktHdr, int rcOperation, const char *pszOperationFmt, ...)
447{
448 if (RT_SUCCESS(rcOperation))
449 return txsReplyAck(pPktHdr);
450
451 char szOperation[128];
452 va_list va;
453 va_start(va, pszOperationFmt);
454 RTStrPrintfV(szOperation, sizeof(szOperation), pszOperationFmt, va);
455 va_end(va);
456
457 return txsReplyFailure(pPktHdr, "FAILED ", "%s failed with rc=%Rrc (opcode '%.8s')",
458 szOperation, rcOperation, pPktHdr->achOpcode);
459}
460
461/**
462 * Signal a bad packet minum size.
463 *
464 * @returns IPRT status code of the send.
465 * @param pPktHdr The packet to reply to.
466 * @param cbMin The minimum size.
467 */
468static int txsReplyBadMinSize(PCTXSPKTHDR pPktHdr, size_t cbMin)
469{
470 return txsReplyFailure(pPktHdr, "BAD SIZE", "Expected at least %zu bytes, got %u (opcode '%.8s')",
471 cbMin, pPktHdr->cb, pPktHdr->achOpcode);
472}
473
474/**
475 * Signal a bad packet exact size.
476 *
477 * @returns IPRT status code of the send.
478 * @param pPktHdr The packet to reply to.
479 * @param cb The wanted size.
480 */
481static int txsReplyBadSize(PCTXSPKTHDR pPktHdr, size_t cb)
482{
483 return txsReplyFailure(pPktHdr, "BAD SIZE", "Expected at %zu bytes, got %u (opcode '%.8s')",
484 cb, pPktHdr->cb, pPktHdr->achOpcode);
485}
486
487/**
488 * Deals with a command that isn't implemented yet.
489 * @returns IPRT status code of the send.
490 * @param pPktHdr The packet which opcode isn't implemented.
491 */
492static int txsReplyNotImplemented(PCTXSPKTHDR pPktHdr)
493{
494 return txsReplyFailure(pPktHdr, "NOT IMPL", "Opcode '%.8s' is not implemented", pPktHdr->achOpcode);
495}
496
497/**
498 * Deals with a unknown command.
499 * @returns IPRT status code of the send.
500 * @param pPktHdr The packet to reply to.
501 */
502static int txsReplyUnknown(PCTXSPKTHDR pPktHdr)
503{
504 return txsReplyFailure(pPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known", pPktHdr->achOpcode);
505}
506
507/**
508 * Replaces a variable with its value.
509 *
510 * @returns VINF_SUCCESS or VERR_NO_STR_MEMORY.
511 * @param ppszNew In/Out.
512 * @param pcchNew In/Out. (Messed up on failure.)
513 * @param offVar Variable offset.
514 * @param cchVar Variable length.
515 * @param pszValue The value.
516 * @param cchValue Value length.
517 */
518static int txsReplaceStringVariable(char **ppszNew, size_t *pcchNew, size_t offVar, size_t cchVar,
519 const char *pszValue, size_t cchValue)
520{
521 size_t const cchAfter = *pcchNew - offVar - cchVar;
522 if (cchVar < cchValue)
523 {
524 *pcchNew += cchValue - cchVar;
525 int rc = RTStrRealloc(ppszNew, *pcchNew + 1);
526 if (RT_FAILURE(rc))
527 return rc;
528 }
529
530 char *pszNew = *ppszNew;
531 memmove(&pszNew[offVar + cchValue], &pszNew[offVar + cchVar], cchAfter + 1);
532 memcpy(&pszNew[offVar], pszValue, cchValue);
533 return VINF_SUCCESS;
534}
535
536/**
537 * Replace the variables found in the source string, returning a new string that
538 * lives on the string heap.
539 *
540 * @returns Boolean success indicator. Will reply to the client with all the
541 * gory detail on failure.
542 * @param pPktHdr The packet the string relates to. For replying
543 * on error.
544 * @param pszSrc The source string.
545 * @param ppszNew Where to return the new string.
546 * @param prcSend Where to return the status code of the send on
547 * failure.
548 */
549static int txsReplaceStringVariables(PCTXSPKTHDR pPktHdr, const char *pszSrc, char **ppszNew, int *prcSend)
550{
551 /* Lazy approach that employs memmove. */
552 size_t cchNew = strlen(pszSrc);
553 char *pszNew = RTStrDup(pszSrc);
554 char *pszDollar = pszNew;
555 while (pszDollar && (pszDollar = strchr(pszDollar, '$')) != NULL)
556 {
557 if (pszDollar[1] == '{')
558 {
559 char *pszEnd = strchr(&pszDollar[2], '}');
560 if (pszEnd)
561 {
562#define IF_VARIABLE_DO(pszDollar, szVarExpr, pszValue) \
563 if ( cchVar == sizeof(szVarExpr) - 1 \
564 && !memcmp(pszDollar, szVarExpr, sizeof(szVarExpr) - 1) ) \
565 { \
566 size_t const cchValue = strlen(pszValue); \
567 rc = txsReplaceStringVariable(&pszNew, &cchNew, offDollar, \
568 sizeof(szVarExpr) - 1, pszValue, cchValue); \
569 offDollar += cchValue; \
570 }
571 int rc;
572 size_t const cchVar = pszEnd - pszDollar + 1; /* includes "${}" */
573 size_t offDollar = pszDollar - pszNew;
574 IF_VARIABLE_DO(pszDollar, "${CDROM}", g_szCdRomPath)
575 else IF_VARIABLE_DO(pszDollar, "${SCRATCH}", g_szScratchPath)
576 else IF_VARIABLE_DO(pszDollar, "${ARCH}", g_szArchShortName)
577 else IF_VARIABLE_DO(pszDollar, "${OS}", g_szOsShortName)
578 else IF_VARIABLE_DO(pszDollar, "${OS.ARCH}", g_szOsDotArchShortName)
579 else IF_VARIABLE_DO(pszDollar, "${OS/ARCH}", g_szOsSlashArchShortName)
580 else IF_VARIABLE_DO(pszDollar, "${EXESUFF}", g_szExeSuff)
581 else IF_VARIABLE_DO(pszDollar, "${SCRIPTSUFF}", g_szScriptSuff)
582 else IF_VARIABLE_DO(pszDollar, "${TXSDIR}", g_szTxsDir)
583 else IF_VARIABLE_DO(pszDollar, "${CWD}", g_szCwd)
584 else if ( cchVar >= sizeof("${env.") + 1
585 && memcmp(pszDollar, RT_STR_TUPLE("${env.")) == 0)
586 {
587 const char *pszEnvVar = pszDollar + 6;
588 size_t cchValue = 0;
589 char szValue[RTPATH_MAX];
590 *pszEnd = '\0';
591 rc = RTEnvGetEx(RTENV_DEFAULT, pszEnvVar, szValue, sizeof(szValue), &cchValue);
592 if (RT_SUCCESS(rc))
593 {
594 *pszEnd = '}';
595 rc = txsReplaceStringVariable(&pszNew, &cchNew, offDollar, cchVar, szValue, cchValue);
596 offDollar += cchValue;
597 }
598 else
599 {
600 if (rc == VERR_ENV_VAR_NOT_FOUND)
601 *prcSend = txsReplyFailure(pPktHdr, "UNKN VAR", "Environment variable '%s' encountered in '%s'",
602 pszEnvVar, pszSrc);
603 else
604 *prcSend = txsReplyFailure(pPktHdr, "FAILDENV",
605 "RTEnvGetEx(,'%s',,,) failed with %Rrc (opcode '%.8s')",
606 pszEnvVar, rc, pPktHdr->achOpcode);
607 RTStrFree(pszNew);
608 *ppszNew = NULL;
609 return false;
610 }
611 }
612 else
613 {
614 RTStrFree(pszNew);
615 *prcSend = txsReplyFailure(pPktHdr, "UNKN VAR", "Unknown variable '%.*s' encountered in '%s'",
616 cchVar, pszDollar, pszSrc);
617 *ppszNew = NULL;
618 return false;
619 }
620 pszDollar = &pszNew[offDollar];
621
622 if (RT_FAILURE(rc))
623 {
624 RTStrFree(pszNew);
625 *prcSend = txsReplyRC(pPktHdr, rc, "RTStrRealloc");
626 *ppszNew = NULL;
627 return false;
628 }
629#undef IF_VARIABLE_DO
630 }
631 }
632 /* Undo dollar escape sequences: $$ -> $ */
633 else if (pszDollar[1] == '$')
634 {
635 size_t cchLeft = cchNew - (&pszDollar[1] - pszNew);
636 memmove(pszDollar, &pszDollar[1], cchLeft);
637 pszDollar[cchLeft] = '\0';
638 cchNew -= 1;
639 }
640 else /* No match, move to next char to avoid endless looping. */
641 pszDollar++;
642 }
643
644 *ppszNew = pszNew;
645 *prcSend = VINF_SUCCESS;
646 return true;
647}
648
649/**
650 * Checks if the string is valid and returns the expanded version.
651 *
652 * @returns true if valid, false if invalid.
653 * @param pPktHdr The packet being unpacked.
654 * @param pszArgName The argument name.
655 * @param psz Pointer to the string within pPktHdr.
656 * @param ppszExp Where to return the expanded string. Must be
657 * freed by calling RTStrFree().
658 * @param ppszNext Where to return the pointer to the next field.
659 * If NULL, then we assume this string is at the
660 * end of the packet and will make sure it has the
661 * advertised length.
662 * @param prcSend Where to return the status code of the send on
663 * failure.
664 */
665static bool txsIsStringValid(PCTXSPKTHDR pPktHdr, const char *pszArgName, const char *psz,
666 char **ppszExp, const char **ppszNext, int *prcSend)
667{
668 *ppszExp = NULL;
669 if (ppszNext)
670 *ppszNext = NULL;
671
672 size_t const off = psz - (const char *)pPktHdr;
673 if (pPktHdr->cb <= off)
674 {
675 *prcSend = txsReplyFailure(pPktHdr, "STR MISS", "Missing string argument '%s' in '%.8s'",
676 pszArgName, pPktHdr->achOpcode);
677 return false;
678 }
679
680 size_t const cchMax = pPktHdr->cb - off;
681 const char *pszEnd = RTStrEnd(psz, cchMax);
682 if (!pszEnd)
683 {
684 *prcSend = txsReplyFailure(pPktHdr, "STR TERM", "The string argument '%s' in '%.8s' is unterminated",
685 pszArgName, pPktHdr->achOpcode);
686 return false;
687 }
688
689 if (!ppszNext && (size_t)(pszEnd - psz) != cchMax - 1)
690 {
691 *prcSend = txsReplyFailure(pPktHdr, "STR SHRT", "The string argument '%s' in '%.8s' is shorter than advertised",
692 pszArgName, pPktHdr->achOpcode);
693 return false;
694 }
695
696 if (!txsReplaceStringVariables(pPktHdr, psz, ppszExp, prcSend))
697 return false;
698 if (ppszNext)
699 *ppszNext = pszEnd + 1;
700 return true;
701}
702
703/**
704 * Validates a packet with a single string after the header.
705 *
706 * @returns true if valid, false if invalid.
707 * @param pPktHdr The packet.
708 * @param pszArgName The argument name.
709 * @param ppszExp Where to return the string pointer. Variables
710 * will be replaced and it must therefore be freed
711 * by calling RTStrFree().
712 * @param prcSend Where to return the status code of the send on
713 * failure.
714 */
715static bool txsIsStringPktValid(PCTXSPKTHDR pPktHdr, const char *pszArgName, char **ppszExp, int *prcSend)
716{
717 if (pPktHdr->cb < sizeof(TXSPKTHDR) + 2)
718 {
719 *ppszExp = NULL;
720 *prcSend = txsReplyBadMinSize(pPktHdr, sizeof(TXSPKTHDR) + 2);
721 return false;
722 }
723
724 return txsIsStringValid(pPktHdr, pszArgName, (const char *)(pPktHdr + 1), ppszExp, NULL, prcSend);
725}
726
727/**
728 * Checks if the two opcodes match.
729 *
730 * @returns true on match, false on mismatch.
731 * @param pPktHdr The packet header.
732 * @param pszOpcode2 The opcode we're comparing with. Does not have
733 * to be the whole 8 chars long.
734 */
735DECLINLINE(bool) txsIsSameOpcode(PCTXSPKTHDR pPktHdr, const char *pszOpcode2)
736{
737 if (pPktHdr->achOpcode[0] != pszOpcode2[0])
738 return false;
739 if (pPktHdr->achOpcode[1] != pszOpcode2[1])
740 return false;
741
742 unsigned i = 2;
743 while ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode)
744 && pszOpcode2[i] != '\0')
745 {
746 if (pPktHdr->achOpcode[i] != pszOpcode2[i])
747 break;
748 i++;
749 }
750
751 if ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode)
752 && pszOpcode2[i] == '\0')
753 {
754 while ( i < RT_SIZEOFMEMB(TXSPKTHDR, achOpcode)
755 && pPktHdr->achOpcode[i] == ' ')
756 i++;
757 }
758
759 return i == RT_SIZEOFMEMB(TXSPKTHDR, achOpcode);
760}
761
762/**
763 * Used by txsDoGetFile to wait for a reply ACK from the client.
764 *
765 * @returns VINF_SUCCESS on ACK, VERR_GENERAL_FAILURE on NACK,
766 * VERR_NET_NOT_CONNECTED on unknown response (sending a bable reply),
767 * or whatever txsRecvPkt returns.
768 * @param pPktHdr The original packet (for future use).
769 */
770static int txsWaitForAck(PCTXSPKTHDR pPktHdr)
771{
772 NOREF(pPktHdr);
773 /** @todo timeout? */
774 PTXSPKTHDR pReply;
775 int rc = txsRecvPkt(&pReply, false /*fAutoRetryOnFailure*/);
776 if (RT_SUCCESS(rc))
777 {
778 if (txsIsSameOpcode(pReply, "ACK"))
779 rc = VINF_SUCCESS;
780 else if (txsIsSameOpcode(pReply, "NACK"))
781 rc = VERR_GENERAL_FAILURE;
782 else
783 {
784 txsReplyBabble("BABBLE ");
785 rc = VERR_NET_NOT_CONNECTED;
786 }
787 RTMemFree(pReply);
788 }
789 return rc;
790}
791
792/**
793 * Expands the variables in the string and sends it back to the host.
794 *
795 * @returns IPRT status code from send.
796 * @param pPktHdr The expand string packet.
797 */
798static int txsDoExpandString(PCTXSPKTHDR pPktHdr)
799{
800 int rc;
801 char *pszExpanded;
802 if (!txsIsStringPktValid(pPktHdr, "string", &pszExpanded, &rc))
803 return rc;
804
805 struct
806 {
807 TXSPKTHDR Hdr;
808 char szString[_64K];
809 char abPadding[TXSPKT_ALIGNMENT];
810 } Pkt;
811
812 size_t const cbExpanded = strlen(pszExpanded) + 1;
813 if (cbExpanded <= sizeof(Pkt.szString))
814 {
815 memcpy(Pkt.szString, pszExpanded, cbExpanded);
816 rc = txsReplyInternal(&Pkt.Hdr, "STRING ", cbExpanded);
817 }
818 else
819 {
820 memcpy(Pkt.szString, pszExpanded, sizeof(Pkt.szString));
821 Pkt.szString[0] = '\0';
822 rc = txsReplyInternal(&Pkt.Hdr, "SHORTSTR", sizeof(Pkt.szString));
823 }
824
825 RTStrFree(pszExpanded);
826 return rc;
827}
828
829/**
830 * Packs a tar file / directory.
831 *
832 * @returns IPRT status code from send.
833 * @param pPktHdr The pack file packet.
834 */
835static int txsDoPackFile(PCTXSPKTHDR pPktHdr)
836{
837 int rc;
838 char *pszFile = NULL;
839 char *pszSource = NULL;
840
841 /* Packet cursor. */
842 const char *pch = (const char *)(pPktHdr + 1);
843
844 if (txsIsStringValid(pPktHdr, "file", pch, &pszFile, &pch, &rc))
845 {
846 if (txsIsStringValid(pPktHdr, "source", pch, &pszSource, &pch, &rc))
847 {
848 char *pszSuff = RTPathSuffix(pszFile);
849
850 const char *apszArgs[7];
851 unsigned cArgs = 0;
852
853 apszArgs[cArgs++] = "RTTar";
854 apszArgs[cArgs++] = "--create";
855
856 apszArgs[cArgs++] = "--file";
857 apszArgs[cArgs++] = pszFile;
858
859 if ( pszSuff
860 && ( !RTStrICmp(pszSuff, ".gz")
861 || !RTStrICmp(pszSuff, ".tgz")))
862 apszArgs[cArgs++] = "--gzip";
863
864 apszArgs[cArgs++] = pszSource;
865
866 RTEXITCODE rcExit = RTZipTarCmd(cArgs, (char **)apszArgs);
867 if (rcExit != RTEXITCODE_SUCCESS)
868 rc = VERR_GENERAL_FAILURE; /** @todo proper return code. */
869 else
870 rc = VINF_SUCCESS;
871
872 rc = txsReplyRC(pPktHdr, rc, "RTZipTarCmd(\"%s\",\"%s\")",
873 pszFile, pszSource);
874
875 RTStrFree(pszSource);
876 }
877 RTStrFree(pszFile);
878 }
879
880 return rc;
881}
882
883/**
884 * Unpacks a tar file.
885 *
886 * @returns IPRT status code from send.
887 * @param pPktHdr The unpack file packet.
888 */
889static int txsDoUnpackFile(PCTXSPKTHDR pPktHdr)
890{
891 int rc;
892 char *pszFile = NULL;
893 char *pszDirectory = NULL;
894
895 /* Packet cursor. */
896 const char *pch = (const char *)(pPktHdr + 1);
897
898 if (txsIsStringValid(pPktHdr, "file", pch, &pszFile, &pch, &rc))
899 {
900 if (txsIsStringValid(pPktHdr, "directory", pch, &pszDirectory, &pch, &rc))
901 {
902 char *pszSuff = RTPathSuffix(pszFile);
903
904 const char *apszArgs[7];
905 unsigned cArgs = 0;
906
907 apszArgs[cArgs++] = "RTTar";
908 apszArgs[cArgs++] = "--extract";
909
910 apszArgs[cArgs++] = "--file";
911 apszArgs[cArgs++] = pszFile;
912
913 apszArgs[cArgs++] = "--directory";
914 apszArgs[cArgs++] = pszDirectory;
915
916 if ( pszSuff
917 && ( !RTStrICmp(pszSuff, ".gz")
918 || !RTStrICmp(pszSuff, ".tgz")))
919 apszArgs[cArgs++] = "--gunzip";
920
921 RTEXITCODE rcExit = RTZipTarCmd(cArgs, (char **)apszArgs);
922 if (rcExit != RTEXITCODE_SUCCESS)
923 rc = VERR_GENERAL_FAILURE; /** @todo proper return code. */
924 else
925 rc = VINF_SUCCESS;
926
927 rc = txsReplyRC(pPktHdr, rc, "RTZipTarCmd(\"%s\",\"%s\")",
928 pszFile, pszDirectory);
929
930 RTStrFree(pszDirectory);
931 }
932 RTStrFree(pszFile);
933 }
934
935 return rc;
936}
937
938/**
939 * Downloads a file to the client.
940 *
941 * The transfer sends a stream of DATA packets (0 or more) and ends it all with
942 * a ACK packet. If an error occurs, a FAILURE packet is sent and the transfer
943 * aborted.
944 *
945 * @returns IPRT status code from send.
946 * @param pPktHdr The get file packet.
947 */
948static int txsDoGetFile(PCTXSPKTHDR pPktHdr)
949{
950 int rc;
951 char *pszPath;
952 if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc))
953 return rc;
954
955 RTFILE hFile;
956 rc = RTFileOpen(&hFile, pszPath, RTFILE_O_READ | RTFILE_O_DENY_NONE | RTFILE_O_OPEN);
957 if (RT_SUCCESS(rc))
958 {
959 uint32_t uMyCrc32 = RTCrc32Start();
960 for (;;)
961 {
962 struct
963 {
964 TXSPKTHDR Hdr;
965 uint32_t uCrc32;
966 char ab[_64K];
967 char abPadding[TXSPKT_ALIGNMENT];
968 } Pkt;
969 size_t cbRead;
970 rc = RTFileRead(hFile, &Pkt.ab[0], _64K, &cbRead);
971 if (RT_FAILURE(rc) || cbRead == 0)
972 {
973 if (rc == VERR_EOF || (RT_SUCCESS(rc) && cbRead == 0))
974 {
975 Pkt.uCrc32 = RTCrc32Finish(uMyCrc32);
976 rc = txsReplyInternal(&Pkt.Hdr, "DATA EOF", sizeof(uint32_t));
977 if (RT_SUCCESS(rc))
978 rc = txsWaitForAck(&Pkt.Hdr);
979 }
980 else
981 rc = txsReplyRC(pPktHdr, rc, "RTFileRead");
982 break;
983 }
984
985 uMyCrc32 = RTCrc32Process(uMyCrc32, &Pkt.ab[0], cbRead);
986 Pkt.uCrc32 = RTCrc32Finish(uMyCrc32);
987 rc = txsReplyInternal(&Pkt.Hdr, "DATA ", cbRead + sizeof(uint32_t));
988 if (RT_FAILURE(rc))
989 break;
990 rc = txsWaitForAck(&Pkt.Hdr);
991 if (RT_FAILURE(rc))
992 break;
993 }
994
995 RTFileClose(hFile);
996 }
997 else
998 rc = txsReplyRC(pPktHdr, rc, "RTFileOpen(,\"%s\",)", pszPath);
999
1000 RTStrFree(pszPath);
1001 return rc;
1002}
1003
1004/**
1005 * Uploads a file from the client.
1006 *
1007 * The transfer sends a stream of DATA packets (0 or more) and ends it all with
1008 * a DATA EOF packet. We ACK each of these, so that if a write error occurs we
1009 * can abort the transfer straight away.
1010 *
1011 * @returns IPRT status code from send.
1012 * @param pPktHdr The put file packet.
1013 * @param fHasMode Set if the packet starts with a mode field.
1014 */
1015static int txsDoPutFile(PCTXSPKTHDR pPktHdr, bool fHasMode)
1016{
1017 int rc;
1018 RTFMODE fMode = 0;
1019 char *pszPath;
1020 if (!fHasMode)
1021 {
1022 if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc))
1023 return rc;
1024 }
1025 else
1026 {
1027 /* After the packet header follows a mode mask and the remainder of
1028 the packet is the zero terminated file name. */
1029 size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2;
1030 if (pPktHdr->cb < cbMin)
1031 return txsReplyBadMinSize(pPktHdr, cbMin);
1032 if (!txsIsStringValid(pPktHdr, "file", (const char *)(pPktHdr + 1) + sizeof(RTFMODE), &pszPath, NULL, &rc))
1033 return rc;
1034 fMode = *(RTFMODE const *)(pPktHdr + 1);
1035 fMode <<= RTFILE_O_CREATE_MODE_SHIFT;
1036 fMode &= RTFILE_O_CREATE_MODE_MASK;
1037 }
1038
1039 RTFILE hFile;
1040 rc = RTFileOpen(&hFile, pszPath, RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE | fMode);
1041 if (RT_SUCCESS(rc))
1042 {
1043 bool fSuccess = false;
1044 rc = txsReplyAck(pPktHdr);
1045 if (RT_SUCCESS(rc))
1046 {
1047 if (fMode)
1048 RTFileSetMode(hFile, fMode);
1049
1050 /*
1051 * Read client command packets and process them.
1052 */
1053 uint32_t uMyCrc32 = RTCrc32Start();
1054 for (;;)
1055 {
1056 PTXSPKTHDR pDataPktHdr;
1057 rc = txsRecvPkt(&pDataPktHdr, false /*fAutoRetryOnFailure*/);
1058 if (RT_FAILURE(rc))
1059 break;
1060
1061 if (txsIsSameOpcode(pDataPktHdr, "DATA"))
1062 {
1063 size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(uint32_t);
1064 if (pDataPktHdr->cb >= cbMin)
1065 {
1066 size_t cbData = pDataPktHdr->cb - cbMin;
1067 const void *pvData = (const char *)pDataPktHdr + cbMin;
1068 uint32_t uCrc32 = *(uint32_t const *)(pDataPktHdr + 1);
1069
1070 uMyCrc32 = RTCrc32Process(uMyCrc32, pvData, cbData);
1071 if (RTCrc32Finish(uMyCrc32) == uCrc32)
1072 {
1073 rc = RTFileWrite(hFile, pvData, cbData, NULL);
1074 if (RT_SUCCESS(rc))
1075 {
1076 rc = txsReplyAck(pDataPktHdr);
1077 RTMemFree(pDataPktHdr);
1078 continue;
1079 }
1080
1081 rc = txsReplyRC(pDataPktHdr, rc, "RTFileWrite");
1082 }
1083 else
1084 rc = txsReplyFailure(pDataPktHdr, "BAD DCRC", "mycrc=%#x your=%#x", uMyCrc32, uCrc32);
1085 }
1086 else
1087 rc = txsReplyBadMinSize(pPktHdr, cbMin);
1088 }
1089 else if (txsIsSameOpcode(pDataPktHdr, "DATA EOF"))
1090 {
1091 if (pDataPktHdr->cb == sizeof(TXSPKTHDR) + sizeof(uint32_t))
1092 {
1093 uint32_t uCrc32 = *(uint32_t const *)(pDataPktHdr + 1);
1094 if (RTCrc32Finish(uMyCrc32) == uCrc32)
1095 {
1096 rc = txsReplyAck(pDataPktHdr);
1097 fSuccess = RT_SUCCESS(rc);
1098 }
1099 else
1100 rc = txsReplyFailure(pDataPktHdr, "BAD DCRC", "mycrc=%#x your=%#x", uMyCrc32, uCrc32);
1101 }
1102 else
1103 rc = txsReplyAck(pDataPktHdr);
1104 }
1105 else if (txsIsSameOpcode(pDataPktHdr, "ABORT"))
1106 rc = txsReplyAck(pDataPktHdr);
1107 else
1108 rc = txsReplyFailure(pDataPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known or not recognized during PUT FILE", pDataPktHdr->achOpcode);
1109 RTMemFree(pDataPktHdr);
1110 break;
1111 }
1112 }
1113
1114 RTFileClose(hFile);
1115
1116 /*
1117 * Delete the file on failure.
1118 */
1119 if (!fSuccess)
1120 RTFileDelete(pszPath);
1121 }
1122 else
1123 rc = txsReplyRC(pPktHdr, rc, "RTFileOpen(,\"%s\",)", pszPath);
1124
1125 RTStrFree(pszPath);
1126 return rc;
1127}
1128
1129/**
1130 * List the entries in the specified directory.
1131 *
1132 * @returns IPRT status code from send.
1133 * @param pPktHdr The list packet.
1134 */
1135static int txsDoList(PCTXSPKTHDR pPktHdr)
1136{
1137 int rc;
1138 char *pszPath;
1139 if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
1140 return rc;
1141
1142 rc = txsReplyNotImplemented(pPktHdr);
1143
1144 RTStrFree(pszPath);
1145 return rc;
1146}
1147
1148/**
1149 * Worker for STAT and LSTAT for packing down the file info reply.
1150 *
1151 * @returns IPRT status code from send.
1152 * @param pInfo The info to pack down.
1153 */
1154static int txsReplyObjInfo(PCRTFSOBJINFO pInfo)
1155{
1156 struct
1157 {
1158 TXSPKTHDR Hdr;
1159 int64_t cbObject;
1160 int64_t cbAllocated;
1161 int64_t nsAccessTime;
1162 int64_t nsModificationTime;
1163 int64_t nsChangeTime;
1164 int64_t nsBirthTime;
1165 uint32_t fMode;
1166 uint32_t uid;
1167 uint32_t gid;
1168 uint32_t cHardLinks;
1169 uint64_t INodeIdDevice;
1170 uint64_t INodeId;
1171 uint64_t Device;
1172 char abPadding[TXSPKT_ALIGNMENT];
1173 } Pkt;
1174
1175 Pkt.cbObject = pInfo->cbObject;
1176 Pkt.cbAllocated = pInfo->cbAllocated;
1177 Pkt.nsAccessTime = RTTimeSpecGetNano(&pInfo->AccessTime);
1178 Pkt.nsModificationTime = RTTimeSpecGetNano(&pInfo->ModificationTime);
1179 Pkt.nsChangeTime = RTTimeSpecGetNano(&pInfo->ChangeTime);
1180 Pkt.nsBirthTime = RTTimeSpecGetNano(&pInfo->BirthTime);
1181 Pkt.fMode = pInfo->Attr.fMode;
1182 Pkt.uid = pInfo->Attr.u.Unix.uid;
1183 Pkt.gid = pInfo->Attr.u.Unix.gid;
1184 Pkt.cHardLinks = pInfo->Attr.u.Unix.cHardlinks;
1185 Pkt.INodeIdDevice = pInfo->Attr.u.Unix.INodeIdDevice;
1186 Pkt.INodeId = pInfo->Attr.u.Unix.INodeId;
1187 Pkt.Device = pInfo->Attr.u.Unix.Device;
1188
1189 return txsReplyInternal(&Pkt.Hdr, "FILEINFO", sizeof(Pkt) - TXSPKT_ALIGNMENT - sizeof(TXSPKTHDR));
1190}
1191
1192/**
1193 * Get info about a file system object, following all but the symbolic links
1194 * except in the final path component.
1195 *
1196 * @returns IPRT status code from send.
1197 * @param pPktHdr The lstat packet.
1198 */
1199static int txsDoLStat(PCTXSPKTHDR pPktHdr)
1200{
1201 int rc;
1202 char *pszPath;
1203 if (!txsIsStringPktValid(pPktHdr, "path", &pszPath, &rc))
1204 return rc;
1205
1206 RTFSOBJINFO Info;
1207 rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_UNIX, RTPATH_F_ON_LINK);
1208 if (RT_SUCCESS(rc))
1209 rc = txsReplyObjInfo(&Info);
1210 else
1211 rc = txsReplyRC(pPktHdr, rc, "RTPathQueryInfoEx(\"%s\",,UNIX,ON_LINK)", pszPath);
1212
1213 RTStrFree(pszPath);
1214 return rc;
1215}
1216
1217/**
1218 * Get info about a file system object, following all symbolic links.
1219 *
1220 * @returns IPRT status code from send.
1221 * @param pPktHdr The stat packet.
1222 */
1223static int txsDoStat(PCTXSPKTHDR pPktHdr)
1224{
1225 int rc;
1226 char *pszPath;
1227 if (!txsIsStringPktValid(pPktHdr, "path", &pszPath, &rc))
1228 return rc;
1229
1230 RTFSOBJINFO Info;
1231 rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_UNIX, RTPATH_F_FOLLOW_LINK);
1232 if (RT_SUCCESS(rc))
1233 rc = txsReplyObjInfo(&Info);
1234 else
1235 rc = txsReplyRC(pPktHdr, rc, "RTPathQueryInfoEx(\"%s\",,UNIX,FOLLOW_LINK)", pszPath);
1236
1237 RTStrFree(pszPath);
1238 return rc;
1239}
1240
1241/**
1242 * Checks if the specified path is a symbolic link.
1243 *
1244 * @returns IPRT status code from send.
1245 * @param pPktHdr The issymlnk packet.
1246 */
1247static int txsDoIsSymlnk(PCTXSPKTHDR pPktHdr)
1248{
1249 int rc;
1250 char *pszPath;
1251 if (!txsIsStringPktValid(pPktHdr, "symlink", &pszPath, &rc))
1252 return rc;
1253
1254 RTFSOBJINFO Info;
1255 rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK);
1256 if (RT_SUCCESS(rc) && RTFS_IS_SYMLINK(Info.Attr.fMode))
1257 rc = txsReplySimple(pPktHdr, "TRUE ");
1258 else
1259 rc = txsReplySimple(pPktHdr, "FALSE ");
1260
1261 RTStrFree(pszPath);
1262 return rc;
1263}
1264
1265/**
1266 * Checks if the specified path is a file or not.
1267 *
1268 * If the final path element is a symbolic link to a file, we'll return
1269 * FALSE.
1270 *
1271 * @returns IPRT status code from send.
1272 * @param pPktHdr The isfile packet.
1273 */
1274static int txsDoIsFile(PCTXSPKTHDR pPktHdr)
1275{
1276 int rc;
1277 char *pszPath;
1278 if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
1279 return rc;
1280
1281 RTFSOBJINFO Info;
1282 rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK);
1283 if (RT_SUCCESS(rc) && RTFS_IS_FILE(Info.Attr.fMode))
1284 rc = txsReplySimple(pPktHdr, "TRUE ");
1285 else
1286 rc = txsReplySimple(pPktHdr, "FALSE ");
1287
1288 RTStrFree(pszPath);
1289 return rc;
1290}
1291
1292/**
1293 * Checks if the specified path is a directory or not.
1294 *
1295 * If the final path element is a symbolic link to a directory, we'll return
1296 * FALSE.
1297 *
1298 * @returns IPRT status code from send.
1299 * @param pPktHdr The isdir packet.
1300 */
1301static int txsDoIsDir(PCTXSPKTHDR pPktHdr)
1302{
1303 int rc;
1304 char *pszPath;
1305 if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
1306 return rc;
1307
1308 RTFSOBJINFO Info;
1309 rc = RTPathQueryInfoEx(pszPath, &Info, RTFSOBJATTRADD_NOTHING, RTPATH_F_ON_LINK);
1310 if (RT_SUCCESS(rc) && RTFS_IS_DIRECTORY(Info.Attr.fMode))
1311 rc = txsReplySimple(pPktHdr, "TRUE ");
1312 else
1313 rc = txsReplySimple(pPktHdr, "FALSE ");
1314
1315 RTStrFree(pszPath);
1316 return rc;
1317}
1318
1319/**
1320 * Changes the owner of a file, directory or symbolic link.
1321 *
1322 * @returns IPRT status code from send.
1323 * @param pPktHdr The chmod packet.
1324 */
1325static int txsDoChOwn(PCTXSPKTHDR pPktHdr)
1326{
1327#ifdef RT_OS_WINDOWS
1328 return txsReplyNotImplemented(pPktHdr);
1329#else
1330 /* After the packet header follows a 32-bit UID and 32-bit GID, while the
1331 remainder of the packet is the zero terminated path. */
1332 size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2;
1333 if (pPktHdr->cb < cbMin)
1334 return txsReplyBadMinSize(pPktHdr, cbMin);
1335
1336 int rc;
1337 char *pszPath;
1338 if (!txsIsStringValid(pPktHdr, "path", (const char *)(pPktHdr + 1) + sizeof(uint32_t) * 2, &pszPath, NULL, &rc))
1339 return rc;
1340
1341 uint32_t uid = ((uint32_t const *)(pPktHdr + 1))[0];
1342 uint32_t gid = ((uint32_t const *)(pPktHdr + 1))[1];
1343
1344 rc = RTPathSetOwnerEx(pszPath, uid, gid, RTPATH_F_ON_LINK);
1345
1346 rc = txsReplyRC(pPktHdr, rc, "RTPathSetOwnerEx(\"%s\", %u, %u)", pszPath, uid, gid);
1347 RTStrFree(pszPath);
1348 return rc;
1349#endif
1350}
1351
1352/**
1353 * Changes the mode of a file or directory.
1354 *
1355 * @returns IPRT status code from send.
1356 * @param pPktHdr The chmod packet.
1357 */
1358static int txsDoChMod(PCTXSPKTHDR pPktHdr)
1359{
1360 /* After the packet header follows a mode mask and the remainder of
1361 the packet is the zero terminated file name. */
1362 size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2;
1363 if (pPktHdr->cb < cbMin)
1364 return txsReplyBadMinSize(pPktHdr, cbMin);
1365
1366 int rc;
1367 char *pszPath;
1368 if (!txsIsStringValid(pPktHdr, "path", (const char *)(pPktHdr + 1) + sizeof(RTFMODE), &pszPath, NULL, &rc))
1369 return rc;
1370
1371 RTFMODE fMode = *(RTFMODE const *)(pPktHdr + 1);
1372
1373 rc = RTPathSetMode(pszPath, fMode);
1374
1375 rc = txsReplyRC(pPktHdr, rc, "RTPathSetMode(\"%s\", %o)", pszPath, fMode);
1376 RTStrFree(pszPath);
1377 return rc;
1378}
1379
1380/**
1381 * Removes a directory tree.
1382 *
1383 * @returns IPRT status code from send.
1384 * @param pPktHdr The rmtree packet.
1385 */
1386static int txsDoRmTree(PCTXSPKTHDR pPktHdr)
1387{
1388 int rc;
1389 char *pszPath;
1390 if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
1391 return rc;
1392
1393 rc = RTDirRemoveRecursive(pszPath, 0 /*fFlags*/);
1394
1395 rc = txsReplyRC(pPktHdr, rc, "RTDirRemoveRecusive(\"%s\",0)", pszPath);
1396 RTStrFree(pszPath);
1397 return rc;
1398}
1399
1400/**
1401 * Removes a symbolic link.
1402 *
1403 * @returns IPRT status code from send.
1404 * @param pPktHdr The rmsymlink packet.
1405 */
1406static int txsDoRmSymlnk(PCTXSPKTHDR pPktHdr)
1407{
1408 int rc;
1409 char *pszPath;
1410 if (!txsIsStringPktValid(pPktHdr, "symlink", &pszPath, &rc))
1411 return rc;
1412
1413 rc = RTSymlinkDelete(pszPath, 0);
1414
1415 rc = txsReplyRC(pPktHdr, rc, "RTSymlinkDelete(\"%s\")", pszPath);
1416 RTStrFree(pszPath);
1417 return rc;
1418}
1419
1420/**
1421 * Removes a file.
1422 *
1423 * @returns IPRT status code from send.
1424 * @param pPktHdr The rmfile packet.
1425 */
1426static int txsDoRmFile(PCTXSPKTHDR pPktHdr)
1427{
1428 int rc;
1429 char *pszPath;
1430 if (!txsIsStringPktValid(pPktHdr, "file", &pszPath, &rc))
1431 return rc;
1432
1433 rc = RTFileDelete(pszPath);
1434
1435 rc = txsReplyRC(pPktHdr, rc, "RTFileDelete(\"%s\")", pszPath);
1436 RTStrFree(pszPath);
1437 return rc;
1438}
1439
1440/**
1441 * Removes a directory.
1442 *
1443 * @returns IPRT status code from send.
1444 * @param pPktHdr The rmdir packet.
1445 */
1446static int txsDoRmDir(PCTXSPKTHDR pPktHdr)
1447{
1448 int rc;
1449 char *pszPath;
1450 if (!txsIsStringPktValid(pPktHdr, "dir", &pszPath, &rc))
1451 return rc;
1452
1453 rc = RTDirRemove(pszPath);
1454
1455 rc = txsReplyRC(pPktHdr, rc, "RTDirRemove(\"%s\")", pszPath);
1456 RTStrFree(pszPath);
1457 return rc;
1458}
1459
1460/**
1461 * Creates a symbolic link.
1462 *
1463 * @returns IPRT status code from send.
1464 * @param pPktHdr The mksymlnk packet.
1465 */
1466static int txsDoMkSymlnk(PCTXSPKTHDR pPktHdr)
1467{
1468 return txsReplyNotImplemented(pPktHdr);
1469}
1470
1471/**
1472 * Creates a directory and all its parents.
1473 *
1474 * @returns IPRT status code from send.
1475 * @param pPktHdr The mkdir -p packet.
1476 */
1477static int txsDoMkDrPath(PCTXSPKTHDR pPktHdr)
1478{
1479 /* The same format as the MKDIR command. */
1480 if (pPktHdr->cb < sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2)
1481 return txsReplyBadMinSize(pPktHdr, sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2);
1482
1483 int rc;
1484 char *pszPath;
1485 if (!txsIsStringValid(pPktHdr, "dir", (const char *)(pPktHdr + 1) + sizeof(RTFMODE), &pszPath, NULL, &rc))
1486 return rc;
1487
1488 RTFMODE fMode = *(RTFMODE const *)(pPktHdr + 1);
1489
1490 rc = RTDirCreateFullPathEx(pszPath, fMode, RTDIRCREATE_FLAGS_IGNORE_UMASK);
1491
1492 rc = txsReplyRC(pPktHdr, rc, "RTDirCreateFullPath(\"%s\", %#x)", pszPath, fMode);
1493 RTStrFree(pszPath);
1494 return rc;
1495}
1496
1497/**
1498 * Creates a directory.
1499 *
1500 * @returns IPRT status code from send.
1501 * @param pPktHdr The mkdir packet.
1502 */
1503static int txsDoMkDir(PCTXSPKTHDR pPktHdr)
1504{
1505 /* After the packet header follows a mode mask and the remainder of
1506 the packet is the zero terminated directory name. */
1507 size_t const cbMin = sizeof(TXSPKTHDR) + sizeof(RTFMODE) + 2;
1508 if (pPktHdr->cb < cbMin)
1509 return txsReplyBadMinSize(pPktHdr, cbMin);
1510
1511 int rc;
1512 char *pszPath;
1513 if (!txsIsStringValid(pPktHdr, "dir", (const char *)(pPktHdr + 1) + sizeof(RTFMODE), &pszPath, NULL, &rc))
1514 return rc;
1515
1516 RTFMODE fMode = *(RTFMODE const *)(pPktHdr + 1);
1517 rc = RTDirCreate(pszPath, fMode, RTDIRCREATE_FLAGS_IGNORE_UMASK);
1518
1519 rc = txsReplyRC(pPktHdr, rc, "RTDirCreate(\"%s\", %#x)", pszPath, fMode);
1520 RTStrFree(pszPath);
1521 return rc;
1522}
1523
1524/**
1525 * Cleans up the scratch area.
1526 *
1527 * @returns IPRT status code from send.
1528 * @param pPktHdr The shutdown packet.
1529 */
1530static int txsDoCleanup(PCTXSPKTHDR pPktHdr)
1531{
1532 int rc = RTDirRemoveRecursive(g_szScratchPath, RTDIRRMREC_F_CONTENT_ONLY);
1533 return txsReplyRC(pPktHdr, rc, "RTDirRemoveRecursive(\"%s\", CONTENT_ONLY)", g_szScratchPath);
1534}
1535
1536/**
1537 * Ejects the specified DVD/CD drive.
1538 *
1539 * @returns IPRT status code from send.
1540 * @param pPktHdr The eject packet.
1541 */
1542static int txsDoCdEject(PCTXSPKTHDR pPktHdr)
1543{
1544 /* After the packet header follows a uint32_t ordinal. */
1545 size_t const cbExpected = sizeof(TXSPKTHDR) + sizeof(uint32_t);
1546 if (pPktHdr->cb != cbExpected)
1547 return txsReplyBadSize(pPktHdr, cbExpected);
1548 uint32_t iOrdinal = *(uint32_t const *)(pPktHdr + 1);
1549
1550 RTCDROM hCdrom;
1551 int rc = RTCdromOpenByOrdinal(iOrdinal, RTCDROM_O_CONTROL, &hCdrom);
1552 if (RT_FAILURE(rc))
1553 return txsReplyRC(pPktHdr, rc, "RTCdromOpenByOrdinal(%u, RTCDROM_O_CONTROL, )", iOrdinal);
1554 rc = RTCdromEject(hCdrom, true /*fForce*/);
1555 RTCdromRelease(hCdrom);
1556
1557 return txsReplyRC(pPktHdr, rc, "RTCdromEject(ord=%u, fForce=true)", iOrdinal);
1558}
1559
1560/**
1561 * Common worker for txsDoShutdown and txsDoReboot.
1562 *
1563 * @returns IPRT status code from send.
1564 * @param pPktHdr The reboot packet.
1565 * @param fAction Which action to take.
1566 */
1567static int txsCommonShutdownReboot(PCTXSPKTHDR pPktHdr, uint32_t fAction)
1568{
1569 /*
1570 * We ACK the reboot & shutdown before actually performing them, then we
1571 * terminate the transport layer.
1572 *
1573 * This is to make sure the client isn't stuck with a dead connection. The
1574 * transport layer termination also make sure we won't accept new
1575 * connections in case the client is too eager to reconnect to a rebooted
1576 * test victim. On the down side, we cannot easily report RTSystemShutdown
1577 * failures failures this way. But the client can kind of figure it out by
1578 * reconnecting and seeing that our UUID was unchanged.
1579 */
1580 int rc;
1581 if (pPktHdr->cb != sizeof(TXSPKTHDR))
1582 return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
1583 g_pTransport->pfnNotifyReboot();
1584 rc = txsReplyAck(pPktHdr);
1585 RTThreadSleep(2560); /* fudge factor */
1586 g_pTransport->pfnTerm();
1587
1588 /*
1589 * Do the job, if it fails we'll restart the transport layer.
1590 */
1591#if 0
1592 rc = VINF_SUCCESS;
1593#else
1594 rc = RTSystemShutdown(0 /*cMsDelay*/,
1595 fAction | RTSYSTEM_SHUTDOWN_PLANNED | RTSYSTEM_SHUTDOWN_FORCE,
1596 "Test Execution Service");
1597#endif
1598 if (RT_SUCCESS(rc))
1599 {
1600 RTMsgInfo(fAction == RTSYSTEM_SHUTDOWN_REBOOT ? "Rebooting...\n" : "Shutting down...\n");
1601 g_fTerminate = true;
1602 }
1603 else
1604 {
1605 RTMsgError("RTSystemShutdown w/ fAction=%#x failed: %Rrc", fAction, rc);
1606
1607 int rc2 = g_pTransport->pfnInit();
1608 if (RT_FAILURE(rc2))
1609 {
1610 g_fTerminate = true;
1611 rc = rc2;
1612 }
1613 }
1614 return rc;
1615}
1616
1617/**
1618 * Shuts down the machine, powering it off if possible.
1619 *
1620 * @returns IPRT status code from send.
1621 * @param pPktHdr The shutdown packet.
1622 */
1623static int txsDoShutdown(PCTXSPKTHDR pPktHdr)
1624{
1625 return txsCommonShutdownReboot(pPktHdr, RTSYSTEM_SHUTDOWN_POWER_OFF_HALT);
1626}
1627
1628/**
1629 * Reboots the machine.
1630 *
1631 * @returns IPRT status code from send.
1632 * @param pPktHdr The reboot packet.
1633 */
1634static int txsDoReboot(PCTXSPKTHDR pPktHdr)
1635{
1636 return txsCommonShutdownReboot(pPktHdr, RTSYSTEM_SHUTDOWN_REBOOT);
1637}
1638
1639/**
1640 * Verifies and acknowledges a "UUID" request.
1641 *
1642 * @returns IPRT status code.
1643 * @param pPktHdr The UUID packet.
1644 */
1645static int txsDoUuid(PCTXSPKTHDR pPktHdr)
1646{
1647 if (pPktHdr->cb != sizeof(TXSPKTHDR))
1648 return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
1649
1650 struct
1651 {
1652 TXSPKTHDR Hdr;
1653 char szUuid[RTUUID_STR_LENGTH];
1654 char abPadding[TXSPKT_ALIGNMENT];
1655 } Pkt;
1656
1657 int rc = RTUuidToStr(&g_InstanceUuid, Pkt.szUuid, sizeof(Pkt.szUuid));
1658 if (RT_FAILURE(rc))
1659 return txsReplyRC(pPktHdr, rc, "RTUuidToStr");
1660 return txsReplyInternal(&Pkt.Hdr, "ACK UUID", strlen(Pkt.szUuid) + 1);
1661}
1662
1663/**
1664 * Verifies and acknowledges a "BYE" request.
1665 *
1666 * @returns IPRT status code.
1667 * @param pPktHdr The bye packet.
1668 */
1669static int txsDoBye(PCTXSPKTHDR pPktHdr)
1670{
1671 int rc;
1672 if (pPktHdr->cb == sizeof(TXSPKTHDR))
1673 rc = txsReplyAck(pPktHdr);
1674 else
1675 rc = txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
1676 g_pTransport->pfnNotifyBye();
1677 return rc;
1678}
1679
1680/**
1681 * Verifies and acknowledges a "VER" request.
1682 *
1683 * @returns IPRT status code.
1684 * @param pPktHdr The version packet.
1685 */
1686static int txsDoVer(PCTXSPKTHDR pPktHdr)
1687{
1688 if (pPktHdr->cb != sizeof(TXSPKTHDR))
1689 return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
1690
1691 struct
1692 {
1693 TXSPKTHDR Hdr;
1694 char szVer[96];
1695 char abPadding[TXSPKT_ALIGNMENT];
1696 } Pkt;
1697
1698 if (RTStrPrintf2(Pkt.szVer, sizeof(Pkt.szVer), "%s r%s %s.%s (%s %s)",
1699 RTBldCfgVersion(), RTBldCfgRevisionStr(), KBUILD_TARGET, KBUILD_TARGET_ARCH, __DATE__, __TIME__) > 0)
1700 {
1701 return txsReplyInternal(&Pkt.Hdr, "ACK VER ", strlen(Pkt.szVer) + 1);
1702 }
1703
1704 return txsReplyRC(pPktHdr, VERR_BUFFER_OVERFLOW, "RTStrPrintf2");
1705}
1706
1707/**
1708 * Verifies and acknowledges a "HOWDY" request.
1709 *
1710 * @returns IPRT status code.
1711 * @param pPktHdr The howdy packet.
1712 */
1713static int txsDoHowdy(PCTXSPKTHDR pPktHdr)
1714{
1715 if (pPktHdr->cb != sizeof(TXSPKTHDR))
1716 return txsReplyBadSize(pPktHdr, sizeof(TXSPKTHDR));
1717 int rc = txsReplyAck(pPktHdr);
1718 if (RT_SUCCESS(rc))
1719 {
1720 g_pTransport->pfnNotifyHowdy();
1721 RTDirRemoveRecursive(g_szScratchPath, RTDIRRMREC_F_CONTENT_ONLY);
1722 }
1723 return rc;
1724}
1725
1726/**
1727 * Replies according to the return code.
1728 *
1729 * @returns rcOperation and pTxsExec->rcReplySend.
1730 * @param pTxsExec The TXSEXEC instance.
1731 * @param rcOperation The status code to report.
1732 * @param pszOperationFmt The operation that failed. Typically giving the
1733 * function call with important arguments.
1734 * @param ... Arguments to the format string.
1735 */
1736static int txsExecReplyRC(PTXSEXEC pTxsExec, int rcOperation, const char *pszOperationFmt, ...)
1737{
1738 AssertStmt(RT_FAILURE_NP(rcOperation), rcOperation = VERR_IPE_UNEXPECTED_INFO_STATUS);
1739
1740 char szOperation[128];
1741 va_list va;
1742 va_start(va, pszOperationFmt);
1743 RTStrPrintfV(szOperation, sizeof(szOperation), pszOperationFmt, va);
1744 va_end(va);
1745
1746 pTxsExec->rcReplySend = txsReplyFailure(pTxsExec->pPktHdr, "FAILED ",
1747 "%s failed with rc=%Rrc (opcode '%.8s')",
1748 szOperation, rcOperation, pTxsExec->pPktHdr->achOpcode);
1749 return rcOperation;
1750}
1751
1752
1753/**
1754 * Sends the process exit status reply to the TXS client.
1755 *
1756 * @returns IPRT status code of the send.
1757 * @param pTxsExec The TXSEXEC instance.
1758 * @param fProcessAlive Whether the process is still alive (against our
1759 * will).
1760 * @param fProcessTimedOut Whether the process timed out.
1761 * @param MsProcessKilled When the process was killed, UINT64_MAX if not.
1762 */
1763static int txsExecSendExitStatus(PTXSEXEC pTxsExec, bool fProcessAlive, bool fProcessTimedOut, uint64_t MsProcessKilled)
1764{
1765 int rc;
1766 if ( fProcessTimedOut && !fProcessAlive && MsProcessKilled != UINT64_MAX)
1767 {
1768 rc = txsReplySimple(pTxsExec->pPktHdr, "PROC TOK");
1769 if (g_fDisplayOutput)
1770 RTPrintf("txs: Process timed out and was killed\n");
1771 }
1772 else if (fProcessTimedOut && fProcessAlive && MsProcessKilled != UINT64_MAX)
1773 {
1774 rc = txsReplySimple(pTxsExec->pPktHdr, "PROC TOA");
1775 if (g_fDisplayOutput)
1776 RTPrintf("txs: Process timed out and was not killed successfully\n");
1777 }
1778 else if (g_fTerminate && (fProcessAlive || MsProcessKilled != UINT64_MAX))
1779 rc = txsReplySimple(pTxsExec->pPktHdr, "PROC DWN");
1780 else if (fProcessAlive)
1781 {
1782 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "Doofus! process is alive when it should not");
1783 AssertFailed();
1784 }
1785 else if (MsProcessKilled != UINT64_MAX)
1786 {
1787 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "Doofus! process has been killed when it should not");
1788 AssertFailed();
1789 }
1790 else if ( pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_NORMAL
1791 && pTxsExec->ProcessStatus.iStatus == 0)
1792 {
1793 rc = txsReplySimple(pTxsExec->pPktHdr, "PROC OK ");
1794 if (g_fDisplayOutput)
1795 RTPrintf("txs: Process exited with status: 0\n");
1796 }
1797 else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_NORMAL)
1798 {
1799 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC NOK", "%d", pTxsExec->ProcessStatus.iStatus);
1800 if (g_fDisplayOutput)
1801 RTPrintf("txs: Process exited with status: %d\n", pTxsExec->ProcessStatus.iStatus);
1802 }
1803 else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_SIGNAL)
1804 {
1805 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC SIG", "%d", pTxsExec->ProcessStatus.iStatus);
1806 if (g_fDisplayOutput)
1807 RTPrintf("txs: Process exited with status: signal %d\n", pTxsExec->ProcessStatus.iStatus);
1808 }
1809 else if (pTxsExec->ProcessStatus.enmReason == RTPROCEXITREASON_ABEND)
1810 {
1811 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC ABD", "");
1812 if (g_fDisplayOutput)
1813 RTPrintf("txs: Process exited with status: abend\n");
1814 }
1815 else
1816 {
1817 rc = txsReplyFailure(pTxsExec->pPktHdr, "PROC DOO", "enmReason=%d iStatus=%d",
1818 pTxsExec->ProcessStatus.enmReason, pTxsExec->ProcessStatus.iStatus);
1819 AssertMsgFailed(("enmReason=%d iStatus=%d", pTxsExec->ProcessStatus.enmReason, pTxsExec->ProcessStatus.iStatus));
1820 }
1821 return rc;
1822}
1823
1824/**
1825 * Handle pending output data or error on standard out, standard error or the
1826 * test pipe.
1827 *
1828 * @returns IPRT status code from client send.
1829 * @param hPollSet The polling set.
1830 * @param fPollEvt The event mask returned by RTPollNoResume.
1831 * @param phPipeR The pipe handle.
1832 * @param puCrc32 The current CRC-32 of the stream. (In/Out)
1833 * @param enmHndId The handle ID.
1834 * @param pszOpcode The opcode for the data upload.
1835 *
1836 * @todo Put the last 4 parameters into a struct!
1837 */
1838static int txsDoExecHlpHandleOutputEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phPipeR,
1839 uint32_t *puCrc32, TXSEXECHNDID enmHndId, const char *pszOpcode)
1840{
1841 Log(("txsDoExecHlpHandleOutputEvent: %s fPollEvt=%#x\n", pszOpcode, fPollEvt));
1842
1843 /*
1844 * Try drain the pipe before acting on any errors.
1845 */
1846 int rc = VINF_SUCCESS;
1847 struct
1848 {
1849 TXSPKTHDR Hdr;
1850 uint32_t uCrc32;
1851 char abBuf[_64K];
1852 char abPadding[TXSPKT_ALIGNMENT];
1853 } Pkt;
1854 size_t cbRead;
1855 int rc2 = RTPipeRead(*phPipeR, Pkt.abBuf, sizeof(Pkt.abBuf), &cbRead);
1856 if (RT_SUCCESS(rc2) && cbRead)
1857 {
1858 Log(("Crc32=%#x ", *puCrc32));
1859 *puCrc32 = RTCrc32Process(*puCrc32, Pkt.abBuf, cbRead);
1860 Log(("cbRead=%#x Crc32=%#x \n", cbRead, *puCrc32));
1861 Pkt.uCrc32 = RTCrc32Finish(*puCrc32);
1862 if (g_fDisplayOutput)
1863 {
1864 if (enmHndId == TXSEXECHNDID_STDOUT)
1865 RTStrmPrintf(g_pStdErr, "%.*s", cbRead, Pkt.abBuf);
1866 else if (enmHndId == TXSEXECHNDID_STDERR)
1867 RTStrmPrintf(g_pStdErr, "%.*s", cbRead, Pkt.abBuf);
1868 }
1869
1870 rc = txsReplyInternal(&Pkt.Hdr, pszOpcode, cbRead + sizeof(uint32_t));
1871
1872 /* Make sure we go another poll round in case there was too much data
1873 for the buffer to hold. */
1874 fPollEvt &= RTPOLL_EVT_ERROR;
1875 }
1876 else if (RT_FAILURE(rc2))
1877 {
1878 fPollEvt |= RTPOLL_EVT_ERROR;
1879 AssertMsg(rc2 == VERR_BROKEN_PIPE, ("%Rrc\n", rc));
1880 }
1881
1882 /*
1883 * If an error was raised signalled,
1884 */
1885 if (fPollEvt & RTPOLL_EVT_ERROR)
1886 {
1887 rc2 = RTPollSetRemove(hPollSet, enmHndId);
1888 AssertRC(rc2);
1889
1890 rc2 = RTPipeClose(*phPipeR);
1891 AssertRC(rc2);
1892 *phPipeR = NIL_RTPIPE;
1893 }
1894 return rc;
1895}
1896
1897/**
1898 * Try write some more data to the standard input of the child.
1899 *
1900 * @returns IPRT status code.
1901 * @param pStdInBuf The standard input buffer.
1902 * @param hStdInW The standard input pipe.
1903 */
1904static int txsDoExecHlpWriteStdIn(PTXSEXECSTDINBUF pStdInBuf, RTPIPE hStdInW)
1905{
1906 size_t cbToWrite = pStdInBuf->cb - pStdInBuf->off;
1907 size_t cbWritten;
1908 int rc = RTPipeWrite(hStdInW, &pStdInBuf->pch[pStdInBuf->off], cbToWrite, &cbWritten);
1909 if (RT_SUCCESS(rc))
1910 {
1911 Assert(cbWritten == cbToWrite);
1912 pStdInBuf->off += cbWritten;
1913 }
1914 return rc;
1915}
1916
1917/**
1918 * Handle an error event on standard input.
1919 *
1920 * @param hPollSet The polling set.
1921 * @param fPollEvt The event mask returned by RTPollNoResume.
1922 * @param phStdInW The standard input pipe handle.
1923 * @param pStdInBuf The standard input buffer.
1924 */
1925static void txsDoExecHlpHandleStdInErrorEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phStdInW,
1926 PTXSEXECSTDINBUF pStdInBuf)
1927{
1928 NOREF(fPollEvt);
1929 int rc2;
1930 if (pStdInBuf->off < pStdInBuf->cb)
1931 {
1932 rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE);
1933 AssertRC(rc2);
1934 }
1935
1936 rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN);
1937 AssertRC(rc2);
1938
1939 rc2 = RTPipeClose(*phStdInW);
1940 AssertRC(rc2);
1941 *phStdInW = NIL_RTPIPE;
1942
1943 RTMemFree(pStdInBuf->pch);
1944 pStdInBuf->pch = NULL;
1945 pStdInBuf->off = 0;
1946 pStdInBuf->cb = 0;
1947 pStdInBuf->cbAllocated = 0;
1948 pStdInBuf->fBitBucket = true;
1949}
1950
1951/**
1952 * Handle an event indicating we can write to the standard input pipe of the
1953 * child process.
1954 *
1955 * @param hPollSet The polling set.
1956 * @param fPollEvt The event mask returned by RTPollNoResume.
1957 * @param phStdInW The standard input pipe.
1958 * @param pStdInBuf The standard input buffer.
1959 */
1960static void txsDoExecHlpHandleStdInWritableEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, PRTPIPE phStdInW,
1961 PTXSEXECSTDINBUF pStdInBuf)
1962{
1963 int rc;
1964 if (!(fPollEvt & RTPOLL_EVT_ERROR))
1965 {
1966 rc = txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW);
1967 if (RT_FAILURE(rc) && rc != VERR_BAD_PIPE)
1968 {
1969 /** @todo do we need to do something about this error condition? */
1970 AssertRC(rc);
1971 }
1972
1973 if (pStdInBuf->off < pStdInBuf->cb)
1974 {
1975 rc = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE);
1976 AssertRC(rc);
1977 }
1978 }
1979 else
1980 txsDoExecHlpHandleStdInErrorEvent(hPollSet, fPollEvt, phStdInW, pStdInBuf);
1981}
1982
1983/**
1984 * Handle a transport event or successful pfnPollIn() call.
1985 *
1986 * @returns IPRT status code from client send.
1987 * @retval VINF_EOF indicates ABORT command.
1988 *
1989 * @param hPollSet The polling set.
1990 * @param fPollEvt The event mask returned by RTPollNoResume.
1991 * @param idPollHnd The handle ID.
1992 * @param phStdInW The standard input pipe.
1993 * @param pStdInBuf The standard input buffer.
1994 */
1995static int txsDoExecHlpHandleTransportEvent(RTPOLLSET hPollSet, uint32_t fPollEvt, uint32_t idPollHnd,
1996 PRTPIPE phStdInW, PTXSEXECSTDINBUF pStdInBuf)
1997{
1998 /* ASSUMES the transport layer will detect or clear any error condition. */
1999 NOREF(fPollEvt); NOREF(idPollHnd);
2000 Log(("txsDoExecHlpHandleTransportEvent\n"));
2001 /** @todo Use a callback for this case? */
2002
2003 /*
2004 * Read client command packet and process it.
2005 */
2006 /** @todo Sometimes this hangs on windows because there isn't any data pending.
2007 * We probably get woken up at the wrong time or in the wrong way, i.e. RTPoll()
2008 * is busted for sockets.
2009 *
2010 * Temporary workaround: Poll for input before trying to read it. */
2011 if (!g_pTransport->pfnPollIn())
2012 {
2013 Log(("Bad transport event\n"));
2014 RTThreadYield();
2015 return VINF_SUCCESS;
2016 }
2017 PTXSPKTHDR pPktHdr;
2018 int rc = txsRecvPkt(&pPktHdr, false /*fAutoRetryOnFailure*/);
2019 if (RT_FAILURE(rc))
2020 return rc;
2021 Log(("Bad transport event\n"));
2022
2023 /*
2024 * The most common thing here would be a STDIN request with data
2025 * for the child process.
2026 */
2027 if (txsIsSameOpcode(pPktHdr, "STDIN"))
2028 {
2029 if ( !pStdInBuf->fBitBucket
2030 && pPktHdr->cb >= sizeof(TXSPKTHDR) + sizeof(uint32_t))
2031 {
2032 uint32_t uCrc32 = *(uint32_t *)(pPktHdr + 1);
2033 const char *pch = (const char *)(pPktHdr + 1) + sizeof(uint32_t);
2034 size_t cb = pPktHdr->cb - sizeof(TXSPKTHDR) - sizeof(uint32_t);
2035
2036 /* Check the CRC */
2037 pStdInBuf->uCrc32 = RTCrc32Process(pStdInBuf->uCrc32, pch, cb);
2038 if (RTCrc32Finish(pStdInBuf->uCrc32) == uCrc32)
2039 {
2040
2041 /* Rewind the buffer if it's empty. */
2042 size_t cbInBuf = pStdInBuf->cb - pStdInBuf->off;
2043 bool const fAddToSet = cbInBuf == 0;
2044 if (fAddToSet)
2045 pStdInBuf->cb = pStdInBuf->off = 0;
2046
2047 /* Try and see if we can simply append the data. */
2048 if (cb + pStdInBuf->cb <= pStdInBuf->cbAllocated)
2049 {
2050 memcpy(&pStdInBuf->pch[pStdInBuf->cb], pch, cb);
2051 pStdInBuf->cb += cb;
2052 rc = txsReplyAck(pPktHdr);
2053 }
2054 else
2055 {
2056 /* Try write a bit or two before we move+realloc the buffer. */
2057 if (cbInBuf > 0)
2058 txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW);
2059
2060 /* Move any buffered data to the front. */
2061 cbInBuf = pStdInBuf->cb - pStdInBuf->off;
2062 if (cbInBuf == 0)
2063 pStdInBuf->cb = pStdInBuf->off = 0;
2064 else
2065 {
2066 memmove(pStdInBuf->pch, &pStdInBuf->pch[pStdInBuf->off], cbInBuf);
2067 pStdInBuf->cb = cbInBuf;
2068 pStdInBuf->off = 0;
2069 }
2070
2071 /* Do we need to grow the buffer? */
2072 if (cb + pStdInBuf->cb > pStdInBuf->cbAllocated)
2073 {
2074 size_t cbAlloc = pStdInBuf->cb + cb;
2075 cbAlloc = RT_ALIGN_Z(cbAlloc, _64K);
2076 void *pvNew = RTMemRealloc(pStdInBuf->pch, cbAlloc);
2077 if (pvNew)
2078 {
2079 pStdInBuf->pch = (char *)pvNew;
2080 pStdInBuf->cbAllocated = cbAlloc;
2081 }
2082 }
2083
2084 /* Finally, copy the data. */
2085 if (cb + pStdInBuf->cb <= pStdInBuf->cbAllocated)
2086 {
2087 memcpy(&pStdInBuf->pch[pStdInBuf->cb], pch, cb);
2088 pStdInBuf->cb += cb;
2089 rc = txsReplyAck(pPktHdr);
2090 }
2091 else
2092 rc = txsReplySimple(pPktHdr, "STDINMEM");
2093 }
2094
2095 /*
2096 * Flush the buffered data and add/remove the standard input
2097 * handle from the set.
2098 */
2099 txsDoExecHlpWriteStdIn(pStdInBuf, *phStdInW);
2100 if (fAddToSet && pStdInBuf->off < pStdInBuf->cb)
2101 {
2102 int rc2 = RTPollSetAddPipe(hPollSet, *phStdInW, RTPOLL_EVT_WRITE, TXSEXECHNDID_STDIN_WRITABLE);
2103 AssertRC(rc2);
2104 }
2105 else if (!fAddToSet && pStdInBuf->off >= pStdInBuf->cb)
2106 {
2107 int rc2 = RTPollSetRemove(hPollSet, TXSEXECHNDID_STDIN_WRITABLE);
2108 AssertRC(rc2);
2109 }
2110 }
2111 else
2112 rc = txsReplyFailure(pPktHdr, "STDINCRC", "Invalid CRC checksum expected %#x got %#x",
2113 pStdInBuf->uCrc32, uCrc32);
2114 }
2115 else if (pPktHdr->cb < sizeof(TXSPKTHDR) + sizeof(uint32_t))
2116 rc = txsReplySimple(pPktHdr, "STDINBAD");
2117 else
2118 rc = txsReplySimple(pPktHdr, "STDINIGN");
2119 }
2120 /*
2121 * Marks the end of the stream for stdin.
2122 */
2123 else if (txsIsSameOpcode(pPktHdr, "STDINEOS"))
2124 {
2125 if (RT_LIKELY(pPktHdr->cb == sizeof(TXSPKTHDR)))
2126 {
2127 /* Close the pipe. */
2128 txsDoExecHlpHandleStdInErrorEvent(hPollSet, fPollEvt, phStdInW, pStdInBuf);
2129 rc = txsReplyAck(pPktHdr);
2130 }
2131 else
2132 rc = txsReplySimple(pPktHdr, "STDINBAD");
2133 }
2134 /*
2135 * The only other two requests are connection oriented and we return a error
2136 * code so that we unwind the whole EXEC shebang and start afresh.
2137 */
2138 else if (txsIsSameOpcode(pPktHdr, "BYE"))
2139 {
2140 rc = txsDoBye(pPktHdr);
2141 if (RT_SUCCESS(rc))
2142 rc = VERR_NET_NOT_CONNECTED;
2143 }
2144 else if (txsIsSameOpcode(pPktHdr, "HOWDY"))
2145 {
2146 rc = txsDoHowdy(pPktHdr);
2147 if (RT_SUCCESS(rc))
2148 rc = VERR_NET_NOT_CONNECTED;
2149 }
2150 else if (txsIsSameOpcode(pPktHdr, "ABORT"))
2151 {
2152 rc = txsReplyAck(pPktHdr);
2153 if (RT_SUCCESS(rc))
2154 rc = VINF_EOF; /* this is but ugly! */
2155 }
2156 else
2157 rc = txsReplyFailure(pPktHdr, "UNKNOWN ", "Opcode '%.8s' is not known or not recognized during EXEC", pPktHdr->achOpcode);
2158
2159 RTMemFree(pPktHdr);
2160 return rc;
2161}
2162
2163/**
2164 * Handles the output and input of the process, waits for it finish up.
2165 *
2166 * @returns IPRT status code from reply send.
2167 * @param pTxsExec The TXSEXEC instance.
2168 */
2169static int txsDoExecHlp2(PTXSEXEC pTxsExec)
2170{
2171 int rc; /* client send. */
2172 int rc2;
2173 TXSEXECSTDINBUF StdInBuf = { 0, 0, NULL, 0, pTxsExec->hStdInW == NIL_RTPIPE, RTCrc32Start() };
2174 uint32_t uStdOutCrc32 = RTCrc32Start();
2175 uint32_t uStdErrCrc32 = uStdOutCrc32;
2176 uint32_t uTestPipeCrc32 = uStdOutCrc32;
2177 uint64_t const MsStart = RTTimeMilliTS();
2178 bool fProcessTimedOut = false;
2179 uint64_t MsProcessKilled = UINT64_MAX;
2180 RTMSINTERVAL const cMsPollBase = g_pTransport->pfnPollSetAdd || pTxsExec->hStdInW == NIL_RTPIPE
2181 ? 5000 : 100;
2182 RTMSINTERVAL cMsPollCur = 0;
2183
2184 /*
2185 * Before entering the loop, tell the client that we've started the guest
2186 * and that it's now OK to send input to the process. (This is not the
2187 * final ACK, so the packet header is NULL ... kind of bogus.)
2188 */
2189 rc = txsReplyAck(NULL);
2190
2191 /*
2192 * Process input, output, the test pipe and client requests.
2193 */
2194 while ( RT_SUCCESS(rc)
2195 && RT_UNLIKELY(!g_fTerminate))
2196 {
2197 /*
2198 * Wait/Process all pending events.
2199 */
2200 uint32_t idPollHnd;
2201 uint32_t fPollEvt;
2202 Log3(("Calling RTPollNoResume(,%u,)...\n", cMsPollCur));
2203 rc2 = RTPollNoResume(pTxsExec->hPollSet, cMsPollCur, &fPollEvt, &idPollHnd);
2204 Log3(("RTPollNoResume -> fPollEvt=%#x idPollHnd=%u\n", fPollEvt, idPollHnd));
2205 if (g_fTerminate)
2206 continue;
2207 cMsPollCur = 0; /* no rest until we've checked everything. */
2208
2209 if (RT_SUCCESS(rc2))
2210 {
2211 switch (idPollHnd)
2212 {
2213 case TXSEXECHNDID_STDOUT:
2214 rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdOutR, &uStdOutCrc32,
2215 TXSEXECHNDID_STDOUT, "STDOUT ");
2216 break;
2217
2218 case TXSEXECHNDID_STDERR:
2219 rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdErrR, &uStdErrCrc32,
2220 TXSEXECHNDID_STDERR, "STDERR ");
2221 break;
2222
2223 case TXSEXECHNDID_TESTPIPE:
2224 rc = txsDoExecHlpHandleOutputEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hTestPipeR, &uTestPipeCrc32,
2225 TXSEXECHNDID_TESTPIPE, "TESTPIPE");
2226 break;
2227
2228 case TXSEXECHNDID_STDIN:
2229 txsDoExecHlpHandleStdInErrorEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdInW, &StdInBuf);
2230 break;
2231
2232 case TXSEXECHNDID_STDIN_WRITABLE:
2233 txsDoExecHlpHandleStdInWritableEvent(pTxsExec->hPollSet, fPollEvt, &pTxsExec->hStdInW, &StdInBuf);
2234 break;
2235
2236 case TXSEXECHNDID_THREAD:
2237 rc2 = RTPollSetRemove(pTxsExec->hPollSet, TXSEXECHNDID_THREAD); AssertRC(rc2);
2238 break;
2239
2240 default:
2241 rc = txsDoExecHlpHandleTransportEvent(pTxsExec->hPollSet, fPollEvt, idPollHnd, &pTxsExec->hStdInW,
2242 &StdInBuf);
2243 break;
2244 }
2245 if (RT_FAILURE(rc) || rc == VINF_EOF)
2246 break; /* abort command, or client dead or something */
2247 continue;
2248 }
2249
2250 /*
2251 * Check for incoming data.
2252 */
2253 if (g_pTransport->pfnPollIn())
2254 {
2255 rc = txsDoExecHlpHandleTransportEvent(pTxsExec->hPollSet, 0, UINT32_MAX, &pTxsExec->hStdInW, &StdInBuf);
2256 if (RT_FAILURE(rc) || rc == VINF_EOF)
2257 break; /* abort command, or client dead or something */
2258 continue;
2259 }
2260
2261 /*
2262 * If the process has terminated, we're should head out.
2263 */
2264 if (!ASMAtomicReadBool(&pTxsExec->fProcessAlive))
2265 break;
2266
2267 /*
2268 * Check for timed out, killing the process.
2269 */
2270 uint32_t cMilliesLeft = RT_INDEFINITE_WAIT;
2271 if (pTxsExec->cMsTimeout != RT_INDEFINITE_WAIT)
2272 {
2273 uint64_t u64Now = RTTimeMilliTS();
2274 uint64_t cMsElapsed = u64Now - MsStart;
2275 if (cMsElapsed >= pTxsExec->cMsTimeout)
2276 {
2277 fProcessTimedOut = true;
2278 if ( MsProcessKilled == UINT64_MAX
2279 || u64Now - MsProcessKilled > 1000)
2280 {
2281 if (u64Now - MsProcessKilled > 20*60*1000)
2282 break; /* give up after 20 mins */
2283 RTCritSectEnter(&pTxsExec->CritSect);
2284 if (pTxsExec->fProcessAlive)
2285 RTProcTerminate(pTxsExec->hProcess);
2286 RTCritSectLeave(&pTxsExec->CritSect);
2287 MsProcessKilled = u64Now;
2288 continue;
2289 }
2290 cMilliesLeft = 10000;
2291 }
2292 else
2293 cMilliesLeft = pTxsExec->cMsTimeout - (uint32_t)cMsElapsed;
2294 }
2295
2296 /* Reset the polling interval since we've done all pending work. */
2297 cMsPollCur = cMilliesLeft >= cMsPollBase ? cMsPollBase : cMilliesLeft;
2298 }
2299
2300 /*
2301 * At this point we should hopefully only have to wait 0 ms on the thread
2302 * to release the handle... But if for instance the process refuses to die,
2303 * we'll have to try kill it again. Bothersome.
2304 */
2305 for (size_t i = 0; i < 22; i++)
2306 {
2307 rc2 = RTThreadWait(pTxsExec->hThreadWaiter, 500, NULL);
2308 if (RT_SUCCESS(rc))
2309 {
2310 pTxsExec->hThreadWaiter = NIL_RTTHREAD;
2311 Assert(!pTxsExec->fProcessAlive);
2312 break;
2313 }
2314 if (i == 0 || i == 10 || i == 15 || i == 18 || i > 20)
2315 {
2316 RTCritSectEnter(&pTxsExec->CritSect);
2317 if (pTxsExec->fProcessAlive)
2318 RTProcTerminate(pTxsExec->hProcess);
2319 RTCritSectLeave(&pTxsExec->CritSect);
2320 }
2321 }
2322
2323 /*
2324 * If we don't have a client problem (RT_FAILURE(rc) we'll reply to the
2325 * clients exec packet now.
2326 */
2327 if (RT_SUCCESS(rc))
2328 rc = txsExecSendExitStatus(pTxsExec, pTxsExec->fProcessAlive, fProcessTimedOut, MsProcessKilled);
2329
2330 RTMemFree(StdInBuf.pch);
2331 return rc;
2332}
2333
2334/**
2335 * Creates a poll set for the pipes and let the transport layer add stuff to it
2336 * as well.
2337 *
2338 * @returns IPRT status code, reply to client made on error.
2339 * @param pTxsExec The TXSEXEC instance.
2340 */
2341static int txsExecSetupPollSet(PTXSEXEC pTxsExec)
2342{
2343 int rc = RTPollSetCreate(&pTxsExec->hPollSet);
2344 if (RT_FAILURE(rc))
2345 return txsExecReplyRC(pTxsExec, rc, "RTPollSetCreate");
2346
2347 rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdInW, RTPOLL_EVT_ERROR, TXSEXECHNDID_STDIN);
2348 if (RT_FAILURE(rc))
2349 return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stdin");
2350
2351 rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdOutR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
2352 TXSEXECHNDID_STDOUT);
2353 if (RT_FAILURE(rc))
2354 return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stdout");
2355
2356 rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hStdErrR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
2357 TXSEXECHNDID_STDERR);
2358 if (RT_FAILURE(rc))
2359 return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/stderr");
2360
2361 rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hTestPipeR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
2362 TXSEXECHNDID_TESTPIPE);
2363 if (RT_FAILURE(rc))
2364 return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/test");
2365
2366 rc = RTPollSetAddPipe(pTxsExec->hPollSet, pTxsExec->hWakeUpPipeR, RTPOLL_EVT_READ | RTPOLL_EVT_ERROR,
2367 TXSEXECHNDID_THREAD);
2368 if (RT_FAILURE(rc))
2369 return txsExecReplyRC(pTxsExec, rc, "RTPollSetAddPipe/wakeup");
2370
2371 if (g_pTransport->pfnPollSetAdd)
2372 {
2373 rc = g_pTransport->pfnPollSetAdd(pTxsExec->hPollSet, TXSEXECHNDID_TRANSPORT);
2374 if (RT_FAILURE(rc))
2375 return txsExecReplyRC(pTxsExec, rc, "%s->pfnPollSetAdd/stdin", g_pTransport->szName);
2376 }
2377
2378 return VINF_SUCCESS;
2379}
2380
2381/**
2382 * Thread that calls RTProcWait and signals the main thread when it returns.
2383 *
2384 * The thread is created before the process is started and is waiting for a user
2385 * signal from the main thread before it calls RTProcWait.
2386 *
2387 * @returns VINF_SUCCESS (ignored).
2388 * @param hThreadSelf The thread handle.
2389 * @param pvUser The TXEEXEC structure.
2390 */
2391static DECLCALLBACK(int) txsExecWaitThreadProc(RTTHREAD hThreadSelf, void *pvUser)
2392{
2393 PTXSEXEC pTxsExec = (PTXSEXEC)pvUser;
2394
2395 /* Wait for the go ahead... */
2396 int rc = RTThreadUserWait(hThreadSelf, RT_INDEFINITE_WAIT); AssertRC(rc);
2397
2398 RTCritSectEnter(&pTxsExec->CritSect);
2399 for (;;)
2400 {
2401 RTCritSectLeave(&pTxsExec->CritSect);
2402 rc = RTProcWaitNoResume(pTxsExec->hProcess, RTPROCWAIT_FLAGS_BLOCK, &pTxsExec->ProcessStatus);
2403 RTCritSectEnter(&pTxsExec->CritSect);
2404
2405 /* If the pipe is NIL, the destructor wants us to get lost ASAP. */
2406 if (pTxsExec->hWakeUpPipeW == NIL_RTPIPE)
2407 break;
2408
2409 if (RT_FAILURE(rc))
2410 {
2411 rc = RTProcWait(pTxsExec->hProcess, RTPROCWAIT_FLAGS_NOBLOCK, &pTxsExec->ProcessStatus);
2412 if (rc == VERR_PROCESS_RUNNING)
2413 continue;
2414
2415 if (RT_FAILURE(rc))
2416 {
2417 AssertRC(rc);
2418 pTxsExec->ProcessStatus.iStatus = rc;
2419 pTxsExec->ProcessStatus.enmReason = RTPROCEXITREASON_ABEND;
2420 }
2421 }
2422
2423 /* The process finished, signal the main thread over the pipe. */
2424 ASMAtomicWriteBool(&pTxsExec->fProcessAlive, false);
2425 size_t cbIgnored;
2426 RTPipeWrite(pTxsExec->hWakeUpPipeW, "done", 4, &cbIgnored);
2427 RTPipeClose(pTxsExec->hWakeUpPipeW);
2428 pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
2429 break;
2430 }
2431 RTCritSectLeave(&pTxsExec->CritSect);
2432
2433 return VINF_SUCCESS;
2434}
2435
2436/**
2437 * Sets up the thread that waits for the process to complete.
2438 *
2439 * @returns IPRT status code, reply to client made on error.
2440 * @param pTxsExec The TXSEXEC instance.
2441 */
2442static int txsExecSetupThread(PTXSEXEC pTxsExec)
2443{
2444 int rc = RTPipeCreate(&pTxsExec->hWakeUpPipeR, &pTxsExec->hWakeUpPipeW, 0 /*fFlags*/);
2445 if (RT_FAILURE(rc))
2446 {
2447 pTxsExec->hWakeUpPipeR = pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
2448 return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/wait");
2449 }
2450
2451 rc = RTThreadCreate(&pTxsExec->hThreadWaiter, txsExecWaitThreadProc,
2452 pTxsExec, 0 /*cbStack */, RTTHREADTYPE_DEFAULT,
2453 RTTHREADFLAGS_WAITABLE, "TxsProcW");
2454 if (RT_FAILURE(rc))
2455 {
2456 pTxsExec->hThreadWaiter = NIL_RTTHREAD;
2457 return txsExecReplyRC(pTxsExec, rc, "RTThreadCreate");
2458 }
2459
2460 return VINF_SUCCESS;
2461}
2462
2463/**
2464 * Sets up the test pipe.
2465 *
2466 * @returns IPRT status code, reply to client made on error.
2467 * @param pTxsExec The TXSEXEC instance.
2468 * @param pszTestPipe How to set up the test pipe.
2469 */
2470static int txsExecSetupTestPipe(PTXSEXEC pTxsExec, const char *pszTestPipe)
2471{
2472 if (strcmp(pszTestPipe, "|"))
2473 return VINF_SUCCESS;
2474
2475 int rc = RTPipeCreate(&pTxsExec->hTestPipeR, &pTxsExec->hTestPipeW, RTPIPE_C_INHERIT_WRITE);
2476 if (RT_FAILURE(rc))
2477 {
2478 pTxsExec->hTestPipeR = pTxsExec->hTestPipeW = NIL_RTPIPE;
2479 return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/test/%s", pszTestPipe);
2480 }
2481
2482 char szVal[64];
2483 RTStrPrintf(szVal, sizeof(szVal), "%#llx", (uint64_t)RTPipeToNative(pTxsExec->hTestPipeW));
2484 rc = RTEnvSetEx(pTxsExec->hEnv, "IPRT_TEST_PIPE", szVal);
2485 if (RT_FAILURE(rc))
2486 return txsExecReplyRC(pTxsExec, rc, "RTEnvSetEx/test/%s", pszTestPipe);
2487
2488 return VINF_SUCCESS;
2489}
2490
2491/**
2492 * Sets up the redirection / pipe / nothing for one of the standard handles.
2493 *
2494 * @returns IPRT status code, reply to client made on error.
2495 * @param pTxsExec The TXSEXEC instance.
2496 * @param pszHowTo How to set up this standard handle.
2497 * @param pszStdWhat For what to setup redirection (stdin/stdout/stderr).
2498 * @param fd Which standard handle it is (0 == stdin, 1 ==
2499 * stdout, 2 == stderr).
2500 * @param ph The generic handle that @a pph may be set
2501 * pointing to. Always set.
2502 * @param pph Pointer to the RTProcCreateExec argument.
2503 * Always set.
2504 * @param phPipe Where to return the end of the pipe that we
2505 * should service. Always set.
2506 */
2507static int txsExecSetupRedir(PTXSEXEC pTxsExec, const char *pszHowTo, const char *pszStdWhat, int fd, PRTHANDLE ph, PRTHANDLE *pph, PRTPIPE phPipe)
2508{
2509 ph->enmType = RTHANDLETYPE_PIPE;
2510 ph->u.hPipe = NIL_RTPIPE;
2511 *pph = NULL;
2512 *phPipe = NIL_RTPIPE;
2513
2514 int rc;
2515 if (!strcmp(pszHowTo, "|"))
2516 {
2517 /*
2518 * Setup a pipe for forwarding to/from the client.
2519 */
2520 if (fd == 0)
2521 rc = RTPipeCreate(&ph->u.hPipe, phPipe, RTPIPE_C_INHERIT_READ);
2522 else
2523 rc = RTPipeCreate(phPipe, &ph->u.hPipe, RTPIPE_C_INHERIT_WRITE);
2524 if (RT_FAILURE(rc))
2525 return txsExecReplyRC(pTxsExec, rc, "RTPipeCreate/%s/%s", pszStdWhat, pszHowTo);
2526 ph->enmType = RTHANDLETYPE_PIPE;
2527 *pph = ph;
2528 }
2529 else if (!strcmp(pszHowTo, "/dev/null"))
2530 {
2531 /*
2532 * Redirect to/from /dev/null.
2533 */
2534 RTFILE hFile;
2535 rc = RTFileOpenBitBucket(&hFile, fd == 0 ? RTFILE_O_READ : RTFILE_O_WRITE);
2536 if (RT_FAILURE(rc))
2537 return txsExecReplyRC(pTxsExec, rc, "RTFileOpenBitBucket/%s/%s", pszStdWhat, pszHowTo);
2538
2539 ph->enmType = RTHANDLETYPE_FILE;
2540 ph->u.hFile = hFile;
2541 *pph = ph;
2542 }
2543 else if (*pszHowTo)
2544 {
2545 /*
2546 * Redirect to/from file.
2547 */
2548 uint32_t fFlags;
2549 if (fd == 0)
2550 fFlags = RTFILE_O_READ | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN;
2551 else
2552 {
2553 if (pszHowTo[0] != '>' || pszHowTo[1] != '>')
2554 fFlags = RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE;
2555 else
2556 {
2557 /* append */
2558 pszHowTo += 2;
2559 fFlags = RTFILE_O_WRITE | RTFILE_O_DENY_NONE | RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND;
2560 }
2561 }
2562
2563 RTFILE hFile;
2564 rc = RTFileOpen(&hFile, pszHowTo, fFlags);
2565 if (RT_FAILURE(rc))
2566 return txsExecReplyRC(pTxsExec, rc, "RTFileOpen/%s/%s", pszStdWhat, pszHowTo);
2567
2568 ph->enmType = RTHANDLETYPE_FILE;
2569 ph->u.hFile = hFile;
2570 *pph = ph;
2571 }
2572 else
2573 /* same as parent (us) */
2574 rc = VINF_SUCCESS;
2575 return rc;
2576}
2577
2578/**
2579 * Create the environment.
2580 *
2581 * @returns IPRT status code, reply to client made on error.
2582 * @param pTxsExec The TXSEXEC instance.
2583 * @param cEnvVars The number of environment variables.
2584 * @param papszEnv The environment variables (var=value).
2585 */
2586static int txsExecSetupEnv(PTXSEXEC pTxsExec, uint32_t cEnvVars, const char * const *papszEnv)
2587{
2588 /*
2589 * Create the environment.
2590 */
2591 int rc = RTEnvClone(&pTxsExec->hEnv, RTENV_DEFAULT);
2592 if (RT_FAILURE(rc))
2593 return txsExecReplyRC(pTxsExec, rc, "RTEnvClone");
2594
2595 for (size_t i = 0; i < cEnvVars; i++)
2596 {
2597 rc = RTEnvPutEx(pTxsExec->hEnv, papszEnv[i]);
2598 if (RT_FAILURE(rc))
2599 return txsExecReplyRC(pTxsExec, rc, "RTEnvPutEx(,'%s')", papszEnv[i]);
2600 }
2601 return VINF_SUCCESS;
2602}
2603
2604/**
2605 * Deletes the TXSEXEC structure and frees the memory backing it.
2606 *
2607 * @param pTxsExec The structure to destroy.
2608 */
2609static void txsExecDestroy(PTXSEXEC pTxsExec)
2610{
2611 int rc2;
2612
2613 rc2 = RTEnvDestroy(pTxsExec->hEnv); AssertRC(rc2);
2614 pTxsExec->hEnv = NIL_RTENV;
2615 rc2 = RTPipeClose(pTxsExec->hTestPipeW); AssertRC(rc2);
2616 pTxsExec->hTestPipeW = NIL_RTPIPE;
2617 rc2 = RTHandleClose(pTxsExec->StdErr.phChild); AssertRC(rc2);
2618 pTxsExec->StdErr.phChild = NULL;
2619 rc2 = RTHandleClose(pTxsExec->StdOut.phChild); AssertRC(rc2);
2620 pTxsExec->StdOut.phChild = NULL;
2621 rc2 = RTHandleClose(pTxsExec->StdIn.phChild); AssertRC(rc2);
2622 pTxsExec->StdIn.phChild = NULL;
2623
2624 rc2 = RTPipeClose(pTxsExec->hTestPipeR); AssertRC(rc2);
2625 pTxsExec->hTestPipeR = NIL_RTPIPE;
2626 rc2 = RTPipeClose(pTxsExec->hStdErrR); AssertRC(rc2);
2627 pTxsExec->hStdErrR = NIL_RTPIPE;
2628 rc2 = RTPipeClose(pTxsExec->hStdOutR); AssertRC(rc2);
2629 pTxsExec->hStdOutR = NIL_RTPIPE;
2630 rc2 = RTPipeClose(pTxsExec->hStdInW); AssertRC(rc2);
2631 pTxsExec->hStdInW = NIL_RTPIPE;
2632
2633 RTPollSetDestroy(pTxsExec->hPollSet);
2634 pTxsExec->hPollSet = NIL_RTPOLLSET;
2635
2636 /*
2637 * If the process is still running we're in a bit of a fix... Try kill it,
2638 * although that's potentially racing process termination and reusage of
2639 * the pid.
2640 */
2641 RTCritSectEnter(&pTxsExec->CritSect);
2642
2643 RTPipeClose(pTxsExec->hWakeUpPipeW);
2644 pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
2645 RTPipeClose(pTxsExec->hWakeUpPipeR);
2646 pTxsExec->hWakeUpPipeR = NIL_RTPIPE;
2647
2648 if ( pTxsExec->hProcess != NIL_RTPROCESS
2649 && pTxsExec->fProcessAlive)
2650 RTProcTerminate(pTxsExec->hProcess);
2651
2652 RTCritSectLeave(&pTxsExec->CritSect);
2653
2654 int rcThread = VINF_SUCCESS;
2655 if (pTxsExec->hThreadWaiter != NIL_RTTHREAD)
2656 rcThread = RTThreadWait(pTxsExec->hThreadWaiter, 5000, NULL);
2657 if (RT_SUCCESS(rcThread))
2658 {
2659 pTxsExec->hThreadWaiter = NIL_RTTHREAD;
2660 RTCritSectDelete(&pTxsExec->CritSect);
2661 RTMemFree(pTxsExec);
2662 }
2663 /* else: leak it or RTThreadWait may cause heap corruption later. */
2664}
2665
2666/**
2667 * Initializes the TXSEXEC structure.
2668 *
2669 * @returns VINF_SUCCESS and non-NULL *ppTxsExec on success, reply send status
2670 * and *ppTxsExec set to NULL on failure.
2671 * @param pPktHdr The exec packet.
2672 * @param cMsTimeout The time parameter.
2673 * @param ppTxsExec Where to return the structure.
2674 */
2675static int txsExecCreate(PCTXSPKTHDR pPktHdr, RTMSINTERVAL cMsTimeout, PTXSEXEC *ppTxsExec)
2676{
2677 *ppTxsExec = NULL;
2678
2679 /*
2680 * Allocate the basic resources.
2681 */
2682 PTXSEXEC pTxsExec = (PTXSEXEC)RTMemAlloc(sizeof(*pTxsExec));
2683 if (!pTxsExec)
2684 return txsReplyRC(pPktHdr, VERR_NO_MEMORY, "RTMemAlloc(%zu)", sizeof(*pTxsExec));
2685 int rc = RTCritSectInit(&pTxsExec->CritSect);
2686 if (RT_FAILURE(rc))
2687 {
2688 RTMemFree(pTxsExec);
2689 return txsReplyRC(pPktHdr, rc, "RTCritSectInit");
2690 }
2691
2692 /*
2693 * Initialize the member to NIL values.
2694 */
2695 pTxsExec->pPktHdr = pPktHdr;
2696 pTxsExec->cMsTimeout = cMsTimeout;
2697 pTxsExec->rcReplySend = VINF_SUCCESS;
2698
2699 pTxsExec->hPollSet = NIL_RTPOLLSET;
2700 pTxsExec->hStdInW = NIL_RTPIPE;
2701 pTxsExec->hStdOutR = NIL_RTPIPE;
2702 pTxsExec->hStdErrR = NIL_RTPIPE;
2703 pTxsExec->hTestPipeR = NIL_RTPIPE;
2704 pTxsExec->hWakeUpPipeR = NIL_RTPIPE;
2705 pTxsExec->hThreadWaiter = NIL_RTTHREAD;
2706
2707 pTxsExec->StdIn.phChild = NULL;
2708 pTxsExec->StdOut.phChild = NULL;
2709 pTxsExec->StdErr.phChild = NULL;
2710 pTxsExec->hTestPipeW = NIL_RTPIPE;
2711 pTxsExec->hEnv = NIL_RTENV;
2712
2713 pTxsExec->hProcess = NIL_RTPROCESS;
2714 pTxsExec->ProcessStatus.iStatus = 254;
2715 pTxsExec->ProcessStatus.enmReason = RTPROCEXITREASON_ABEND;
2716 pTxsExec->fProcessAlive = false;
2717 pTxsExec->hWakeUpPipeW = NIL_RTPIPE;
2718
2719 *ppTxsExec = pTxsExec;
2720 return VINF_SUCCESS;
2721}
2722
2723/**
2724 * txsDoExec helper that takes over when txsDoExec has expanded the packet.
2725 *
2726 * @returns IPRT status code from send.
2727 * @param pPktHdr The exec packet.
2728 * @param fFlags Flags, reserved for future use.
2729 * @param pszExecName The executable name.
2730 * @param cArgs The argument count.
2731 * @param papszArgs The arguments.
2732 * @param cEnvVars The environment variable count.
2733 * @param papszEnv The environment variables.
2734 * @param pszStdIn How to deal with standard in.
2735 * @param pszStdOut How to deal with standard out.
2736 * @param pszStdErr How to deal with standard err.
2737 * @param pszTestPipe How to deal with the test pipe.
2738 * @param pszUsername The user to run the program as.
2739 * @param cMillies The process time limit in milliseconds.
2740 */
2741static int txsDoExecHlp(PCTXSPKTHDR pPktHdr, uint32_t fFlags, const char *pszExecName,
2742 uint32_t cArgs, const char * const *papszArgs,
2743 uint32_t cEnvVars, const char * const *papszEnv,
2744 const char *pszStdIn, const char *pszStdOut, const char *pszStdErr, const char *pszTestPipe,
2745 const char *pszUsername, RTMSINTERVAL cMillies)
2746{
2747 int rc2;
2748 RT_NOREF_PV(fFlags);
2749
2750 /*
2751 * Input validation, filter out things we don't yet support..
2752 */
2753 Assert(!fFlags);
2754 if (!*pszExecName)
2755 return txsReplyFailure(pPktHdr, "STR ZERO", "Executable name is empty");
2756 if (!*pszStdIn)
2757 return txsReplyFailure(pPktHdr, "STR ZERO", "The stdin howto is empty");
2758 if (!*pszStdOut)
2759 return txsReplyFailure(pPktHdr, "STR ZERO", "The stdout howto is empty");
2760 if (!*pszStdErr)
2761 return txsReplyFailure(pPktHdr, "STR ZERO", "The stderr howto is empty");
2762 if (!*pszTestPipe)
2763 return txsReplyFailure(pPktHdr, "STR ZERO", "The testpipe howto is empty");
2764 if (strcmp(pszTestPipe, "|") && strcmp(pszTestPipe, "/dev/null"))
2765 return txsReplyFailure(pPktHdr, "BAD TSTP", "Only \"|\" and \"/dev/null\" are allowed as testpipe howtos ('%s')",
2766 pszTestPipe);
2767 if (*pszUsername)
2768 return txsReplyFailure(pPktHdr, "NOT IMPL", "Executing as a specific user is not implemented ('%s')", pszUsername);
2769
2770 /*
2771 * Prepare for process launch.
2772 */
2773 PTXSEXEC pTxsExec;
2774 int rc = txsExecCreate(pPktHdr, cMillies, &pTxsExec);
2775 if (pTxsExec == NULL)
2776 return rc;
2777 rc = txsExecSetupEnv(pTxsExec, cEnvVars, papszEnv);
2778 if (RT_SUCCESS(rc))
2779 rc = txsExecSetupRedir(pTxsExec, pszStdIn, "StdIn", 0, &pTxsExec->StdIn.hChild, &pTxsExec->StdIn.phChild, &pTxsExec->hStdInW);
2780 if (RT_SUCCESS(rc))
2781 rc = txsExecSetupRedir(pTxsExec, pszStdOut, "StdOut", 1, &pTxsExec->StdOut.hChild, &pTxsExec->StdOut.phChild, &pTxsExec->hStdOutR);
2782 if (RT_SUCCESS(rc))
2783 rc = txsExecSetupRedir(pTxsExec, pszStdErr, "StdErr", 2, &pTxsExec->StdErr.hChild, &pTxsExec->StdErr.phChild, &pTxsExec->hStdErrR);
2784 if (RT_SUCCESS(rc))
2785 rc = txsExecSetupTestPipe(pTxsExec, pszTestPipe);
2786 if (RT_SUCCESS(rc))
2787 rc = txsExecSetupThread(pTxsExec);
2788 if (RT_SUCCESS(rc))
2789 rc = txsExecSetupPollSet(pTxsExec);
2790 if (RT_SUCCESS(rc))
2791 {
2792 char *pszExecResolved = RTPathRealDup(pszExecName);
2793 if (pszExecResolved)
2794 {
2795 /*
2796 * Create the process.
2797 */
2798 if (g_fDisplayOutput)
2799 {
2800 RTPrintf("txs: Executing \"%s\" -> \"%s\": ", pszExecName, pszExecResolved);
2801 for (uint32_t i = 0; i < cArgs; i++)
2802 RTPrintf(" \"%s\"", papszArgs[i]);
2803 RTPrintf("\n");
2804 }
2805
2806 rc = RTProcCreateEx(pszExecResolved, papszArgs, pTxsExec->hEnv, 0 /*fFlags*/,
2807 pTxsExec->StdIn.phChild, pTxsExec->StdOut.phChild, pTxsExec->StdErr.phChild,
2808 *pszUsername ? pszUsername : NULL, NULL, NULL,
2809 &pTxsExec->hProcess);
2810 if (RT_SUCCESS(rc))
2811 {
2812 ASMAtomicWriteBool(&pTxsExec->fProcessAlive, true);
2813 rc2 = RTThreadUserSignal(pTxsExec->hThreadWaiter); AssertRC(rc2);
2814
2815 /*
2816 * Close the child ends of any pipes and redirected files.
2817 */
2818 rc2 = RTHandleClose(pTxsExec->StdIn.phChild); AssertRC(rc2);
2819 pTxsExec->StdIn.phChild = NULL;
2820 rc2 = RTHandleClose(pTxsExec->StdOut.phChild); AssertRC(rc2);
2821 pTxsExec->StdOut.phChild = NULL;
2822 rc2 = RTHandleClose(pTxsExec->StdErr.phChild); AssertRC(rc2);
2823 pTxsExec->StdErr.phChild = NULL;
2824 rc2 = RTPipeClose(pTxsExec->hTestPipeW); AssertRC(rc2);
2825 pTxsExec->hTestPipeW = NIL_RTPIPE;
2826
2827 /*
2828 * Let another worker function funnel output and input to the
2829 * client as well as the process exit code.
2830 */
2831 rc = txsDoExecHlp2(pTxsExec);
2832 }
2833 else
2834 rc = txsReplyFailure(pPktHdr, "FAILED ", "Executing process \"%s\" failed with %Rrc",
2835 pszExecResolved, rc);
2836
2837 RTStrFree(pszExecResolved);
2838 }
2839 else
2840 rc = VERR_NO_MEMORY;
2841 }
2842 else
2843 rc = pTxsExec->rcReplySend;
2844 txsExecDestroy(pTxsExec);
2845 return rc;
2846}
2847
2848/**
2849 * Execute a program.
2850 *
2851 * @returns IPRT status code from send.
2852 * @param pPktHdr The exec packet.
2853 */
2854static int txsDoExec(PCTXSPKTHDR pPktHdr)
2855{
2856 /*
2857 * This packet has a lot of parameters, most of which are zero terminated
2858 * strings. The strings used in items 7 thru 10 are either file names,
2859 * "/dev/null" or a pipe char (|).
2860 *
2861 * Packet content:
2862 * 1. Flags reserved for future use (32-bit unsigned).
2863 * 2. The executable name (string).
2864 * 3. The argument count given as a 32-bit unsigned integer.
2865 * 4. The arguments strings.
2866 * 5. The number of environment strings (32-bit unsigned).
2867 * 6. The environment strings (var=val) to apply the environment.
2868 * 7. What to do about standard in (string).
2869 * 8. What to do about standard out (string).
2870 * 9. What to do about standard err (string).
2871 * 10. What to do about the test pipe (string).
2872 * 11. The name of the user to run the program as (string). Empty string
2873 * means running it as the current user.
2874 * 12. Process time limit in milliseconds (32-bit unsigned). Max == no limit.
2875 */
2876 size_t const cbMin = sizeof(TXSPKTHDR)
2877 + sizeof(uint32_t) /* flags */ + 2
2878 + sizeof(uint32_t) /* argc */ + 2 /* argv */
2879 + sizeof(uint32_t) + 0 /* environ */
2880 + 4 * 1
2881 + sizeof(uint32_t) /* timeout */;
2882 if (pPktHdr->cb < cbMin)
2883 return txsReplyBadMinSize(pPktHdr, cbMin);
2884
2885 /* unpack the packet */
2886 char const *pchEnd = (char const *)pPktHdr + pPktHdr->cb;
2887 char const *pch = (char const *)(pPktHdr + 1); /* cursor */
2888
2889 /* 1. flags */
2890 uint32_t const fFlags = *(uint32_t const *)pch;
2891 pch += sizeof(uint32_t);
2892 if (fFlags != 0)
2893 return txsReplyFailure(pPktHdr, "BAD FLAG", "Invalid EXEC flags %#x, expected 0", fFlags);
2894
2895 /* 2. exec name */
2896 int rc;
2897 char *pszExecName = NULL;
2898 if (!txsIsStringValid(pPktHdr, "execname", pch, &pszExecName, &pch, &rc))
2899 return rc;
2900
2901 /* 3. argc */
2902 uint32_t const cArgs = (size_t)(pchEnd - pch) > sizeof(uint32_t) ? *(uint32_t const *)pch : 0xff;
2903 pch += sizeof(uint32_t);
2904 if (cArgs * 1 >= (size_t)(pchEnd - pch))
2905 rc = txsReplyFailure(pPktHdr, "BAD ARGC", "Bad or missing argument count (%#x)", cArgs);
2906 else if (cArgs > 128)
2907 rc = txsReplyFailure(pPktHdr, "BAD ARGC", "Too many arguments (%#x)", cArgs);
2908 else
2909 {
2910 char **papszArgs = (char **)RTMemTmpAllocZ(sizeof(char *) * (cArgs + 1));
2911 if (papszArgs)
2912 {
2913 /* 4. argv */
2914 bool fOk = true;
2915 for (size_t i = 0; i < cArgs && fOk; i++)
2916 {
2917 fOk = txsIsStringValid(pPktHdr, "argvN", pch, &papszArgs[i], &pch, &rc);
2918 if (!fOk)
2919 break;
2920 }
2921 if (fOk)
2922 {
2923 /* 5. cEnvVars */
2924 uint32_t const cEnvVars = (size_t)(pchEnd - pch) > sizeof(uint32_t) ? *(uint32_t const *)pch : 0xfff;
2925 pch += sizeof(uint32_t);
2926 if (cEnvVars * 1 >= (size_t)(pchEnd - pch))
2927 rc = txsReplyFailure(pPktHdr, "BAD ENVC", "Bad or missing environment variable count (%#x)", cEnvVars);
2928 else if (cEnvVars > 256)
2929 rc = txsReplyFailure(pPktHdr, "BAD ENVC", "Too many environment variables (%#x)", cEnvVars);
2930 else
2931 {
2932 char **papszEnv = (char **)RTMemTmpAllocZ(sizeof(char *) * (cEnvVars + 1));
2933 if (papszEnv)
2934 {
2935 /* 6. environ */
2936 for (size_t i = 0; i < cEnvVars && fOk; i++)
2937 {
2938 fOk = txsIsStringValid(pPktHdr, "envN", pch, &papszEnv[i], &pch, &rc);
2939 if (!fOk) /* Bail out on error. */
2940 break;
2941 }
2942 if (fOk)
2943 {
2944 /* 7. stdout */
2945 char *pszStdIn;
2946 if (txsIsStringValid(pPktHdr, "stdin", pch, &pszStdIn, &pch, &rc))
2947 {
2948 /* 8. stdout */
2949 char *pszStdOut;
2950 if (txsIsStringValid(pPktHdr, "stdout", pch, &pszStdOut, &pch, &rc))
2951 {
2952 /* 9. stderr */
2953 char *pszStdErr;
2954 if (txsIsStringValid(pPktHdr, "stderr", pch, &pszStdErr, &pch, &rc))
2955 {
2956 /* 10. testpipe */
2957 char *pszTestPipe;
2958 if (txsIsStringValid(pPktHdr, "testpipe", pch, &pszTestPipe, &pch, &rc))
2959 {
2960 /* 11. username */
2961 char *pszUsername;
2962 if (txsIsStringValid(pPktHdr, "username", pch, &pszUsername, &pch, &rc))
2963 {
2964 /** @todo No password value? */
2965
2966 /* 12. time limit */
2967 uint32_t const cMillies = (size_t)(pchEnd - pch) >= sizeof(uint32_t)
2968 ? *(uint32_t const *)pch
2969 : 0;
2970 if ((size_t)(pchEnd - pch) > sizeof(uint32_t))
2971 rc = txsReplyFailure(pPktHdr, "BAD END ", "Timeout argument not at end of packet (%#x)", (size_t)(pchEnd - pch));
2972 else if ((size_t)(pchEnd - pch) < sizeof(uint32_t))
2973 rc = txsReplyFailure(pPktHdr, "BAD NOTO", "No timeout argument");
2974 else if (cMillies < 1000)
2975 rc = txsReplyFailure(pPktHdr, "BAD TO ", "Timeout is less than a second (%#x)", cMillies);
2976 else
2977 {
2978 pch += sizeof(uint32_t);
2979
2980 /*
2981 * Time to employ a helper here before we go way beyond
2982 * the right margin...
2983 */
2984 rc = txsDoExecHlp(pPktHdr, fFlags, pszExecName,
2985 cArgs, papszArgs,
2986 cEnvVars, papszEnv,
2987 pszStdIn, pszStdOut, pszStdErr, pszTestPipe,
2988 pszUsername,
2989 cMillies == UINT32_MAX ? RT_INDEFINITE_WAIT : cMillies);
2990 }
2991 RTStrFree(pszUsername);
2992 }
2993 RTStrFree(pszTestPipe);
2994 }
2995 RTStrFree(pszStdErr);
2996 }
2997 RTStrFree(pszStdOut);
2998 }
2999 RTStrFree(pszStdIn);
3000 }
3001 }
3002 for (size_t i = 0; i < cEnvVars; i++)
3003 RTStrFree(papszEnv[i]);
3004 RTMemTmpFree(papszEnv);
3005 }
3006 else
3007 rc = txsReplyFailure(pPktHdr, "NO MEM ", "Failed to allocate %zu bytes environ", sizeof(char *) * (cEnvVars + 1));
3008 }
3009 }
3010 for (size_t i = 0; i < cArgs; i++)
3011 RTStrFree(papszArgs[i]);
3012 RTMemTmpFree(papszArgs);
3013 }
3014 else
3015 rc = txsReplyFailure(pPktHdr, "NO MEM ", "Failed to allocate %zu bytes for argv", sizeof(char *) * (cArgs + 1));
3016 }
3017 RTStrFree(pszExecName);
3018
3019 return rc;
3020}
3021
3022/**
3023 * The main loop.
3024 *
3025 * @returns exit code.
3026 */
3027static RTEXITCODE txsMainLoop(void)
3028{
3029 RTMsgInfo("Version %s r%s %s.%s (%s %s)\n",
3030 RTBldCfgVersion(), RTBldCfgRevisionStr(), KBUILD_TARGET, KBUILD_TARGET_ARCH, __DATE__, __TIME__);
3031
3032 if (g_cVerbose > 0)
3033 RTMsgInfo("txsMainLoop: start...\n");
3034 RTEXITCODE enmExitCode = RTEXITCODE_SUCCESS;
3035 while (!g_fTerminate)
3036 {
3037 /*
3038 * Read client command packet and process it.
3039 */
3040 PTXSPKTHDR pPktHdr;
3041 int rc = txsRecvPkt(&pPktHdr, true /*fAutoRetryOnFailure*/);
3042 if (RT_FAILURE(rc))
3043 continue;
3044 if (g_cVerbose > 0)
3045 RTMsgInfo("txsMainLoop: CMD: %.8s...", pPktHdr->achOpcode);
3046
3047 /*
3048 * Do a string switch on the opcode bit.
3049 */
3050 /* Connection: */
3051 if ( txsIsSameOpcode(pPktHdr, "HOWDY "))
3052 rc = txsDoHowdy(pPktHdr);
3053 else if (txsIsSameOpcode(pPktHdr, "BYE "))
3054 rc = txsDoBye(pPktHdr);
3055 else if (txsIsSameOpcode(pPktHdr, "VER "))
3056 rc = txsDoVer(pPktHdr);
3057 else if (txsIsSameOpcode(pPktHdr, "UUID "))
3058 rc = txsDoUuid(pPktHdr);
3059 /* Process: */
3060 else if (txsIsSameOpcode(pPktHdr, "EXEC "))
3061 rc = txsDoExec(pPktHdr);
3062 /* Admin: */
3063 else if (txsIsSameOpcode(pPktHdr, "REBOOT "))
3064 rc = txsDoReboot(pPktHdr);
3065 else if (txsIsSameOpcode(pPktHdr, "SHUTDOWN"))
3066 rc = txsDoShutdown(pPktHdr);
3067 /* CD/DVD control: */
3068 else if (txsIsSameOpcode(pPktHdr, "CD EJECT"))
3069 rc = txsDoCdEject(pPktHdr);
3070 /* File system: */
3071 else if (txsIsSameOpcode(pPktHdr, "CLEANUP "))
3072 rc = txsDoCleanup(pPktHdr);
3073 else if (txsIsSameOpcode(pPktHdr, "MKDIR "))
3074 rc = txsDoMkDir(pPktHdr);
3075 else if (txsIsSameOpcode(pPktHdr, "MKDRPATH"))
3076 rc = txsDoMkDrPath(pPktHdr);
3077 else if (txsIsSameOpcode(pPktHdr, "MKSYMLNK"))
3078 rc = txsDoMkSymlnk(pPktHdr);
3079 else if (txsIsSameOpcode(pPktHdr, "RMDIR "))
3080 rc = txsDoRmDir(pPktHdr);
3081 else if (txsIsSameOpcode(pPktHdr, "RMFILE "))
3082 rc = txsDoRmFile(pPktHdr);
3083 else if (txsIsSameOpcode(pPktHdr, "RMSYMLNK"))
3084 rc = txsDoRmSymlnk(pPktHdr);
3085 else if (txsIsSameOpcode(pPktHdr, "RMTREE "))
3086 rc = txsDoRmTree(pPktHdr);
3087 else if (txsIsSameOpcode(pPktHdr, "CHMOD "))
3088 rc = txsDoChMod(pPktHdr);
3089 else if (txsIsSameOpcode(pPktHdr, "CHOWN "))
3090 rc = txsDoChOwn(pPktHdr);
3091 else if (txsIsSameOpcode(pPktHdr, "ISDIR "))
3092 rc = txsDoIsDir(pPktHdr);
3093 else if (txsIsSameOpcode(pPktHdr, "ISFILE "))
3094 rc = txsDoIsFile(pPktHdr);
3095 else if (txsIsSameOpcode(pPktHdr, "ISSYMLNK"))
3096 rc = txsDoIsSymlnk(pPktHdr);
3097 else if (txsIsSameOpcode(pPktHdr, "STAT "))
3098 rc = txsDoStat(pPktHdr);
3099 else if (txsIsSameOpcode(pPktHdr, "LSTAT "))
3100 rc = txsDoLStat(pPktHdr);
3101 else if (txsIsSameOpcode(pPktHdr, "LIST "))
3102 rc = txsDoList(pPktHdr);
3103 else if (txsIsSameOpcode(pPktHdr, "PUT FILE"))
3104 rc = txsDoPutFile(pPktHdr, false /*fHasMode*/);
3105 else if (txsIsSameOpcode(pPktHdr, "PUT2FILE"))
3106 rc = txsDoPutFile(pPktHdr, true /*fHasMode*/);
3107 else if (txsIsSameOpcode(pPktHdr, "GET FILE"))
3108 rc = txsDoGetFile(pPktHdr);
3109 else if (txsIsSameOpcode(pPktHdr, "PKFILE "))
3110 rc = txsDoPackFile(pPktHdr);
3111 else if (txsIsSameOpcode(pPktHdr, "UNPKFILE"))
3112 rc = txsDoUnpackFile(pPktHdr);
3113 /* Misc: */
3114 else if (txsIsSameOpcode(pPktHdr, "EXP STR "))
3115 rc = txsDoExpandString(pPktHdr);
3116 else
3117 rc = txsReplyUnknown(pPktHdr);
3118
3119 if (g_cVerbose > 0)
3120 RTMsgInfo("txsMainLoop: CMD: %.8s -> %Rrc", pPktHdr->achOpcode, rc);
3121 RTMemFree(pPktHdr);
3122 }
3123
3124 if (g_cVerbose > 0)
3125 RTMsgInfo("txsMainLoop: end\n");
3126 return enmExitCode;
3127}
3128
3129
3130/**
3131 * Finalizes the scratch directory, making sure it exists.
3132 *
3133 * @returns exit code.
3134 */
3135static RTEXITCODE txsFinalizeScratch(void)
3136{
3137 RTPathStripTrailingSlash(g_szScratchPath);
3138 char *pszFilename = RTPathFilename(g_szScratchPath);
3139 if (!pszFilename)
3140 return RTMsgErrorExit(RTEXITCODE_FAILURE, "cannot use root for scratch (%s)\n", g_szScratchPath);
3141
3142 int rc;
3143 if (strchr(pszFilename, 'X'))
3144 {
3145 char ch = *pszFilename;
3146 rc = RTDirCreateFullPath(g_szScratchPath, 0700);
3147 *pszFilename = ch;
3148 if (RT_SUCCESS(rc))
3149 rc = RTDirCreateTemp(g_szScratchPath, 0700);
3150 }
3151 else
3152 {
3153 if (RTDirExists(g_szScratchPath))
3154 rc = VINF_SUCCESS;
3155 else
3156 rc = RTDirCreateFullPath(g_szScratchPath, 0700);
3157 }
3158 if (RT_FAILURE(rc))
3159 return RTMsgErrorExit(RTEXITCODE_FAILURE, "failed to create scratch directory: %Rrc (%s)\n", rc, g_szScratchPath);
3160 return RTEXITCODE_SUCCESS;
3161}
3162
3163/**
3164 * Attempts to complete an upgrade by updating the original and relaunching
3165 * ourselves from there again.
3166 *
3167 * On failure, we'll continue running as the temporary copy.
3168 *
3169 * @returns Exit code. Exit if this is non-zero or @a *pfExit is set.
3170 * @param argc The number of arguments.
3171 * @param argv The argument vector.
3172 * @param pfExit For indicating exit when the exit code is zero.
3173 * @param pszUpgrading The upgraded image path.
3174 */
3175static RTEXITCODE txsAutoUpdateStage2(int argc, char **argv, bool *pfExit, const char *pszUpgrading)
3176{
3177 if (g_cVerbose > 0)
3178 RTMsgInfo("Auto update stage 2...");
3179
3180 /*
3181 * Copy the current executable onto the original.
3182 * Note that we're racing the original program on some platforms, thus the
3183 * 60 sec sleep mess.
3184 */
3185 char szUpgradePath[RTPATH_MAX];
3186 if (!RTProcGetExecutablePath(szUpgradePath, sizeof(szUpgradePath)))
3187 {
3188 RTMsgError("RTProcGetExecutablePath failed (step 2)\n");
3189 return RTEXITCODE_SUCCESS;
3190 }
3191 void *pvUpgrade;
3192 size_t cbUpgrade;
3193 int rc = RTFileReadAll(szUpgradePath, &pvUpgrade, &cbUpgrade);
3194 if (RT_FAILURE(rc))
3195 {
3196 RTMsgError("RTFileReadAllEx(\"%s\"): %Rrc (step 2)\n", szUpgradePath, rc);
3197 return RTEXITCODE_SUCCESS;
3198 }
3199
3200 uint64_t StartMilliTS = RTTimeMilliTS();
3201 RTFILE hFile;
3202 rc = RTFileOpen(&hFile, pszUpgrading,
3203 RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN_CREATE | RTFILE_O_TRUNCATE
3204 | (0755 << RTFILE_O_CREATE_MODE_SHIFT));
3205 while ( RT_FAILURE(rc)
3206 && RTTimeMilliTS() - StartMilliTS < 60000)
3207 {
3208 RTThreadSleep(1000);
3209 rc = RTFileOpen(&hFile, pszUpgrading,
3210 RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_OPEN_CREATE | RTFILE_O_TRUNCATE
3211 | (0755 << RTFILE_O_CREATE_MODE_SHIFT));
3212 }
3213 if (RT_SUCCESS(rc))
3214 {
3215 rc = RTFileWrite(hFile, pvUpgrade, cbUpgrade, NULL);
3216 RTFileClose(hFile);
3217 if (RT_SUCCESS(rc))
3218 {
3219 /*
3220 * Relaunch the service with the original name, foricbly barring
3221 * further upgrade cycles in case of bugs (and simplifying the code).
3222 */
3223 const char **papszArgs = (const char **)RTMemAlloc((argc + 1 + 1) * sizeof(char **));
3224 if (papszArgs)
3225 {
3226 papszArgs[0] = pszUpgrading;
3227 for (int i = 1; i < argc; i++)
3228 papszArgs[i] = argv[i];
3229 papszArgs[argc] = "--no-auto-upgrade";
3230 papszArgs[argc + 1] = NULL;
3231
3232 RTMsgInfo("Launching upgraded image: \"%s\"\n", pszUpgrading);
3233 RTPROCESS hProc;
3234 rc = RTProcCreate(pszUpgrading, papszArgs, RTENV_DEFAULT, 0 /*fFlags*/, &hProc);
3235 if (RT_SUCCESS(rc))
3236 *pfExit = true;
3237 else
3238 RTMsgError("RTProcCreate(\"%s\"): %Rrc (upgrade stage 2)\n", pszUpgrading, rc);
3239 RTMemFree(papszArgs);
3240 }
3241 else
3242 RTMsgError("RTMemAlloc failed during upgrade attempt (stage 2)\n");
3243 }
3244 else
3245 RTMsgError("RTFileWrite(%s,,%zu): %Rrc (step 2) - BAD\n", pszUpgrading, cbUpgrade, rc);
3246 }
3247 else
3248 RTMsgError("RTFileOpen(,%s,): %Rrc\n", pszUpgrading, rc);
3249 RTFileReadAllFree(pvUpgrade, cbUpgrade);
3250 return RTEXITCODE_SUCCESS;
3251}
3252
3253/**
3254 * Checks for an upgrade and respawns if there is.
3255 *
3256 * @returns Exit code. Exit if this is non-zero or @a *pfExit is set.
3257 * @param argc The number of arguments.
3258 * @param argv The argument vector.
3259 * @param cSecsCdWait Number of seconds to wait on the CD.
3260 * @param pfExit For indicating exit when the exit code is zero.
3261 */
3262static RTEXITCODE txsAutoUpdateStage1(int argc, char **argv, uint32_t cSecsCdWait, bool *pfExit)
3263{
3264 if (g_cVerbose > 1)
3265 RTMsgInfo("Auto update stage 1...");
3266
3267 /*
3268 * Figure names of the current service image and the potential upgrade.
3269 */
3270 char szOrgPath[RTPATH_MAX];
3271 if (!RTProcGetExecutablePath(szOrgPath, sizeof(szOrgPath)))
3272 {
3273 RTMsgError("RTProcGetExecutablePath failed\n");
3274 return RTEXITCODE_SUCCESS;
3275 }
3276
3277 char szUpgradePath[RTPATH_MAX];
3278 int rc = RTPathJoin(szUpgradePath, sizeof(szUpgradePath), g_szCdRomPath, g_szOsSlashArchShortName);
3279 if (RT_SUCCESS(rc))
3280 rc = RTPathAppend(szUpgradePath, sizeof(szUpgradePath), RTPathFilename(szOrgPath));
3281 if (RT_FAILURE(rc))
3282 {
3283 RTMsgError("Failed to construct path to potential service upgrade: %Rrc\n", rc);
3284 return RTEXITCODE_SUCCESS;
3285 }
3286
3287 /*
3288 * Query information about the two images and read the entire potential source file.
3289 * Because the CD may take a little time to be mounted when the system boots, we
3290 * need to do some fudging here.
3291 */
3292 uint64_t nsStart = RTTimeNanoTS();
3293 RTFSOBJINFO UpgradeInfo;
3294 for (;;)
3295 {
3296 rc = RTPathQueryInfo(szUpgradePath, &UpgradeInfo, RTFSOBJATTRADD_NOTHING);
3297 if (RT_SUCCESS(rc))
3298 break;
3299 if ( rc != VERR_FILE_NOT_FOUND
3300 && rc != VERR_PATH_NOT_FOUND
3301 && rc != VERR_MEDIA_NOT_PRESENT
3302 && rc != VERR_MEDIA_NOT_RECOGNIZED)
3303 {
3304 RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (upgrade)\n", szUpgradePath, rc);
3305 return RTEXITCODE_SUCCESS;
3306 }
3307 uint64_t cNsElapsed = RTTimeNanoTS() - nsStart;
3308 if (cNsElapsed >= cSecsCdWait * RT_NS_1SEC_64)
3309 {
3310 if (g_cVerbose > 0)
3311 RTMsgInfo("Auto update: Giving up waiting for media.");
3312 return RTEXITCODE_SUCCESS;
3313 }
3314 RTThreadSleep(500);
3315 }
3316
3317 RTFSOBJINFO OrgInfo;
3318 rc = RTPathQueryInfo(szOrgPath, &OrgInfo, RTFSOBJATTRADD_NOTHING);
3319 if (RT_FAILURE(rc))
3320 {
3321 RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (old)\n", szOrgPath, rc);
3322 return RTEXITCODE_SUCCESS;
3323 }
3324
3325 void *pvUpgrade;
3326 size_t cbUpgrade;
3327 rc = RTFileReadAllEx(szUpgradePath, 0, UpgradeInfo.cbObject, RTFILE_RDALL_O_DENY_NONE, &pvUpgrade, &cbUpgrade);
3328 if (RT_FAILURE(rc))
3329 {
3330 RTMsgError("RTPathQueryInfo(\"%s\"): %Rrc (old)\n", szOrgPath, rc);
3331 return RTEXITCODE_SUCCESS;
3332 }
3333
3334 /*
3335 * Compare and see if we've got a different service image or not.
3336 */
3337 if (OrgInfo.cbObject == UpgradeInfo.cbObject)
3338 {
3339 /* must compare bytes. */
3340 void *pvOrg;
3341 size_t cbOrg;
3342 rc = RTFileReadAllEx(szOrgPath, 0, OrgInfo.cbObject, RTFILE_RDALL_O_DENY_NONE, &pvOrg, &cbOrg);
3343 if (RT_FAILURE(rc))
3344 {
3345 RTMsgError("RTFileReadAllEx(\"%s\"): %Rrc\n", szOrgPath, rc);
3346 RTFileReadAllFree(pvUpgrade, cbUpgrade);
3347 return RTEXITCODE_SUCCESS;
3348 }
3349 bool fSame = !memcmp(pvUpgrade, pvOrg, OrgInfo.cbObject);
3350 RTFileReadAllFree(pvOrg, cbOrg);
3351 if (fSame)
3352 {
3353 RTFileReadAllFree(pvUpgrade, cbUpgrade);
3354 if (g_cVerbose > 0)
3355 RTMsgInfo("Auto update: Not necessary.");
3356 return RTEXITCODE_SUCCESS;
3357 }
3358 }
3359
3360 /*
3361 * Should upgrade. Start by creating an executable copy of the update
3362 * image in the scratch area.
3363 */
3364 RTEXITCODE rcExit = txsFinalizeScratch();
3365 if (rcExit == RTEXITCODE_SUCCESS)
3366 {
3367 char szTmpPath[RTPATH_MAX];
3368 rc = RTPathJoin(szTmpPath, sizeof(szTmpPath), g_szScratchPath, RTPathFilename(szOrgPath));
3369 if (RT_SUCCESS(rc))
3370 {
3371 RTFileDelete(szTmpPath); /* shouldn't hurt. */
3372
3373 RTFILE hFile;
3374 rc = RTFileOpen(&hFile, szTmpPath,
3375 RTFILE_O_WRITE | RTFILE_O_DENY_WRITE | RTFILE_O_CREATE_REPLACE
3376 | (0755 << RTFILE_O_CREATE_MODE_SHIFT));
3377 if (RT_SUCCESS(rc))
3378 {
3379 rc = RTFileWrite(hFile, pvUpgrade, UpgradeInfo.cbObject, NULL);
3380 RTFileClose(hFile);
3381 if (RT_SUCCESS(rc))
3382 {
3383 /*
3384 * Try execute the new image and quit if it works.
3385 */
3386 const char **papszArgs = (const char **)RTMemAlloc((argc + 2 + 1) * sizeof(char **));
3387 if (papszArgs)
3388 {
3389 papszArgs[0] = szTmpPath;
3390 for (int i = 1; i < argc; i++)
3391 papszArgs[i] = argv[i];
3392 papszArgs[argc] = "--upgrading";
3393 papszArgs[argc + 1] = szOrgPath;
3394 papszArgs[argc + 2] = NULL;
3395
3396 RTMsgInfo("Launching intermediate automatic upgrade stage: \"%s\"\n", szTmpPath);
3397 RTPROCESS hProc;
3398 rc = RTProcCreate(szTmpPath, papszArgs, RTENV_DEFAULT, 0 /*fFlags*/, &hProc);
3399 if (RT_SUCCESS(rc))
3400 *pfExit = true;
3401 else
3402 RTMsgError("RTProcCreate(\"%s\"): %Rrc (upgrade stage 1)\n", szTmpPath, rc);
3403 RTMemFree(papszArgs);
3404 }
3405 else
3406 RTMsgError("RTMemAlloc failed during upgrade attempt (stage)\n");
3407 }
3408 else
3409 RTMsgError("RTFileWrite(%s,,%zu): %Rrc\n", szTmpPath, UpgradeInfo.cbObject, rc);
3410 }
3411 else
3412 RTMsgError("RTFileOpen(,%s,): %Rrc\n", szTmpPath, rc);
3413 }
3414 else
3415 RTMsgError("Failed to construct path to temporary upgrade image: %Rrc\n", rc);
3416 }
3417
3418 RTFileReadAllFree(pvUpgrade, cbUpgrade);
3419 return rcExit;
3420}
3421
3422/**
3423 * Determines the default configuration.
3424 */
3425static void txsSetDefaults(void)
3426{
3427 /*
3428 * OS and ARCH.
3429 */
3430 AssertCompile(sizeof(KBUILD_TARGET) <= sizeof(g_szOsShortName));
3431 strcpy(g_szOsShortName, KBUILD_TARGET);
3432
3433 AssertCompile(sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szArchShortName));
3434 strcpy(g_szArchShortName, KBUILD_TARGET_ARCH);
3435
3436 AssertCompile(sizeof(KBUILD_TARGET) + sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szOsDotArchShortName));
3437 strcpy(g_szOsDotArchShortName, KBUILD_TARGET);
3438 g_szOsDotArchShortName[sizeof(KBUILD_TARGET) - 1] = '.';
3439 strcpy(&g_szOsDotArchShortName[sizeof(KBUILD_TARGET)], KBUILD_TARGET_ARCH);
3440
3441 AssertCompile(sizeof(KBUILD_TARGET) + sizeof(KBUILD_TARGET_ARCH) <= sizeof(g_szOsSlashArchShortName));
3442 strcpy(g_szOsSlashArchShortName, KBUILD_TARGET);
3443 g_szOsSlashArchShortName[sizeof(KBUILD_TARGET) - 1] = '/';
3444 strcpy(&g_szOsSlashArchShortName[sizeof(KBUILD_TARGET)], KBUILD_TARGET_ARCH);
3445
3446#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
3447 strcpy(g_szExeSuff, ".exe");
3448 strcpy(g_szScriptSuff, ".cmd");
3449#else
3450 strcpy(g_szExeSuff, "");
3451 strcpy(g_szScriptSuff, ".sh");
3452#endif
3453
3454 int rc = RTPathGetCurrent(g_szCwd, sizeof(g_szCwd));
3455 if (RT_FAILURE(rc))
3456 RTMsgError("RTPathGetCurrent failed: %Rrc\n", rc);
3457 g_szCwd[sizeof(g_szCwd) - 1] = '\0';
3458
3459 if (!RTProcGetExecutablePath(g_szTxsDir, sizeof(g_szTxsDir)))
3460 RTMsgError("RTProcGetExecutablePath failed!\n");
3461 g_szTxsDir[sizeof(g_szTxsDir) - 1] = '\0';
3462 RTPathStripFilename(g_szTxsDir);
3463 RTPathStripTrailingSlash(g_szTxsDir);
3464
3465 /*
3466 * The CD/DVD-ROM location.
3467 */
3468 /** @todo do a better job here :-) */
3469#ifdef RT_OS_WINDOWS
3470 strcpy(g_szDefCdRomPath, "D:/");
3471#elif defined(RT_OS_OS2)
3472 strcpy(g_szDefCdRomPath, "D:/");
3473#else
3474 if (RTDirExists("/media"))
3475 strcpy(g_szDefCdRomPath, "/media/cdrom");
3476 else
3477 strcpy(g_szDefCdRomPath, "/mnt/cdrom");
3478#endif
3479 strcpy(g_szCdRomPath, g_szDefCdRomPath);
3480
3481 /*
3482 * Temporary directory.
3483 */
3484 rc = RTPathTemp(g_szDefScratchPath, sizeof(g_szDefScratchPath));
3485 if (RT_SUCCESS(rc))
3486#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS) || defined(RT_OS_DOS)
3487 rc = RTPathAppend(g_szDefScratchPath, sizeof(g_szDefScratchPath), "txs-XXXX.tmp");
3488#else
3489 rc = RTPathAppend(g_szDefScratchPath, sizeof(g_szDefScratchPath), "txs-XXXXXXXXX.tmp");
3490#endif
3491 if (RT_FAILURE(rc))
3492 {
3493 RTMsgError("RTPathTemp/Append failed when constructing scratch path: %Rrc\n", rc);
3494 strcpy(g_szDefScratchPath, "/tmp/txs-XXXX.tmp");
3495 }
3496 strcpy(g_szScratchPath, g_szDefScratchPath);
3497
3498 /*
3499 * The default transporter is the first one.
3500 */
3501 g_pTransport = g_apTransports[0];
3502}
3503
3504/**
3505 * Prints the usage.
3506 *
3507 * @param pStrm Where to print it.
3508 * @param pszArgv0 The program name (argv[0]).
3509 */
3510static void txsUsage(PRTSTREAM pStrm, const char *pszArgv0)
3511{
3512 RTStrmPrintf(pStrm,
3513 "Usage: %Rbn [options]\n"
3514 "\n"
3515 "Options:\n"
3516 " --cdrom <path>\n"
3517 " Where the CD/DVD-ROM will be mounted.\n"
3518 " Default: %s\n"
3519 " --scratch <path>\n"
3520 " Where to put scratch files.\n"
3521 " Default: %s \n"
3522 ,
3523 pszArgv0,
3524 g_szDefCdRomPath,
3525 g_szDefScratchPath);
3526 RTStrmPrintf(pStrm,
3527 " --transport <name>\n"
3528 " Use the specified transport layer, one of the following:\n");
3529 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3530 RTStrmPrintf(pStrm, " %s - %s\n", g_apTransports[i]->szName, g_apTransports[i]->pszDesc);
3531 RTStrmPrintf(pStrm, " Default: %s\n", g_pTransport->szName);
3532 RTStrmPrintf(pStrm,
3533 " --auto-upgrade, --no-auto-upgrade\n"
3534 " To enable or disable the automatic upgrade mechanism where any different\n"
3535 " version found on the CD-ROM on startup will replace the initial copy.\n"
3536 " Default: --auto-upgrade\n"
3537 " --wait-cdrom <secs>\n"
3538 " Number of seconds to wait for the CD-ROM to be mounted before giving up\n"
3539 " on automatic upgrading.\n"
3540 " Default: --wait-cdrom 1; solaris: --wait-cdrom 8\n"
3541 " --upgrading <org-path>\n"
3542 " Internal use only.\n");
3543 RTStrmPrintf(pStrm,
3544 " --display-output, --no-display-output\n"
3545 " Display the output and the result of all child processes.\n");
3546 RTStrmPrintf(pStrm,
3547 " --foreground\n"
3548 " Don't daemonize, run in the foreground.\n");
3549 RTStrmPrintf(pStrm,
3550 " --verbose, -v\n"
3551 " Increases the verbosity level. Can be specified multiple times.\n");
3552 RTStrmPrintf(pStrm,
3553 " --quiet, -q\n"
3554 " Mutes any logging output.\n");
3555 RTStrmPrintf(pStrm,
3556 " --help, -h, -?\n"
3557 " Display this message and exit.\n"
3558 " --version, -V\n"
3559 " Display the version and exit.\n");
3560
3561 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3562 if (g_apTransports[i]->cOpts)
3563 {
3564 RTStrmPrintf(pStrm,
3565 "\n"
3566 "Options for %s:\n", g_apTransports[i]->szName);
3567 g_apTransports[i]->pfnUsage(g_pStdOut);
3568 }
3569}
3570
3571/**
3572 * Parses the arguments.
3573 *
3574 * @returns Exit code. Exit if this is non-zero or @a *pfExit is set.
3575 * @param argc The number of arguments.
3576 * @param argv The argument vector.
3577 * @param pfExit For indicating exit when the exit code is zero.
3578 */
3579static RTEXITCODE txsParseArgv(int argc, char **argv, bool *pfExit)
3580{
3581 *pfExit = false;
3582
3583 /*
3584 * Storage for locally handled options.
3585 */
3586 bool fAutoUpgrade = true;
3587 bool fDaemonize = true;
3588 bool fDaemonized = false;
3589 const char *pszUpgrading = NULL;
3590#ifdef RT_OS_SOLARIS
3591 uint32_t cSecsCdWait = 8;
3592#else
3593 uint32_t cSecsCdWait = 1;
3594#endif
3595
3596 /*
3597 * Combine the base and transport layer option arrays.
3598 */
3599 static const RTGETOPTDEF s_aBaseOptions[] =
3600 {
3601 { "--transport", 't', RTGETOPT_REQ_STRING },
3602 { "--cdrom", 'c', RTGETOPT_REQ_STRING },
3603 { "--wait-cdrom", 'w', RTGETOPT_REQ_UINT32 },
3604 { "--scratch", 's', RTGETOPT_REQ_STRING },
3605 { "--auto-upgrade", 'a', RTGETOPT_REQ_NOTHING },
3606 { "--no-auto-upgrade", 'A', RTGETOPT_REQ_NOTHING },
3607 { "--upgrading", 'U', RTGETOPT_REQ_STRING },
3608 { "--display-output", 'd', RTGETOPT_REQ_NOTHING },
3609 { "--no-display-output",'D', RTGETOPT_REQ_NOTHING },
3610 { "--foreground", 'f', RTGETOPT_REQ_NOTHING },
3611 { "--daemonized", 'Z', RTGETOPT_REQ_NOTHING },
3612 { "--quiet", 'q', RTGETOPT_REQ_NOTHING },
3613 { "--verbose", 'v', RTGETOPT_REQ_NOTHING },
3614 };
3615
3616 size_t cOptions = RT_ELEMENTS(s_aBaseOptions);
3617 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3618 cOptions += g_apTransports[i]->cOpts;
3619
3620 PRTGETOPTDEF paOptions = (PRTGETOPTDEF)alloca(cOptions * sizeof(RTGETOPTDEF));
3621 if (!paOptions)
3622 return RTMsgErrorExit(RTEXITCODE_FAILURE, "alloca failed\n");
3623
3624 memcpy(paOptions, s_aBaseOptions, sizeof(s_aBaseOptions));
3625 cOptions = RT_ELEMENTS(s_aBaseOptions);
3626 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3627 {
3628 memcpy(&paOptions[cOptions], g_apTransports[i]->paOpts, g_apTransports[i]->cOpts * sizeof(RTGETOPTDEF));
3629 cOptions += g_apTransports[i]->cOpts;
3630 }
3631
3632 /*
3633 * Parse the arguments.
3634 */
3635 RTGETOPTSTATE GetState;
3636 int rc = RTGetOptInit(&GetState, argc, argv, paOptions, cOptions, 1, 0 /* fFlags */);
3637 AssertRC(rc);
3638
3639 int ch;
3640 RTGETOPTUNION Val;
3641 while ((ch = RTGetOpt(&GetState, &Val)))
3642 {
3643 switch (ch)
3644 {
3645 case 'a':
3646 fAutoUpgrade = true;
3647 break;
3648
3649 case 'A':
3650 fAutoUpgrade = false;
3651 break;
3652
3653 case 'c':
3654 rc = RTStrCopy(g_szCdRomPath, sizeof(g_szCdRomPath), Val.psz);
3655 if (RT_FAILURE(rc))
3656 return RTMsgErrorExit(RTEXITCODE_FAILURE, "CD/DVD-ROM is path too long (%Rrc)\n", rc);
3657 break;
3658
3659 case 'd':
3660 g_fDisplayOutput = true;
3661 break;
3662
3663 case 'D':
3664 g_fDisplayOutput = false;
3665 break;
3666
3667 case 'f':
3668 fDaemonize = false;
3669 break;
3670
3671 case 'h':
3672 txsUsage(g_pStdOut, argv[0]);
3673 *pfExit = true;
3674 return RTEXITCODE_SUCCESS;
3675
3676 case 's':
3677 rc = RTStrCopy(g_szScratchPath, sizeof(g_szScratchPath), Val.psz);
3678 if (RT_FAILURE(rc))
3679 return RTMsgErrorExit(RTEXITCODE_FAILURE, "scratch path is too long (%Rrc)\n", rc);
3680 break;
3681
3682 case 't':
3683 {
3684 PCTXSTRANSPORT pTransport = NULL;
3685 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3686 if (!strcmp(g_apTransports[i]->szName, Val.psz))
3687 {
3688 pTransport = g_apTransports[i];
3689 break;
3690 }
3691 if (!pTransport)
3692 return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Unknown transport layer name '%s'\n", Val.psz);
3693 g_pTransport = pTransport;
3694 break;
3695 }
3696
3697 case 'U':
3698 pszUpgrading = Val.psz;
3699 break;
3700
3701 case 'w':
3702 cSecsCdWait = Val.u32;
3703 break;
3704
3705 case 'q':
3706 g_cVerbose = 0;
3707 break;
3708
3709 case 'v':
3710 g_cVerbose++;
3711 break;
3712
3713 case 'V':
3714 RTPrintf("$Revision: 84923 $\n");
3715 *pfExit = true;
3716 return RTEXITCODE_SUCCESS;
3717
3718 case 'Z':
3719 fDaemonized = true;
3720 fDaemonize = false;
3721 break;
3722
3723 default:
3724 {
3725 rc = VERR_TRY_AGAIN;
3726 for (size_t i = 0; i < RT_ELEMENTS(g_apTransports); i++)
3727 if (g_apTransports[i]->cOpts)
3728 {
3729 rc = g_apTransports[i]->pfnOption(ch, &Val);
3730 if (RT_SUCCESS(rc))
3731 break;
3732 if (rc != VERR_TRY_AGAIN)
3733 {
3734 *pfExit = true;
3735 return RTEXITCODE_SYNTAX;
3736 }
3737 }
3738 if (rc == VERR_TRY_AGAIN)
3739 {
3740 *pfExit = true;
3741 return RTGetOptPrintError(ch, &Val);
3742 }
3743 break;
3744 }
3745 }
3746 }
3747
3748 /*
3749 * Handle automatic upgrading of the service.
3750 */
3751 if (fAutoUpgrade && !*pfExit)
3752 {
3753 RTEXITCODE rcExit;
3754 if (pszUpgrading)
3755 rcExit = txsAutoUpdateStage2(argc, argv, pfExit, pszUpgrading);
3756 else
3757 rcExit = txsAutoUpdateStage1(argc, argv, cSecsCdWait, pfExit);
3758 if ( *pfExit
3759 || rcExit != RTEXITCODE_SUCCESS)
3760 return rcExit;
3761 }
3762
3763 /*
3764 * Daemonize ourselves if asked to.
3765 */
3766 if (fDaemonize && !*pfExit)
3767 {
3768 if (g_cVerbose > 0)
3769 RTMsgInfo("Daemonizing...");
3770 rc = RTProcDaemonize(argv, "--daemonized");
3771 if (RT_FAILURE(rc))
3772 return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTProcDaemonize: %Rrc\n", rc);
3773 *pfExit = true;
3774 }
3775
3776 return RTEXITCODE_SUCCESS;
3777}
3778
3779
3780int main(int argc, char **argv)
3781{
3782 /*
3783 * Initialize the runtime.
3784 */
3785 int rc = RTR3InitExe(argc, &argv, 0);
3786 if (RT_FAILURE(rc))
3787 return RTMsgInitFailure(rc);
3788
3789 /*
3790 * Determine defaults and parse the arguments.
3791 */
3792 txsSetDefaults();
3793 bool fExit;
3794 RTEXITCODE rcExit = txsParseArgv(argc, argv, &fExit);
3795 if (rcExit != RTEXITCODE_SUCCESS || fExit)
3796 return rcExit;
3797
3798 /*
3799 * Generate a UUID for this TXS instance.
3800 */
3801 rc = RTUuidCreate(&g_InstanceUuid);
3802 if (RT_FAILURE(rc))
3803 return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTUuidCreate failed: %Rrc", rc);
3804 if (g_cVerbose > 0)
3805 RTMsgInfo("Instance UUID: %RTuuid", &g_InstanceUuid);
3806
3807 /*
3808 * Finalize the scratch directory and initialize the transport layer.
3809 */
3810 rcExit = txsFinalizeScratch();
3811 if (rcExit != RTEXITCODE_SUCCESS)
3812 return rcExit;
3813
3814 rc = g_pTransport->pfnInit();
3815 if (RT_FAILURE(rc))
3816 return RTEXITCODE_FAILURE;
3817
3818 /*
3819 * Ok, start working
3820 */
3821 rcExit = txsMainLoop();
3822
3823 /*
3824 * Cleanup.
3825 */
3826 g_pTransport->pfnTerm();
3827
3828 return rcExit;
3829}
3830
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette