/* $Id: UsbTestServicePlatform-linux.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */ /** @file * UsbTestServ - Remote USB test configuration and execution server, Platform * specific helpers - Linux version. */ /* * Copyright (C) 2016-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include "UsbTestServicePlatform.h" /********************************************************************************************************************************* * Constants And Macros, Structures and Typedefs * *********************************************************************************************************************************/ /** Where the dummy_hcd.* and dummy_udc.* entries are stored. */ #define UTS_PLATFORM_LNX_DUMMY_HCD_PATH "/sys/devices/platform" /** * A USB bus provided by the dummy HCD. */ typedef struct UTSPLATFORMLNXDUMMYHCDBUS { /** The bus ID on the host the dummy HCD is serving. */ uint32_t uBusId; /** Flag whether this is a super speed bus. */ bool fSuperSpeed; } UTSPLATFORMLNXDUMMYHCDBUS; /** Pointer to a Dummy HCD bus. */ typedef UTSPLATFORMLNXDUMMYHCDBUS *PUTSPLATFORMLNXDUMMYHCDBUS; /** * A dummy UDC descriptor. */ typedef struct UTSPLATFORMLNXDUMMYHCD { /** Index of the dummy hcd entry. */ uint32_t idxDummyHcd; /** Name for the dummy HCD. */ const char *pszHcdName; /** Name for the accompanying dummy HCD. */ const char *pszUdcName; /** Flag whether this HCD is free for use. */ bool fAvailable; /** Flag whether this HCD contains a super speed capable bus. */ bool fSuperSpeed; /** Number of busses this HCD instance serves. */ unsigned cBusses; /** Bus structures the HCD serves.*/ PUTSPLATFORMLNXDUMMYHCDBUS paBusses; } UTSPLATFORMLNXDUMMYHCD; /** Pointer to a dummy HCD entry. */ typedef UTSPLATFORMLNXDUMMYHCD *PUTSPLATFORMLNXDUMMYHCD; /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** Array of dummy HCD entries. */ static PUTSPLATFORMLNXDUMMYHCD g_paDummyHcd = NULL; /** Number of Dummy hCD entries in the array. */ static unsigned g_cDummyHcd = 0; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ /** * Queries the assigned busses for the given dummy HCD instance. * * @returns IPRT status code. * @param pHcd The dummy HCD bus instance. * @param pszHcdName The base HCD name. */ static int utsPlatformLnxDummyHcdQueryBusses(PUTSPLATFORMLNXDUMMYHCD pHcd, const char *pszHcdName) { int rc = VINF_SUCCESS; char aszPath[RTPATH_MAX + 1]; unsigned idxBusCur = 0; unsigned idxBusMax = 0; size_t cchPath = RTStrPrintf(&aszPath[0], RT_ELEMENTS(aszPath), UTS_PLATFORM_LNX_DUMMY_HCD_PATH "/%s.%u/usb*", pszHcdName, pHcd->idxDummyHcd); if (cchPath == RT_ELEMENTS(aszPath)) return VERR_BUFFER_OVERFLOW; RTDIR hDir = NULL; rc = RTDirOpenFiltered(&hDir, aszPath, RTDIRFILTER_WINNT, 0 /*fFlags*/); if (RT_SUCCESS(rc)) { do { RTDIRENTRY DirFolderContent; rc = RTDirRead(hDir, &DirFolderContent, NULL); if (RT_SUCCESS(rc)) { uint32_t uBusId = 0; /* Extract the bus number - it is after "usb", i.e. "usb9" indicates a bus ID of 9. */ rc = RTStrToUInt32Ex(&DirFolderContent.szName[3], NULL, 10, &uBusId); if (RT_SUCCESS(rc)) { /* Check whether this is a super speed bus. */ int64_t iSpeed = 0; bool fSuperSpeed = false; rc = RTLinuxSysFsReadIntFile(10, &iSpeed, UTS_PLATFORM_LNX_DUMMY_HCD_PATH "/%s.%u/%s/speed", pszHcdName, pHcd->idxDummyHcd, DirFolderContent.szName); if ( RT_SUCCESS(rc) && (iSpeed == 5000 || iSpeed == 10000)) { fSuperSpeed = true; pHcd->fSuperSpeed = true; } /* Add to array of available busses for this HCD. */ if (idxBusCur == idxBusMax) { size_t cbNew = (idxBusMax + 10) * sizeof(UTSPLATFORMLNXDUMMYHCDBUS); PUTSPLATFORMLNXDUMMYHCDBUS pNew = (PUTSPLATFORMLNXDUMMYHCDBUS)RTMemRealloc(pHcd->paBusses, cbNew); if (pNew) { idxBusMax += 10; pHcd->paBusses = pNew; } } if (idxBusCur < idxBusMax) { pHcd->paBusses[idxBusCur].uBusId = uBusId; pHcd->paBusses[idxBusCur].fSuperSpeed = fSuperSpeed; idxBusCur++; } else rc = VERR_NO_MEMORY; } } } while (RT_SUCCESS(rc)); pHcd->cBusses = idxBusCur; if (rc == VERR_NO_MORE_FILES) rc = VINF_SUCCESS; RTDirClose(hDir); } return rc; } /** * Scans all available HCDs with the given name. * * @returns IPRT status code. * @param pszHcdName The base HCD name. * @param pszUdcName The base UDC name. */ static int utsPlatformLnxHcdScanByName(const char *pszHcdName, const char *pszUdcName) { char aszPath[RTPATH_MAX + 1]; size_t cchPath = RTStrPrintf(&aszPath[0], RT_ELEMENTS(aszPath), UTS_PLATFORM_LNX_DUMMY_HCD_PATH "/%s.*", pszHcdName); if (cchPath == RT_ELEMENTS(aszPath)) return VERR_BUFFER_OVERFLOW; /* Enumerate the available HCD and their bus numbers. */ RTDIR hDir = NULL; int rc = RTDirOpenFiltered(&hDir, aszPath, RTDIRFILTER_WINNT, 0 /*fFlags*/); if (RT_SUCCESS(rc)) { unsigned idxHcdCur = g_cDummyHcd; unsigned idxHcdMax = g_cDummyHcd; do { RTDIRENTRY DirFolderContent; rc = RTDirRead(hDir, &DirFolderContent, NULL); if (RT_SUCCESS(rc)) { /* * Get the HCD index and assigned bus number form the sysfs entries, * Any error here is silently ignored and results in the HCD not being * added to the list of available controllers. */ const char *pszIdx = RTStrStr(DirFolderContent.szName, "."); if (pszIdx) { /* Skip the separator and convert number to index. */ pszIdx++; uint32_t idxHcd = 0; rc = RTStrToUInt32Ex(pszIdx, NULL, 10, &idxHcd); if (RT_SUCCESS(rc)) { /* Add to array of available HCDs. */ if (idxHcdCur == idxHcdMax) { size_t cbNew = (idxHcdMax + 10) * sizeof(UTSPLATFORMLNXDUMMYHCD); PUTSPLATFORMLNXDUMMYHCD pNew = (PUTSPLATFORMLNXDUMMYHCD)RTMemRealloc(g_paDummyHcd, cbNew); if (pNew) { idxHcdMax += 10; g_paDummyHcd = pNew; } } if (idxHcdCur < idxHcdMax) { g_paDummyHcd[idxHcdCur].idxDummyHcd = idxHcd; g_paDummyHcd[idxHcdCur].pszHcdName = pszHcdName; g_paDummyHcd[idxHcdCur].pszUdcName = pszUdcName; g_paDummyHcd[idxHcdCur].fAvailable = true; g_paDummyHcd[idxHcdCur].fSuperSpeed = false; g_paDummyHcd[idxHcdCur].cBusses = 0; g_paDummyHcd[idxHcdCur].paBusses = NULL; rc = utsPlatformLnxDummyHcdQueryBusses(&g_paDummyHcd[idxHcdCur], pszHcdName); if (RT_SUCCESS(rc)) idxHcdCur++; } else rc = VERR_NO_MEMORY; } } } } while (RT_SUCCESS(rc)); g_cDummyHcd = idxHcdCur; if (rc == VERR_NO_MORE_FILES) rc = VINF_SUCCESS; RTDirClose(hDir); } return rc; } DECLHIDDEN(int) utsPlatformInit(void) { /* Load the modules required for setting up USB/IP testing. */ int rc = utsPlatformModuleLoad("libcomposite", NULL, 0); if (RT_SUCCESS(rc)) { const char *apszArg[] = { "num=20" }; /** @todo Make configurable from config. */ rc = utsPlatformModuleLoad("dummy_hcd", &apszArg[0], RT_ELEMENTS(apszArg)); if (RT_SUCCESS(rc)) rc = utsPlatformModuleLoad("dummy_hcd_ss", &apszArg[0], RT_ELEMENTS(apszArg)); if (RT_SUCCESS(rc)) rc = utsPlatformLnxHcdScanByName("dummy_hcd", "dummy_udc"); if (RT_SUCCESS(rc)) rc = utsPlatformLnxHcdScanByName("dummy_hcd_ss", "dummy_udc_ss"); } return rc; } DECLHIDDEN(void) utsPlatformTerm(void) { /* Unload dummy HCD. */ utsPlatformModuleUnload("dummy_hcd"); utsPlatformModuleUnload("dummy_hcd_ss"); RTMemFree(g_paDummyHcd); } DECLHIDDEN(int) utsPlatformModuleLoad(const char *pszModule, const char **papszArgv, unsigned cArgv) { RTPROCESS hProcModprobe = NIL_RTPROCESS; const char **papszArgs = (const char **)RTMemAllocZ((3 + cArgv) * sizeof(const char *)); if (RT_UNLIKELY(!papszArgs)) return VERR_NO_MEMORY; papszArgs[0] = "modprobe"; papszArgs[1] = pszModule; unsigned idx; for (idx = 0; idx < cArgv; idx++) papszArgs[2+idx] = papszArgv[idx]; papszArgs[2+idx] = NULL; int rc = RTProcCreate("modprobe", papszArgs, RTENV_DEFAULT, RTPROC_FLAGS_SEARCH_PATH, &hProcModprobe); if (RT_SUCCESS(rc)) { RTPROCSTATUS ProcSts; rc = RTProcWait(hProcModprobe, RTPROCWAIT_FLAGS_BLOCK, &ProcSts); if (RT_SUCCESS(rc)) { /* Evaluate the process status. */ if ( ProcSts.enmReason != RTPROCEXITREASON_NORMAL || ProcSts.iStatus != 0) rc = VERR_UNRESOLVED_ERROR; /** @todo Log and give finer grained status code. */ } } RTMemFree(papszArgs); return rc; } DECLHIDDEN(int) utsPlatformModuleUnload(const char *pszModule) { RTPROCESS hProcModprobe = NIL_RTPROCESS; const char *apszArgv[3]; apszArgv[0] = "rmmod"; apszArgv[1] = pszModule; apszArgv[2] = NULL; int rc = RTProcCreate("rmmod", apszArgv, RTENV_DEFAULT, RTPROC_FLAGS_SEARCH_PATH, &hProcModprobe); if (RT_SUCCESS(rc)) { RTPROCSTATUS ProcSts; rc = RTProcWait(hProcModprobe, RTPROCWAIT_FLAGS_BLOCK, &ProcSts); if (RT_SUCCESS(rc)) { /* Evaluate the process status. */ if ( ProcSts.enmReason != RTPROCEXITREASON_NORMAL || ProcSts.iStatus != 0) rc = VERR_UNRESOLVED_ERROR; /** @todo Log and give finer grained status code. */ } } return rc; } DECLHIDDEN(int) utsPlatformLnxAcquireUDC(bool fSuperSpeed, char **ppszUdc, uint32_t *puBusId) { int rc = VERR_NOT_FOUND; for (unsigned i = 0; i < g_cDummyHcd; i++) { PUTSPLATFORMLNXDUMMYHCD pHcd = &g_paDummyHcd[i]; /* * We can't use a super speed capable UDC for gadgets with lower speeds * because they hardcode the maximum speed to SuperSpeed most of the time * which will make it unusable for lower speeds. */ if ( pHcd->fAvailable && pHcd->fSuperSpeed == fSuperSpeed) { /* Check all assigned busses for a speed match. */ for (unsigned idxBus = 0; idxBus < pHcd->cBusses; idxBus++) { if (pHcd->paBusses[idxBus].fSuperSpeed == fSuperSpeed) { rc = VINF_SUCCESS; int cbRet = RTStrAPrintf(ppszUdc, "%s.%u", pHcd->pszUdcName, pHcd->idxDummyHcd); if (cbRet == -1) rc = VERR_NO_STR_MEMORY; *puBusId = pHcd->paBusses[idxBus].uBusId; pHcd->fAvailable = false; break; } } if (rc != VERR_NOT_FOUND) break; } } return rc; } DECLHIDDEN(int) utsPlatformLnxReleaseUDC(const char *pszUdc) { int rc = VERR_INVALID_PARAMETER; const char *pszIdx = RTStrStr(pszUdc, "."); if (pszIdx) { size_t cchUdcName = pszIdx - pszUdc; pszIdx++; uint32_t idxHcd = 0; rc = RTStrToUInt32Ex(pszIdx, NULL, 10, &idxHcd); if (RT_SUCCESS(rc)) { rc = VERR_NOT_FOUND; for (unsigned i = 0; i < g_cDummyHcd; i++) { if ( g_paDummyHcd[i].idxDummyHcd == idxHcd && !RTStrNCmp(g_paDummyHcd[i].pszUdcName, pszUdc, cchUdcName)) { AssertReturn(!g_paDummyHcd[i].fAvailable, VERR_INVALID_PARAMETER); g_paDummyHcd[i].fAvailable = true; rc = VINF_SUCCESS; break; } } } } return rc; }