1 | /*
|
---|
2 | * The simplest AC3 encoder
|
---|
3 | * Copyright (c) 2000 Fabrice Bellard.
|
---|
4 | *
|
---|
5 | * This library is free software; you can redistribute it and/or
|
---|
6 | * modify it under the terms of the GNU Lesser General Public
|
---|
7 | * License as published by the Free Software Foundation; either
|
---|
8 | * version 2 of the License, or (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This library is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
13 | * Lesser General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU Lesser General Public
|
---|
16 | * License along with this library; if not, write to the Free Software
|
---|
17 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
18 | */
|
---|
19 |
|
---|
20 | /**
|
---|
21 | * @file ac3enc.c
|
---|
22 | * The simplest AC3 encoder.
|
---|
23 | */
|
---|
24 | //#define DEBUG
|
---|
25 | //#define DEBUG_BITALLOC
|
---|
26 | #include "avcodec.h"
|
---|
27 | #include "bitstream.h"
|
---|
28 | #include "crc.h"
|
---|
29 | #include "ac3.h"
|
---|
30 |
|
---|
31 | typedef struct AC3EncodeContext {
|
---|
32 | PutBitContext pb;
|
---|
33 | int nb_channels;
|
---|
34 | int nb_all_channels;
|
---|
35 | int lfe_channel;
|
---|
36 | int bit_rate;
|
---|
37 | unsigned int sample_rate;
|
---|
38 | unsigned int bsid;
|
---|
39 | unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
|
---|
40 | unsigned int frame_size; /* current frame size in words */
|
---|
41 | unsigned int bits_written;
|
---|
42 | unsigned int samples_written;
|
---|
43 | int halfratecod;
|
---|
44 | unsigned int frmsizecod;
|
---|
45 | unsigned int fscod; /* frequency */
|
---|
46 | unsigned int acmod;
|
---|
47 | int lfe;
|
---|
48 | unsigned int bsmod;
|
---|
49 | short last_samples[AC3_MAX_CHANNELS][256];
|
---|
50 | unsigned int chbwcod[AC3_MAX_CHANNELS];
|
---|
51 | int nb_coefs[AC3_MAX_CHANNELS];
|
---|
52 |
|
---|
53 | /* bitrate allocation control */
|
---|
54 | int sgaincod, sdecaycod, fdecaycod, dbkneecod, floorcod;
|
---|
55 | AC3BitAllocParameters bit_alloc;
|
---|
56 | int csnroffst;
|
---|
57 | int fgaincod[AC3_MAX_CHANNELS];
|
---|
58 | int fsnroffst[AC3_MAX_CHANNELS];
|
---|
59 | /* mantissa encoding */
|
---|
60 | int mant1_cnt, mant2_cnt, mant4_cnt;
|
---|
61 | } AC3EncodeContext;
|
---|
62 |
|
---|
63 | #include "ac3tab.h"
|
---|
64 |
|
---|
65 | #define MDCT_NBITS 9
|
---|
66 | #define N (1 << MDCT_NBITS)
|
---|
67 |
|
---|
68 | /* new exponents are sent if their Norm 1 exceed this number */
|
---|
69 | #define EXP_DIFF_THRESHOLD 1000
|
---|
70 |
|
---|
71 | static void fft_init(int ln);
|
---|
72 |
|
---|
73 | static inline int16_t fix15(float a)
|
---|
74 | {
|
---|
75 | int v;
|
---|
76 | v = (int)(a * (float)(1 << 15));
|
---|
77 | if (v < -32767)
|
---|
78 | v = -32767;
|
---|
79 | else if (v > 32767)
|
---|
80 | v = 32767;
|
---|
81 | return v;
|
---|
82 | }
|
---|
83 |
|
---|
84 | static inline int calc_lowcomp1(int a, int b0, int b1)
|
---|
85 | {
|
---|
86 | if ((b0 + 256) == b1) {
|
---|
87 | a = 384 ;
|
---|
88 | } else if (b0 > b1) {
|
---|
89 | a = a - 64;
|
---|
90 | if (a < 0) a=0;
|
---|
91 | }
|
---|
92 | return a;
|
---|
93 | }
|
---|
94 |
|
---|
95 | static inline int calc_lowcomp(int a, int b0, int b1, int bin)
|
---|
96 | {
|
---|
97 | if (bin < 7) {
|
---|
98 | if ((b0 + 256) == b1) {
|
---|
99 | a = 384 ;
|
---|
100 | } else if (b0 > b1) {
|
---|
101 | a = a - 64;
|
---|
102 | if (a < 0) a=0;
|
---|
103 | }
|
---|
104 | } else if (bin < 20) {
|
---|
105 | if ((b0 + 256) == b1) {
|
---|
106 | a = 320 ;
|
---|
107 | } else if (b0 > b1) {
|
---|
108 | a= a - 64;
|
---|
109 | if (a < 0) a=0;
|
---|
110 | }
|
---|
111 | } else {
|
---|
112 | a = a - 128;
|
---|
113 | if (a < 0) a=0;
|
---|
114 | }
|
---|
115 | return a;
|
---|
116 | }
|
---|
117 |
|
---|
118 | /* AC3 bit allocation. The algorithm is the one described in the AC3
|
---|
119 | spec. */
|
---|
120 | void ac3_parametric_bit_allocation(AC3BitAllocParameters *s, uint8_t *bap,
|
---|
121 | int8_t *exp, int start, int end,
|
---|
122 | int snroffset, int fgain, int is_lfe,
|
---|
123 | int deltbae,int deltnseg,
|
---|
124 | uint8_t *deltoffst, uint8_t *deltlen, uint8_t *deltba)
|
---|
125 | {
|
---|
126 | int bin,i,j,k,end1,v,v1,bndstrt,bndend,lowcomp,begin;
|
---|
127 | int fastleak,slowleak,address,tmp;
|
---|
128 | int16_t psd[256]; /* scaled exponents */
|
---|
129 | int16_t bndpsd[50]; /* interpolated exponents */
|
---|
130 | int16_t excite[50]; /* excitation */
|
---|
131 | int16_t mask[50]; /* masking value */
|
---|
132 |
|
---|
133 | /* exponent mapping to PSD */
|
---|
134 | for(bin=start;bin<end;bin++) {
|
---|
135 | psd[bin]=(3072 - (exp[bin] << 7));
|
---|
136 | }
|
---|
137 |
|
---|
138 | /* PSD integration */
|
---|
139 | j=start;
|
---|
140 | k=masktab[start];
|
---|
141 | do {
|
---|
142 | v=psd[j];
|
---|
143 | j++;
|
---|
144 | end1=bndtab[k+1];
|
---|
145 | if (end1 > end) end1=end;
|
---|
146 | for(i=j;i<end1;i++) {
|
---|
147 | int c,adr;
|
---|
148 | /* logadd */
|
---|
149 | v1=psd[j];
|
---|
150 | c=v-v1;
|
---|
151 | if (c >= 0) {
|
---|
152 | adr=c >> 1;
|
---|
153 | if (adr > 255) adr=255;
|
---|
154 | v=v + latab[adr];
|
---|
155 | } else {
|
---|
156 | adr=(-c) >> 1;
|
---|
157 | if (adr > 255) adr=255;
|
---|
158 | v=v1 + latab[adr];
|
---|
159 | }
|
---|
160 | j++;
|
---|
161 | }
|
---|
162 | bndpsd[k]=v;
|
---|
163 | k++;
|
---|
164 | } while (end > bndtab[k]);
|
---|
165 |
|
---|
166 | /* excitation function */
|
---|
167 | bndstrt = masktab[start];
|
---|
168 | bndend = masktab[end-1] + 1;
|
---|
169 |
|
---|
170 | if (bndstrt == 0) {
|
---|
171 | lowcomp = 0;
|
---|
172 | lowcomp = calc_lowcomp1(lowcomp, bndpsd[0], bndpsd[1]) ;
|
---|
173 | excite[0] = bndpsd[0] - fgain - lowcomp ;
|
---|
174 | lowcomp = calc_lowcomp1(lowcomp, bndpsd[1], bndpsd[2]) ;
|
---|
175 | excite[1] = bndpsd[1] - fgain - lowcomp ;
|
---|
176 | begin = 7 ;
|
---|
177 | for (bin = 2; bin < 7; bin++) {
|
---|
178 | if (!(is_lfe && bin == 6))
|
---|
179 | lowcomp = calc_lowcomp1(lowcomp, bndpsd[bin], bndpsd[bin+1]) ;
|
---|
180 | fastleak = bndpsd[bin] - fgain ;
|
---|
181 | slowleak = bndpsd[bin] - s->sgain ;
|
---|
182 | excite[bin] = fastleak - lowcomp ;
|
---|
183 | if (!(is_lfe && bin == 6)) {
|
---|
184 | if (bndpsd[bin] <= bndpsd[bin+1]) {
|
---|
185 | begin = bin + 1 ;
|
---|
186 | break ;
|
---|
187 | }
|
---|
188 | }
|
---|
189 | }
|
---|
190 |
|
---|
191 | end1=bndend;
|
---|
192 | if (end1 > 22) end1=22;
|
---|
193 |
|
---|
194 | for (bin = begin; bin < end1; bin++) {
|
---|
195 | if (!(is_lfe && bin == 6))
|
---|
196 | lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ;
|
---|
197 |
|
---|
198 | fastleak -= s->fdecay ;
|
---|
199 | v = bndpsd[bin] - fgain;
|
---|
200 | if (fastleak < v) fastleak = v;
|
---|
201 |
|
---|
202 | slowleak -= s->sdecay ;
|
---|
203 | v = bndpsd[bin] - s->sgain;
|
---|
204 | if (slowleak < v) slowleak = v;
|
---|
205 |
|
---|
206 | v=fastleak - lowcomp;
|
---|
207 | if (slowleak > v) v=slowleak;
|
---|
208 |
|
---|
209 | excite[bin] = v;
|
---|
210 | }
|
---|
211 | begin = 22;
|
---|
212 | } else {
|
---|
213 | /* coupling channel */
|
---|
214 | begin = bndstrt;
|
---|
215 |
|
---|
216 | fastleak = (s->cplfleak << 8) + 768;
|
---|
217 | slowleak = (s->cplsleak << 8) + 768;
|
---|
218 | }
|
---|
219 |
|
---|
220 | for (bin = begin; bin < bndend; bin++) {
|
---|
221 | fastleak -= s->fdecay ;
|
---|
222 | v = bndpsd[bin] - fgain;
|
---|
223 | if (fastleak < v) fastleak = v;
|
---|
224 | slowleak -= s->sdecay ;
|
---|
225 | v = bndpsd[bin] - s->sgain;
|
---|
226 | if (slowleak < v) slowleak = v;
|
---|
227 |
|
---|
228 | v=fastleak;
|
---|
229 | if (slowleak > v) v = slowleak;
|
---|
230 | excite[bin] = v;
|
---|
231 | }
|
---|
232 |
|
---|
233 | /* compute masking curve */
|
---|
234 |
|
---|
235 | for (bin = bndstrt; bin < bndend; bin++) {
|
---|
236 | v1 = excite[bin];
|
---|
237 | tmp = s->dbknee - bndpsd[bin];
|
---|
238 | if (tmp > 0) {
|
---|
239 | v1 += tmp >> 2;
|
---|
240 | }
|
---|
241 | v=hth[bin >> s->halfratecod][s->fscod];
|
---|
242 | if (v1 > v) v=v1;
|
---|
243 | mask[bin] = v;
|
---|
244 | }
|
---|
245 |
|
---|
246 | /* delta bit allocation */
|
---|
247 |
|
---|
248 | if (deltbae == 0 || deltbae == 1) {
|
---|
249 | int band, seg, delta;
|
---|
250 | band = 0 ;
|
---|
251 | for (seg = 0; seg < deltnseg; seg++) {
|
---|
252 | band += deltoffst[seg] ;
|
---|
253 | if (deltba[seg] >= 4) {
|
---|
254 | delta = (deltba[seg] - 3) << 7;
|
---|
255 | } else {
|
---|
256 | delta = (deltba[seg] - 4) << 7;
|
---|
257 | }
|
---|
258 | for (k = 0; k < deltlen[seg]; k++) {
|
---|
259 | mask[band] += delta ;
|
---|
260 | band++ ;
|
---|
261 | }
|
---|
262 | }
|
---|
263 | }
|
---|
264 |
|
---|
265 | /* compute bit allocation */
|
---|
266 |
|
---|
267 | i = start ;
|
---|
268 | j = masktab[start] ;
|
---|
269 | do {
|
---|
270 | v=mask[j];
|
---|
271 | v -= snroffset ;
|
---|
272 | v -= s->floor ;
|
---|
273 | if (v < 0) v = 0;
|
---|
274 | v &= 0x1fe0 ;
|
---|
275 | v += s->floor ;
|
---|
276 |
|
---|
277 | end1=bndtab[j] + bndsz[j];
|
---|
278 | if (end1 > end) end1=end;
|
---|
279 |
|
---|
280 | for (k = i; k < end1; k++) {
|
---|
281 | address = (psd[i] - v) >> 5 ;
|
---|
282 | if (address < 0) address=0;
|
---|
283 | else if (address > 63) address=63;
|
---|
284 | bap[i] = baptab[address];
|
---|
285 | i++;
|
---|
286 | }
|
---|
287 | } while (end > bndtab[j++]) ;
|
---|
288 | }
|
---|
289 |
|
---|
290 | typedef struct IComplex {
|
---|
291 | short re,im;
|
---|
292 | } IComplex;
|
---|
293 |
|
---|
294 | static void fft_init(int ln)
|
---|
295 | {
|
---|
296 | int i, j, m, n;
|
---|
297 | float alpha;
|
---|
298 |
|
---|
299 | n = 1 << ln;
|
---|
300 |
|
---|
301 | for(i=0;i<(n/2);i++) {
|
---|
302 | alpha = 2 * M_PI * (float)i / (float)n;
|
---|
303 | costab[i] = fix15(cos(alpha));
|
---|
304 | sintab[i] = fix15(sin(alpha));
|
---|
305 | }
|
---|
306 |
|
---|
307 | for(i=0;i<n;i++) {
|
---|
308 | m=0;
|
---|
309 | for(j=0;j<ln;j++) {
|
---|
310 | m |= ((i >> j) & 1) << (ln-j-1);
|
---|
311 | }
|
---|
312 | fft_rev[i]=m;
|
---|
313 | }
|
---|
314 | }
|
---|
315 |
|
---|
316 | /* butter fly op */
|
---|
317 | #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
|
---|
318 | {\
|
---|
319 | int ax, ay, bx, by;\
|
---|
320 | bx=pre1;\
|
---|
321 | by=pim1;\
|
---|
322 | ax=qre1;\
|
---|
323 | ay=qim1;\
|
---|
324 | pre = (bx + ax) >> 1;\
|
---|
325 | pim = (by + ay) >> 1;\
|
---|
326 | qre = (bx - ax) >> 1;\
|
---|
327 | qim = (by - ay) >> 1;\
|
---|
328 | }
|
---|
329 |
|
---|
330 | #define MUL16(a,b) ((a) * (b))
|
---|
331 |
|
---|
332 | #define CMUL(pre, pim, are, aim, bre, bim) \
|
---|
333 | {\
|
---|
334 | pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
|
---|
335 | pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
|
---|
336 | }
|
---|
337 |
|
---|
338 |
|
---|
339 | /* do a 2^n point complex fft on 2^ln points. */
|
---|
340 | static void fft(IComplex *z, int ln)
|
---|
341 | {
|
---|
342 | int j, l, np, np2;
|
---|
343 | int nblocks, nloops;
|
---|
344 | register IComplex *p,*q;
|
---|
345 | int tmp_re, tmp_im;
|
---|
346 |
|
---|
347 | np = 1 << ln;
|
---|
348 |
|
---|
349 | /* reverse */
|
---|
350 | for(j=0;j<np;j++) {
|
---|
351 | int k;
|
---|
352 | IComplex tmp;
|
---|
353 | k = fft_rev[j];
|
---|
354 | if (k < j) {
|
---|
355 | tmp = z[k];
|
---|
356 | z[k] = z[j];
|
---|
357 | z[j] = tmp;
|
---|
358 | }
|
---|
359 | }
|
---|
360 |
|
---|
361 | /* pass 0 */
|
---|
362 |
|
---|
363 | p=&z[0];
|
---|
364 | j=(np >> 1);
|
---|
365 | do {
|
---|
366 | BF(p[0].re, p[0].im, p[1].re, p[1].im,
|
---|
367 | p[0].re, p[0].im, p[1].re, p[1].im);
|
---|
368 | p+=2;
|
---|
369 | } while (--j != 0);
|
---|
370 |
|
---|
371 | /* pass 1 */
|
---|
372 |
|
---|
373 | p=&z[0];
|
---|
374 | j=np >> 2;
|
---|
375 | do {
|
---|
376 | BF(p[0].re, p[0].im, p[2].re, p[2].im,
|
---|
377 | p[0].re, p[0].im, p[2].re, p[2].im);
|
---|
378 | BF(p[1].re, p[1].im, p[3].re, p[3].im,
|
---|
379 | p[1].re, p[1].im, p[3].im, -p[3].re);
|
---|
380 | p+=4;
|
---|
381 | } while (--j != 0);
|
---|
382 |
|
---|
383 | /* pass 2 .. ln-1 */
|
---|
384 |
|
---|
385 | nblocks = np >> 3;
|
---|
386 | nloops = 1 << 2;
|
---|
387 | np2 = np >> 1;
|
---|
388 | do {
|
---|
389 | p = z;
|
---|
390 | q = z + nloops;
|
---|
391 | for (j = 0; j < nblocks; ++j) {
|
---|
392 |
|
---|
393 | BF(p->re, p->im, q->re, q->im,
|
---|
394 | p->re, p->im, q->re, q->im);
|
---|
395 |
|
---|
396 | p++;
|
---|
397 | q++;
|
---|
398 | for(l = nblocks; l < np2; l += nblocks) {
|
---|
399 | CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
|
---|
400 | BF(p->re, p->im, q->re, q->im,
|
---|
401 | p->re, p->im, tmp_re, tmp_im);
|
---|
402 | p++;
|
---|
403 | q++;
|
---|
404 | }
|
---|
405 | p += nloops;
|
---|
406 | q += nloops;
|
---|
407 | }
|
---|
408 | nblocks = nblocks >> 1;
|
---|
409 | nloops = nloops << 1;
|
---|
410 | } while (nblocks != 0);
|
---|
411 | }
|
---|
412 |
|
---|
413 | /* do a 512 point mdct */
|
---|
414 | static void mdct512(int32_t *out, int16_t *in)
|
---|
415 | {
|
---|
416 | int i, re, im, re1, im1;
|
---|
417 | int16_t rot[N];
|
---|
418 | IComplex x[N/4];
|
---|
419 |
|
---|
420 | /* shift to simplify computations */
|
---|
421 | for(i=0;i<N/4;i++)
|
---|
422 | rot[i] = -in[i + 3*N/4];
|
---|
423 | for(i=N/4;i<N;i++)
|
---|
424 | rot[i] = in[i - N/4];
|
---|
425 |
|
---|
426 | /* pre rotation */
|
---|
427 | for(i=0;i<N/4;i++) {
|
---|
428 | re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
|
---|
429 | im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
|
---|
430 | CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
|
---|
431 | }
|
---|
432 |
|
---|
433 | fft(x, MDCT_NBITS - 2);
|
---|
434 |
|
---|
435 | /* post rotation */
|
---|
436 | for(i=0;i<N/4;i++) {
|
---|
437 | re = x[i].re;
|
---|
438 | im = x[i].im;
|
---|
439 | CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
|
---|
440 | out[2*i] = im1;
|
---|
441 | out[N/2-1-2*i] = re1;
|
---|
442 | }
|
---|
443 | }
|
---|
444 |
|
---|
445 | /* XXX: use another norm ? */
|
---|
446 | static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
|
---|
447 | {
|
---|
448 | int sum, i;
|
---|
449 | sum = 0;
|
---|
450 | for(i=0;i<n;i++) {
|
---|
451 | sum += abs(exp1[i] - exp2[i]);
|
---|
452 | }
|
---|
453 | return sum;
|
---|
454 | }
|
---|
455 |
|
---|
456 | static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
|
---|
457 | uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
---|
458 | int ch, int is_lfe)
|
---|
459 | {
|
---|
460 | int i, j;
|
---|
461 | int exp_diff;
|
---|
462 |
|
---|
463 | /* estimate if the exponent variation & decide if they should be
|
---|
464 | reused in the next frame */
|
---|
465 | exp_strategy[0][ch] = EXP_NEW;
|
---|
466 | for(i=1;i<NB_BLOCKS;i++) {
|
---|
467 | exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
|
---|
468 | #ifdef DEBUG
|
---|
469 | av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);
|
---|
470 | #endif
|
---|
471 | if (exp_diff > EXP_DIFF_THRESHOLD)
|
---|
472 | exp_strategy[i][ch] = EXP_NEW;
|
---|
473 | else
|
---|
474 | exp_strategy[i][ch] = EXP_REUSE;
|
---|
475 | }
|
---|
476 | if (is_lfe)
|
---|
477 | return;
|
---|
478 |
|
---|
479 | /* now select the encoding strategy type : if exponents are often
|
---|
480 | recoded, we use a coarse encoding */
|
---|
481 | i = 0;
|
---|
482 | while (i < NB_BLOCKS) {
|
---|
483 | j = i + 1;
|
---|
484 | while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
|
---|
485 | j++;
|
---|
486 | switch(j - i) {
|
---|
487 | case 1:
|
---|
488 | exp_strategy[i][ch] = EXP_D45;
|
---|
489 | break;
|
---|
490 | case 2:
|
---|
491 | case 3:
|
---|
492 | exp_strategy[i][ch] = EXP_D25;
|
---|
493 | break;
|
---|
494 | default:
|
---|
495 | exp_strategy[i][ch] = EXP_D15;
|
---|
496 | break;
|
---|
497 | }
|
---|
498 | i = j;
|
---|
499 | }
|
---|
500 | }
|
---|
501 |
|
---|
502 | /* set exp[i] to min(exp[i], exp1[i]) */
|
---|
503 | static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
|
---|
504 | {
|
---|
505 | int i;
|
---|
506 |
|
---|
507 | for(i=0;i<n;i++) {
|
---|
508 | if (exp1[i] < exp[i])
|
---|
509 | exp[i] = exp1[i];
|
---|
510 | }
|
---|
511 | }
|
---|
512 |
|
---|
513 | /* update the exponents so that they are the ones the decoder will
|
---|
514 | decode. Return the number of bits used to code the exponents */
|
---|
515 | static int encode_exp(uint8_t encoded_exp[N/2],
|
---|
516 | uint8_t exp[N/2],
|
---|
517 | int nb_exps,
|
---|
518 | int exp_strategy)
|
---|
519 | {
|
---|
520 | int group_size, nb_groups, i, j, k, exp_min;
|
---|
521 | uint8_t exp1[N/2];
|
---|
522 |
|
---|
523 | switch(exp_strategy) {
|
---|
524 | case EXP_D15:
|
---|
525 | group_size = 1;
|
---|
526 | break;
|
---|
527 | case EXP_D25:
|
---|
528 | group_size = 2;
|
---|
529 | break;
|
---|
530 | default:
|
---|
531 | case EXP_D45:
|
---|
532 | group_size = 4;
|
---|
533 | break;
|
---|
534 | }
|
---|
535 | nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
|
---|
536 |
|
---|
537 | /* for each group, compute the minimum exponent */
|
---|
538 | exp1[0] = exp[0]; /* DC exponent is handled separately */
|
---|
539 | k = 1;
|
---|
540 | for(i=1;i<=nb_groups;i++) {
|
---|
541 | exp_min = exp[k];
|
---|
542 | assert(exp_min >= 0 && exp_min <= 24);
|
---|
543 | for(j=1;j<group_size;j++) {
|
---|
544 | if (exp[k+j] < exp_min)
|
---|
545 | exp_min = exp[k+j];
|
---|
546 | }
|
---|
547 | exp1[i] = exp_min;
|
---|
548 | k += group_size;
|
---|
549 | }
|
---|
550 |
|
---|
551 | /* constraint for DC exponent */
|
---|
552 | if (exp1[0] > 15)
|
---|
553 | exp1[0] = 15;
|
---|
554 |
|
---|
555 | /* Decrease the delta between each groups to within 2
|
---|
556 | * so that they can be differentially encoded */
|
---|
557 | for (i=1;i<=nb_groups;i++)
|
---|
558 | exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
|
---|
559 | for (i=nb_groups-1;i>=0;i--)
|
---|
560 | exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
|
---|
561 |
|
---|
562 | /* now we have the exponent values the decoder will see */
|
---|
563 | encoded_exp[0] = exp1[0];
|
---|
564 | k = 1;
|
---|
565 | for(i=1;i<=nb_groups;i++) {
|
---|
566 | for(j=0;j<group_size;j++) {
|
---|
567 | encoded_exp[k+j] = exp1[i];
|
---|
568 | }
|
---|
569 | k += group_size;
|
---|
570 | }
|
---|
571 |
|
---|
572 | #if defined(DEBUG)
|
---|
573 | av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
|
---|
574 | for(i=0;i<=nb_groups * group_size;i++) {
|
---|
575 | av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
|
---|
576 | }
|
---|
577 | av_log(NULL, AV_LOG_DEBUG, "\n");
|
---|
578 | #endif
|
---|
579 |
|
---|
580 | return 4 + (nb_groups / 3) * 7;
|
---|
581 | }
|
---|
582 |
|
---|
583 | /* return the size in bits taken by the mantissa */
|
---|
584 | static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
|
---|
585 | {
|
---|
586 | int bits, mant, i;
|
---|
587 |
|
---|
588 | bits = 0;
|
---|
589 | for(i=0;i<nb_coefs;i++) {
|
---|
590 | mant = m[i];
|
---|
591 | switch(mant) {
|
---|
592 | case 0:
|
---|
593 | /* nothing */
|
---|
594 | break;
|
---|
595 | case 1:
|
---|
596 | /* 3 mantissa in 5 bits */
|
---|
597 | if (s->mant1_cnt == 0)
|
---|
598 | bits += 5;
|
---|
599 | if (++s->mant1_cnt == 3)
|
---|
600 | s->mant1_cnt = 0;
|
---|
601 | break;
|
---|
602 | case 2:
|
---|
603 | /* 3 mantissa in 7 bits */
|
---|
604 | if (s->mant2_cnt == 0)
|
---|
605 | bits += 7;
|
---|
606 | if (++s->mant2_cnt == 3)
|
---|
607 | s->mant2_cnt = 0;
|
---|
608 | break;
|
---|
609 | case 3:
|
---|
610 | bits += 3;
|
---|
611 | break;
|
---|
612 | case 4:
|
---|
613 | /* 2 mantissa in 7 bits */
|
---|
614 | if (s->mant4_cnt == 0)
|
---|
615 | bits += 7;
|
---|
616 | if (++s->mant4_cnt == 2)
|
---|
617 | s->mant4_cnt = 0;
|
---|
618 | break;
|
---|
619 | case 14:
|
---|
620 | bits += 14;
|
---|
621 | break;
|
---|
622 | case 15:
|
---|
623 | bits += 16;
|
---|
624 | break;
|
---|
625 | default:
|
---|
626 | bits += mant - 1;
|
---|
627 | break;
|
---|
628 | }
|
---|
629 | }
|
---|
630 | return bits;
|
---|
631 | }
|
---|
632 |
|
---|
633 |
|
---|
634 | static int bit_alloc(AC3EncodeContext *s,
|
---|
635 | uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
---|
636 | uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
---|
637 | uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
|
---|
638 | int frame_bits, int csnroffst, int fsnroffst)
|
---|
639 | {
|
---|
640 | int i, ch;
|
---|
641 |
|
---|
642 | /* compute size */
|
---|
643 | for(i=0;i<NB_BLOCKS;i++) {
|
---|
644 | s->mant1_cnt = 0;
|
---|
645 | s->mant2_cnt = 0;
|
---|
646 | s->mant4_cnt = 0;
|
---|
647 | for(ch=0;ch<s->nb_all_channels;ch++) {
|
---|
648 | ac3_parametric_bit_allocation(&s->bit_alloc,
|
---|
649 | bap[i][ch], (int8_t *)encoded_exp[i][ch],
|
---|
650 | 0, s->nb_coefs[ch],
|
---|
651 | (((csnroffst-15) << 4) +
|
---|
652 | fsnroffst) << 2,
|
---|
653 | fgaintab[s->fgaincod[ch]],
|
---|
654 | ch == s->lfe_channel,
|
---|
655 | 2, 0, NULL, NULL, NULL);
|
---|
656 | frame_bits += compute_mantissa_size(s, bap[i][ch],
|
---|
657 | s->nb_coefs[ch]);
|
---|
658 | }
|
---|
659 | }
|
---|
660 | #if 0
|
---|
661 | printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
|
---|
662 | csnroffst, fsnroffst, frame_bits,
|
---|
663 | 16 * s->frame_size - ((frame_bits + 7) & ~7));
|
---|
664 | #endif
|
---|
665 | return 16 * s->frame_size - frame_bits;
|
---|
666 | }
|
---|
667 |
|
---|
668 | #define SNR_INC1 4
|
---|
669 |
|
---|
670 | static int compute_bit_allocation(AC3EncodeContext *s,
|
---|
671 | uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
---|
672 | uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
---|
673 | uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
|
---|
674 | int frame_bits)
|
---|
675 | {
|
---|
676 | int i, ch;
|
---|
677 | int csnroffst, fsnroffst;
|
---|
678 | uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
---|
679 | static int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
|
---|
680 |
|
---|
681 | /* init default parameters */
|
---|
682 | s->sdecaycod = 2;
|
---|
683 | s->fdecaycod = 1;
|
---|
684 | s->sgaincod = 1;
|
---|
685 | s->dbkneecod = 2;
|
---|
686 | s->floorcod = 4;
|
---|
687 | for(ch=0;ch<s->nb_all_channels;ch++)
|
---|
688 | s->fgaincod[ch] = 4;
|
---|
689 |
|
---|
690 | /* compute real values */
|
---|
691 | s->bit_alloc.fscod = s->fscod;
|
---|
692 | s->bit_alloc.halfratecod = s->halfratecod;
|
---|
693 | s->bit_alloc.sdecay = sdecaytab[s->sdecaycod] >> s->halfratecod;
|
---|
694 | s->bit_alloc.fdecay = fdecaytab[s->fdecaycod] >> s->halfratecod;
|
---|
695 | s->bit_alloc.sgain = sgaintab[s->sgaincod];
|
---|
696 | s->bit_alloc.dbknee = dbkneetab[s->dbkneecod];
|
---|
697 | s->bit_alloc.floor = floortab[s->floorcod];
|
---|
698 |
|
---|
699 | /* header size */
|
---|
700 | frame_bits += 65;
|
---|
701 | // if (s->acmod == 2)
|
---|
702 | // frame_bits += 2;
|
---|
703 | frame_bits += frame_bits_inc[s->acmod];
|
---|
704 |
|
---|
705 | /* audio blocks */
|
---|
706 | for(i=0;i<NB_BLOCKS;i++) {
|
---|
707 | frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
|
---|
708 | if (s->acmod == 2) {
|
---|
709 | frame_bits++; /* rematstr */
|
---|
710 | if(i==0) frame_bits += 4;
|
---|
711 | }
|
---|
712 | frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
|
---|
713 | if (s->lfe)
|
---|
714 | frame_bits++; /* lfeexpstr */
|
---|
715 | for(ch=0;ch<s->nb_channels;ch++) {
|
---|
716 | if (exp_strategy[i][ch] != EXP_REUSE)
|
---|
717 | frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
|
---|
718 | }
|
---|
719 | frame_bits++; /* baie */
|
---|
720 | frame_bits++; /* snr */
|
---|
721 | frame_bits += 2; /* delta / skip */
|
---|
722 | }
|
---|
723 | frame_bits++; /* cplinu for block 0 */
|
---|
724 | /* bit alloc info */
|
---|
725 | /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
|
---|
726 | /* csnroffset[6] */
|
---|
727 | /* (fsnoffset[4] + fgaincod[4]) * c */
|
---|
728 | frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
|
---|
729 |
|
---|
730 | /* auxdatae, crcrsv */
|
---|
731 | frame_bits += 2;
|
---|
732 |
|
---|
733 | /* CRC */
|
---|
734 | frame_bits += 16;
|
---|
735 |
|
---|
736 | /* now the big work begins : do the bit allocation. Modify the snr
|
---|
737 | offset until we can pack everything in the requested frame size */
|
---|
738 |
|
---|
739 | csnroffst = s->csnroffst;
|
---|
740 | while (csnroffst >= 0 &&
|
---|
741 | bit_alloc(s, bap, encoded_exp, exp_strategy, frame_bits, csnroffst, 0) < 0)
|
---|
742 | csnroffst -= SNR_INC1;
|
---|
743 | if (csnroffst < 0) {
|
---|
744 | av_log(NULL, AV_LOG_ERROR, "Bit allocation failed, try increasing the bitrate, -ab 384 for example!\n");
|
---|
745 | return -1;
|
---|
746 | }
|
---|
747 | while ((csnroffst + SNR_INC1) <= 63 &&
|
---|
748 | bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
|
---|
749 | csnroffst + SNR_INC1, 0) >= 0) {
|
---|
750 | csnroffst += SNR_INC1;
|
---|
751 | memcpy(bap, bap1, sizeof(bap1));
|
---|
752 | }
|
---|
753 | while ((csnroffst + 1) <= 63 &&
|
---|
754 | bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, csnroffst + 1, 0) >= 0) {
|
---|
755 | csnroffst++;
|
---|
756 | memcpy(bap, bap1, sizeof(bap1));
|
---|
757 | }
|
---|
758 |
|
---|
759 | fsnroffst = 0;
|
---|
760 | while ((fsnroffst + SNR_INC1) <= 15 &&
|
---|
761 | bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
|
---|
762 | csnroffst, fsnroffst + SNR_INC1) >= 0) {
|
---|
763 | fsnroffst += SNR_INC1;
|
---|
764 | memcpy(bap, bap1, sizeof(bap1));
|
---|
765 | }
|
---|
766 | while ((fsnroffst + 1) <= 15 &&
|
---|
767 | bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
|
---|
768 | csnroffst, fsnroffst + 1) >= 0) {
|
---|
769 | fsnroffst++;
|
---|
770 | memcpy(bap, bap1, sizeof(bap1));
|
---|
771 | }
|
---|
772 |
|
---|
773 | s->csnroffst = csnroffst;
|
---|
774 | for(ch=0;ch<s->nb_all_channels;ch++)
|
---|
775 | s->fsnroffst[ch] = fsnroffst;
|
---|
776 | #if defined(DEBUG_BITALLOC)
|
---|
777 | {
|
---|
778 | int j;
|
---|
779 |
|
---|
780 | for(i=0;i<6;i++) {
|
---|
781 | for(ch=0;ch<s->nb_all_channels;ch++) {
|
---|
782 | printf("Block #%d Ch%d:\n", i, ch);
|
---|
783 | printf("bap=");
|
---|
784 | for(j=0;j<s->nb_coefs[ch];j++) {
|
---|
785 | printf("%d ",bap[i][ch][j]);
|
---|
786 | }
|
---|
787 | printf("\n");
|
---|
788 | }
|
---|
789 | }
|
---|
790 | }
|
---|
791 | #endif
|
---|
792 | return 0;
|
---|
793 | }
|
---|
794 |
|
---|
795 | void ac3_common_init(void)
|
---|
796 | {
|
---|
797 | int i, j, k, l, v;
|
---|
798 | /* compute bndtab and masktab from bandsz */
|
---|
799 | k = 0;
|
---|
800 | l = 0;
|
---|
801 | for(i=0;i<50;i++) {
|
---|
802 | bndtab[i] = l;
|
---|
803 | v = bndsz[i];
|
---|
804 | for(j=0;j<v;j++) masktab[k++]=i;
|
---|
805 | l += v;
|
---|
806 | }
|
---|
807 | bndtab[50] = 0;
|
---|
808 | }
|
---|
809 |
|
---|
810 |
|
---|
811 | static int AC3_encode_init(AVCodecContext *avctx)
|
---|
812 | {
|
---|
813 | int freq = avctx->sample_rate;
|
---|
814 | int bitrate = avctx->bit_rate;
|
---|
815 | int channels = avctx->channels;
|
---|
816 | AC3EncodeContext *s = avctx->priv_data;
|
---|
817 | int i, j, ch;
|
---|
818 | float alpha;
|
---|
819 | static const uint8_t acmod_defs[6] = {
|
---|
820 | 0x01, /* C */
|
---|
821 | 0x02, /* L R */
|
---|
822 | 0x03, /* L C R */
|
---|
823 | 0x06, /* L R SL SR */
|
---|
824 | 0x07, /* L C R SL SR */
|
---|
825 | 0x07, /* L C R SL SR (+LFE) */
|
---|
826 | };
|
---|
827 |
|
---|
828 | avctx->frame_size = AC3_FRAME_SIZE;
|
---|
829 |
|
---|
830 | /* number of channels */
|
---|
831 | if (channels < 1 || channels > 6)
|
---|
832 | return -1;
|
---|
833 | s->acmod = acmod_defs[channels - 1];
|
---|
834 | s->lfe = (channels == 6) ? 1 : 0;
|
---|
835 | s->nb_all_channels = channels;
|
---|
836 | s->nb_channels = channels > 5 ? 5 : channels;
|
---|
837 | s->lfe_channel = s->lfe ? 5 : -1;
|
---|
838 |
|
---|
839 | /* frequency */
|
---|
840 | for(i=0;i<3;i++) {
|
---|
841 | for(j=0;j<3;j++)
|
---|
842 | if ((ac3_freqs[j] >> i) == freq)
|
---|
843 | goto found;
|
---|
844 | }
|
---|
845 | return -1;
|
---|
846 | found:
|
---|
847 | s->sample_rate = freq;
|
---|
848 | s->halfratecod = i;
|
---|
849 | s->fscod = j;
|
---|
850 | s->bsid = 8 + s->halfratecod;
|
---|
851 | s->bsmod = 0; /* complete main audio service */
|
---|
852 |
|
---|
853 | /* bitrate & frame size */
|
---|
854 | bitrate /= 1000;
|
---|
855 | for(i=0;i<19;i++) {
|
---|
856 | if ((ac3_bitratetab[i] >> s->halfratecod) == bitrate)
|
---|
857 | break;
|
---|
858 | }
|
---|
859 | if (i == 19)
|
---|
860 | return -1;
|
---|
861 | s->bit_rate = bitrate;
|
---|
862 | s->frmsizecod = i << 1;
|
---|
863 | s->frame_size_min = (bitrate * 1000 * AC3_FRAME_SIZE) / (freq * 16);
|
---|
864 | s->bits_written = 0;
|
---|
865 | s->samples_written = 0;
|
---|
866 | s->frame_size = s->frame_size_min;
|
---|
867 |
|
---|
868 | /* bit allocation init */
|
---|
869 | for(ch=0;ch<s->nb_channels;ch++) {
|
---|
870 | /* bandwidth for each channel */
|
---|
871 | /* XXX: should compute the bandwidth according to the frame
|
---|
872 | size, so that we avoid anoying high freq artefacts */
|
---|
873 | s->chbwcod[ch] = 50; /* sample bandwidth as mpeg audio layer 2 table 0 */
|
---|
874 | s->nb_coefs[ch] = ((s->chbwcod[ch] + 12) * 3) + 37;
|
---|
875 | }
|
---|
876 | if (s->lfe) {
|
---|
877 | s->nb_coefs[s->lfe_channel] = 7; /* fixed */
|
---|
878 | }
|
---|
879 | /* initial snr offset */
|
---|
880 | s->csnroffst = 40;
|
---|
881 |
|
---|
882 | ac3_common_init();
|
---|
883 |
|
---|
884 | /* mdct init */
|
---|
885 | fft_init(MDCT_NBITS - 2);
|
---|
886 | for(i=0;i<N/4;i++) {
|
---|
887 | alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
|
---|
888 | xcos1[i] = fix15(-cos(alpha));
|
---|
889 | xsin1[i] = fix15(-sin(alpha));
|
---|
890 | }
|
---|
891 |
|
---|
892 | avctx->coded_frame= avcodec_alloc_frame();
|
---|
893 | avctx->coded_frame->key_frame= 1;
|
---|
894 |
|
---|
895 | return 0;
|
---|
896 | }
|
---|
897 |
|
---|
898 | /* output the AC3 frame header */
|
---|
899 | static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
|
---|
900 | {
|
---|
901 | init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
|
---|
902 |
|
---|
903 | put_bits(&s->pb, 16, 0x0b77); /* frame header */
|
---|
904 | put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
|
---|
905 | put_bits(&s->pb, 2, s->fscod);
|
---|
906 | put_bits(&s->pb, 6, s->frmsizecod + (s->frame_size - s->frame_size_min));
|
---|
907 | put_bits(&s->pb, 5, s->bsid);
|
---|
908 | put_bits(&s->pb, 3, s->bsmod);
|
---|
909 | put_bits(&s->pb, 3, s->acmod);
|
---|
910 | if ((s->acmod & 0x01) && s->acmod != 0x01)
|
---|
911 | put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
|
---|
912 | if (s->acmod & 0x04)
|
---|
913 | put_bits(&s->pb, 2, 1); /* XXX -6 dB */
|
---|
914 | if (s->acmod == 0x02)
|
---|
915 | put_bits(&s->pb, 2, 0); /* surround not indicated */
|
---|
916 | put_bits(&s->pb, 1, s->lfe); /* LFE */
|
---|
917 | put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
|
---|
918 | put_bits(&s->pb, 1, 0); /* no compression control word */
|
---|
919 | put_bits(&s->pb, 1, 0); /* no lang code */
|
---|
920 | put_bits(&s->pb, 1, 0); /* no audio production info */
|
---|
921 | put_bits(&s->pb, 1, 0); /* no copyright */
|
---|
922 | put_bits(&s->pb, 1, 1); /* original bitstream */
|
---|
923 | put_bits(&s->pb, 1, 0); /* no time code 1 */
|
---|
924 | put_bits(&s->pb, 1, 0); /* no time code 2 */
|
---|
925 | put_bits(&s->pb, 1, 0); /* no addtional bit stream info */
|
---|
926 | }
|
---|
927 |
|
---|
928 | /* symetric quantization on 'levels' levels */
|
---|
929 | static inline int sym_quant(int c, int e, int levels)
|
---|
930 | {
|
---|
931 | int v;
|
---|
932 |
|
---|
933 | if (c >= 0) {
|
---|
934 | v = (levels * (c << e)) >> 24;
|
---|
935 | v = (v + 1) >> 1;
|
---|
936 | v = (levels >> 1) + v;
|
---|
937 | } else {
|
---|
938 | v = (levels * ((-c) << e)) >> 24;
|
---|
939 | v = (v + 1) >> 1;
|
---|
940 | v = (levels >> 1) - v;
|
---|
941 | }
|
---|
942 | assert (v >= 0 && v < levels);
|
---|
943 | return v;
|
---|
944 | }
|
---|
945 |
|
---|
946 | /* asymetric quantization on 2^qbits levels */
|
---|
947 | static inline int asym_quant(int c, int e, int qbits)
|
---|
948 | {
|
---|
949 | int lshift, m, v;
|
---|
950 |
|
---|
951 | lshift = e + qbits - 24;
|
---|
952 | if (lshift >= 0)
|
---|
953 | v = c << lshift;
|
---|
954 | else
|
---|
955 | v = c >> (-lshift);
|
---|
956 | /* rounding */
|
---|
957 | v = (v + 1) >> 1;
|
---|
958 | m = (1 << (qbits-1));
|
---|
959 | if (v >= m)
|
---|
960 | v = m - 1;
|
---|
961 | assert(v >= -m);
|
---|
962 | return v & ((1 << qbits)-1);
|
---|
963 | }
|
---|
964 |
|
---|
965 | /* Output one audio block. There are NB_BLOCKS audio blocks in one AC3
|
---|
966 | frame */
|
---|
967 | static void output_audio_block(AC3EncodeContext *s,
|
---|
968 | uint8_t exp_strategy[AC3_MAX_CHANNELS],
|
---|
969 | uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
|
---|
970 | uint8_t bap[AC3_MAX_CHANNELS][N/2],
|
---|
971 | int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
|
---|
972 | int8_t global_exp[AC3_MAX_CHANNELS],
|
---|
973 | int block_num)
|
---|
974 | {
|
---|
975 | int ch, nb_groups, group_size, i, baie, rbnd;
|
---|
976 | uint8_t *p;
|
---|
977 | uint16_t qmant[AC3_MAX_CHANNELS][N/2];
|
---|
978 | int exp0, exp1;
|
---|
979 | int mant1_cnt, mant2_cnt, mant4_cnt;
|
---|
980 | uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
|
---|
981 | int delta0, delta1, delta2;
|
---|
982 |
|
---|
983 | for(ch=0;ch<s->nb_channels;ch++)
|
---|
984 | put_bits(&s->pb, 1, 0); /* 512 point MDCT */
|
---|
985 | for(ch=0;ch<s->nb_channels;ch++)
|
---|
986 | put_bits(&s->pb, 1, 1); /* no dither */
|
---|
987 | put_bits(&s->pb, 1, 0); /* no dynamic range */
|
---|
988 | if (block_num == 0) {
|
---|
989 | /* for block 0, even if no coupling, we must say it. This is a
|
---|
990 | waste of bit :-) */
|
---|
991 | put_bits(&s->pb, 1, 1); /* coupling strategy present */
|
---|
992 | put_bits(&s->pb, 1, 0); /* no coupling strategy */
|
---|
993 | } else {
|
---|
994 | put_bits(&s->pb, 1, 0); /* no new coupling strategy */
|
---|
995 | }
|
---|
996 |
|
---|
997 | if (s->acmod == 2)
|
---|
998 | {
|
---|
999 | if(block_num==0)
|
---|
1000 | {
|
---|
1001 | /* first block must define rematrixing (rematstr) */
|
---|
1002 | put_bits(&s->pb, 1, 1);
|
---|
1003 |
|
---|
1004 | /* dummy rematrixing rematflg(1:4)=0 */
|
---|
1005 | for (rbnd=0;rbnd<4;rbnd++)
|
---|
1006 | put_bits(&s->pb, 1, 0);
|
---|
1007 | }
|
---|
1008 | else
|
---|
1009 | {
|
---|
1010 | /* no matrixing (but should be used in the future) */
|
---|
1011 | put_bits(&s->pb, 1, 0);
|
---|
1012 | }
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 | #if defined(DEBUG)
|
---|
1016 | {
|
---|
1017 | static int count = 0;
|
---|
1018 | av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
|
---|
1019 | }
|
---|
1020 | #endif
|
---|
1021 | /* exponent strategy */
|
---|
1022 | for(ch=0;ch<s->nb_channels;ch++) {
|
---|
1023 | put_bits(&s->pb, 2, exp_strategy[ch]);
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 | if (s->lfe) {
|
---|
1027 | put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 | for(ch=0;ch<s->nb_channels;ch++) {
|
---|
1031 | if (exp_strategy[ch] != EXP_REUSE)
|
---|
1032 | put_bits(&s->pb, 6, s->chbwcod[ch]);
|
---|
1033 | }
|
---|
1034 |
|
---|
1035 | /* exponents */
|
---|
1036 | for (ch = 0; ch < s->nb_all_channels; ch++) {
|
---|
1037 | switch(exp_strategy[ch]) {
|
---|
1038 | case EXP_REUSE:
|
---|
1039 | continue;
|
---|
1040 | case EXP_D15:
|
---|
1041 | group_size = 1;
|
---|
1042 | break;
|
---|
1043 | case EXP_D25:
|
---|
1044 | group_size = 2;
|
---|
1045 | break;
|
---|
1046 | default:
|
---|
1047 | case EXP_D45:
|
---|
1048 | group_size = 4;
|
---|
1049 | break;
|
---|
1050 | }
|
---|
1051 | nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
|
---|
1052 | p = encoded_exp[ch];
|
---|
1053 |
|
---|
1054 | /* first exponent */
|
---|
1055 | exp1 = *p++;
|
---|
1056 | put_bits(&s->pb, 4, exp1);
|
---|
1057 |
|
---|
1058 | /* next ones are delta encoded */
|
---|
1059 | for(i=0;i<nb_groups;i++) {
|
---|
1060 | /* merge three delta in one code */
|
---|
1061 | exp0 = exp1;
|
---|
1062 | exp1 = p[0];
|
---|
1063 | p += group_size;
|
---|
1064 | delta0 = exp1 - exp0 + 2;
|
---|
1065 |
|
---|
1066 | exp0 = exp1;
|
---|
1067 | exp1 = p[0];
|
---|
1068 | p += group_size;
|
---|
1069 | delta1 = exp1 - exp0 + 2;
|
---|
1070 |
|
---|
1071 | exp0 = exp1;
|
---|
1072 | exp1 = p[0];
|
---|
1073 | p += group_size;
|
---|
1074 | delta2 = exp1 - exp0 + 2;
|
---|
1075 |
|
---|
1076 | put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
|
---|
1077 | }
|
---|
1078 |
|
---|
1079 | if (ch != s->lfe_channel)
|
---|
1080 | put_bits(&s->pb, 2, 0); /* no gain range info */
|
---|
1081 | }
|
---|
1082 |
|
---|
1083 | /* bit allocation info */
|
---|
1084 | baie = (block_num == 0);
|
---|
1085 | put_bits(&s->pb, 1, baie);
|
---|
1086 | if (baie) {
|
---|
1087 | put_bits(&s->pb, 2, s->sdecaycod);
|
---|
1088 | put_bits(&s->pb, 2, s->fdecaycod);
|
---|
1089 | put_bits(&s->pb, 2, s->sgaincod);
|
---|
1090 | put_bits(&s->pb, 2, s->dbkneecod);
|
---|
1091 | put_bits(&s->pb, 3, s->floorcod);
|
---|
1092 | }
|
---|
1093 |
|
---|
1094 | /* snr offset */
|
---|
1095 | put_bits(&s->pb, 1, baie); /* always present with bai */
|
---|
1096 | if (baie) {
|
---|
1097 | put_bits(&s->pb, 6, s->csnroffst);
|
---|
1098 | for(ch=0;ch<s->nb_all_channels;ch++) {
|
---|
1099 | put_bits(&s->pb, 4, s->fsnroffst[ch]);
|
---|
1100 | put_bits(&s->pb, 3, s->fgaincod[ch]);
|
---|
1101 | }
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 | put_bits(&s->pb, 1, 0); /* no delta bit allocation */
|
---|
1105 | put_bits(&s->pb, 1, 0); /* no data to skip */
|
---|
1106 |
|
---|
1107 | /* mantissa encoding : we use two passes to handle the grouping. A
|
---|
1108 | one pass method may be faster, but it would necessitate to
|
---|
1109 | modify the output stream. */
|
---|
1110 |
|
---|
1111 | /* first pass: quantize */
|
---|
1112 | mant1_cnt = mant2_cnt = mant4_cnt = 0;
|
---|
1113 | qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
|
---|
1114 |
|
---|
1115 | for (ch = 0; ch < s->nb_all_channels; ch++) {
|
---|
1116 | int b, c, e, v;
|
---|
1117 |
|
---|
1118 | for(i=0;i<s->nb_coefs[ch];i++) {
|
---|
1119 | c = mdct_coefs[ch][i];
|
---|
1120 | e = encoded_exp[ch][i] - global_exp[ch];
|
---|
1121 | b = bap[ch][i];
|
---|
1122 | switch(b) {
|
---|
1123 | case 0:
|
---|
1124 | v = 0;
|
---|
1125 | break;
|
---|
1126 | case 1:
|
---|
1127 | v = sym_quant(c, e, 3);
|
---|
1128 | switch(mant1_cnt) {
|
---|
1129 | case 0:
|
---|
1130 | qmant1_ptr = &qmant[ch][i];
|
---|
1131 | v = 9 * v;
|
---|
1132 | mant1_cnt = 1;
|
---|
1133 | break;
|
---|
1134 | case 1:
|
---|
1135 | *qmant1_ptr += 3 * v;
|
---|
1136 | mant1_cnt = 2;
|
---|
1137 | v = 128;
|
---|
1138 | break;
|
---|
1139 | default:
|
---|
1140 | *qmant1_ptr += v;
|
---|
1141 | mant1_cnt = 0;
|
---|
1142 | v = 128;
|
---|
1143 | break;
|
---|
1144 | }
|
---|
1145 | break;
|
---|
1146 | case 2:
|
---|
1147 | v = sym_quant(c, e, 5);
|
---|
1148 | switch(mant2_cnt) {
|
---|
1149 | case 0:
|
---|
1150 | qmant2_ptr = &qmant[ch][i];
|
---|
1151 | v = 25 * v;
|
---|
1152 | mant2_cnt = 1;
|
---|
1153 | break;
|
---|
1154 | case 1:
|
---|
1155 | *qmant2_ptr += 5 * v;
|
---|
1156 | mant2_cnt = 2;
|
---|
1157 | v = 128;
|
---|
1158 | break;
|
---|
1159 | default:
|
---|
1160 | *qmant2_ptr += v;
|
---|
1161 | mant2_cnt = 0;
|
---|
1162 | v = 128;
|
---|
1163 | break;
|
---|
1164 | }
|
---|
1165 | break;
|
---|
1166 | case 3:
|
---|
1167 | v = sym_quant(c, e, 7);
|
---|
1168 | break;
|
---|
1169 | case 4:
|
---|
1170 | v = sym_quant(c, e, 11);
|
---|
1171 | switch(mant4_cnt) {
|
---|
1172 | case 0:
|
---|
1173 | qmant4_ptr = &qmant[ch][i];
|
---|
1174 | v = 11 * v;
|
---|
1175 | mant4_cnt = 1;
|
---|
1176 | break;
|
---|
1177 | default:
|
---|
1178 | *qmant4_ptr += v;
|
---|
1179 | mant4_cnt = 0;
|
---|
1180 | v = 128;
|
---|
1181 | break;
|
---|
1182 | }
|
---|
1183 | break;
|
---|
1184 | case 5:
|
---|
1185 | v = sym_quant(c, e, 15);
|
---|
1186 | break;
|
---|
1187 | case 14:
|
---|
1188 | v = asym_quant(c, e, 14);
|
---|
1189 | break;
|
---|
1190 | case 15:
|
---|
1191 | v = asym_quant(c, e, 16);
|
---|
1192 | break;
|
---|
1193 | default:
|
---|
1194 | v = asym_quant(c, e, b - 1);
|
---|
1195 | break;
|
---|
1196 | }
|
---|
1197 | qmant[ch][i] = v;
|
---|
1198 | }
|
---|
1199 | }
|
---|
1200 |
|
---|
1201 | /* second pass : output the values */
|
---|
1202 | for (ch = 0; ch < s->nb_all_channels; ch++) {
|
---|
1203 | int b, q;
|
---|
1204 |
|
---|
1205 | for(i=0;i<s->nb_coefs[ch];i++) {
|
---|
1206 | q = qmant[ch][i];
|
---|
1207 | b = bap[ch][i];
|
---|
1208 | switch(b) {
|
---|
1209 | case 0:
|
---|
1210 | break;
|
---|
1211 | case 1:
|
---|
1212 | if (q != 128)
|
---|
1213 | put_bits(&s->pb, 5, q);
|
---|
1214 | break;
|
---|
1215 | case 2:
|
---|
1216 | if (q != 128)
|
---|
1217 | put_bits(&s->pb, 7, q);
|
---|
1218 | break;
|
---|
1219 | case 3:
|
---|
1220 | put_bits(&s->pb, 3, q);
|
---|
1221 | break;
|
---|
1222 | case 4:
|
---|
1223 | if (q != 128)
|
---|
1224 | put_bits(&s->pb, 7, q);
|
---|
1225 | break;
|
---|
1226 | case 14:
|
---|
1227 | put_bits(&s->pb, 14, q);
|
---|
1228 | break;
|
---|
1229 | case 15:
|
---|
1230 | put_bits(&s->pb, 16, q);
|
---|
1231 | break;
|
---|
1232 | default:
|
---|
1233 | put_bits(&s->pb, b - 1, q);
|
---|
1234 | break;
|
---|
1235 | }
|
---|
1236 | }
|
---|
1237 | }
|
---|
1238 | }
|
---|
1239 |
|
---|
1240 | #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
|
---|
1241 |
|
---|
1242 | static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
|
---|
1243 | {
|
---|
1244 | unsigned int c;
|
---|
1245 |
|
---|
1246 | c = 0;
|
---|
1247 | while (a) {
|
---|
1248 | if (a & 1)
|
---|
1249 | c ^= b;
|
---|
1250 | a = a >> 1;
|
---|
1251 | b = b << 1;
|
---|
1252 | if (b & (1 << 16))
|
---|
1253 | b ^= poly;
|
---|
1254 | }
|
---|
1255 | return c;
|
---|
1256 | }
|
---|
1257 |
|
---|
1258 | static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
|
---|
1259 | {
|
---|
1260 | unsigned int r;
|
---|
1261 | r = 1;
|
---|
1262 | while (n) {
|
---|
1263 | if (n & 1)
|
---|
1264 | r = mul_poly(r, a, poly);
|
---|
1265 | a = mul_poly(a, a, poly);
|
---|
1266 | n >>= 1;
|
---|
1267 | }
|
---|
1268 | return r;
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 |
|
---|
1272 | /* compute log2(max(abs(tab[]))) */
|
---|
1273 | static int log2_tab(int16_t *tab, int n)
|
---|
1274 | {
|
---|
1275 | int i, v;
|
---|
1276 |
|
---|
1277 | v = 0;
|
---|
1278 | for(i=0;i<n;i++) {
|
---|
1279 | v |= abs(tab[i]);
|
---|
1280 | }
|
---|
1281 | return av_log2(v);
|
---|
1282 | }
|
---|
1283 |
|
---|
1284 | static void lshift_tab(int16_t *tab, int n, int lshift)
|
---|
1285 | {
|
---|
1286 | int i;
|
---|
1287 |
|
---|
1288 | if (lshift > 0) {
|
---|
1289 | for(i=0;i<n;i++) {
|
---|
1290 | tab[i] <<= lshift;
|
---|
1291 | }
|
---|
1292 | } else if (lshift < 0) {
|
---|
1293 | lshift = -lshift;
|
---|
1294 | for(i=0;i<n;i++) {
|
---|
1295 | tab[i] >>= lshift;
|
---|
1296 | }
|
---|
1297 | }
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 | /* fill the end of the frame and compute the two crcs */
|
---|
1301 | static int output_frame_end(AC3EncodeContext *s)
|
---|
1302 | {
|
---|
1303 | int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
|
---|
1304 | uint8_t *frame;
|
---|
1305 |
|
---|
1306 | frame_size = s->frame_size; /* frame size in words */
|
---|
1307 | /* align to 8 bits */
|
---|
1308 | flush_put_bits(&s->pb);
|
---|
1309 | /* add zero bytes to reach the frame size */
|
---|
1310 | frame = s->pb.buf;
|
---|
1311 | n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2;
|
---|
1312 | assert(n >= 0);
|
---|
1313 | if(n>0)
|
---|
1314 | memset(pbBufPtr(&s->pb), 0, n);
|
---|
1315 |
|
---|
1316 | /* Now we must compute both crcs : this is not so easy for crc1
|
---|
1317 | because it is at the beginning of the data... */
|
---|
1318 | frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
|
---|
1319 | crc1 = bswap_16(av_crc(av_crc8005, 0, frame + 4, 2 * frame_size_58 - 4));
|
---|
1320 | /* XXX: could precompute crc_inv */
|
---|
1321 | crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
|
---|
1322 | crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
|
---|
1323 | frame[2] = crc1 >> 8;
|
---|
1324 | frame[3] = crc1;
|
---|
1325 |
|
---|
1326 | crc2 = bswap_16(av_crc(av_crc8005, 0, frame + 2 * frame_size_58, (frame_size - frame_size_58) * 2 - 2));
|
---|
1327 | frame[2*frame_size - 2] = crc2 >> 8;
|
---|
1328 | frame[2*frame_size - 1] = crc2;
|
---|
1329 |
|
---|
1330 | // printf("n=%d frame_size=%d\n", n, frame_size);
|
---|
1331 | return frame_size * 2;
|
---|
1332 | }
|
---|
1333 |
|
---|
1334 | static int AC3_encode_frame(AVCodecContext *avctx,
|
---|
1335 | unsigned char *frame, int buf_size, void *data)
|
---|
1336 | {
|
---|
1337 | AC3EncodeContext *s = avctx->priv_data;
|
---|
1338 | int16_t *samples = data;
|
---|
1339 | int i, j, k, v, ch;
|
---|
1340 | int16_t input_samples[N];
|
---|
1341 | int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
---|
1342 | uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
---|
1343 | uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
|
---|
1344 | uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
---|
1345 | uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
---|
1346 | int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
|
---|
1347 | int frame_bits;
|
---|
1348 |
|
---|
1349 | frame_bits = 0;
|
---|
1350 | for(ch=0;ch<s->nb_all_channels;ch++) {
|
---|
1351 | /* fixed mdct to the six sub blocks & exponent computation */
|
---|
1352 | for(i=0;i<NB_BLOCKS;i++) {
|
---|
1353 | int16_t *sptr;
|
---|
1354 | int sinc;
|
---|
1355 |
|
---|
1356 | /* compute input samples */
|
---|
1357 | memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t));
|
---|
1358 | sinc = s->nb_all_channels;
|
---|
1359 | sptr = samples + (sinc * (N/2) * i) + ch;
|
---|
1360 | for(j=0;j<N/2;j++) {
|
---|
1361 | v = *sptr;
|
---|
1362 | input_samples[j + N/2] = v;
|
---|
1363 | s->last_samples[ch][j] = v;
|
---|
1364 | sptr += sinc;
|
---|
1365 | }
|
---|
1366 |
|
---|
1367 | /* apply the MDCT window */
|
---|
1368 | for(j=0;j<N/2;j++) {
|
---|
1369 | input_samples[j] = MUL16(input_samples[j],
|
---|
1370 | ac3_window[j]) >> 15;
|
---|
1371 | input_samples[N-j-1] = MUL16(input_samples[N-j-1],
|
---|
1372 | ac3_window[j]) >> 15;
|
---|
1373 | }
|
---|
1374 |
|
---|
1375 | /* Normalize the samples to use the maximum available
|
---|
1376 | precision */
|
---|
1377 | v = 14 - log2_tab(input_samples, N);
|
---|
1378 | if (v < 0)
|
---|
1379 | v = 0;
|
---|
1380 | exp_samples[i][ch] = v - 9;
|
---|
1381 | lshift_tab(input_samples, N, v);
|
---|
1382 |
|
---|
1383 | /* do the MDCT */
|
---|
1384 | mdct512(mdct_coef[i][ch], input_samples);
|
---|
1385 |
|
---|
1386 | /* compute "exponents". We take into account the
|
---|
1387 | normalization there */
|
---|
1388 | for(j=0;j<N/2;j++) {
|
---|
1389 | int e;
|
---|
1390 | v = abs(mdct_coef[i][ch][j]);
|
---|
1391 | if (v == 0)
|
---|
1392 | e = 24;
|
---|
1393 | else {
|
---|
1394 | e = 23 - av_log2(v) + exp_samples[i][ch];
|
---|
1395 | if (e >= 24) {
|
---|
1396 | e = 24;
|
---|
1397 | mdct_coef[i][ch][j] = 0;
|
---|
1398 | }
|
---|
1399 | }
|
---|
1400 | exp[i][ch][j] = e;
|
---|
1401 | }
|
---|
1402 | }
|
---|
1403 |
|
---|
1404 | compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
|
---|
1405 |
|
---|
1406 | /* compute the exponents as the decoder will see them. The
|
---|
1407 | EXP_REUSE case must be handled carefully : we select the
|
---|
1408 | min of the exponents */
|
---|
1409 | i = 0;
|
---|
1410 | while (i < NB_BLOCKS) {
|
---|
1411 | j = i + 1;
|
---|
1412 | while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
|
---|
1413 | exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
|
---|
1414 | j++;
|
---|
1415 | }
|
---|
1416 | frame_bits += encode_exp(encoded_exp[i][ch],
|
---|
1417 | exp[i][ch], s->nb_coefs[ch],
|
---|
1418 | exp_strategy[i][ch]);
|
---|
1419 | /* copy encoded exponents for reuse case */
|
---|
1420 | for(k=i+1;k<j;k++) {
|
---|
1421 | memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
|
---|
1422 | s->nb_coefs[ch] * sizeof(uint8_t));
|
---|
1423 | }
|
---|
1424 | i = j;
|
---|
1425 | }
|
---|
1426 | }
|
---|
1427 |
|
---|
1428 | /* adjust for fractional frame sizes */
|
---|
1429 | while(s->bits_written >= s->bit_rate*1000 && s->samples_written >= s->sample_rate) {
|
---|
1430 | s->bits_written -= s->bit_rate*1000;
|
---|
1431 | s->samples_written -= s->sample_rate;
|
---|
1432 | }
|
---|
1433 | s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate*1000);
|
---|
1434 | s->bits_written += s->frame_size * 16;
|
---|
1435 | s->samples_written += AC3_FRAME_SIZE;
|
---|
1436 |
|
---|
1437 | compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
|
---|
1438 | /* everything is known... let's output the frame */
|
---|
1439 | output_frame_header(s, frame);
|
---|
1440 |
|
---|
1441 | for(i=0;i<NB_BLOCKS;i++) {
|
---|
1442 | output_audio_block(s, exp_strategy[i], encoded_exp[i],
|
---|
1443 | bap[i], mdct_coef[i], exp_samples[i], i);
|
---|
1444 | }
|
---|
1445 | return output_frame_end(s);
|
---|
1446 | }
|
---|
1447 |
|
---|
1448 | static int AC3_encode_close(AVCodecContext *avctx)
|
---|
1449 | {
|
---|
1450 | av_freep(&avctx->coded_frame);
|
---|
1451 | return 0;
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | #if 0
|
---|
1455 | /*************************************************************************/
|
---|
1456 | /* TEST */
|
---|
1457 |
|
---|
1458 | #define FN (N/4)
|
---|
1459 |
|
---|
1460 | void fft_test(void)
|
---|
1461 | {
|
---|
1462 | IComplex in[FN], in1[FN];
|
---|
1463 | int k, n, i;
|
---|
1464 | float sum_re, sum_im, a;
|
---|
1465 |
|
---|
1466 | /* FFT test */
|
---|
1467 |
|
---|
1468 | for(i=0;i<FN;i++) {
|
---|
1469 | in[i].re = random() % 65535 - 32767;
|
---|
1470 | in[i].im = random() % 65535 - 32767;
|
---|
1471 | in1[i] = in[i];
|
---|
1472 | }
|
---|
1473 | fft(in, 7);
|
---|
1474 |
|
---|
1475 | /* do it by hand */
|
---|
1476 | for(k=0;k<FN;k++) {
|
---|
1477 | sum_re = 0;
|
---|
1478 | sum_im = 0;
|
---|
1479 | for(n=0;n<FN;n++) {
|
---|
1480 | a = -2 * M_PI * (n * k) / FN;
|
---|
1481 | sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
|
---|
1482 | sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
|
---|
1483 | }
|
---|
1484 | printf("%3d: %6d,%6d %6.0f,%6.0f\n",
|
---|
1485 | k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
|
---|
1486 | }
|
---|
1487 | }
|
---|
1488 |
|
---|
1489 | void mdct_test(void)
|
---|
1490 | {
|
---|
1491 | int16_t input[N];
|
---|
1492 | int32_t output[N/2];
|
---|
1493 | float input1[N];
|
---|
1494 | float output1[N/2];
|
---|
1495 | float s, a, err, e, emax;
|
---|
1496 | int i, k, n;
|
---|
1497 |
|
---|
1498 | for(i=0;i<N;i++) {
|
---|
1499 | input[i] = (random() % 65535 - 32767) * 9 / 10;
|
---|
1500 | input1[i] = input[i];
|
---|
1501 | }
|
---|
1502 |
|
---|
1503 | mdct512(output, input);
|
---|
1504 |
|
---|
1505 | /* do it by hand */
|
---|
1506 | for(k=0;k<N/2;k++) {
|
---|
1507 | s = 0;
|
---|
1508 | for(n=0;n<N;n++) {
|
---|
1509 | a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
|
---|
1510 | s += input1[n] * cos(a);
|
---|
1511 | }
|
---|
1512 | output1[k] = -2 * s / N;
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 | err = 0;
|
---|
1516 | emax = 0;
|
---|
1517 | for(i=0;i<N/2;i++) {
|
---|
1518 | printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
|
---|
1519 | e = output[i] - output1[i];
|
---|
1520 | if (e > emax)
|
---|
1521 | emax = e;
|
---|
1522 | err += e * e;
|
---|
1523 | }
|
---|
1524 | printf("err2=%f emax=%f\n", err / (N/2), emax);
|
---|
1525 | }
|
---|
1526 |
|
---|
1527 | void test_ac3(void)
|
---|
1528 | {
|
---|
1529 | AC3EncodeContext ctx;
|
---|
1530 | unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
|
---|
1531 | short samples[AC3_FRAME_SIZE];
|
---|
1532 | int ret, i;
|
---|
1533 |
|
---|
1534 | AC3_encode_init(&ctx, 44100, 64000, 1);
|
---|
1535 |
|
---|
1536 | fft_test();
|
---|
1537 | mdct_test();
|
---|
1538 |
|
---|
1539 | for(i=0;i<AC3_FRAME_SIZE;i++)
|
---|
1540 | samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
|
---|
1541 | ret = AC3_encode_frame(&ctx, frame, samples);
|
---|
1542 | printf("ret=%d\n", ret);
|
---|
1543 | }
|
---|
1544 | #endif
|
---|
1545 |
|
---|
1546 | AVCodec ac3_encoder = {
|
---|
1547 | "ac3",
|
---|
1548 | CODEC_TYPE_AUDIO,
|
---|
1549 | CODEC_ID_AC3,
|
---|
1550 | sizeof(AC3EncodeContext),
|
---|
1551 | AC3_encode_init,
|
---|
1552 | AC3_encode_frame,
|
---|
1553 | AC3_encode_close,
|
---|
1554 | NULL,
|
---|
1555 | };
|
---|