1 | /*
|
---|
2 | * ADPCM codecs
|
---|
3 | * Copyright (c) 2001-2003 The ffmpeg Project
|
---|
4 | *
|
---|
5 | * This library is free software; you can redistribute it and/or
|
---|
6 | * modify it under the terms of the GNU Lesser General Public
|
---|
7 | * License as published by the Free Software Foundation; either
|
---|
8 | * version 2 of the License, or (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This library is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
13 | * Lesser General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU Lesser General Public
|
---|
16 | * License along with this library; if not, write to the Free Software
|
---|
17 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
18 | */
|
---|
19 | #include "avcodec.h"
|
---|
20 | #include "bitstream.h"
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * @file adpcm.c
|
---|
24 | * ADPCM codecs.
|
---|
25 | * First version by Francois Revol ([email protected])
|
---|
26 | * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
|
---|
27 | * by Mike Melanson ([email protected])
|
---|
28 | * CD-ROM XA ADPCM codec by BERO
|
---|
29 | * EA ADPCM decoder by Robin Kay ([email protected])
|
---|
30 | *
|
---|
31 | * Features and limitations:
|
---|
32 | *
|
---|
33 | * Reference documents:
|
---|
34 | * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
|
---|
35 | * http://www.geocities.com/SiliconValley/8682/aud3.txt
|
---|
36 | * http://openquicktime.sourceforge.net/plugins.htm
|
---|
37 | * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
|
---|
38 | * http://www.cs.ucla.edu/~leec/mediabench/applications.html
|
---|
39 | * SoX source code http://home.sprynet.com/~cbagwell/sox.html
|
---|
40 | *
|
---|
41 | * CD-ROM XA:
|
---|
42 | * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
|
---|
43 | * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
|
---|
44 | * readstr http://www.geocities.co.jp/Playtown/2004/
|
---|
45 | */
|
---|
46 |
|
---|
47 | #define BLKSIZE 1024
|
---|
48 |
|
---|
49 | #define CLAMP_TO_SHORT(value) \
|
---|
50 | if (value > 32767) \
|
---|
51 | value = 32767; \
|
---|
52 | else if (value < -32768) \
|
---|
53 | value = -32768; \
|
---|
54 |
|
---|
55 | /* step_table[] and index_table[] are from the ADPCM reference source */
|
---|
56 | /* This is the index table: */
|
---|
57 | static const int index_table[16] = {
|
---|
58 | -1, -1, -1, -1, 2, 4, 6, 8,
|
---|
59 | -1, -1, -1, -1, 2, 4, 6, 8,
|
---|
60 | };
|
---|
61 |
|
---|
62 | /**
|
---|
63 | * This is the step table. Note that many programs use slight deviations from
|
---|
64 | * this table, but such deviations are negligible:
|
---|
65 | */
|
---|
66 | static const int step_table[89] = {
|
---|
67 | 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
|
---|
68 | 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
|
---|
69 | 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
|
---|
70 | 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
|
---|
71 | 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
|
---|
72 | 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
|
---|
73 | 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
|
---|
74 | 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
|
---|
75 | 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
|
---|
76 | };
|
---|
77 |
|
---|
78 | /* These are for MS-ADPCM */
|
---|
79 | /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
|
---|
80 | static const int AdaptationTable[] = {
|
---|
81 | 230, 230, 230, 230, 307, 409, 512, 614,
|
---|
82 | 768, 614, 512, 409, 307, 230, 230, 230
|
---|
83 | };
|
---|
84 |
|
---|
85 | static const int AdaptCoeff1[] = {
|
---|
86 | 256, 512, 0, 192, 240, 460, 392
|
---|
87 | };
|
---|
88 |
|
---|
89 | static const int AdaptCoeff2[] = {
|
---|
90 | 0, -256, 0, 64, 0, -208, -232
|
---|
91 | };
|
---|
92 |
|
---|
93 | /* These are for CD-ROM XA ADPCM */
|
---|
94 | static const int xa_adpcm_table[5][2] = {
|
---|
95 | { 0, 0 },
|
---|
96 | { 60, 0 },
|
---|
97 | { 115, -52 },
|
---|
98 | { 98, -55 },
|
---|
99 | { 122, -60 }
|
---|
100 | };
|
---|
101 |
|
---|
102 | static const int ea_adpcm_table[] = {
|
---|
103 | 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
|
---|
104 | 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
|
---|
105 | };
|
---|
106 |
|
---|
107 | static const int ct_adpcm_table[8] = {
|
---|
108 | 0x00E6, 0x00E6, 0x00E6, 0x00E6,
|
---|
109 | 0x0133, 0x0199, 0x0200, 0x0266
|
---|
110 | };
|
---|
111 |
|
---|
112 | // padded to zero where table size is less then 16
|
---|
113 | static const int swf_index_tables[4][16] = {
|
---|
114 | /*2*/ { -1, 2 },
|
---|
115 | /*3*/ { -1, -1, 2, 4 },
|
---|
116 | /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
|
---|
117 | /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
|
---|
118 | };
|
---|
119 |
|
---|
120 | static const int yamaha_indexscale[] = {
|
---|
121 | 230, 230, 230, 230, 307, 409, 512, 614,
|
---|
122 | 230, 230, 230, 230, 307, 409, 512, 614
|
---|
123 | };
|
---|
124 |
|
---|
125 | static const int yamaha_difflookup[] = {
|
---|
126 | 1, 3, 5, 7, 9, 11, 13, 15,
|
---|
127 | -1, -3, -5, -7, -9, -11, -13, -15
|
---|
128 | };
|
---|
129 |
|
---|
130 | /* end of tables */
|
---|
131 |
|
---|
132 | typedef struct ADPCMChannelStatus {
|
---|
133 | int predictor;
|
---|
134 | short int step_index;
|
---|
135 | int step;
|
---|
136 | /* for encoding */
|
---|
137 | int prev_sample;
|
---|
138 |
|
---|
139 | /* MS version */
|
---|
140 | short sample1;
|
---|
141 | short sample2;
|
---|
142 | int coeff1;
|
---|
143 | int coeff2;
|
---|
144 | int idelta;
|
---|
145 | } ADPCMChannelStatus;
|
---|
146 |
|
---|
147 | typedef struct ADPCMContext {
|
---|
148 | int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
|
---|
149 | ADPCMChannelStatus status[2];
|
---|
150 | short sample_buffer[32]; /* hold left samples while waiting for right samples */
|
---|
151 |
|
---|
152 | /* SWF only */
|
---|
153 | int nb_bits;
|
---|
154 | int nb_samples;
|
---|
155 | } ADPCMContext;
|
---|
156 |
|
---|
157 | /* XXX: implement encoding */
|
---|
158 |
|
---|
159 | #ifdef CONFIG_ENCODERS
|
---|
160 | static int adpcm_encode_init(AVCodecContext *avctx)
|
---|
161 | {
|
---|
162 | if (avctx->channels > 2)
|
---|
163 | return -1; /* only stereo or mono =) */
|
---|
164 | switch(avctx->codec->id) {
|
---|
165 | case CODEC_ID_ADPCM_IMA_QT:
|
---|
166 | av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
|
---|
167 | avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
|
---|
168 | return -1;
|
---|
169 | break;
|
---|
170 | case CODEC_ID_ADPCM_IMA_WAV:
|
---|
171 | avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
|
---|
172 | /* and we have 4 bytes per channel overhead */
|
---|
173 | avctx->block_align = BLKSIZE;
|
---|
174 | /* seems frame_size isn't taken into account... have to buffer the samples :-( */
|
---|
175 | break;
|
---|
176 | case CODEC_ID_ADPCM_MS:
|
---|
177 | avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
|
---|
178 | /* and we have 7 bytes per channel overhead */
|
---|
179 | avctx->block_align = BLKSIZE;
|
---|
180 | break;
|
---|
181 | case CODEC_ID_ADPCM_YAMAHA:
|
---|
182 | avctx->frame_size = BLKSIZE * avctx->channels;
|
---|
183 | avctx->block_align = BLKSIZE;
|
---|
184 | break;
|
---|
185 | default:
|
---|
186 | return -1;
|
---|
187 | break;
|
---|
188 | }
|
---|
189 |
|
---|
190 | avctx->coded_frame= avcodec_alloc_frame();
|
---|
191 | avctx->coded_frame->key_frame= 1;
|
---|
192 |
|
---|
193 | return 0;
|
---|
194 | }
|
---|
195 |
|
---|
196 | static int adpcm_encode_close(AVCodecContext *avctx)
|
---|
197 | {
|
---|
198 | av_freep(&avctx->coded_frame);
|
---|
199 |
|
---|
200 | return 0;
|
---|
201 | }
|
---|
202 |
|
---|
203 |
|
---|
204 | static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
|
---|
205 | {
|
---|
206 | int delta = sample - c->prev_sample;
|
---|
207 | int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
|
---|
208 | c->prev_sample = c->prev_sample + ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
|
---|
209 | CLAMP_TO_SHORT(c->prev_sample);
|
---|
210 | c->step_index = clip(c->step_index + index_table[nibble], 0, 88);
|
---|
211 | return nibble;
|
---|
212 | }
|
---|
213 |
|
---|
214 | static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
|
---|
215 | {
|
---|
216 | int predictor, nibble, bias;
|
---|
217 |
|
---|
218 | predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
|
---|
219 |
|
---|
220 | nibble= sample - predictor;
|
---|
221 | if(nibble>=0) bias= c->idelta/2;
|
---|
222 | else bias=-c->idelta/2;
|
---|
223 |
|
---|
224 | nibble= (nibble + bias) / c->idelta;
|
---|
225 | nibble= clip(nibble, -8, 7)&0x0F;
|
---|
226 |
|
---|
227 | predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
|
---|
228 | CLAMP_TO_SHORT(predictor);
|
---|
229 |
|
---|
230 | c->sample2 = c->sample1;
|
---|
231 | c->sample1 = predictor;
|
---|
232 |
|
---|
233 | c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
|
---|
234 | if (c->idelta < 16) c->idelta = 16;
|
---|
235 |
|
---|
236 | return nibble;
|
---|
237 | }
|
---|
238 |
|
---|
239 | static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
|
---|
240 | {
|
---|
241 | int nibble, delta;
|
---|
242 |
|
---|
243 | if(!c->step) {
|
---|
244 | c->predictor = 0;
|
---|
245 | c->step = 127;
|
---|
246 | }
|
---|
247 |
|
---|
248 | delta = sample - c->predictor;
|
---|
249 |
|
---|
250 | nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
|
---|
251 |
|
---|
252 | c->predictor = c->predictor + ((c->step * yamaha_difflookup[nibble]) / 8);
|
---|
253 | CLAMP_TO_SHORT(c->predictor);
|
---|
254 | c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
|
---|
255 | c->step = clip(c->step, 127, 24567);
|
---|
256 |
|
---|
257 | return nibble;
|
---|
258 | }
|
---|
259 |
|
---|
260 | typedef struct TrellisPath {
|
---|
261 | int nibble;
|
---|
262 | int prev;
|
---|
263 | } TrellisPath;
|
---|
264 |
|
---|
265 | typedef struct TrellisNode {
|
---|
266 | uint32_t ssd;
|
---|
267 | int path;
|
---|
268 | int sample1;
|
---|
269 | int sample2;
|
---|
270 | int step;
|
---|
271 | } TrellisNode;
|
---|
272 |
|
---|
273 | static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
|
---|
274 | uint8_t *dst, ADPCMChannelStatus *c, int n)
|
---|
275 | {
|
---|
276 | #define FREEZE_INTERVAL 128
|
---|
277 | //FIXME 6% faster if frontier is a compile-time constant
|
---|
278 | const int frontier = 1 << avctx->trellis;
|
---|
279 | const int stride = avctx->channels;
|
---|
280 | const int version = avctx->codec->id;
|
---|
281 | const int max_paths = frontier*FREEZE_INTERVAL;
|
---|
282 | TrellisPath paths[max_paths], *p;
|
---|
283 | TrellisNode node_buf[2][frontier];
|
---|
284 | TrellisNode *nodep_buf[2][frontier];
|
---|
285 | TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
|
---|
286 | TrellisNode **nodes_next = nodep_buf[1];
|
---|
287 | int pathn = 0, froze = -1, i, j, k;
|
---|
288 |
|
---|
289 | assert(!(max_paths&(max_paths-1)));
|
---|
290 |
|
---|
291 | memset(nodep_buf, 0, sizeof(nodep_buf));
|
---|
292 | nodes[0] = &node_buf[1][0];
|
---|
293 | nodes[0]->ssd = 0;
|
---|
294 | nodes[0]->path = 0;
|
---|
295 | nodes[0]->step = c->step_index;
|
---|
296 | nodes[0]->sample1 = c->sample1;
|
---|
297 | nodes[0]->sample2 = c->sample2;
|
---|
298 | if(version == CODEC_ID_ADPCM_IMA_WAV)
|
---|
299 | nodes[0]->sample1 = c->prev_sample;
|
---|
300 | if(version == CODEC_ID_ADPCM_MS)
|
---|
301 | nodes[0]->step = c->idelta;
|
---|
302 | if(version == CODEC_ID_ADPCM_YAMAHA) {
|
---|
303 | if(c->step == 0) {
|
---|
304 | nodes[0]->step = 127;
|
---|
305 | nodes[0]->sample1 = 0;
|
---|
306 | } else {
|
---|
307 | nodes[0]->step = c->step;
|
---|
308 | nodes[0]->sample1 = c->predictor;
|
---|
309 | }
|
---|
310 | }
|
---|
311 |
|
---|
312 | for(i=0; i<n; i++) {
|
---|
313 | TrellisNode *t = node_buf[i&1];
|
---|
314 | TrellisNode **u;
|
---|
315 | int sample = samples[i*stride];
|
---|
316 | memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
|
---|
317 | for(j=0; j<frontier && nodes[j]; j++) {
|
---|
318 | // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
|
---|
319 | const int range = (j < frontier/2) ? 1 : 0;
|
---|
320 | const int step = nodes[j]->step;
|
---|
321 | int nidx;
|
---|
322 | if(version == CODEC_ID_ADPCM_MS) {
|
---|
323 | const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
|
---|
324 | const int div = (sample - predictor) / step;
|
---|
325 | const int nmin = clip(div-range, -8, 6);
|
---|
326 | const int nmax = clip(div+range, -7, 7);
|
---|
327 | for(nidx=nmin; nidx<=nmax; nidx++) {
|
---|
328 | const int nibble = nidx & 0xf;
|
---|
329 | int dec_sample = predictor + nidx * step;
|
---|
330 | #define STORE_NODE(NAME, STEP_INDEX)\
|
---|
331 | int d;\
|
---|
332 | uint32_t ssd;\
|
---|
333 | CLAMP_TO_SHORT(dec_sample);\
|
---|
334 | d = sample - dec_sample;\
|
---|
335 | ssd = nodes[j]->ssd + d*d;\
|
---|
336 | if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
|
---|
337 | continue;\
|
---|
338 | /* Collapse any two states with the same previous sample value. \
|
---|
339 | * One could also distinguish states by step and by 2nd to last
|
---|
340 | * sample, but the effects of that are negligible. */\
|
---|
341 | for(k=0; k<frontier && nodes_next[k]; k++) {\
|
---|
342 | if(dec_sample == nodes_next[k]->sample1) {\
|
---|
343 | assert(ssd >= nodes_next[k]->ssd);\
|
---|
344 | goto next_##NAME;\
|
---|
345 | }\
|
---|
346 | }\
|
---|
347 | for(k=0; k<frontier; k++) {\
|
---|
348 | if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
|
---|
349 | TrellisNode *u = nodes_next[frontier-1];\
|
---|
350 | if(!u) {\
|
---|
351 | assert(pathn < max_paths);\
|
---|
352 | u = t++;\
|
---|
353 | u->path = pathn++;\
|
---|
354 | }\
|
---|
355 | u->ssd = ssd;\
|
---|
356 | u->step = STEP_INDEX;\
|
---|
357 | u->sample2 = nodes[j]->sample1;\
|
---|
358 | u->sample1 = dec_sample;\
|
---|
359 | paths[u->path].nibble = nibble;\
|
---|
360 | paths[u->path].prev = nodes[j]->path;\
|
---|
361 | memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
|
---|
362 | nodes_next[k] = u;\
|
---|
363 | break;\
|
---|
364 | }\
|
---|
365 | }\
|
---|
366 | next_##NAME:;
|
---|
367 | STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
|
---|
368 | }
|
---|
369 | } else if(version == CODEC_ID_ADPCM_IMA_WAV) {
|
---|
370 | #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
|
---|
371 | const int predictor = nodes[j]->sample1;\
|
---|
372 | const int div = (sample - predictor) * 4 / STEP_TABLE;\
|
---|
373 | int nmin = clip(div-range, -7, 6);\
|
---|
374 | int nmax = clip(div+range, -6, 7);\
|
---|
375 | if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
|
---|
376 | if(nmax<0) nmax--;\
|
---|
377 | for(nidx=nmin; nidx<=nmax; nidx++) {\
|
---|
378 | const int nibble = nidx<0 ? 7-nidx : nidx;\
|
---|
379 | int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
|
---|
380 | STORE_NODE(NAME, STEP_INDEX);\
|
---|
381 | }
|
---|
382 | LOOP_NODES(ima, step_table[step], clip(step + index_table[nibble], 0, 88));
|
---|
383 | } else { //CODEC_ID_ADPCM_YAMAHA
|
---|
384 | LOOP_NODES(yamaha, step, clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
|
---|
385 | #undef LOOP_NODES
|
---|
386 | #undef STORE_NODE
|
---|
387 | }
|
---|
388 | }
|
---|
389 |
|
---|
390 | u = nodes;
|
---|
391 | nodes = nodes_next;
|
---|
392 | nodes_next = u;
|
---|
393 |
|
---|
394 | // prevent overflow
|
---|
395 | if(nodes[0]->ssd > (1<<28)) {
|
---|
396 | for(j=1; j<frontier && nodes[j]; j++)
|
---|
397 | nodes[j]->ssd -= nodes[0]->ssd;
|
---|
398 | nodes[0]->ssd = 0;
|
---|
399 | }
|
---|
400 |
|
---|
401 | // merge old paths to save memory
|
---|
402 | if(i == froze + FREEZE_INTERVAL) {
|
---|
403 | p = &paths[nodes[0]->path];
|
---|
404 | for(k=i; k>froze; k--) {
|
---|
405 | dst[k] = p->nibble;
|
---|
406 | p = &paths[p->prev];
|
---|
407 | }
|
---|
408 | froze = i;
|
---|
409 | pathn = 0;
|
---|
410 | // other nodes might use paths that don't coincide with the frozen one.
|
---|
411 | // checking which nodes do so is too slow, so just kill them all.
|
---|
412 | // this also slightly improves quality, but I don't know why.
|
---|
413 | memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
|
---|
414 | }
|
---|
415 | }
|
---|
416 |
|
---|
417 | p = &paths[nodes[0]->path];
|
---|
418 | for(i=n-1; i>froze; i--) {
|
---|
419 | dst[i] = p->nibble;
|
---|
420 | p = &paths[p->prev];
|
---|
421 | }
|
---|
422 |
|
---|
423 | c->predictor = nodes[0]->sample1;
|
---|
424 | c->sample1 = nodes[0]->sample1;
|
---|
425 | c->sample2 = nodes[0]->sample2;
|
---|
426 | c->step_index = nodes[0]->step;
|
---|
427 | c->step = nodes[0]->step;
|
---|
428 | c->idelta = nodes[0]->step;
|
---|
429 | }
|
---|
430 |
|
---|
431 | static int adpcm_encode_frame(AVCodecContext *avctx,
|
---|
432 | unsigned char *frame, int buf_size, void *data)
|
---|
433 | {
|
---|
434 | int n, i, st;
|
---|
435 | short *samples;
|
---|
436 | unsigned char *dst;
|
---|
437 | ADPCMContext *c = avctx->priv_data;
|
---|
438 |
|
---|
439 | dst = frame;
|
---|
440 | samples = (short *)data;
|
---|
441 | st= avctx->channels == 2;
|
---|
442 | /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
|
---|
443 |
|
---|
444 | switch(avctx->codec->id) {
|
---|
445 | case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
|
---|
446 | break;
|
---|
447 | case CODEC_ID_ADPCM_IMA_WAV:
|
---|
448 | n = avctx->frame_size / 8;
|
---|
449 | c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
|
---|
450 | /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
|
---|
451 | *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
|
---|
452 | *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
|
---|
453 | *dst++ = (unsigned char)c->status[0].step_index;
|
---|
454 | *dst++ = 0; /* unknown */
|
---|
455 | samples++;
|
---|
456 | if (avctx->channels == 2) {
|
---|
457 | c->status[1].prev_sample = (signed short)samples[1];
|
---|
458 | /* c->status[1].step_index = 0; */
|
---|
459 | *dst++ = (c->status[1].prev_sample) & 0xFF;
|
---|
460 | *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
|
---|
461 | *dst++ = (unsigned char)c->status[1].step_index;
|
---|
462 | *dst++ = 0;
|
---|
463 | samples++;
|
---|
464 | }
|
---|
465 |
|
---|
466 | /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
|
---|
467 | if(avctx->trellis > 0) {
|
---|
468 | uint8_t buf[2][n*8];
|
---|
469 | adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
|
---|
470 | if(avctx->channels == 2)
|
---|
471 | adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
|
---|
472 | for(i=0; i<n; i++) {
|
---|
473 | *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
|
---|
474 | *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
|
---|
475 | *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
|
---|
476 | *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
|
---|
477 | if (avctx->channels == 2) {
|
---|
478 | *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
|
---|
479 | *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
|
---|
480 | *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
|
---|
481 | *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
|
---|
482 | }
|
---|
483 | }
|
---|
484 | } else
|
---|
485 | for (; n>0; n--) {
|
---|
486 | *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
|
---|
487 | *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
|
---|
488 | dst++;
|
---|
489 | *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
|
---|
490 | *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
|
---|
491 | dst++;
|
---|
492 | *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
|
---|
493 | *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
|
---|
494 | dst++;
|
---|
495 | *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
|
---|
496 | *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
|
---|
497 | dst++;
|
---|
498 | /* right channel */
|
---|
499 | if (avctx->channels == 2) {
|
---|
500 | *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
|
---|
501 | *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
|
---|
502 | dst++;
|
---|
503 | *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
|
---|
504 | *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
|
---|
505 | dst++;
|
---|
506 | *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
|
---|
507 | *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
|
---|
508 | dst++;
|
---|
509 | *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
|
---|
510 | *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
|
---|
511 | dst++;
|
---|
512 | }
|
---|
513 | samples += 8 * avctx->channels;
|
---|
514 | }
|
---|
515 | break;
|
---|
516 | case CODEC_ID_ADPCM_MS:
|
---|
517 | for(i=0; i<avctx->channels; i++){
|
---|
518 | int predictor=0;
|
---|
519 |
|
---|
520 | *dst++ = predictor;
|
---|
521 | c->status[i].coeff1 = AdaptCoeff1[predictor];
|
---|
522 | c->status[i].coeff2 = AdaptCoeff2[predictor];
|
---|
523 | }
|
---|
524 | for(i=0; i<avctx->channels; i++){
|
---|
525 | if (c->status[i].idelta < 16)
|
---|
526 | c->status[i].idelta = 16;
|
---|
527 |
|
---|
528 | *dst++ = c->status[i].idelta & 0xFF;
|
---|
529 | *dst++ = c->status[i].idelta >> 8;
|
---|
530 | }
|
---|
531 | for(i=0; i<avctx->channels; i++){
|
---|
532 | c->status[i].sample1= *samples++;
|
---|
533 |
|
---|
534 | *dst++ = c->status[i].sample1 & 0xFF;
|
---|
535 | *dst++ = c->status[i].sample1 >> 8;
|
---|
536 | }
|
---|
537 | for(i=0; i<avctx->channels; i++){
|
---|
538 | c->status[i].sample2= *samples++;
|
---|
539 |
|
---|
540 | *dst++ = c->status[i].sample2 & 0xFF;
|
---|
541 | *dst++ = c->status[i].sample2 >> 8;
|
---|
542 | }
|
---|
543 |
|
---|
544 | if(avctx->trellis > 0) {
|
---|
545 | int n = avctx->block_align - 7*avctx->channels;
|
---|
546 | uint8_t buf[2][n];
|
---|
547 | if(avctx->channels == 1) {
|
---|
548 | n *= 2;
|
---|
549 | adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
|
---|
550 | for(i=0; i<n; i+=2)
|
---|
551 | *dst++ = (buf[0][i] << 4) | buf[0][i+1];
|
---|
552 | } else {
|
---|
553 | adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
|
---|
554 | adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
|
---|
555 | for(i=0; i<n; i++)
|
---|
556 | *dst++ = (buf[0][i] << 4) | buf[1][i];
|
---|
557 | }
|
---|
558 | } else
|
---|
559 | for(i=7*avctx->channels; i<avctx->block_align; i++) {
|
---|
560 | int nibble;
|
---|
561 | nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
|
---|
562 | nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
|
---|
563 | *dst++ = nibble;
|
---|
564 | }
|
---|
565 | break;
|
---|
566 | case CODEC_ID_ADPCM_YAMAHA:
|
---|
567 | n = avctx->frame_size / 2;
|
---|
568 | if(avctx->trellis > 0) {
|
---|
569 | uint8_t buf[2][n*2];
|
---|
570 | n *= 2;
|
---|
571 | if(avctx->channels == 1) {
|
---|
572 | adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
|
---|
573 | for(i=0; i<n; i+=2)
|
---|
574 | *dst++ = buf[0][i] | (buf[0][i+1] << 4);
|
---|
575 | } else {
|
---|
576 | adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
|
---|
577 | adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
|
---|
578 | for(i=0; i<n; i++)
|
---|
579 | *dst++ = buf[0][i] | (buf[1][i] << 4);
|
---|
580 | }
|
---|
581 | } else
|
---|
582 | for (; n>0; n--) {
|
---|
583 | for(i = 0; i < avctx->channels; i++) {
|
---|
584 | int nibble;
|
---|
585 | nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
|
---|
586 | nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
|
---|
587 | *dst++ = nibble;
|
---|
588 | }
|
---|
589 | samples += 2 * avctx->channels;
|
---|
590 | }
|
---|
591 | break;
|
---|
592 | default:
|
---|
593 | return -1;
|
---|
594 | }
|
---|
595 | return dst - frame;
|
---|
596 | }
|
---|
597 | #endif //CONFIG_ENCODERS
|
---|
598 |
|
---|
599 | static int adpcm_decode_init(AVCodecContext * avctx)
|
---|
600 | {
|
---|
601 | ADPCMContext *c = avctx->priv_data;
|
---|
602 |
|
---|
603 | c->channel = 0;
|
---|
604 | c->status[0].predictor = c->status[1].predictor = 0;
|
---|
605 | c->status[0].step_index = c->status[1].step_index = 0;
|
---|
606 | c->status[0].step = c->status[1].step = 0;
|
---|
607 |
|
---|
608 | switch(avctx->codec->id) {
|
---|
609 | case CODEC_ID_ADPCM_CT:
|
---|
610 | c->status[0].step = c->status[1].step = 511;
|
---|
611 | break;
|
---|
612 | default:
|
---|
613 | break;
|
---|
614 | }
|
---|
615 | return 0;
|
---|
616 | }
|
---|
617 |
|
---|
618 | static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
|
---|
619 | {
|
---|
620 | int step_index;
|
---|
621 | int predictor;
|
---|
622 | int sign, delta, diff, step;
|
---|
623 |
|
---|
624 | step = step_table[c->step_index];
|
---|
625 | step_index = c->step_index + index_table[(unsigned)nibble];
|
---|
626 | if (step_index < 0) step_index = 0;
|
---|
627 | else if (step_index > 88) step_index = 88;
|
---|
628 |
|
---|
629 | sign = nibble & 8;
|
---|
630 | delta = nibble & 7;
|
---|
631 | /* perform direct multiplication instead of series of jumps proposed by
|
---|
632 | * the reference ADPCM implementation since modern CPUs can do the mults
|
---|
633 | * quickly enough */
|
---|
634 | diff = ((2 * delta + 1) * step) >> shift;
|
---|
635 | predictor = c->predictor;
|
---|
636 | if (sign) predictor -= diff;
|
---|
637 | else predictor += diff;
|
---|
638 |
|
---|
639 | CLAMP_TO_SHORT(predictor);
|
---|
640 | c->predictor = predictor;
|
---|
641 | c->step_index = step_index;
|
---|
642 |
|
---|
643 | return (short)predictor;
|
---|
644 | }
|
---|
645 |
|
---|
646 | static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
|
---|
647 | {
|
---|
648 | int predictor;
|
---|
649 |
|
---|
650 | predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
|
---|
651 | predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
|
---|
652 | CLAMP_TO_SHORT(predictor);
|
---|
653 |
|
---|
654 | c->sample2 = c->sample1;
|
---|
655 | c->sample1 = predictor;
|
---|
656 | c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
|
---|
657 | if (c->idelta < 16) c->idelta = 16;
|
---|
658 |
|
---|
659 | return (short)predictor;
|
---|
660 | }
|
---|
661 |
|
---|
662 | static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
|
---|
663 | {
|
---|
664 | int predictor;
|
---|
665 | int sign, delta, diff;
|
---|
666 | int new_step;
|
---|
667 |
|
---|
668 | sign = nibble & 8;
|
---|
669 | delta = nibble & 7;
|
---|
670 | /* perform direct multiplication instead of series of jumps proposed by
|
---|
671 | * the reference ADPCM implementation since modern CPUs can do the mults
|
---|
672 | * quickly enough */
|
---|
673 | diff = ((2 * delta + 1) * c->step) >> 3;
|
---|
674 | predictor = c->predictor;
|
---|
675 | /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
|
---|
676 | if(sign)
|
---|
677 | predictor = ((predictor * 254) >> 8) - diff;
|
---|
678 | else
|
---|
679 | predictor = ((predictor * 254) >> 8) + diff;
|
---|
680 | /* calculate new step and clamp it to range 511..32767 */
|
---|
681 | new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
|
---|
682 | c->step = new_step;
|
---|
683 | if(c->step < 511)
|
---|
684 | c->step = 511;
|
---|
685 | if(c->step > 32767)
|
---|
686 | c->step = 32767;
|
---|
687 |
|
---|
688 | CLAMP_TO_SHORT(predictor);
|
---|
689 | c->predictor = predictor;
|
---|
690 | return (short)predictor;
|
---|
691 | }
|
---|
692 |
|
---|
693 | static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
|
---|
694 | {
|
---|
695 | int sign, delta, diff;
|
---|
696 |
|
---|
697 | sign = nibble & (1<<(size-1));
|
---|
698 | delta = nibble & ((1<<(size-1))-1);
|
---|
699 | diff = delta << (7 + c->step + shift);
|
---|
700 |
|
---|
701 | if (sign)
|
---|
702 | c->predictor -= diff;
|
---|
703 | else
|
---|
704 | c->predictor += diff;
|
---|
705 |
|
---|
706 | /* clamp result */
|
---|
707 | if (c->predictor > 16256)
|
---|
708 | c->predictor = 16256;
|
---|
709 | else if (c->predictor < -16384)
|
---|
710 | c->predictor = -16384;
|
---|
711 |
|
---|
712 | /* calculate new step */
|
---|
713 | if (delta >= (2*size - 3) && c->step < 3)
|
---|
714 | c->step++;
|
---|
715 | else if (delta == 0 && c->step > 0)
|
---|
716 | c->step--;
|
---|
717 |
|
---|
718 | return (short) c->predictor;
|
---|
719 | }
|
---|
720 |
|
---|
721 | static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
|
---|
722 | {
|
---|
723 | if(!c->step) {
|
---|
724 | c->predictor = 0;
|
---|
725 | c->step = 127;
|
---|
726 | }
|
---|
727 |
|
---|
728 | c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
|
---|
729 | CLAMP_TO_SHORT(c->predictor);
|
---|
730 | c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
|
---|
731 | c->step = clip(c->step, 127, 24567);
|
---|
732 | return c->predictor;
|
---|
733 | }
|
---|
734 |
|
---|
735 | static void xa_decode(short *out, const unsigned char *in,
|
---|
736 | ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
|
---|
737 | {
|
---|
738 | int i, j;
|
---|
739 | int shift,filter,f0,f1;
|
---|
740 | int s_1,s_2;
|
---|
741 | int d,s,t;
|
---|
742 |
|
---|
743 | for(i=0;i<4;i++) {
|
---|
744 |
|
---|
745 | shift = 12 - (in[4+i*2] & 15);
|
---|
746 | filter = in[4+i*2] >> 4;
|
---|
747 | f0 = xa_adpcm_table[filter][0];
|
---|
748 | f1 = xa_adpcm_table[filter][1];
|
---|
749 |
|
---|
750 | s_1 = left->sample1;
|
---|
751 | s_2 = left->sample2;
|
---|
752 |
|
---|
753 | for(j=0;j<28;j++) {
|
---|
754 | d = in[16+i+j*4];
|
---|
755 |
|
---|
756 | t = (signed char)(d<<4)>>4;
|
---|
757 | s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
|
---|
758 | CLAMP_TO_SHORT(s);
|
---|
759 | *out = s;
|
---|
760 | out += inc;
|
---|
761 | s_2 = s_1;
|
---|
762 | s_1 = s;
|
---|
763 | }
|
---|
764 |
|
---|
765 | if (inc==2) { /* stereo */
|
---|
766 | left->sample1 = s_1;
|
---|
767 | left->sample2 = s_2;
|
---|
768 | s_1 = right->sample1;
|
---|
769 | s_2 = right->sample2;
|
---|
770 | out = out + 1 - 28*2;
|
---|
771 | }
|
---|
772 |
|
---|
773 | shift = 12 - (in[5+i*2] & 15);
|
---|
774 | filter = in[5+i*2] >> 4;
|
---|
775 |
|
---|
776 | f0 = xa_adpcm_table[filter][0];
|
---|
777 | f1 = xa_adpcm_table[filter][1];
|
---|
778 |
|
---|
779 | for(j=0;j<28;j++) {
|
---|
780 | d = in[16+i+j*4];
|
---|
781 |
|
---|
782 | t = (signed char)d >> 4;
|
---|
783 | s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
|
---|
784 | CLAMP_TO_SHORT(s);
|
---|
785 | *out = s;
|
---|
786 | out += inc;
|
---|
787 | s_2 = s_1;
|
---|
788 | s_1 = s;
|
---|
789 | }
|
---|
790 |
|
---|
791 | if (inc==2) { /* stereo */
|
---|
792 | right->sample1 = s_1;
|
---|
793 | right->sample2 = s_2;
|
---|
794 | out -= 1;
|
---|
795 | } else {
|
---|
796 | left->sample1 = s_1;
|
---|
797 | left->sample2 = s_2;
|
---|
798 | }
|
---|
799 | }
|
---|
800 | }
|
---|
801 |
|
---|
802 |
|
---|
803 | /* DK3 ADPCM support macro */
|
---|
804 | #define DK3_GET_NEXT_NIBBLE() \
|
---|
805 | if (decode_top_nibble_next) \
|
---|
806 | { \
|
---|
807 | nibble = (last_byte >> 4) & 0x0F; \
|
---|
808 | decode_top_nibble_next = 0; \
|
---|
809 | } \
|
---|
810 | else \
|
---|
811 | { \
|
---|
812 | last_byte = *src++; \
|
---|
813 | if (src >= buf + buf_size) break; \
|
---|
814 | nibble = last_byte & 0x0F; \
|
---|
815 | decode_top_nibble_next = 1; \
|
---|
816 | }
|
---|
817 |
|
---|
818 | static int adpcm_decode_frame(AVCodecContext *avctx,
|
---|
819 | void *data, int *data_size,
|
---|
820 | uint8_t *buf, int buf_size)
|
---|
821 | {
|
---|
822 | ADPCMContext *c = avctx->priv_data;
|
---|
823 | ADPCMChannelStatus *cs;
|
---|
824 | int n, m, channel, i;
|
---|
825 | int block_predictor[2];
|
---|
826 | short *samples;
|
---|
827 | uint8_t *src;
|
---|
828 | int st; /* stereo */
|
---|
829 |
|
---|
830 | /* DK3 ADPCM accounting variables */
|
---|
831 | unsigned char last_byte = 0;
|
---|
832 | unsigned char nibble;
|
---|
833 | int decode_top_nibble_next = 0;
|
---|
834 | int diff_channel;
|
---|
835 |
|
---|
836 | /* EA ADPCM state variables */
|
---|
837 | uint32_t samples_in_chunk;
|
---|
838 | int32_t previous_left_sample, previous_right_sample;
|
---|
839 | int32_t current_left_sample, current_right_sample;
|
---|
840 | int32_t next_left_sample, next_right_sample;
|
---|
841 | int32_t coeff1l, coeff2l, coeff1r, coeff2r;
|
---|
842 | uint8_t shift_left, shift_right;
|
---|
843 | int count1, count2;
|
---|
844 |
|
---|
845 | if (!buf_size)
|
---|
846 | return 0;
|
---|
847 |
|
---|
848 | samples = data;
|
---|
849 | src = buf;
|
---|
850 |
|
---|
851 | st = avctx->channels == 2 ? 1 : 0;
|
---|
852 |
|
---|
853 | switch(avctx->codec->id) {
|
---|
854 | case CODEC_ID_ADPCM_IMA_QT:
|
---|
855 | n = (buf_size - 2);/* >> 2*avctx->channels;*/
|
---|
856 | channel = c->channel;
|
---|
857 | cs = &(c->status[channel]);
|
---|
858 | /* (pppppp) (piiiiiii) */
|
---|
859 |
|
---|
860 | /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
|
---|
861 | cs->predictor = (*src++) << 8;
|
---|
862 | cs->predictor |= (*src & 0x80);
|
---|
863 | cs->predictor &= 0xFF80;
|
---|
864 |
|
---|
865 | /* sign extension */
|
---|
866 | if(cs->predictor & 0x8000)
|
---|
867 | cs->predictor -= 0x10000;
|
---|
868 |
|
---|
869 | CLAMP_TO_SHORT(cs->predictor);
|
---|
870 |
|
---|
871 | cs->step_index = (*src++) & 0x7F;
|
---|
872 |
|
---|
873 | if (cs->step_index > 88){
|
---|
874 | av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
|
---|
875 | cs->step_index = 88;
|
---|
876 | }
|
---|
877 |
|
---|
878 | cs->step = step_table[cs->step_index];
|
---|
879 |
|
---|
880 | if (st && channel)
|
---|
881 | samples++;
|
---|
882 |
|
---|
883 | for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
|
---|
884 | *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
|
---|
885 | samples += avctx->channels;
|
---|
886 | *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
|
---|
887 | samples += avctx->channels;
|
---|
888 | src ++;
|
---|
889 | }
|
---|
890 |
|
---|
891 | if(st) { /* handle stereo interlacing */
|
---|
892 | c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
|
---|
893 | if(channel == 1) { /* wait for the other packet before outputing anything */
|
---|
894 | return src - buf;
|
---|
895 | }
|
---|
896 | }
|
---|
897 | break;
|
---|
898 | case CODEC_ID_ADPCM_IMA_WAV:
|
---|
899 | if (avctx->block_align != 0 && buf_size > avctx->block_align)
|
---|
900 | buf_size = avctx->block_align;
|
---|
901 |
|
---|
902 | // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
|
---|
903 |
|
---|
904 | for(i=0; i<avctx->channels; i++){
|
---|
905 | cs = &(c->status[i]);
|
---|
906 | cs->predictor = (int16_t)(src[0] + (src[1]<<8));
|
---|
907 | src+=2;
|
---|
908 |
|
---|
909 | // XXX: is this correct ??: *samples++ = cs->predictor;
|
---|
910 |
|
---|
911 | cs->step_index = *src++;
|
---|
912 | if (cs->step_index > 88){
|
---|
913 | av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
|
---|
914 | cs->step_index = 88;
|
---|
915 | }
|
---|
916 | if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
|
---|
917 | }
|
---|
918 |
|
---|
919 | while(src < buf + buf_size){
|
---|
920 | for(m=0; m<4; m++){
|
---|
921 | for(i=0; i<=st; i++)
|
---|
922 | *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
|
---|
923 | for(i=0; i<=st; i++)
|
---|
924 | *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
|
---|
925 | src++;
|
---|
926 | }
|
---|
927 | src += 4*st;
|
---|
928 | }
|
---|
929 | break;
|
---|
930 | case CODEC_ID_ADPCM_4XM:
|
---|
931 | cs = &(c->status[0]);
|
---|
932 | c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
|
---|
933 | if(st){
|
---|
934 | c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
|
---|
935 | }
|
---|
936 | c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
|
---|
937 | if(st){
|
---|
938 | c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
|
---|
939 | }
|
---|
940 | if (cs->step_index < 0) cs->step_index = 0;
|
---|
941 | if (cs->step_index > 88) cs->step_index = 88;
|
---|
942 |
|
---|
943 | m= (buf_size - (src - buf))>>st;
|
---|
944 | for(i=0; i<m; i++) {
|
---|
945 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
|
---|
946 | if (st)
|
---|
947 | *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
|
---|
948 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
|
---|
949 | if (st)
|
---|
950 | *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
|
---|
951 | }
|
---|
952 |
|
---|
953 | src += m<<st;
|
---|
954 |
|
---|
955 | break;
|
---|
956 | case CODEC_ID_ADPCM_MS:
|
---|
957 | if (avctx->block_align != 0 && buf_size > avctx->block_align)
|
---|
958 | buf_size = avctx->block_align;
|
---|
959 | n = buf_size - 7 * avctx->channels;
|
---|
960 | if (n < 0)
|
---|
961 | return -1;
|
---|
962 | block_predictor[0] = clip(*src++, 0, 7);
|
---|
963 | block_predictor[1] = 0;
|
---|
964 | if (st)
|
---|
965 | block_predictor[1] = clip(*src++, 0, 7);
|
---|
966 | c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
---|
967 | src+=2;
|
---|
968 | if (st){
|
---|
969 | c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
---|
970 | src+=2;
|
---|
971 | }
|
---|
972 | c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
|
---|
973 | c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
|
---|
974 | c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
|
---|
975 | c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
|
---|
976 |
|
---|
977 | c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
---|
978 | src+=2;
|
---|
979 | if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
---|
980 | if (st) src+=2;
|
---|
981 | c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
---|
982 | src+=2;
|
---|
983 | if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
---|
984 | if (st) src+=2;
|
---|
985 |
|
---|
986 | *samples++ = c->status[0].sample1;
|
---|
987 | if (st) *samples++ = c->status[1].sample1;
|
---|
988 | *samples++ = c->status[0].sample2;
|
---|
989 | if (st) *samples++ = c->status[1].sample2;
|
---|
990 | for(;n>0;n--) {
|
---|
991 | *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
|
---|
992 | *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
|
---|
993 | src ++;
|
---|
994 | }
|
---|
995 | break;
|
---|
996 | case CODEC_ID_ADPCM_IMA_DK4:
|
---|
997 | if (avctx->block_align != 0 && buf_size > avctx->block_align)
|
---|
998 | buf_size = avctx->block_align;
|
---|
999 |
|
---|
1000 | c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
|
---|
1001 | c->status[0].step_index = src[2];
|
---|
1002 | src += 4;
|
---|
1003 | *samples++ = c->status[0].predictor;
|
---|
1004 | if (st) {
|
---|
1005 | c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
|
---|
1006 | c->status[1].step_index = src[2];
|
---|
1007 | src += 4;
|
---|
1008 | *samples++ = c->status[1].predictor;
|
---|
1009 | }
|
---|
1010 | while (src < buf + buf_size) {
|
---|
1011 |
|
---|
1012 | /* take care of the top nibble (always left or mono channel) */
|
---|
1013 | *samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
---|
1014 | (src[0] >> 4) & 0x0F, 3);
|
---|
1015 |
|
---|
1016 | /* take care of the bottom nibble, which is right sample for
|
---|
1017 | * stereo, or another mono sample */
|
---|
1018 | if (st)
|
---|
1019 | *samples++ = adpcm_ima_expand_nibble(&c->status[1],
|
---|
1020 | src[0] & 0x0F, 3);
|
---|
1021 | else
|
---|
1022 | *samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
---|
1023 | src[0] & 0x0F, 3);
|
---|
1024 |
|
---|
1025 | src++;
|
---|
1026 | }
|
---|
1027 | break;
|
---|
1028 | case CODEC_ID_ADPCM_IMA_DK3:
|
---|
1029 | if (avctx->block_align != 0 && buf_size > avctx->block_align)
|
---|
1030 | buf_size = avctx->block_align;
|
---|
1031 |
|
---|
1032 | c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
|
---|
1033 | c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
|
---|
1034 | c->status[0].step_index = src[14];
|
---|
1035 | c->status[1].step_index = src[15];
|
---|
1036 | /* sign extend the predictors */
|
---|
1037 | src += 16;
|
---|
1038 | diff_channel = c->status[1].predictor;
|
---|
1039 |
|
---|
1040 | /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
|
---|
1041 | * the buffer is consumed */
|
---|
1042 | while (1) {
|
---|
1043 |
|
---|
1044 | /* for this algorithm, c->status[0] is the sum channel and
|
---|
1045 | * c->status[1] is the diff channel */
|
---|
1046 |
|
---|
1047 | /* process the first predictor of the sum channel */
|
---|
1048 | DK3_GET_NEXT_NIBBLE();
|
---|
1049 | adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
|
---|
1050 |
|
---|
1051 | /* process the diff channel predictor */
|
---|
1052 | DK3_GET_NEXT_NIBBLE();
|
---|
1053 | adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
|
---|
1054 |
|
---|
1055 | /* process the first pair of stereo PCM samples */
|
---|
1056 | diff_channel = (diff_channel + c->status[1].predictor) / 2;
|
---|
1057 | *samples++ = c->status[0].predictor + c->status[1].predictor;
|
---|
1058 | *samples++ = c->status[0].predictor - c->status[1].predictor;
|
---|
1059 |
|
---|
1060 | /* process the second predictor of the sum channel */
|
---|
1061 | DK3_GET_NEXT_NIBBLE();
|
---|
1062 | adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
|
---|
1063 |
|
---|
1064 | /* process the second pair of stereo PCM samples */
|
---|
1065 | diff_channel = (diff_channel + c->status[1].predictor) / 2;
|
---|
1066 | *samples++ = c->status[0].predictor + c->status[1].predictor;
|
---|
1067 | *samples++ = c->status[0].predictor - c->status[1].predictor;
|
---|
1068 | }
|
---|
1069 | break;
|
---|
1070 | case CODEC_ID_ADPCM_IMA_WS:
|
---|
1071 | /* no per-block initialization; just start decoding the data */
|
---|
1072 | while (src < buf + buf_size) {
|
---|
1073 |
|
---|
1074 | if (st) {
|
---|
1075 | *samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
---|
1076 | (src[0] >> 4) & 0x0F, 3);
|
---|
1077 | *samples++ = adpcm_ima_expand_nibble(&c->status[1],
|
---|
1078 | src[0] & 0x0F, 3);
|
---|
1079 | } else {
|
---|
1080 | *samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
---|
1081 | (src[0] >> 4) & 0x0F, 3);
|
---|
1082 | *samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
---|
1083 | src[0] & 0x0F, 3);
|
---|
1084 | }
|
---|
1085 |
|
---|
1086 | src++;
|
---|
1087 | }
|
---|
1088 | break;
|
---|
1089 | case CODEC_ID_ADPCM_XA:
|
---|
1090 | c->status[0].sample1 = c->status[0].sample2 =
|
---|
1091 | c->status[1].sample1 = c->status[1].sample2 = 0;
|
---|
1092 | while (buf_size >= 128) {
|
---|
1093 | xa_decode(samples, src, &c->status[0], &c->status[1],
|
---|
1094 | avctx->channels);
|
---|
1095 | src += 128;
|
---|
1096 | samples += 28 * 8;
|
---|
1097 | buf_size -= 128;
|
---|
1098 | }
|
---|
1099 | break;
|
---|
1100 | case CODEC_ID_ADPCM_EA:
|
---|
1101 | samples_in_chunk = LE_32(src);
|
---|
1102 | if (samples_in_chunk >= ((buf_size - 12) * 2)) {
|
---|
1103 | src += buf_size;
|
---|
1104 | break;
|
---|
1105 | }
|
---|
1106 | src += 4;
|
---|
1107 | current_left_sample = (int16_t)LE_16(src);
|
---|
1108 | src += 2;
|
---|
1109 | previous_left_sample = (int16_t)LE_16(src);
|
---|
1110 | src += 2;
|
---|
1111 | current_right_sample = (int16_t)LE_16(src);
|
---|
1112 | src += 2;
|
---|
1113 | previous_right_sample = (int16_t)LE_16(src);
|
---|
1114 | src += 2;
|
---|
1115 |
|
---|
1116 | for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
|
---|
1117 | coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
|
---|
1118 | coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
|
---|
1119 | coeff1r = ea_adpcm_table[*src & 0x0F];
|
---|
1120 | coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
|
---|
1121 | src++;
|
---|
1122 |
|
---|
1123 | shift_left = ((*src >> 4) & 0x0F) + 8;
|
---|
1124 | shift_right = (*src & 0x0F) + 8;
|
---|
1125 | src++;
|
---|
1126 |
|
---|
1127 | for (count2 = 0; count2 < 28; count2++) {
|
---|
1128 | next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
|
---|
1129 | next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
|
---|
1130 | src++;
|
---|
1131 |
|
---|
1132 | next_left_sample = (next_left_sample +
|
---|
1133 | (current_left_sample * coeff1l) +
|
---|
1134 | (previous_left_sample * coeff2l) + 0x80) >> 8;
|
---|
1135 | next_right_sample = (next_right_sample +
|
---|
1136 | (current_right_sample * coeff1r) +
|
---|
1137 | (previous_right_sample * coeff2r) + 0x80) >> 8;
|
---|
1138 | CLAMP_TO_SHORT(next_left_sample);
|
---|
1139 | CLAMP_TO_SHORT(next_right_sample);
|
---|
1140 |
|
---|
1141 | previous_left_sample = current_left_sample;
|
---|
1142 | current_left_sample = next_left_sample;
|
---|
1143 | previous_right_sample = current_right_sample;
|
---|
1144 | current_right_sample = next_right_sample;
|
---|
1145 | *samples++ = (unsigned short)current_left_sample;
|
---|
1146 | *samples++ = (unsigned short)current_right_sample;
|
---|
1147 | }
|
---|
1148 | }
|
---|
1149 | break;
|
---|
1150 | case CODEC_ID_ADPCM_IMA_SMJPEG:
|
---|
1151 | c->status[0].predictor = *src;
|
---|
1152 | src += 2;
|
---|
1153 | c->status[0].step_index = *src++;
|
---|
1154 | src++; /* skip another byte before getting to the meat */
|
---|
1155 | while (src < buf + buf_size) {
|
---|
1156 | *samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
---|
1157 | *src & 0x0F, 3);
|
---|
1158 | *samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
---|
1159 | (*src >> 4) & 0x0F, 3);
|
---|
1160 | src++;
|
---|
1161 | }
|
---|
1162 | break;
|
---|
1163 | case CODEC_ID_ADPCM_CT:
|
---|
1164 | while (src < buf + buf_size) {
|
---|
1165 | if (st) {
|
---|
1166 | *samples++ = adpcm_ct_expand_nibble(&c->status[0],
|
---|
1167 | (src[0] >> 4) & 0x0F);
|
---|
1168 | *samples++ = adpcm_ct_expand_nibble(&c->status[1],
|
---|
1169 | src[0] & 0x0F);
|
---|
1170 | } else {
|
---|
1171 | *samples++ = adpcm_ct_expand_nibble(&c->status[0],
|
---|
1172 | (src[0] >> 4) & 0x0F);
|
---|
1173 | *samples++ = adpcm_ct_expand_nibble(&c->status[0],
|
---|
1174 | src[0] & 0x0F);
|
---|
1175 | }
|
---|
1176 | src++;
|
---|
1177 | }
|
---|
1178 | break;
|
---|
1179 | case CODEC_ID_ADPCM_SBPRO_4:
|
---|
1180 | case CODEC_ID_ADPCM_SBPRO_3:
|
---|
1181 | case CODEC_ID_ADPCM_SBPRO_2:
|
---|
1182 | if (!c->status[0].step_index) {
|
---|
1183 | /* the first byte is a raw sample */
|
---|
1184 | *samples++ = 128 * (*src++ - 0x80);
|
---|
1185 | if (st)
|
---|
1186 | *samples++ = 128 * (*src++ - 0x80);
|
---|
1187 | c->status[0].step_index = 1;
|
---|
1188 | }
|
---|
1189 | if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
|
---|
1190 | while (src < buf + buf_size) {
|
---|
1191 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
---|
1192 | (src[0] >> 4) & 0x0F, 4, 0);
|
---|
1193 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
|
---|
1194 | src[0] & 0x0F, 4, 0);
|
---|
1195 | src++;
|
---|
1196 | }
|
---|
1197 | } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
|
---|
1198 | while (src < buf + buf_size) {
|
---|
1199 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
---|
1200 | (src[0] >> 5) & 0x07, 3, 0);
|
---|
1201 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
---|
1202 | (src[0] >> 2) & 0x07, 3, 0);
|
---|
1203 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
---|
1204 | src[0] & 0x03, 2, 0);
|
---|
1205 | src++;
|
---|
1206 | }
|
---|
1207 | } else {
|
---|
1208 | while (src < buf + buf_size) {
|
---|
1209 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
---|
1210 | (src[0] >> 6) & 0x03, 2, 2);
|
---|
1211 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
|
---|
1212 | (src[0] >> 4) & 0x03, 2, 2);
|
---|
1213 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
---|
1214 | (src[0] >> 2) & 0x03, 2, 2);
|
---|
1215 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
|
---|
1216 | src[0] & 0x03, 2, 2);
|
---|
1217 | src++;
|
---|
1218 | }
|
---|
1219 | }
|
---|
1220 | break;
|
---|
1221 | case CODEC_ID_ADPCM_SWF:
|
---|
1222 | {
|
---|
1223 | GetBitContext gb;
|
---|
1224 | const int *table;
|
---|
1225 | int k0, signmask;
|
---|
1226 | int size = buf_size*8;
|
---|
1227 |
|
---|
1228 | init_get_bits(&gb, buf, size);
|
---|
1229 |
|
---|
1230 | // first frame, read bits & inital values
|
---|
1231 | if (!c->nb_bits)
|
---|
1232 | {
|
---|
1233 | c->nb_bits = get_bits(&gb, 2)+2;
|
---|
1234 | // av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", c->nb_bits);
|
---|
1235 | }
|
---|
1236 |
|
---|
1237 | table = swf_index_tables[c->nb_bits-2];
|
---|
1238 | k0 = 1 << (c->nb_bits-2);
|
---|
1239 | signmask = 1 << (c->nb_bits-1);
|
---|
1240 |
|
---|
1241 | while (get_bits_count(&gb) <= size)
|
---|
1242 | {
|
---|
1243 | int i;
|
---|
1244 |
|
---|
1245 | c->nb_samples++;
|
---|
1246 | // wrap around at every 4096 samples...
|
---|
1247 | if ((c->nb_samples & 0xfff) == 1)
|
---|
1248 | {
|
---|
1249 | for (i = 0; i <= st; i++)
|
---|
1250 | {
|
---|
1251 | *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
|
---|
1252 | c->status[i].step_index = get_bits(&gb, 6);
|
---|
1253 | }
|
---|
1254 | }
|
---|
1255 |
|
---|
1256 | // similar to IMA adpcm
|
---|
1257 | for (i = 0; i <= st; i++)
|
---|
1258 | {
|
---|
1259 | int delta = get_bits(&gb, c->nb_bits);
|
---|
1260 | int step = step_table[c->status[i].step_index];
|
---|
1261 | long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
|
---|
1262 | int k = k0;
|
---|
1263 |
|
---|
1264 | do {
|
---|
1265 | if (delta & k)
|
---|
1266 | vpdiff += step;
|
---|
1267 | step >>= 1;
|
---|
1268 | k >>= 1;
|
---|
1269 | } while(k);
|
---|
1270 | vpdiff += step;
|
---|
1271 |
|
---|
1272 | if (delta & signmask)
|
---|
1273 | c->status[i].predictor -= vpdiff;
|
---|
1274 | else
|
---|
1275 | c->status[i].predictor += vpdiff;
|
---|
1276 |
|
---|
1277 | c->status[i].step_index += table[delta & (~signmask)];
|
---|
1278 |
|
---|
1279 | c->status[i].step_index = clip(c->status[i].step_index, 0, 88);
|
---|
1280 | c->status[i].predictor = clip(c->status[i].predictor, -32768, 32767);
|
---|
1281 |
|
---|
1282 | *samples++ = c->status[i].predictor;
|
---|
1283 | }
|
---|
1284 | }
|
---|
1285 |
|
---|
1286 | // src += get_bits_count(&gb)*8;
|
---|
1287 | src += size;
|
---|
1288 |
|
---|
1289 | break;
|
---|
1290 | }
|
---|
1291 | case CODEC_ID_ADPCM_YAMAHA:
|
---|
1292 | while (src < buf + buf_size) {
|
---|
1293 | if (st) {
|
---|
1294 | *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
|
---|
1295 | src[0] & 0x0F);
|
---|
1296 | *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
|
---|
1297 | (src[0] >> 4) & 0x0F);
|
---|
1298 | } else {
|
---|
1299 | *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
|
---|
1300 | src[0] & 0x0F);
|
---|
1301 | *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
|
---|
1302 | (src[0] >> 4) & 0x0F);
|
---|
1303 | }
|
---|
1304 | src++;
|
---|
1305 | }
|
---|
1306 | break;
|
---|
1307 | default:
|
---|
1308 | return -1;
|
---|
1309 | }
|
---|
1310 | *data_size = (uint8_t *)samples - (uint8_t *)data;
|
---|
1311 | return src - buf;
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 |
|
---|
1315 |
|
---|
1316 | #ifdef CONFIG_ENCODERS
|
---|
1317 | #define ADPCM_ENCODER(id,name) \
|
---|
1318 | AVCodec name ## _encoder = { \
|
---|
1319 | #name, \
|
---|
1320 | CODEC_TYPE_AUDIO, \
|
---|
1321 | id, \
|
---|
1322 | sizeof(ADPCMContext), \
|
---|
1323 | adpcm_encode_init, \
|
---|
1324 | adpcm_encode_frame, \
|
---|
1325 | adpcm_encode_close, \
|
---|
1326 | NULL, \
|
---|
1327 | };
|
---|
1328 | #else
|
---|
1329 | #define ADPCM_ENCODER(id,name)
|
---|
1330 | #endif
|
---|
1331 |
|
---|
1332 | #ifdef CONFIG_DECODERS
|
---|
1333 | #define ADPCM_DECODER(id,name) \
|
---|
1334 | AVCodec name ## _decoder = { \
|
---|
1335 | #name, \
|
---|
1336 | CODEC_TYPE_AUDIO, \
|
---|
1337 | id, \
|
---|
1338 | sizeof(ADPCMContext), \
|
---|
1339 | adpcm_decode_init, \
|
---|
1340 | NULL, \
|
---|
1341 | NULL, \
|
---|
1342 | adpcm_decode_frame, \
|
---|
1343 | };
|
---|
1344 | #else
|
---|
1345 | #define ADPCM_DECODER(id,name)
|
---|
1346 | #endif
|
---|
1347 |
|
---|
1348 | #define ADPCM_CODEC(id, name) \
|
---|
1349 | ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
|
---|
1350 |
|
---|
1351 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
|
---|
1352 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
|
---|
1353 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
|
---|
1354 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
|
---|
1355 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
|
---|
1356 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
|
---|
1357 | ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
|
---|
1358 | ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
|
---|
1359 | ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
|
---|
1360 | ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
|
---|
1361 | ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
|
---|
1362 | ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
|
---|
1363 | ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
|
---|
1364 | ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
|
---|
1365 | ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
|
---|
1366 | ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
|
---|
1367 |
|
---|
1368 | #undef ADPCM_CODEC
|
---|