VirtualBox

source: vbox/trunk/src/libs/ffmpeg-20060710/libavcodec/mpegaudiodec.c@ 11551

Last change on this file since 11551 was 5776, checked in by vboxsync, 17 years ago

ffmpeg: exported to OSE

File size: 85.5 KB
Line 
1/*
2 * MPEG Audio decoder
3 * Copyright (c) 2001, 2002 Fabrice Bellard.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19
20/**
21 * @file mpegaudiodec.c
22 * MPEG Audio decoder.
23 */
24
25//#define DEBUG
26#include "avcodec.h"
27#include "bitstream.h"
28#include "dsputil.h"
29
30/*
31 * TODO:
32 * - in low precision mode, use more 16 bit multiplies in synth filter
33 * - test lsf / mpeg25 extensively.
34 */
35
36/* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
37 audio decoder */
38#ifdef CONFIG_MPEGAUDIO_HP
39#define USE_HIGHPRECISION
40#endif
41
42#include "mpegaudio.h"
43
44#define FRAC_ONE (1 << FRAC_BITS)
45
46#define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
47#define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
48#define FIX(a) ((int)((a) * FRAC_ONE))
49/* WARNING: only correct for posititive numbers */
50#define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
51#define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
52
53#define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
54//#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
55static always_inline int MULH(int a, int b){
56 return ((int64_t)(a) * (int64_t)(b))>>32;
57}
58
59/****************/
60
61#define HEADER_SIZE 4
62#define BACKSTEP_SIZE 512
63
64struct GranuleDef;
65
66typedef struct MPADecodeContext {
67 uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
68 int inbuf_index;
69 uint8_t *inbuf_ptr, *inbuf;
70 int frame_size;
71 int free_format_frame_size; /* frame size in case of free format
72 (zero if currently unknown) */
73 /* next header (used in free format parsing) */
74 uint32_t free_format_next_header;
75 int error_protection;
76 int layer;
77 int sample_rate;
78 int sample_rate_index; /* between 0 and 8 */
79 int bit_rate;
80 int old_frame_size;
81 GetBitContext gb;
82 int nb_channels;
83 int mode;
84 int mode_ext;
85 int lsf;
86 MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
87 int synth_buf_offset[MPA_MAX_CHANNELS];
88 int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
89 int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
90#ifdef DEBUG
91 int frame_count;
92#endif
93 void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
94 int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
95 unsigned int dither_state;
96} MPADecodeContext;
97
98/**
99 * Context for MP3On4 decoder
100 */
101typedef struct MP3On4DecodeContext {
102 int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
103 int chan_cfg; ///< channel config number
104 MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
105} MP3On4DecodeContext;
106
107/* layer 3 "granule" */
108typedef struct GranuleDef {
109 uint8_t scfsi;
110 int part2_3_length;
111 int big_values;
112 int global_gain;
113 int scalefac_compress;
114 uint8_t block_type;
115 uint8_t switch_point;
116 int table_select[3];
117 int subblock_gain[3];
118 uint8_t scalefac_scale;
119 uint8_t count1table_select;
120 int region_size[3]; /* number of huffman codes in each region */
121 int preflag;
122 int short_start, long_end; /* long/short band indexes */
123 uint8_t scale_factors[40];
124 int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
125} GranuleDef;
126
127#define MODE_EXT_MS_STEREO 2
128#define MODE_EXT_I_STEREO 1
129
130/* layer 3 huffman tables */
131typedef struct HuffTable {
132 int xsize;
133 const uint8_t *bits;
134 const uint16_t *codes;
135} HuffTable;
136
137#include "mpegaudiodectab.h"
138
139static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
140static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
141
142/* vlc structure for decoding layer 3 huffman tables */
143static VLC huff_vlc[16];
144static uint8_t *huff_code_table[16];
145static VLC huff_quad_vlc[2];
146/* computed from band_size_long */
147static uint16_t band_index_long[9][23];
148/* XXX: free when all decoders are closed */
149#define TABLE_4_3_SIZE (8191 + 16)*4
150static int8_t *table_4_3_exp;
151static uint32_t *table_4_3_value;
152/* intensity stereo coef table */
153static int32_t is_table[2][16];
154static int32_t is_table_lsf[2][2][16];
155static int32_t csa_table[8][4];
156static float csa_table_float[8][4];
157static int32_t mdct_win[8][36];
158
159/* lower 2 bits: modulo 3, higher bits: shift */
160static uint16_t scale_factor_modshift[64];
161/* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
162static int32_t scale_factor_mult[15][3];
163/* mult table for layer 2 group quantization */
164
165#define SCALE_GEN(v) \
166{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
167
168static const int32_t scale_factor_mult2[3][3] = {
169 SCALE_GEN(4.0 / 3.0), /* 3 steps */
170 SCALE_GEN(4.0 / 5.0), /* 5 steps */
171 SCALE_GEN(4.0 / 9.0), /* 9 steps */
172};
173
174void ff_mpa_synth_init(MPA_INT *window);
175static MPA_INT window[512] __attribute__((aligned(16)));
176
177/* layer 1 unscaling */
178/* n = number of bits of the mantissa minus 1 */
179static inline int l1_unscale(int n, int mant, int scale_factor)
180{
181 int shift, mod;
182 int64_t val;
183
184 shift = scale_factor_modshift[scale_factor];
185 mod = shift & 3;
186 shift >>= 2;
187 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
188 shift += n;
189 /* NOTE: at this point, 1 <= shift >= 21 + 15 */
190 return (int)((val + (1LL << (shift - 1))) >> shift);
191}
192
193static inline int l2_unscale_group(int steps, int mant, int scale_factor)
194{
195 int shift, mod, val;
196
197 shift = scale_factor_modshift[scale_factor];
198 mod = shift & 3;
199 shift >>= 2;
200
201 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
202 /* NOTE: at this point, 0 <= shift <= 21 */
203 if (shift > 0)
204 val = (val + (1 << (shift - 1))) >> shift;
205 return val;
206}
207
208/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
209static inline int l3_unscale(int value, int exponent)
210{
211 unsigned int m;
212 int e;
213
214 e = table_4_3_exp [4*value + (exponent&3)];
215 m = table_4_3_value[4*value + (exponent&3)];
216 e -= (exponent >> 2);
217 assert(e>=1);
218 if (e > 31)
219 return 0;
220 m = (m + (1 << (e-1))) >> e;
221
222 return m;
223}
224
225/* all integer n^(4/3) computation code */
226#define DEV_ORDER 13
227
228#define POW_FRAC_BITS 24
229#define POW_FRAC_ONE (1 << POW_FRAC_BITS)
230#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
231#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
232
233static int dev_4_3_coefs[DEV_ORDER];
234
235#if 0 /* unused */
236static int pow_mult3[3] = {
237 POW_FIX(1.0),
238 POW_FIX(1.25992104989487316476),
239 POW_FIX(1.58740105196819947474),
240};
241#endif
242
243static void int_pow_init(void)
244{
245 int i, a;
246
247 a = POW_FIX(1.0);
248 for(i=0;i<DEV_ORDER;i++) {
249 a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
250 dev_4_3_coefs[i] = a;
251 }
252}
253
254#if 0 /* unused, remove? */
255/* return the mantissa and the binary exponent */
256static int int_pow(int i, int *exp_ptr)
257{
258 int e, er, eq, j;
259 int a, a1;
260
261 /* renormalize */
262 a = i;
263 e = POW_FRAC_BITS;
264 while (a < (1 << (POW_FRAC_BITS - 1))) {
265 a = a << 1;
266 e--;
267 }
268 a -= (1 << POW_FRAC_BITS);
269 a1 = 0;
270 for(j = DEV_ORDER - 1; j >= 0; j--)
271 a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
272 a = (1 << POW_FRAC_BITS) + a1;
273 /* exponent compute (exact) */
274 e = e * 4;
275 er = e % 3;
276 eq = e / 3;
277 a = POW_MULL(a, pow_mult3[er]);
278 while (a >= 2 * POW_FRAC_ONE) {
279 a = a >> 1;
280 eq++;
281 }
282 /* convert to float */
283 while (a < POW_FRAC_ONE) {
284 a = a << 1;
285 eq--;
286 }
287 /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
288#if POW_FRAC_BITS > FRAC_BITS
289 a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
290 /* correct overflow */
291 if (a >= 2 * (1 << FRAC_BITS)) {
292 a = a >> 1;
293 eq++;
294 }
295#endif
296 *exp_ptr = eq;
297 return a;
298}
299#endif
300
301static int decode_init(AVCodecContext * avctx)
302{
303 MPADecodeContext *s = avctx->priv_data;
304 static int init=0;
305 int i, j, k;
306
307#if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
308 avctx->sample_fmt= SAMPLE_FMT_S32;
309#else
310 avctx->sample_fmt= SAMPLE_FMT_S16;
311#endif
312
313 if(avctx->antialias_algo != FF_AA_FLOAT)
314 s->compute_antialias= compute_antialias_integer;
315 else
316 s->compute_antialias= compute_antialias_float;
317
318 if (!init && !avctx->parse_only) {
319 /* scale factors table for layer 1/2 */
320 for(i=0;i<64;i++) {
321 int shift, mod;
322 /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
323 shift = (i / 3);
324 mod = i % 3;
325 scale_factor_modshift[i] = mod | (shift << 2);
326 }
327
328 /* scale factor multiply for layer 1 */
329 for(i=0;i<15;i++) {
330 int n, norm;
331 n = i + 2;
332 norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
333 scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
334 scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
335 scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
336 dprintf("%d: norm=%x s=%x %x %x\n",
337 i, norm,
338 scale_factor_mult[i][0],
339 scale_factor_mult[i][1],
340 scale_factor_mult[i][2]);
341 }
342
343 ff_mpa_synth_init(window);
344
345 /* huffman decode tables */
346 huff_code_table[0] = NULL;
347 for(i=1;i<16;i++) {
348 const HuffTable *h = &mpa_huff_tables[i];
349 int xsize, x, y;
350 unsigned int n;
351 uint8_t *code_table;
352
353 xsize = h->xsize;
354 n = xsize * xsize;
355 /* XXX: fail test */
356 init_vlc(&huff_vlc[i], 8, n,
357 h->bits, 1, 1, h->codes, 2, 2, 1);
358
359 code_table = av_mallocz(n);
360 j = 0;
361 for(x=0;x<xsize;x++) {
362 for(y=0;y<xsize;y++)
363 code_table[j++] = (x << 4) | y;
364 }
365 huff_code_table[i] = code_table;
366 }
367 for(i=0;i<2;i++) {
368 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
369 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
370 }
371
372 for(i=0;i<9;i++) {
373 k = 0;
374 for(j=0;j<22;j++) {
375 band_index_long[i][j] = k;
376 k += band_size_long[i][j];
377 }
378 band_index_long[i][22] = k;
379 }
380
381 /* compute n ^ (4/3) and store it in mantissa/exp format */
382 table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
383 if(!table_4_3_exp)
384 return -1;
385 table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
386 if(!table_4_3_value)
387 return -1;
388
389 int_pow_init();
390 for(i=1;i<TABLE_4_3_SIZE;i++) {
391 double f, fm;
392 int e, m;
393 f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
394 fm = frexp(f, &e);
395 m = (uint32_t)(fm*(1LL<<31) + 0.5);
396 e+= FRAC_BITS - 31 + 5;
397
398 /* normalized to FRAC_BITS */
399 table_4_3_value[i] = m;
400// av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
401 table_4_3_exp[i] = -e;
402 }
403
404 for(i=0;i<7;i++) {
405 float f;
406 int v;
407 if (i != 6) {
408 f = tan((double)i * M_PI / 12.0);
409 v = FIXR(f / (1.0 + f));
410 } else {
411 v = FIXR(1.0);
412 }
413 is_table[0][i] = v;
414 is_table[1][6 - i] = v;
415 }
416 /* invalid values */
417 for(i=7;i<16;i++)
418 is_table[0][i] = is_table[1][i] = 0.0;
419
420 for(i=0;i<16;i++) {
421 double f;
422 int e, k;
423
424 for(j=0;j<2;j++) {
425 e = -(j + 1) * ((i + 1) >> 1);
426 f = pow(2.0, e / 4.0);
427 k = i & 1;
428 is_table_lsf[j][k ^ 1][i] = FIXR(f);
429 is_table_lsf[j][k][i] = FIXR(1.0);
430 dprintf("is_table_lsf %d %d: %x %x\n",
431 i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
432 }
433 }
434
435 for(i=0;i<8;i++) {
436 float ci, cs, ca;
437 ci = ci_table[i];
438 cs = 1.0 / sqrt(1.0 + ci * ci);
439 ca = cs * ci;
440 csa_table[i][0] = FIXHR(cs/4);
441 csa_table[i][1] = FIXHR(ca/4);
442 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
443 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
444 csa_table_float[i][0] = cs;
445 csa_table_float[i][1] = ca;
446 csa_table_float[i][2] = ca + cs;
447 csa_table_float[i][3] = ca - cs;
448// printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
449// av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
450 }
451
452 /* compute mdct windows */
453 for(i=0;i<36;i++) {
454 for(j=0; j<4; j++){
455 double d;
456
457 if(j==2 && i%3 != 1)
458 continue;
459
460 d= sin(M_PI * (i + 0.5) / 36.0);
461 if(j==1){
462 if (i>=30) d= 0;
463 else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
464 else if(i>=18) d= 1;
465 }else if(j==3){
466 if (i< 6) d= 0;
467 else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
468 else if(i< 18) d= 1;
469 }
470 //merge last stage of imdct into the window coefficients
471 d*= 0.5 / cos(M_PI*(2*i + 19)/72);
472
473 if(j==2)
474 mdct_win[j][i/3] = FIXHR((d / (1<<5)));
475 else
476 mdct_win[j][i ] = FIXHR((d / (1<<5)));
477// av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
478 }
479 }
480
481 /* NOTE: we do frequency inversion adter the MDCT by changing
482 the sign of the right window coefs */
483 for(j=0;j<4;j++) {
484 for(i=0;i<36;i+=2) {
485 mdct_win[j + 4][i] = mdct_win[j][i];
486 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
487 }
488 }
489
490#if defined(DEBUG)
491 for(j=0;j<8;j++) {
492 av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
493 for(i=0;i<36;i++)
494 av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
495 av_log(avctx, AV_LOG_DEBUG, "\n");
496 }
497#endif
498 init = 1;
499 }
500
501 s->inbuf_index = 0;
502 s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
503 s->inbuf_ptr = s->inbuf;
504#ifdef DEBUG
505 s->frame_count = 0;
506#endif
507 if (avctx->codec_id == CODEC_ID_MP3ADU)
508 s->adu_mode = 1;
509 return 0;
510}
511
512/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
513
514/* cos(i*pi/64) */
515
516#define COS0_0 FIXR(0.50060299823519630134)
517#define COS0_1 FIXR(0.50547095989754365998)
518#define COS0_2 FIXR(0.51544730992262454697)
519#define COS0_3 FIXR(0.53104259108978417447)
520#define COS0_4 FIXR(0.55310389603444452782)
521#define COS0_5 FIXR(0.58293496820613387367)
522#define COS0_6 FIXR(0.62250412303566481615)
523#define COS0_7 FIXR(0.67480834145500574602)
524#define COS0_8 FIXR(0.74453627100229844977)
525#define COS0_9 FIXR(0.83934964541552703873)
526#define COS0_10 FIXR(0.97256823786196069369)
527#define COS0_11 FIXR(1.16943993343288495515)
528#define COS0_12 FIXR(1.48416461631416627724)
529#define COS0_13 FIXR(2.05778100995341155085)
530#define COS0_14 FIXR(3.40760841846871878570)
531#define COS0_15 FIXR(10.19000812354805681150)
532
533#define COS1_0 FIXR(0.50241928618815570551)
534#define COS1_1 FIXR(0.52249861493968888062)
535#define COS1_2 FIXR(0.56694403481635770368)
536#define COS1_3 FIXR(0.64682178335999012954)
537#define COS1_4 FIXR(0.78815462345125022473)
538#define COS1_5 FIXR(1.06067768599034747134)
539#define COS1_6 FIXR(1.72244709823833392782)
540#define COS1_7 FIXR(5.10114861868916385802)
541
542#define COS2_0 FIXR(0.50979557910415916894)
543#define COS2_1 FIXR(0.60134488693504528054)
544#define COS2_2 FIXR(0.89997622313641570463)
545#define COS2_3 FIXR(2.56291544774150617881)
546
547#define COS3_0 FIXR(0.54119610014619698439)
548#define COS3_1 FIXR(1.30656296487637652785)
549
550#define COS4_0 FIXR(0.70710678118654752439)
551
552/* butterfly operator */
553#define BF(a, b, c)\
554{\
555 tmp0 = tab[a] + tab[b];\
556 tmp1 = tab[a] - tab[b];\
557 tab[a] = tmp0;\
558 tab[b] = MULL(tmp1, c);\
559}
560
561#define BF1(a, b, c, d)\
562{\
563 BF(a, b, COS4_0);\
564 BF(c, d, -COS4_0);\
565 tab[c] += tab[d];\
566}
567
568#define BF2(a, b, c, d)\
569{\
570 BF(a, b, COS4_0);\
571 BF(c, d, -COS4_0);\
572 tab[c] += tab[d];\
573 tab[a] += tab[c];\
574 tab[c] += tab[b];\
575 tab[b] += tab[d];\
576}
577
578#define ADD(a, b) tab[a] += tab[b]
579
580/* DCT32 without 1/sqrt(2) coef zero scaling. */
581static void dct32(int32_t *out, int32_t *tab)
582{
583 int tmp0, tmp1;
584
585 /* pass 1 */
586 BF(0, 31, COS0_0);
587 BF(1, 30, COS0_1);
588 BF(2, 29, COS0_2);
589 BF(3, 28, COS0_3);
590 BF(4, 27, COS0_4);
591 BF(5, 26, COS0_5);
592 BF(6, 25, COS0_6);
593 BF(7, 24, COS0_7);
594 BF(8, 23, COS0_8);
595 BF(9, 22, COS0_9);
596 BF(10, 21, COS0_10);
597 BF(11, 20, COS0_11);
598 BF(12, 19, COS0_12);
599 BF(13, 18, COS0_13);
600 BF(14, 17, COS0_14);
601 BF(15, 16, COS0_15);
602
603 /* pass 2 */
604 BF(0, 15, COS1_0);
605 BF(1, 14, COS1_1);
606 BF(2, 13, COS1_2);
607 BF(3, 12, COS1_3);
608 BF(4, 11, COS1_4);
609 BF(5, 10, COS1_5);
610 BF(6, 9, COS1_6);
611 BF(7, 8, COS1_7);
612
613 BF(16, 31, -COS1_0);
614 BF(17, 30, -COS1_1);
615 BF(18, 29, -COS1_2);
616 BF(19, 28, -COS1_3);
617 BF(20, 27, -COS1_4);
618 BF(21, 26, -COS1_5);
619 BF(22, 25, -COS1_6);
620 BF(23, 24, -COS1_7);
621
622 /* pass 3 */
623 BF(0, 7, COS2_0);
624 BF(1, 6, COS2_1);
625 BF(2, 5, COS2_2);
626 BF(3, 4, COS2_3);
627
628 BF(8, 15, -COS2_0);
629 BF(9, 14, -COS2_1);
630 BF(10, 13, -COS2_2);
631 BF(11, 12, -COS2_3);
632
633 BF(16, 23, COS2_0);
634 BF(17, 22, COS2_1);
635 BF(18, 21, COS2_2);
636 BF(19, 20, COS2_3);
637
638 BF(24, 31, -COS2_0);
639 BF(25, 30, -COS2_1);
640 BF(26, 29, -COS2_2);
641 BF(27, 28, -COS2_3);
642
643 /* pass 4 */
644 BF(0, 3, COS3_0);
645 BF(1, 2, COS3_1);
646
647 BF(4, 7, -COS3_0);
648 BF(5, 6, -COS3_1);
649
650 BF(8, 11, COS3_0);
651 BF(9, 10, COS3_1);
652
653 BF(12, 15, -COS3_0);
654 BF(13, 14, -COS3_1);
655
656 BF(16, 19, COS3_0);
657 BF(17, 18, COS3_1);
658
659 BF(20, 23, -COS3_0);
660 BF(21, 22, -COS3_1);
661
662 BF(24, 27, COS3_0);
663 BF(25, 26, COS3_1);
664
665 BF(28, 31, -COS3_0);
666 BF(29, 30, -COS3_1);
667
668 /* pass 5 */
669 BF1(0, 1, 2, 3);
670 BF2(4, 5, 6, 7);
671 BF1(8, 9, 10, 11);
672 BF2(12, 13, 14, 15);
673 BF1(16, 17, 18, 19);
674 BF2(20, 21, 22, 23);
675 BF1(24, 25, 26, 27);
676 BF2(28, 29, 30, 31);
677
678 /* pass 6 */
679
680 ADD( 8, 12);
681 ADD(12, 10);
682 ADD(10, 14);
683 ADD(14, 9);
684 ADD( 9, 13);
685 ADD(13, 11);
686 ADD(11, 15);
687
688 out[ 0] = tab[0];
689 out[16] = tab[1];
690 out[ 8] = tab[2];
691 out[24] = tab[3];
692 out[ 4] = tab[4];
693 out[20] = tab[5];
694 out[12] = tab[6];
695 out[28] = tab[7];
696 out[ 2] = tab[8];
697 out[18] = tab[9];
698 out[10] = tab[10];
699 out[26] = tab[11];
700 out[ 6] = tab[12];
701 out[22] = tab[13];
702 out[14] = tab[14];
703 out[30] = tab[15];
704
705 ADD(24, 28);
706 ADD(28, 26);
707 ADD(26, 30);
708 ADD(30, 25);
709 ADD(25, 29);
710 ADD(29, 27);
711 ADD(27, 31);
712
713 out[ 1] = tab[16] + tab[24];
714 out[17] = tab[17] + tab[25];
715 out[ 9] = tab[18] + tab[26];
716 out[25] = tab[19] + tab[27];
717 out[ 5] = tab[20] + tab[28];
718 out[21] = tab[21] + tab[29];
719 out[13] = tab[22] + tab[30];
720 out[29] = tab[23] + tab[31];
721 out[ 3] = tab[24] + tab[20];
722 out[19] = tab[25] + tab[21];
723 out[11] = tab[26] + tab[22];
724 out[27] = tab[27] + tab[23];
725 out[ 7] = tab[28] + tab[18];
726 out[23] = tab[29] + tab[19];
727 out[15] = tab[30] + tab[17];
728 out[31] = tab[31];
729}
730
731#if FRAC_BITS <= 15
732
733static inline int round_sample(int *sum)
734{
735 int sum1;
736 sum1 = (*sum) >> OUT_SHIFT;
737 *sum &= (1<<OUT_SHIFT)-1;
738 if (sum1 < OUT_MIN)
739 sum1 = OUT_MIN;
740 else if (sum1 > OUT_MAX)
741 sum1 = OUT_MAX;
742 return sum1;
743}
744
745#if defined(ARCH_POWERPC_405)
746
747/* signed 16x16 -> 32 multiply add accumulate */
748#define MACS(rt, ra, rb) \
749 asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
750
751/* signed 16x16 -> 32 multiply */
752#define MULS(ra, rb) \
753 ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
754
755#else
756
757/* signed 16x16 -> 32 multiply add accumulate */
758#define MACS(rt, ra, rb) rt += (ra) * (rb)
759
760/* signed 16x16 -> 32 multiply */
761#define MULS(ra, rb) ((ra) * (rb))
762
763#endif
764
765#else
766
767static inline int round_sample(int64_t *sum)
768{
769 int sum1;
770 sum1 = (int)((*sum) >> OUT_SHIFT);
771 *sum &= (1<<OUT_SHIFT)-1;
772 if (sum1 < OUT_MIN)
773 sum1 = OUT_MIN;
774 else if (sum1 > OUT_MAX)
775 sum1 = OUT_MAX;
776 return sum1;
777}
778
779#define MULS(ra, rb) MUL64(ra, rb)
780
781#endif
782
783#define SUM8(sum, op, w, p) \
784{ \
785 sum op MULS((w)[0 * 64], p[0 * 64]);\
786 sum op MULS((w)[1 * 64], p[1 * 64]);\
787 sum op MULS((w)[2 * 64], p[2 * 64]);\
788 sum op MULS((w)[3 * 64], p[3 * 64]);\
789 sum op MULS((w)[4 * 64], p[4 * 64]);\
790 sum op MULS((w)[5 * 64], p[5 * 64]);\
791 sum op MULS((w)[6 * 64], p[6 * 64]);\
792 sum op MULS((w)[7 * 64], p[7 * 64]);\
793}
794
795#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
796{ \
797 int tmp;\
798 tmp = p[0 * 64];\
799 sum1 op1 MULS((w1)[0 * 64], tmp);\
800 sum2 op2 MULS((w2)[0 * 64], tmp);\
801 tmp = p[1 * 64];\
802 sum1 op1 MULS((w1)[1 * 64], tmp);\
803 sum2 op2 MULS((w2)[1 * 64], tmp);\
804 tmp = p[2 * 64];\
805 sum1 op1 MULS((w1)[2 * 64], tmp);\
806 sum2 op2 MULS((w2)[2 * 64], tmp);\
807 tmp = p[3 * 64];\
808 sum1 op1 MULS((w1)[3 * 64], tmp);\
809 sum2 op2 MULS((w2)[3 * 64], tmp);\
810 tmp = p[4 * 64];\
811 sum1 op1 MULS((w1)[4 * 64], tmp);\
812 sum2 op2 MULS((w2)[4 * 64], tmp);\
813 tmp = p[5 * 64];\
814 sum1 op1 MULS((w1)[5 * 64], tmp);\
815 sum2 op2 MULS((w2)[5 * 64], tmp);\
816 tmp = p[6 * 64];\
817 sum1 op1 MULS((w1)[6 * 64], tmp);\
818 sum2 op2 MULS((w2)[6 * 64], tmp);\
819 tmp = p[7 * 64];\
820 sum1 op1 MULS((w1)[7 * 64], tmp);\
821 sum2 op2 MULS((w2)[7 * 64], tmp);\
822}
823
824void ff_mpa_synth_init(MPA_INT *window)
825{
826 int i;
827
828 /* max = 18760, max sum over all 16 coefs : 44736 */
829 for(i=0;i<257;i++) {
830 int v;
831 v = mpa_enwindow[i];
832#if WFRAC_BITS < 16
833 v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
834#endif
835 window[i] = v;
836 if ((i & 63) != 0)
837 v = -v;
838 if (i != 0)
839 window[512 - i] = v;
840 }
841}
842
843/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
844 32 samples. */
845/* XXX: optimize by avoiding ring buffer usage */
846void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
847 MPA_INT *window, int *dither_state,
848 OUT_INT *samples, int incr,
849 int32_t sb_samples[SBLIMIT])
850{
851 int32_t tmp[32];
852 register MPA_INT *synth_buf;
853 register const MPA_INT *w, *w2, *p;
854 int j, offset, v;
855 OUT_INT *samples2;
856#if FRAC_BITS <= 15
857 int sum, sum2;
858#else
859 int64_t sum, sum2;
860#endif
861
862 dct32(tmp, sb_samples);
863
864 offset = *synth_buf_offset;
865 synth_buf = synth_buf_ptr + offset;
866
867 for(j=0;j<32;j++) {
868 v = tmp[j];
869#if FRAC_BITS <= 15
870 /* NOTE: can cause a loss in precision if very high amplitude
871 sound */
872 if (v > 32767)
873 v = 32767;
874 else if (v < -32768)
875 v = -32768;
876#endif
877 synth_buf[j] = v;
878 }
879 /* copy to avoid wrap */
880 memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
881
882 samples2 = samples + 31 * incr;
883 w = window;
884 w2 = window + 31;
885
886 sum = *dither_state;
887 p = synth_buf + 16;
888 SUM8(sum, +=, w, p);
889 p = synth_buf + 48;
890 SUM8(sum, -=, w + 32, p);
891 *samples = round_sample(&sum);
892 samples += incr;
893 w++;
894
895 /* we calculate two samples at the same time to avoid one memory
896 access per two sample */
897 for(j=1;j<16;j++) {
898 sum2 = 0;
899 p = synth_buf + 16 + j;
900 SUM8P2(sum, +=, sum2, -=, w, w2, p);
901 p = synth_buf + 48 - j;
902 SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
903
904 *samples = round_sample(&sum);
905 samples += incr;
906 sum += sum2;
907 *samples2 = round_sample(&sum);
908 samples2 -= incr;
909 w++;
910 w2--;
911 }
912
913 p = synth_buf + 32;
914 SUM8(sum, -=, w + 32, p);
915 *samples = round_sample(&sum);
916 *dither_state= sum;
917
918 offset = (offset - 32) & 511;
919 *synth_buf_offset = offset;
920}
921
922#define C3 FIXHR(0.86602540378443864676/2)
923
924/* 0.5 / cos(pi*(2*i+1)/36) */
925static const int icos36[9] = {
926 FIXR(0.50190991877167369479),
927 FIXR(0.51763809020504152469), //0
928 FIXR(0.55168895948124587824),
929 FIXR(0.61038729438072803416),
930 FIXR(0.70710678118654752439), //1
931 FIXR(0.87172339781054900991),
932 FIXR(1.18310079157624925896),
933 FIXR(1.93185165257813657349), //2
934 FIXR(5.73685662283492756461),
935};
936
937/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
938 cases. */
939static void imdct12(int *out, int *in)
940{
941 int in0, in1, in2, in3, in4, in5, t1, t2;
942
943 in0= in[0*3];
944 in1= in[1*3] + in[0*3];
945 in2= in[2*3] + in[1*3];
946 in3= in[3*3] + in[2*3];
947 in4= in[4*3] + in[3*3];
948 in5= in[5*3] + in[4*3];
949 in5 += in3;
950 in3 += in1;
951
952 in2= MULH(2*in2, C3);
953 in3= MULH(2*in3, C3);
954
955 t1 = in0 - in4;
956 t2 = MULL(in1 - in5, icos36[4]);
957
958 out[ 7]=
959 out[10]= t1 + t2;
960 out[ 1]=
961 out[ 4]= t1 - t2;
962
963 in0 += in4>>1;
964 in4 = in0 + in2;
965 in1 += in5>>1;
966 in5 = MULL(in1 + in3, icos36[1]);
967 out[ 8]=
968 out[ 9]= in4 + in5;
969 out[ 2]=
970 out[ 3]= in4 - in5;
971
972 in0 -= in2;
973 in1 = MULL(in1 - in3, icos36[7]);
974 out[ 0]=
975 out[ 5]= in0 - in1;
976 out[ 6]=
977 out[11]= in0 + in1;
978}
979
980/* cos(pi*i/18) */
981#define C1 FIXHR(0.98480775301220805936/2)
982#define C2 FIXHR(0.93969262078590838405/2)
983#define C3 FIXHR(0.86602540378443864676/2)
984#define C4 FIXHR(0.76604444311897803520/2)
985#define C5 FIXHR(0.64278760968653932632/2)
986#define C6 FIXHR(0.5/2)
987#define C7 FIXHR(0.34202014332566873304/2)
988#define C8 FIXHR(0.17364817766693034885/2)
989
990
991/* using Lee like decomposition followed by hand coded 9 points DCT */
992static void imdct36(int *out, int *buf, int *in, int *win)
993{
994 int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
995 int tmp[18], *tmp1, *in1;
996
997 for(i=17;i>=1;i--)
998 in[i] += in[i-1];
999 for(i=17;i>=3;i-=2)
1000 in[i] += in[i-2];
1001
1002 for(j=0;j<2;j++) {
1003 tmp1 = tmp + j;
1004 in1 = in + j;
1005#if 0
1006//more accurate but slower
1007 int64_t t0, t1, t2, t3;
1008 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1009
1010 t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
1011 t1 = in1[2*0] - in1[2*6];
1012 tmp1[ 6] = t1 - (t2>>1);
1013 tmp1[16] = t1 + t2;
1014
1015 t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
1016 t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
1017 t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
1018
1019 tmp1[10] = (t3 - t0 - t2) >> 32;
1020 tmp1[ 2] = (t3 + t0 + t1) >> 32;
1021 tmp1[14] = (t3 + t2 - t1) >> 32;
1022
1023 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1024 t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
1025 t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
1026 t0 = MUL64(2*in1[2*3], C3);
1027
1028 t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
1029
1030 tmp1[ 0] = (t2 + t3 + t0) >> 32;
1031 tmp1[12] = (t2 + t1 - t0) >> 32;
1032 tmp1[ 8] = (t3 - t1 - t0) >> 32;
1033#else
1034 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1035
1036 t3 = in1[2*0] + (in1[2*6]>>1);
1037 t1 = in1[2*0] - in1[2*6];
1038 tmp1[ 6] = t1 - (t2>>1);
1039 tmp1[16] = t1 + t2;
1040
1041 t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
1042 t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
1043 t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
1044
1045 tmp1[10] = t3 - t0 - t2;
1046 tmp1[ 2] = t3 + t0 + t1;
1047 tmp1[14] = t3 + t2 - t1;
1048
1049 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1050 t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
1051 t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
1052 t0 = MULH(2*in1[2*3], C3);
1053
1054 t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
1055
1056 tmp1[ 0] = t2 + t3 + t0;
1057 tmp1[12] = t2 + t1 - t0;
1058 tmp1[ 8] = t3 - t1 - t0;
1059#endif
1060 }
1061
1062 i = 0;
1063 for(j=0;j<4;j++) {
1064 t0 = tmp[i];
1065 t1 = tmp[i + 2];
1066 s0 = t1 + t0;
1067 s2 = t1 - t0;
1068
1069 t2 = tmp[i + 1];
1070 t3 = tmp[i + 3];
1071 s1 = MULL(t3 + t2, icos36[j]);
1072 s3 = MULL(t3 - t2, icos36[8 - j]);
1073
1074 t0 = s0 + s1;
1075 t1 = s0 - s1;
1076 out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
1077 out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
1078 buf[9 + j] = MULH(t0, win[18 + 9 + j]);
1079 buf[8 - j] = MULH(t0, win[18 + 8 - j]);
1080
1081 t0 = s2 + s3;
1082 t1 = s2 - s3;
1083 out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
1084 out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
1085 buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
1086 buf[ + j] = MULH(t0, win[18 + j]);
1087 i += 4;
1088 }
1089
1090 s0 = tmp[16];
1091 s1 = MULL(tmp[17], icos36[4]);
1092 t0 = s0 + s1;
1093 t1 = s0 - s1;
1094 out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
1095 out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
1096 buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
1097 buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
1098}
1099
1100/* header decoding. MUST check the header before because no
1101 consistency check is done there. Return 1 if free format found and
1102 that the frame size must be computed externally */
1103static int decode_header(MPADecodeContext *s, uint32_t header)
1104{
1105 int sample_rate, frame_size, mpeg25, padding;
1106 int sample_rate_index, bitrate_index;
1107 if (header & (1<<20)) {
1108 s->lsf = (header & (1<<19)) ? 0 : 1;
1109 mpeg25 = 0;
1110 } else {
1111 s->lsf = 1;
1112 mpeg25 = 1;
1113 }
1114
1115 s->layer = 4 - ((header >> 17) & 3);
1116 /* extract frequency */
1117 sample_rate_index = (header >> 10) & 3;
1118 sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
1119 sample_rate_index += 3 * (s->lsf + mpeg25);
1120 s->sample_rate_index = sample_rate_index;
1121 s->error_protection = ((header >> 16) & 1) ^ 1;
1122 s->sample_rate = sample_rate;
1123
1124 bitrate_index = (header >> 12) & 0xf;
1125 padding = (header >> 9) & 1;
1126 //extension = (header >> 8) & 1;
1127 s->mode = (header >> 6) & 3;
1128 s->mode_ext = (header >> 4) & 3;
1129 //copyright = (header >> 3) & 1;
1130 //original = (header >> 2) & 1;
1131 //emphasis = header & 3;
1132
1133 if (s->mode == MPA_MONO)
1134 s->nb_channels = 1;
1135 else
1136 s->nb_channels = 2;
1137
1138 if (bitrate_index != 0) {
1139 frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
1140 s->bit_rate = frame_size * 1000;
1141 switch(s->layer) {
1142 case 1:
1143 frame_size = (frame_size * 12000) / sample_rate;
1144 frame_size = (frame_size + padding) * 4;
1145 break;
1146 case 2:
1147 frame_size = (frame_size * 144000) / sample_rate;
1148 frame_size += padding;
1149 break;
1150 default:
1151 case 3:
1152 frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
1153 frame_size += padding;
1154 break;
1155 }
1156 s->frame_size = frame_size;
1157 } else {
1158 /* if no frame size computed, signal it */
1159 if (!s->free_format_frame_size)
1160 return 1;
1161 /* free format: compute bitrate and real frame size from the
1162 frame size we extracted by reading the bitstream */
1163 s->frame_size = s->free_format_frame_size;
1164 switch(s->layer) {
1165 case 1:
1166 s->frame_size += padding * 4;
1167 s->bit_rate = (s->frame_size * sample_rate) / 48000;
1168 break;
1169 case 2:
1170 s->frame_size += padding;
1171 s->bit_rate = (s->frame_size * sample_rate) / 144000;
1172 break;
1173 default:
1174 case 3:
1175 s->frame_size += padding;
1176 s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
1177 break;
1178 }
1179 }
1180
1181#if defined(DEBUG)
1182 dprintf("layer%d, %d Hz, %d kbits/s, ",
1183 s->layer, s->sample_rate, s->bit_rate);
1184 if (s->nb_channels == 2) {
1185 if (s->layer == 3) {
1186 if (s->mode_ext & MODE_EXT_MS_STEREO)
1187 dprintf("ms-");
1188 if (s->mode_ext & MODE_EXT_I_STEREO)
1189 dprintf("i-");
1190 }
1191 dprintf("stereo");
1192 } else {
1193 dprintf("mono");
1194 }
1195 dprintf("\n");
1196#endif
1197 return 0;
1198}
1199
1200/* useful helper to get mpeg audio stream infos. Return -1 if error in
1201 header, otherwise the coded frame size in bytes */
1202int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
1203{
1204 MPADecodeContext s1, *s = &s1;
1205 memset( s, 0, sizeof(MPADecodeContext) );
1206
1207 if (ff_mpa_check_header(head) != 0)
1208 return -1;
1209
1210 if (decode_header(s, head) != 0) {
1211 return -1;
1212 }
1213
1214 switch(s->layer) {
1215 case 1:
1216 avctx->frame_size = 384;
1217 break;
1218 case 2:
1219 avctx->frame_size = 1152;
1220 break;
1221 default:
1222 case 3:
1223 if (s->lsf)
1224 avctx->frame_size = 576;
1225 else
1226 avctx->frame_size = 1152;
1227 break;
1228 }
1229
1230 avctx->sample_rate = s->sample_rate;
1231 avctx->channels = s->nb_channels;
1232 avctx->bit_rate = s->bit_rate;
1233 avctx->sub_id = s->layer;
1234 return s->frame_size;
1235}
1236
1237/* return the number of decoded frames */
1238static int mp_decode_layer1(MPADecodeContext *s)
1239{
1240 int bound, i, v, n, ch, j, mant;
1241 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
1242 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
1243
1244 if (s->mode == MPA_JSTEREO)
1245 bound = (s->mode_ext + 1) * 4;
1246 else
1247 bound = SBLIMIT;
1248
1249 /* allocation bits */
1250 for(i=0;i<bound;i++) {
1251 for(ch=0;ch<s->nb_channels;ch++) {
1252 allocation[ch][i] = get_bits(&s->gb, 4);
1253 }
1254 }
1255 for(i=bound;i<SBLIMIT;i++) {
1256 allocation[0][i] = get_bits(&s->gb, 4);
1257 }
1258
1259 /* scale factors */
1260 for(i=0;i<bound;i++) {
1261 for(ch=0;ch<s->nb_channels;ch++) {
1262 if (allocation[ch][i])
1263 scale_factors[ch][i] = get_bits(&s->gb, 6);
1264 }
1265 }
1266 for(i=bound;i<SBLIMIT;i++) {
1267 if (allocation[0][i]) {
1268 scale_factors[0][i] = get_bits(&s->gb, 6);
1269 scale_factors[1][i] = get_bits(&s->gb, 6);
1270 }
1271 }
1272
1273 /* compute samples */
1274 for(j=0;j<12;j++) {
1275 for(i=0;i<bound;i++) {
1276 for(ch=0;ch<s->nb_channels;ch++) {
1277 n = allocation[ch][i];
1278 if (n) {
1279 mant = get_bits(&s->gb, n + 1);
1280 v = l1_unscale(n, mant, scale_factors[ch][i]);
1281 } else {
1282 v = 0;
1283 }
1284 s->sb_samples[ch][j][i] = v;
1285 }
1286 }
1287 for(i=bound;i<SBLIMIT;i++) {
1288 n = allocation[0][i];
1289 if (n) {
1290 mant = get_bits(&s->gb, n + 1);
1291 v = l1_unscale(n, mant, scale_factors[0][i]);
1292 s->sb_samples[0][j][i] = v;
1293 v = l1_unscale(n, mant, scale_factors[1][i]);
1294 s->sb_samples[1][j][i] = v;
1295 } else {
1296 s->sb_samples[0][j][i] = 0;
1297 s->sb_samples[1][j][i] = 0;
1298 }
1299 }
1300 }
1301 return 12;
1302}
1303
1304/* bitrate is in kb/s */
1305int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
1306{
1307 int ch_bitrate, table;
1308
1309 ch_bitrate = bitrate / nb_channels;
1310 if (!lsf) {
1311 if ((freq == 48000 && ch_bitrate >= 56) ||
1312 (ch_bitrate >= 56 && ch_bitrate <= 80))
1313 table = 0;
1314 else if (freq != 48000 && ch_bitrate >= 96)
1315 table = 1;
1316 else if (freq != 32000 && ch_bitrate <= 48)
1317 table = 2;
1318 else
1319 table = 3;
1320 } else {
1321 table = 4;
1322 }
1323 return table;
1324}
1325
1326static int mp_decode_layer2(MPADecodeContext *s)
1327{
1328 int sblimit; /* number of used subbands */
1329 const unsigned char *alloc_table;
1330 int table, bit_alloc_bits, i, j, ch, bound, v;
1331 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
1332 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
1333 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
1334 int scale, qindex, bits, steps, k, l, m, b;
1335
1336 /* select decoding table */
1337 table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
1338 s->sample_rate, s->lsf);
1339 sblimit = sblimit_table[table];
1340 alloc_table = alloc_tables[table];
1341
1342 if (s->mode == MPA_JSTEREO)
1343 bound = (s->mode_ext + 1) * 4;
1344 else
1345 bound = sblimit;
1346
1347 dprintf("bound=%d sblimit=%d\n", bound, sblimit);
1348
1349 /* sanity check */
1350 if( bound > sblimit ) bound = sblimit;
1351
1352 /* parse bit allocation */
1353 j = 0;
1354 for(i=0;i<bound;i++) {
1355 bit_alloc_bits = alloc_table[j];
1356 for(ch=0;ch<s->nb_channels;ch++) {
1357 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
1358 }
1359 j += 1 << bit_alloc_bits;
1360 }
1361 for(i=bound;i<sblimit;i++) {
1362 bit_alloc_bits = alloc_table[j];
1363 v = get_bits(&s->gb, bit_alloc_bits);
1364 bit_alloc[0][i] = v;
1365 bit_alloc[1][i] = v;
1366 j += 1 << bit_alloc_bits;
1367 }
1368
1369#ifdef DEBUG
1370 {
1371 for(ch=0;ch<s->nb_channels;ch++) {
1372 for(i=0;i<sblimit;i++)
1373 dprintf(" %d", bit_alloc[ch][i]);
1374 dprintf("\n");
1375 }
1376 }
1377#endif
1378
1379 /* scale codes */
1380 for(i=0;i<sblimit;i++) {
1381 for(ch=0;ch<s->nb_channels;ch++) {
1382 if (bit_alloc[ch][i])
1383 scale_code[ch][i] = get_bits(&s->gb, 2);
1384 }
1385 }
1386
1387 /* scale factors */
1388 for(i=0;i<sblimit;i++) {
1389 for(ch=0;ch<s->nb_channels;ch++) {
1390 if (bit_alloc[ch][i]) {
1391 sf = scale_factors[ch][i];
1392 switch(scale_code[ch][i]) {
1393 default:
1394 case 0:
1395 sf[0] = get_bits(&s->gb, 6);
1396 sf[1] = get_bits(&s->gb, 6);
1397 sf[2] = get_bits(&s->gb, 6);
1398 break;
1399 case 2:
1400 sf[0] = get_bits(&s->gb, 6);
1401 sf[1] = sf[0];
1402 sf[2] = sf[0];
1403 break;
1404 case 1:
1405 sf[0] = get_bits(&s->gb, 6);
1406 sf[2] = get_bits(&s->gb, 6);
1407 sf[1] = sf[0];
1408 break;
1409 case 3:
1410 sf[0] = get_bits(&s->gb, 6);
1411 sf[2] = get_bits(&s->gb, 6);
1412 sf[1] = sf[2];
1413 break;
1414 }
1415 }
1416 }
1417 }
1418
1419#ifdef DEBUG
1420 for(ch=0;ch<s->nb_channels;ch++) {
1421 for(i=0;i<sblimit;i++) {
1422 if (bit_alloc[ch][i]) {
1423 sf = scale_factors[ch][i];
1424 dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
1425 } else {
1426 dprintf(" -");
1427 }
1428 }
1429 dprintf("\n");
1430 }
1431#endif
1432
1433 /* samples */
1434 for(k=0;k<3;k++) {
1435 for(l=0;l<12;l+=3) {
1436 j = 0;
1437 for(i=0;i<bound;i++) {
1438 bit_alloc_bits = alloc_table[j];
1439 for(ch=0;ch<s->nb_channels;ch++) {
1440 b = bit_alloc[ch][i];
1441 if (b) {
1442 scale = scale_factors[ch][i][k];
1443 qindex = alloc_table[j+b];
1444 bits = quant_bits[qindex];
1445 if (bits < 0) {
1446 /* 3 values at the same time */
1447 v = get_bits(&s->gb, -bits);
1448 steps = quant_steps[qindex];
1449 s->sb_samples[ch][k * 12 + l + 0][i] =
1450 l2_unscale_group(steps, v % steps, scale);
1451 v = v / steps;
1452 s->sb_samples[ch][k * 12 + l + 1][i] =
1453 l2_unscale_group(steps, v % steps, scale);
1454 v = v / steps;
1455 s->sb_samples[ch][k * 12 + l + 2][i] =
1456 l2_unscale_group(steps, v, scale);
1457 } else {
1458 for(m=0;m<3;m++) {
1459 v = get_bits(&s->gb, bits);
1460 v = l1_unscale(bits - 1, v, scale);
1461 s->sb_samples[ch][k * 12 + l + m][i] = v;
1462 }
1463 }
1464 } else {
1465 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1466 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1467 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1468 }
1469 }
1470 /* next subband in alloc table */
1471 j += 1 << bit_alloc_bits;
1472 }
1473 /* XXX: find a way to avoid this duplication of code */
1474 for(i=bound;i<sblimit;i++) {
1475 bit_alloc_bits = alloc_table[j];
1476 b = bit_alloc[0][i];
1477 if (b) {
1478 int mant, scale0, scale1;
1479 scale0 = scale_factors[0][i][k];
1480 scale1 = scale_factors[1][i][k];
1481 qindex = alloc_table[j+b];
1482 bits = quant_bits[qindex];
1483 if (bits < 0) {
1484 /* 3 values at the same time */
1485 v = get_bits(&s->gb, -bits);
1486 steps = quant_steps[qindex];
1487 mant = v % steps;
1488 v = v / steps;
1489 s->sb_samples[0][k * 12 + l + 0][i] =
1490 l2_unscale_group(steps, mant, scale0);
1491 s->sb_samples[1][k * 12 + l + 0][i] =
1492 l2_unscale_group(steps, mant, scale1);
1493 mant = v % steps;
1494 v = v / steps;
1495 s->sb_samples[0][k * 12 + l + 1][i] =
1496 l2_unscale_group(steps, mant, scale0);
1497 s->sb_samples[1][k * 12 + l + 1][i] =
1498 l2_unscale_group(steps, mant, scale1);
1499 s->sb_samples[0][k * 12 + l + 2][i] =
1500 l2_unscale_group(steps, v, scale0);
1501 s->sb_samples[1][k * 12 + l + 2][i] =
1502 l2_unscale_group(steps, v, scale1);
1503 } else {
1504 for(m=0;m<3;m++) {
1505 mant = get_bits(&s->gb, bits);
1506 s->sb_samples[0][k * 12 + l + m][i] =
1507 l1_unscale(bits - 1, mant, scale0);
1508 s->sb_samples[1][k * 12 + l + m][i] =
1509 l1_unscale(bits - 1, mant, scale1);
1510 }
1511 }
1512 } else {
1513 s->sb_samples[0][k * 12 + l + 0][i] = 0;
1514 s->sb_samples[0][k * 12 + l + 1][i] = 0;
1515 s->sb_samples[0][k * 12 + l + 2][i] = 0;
1516 s->sb_samples[1][k * 12 + l + 0][i] = 0;
1517 s->sb_samples[1][k * 12 + l + 1][i] = 0;
1518 s->sb_samples[1][k * 12 + l + 2][i] = 0;
1519 }
1520 /* next subband in alloc table */
1521 j += 1 << bit_alloc_bits;
1522 }
1523 /* fill remaining samples to zero */
1524 for(i=sblimit;i<SBLIMIT;i++) {
1525 for(ch=0;ch<s->nb_channels;ch++) {
1526 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1527 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1528 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1529 }
1530 }
1531 }
1532 }
1533 return 3 * 12;
1534}
1535
1536/*
1537 * Seek back in the stream for backstep bytes (at most 511 bytes)
1538 */
1539static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
1540{
1541 uint8_t *ptr;
1542
1543 /* compute current position in stream */
1544 ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
1545
1546 /* copy old data before current one */
1547 ptr -= backstep;
1548 memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
1549 BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
1550 /* init get bits again */
1551 init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
1552
1553 /* prepare next buffer */
1554 s->inbuf_index ^= 1;
1555 s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
1556 s->old_frame_size = s->frame_size;
1557}
1558
1559static inline void lsf_sf_expand(int *slen,
1560 int sf, int n1, int n2, int n3)
1561{
1562 if (n3) {
1563 slen[3] = sf % n3;
1564 sf /= n3;
1565 } else {
1566 slen[3] = 0;
1567 }
1568 if (n2) {
1569 slen[2] = sf % n2;
1570 sf /= n2;
1571 } else {
1572 slen[2] = 0;
1573 }
1574 slen[1] = sf % n1;
1575 sf /= n1;
1576 slen[0] = sf;
1577}
1578
1579static void exponents_from_scale_factors(MPADecodeContext *s,
1580 GranuleDef *g,
1581 int16_t *exponents)
1582{
1583 const uint8_t *bstab, *pretab;
1584 int len, i, j, k, l, v0, shift, gain, gains[3];
1585 int16_t *exp_ptr;
1586
1587 exp_ptr = exponents;
1588 gain = g->global_gain - 210;
1589 shift = g->scalefac_scale + 1;
1590
1591 bstab = band_size_long[s->sample_rate_index];
1592 pretab = mpa_pretab[g->preflag];
1593 for(i=0;i<g->long_end;i++) {
1594 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
1595 len = bstab[i];
1596 for(j=len;j>0;j--)
1597 *exp_ptr++ = v0;
1598 }
1599
1600 if (g->short_start < 13) {
1601 bstab = band_size_short[s->sample_rate_index];
1602 gains[0] = gain - (g->subblock_gain[0] << 3);
1603 gains[1] = gain - (g->subblock_gain[1] << 3);
1604 gains[2] = gain - (g->subblock_gain[2] << 3);
1605 k = g->long_end;
1606 for(i=g->short_start;i<13;i++) {
1607 len = bstab[i];
1608 for(l=0;l<3;l++) {
1609 v0 = gains[l] - (g->scale_factors[k++] << shift);
1610 for(j=len;j>0;j--)
1611 *exp_ptr++ = v0;
1612 }
1613 }
1614 }
1615}
1616
1617/* handle n = 0 too */
1618static inline int get_bitsz(GetBitContext *s, int n)
1619{
1620 if (n == 0)
1621 return 0;
1622 else
1623 return get_bits(s, n);
1624}
1625
1626static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1627 int16_t *exponents, int end_pos)
1628{
1629 int s_index;
1630 int linbits, code, x, y, l, v, i, j, k, pos;
1631 GetBitContext last_gb;
1632 VLC *vlc;
1633 uint8_t *code_table;
1634
1635 /* low frequencies (called big values) */
1636 s_index = 0;
1637 for(i=0;i<3;i++) {
1638 j = g->region_size[i];
1639 if (j == 0)
1640 continue;
1641 /* select vlc table */
1642 k = g->table_select[i];
1643 l = mpa_huff_data[k][0];
1644 linbits = mpa_huff_data[k][1];
1645 vlc = &huff_vlc[l];
1646 code_table = huff_code_table[l];
1647
1648 /* read huffcode and compute each couple */
1649 for(;j>0;j--) {
1650 if (get_bits_count(&s->gb) >= end_pos)
1651 break;
1652 if (code_table) {
1653 code = get_vlc2(&s->gb, vlc->table, 8, 3);
1654 if (code < 0)
1655 return -1;
1656 y = code_table[code];
1657 x = y >> 4;
1658 y = y & 0x0f;
1659 } else {
1660 x = 0;
1661 y = 0;
1662 }
1663 dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
1664 i, g->region_size[i] - j, x, y, exponents[s_index]);
1665 if (x) {
1666 if (x == 15)
1667 x += get_bitsz(&s->gb, linbits);
1668 v = l3_unscale(x, exponents[s_index]);
1669 if (get_bits1(&s->gb))
1670 v = -v;
1671 } else {
1672 v = 0;
1673 }
1674 g->sb_hybrid[s_index++] = v;
1675 if (y) {
1676 if (y == 15)
1677 y += get_bitsz(&s->gb, linbits);
1678 v = l3_unscale(y, exponents[s_index]);
1679 if (get_bits1(&s->gb))
1680 v = -v;
1681 } else {
1682 v = 0;
1683 }
1684 g->sb_hybrid[s_index++] = v;
1685 }
1686 }
1687
1688 /* high frequencies */
1689 vlc = &huff_quad_vlc[g->count1table_select];
1690 last_gb.buffer = NULL;
1691 while (s_index <= 572) {
1692 pos = get_bits_count(&s->gb);
1693 if (pos >= end_pos) {
1694 if (pos > end_pos && last_gb.buffer != NULL) {
1695 /* some encoders generate an incorrect size for this
1696 part. We must go back into the data */
1697 s_index -= 4;
1698 s->gb = last_gb;
1699 }
1700 break;
1701 }
1702 last_gb= s->gb;
1703
1704 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 2);
1705 dprintf("t=%d code=%d\n", g->count1table_select, code);
1706 if (code < 0)
1707 return -1;
1708 for(i=0;i<4;i++) {
1709 if (code & (8 >> i)) {
1710 /* non zero value. Could use a hand coded function for
1711 'one' value */
1712 v = l3_unscale(1, exponents[s_index]);
1713 if(get_bits1(&s->gb))
1714 v = -v;
1715 } else {
1716 v = 0;
1717 }
1718 g->sb_hybrid[s_index++] = v;
1719 }
1720 }
1721 while (s_index < 576)
1722 g->sb_hybrid[s_index++] = 0;
1723 return 0;
1724}
1725
1726/* Reorder short blocks from bitstream order to interleaved order. It
1727 would be faster to do it in parsing, but the code would be far more
1728 complicated */
1729static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1730{
1731 int i, j, k, len;
1732 int32_t *ptr, *dst, *ptr1;
1733 int32_t tmp[576];
1734
1735 if (g->block_type != 2)
1736 return;
1737
1738 if (g->switch_point) {
1739 if (s->sample_rate_index != 8) {
1740 ptr = g->sb_hybrid + 36;
1741 } else {
1742 ptr = g->sb_hybrid + 48;
1743 }
1744 } else {
1745 ptr = g->sb_hybrid;
1746 }
1747
1748 for(i=g->short_start;i<13;i++) {
1749 len = band_size_short[s->sample_rate_index][i];
1750 ptr1 = ptr;
1751 for(k=0;k<3;k++) {
1752 dst = tmp + k;
1753 for(j=len;j>0;j--) {
1754 *dst = *ptr++;
1755 dst += 3;
1756 }
1757 }
1758 memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
1759 }
1760}
1761
1762#define ISQRT2 FIXR(0.70710678118654752440)
1763
1764static void compute_stereo(MPADecodeContext *s,
1765 GranuleDef *g0, GranuleDef *g1)
1766{
1767 int i, j, k, l;
1768 int32_t v1, v2;
1769 int sf_max, tmp0, tmp1, sf, len, non_zero_found;
1770 int32_t (*is_tab)[16];
1771 int32_t *tab0, *tab1;
1772 int non_zero_found_short[3];
1773
1774 /* intensity stereo */
1775 if (s->mode_ext & MODE_EXT_I_STEREO) {
1776 if (!s->lsf) {
1777 is_tab = is_table;
1778 sf_max = 7;
1779 } else {
1780 is_tab = is_table_lsf[g1->scalefac_compress & 1];
1781 sf_max = 16;
1782 }
1783
1784 tab0 = g0->sb_hybrid + 576;
1785 tab1 = g1->sb_hybrid + 576;
1786
1787 non_zero_found_short[0] = 0;
1788 non_zero_found_short[1] = 0;
1789 non_zero_found_short[2] = 0;
1790 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1791 for(i = 12;i >= g1->short_start;i--) {
1792 /* for last band, use previous scale factor */
1793 if (i != 11)
1794 k -= 3;
1795 len = band_size_short[s->sample_rate_index][i];
1796 for(l=2;l>=0;l--) {
1797 tab0 -= len;
1798 tab1 -= len;
1799 if (!non_zero_found_short[l]) {
1800 /* test if non zero band. if so, stop doing i-stereo */
1801 for(j=0;j<len;j++) {
1802 if (tab1[j] != 0) {
1803 non_zero_found_short[l] = 1;
1804 goto found1;
1805 }
1806 }
1807 sf = g1->scale_factors[k + l];
1808 if (sf >= sf_max)
1809 goto found1;
1810
1811 v1 = is_tab[0][sf];
1812 v2 = is_tab[1][sf];
1813 for(j=0;j<len;j++) {
1814 tmp0 = tab0[j];
1815 tab0[j] = MULL(tmp0, v1);
1816 tab1[j] = MULL(tmp0, v2);
1817 }
1818 } else {
1819 found1:
1820 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1821 /* lower part of the spectrum : do ms stereo
1822 if enabled */
1823 for(j=0;j<len;j++) {
1824 tmp0 = tab0[j];
1825 tmp1 = tab1[j];
1826 tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
1827 tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
1828 }
1829 }
1830 }
1831 }
1832 }
1833
1834 non_zero_found = non_zero_found_short[0] |
1835 non_zero_found_short[1] |
1836 non_zero_found_short[2];
1837
1838 for(i = g1->long_end - 1;i >= 0;i--) {
1839 len = band_size_long[s->sample_rate_index][i];
1840 tab0 -= len;
1841 tab1 -= len;
1842 /* test if non zero band. if so, stop doing i-stereo */
1843 if (!non_zero_found) {
1844 for(j=0;j<len;j++) {
1845 if (tab1[j] != 0) {
1846 non_zero_found = 1;
1847 goto found2;
1848 }
1849 }
1850 /* for last band, use previous scale factor */
1851 k = (i == 21) ? 20 : i;
1852 sf = g1->scale_factors[k];
1853 if (sf >= sf_max)
1854 goto found2;
1855 v1 = is_tab[0][sf];
1856 v2 = is_tab[1][sf];
1857 for(j=0;j<len;j++) {
1858 tmp0 = tab0[j];
1859 tab0[j] = MULL(tmp0, v1);
1860 tab1[j] = MULL(tmp0, v2);
1861 }
1862 } else {
1863 found2:
1864 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1865 /* lower part of the spectrum : do ms stereo
1866 if enabled */
1867 for(j=0;j<len;j++) {
1868 tmp0 = tab0[j];
1869 tmp1 = tab1[j];
1870 tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
1871 tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
1872 }
1873 }
1874 }
1875 }
1876 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1877 /* ms stereo ONLY */
1878 /* NOTE: the 1/sqrt(2) normalization factor is included in the
1879 global gain */
1880 tab0 = g0->sb_hybrid;
1881 tab1 = g1->sb_hybrid;
1882 for(i=0;i<576;i++) {
1883 tmp0 = tab0[i];
1884 tmp1 = tab1[i];
1885 tab0[i] = tmp0 + tmp1;
1886 tab1[i] = tmp0 - tmp1;
1887 }
1888 }
1889}
1890
1891static void compute_antialias_integer(MPADecodeContext *s,
1892 GranuleDef *g)
1893{
1894 int32_t *ptr, *csa;
1895 int n, i;
1896
1897 /* we antialias only "long" bands */
1898 if (g->block_type == 2) {
1899 if (!g->switch_point)
1900 return;
1901 /* XXX: check this for 8000Hz case */
1902 n = 1;
1903 } else {
1904 n = SBLIMIT - 1;
1905 }
1906
1907 ptr = g->sb_hybrid + 18;
1908 for(i = n;i > 0;i--) {
1909 int tmp0, tmp1, tmp2;
1910 csa = &csa_table[0][0];
1911#define INT_AA(j) \
1912 tmp0 = ptr[-1-j];\
1913 tmp1 = ptr[ j];\
1914 tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
1915 ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
1916 ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
1917
1918 INT_AA(0)
1919 INT_AA(1)
1920 INT_AA(2)
1921 INT_AA(3)
1922 INT_AA(4)
1923 INT_AA(5)
1924 INT_AA(6)
1925 INT_AA(7)
1926
1927 ptr += 18;
1928 }
1929}
1930
1931static void compute_antialias_float(MPADecodeContext *s,
1932 GranuleDef *g)
1933{
1934 int32_t *ptr;
1935 int n, i;
1936
1937 /* we antialias only "long" bands */
1938 if (g->block_type == 2) {
1939 if (!g->switch_point)
1940 return;
1941 /* XXX: check this for 8000Hz case */
1942 n = 1;
1943 } else {
1944 n = SBLIMIT - 1;
1945 }
1946
1947 ptr = g->sb_hybrid + 18;
1948 for(i = n;i > 0;i--) {
1949 float tmp0, tmp1;
1950 float *csa = &csa_table_float[0][0];
1951#define FLOAT_AA(j)\
1952 tmp0= ptr[-1-j];\
1953 tmp1= ptr[ j];\
1954 ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
1955 ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
1956
1957 FLOAT_AA(0)
1958 FLOAT_AA(1)
1959 FLOAT_AA(2)
1960 FLOAT_AA(3)
1961 FLOAT_AA(4)
1962 FLOAT_AA(5)
1963 FLOAT_AA(6)
1964 FLOAT_AA(7)
1965
1966 ptr += 18;
1967 }
1968}
1969
1970static void compute_imdct(MPADecodeContext *s,
1971 GranuleDef *g,
1972 int32_t *sb_samples,
1973 int32_t *mdct_buf)
1974{
1975 int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
1976 int32_t out2[12];
1977 int i, j, mdct_long_end, v, sblimit;
1978
1979 /* find last non zero block */
1980 ptr = g->sb_hybrid + 576;
1981 ptr1 = g->sb_hybrid + 2 * 18;
1982 while (ptr >= ptr1) {
1983 ptr -= 6;
1984 v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
1985 if (v != 0)
1986 break;
1987 }
1988 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1989
1990 if (g->block_type == 2) {
1991 /* XXX: check for 8000 Hz */
1992 if (g->switch_point)
1993 mdct_long_end = 2;
1994 else
1995 mdct_long_end = 0;
1996 } else {
1997 mdct_long_end = sblimit;
1998 }
1999
2000 buf = mdct_buf;
2001 ptr = g->sb_hybrid;
2002 for(j=0;j<mdct_long_end;j++) {
2003 /* apply window & overlap with previous buffer */
2004 out_ptr = sb_samples + j;
2005 /* select window */
2006 if (g->switch_point && j < 2)
2007 win1 = mdct_win[0];
2008 else
2009 win1 = mdct_win[g->block_type];
2010 /* select frequency inversion */
2011 win = win1 + ((4 * 36) & -(j & 1));
2012 imdct36(out_ptr, buf, ptr, win);
2013 out_ptr += 18*SBLIMIT;
2014 ptr += 18;
2015 buf += 18;
2016 }
2017 for(j=mdct_long_end;j<sblimit;j++) {
2018 /* select frequency inversion */
2019 win = mdct_win[2] + ((4 * 36) & -(j & 1));
2020 out_ptr = sb_samples + j;
2021
2022 for(i=0; i<6; i++){
2023 *out_ptr = buf[i];
2024 out_ptr += SBLIMIT;
2025 }
2026 imdct12(out2, ptr + 0);
2027 for(i=0;i<6;i++) {
2028 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
2029 buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
2030 out_ptr += SBLIMIT;
2031 }
2032 imdct12(out2, ptr + 1);
2033 for(i=0;i<6;i++) {
2034 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
2035 buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
2036 out_ptr += SBLIMIT;
2037 }
2038 imdct12(out2, ptr + 2);
2039 for(i=0;i<6;i++) {
2040 buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
2041 buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
2042 buf[i + 6*2] = 0;
2043 }
2044 ptr += 18;
2045 buf += 18;
2046 }
2047 /* zero bands */
2048 for(j=sblimit;j<SBLIMIT;j++) {
2049 /* overlap */
2050 out_ptr = sb_samples + j;
2051 for(i=0;i<18;i++) {
2052 *out_ptr = buf[i];
2053 buf[i] = 0;
2054 out_ptr += SBLIMIT;
2055 }
2056 buf += 18;
2057 }
2058}
2059
2060#if defined(DEBUG)
2061void sample_dump(int fnum, int32_t *tab, int n)
2062{
2063 static FILE *files[16], *f;
2064 char buf[512];
2065 int i;
2066 int32_t v;
2067
2068 f = files[fnum];
2069 if (!f) {
2070 snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
2071 fnum,
2072#ifdef USE_HIGHPRECISION
2073 "hp"
2074#else
2075 "lp"
2076#endif
2077 );
2078 f = fopen(buf, "w");
2079 if (!f)
2080 return;
2081 files[fnum] = f;
2082 }
2083
2084 if (fnum == 0) {
2085 static int pos = 0;
2086 av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
2087 for(i=0;i<n;i++) {
2088 av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
2089 if ((i % 18) == 17)
2090 av_log(NULL, AV_LOG_DEBUG, "\n");
2091 }
2092 pos += n;
2093 }
2094 for(i=0;i<n;i++) {
2095 /* normalize to 23 frac bits */
2096 v = tab[i] << (23 - FRAC_BITS);
2097 fwrite(&v, 1, sizeof(int32_t), f);
2098 }
2099}
2100#endif
2101
2102
2103/* main layer3 decoding function */
2104static int mp_decode_layer3(MPADecodeContext *s)
2105{
2106 int nb_granules, main_data_begin, private_bits;
2107 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
2108 GranuleDef granules[2][2], *g;
2109 int16_t exponents[576];
2110
2111 /* read side info */
2112 if (s->lsf) {
2113 main_data_begin = get_bits(&s->gb, 8);
2114 if (s->nb_channels == 2)
2115 private_bits = get_bits(&s->gb, 2);
2116 else
2117 private_bits = get_bits(&s->gb, 1);
2118 nb_granules = 1;
2119 } else {
2120 main_data_begin = get_bits(&s->gb, 9);
2121 if (s->nb_channels == 2)
2122 private_bits = get_bits(&s->gb, 3);
2123 else
2124 private_bits = get_bits(&s->gb, 5);
2125 nb_granules = 2;
2126 for(ch=0;ch<s->nb_channels;ch++) {
2127 granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
2128 granules[ch][1].scfsi = get_bits(&s->gb, 4);
2129 }
2130 }
2131
2132 for(gr=0;gr<nb_granules;gr++) {
2133 for(ch=0;ch<s->nb_channels;ch++) {
2134 dprintf("gr=%d ch=%d: side_info\n", gr, ch);
2135 g = &granules[ch][gr];
2136 g->part2_3_length = get_bits(&s->gb, 12);
2137 g->big_values = get_bits(&s->gb, 9);
2138 g->global_gain = get_bits(&s->gb, 8);
2139 /* if MS stereo only is selected, we precompute the
2140 1/sqrt(2) renormalization factor */
2141 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
2142 MODE_EXT_MS_STEREO)
2143 g->global_gain -= 2;
2144 if (s->lsf)
2145 g->scalefac_compress = get_bits(&s->gb, 9);
2146 else
2147 g->scalefac_compress = get_bits(&s->gb, 4);
2148 blocksplit_flag = get_bits(&s->gb, 1);
2149 if (blocksplit_flag) {
2150 g->block_type = get_bits(&s->gb, 2);
2151 if (g->block_type == 0)
2152 return -1;
2153 g->switch_point = get_bits(&s->gb, 1);
2154 for(i=0;i<2;i++)
2155 g->table_select[i] = get_bits(&s->gb, 5);
2156 for(i=0;i<3;i++)
2157 g->subblock_gain[i] = get_bits(&s->gb, 3);
2158 /* compute huffman coded region sizes */
2159 if (g->block_type == 2)
2160 g->region_size[0] = (36 / 2);
2161 else {
2162 if (s->sample_rate_index <= 2)
2163 g->region_size[0] = (36 / 2);
2164 else if (s->sample_rate_index != 8)
2165 g->region_size[0] = (54 / 2);
2166 else
2167 g->region_size[0] = (108 / 2);
2168 }
2169 g->region_size[1] = (576 / 2);
2170 } else {
2171 int region_address1, region_address2, l;
2172 g->block_type = 0;
2173 g->switch_point = 0;
2174 for(i=0;i<3;i++)
2175 g->table_select[i] = get_bits(&s->gb, 5);
2176 /* compute huffman coded region sizes */
2177 region_address1 = get_bits(&s->gb, 4);
2178 region_address2 = get_bits(&s->gb, 3);
2179 dprintf("region1=%d region2=%d\n",
2180 region_address1, region_address2);
2181 g->region_size[0] =
2182 band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
2183 l = region_address1 + region_address2 + 2;
2184 /* should not overflow */
2185 if (l > 22)
2186 l = 22;
2187 g->region_size[1] =
2188 band_index_long[s->sample_rate_index][l] >> 1;
2189 }
2190 /* convert region offsets to region sizes and truncate
2191 size to big_values */
2192 g->region_size[2] = (576 / 2);
2193 j = 0;
2194 for(i=0;i<3;i++) {
2195 k = g->region_size[i];
2196 if (k > g->big_values)
2197 k = g->big_values;
2198 g->region_size[i] = k - j;
2199 j = k;
2200 }
2201
2202 /* compute band indexes */
2203 if (g->block_type == 2) {
2204 if (g->switch_point) {
2205 /* if switched mode, we handle the 36 first samples as
2206 long blocks. For 8000Hz, we handle the 48 first
2207 exponents as long blocks (XXX: check this!) */
2208 if (s->sample_rate_index <= 2)
2209 g->long_end = 8;
2210 else if (s->sample_rate_index != 8)
2211 g->long_end = 6;
2212 else
2213 g->long_end = 4; /* 8000 Hz */
2214
2215 if (s->sample_rate_index != 8)
2216 g->short_start = 3;
2217 else
2218 g->short_start = 2;
2219 } else {
2220 g->long_end = 0;
2221 g->short_start = 0;
2222 }
2223 } else {
2224 g->short_start = 13;
2225 g->long_end = 22;
2226 }
2227
2228 g->preflag = 0;
2229 if (!s->lsf)
2230 g->preflag = get_bits(&s->gb, 1);
2231 g->scalefac_scale = get_bits(&s->gb, 1);
2232 g->count1table_select = get_bits(&s->gb, 1);
2233 dprintf("block_type=%d switch_point=%d\n",
2234 g->block_type, g->switch_point);
2235 }
2236 }
2237
2238 if (!s->adu_mode) {
2239 /* now we get bits from the main_data_begin offset */
2240 dprintf("seekback: %d\n", main_data_begin);
2241 seek_to_maindata(s, main_data_begin);
2242 }
2243
2244 for(gr=0;gr<nb_granules;gr++) {
2245 for(ch=0;ch<s->nb_channels;ch++) {
2246 g = &granules[ch][gr];
2247
2248 bits_pos = get_bits_count(&s->gb);
2249
2250 if (!s->lsf) {
2251 uint8_t *sc;
2252 int slen, slen1, slen2;
2253
2254 /* MPEG1 scale factors */
2255 slen1 = slen_table[0][g->scalefac_compress];
2256 slen2 = slen_table[1][g->scalefac_compress];
2257 dprintf("slen1=%d slen2=%d\n", slen1, slen2);
2258 if (g->block_type == 2) {
2259 n = g->switch_point ? 17 : 18;
2260 j = 0;
2261 for(i=0;i<n;i++)
2262 g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
2263 for(i=0;i<18;i++)
2264 g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
2265 for(i=0;i<3;i++)
2266 g->scale_factors[j++] = 0;
2267 } else {
2268 sc = granules[ch][0].scale_factors;
2269 j = 0;
2270 for(k=0;k<4;k++) {
2271 n = (k == 0 ? 6 : 5);
2272 if ((g->scfsi & (0x8 >> k)) == 0) {
2273 slen = (k < 2) ? slen1 : slen2;
2274 for(i=0;i<n;i++)
2275 g->scale_factors[j++] = get_bitsz(&s->gb, slen);
2276 } else {
2277 /* simply copy from last granule */
2278 for(i=0;i<n;i++) {
2279 g->scale_factors[j] = sc[j];
2280 j++;
2281 }
2282 }
2283 }
2284 g->scale_factors[j++] = 0;
2285 }
2286#if defined(DEBUG)
2287 {
2288 dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
2289 g->scfsi, gr, ch);
2290 for(i=0;i<j;i++)
2291 dprintf(" %d", g->scale_factors[i]);
2292 dprintf("\n");
2293 }
2294#endif
2295 } else {
2296 int tindex, tindex2, slen[4], sl, sf;
2297
2298 /* LSF scale factors */
2299 if (g->block_type == 2) {
2300 tindex = g->switch_point ? 2 : 1;
2301 } else {
2302 tindex = 0;
2303 }
2304 sf = g->scalefac_compress;
2305 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
2306 /* intensity stereo case */
2307 sf >>= 1;
2308 if (sf < 180) {
2309 lsf_sf_expand(slen, sf, 6, 6, 0);
2310 tindex2 = 3;
2311 } else if (sf < 244) {
2312 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
2313 tindex2 = 4;
2314 } else {
2315 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
2316 tindex2 = 5;
2317 }
2318 } else {
2319 /* normal case */
2320 if (sf < 400) {
2321 lsf_sf_expand(slen, sf, 5, 4, 4);
2322 tindex2 = 0;
2323 } else if (sf < 500) {
2324 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
2325 tindex2 = 1;
2326 } else {
2327 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
2328 tindex2 = 2;
2329 g->preflag = 1;
2330 }
2331 }
2332
2333 j = 0;
2334 for(k=0;k<4;k++) {
2335 n = lsf_nsf_table[tindex2][tindex][k];
2336 sl = slen[k];
2337 for(i=0;i<n;i++)
2338 g->scale_factors[j++] = get_bitsz(&s->gb, sl);
2339 }
2340 /* XXX: should compute exact size */
2341 for(;j<40;j++)
2342 g->scale_factors[j] = 0;
2343#if defined(DEBUG)
2344 {
2345 dprintf("gr=%d ch=%d scale_factors:\n",
2346 gr, ch);
2347 for(i=0;i<40;i++)
2348 dprintf(" %d", g->scale_factors[i]);
2349 dprintf("\n");
2350 }
2351#endif
2352 }
2353
2354 exponents_from_scale_factors(s, g, exponents);
2355
2356 /* read Huffman coded residue */
2357 if (huffman_decode(s, g, exponents,
2358 bits_pos + g->part2_3_length) < 0)
2359 return -1;
2360#if defined(DEBUG)
2361 sample_dump(0, g->sb_hybrid, 576);
2362#endif
2363
2364 /* skip extension bits */
2365 bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
2366 if (bits_left < 0) {
2367 dprintf("bits_left=%d\n", bits_left);
2368 return -1;
2369 }
2370 while (bits_left >= 16) {
2371 skip_bits(&s->gb, 16);
2372 bits_left -= 16;
2373 }
2374 if (bits_left > 0)
2375 skip_bits(&s->gb, bits_left);
2376 } /* ch */
2377
2378 if (s->nb_channels == 2)
2379 compute_stereo(s, &granules[0][gr], &granules[1][gr]);
2380
2381 for(ch=0;ch<s->nb_channels;ch++) {
2382 g = &granules[ch][gr];
2383
2384 reorder_block(s, g);
2385#if defined(DEBUG)
2386 sample_dump(0, g->sb_hybrid, 576);
2387#endif
2388 s->compute_antialias(s, g);
2389#if defined(DEBUG)
2390 sample_dump(1, g->sb_hybrid, 576);
2391#endif
2392 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
2393#if defined(DEBUG)
2394 sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
2395#endif
2396 }
2397 } /* gr */
2398 return nb_granules * 18;
2399}
2400
2401static int mp_decode_frame(MPADecodeContext *s,
2402 OUT_INT *samples)
2403{
2404 int i, nb_frames, ch;
2405 OUT_INT *samples_ptr;
2406
2407 init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
2408 (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
2409
2410 /* skip error protection field */
2411 if (s->error_protection)
2412 get_bits(&s->gb, 16);
2413
2414 dprintf("frame %d:\n", s->frame_count);
2415 switch(s->layer) {
2416 case 1:
2417 nb_frames = mp_decode_layer1(s);
2418 break;
2419 case 2:
2420 nb_frames = mp_decode_layer2(s);
2421 break;
2422 case 3:
2423 default:
2424 nb_frames = mp_decode_layer3(s);
2425 break;
2426 }
2427#if defined(DEBUG)
2428 for(i=0;i<nb_frames;i++) {
2429 for(ch=0;ch<s->nb_channels;ch++) {
2430 int j;
2431 dprintf("%d-%d:", i, ch);
2432 for(j=0;j<SBLIMIT;j++)
2433 dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
2434 dprintf("\n");
2435 }
2436 }
2437#endif
2438 /* apply the synthesis filter */
2439 for(ch=0;ch<s->nb_channels;ch++) {
2440 samples_ptr = samples + ch;
2441 for(i=0;i<nb_frames;i++) {
2442 ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
2443 window, &s->dither_state,
2444 samples_ptr, s->nb_channels,
2445 s->sb_samples[ch][i]);
2446 samples_ptr += 32 * s->nb_channels;
2447 }
2448 }
2449#ifdef DEBUG
2450 s->frame_count++;
2451#endif
2452 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
2453}
2454
2455static int decode_frame(AVCodecContext * avctx,
2456 void *data, int *data_size,
2457 uint8_t * buf, int buf_size)
2458{
2459 MPADecodeContext *s = avctx->priv_data;
2460 uint32_t header;
2461 uint8_t *buf_ptr;
2462 int len, out_size;
2463 OUT_INT *out_samples = data;
2464
2465 buf_ptr = buf;
2466 while (buf_size > 0) {
2467 len = s->inbuf_ptr - s->inbuf;
2468 if (s->frame_size == 0) {
2469 /* special case for next header for first frame in free
2470 format case (XXX: find a simpler method) */
2471 if (s->free_format_next_header != 0) {
2472 s->inbuf[0] = s->free_format_next_header >> 24;
2473 s->inbuf[1] = s->free_format_next_header >> 16;
2474 s->inbuf[2] = s->free_format_next_header >> 8;
2475 s->inbuf[3] = s->free_format_next_header;
2476 s->inbuf_ptr = s->inbuf + 4;
2477 s->free_format_next_header = 0;
2478 goto got_header;
2479 }
2480 /* no header seen : find one. We need at least HEADER_SIZE
2481 bytes to parse it */
2482 len = HEADER_SIZE - len;
2483 if (len > buf_size)
2484 len = buf_size;
2485 if (len > 0) {
2486 memcpy(s->inbuf_ptr, buf_ptr, len);
2487 buf_ptr += len;
2488 buf_size -= len;
2489 s->inbuf_ptr += len;
2490 }
2491 if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
2492 got_header:
2493 header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
2494 (s->inbuf[2] << 8) | s->inbuf[3];
2495
2496 if (ff_mpa_check_header(header) < 0) {
2497 /* no sync found : move by one byte (inefficient, but simple!) */
2498 memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
2499 s->inbuf_ptr--;
2500 dprintf("skip %x\n", header);
2501 /* reset free format frame size to give a chance
2502 to get a new bitrate */
2503 s->free_format_frame_size = 0;
2504 } else {
2505 if (decode_header(s, header) == 1) {
2506 /* free format: prepare to compute frame size */
2507 s->frame_size = -1;
2508 }
2509 /* update codec info */
2510 avctx->sample_rate = s->sample_rate;
2511 avctx->channels = s->nb_channels;
2512 avctx->bit_rate = s->bit_rate;
2513 avctx->sub_id = s->layer;
2514 switch(s->layer) {
2515 case 1:
2516 avctx->frame_size = 384;
2517 break;
2518 case 2:
2519 avctx->frame_size = 1152;
2520 break;
2521 case 3:
2522 if (s->lsf)
2523 avctx->frame_size = 576;
2524 else
2525 avctx->frame_size = 1152;
2526 break;
2527 }
2528 }
2529 }
2530 } else if (s->frame_size == -1) {
2531 /* free format : find next sync to compute frame size */
2532 len = MPA_MAX_CODED_FRAME_SIZE - len;
2533 if (len > buf_size)
2534 len = buf_size;
2535 if (len == 0) {
2536 /* frame too long: resync */
2537 s->frame_size = 0;
2538 memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
2539 s->inbuf_ptr--;
2540 } else {
2541 uint8_t *p, *pend;
2542 uint32_t header1;
2543 int padding;
2544
2545 memcpy(s->inbuf_ptr, buf_ptr, len);
2546 /* check for header */
2547 p = s->inbuf_ptr - 3;
2548 pend = s->inbuf_ptr + len - 4;
2549 while (p <= pend) {
2550 header = (p[0] << 24) | (p[1] << 16) |
2551 (p[2] << 8) | p[3];
2552 header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
2553 (s->inbuf[2] << 8) | s->inbuf[3];
2554 /* check with high probability that we have a
2555 valid header */
2556 if ((header & SAME_HEADER_MASK) ==
2557 (header1 & SAME_HEADER_MASK)) {
2558 /* header found: update pointers */
2559 len = (p + 4) - s->inbuf_ptr;
2560 buf_ptr += len;
2561 buf_size -= len;
2562 s->inbuf_ptr = p;
2563 /* compute frame size */
2564 s->free_format_next_header = header;
2565 s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
2566 padding = (header1 >> 9) & 1;
2567 if (s->layer == 1)
2568 s->free_format_frame_size -= padding * 4;
2569 else
2570 s->free_format_frame_size -= padding;
2571 dprintf("free frame size=%d padding=%d\n",
2572 s->free_format_frame_size, padding);
2573 decode_header(s, header1);
2574 goto next_data;
2575 }
2576 p++;
2577 }
2578 /* not found: simply increase pointers */
2579 buf_ptr += len;
2580 s->inbuf_ptr += len;
2581 buf_size -= len;
2582 }
2583 } else if (len < s->frame_size) {
2584 if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
2585 s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
2586 len = s->frame_size - len;
2587 if (len > buf_size)
2588 len = buf_size;
2589 memcpy(s->inbuf_ptr, buf_ptr, len);
2590 buf_ptr += len;
2591 s->inbuf_ptr += len;
2592 buf_size -= len;
2593 }
2594 next_data:
2595 if (s->frame_size > 0 &&
2596 (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
2597 if (avctx->parse_only) {
2598 /* simply return the frame data */
2599 *(uint8_t **)data = s->inbuf;
2600 out_size = s->inbuf_ptr - s->inbuf;
2601 } else {
2602 out_size = mp_decode_frame(s, out_samples);
2603 }
2604 s->inbuf_ptr = s->inbuf;
2605 s->frame_size = 0;
2606 if(out_size>=0)
2607 *data_size = out_size;
2608 else
2609 av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
2610 break;
2611 }
2612 }
2613 return buf_ptr - buf;
2614}
2615
2616
2617static int decode_frame_adu(AVCodecContext * avctx,
2618 void *data, int *data_size,
2619 uint8_t * buf, int buf_size)
2620{
2621 MPADecodeContext *s = avctx->priv_data;
2622 uint32_t header;
2623 int len, out_size;
2624 OUT_INT *out_samples = data;
2625
2626 len = buf_size;
2627
2628 // Discard too short frames
2629 if (buf_size < HEADER_SIZE) {
2630 *data_size = 0;
2631 return buf_size;
2632 }
2633
2634
2635 if (len > MPA_MAX_CODED_FRAME_SIZE)
2636 len = MPA_MAX_CODED_FRAME_SIZE;
2637
2638 memcpy(s->inbuf, buf, len);
2639 s->inbuf_ptr = s->inbuf + len;
2640
2641 // Get header and restore sync word
2642 header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
2643 (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
2644
2645 if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
2646 *data_size = 0;
2647 return buf_size;
2648 }
2649
2650 decode_header(s, header);
2651 /* update codec info */
2652 avctx->sample_rate = s->sample_rate;
2653 avctx->channels = s->nb_channels;
2654 avctx->bit_rate = s->bit_rate;
2655 avctx->sub_id = s->layer;
2656
2657 avctx->frame_size=s->frame_size = len;
2658
2659 if (avctx->parse_only) {
2660 /* simply return the frame data */
2661 *(uint8_t **)data = s->inbuf;
2662 out_size = s->inbuf_ptr - s->inbuf;
2663 } else {
2664 out_size = mp_decode_frame(s, out_samples);
2665 }
2666
2667 *data_size = out_size;
2668 return buf_size;
2669}
2670
2671
2672/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
2673static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
2674static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
2675/* offsets into output buffer, assume output order is FL FR BL BR C LFE */
2676static int chan_offset[9][5] = {
2677 {0},
2678 {0}, // C
2679 {0}, // FLR
2680 {2,0}, // C FLR
2681 {2,0,3}, // C FLR BS
2682 {4,0,2}, // C FLR BLRS
2683 {4,0,2,5}, // C FLR BLRS LFE
2684 {4,0,2,6,5}, // C FLR BLRS BLR LFE
2685 {0,2} // FLR BLRS
2686};
2687
2688
2689static int decode_init_mp3on4(AVCodecContext * avctx)
2690{
2691 MP3On4DecodeContext *s = avctx->priv_data;
2692 int i;
2693
2694 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
2695 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
2696 return -1;
2697 }
2698
2699 s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
2700 s->frames = mp3Frames[s->chan_cfg];
2701 if(!s->frames) {
2702 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
2703 return -1;
2704 }
2705 avctx->channels = mp3Channels[s->chan_cfg];
2706
2707 /* Init the first mp3 decoder in standard way, so that all tables get builded
2708 * We replace avctx->priv_data with the context of the first decoder so that
2709 * decode_init() does not have to be changed.
2710 * Other decoders will be inited here copying data from the first context
2711 */
2712 // Allocate zeroed memory for the first decoder context
2713 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
2714 // Put decoder context in place to make init_decode() happy
2715 avctx->priv_data = s->mp3decctx[0];
2716 decode_init(avctx);
2717 // Restore mp3on4 context pointer
2718 avctx->priv_data = s;
2719 s->mp3decctx[0]->adu_mode = 1; // Set adu mode
2720
2721 /* Create a separate codec/context for each frame (first is already ok).
2722 * Each frame is 1 or 2 channels - up to 5 frames allowed
2723 */
2724 for (i = 1; i < s->frames; i++) {
2725 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
2726 s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
2727 s->mp3decctx[i]->inbuf = &s->mp3decctx[i]->inbuf1[0][BACKSTEP_SIZE];
2728 s->mp3decctx[i]->inbuf_ptr = s->mp3decctx[i]->inbuf;
2729 s->mp3decctx[i]->adu_mode = 1;
2730 }
2731
2732 return 0;
2733}
2734
2735
2736static int decode_close_mp3on4(AVCodecContext * avctx)
2737{
2738 MP3On4DecodeContext *s = avctx->priv_data;
2739 int i;
2740
2741 for (i = 0; i < s->frames; i++)
2742 if (s->mp3decctx[i])
2743 av_free(s->mp3decctx[i]);
2744
2745 return 0;
2746}
2747
2748
2749static int decode_frame_mp3on4(AVCodecContext * avctx,
2750 void *data, int *data_size,
2751 uint8_t * buf, int buf_size)
2752{
2753 MP3On4DecodeContext *s = avctx->priv_data;
2754 MPADecodeContext *m;
2755 int len, out_size = 0;
2756 uint32_t header;
2757 OUT_INT *out_samples = data;
2758 OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
2759 OUT_INT *outptr, *bp;
2760 int fsize;
2761 unsigned char *start2 = buf, *start;
2762 int fr, i, j, n;
2763 int off = avctx->channels;
2764 int *coff = chan_offset[s->chan_cfg];
2765
2766 len = buf_size;
2767
2768 // Discard too short frames
2769 if (buf_size < HEADER_SIZE) {
2770 *data_size = 0;
2771 return buf_size;
2772 }
2773
2774 // If only one decoder interleave is not needed
2775 outptr = s->frames == 1 ? out_samples : decoded_buf;
2776
2777 for (fr = 0; fr < s->frames; fr++) {
2778 start = start2;
2779 fsize = (start[0] << 4) | (start[1] >> 4);
2780 start2 += fsize;
2781 if (fsize > len)
2782 fsize = len;
2783 len -= fsize;
2784 if (fsize > MPA_MAX_CODED_FRAME_SIZE)
2785 fsize = MPA_MAX_CODED_FRAME_SIZE;
2786 m = s->mp3decctx[fr];
2787 assert (m != NULL);
2788 /* copy original to new */
2789 m->inbuf_ptr = m->inbuf + fsize;
2790 memcpy(m->inbuf, start, fsize);
2791
2792 // Get header
2793 header = (m->inbuf[0] << 24) | (m->inbuf[1] << 16) |
2794 (m->inbuf[2] << 8) | m->inbuf[3] | 0xfff00000;
2795
2796 if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
2797 *data_size = 0;
2798 return buf_size;
2799 }
2800
2801 decode_header(m, header);
2802 mp_decode_frame(m, decoded_buf);
2803
2804 n = MPA_FRAME_SIZE * m->nb_channels;
2805 out_size += n * sizeof(OUT_INT);
2806 if(s->frames > 1) {
2807 /* interleave output data */
2808 bp = out_samples + coff[fr];
2809 if(m->nb_channels == 1) {
2810 for(j = 0; j < n; j++) {
2811 *bp = decoded_buf[j];
2812 bp += off;
2813 }
2814 } else {
2815 for(j = 0; j < n; j++) {
2816 bp[0] = decoded_buf[j++];
2817 bp[1] = decoded_buf[j];
2818 bp += off;
2819 }
2820 }
2821 }
2822 }
2823
2824 /* update codec info */
2825 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
2826 avctx->frame_size= buf_size;
2827 avctx->bit_rate = 0;
2828 for (i = 0; i < s->frames; i++)
2829 avctx->bit_rate += s->mp3decctx[i]->bit_rate;
2830
2831 *data_size = out_size;
2832 return buf_size;
2833}
2834
2835
2836AVCodec mp2_decoder =
2837{
2838 "mp2",
2839 CODEC_TYPE_AUDIO,
2840 CODEC_ID_MP2,
2841 sizeof(MPADecodeContext),
2842 decode_init,
2843 NULL,
2844 NULL,
2845 decode_frame,
2846 CODEC_CAP_PARSE_ONLY,
2847};
2848
2849AVCodec mp3_decoder =
2850{
2851 "mp3",
2852 CODEC_TYPE_AUDIO,
2853 CODEC_ID_MP3,
2854 sizeof(MPADecodeContext),
2855 decode_init,
2856 NULL,
2857 NULL,
2858 decode_frame,
2859 CODEC_CAP_PARSE_ONLY,
2860};
2861
2862AVCodec mp3adu_decoder =
2863{
2864 "mp3adu",
2865 CODEC_TYPE_AUDIO,
2866 CODEC_ID_MP3ADU,
2867 sizeof(MPADecodeContext),
2868 decode_init,
2869 NULL,
2870 NULL,
2871 decode_frame_adu,
2872 CODEC_CAP_PARSE_ONLY,
2873};
2874
2875AVCodec mp3on4_decoder =
2876{
2877 "mp3on4",
2878 CODEC_TYPE_AUDIO,
2879 CODEC_ID_MP3ON4,
2880 sizeof(MP3On4DecodeContext),
2881 decode_init_mp3on4,
2882 NULL,
2883 decode_close_mp3on4,
2884 decode_frame_mp3on4,
2885 0
2886};
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette