1 | /*
|
---|
2 | * Copyright (c) 2002 Dieter Shirley
|
---|
3 | *
|
---|
4 | * dct_unquantize_h263_altivec:
|
---|
5 | * Copyright (c) 2003 Romain Dolbeau <[email protected]>
|
---|
6 | *
|
---|
7 | * This library is free software; you can redistribute it and/or
|
---|
8 | * modify it under the terms of the GNU Lesser General Public
|
---|
9 | * License as published by the Free Software Foundation; either
|
---|
10 | * version 2 of the License, or (at your option) any later version.
|
---|
11 | *
|
---|
12 | * This library is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
15 | * Lesser General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU Lesser General Public
|
---|
18 | * License along with this library; if not, write to the Free Software
|
---|
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
20 | */
|
---|
21 |
|
---|
22 | #include <stdlib.h>
|
---|
23 | #include <stdio.h>
|
---|
24 | #include "../dsputil.h"
|
---|
25 | #include "../mpegvideo.h"
|
---|
26 |
|
---|
27 | #include "gcc_fixes.h"
|
---|
28 |
|
---|
29 | #include "dsputil_altivec.h"
|
---|
30 |
|
---|
31 | // Swaps two variables (used for altivec registers)
|
---|
32 | #define SWAP(a,b) \
|
---|
33 | do { \
|
---|
34 | __typeof__(a) swap_temp=a; \
|
---|
35 | a=b; \
|
---|
36 | b=swap_temp; \
|
---|
37 | } while (0)
|
---|
38 |
|
---|
39 | // transposes a matrix consisting of four vectors with four elements each
|
---|
40 | #define TRANSPOSE4(a,b,c,d) \
|
---|
41 | do { \
|
---|
42 | __typeof__(a) _trans_ach = vec_mergeh(a, c); \
|
---|
43 | __typeof__(a) _trans_acl = vec_mergel(a, c); \
|
---|
44 | __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
|
---|
45 | __typeof__(a) _trans_bdl = vec_mergel(b, d); \
|
---|
46 | \
|
---|
47 | a = vec_mergeh(_trans_ach, _trans_bdh); \
|
---|
48 | b = vec_mergel(_trans_ach, _trans_bdh); \
|
---|
49 | c = vec_mergeh(_trans_acl, _trans_bdl); \
|
---|
50 | d = vec_mergel(_trans_acl, _trans_bdl); \
|
---|
51 | } while (0)
|
---|
52 |
|
---|
53 | #define TRANSPOSE8(a,b,c,d,e,f,g,h) \
|
---|
54 | do { \
|
---|
55 | __typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
|
---|
56 | __typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
|
---|
57 | \
|
---|
58 | _A1 = vec_mergeh (a, e); \
|
---|
59 | _B1 = vec_mergel (a, e); \
|
---|
60 | _C1 = vec_mergeh (b, f); \
|
---|
61 | _D1 = vec_mergel (b, f); \
|
---|
62 | _E1 = vec_mergeh (c, g); \
|
---|
63 | _F1 = vec_mergel (c, g); \
|
---|
64 | _G1 = vec_mergeh (d, h); \
|
---|
65 | _H1 = vec_mergel (d, h); \
|
---|
66 | \
|
---|
67 | _A2 = vec_mergeh (_A1, _E1); \
|
---|
68 | _B2 = vec_mergel (_A1, _E1); \
|
---|
69 | _C2 = vec_mergeh (_B1, _F1); \
|
---|
70 | _D2 = vec_mergel (_B1, _F1); \
|
---|
71 | _E2 = vec_mergeh (_C1, _G1); \
|
---|
72 | _F2 = vec_mergel (_C1, _G1); \
|
---|
73 | _G2 = vec_mergeh (_D1, _H1); \
|
---|
74 | _H2 = vec_mergel (_D1, _H1); \
|
---|
75 | \
|
---|
76 | a = vec_mergeh (_A2, _E2); \
|
---|
77 | b = vec_mergel (_A2, _E2); \
|
---|
78 | c = vec_mergeh (_B2, _F2); \
|
---|
79 | d = vec_mergel (_B2, _F2); \
|
---|
80 | e = vec_mergeh (_C2, _G2); \
|
---|
81 | f = vec_mergel (_C2, _G2); \
|
---|
82 | g = vec_mergeh (_D2, _H2); \
|
---|
83 | h = vec_mergel (_D2, _H2); \
|
---|
84 | } while (0)
|
---|
85 |
|
---|
86 |
|
---|
87 | // Loads a four-byte value (int or float) from the target address
|
---|
88 | // into every element in the target vector. Only works if the
|
---|
89 | // target address is four-byte aligned (which should be always).
|
---|
90 | #define LOAD4(vec, address) \
|
---|
91 | { \
|
---|
92 | __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
|
---|
93 | vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
|
---|
94 | vec = vec_ld(0, _load_addr); \
|
---|
95 | vec = vec_perm(vec, vec, _perm_vec); \
|
---|
96 | vec = vec_splat(vec, 0); \
|
---|
97 | }
|
---|
98 |
|
---|
99 |
|
---|
100 | #ifdef CONFIG_DARWIN
|
---|
101 | #define FOUROF(a) (a)
|
---|
102 | #else
|
---|
103 | // slower, for dumb non-apple GCC
|
---|
104 | #define FOUROF(a) {a,a,a,a}
|
---|
105 | #endif
|
---|
106 | int dct_quantize_altivec(MpegEncContext* s,
|
---|
107 | DCTELEM* data, int n,
|
---|
108 | int qscale, int* overflow)
|
---|
109 | {
|
---|
110 | int lastNonZero;
|
---|
111 | vector float row0, row1, row2, row3, row4, row5, row6, row7;
|
---|
112 | vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
|
---|
113 | const_vector float zero = (const_vector float)FOUROF(0.);
|
---|
114 | // used after quantise step
|
---|
115 | int oldBaseValue = 0;
|
---|
116 |
|
---|
117 | // Load the data into the row/alt vectors
|
---|
118 | {
|
---|
119 | vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
|
---|
120 |
|
---|
121 | data0 = vec_ld(0, data);
|
---|
122 | data1 = vec_ld(16, data);
|
---|
123 | data2 = vec_ld(32, data);
|
---|
124 | data3 = vec_ld(48, data);
|
---|
125 | data4 = vec_ld(64, data);
|
---|
126 | data5 = vec_ld(80, data);
|
---|
127 | data6 = vec_ld(96, data);
|
---|
128 | data7 = vec_ld(112, data);
|
---|
129 |
|
---|
130 | // Transpose the data before we start
|
---|
131 | TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
|
---|
132 |
|
---|
133 | // load the data into floating point vectors. We load
|
---|
134 | // the high half of each row into the main row vectors
|
---|
135 | // and the low half into the alt vectors.
|
---|
136 | row0 = vec_ctf(vec_unpackh(data0), 0);
|
---|
137 | alt0 = vec_ctf(vec_unpackl(data0), 0);
|
---|
138 | row1 = vec_ctf(vec_unpackh(data1), 0);
|
---|
139 | alt1 = vec_ctf(vec_unpackl(data1), 0);
|
---|
140 | row2 = vec_ctf(vec_unpackh(data2), 0);
|
---|
141 | alt2 = vec_ctf(vec_unpackl(data2), 0);
|
---|
142 | row3 = vec_ctf(vec_unpackh(data3), 0);
|
---|
143 | alt3 = vec_ctf(vec_unpackl(data3), 0);
|
---|
144 | row4 = vec_ctf(vec_unpackh(data4), 0);
|
---|
145 | alt4 = vec_ctf(vec_unpackl(data4), 0);
|
---|
146 | row5 = vec_ctf(vec_unpackh(data5), 0);
|
---|
147 | alt5 = vec_ctf(vec_unpackl(data5), 0);
|
---|
148 | row6 = vec_ctf(vec_unpackh(data6), 0);
|
---|
149 | alt6 = vec_ctf(vec_unpackl(data6), 0);
|
---|
150 | row7 = vec_ctf(vec_unpackh(data7), 0);
|
---|
151 | alt7 = vec_ctf(vec_unpackl(data7), 0);
|
---|
152 | }
|
---|
153 |
|
---|
154 | // The following block could exist as a separate an altivec dct
|
---|
155 | // function. However, if we put it inline, the DCT data can remain
|
---|
156 | // in the vector local variables, as floats, which we'll use during the
|
---|
157 | // quantize step...
|
---|
158 | {
|
---|
159 | const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
|
---|
160 | const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
|
---|
161 | const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
|
---|
162 | const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
|
---|
163 | const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
|
---|
164 | const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
|
---|
165 | const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
|
---|
166 | const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
|
---|
167 | const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
|
---|
168 | const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
|
---|
169 | const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
|
---|
170 | const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
|
---|
171 |
|
---|
172 |
|
---|
173 | int whichPass, whichHalf;
|
---|
174 |
|
---|
175 | for(whichPass = 1; whichPass<=2; whichPass++)
|
---|
176 | {
|
---|
177 | for(whichHalf = 1; whichHalf<=2; whichHalf++)
|
---|
178 | {
|
---|
179 | vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
---|
180 | vector float tmp10, tmp11, tmp12, tmp13;
|
---|
181 | vector float z1, z2, z3, z4, z5;
|
---|
182 |
|
---|
183 | tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
|
---|
184 | tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
|
---|
185 | tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
|
---|
186 | tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
|
---|
187 | tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
|
---|
188 | tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
|
---|
189 | tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
|
---|
190 | tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
|
---|
191 |
|
---|
192 | tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
|
---|
193 | tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
|
---|
194 | tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
|
---|
195 | tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
|
---|
196 |
|
---|
197 |
|
---|
198 | // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
|
---|
199 | row0 = vec_add(tmp10, tmp11);
|
---|
200 |
|
---|
201 | // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
|
---|
202 | row4 = vec_sub(tmp10, tmp11);
|
---|
203 |
|
---|
204 |
|
---|
205 | // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
---|
206 | z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
|
---|
207 |
|
---|
208 | // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
---|
209 | // CONST_BITS-PASS1_BITS);
|
---|
210 | row2 = vec_madd(tmp13, vec_0_765366865, z1);
|
---|
211 |
|
---|
212 | // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
---|
213 | // CONST_BITS-PASS1_BITS);
|
---|
214 | row6 = vec_madd(tmp12, vec_1_847759065, z1);
|
---|
215 |
|
---|
216 | z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
|
---|
217 | z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
|
---|
218 | z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
|
---|
219 | z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
|
---|
220 |
|
---|
221 | // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
---|
222 | z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
|
---|
223 |
|
---|
224 | // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
---|
225 | z3 = vec_madd(z3, vec_1_961570560, z5);
|
---|
226 |
|
---|
227 | // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
---|
228 | z4 = vec_madd(z4, vec_0_390180644, z5);
|
---|
229 |
|
---|
230 | // The following adds are rolled into the multiplies above
|
---|
231 | // z3 = vec_add(z3, z5); // z3 += z5;
|
---|
232 | // z4 = vec_add(z4, z5); // z4 += z5;
|
---|
233 |
|
---|
234 | // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
---|
235 | // Wow! It's actually more effecient to roll this multiply
|
---|
236 | // into the adds below, even thought the multiply gets done twice!
|
---|
237 | // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
|
---|
238 |
|
---|
239 | // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
---|
240 | // Same with this one...
|
---|
241 | // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
|
---|
242 |
|
---|
243 | // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
---|
244 | // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
|
---|
245 | row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
|
---|
246 |
|
---|
247 | // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
---|
248 | // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
|
---|
249 | row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
|
---|
250 |
|
---|
251 | // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
---|
252 | // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
|
---|
253 | row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
|
---|
254 |
|
---|
255 | // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
---|
256 | // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
|
---|
257 | row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
|
---|
258 |
|
---|
259 | // Swap the row values with the alts. If this is the first half,
|
---|
260 | // this sets up the low values to be acted on in the second half.
|
---|
261 | // If this is the second half, it puts the high values back in
|
---|
262 | // the row values where they are expected to be when we're done.
|
---|
263 | SWAP(row0, alt0);
|
---|
264 | SWAP(row1, alt1);
|
---|
265 | SWAP(row2, alt2);
|
---|
266 | SWAP(row3, alt3);
|
---|
267 | SWAP(row4, alt4);
|
---|
268 | SWAP(row5, alt5);
|
---|
269 | SWAP(row6, alt6);
|
---|
270 | SWAP(row7, alt7);
|
---|
271 | }
|
---|
272 |
|
---|
273 | if (whichPass == 1)
|
---|
274 | {
|
---|
275 | // transpose the data for the second pass
|
---|
276 |
|
---|
277 | // First, block transpose the upper right with lower left.
|
---|
278 | SWAP(row4, alt0);
|
---|
279 | SWAP(row5, alt1);
|
---|
280 | SWAP(row6, alt2);
|
---|
281 | SWAP(row7, alt3);
|
---|
282 |
|
---|
283 | // Now, transpose each block of four
|
---|
284 | TRANSPOSE4(row0, row1, row2, row3);
|
---|
285 | TRANSPOSE4(row4, row5, row6, row7);
|
---|
286 | TRANSPOSE4(alt0, alt1, alt2, alt3);
|
---|
287 | TRANSPOSE4(alt4, alt5, alt6, alt7);
|
---|
288 | }
|
---|
289 | }
|
---|
290 | }
|
---|
291 |
|
---|
292 | // perform the quantise step, using the floating point data
|
---|
293 | // still in the row/alt registers
|
---|
294 | {
|
---|
295 | const int* biasAddr;
|
---|
296 | const vector signed int* qmat;
|
---|
297 | vector float bias, negBias;
|
---|
298 |
|
---|
299 | if (s->mb_intra)
|
---|
300 | {
|
---|
301 | vector signed int baseVector;
|
---|
302 |
|
---|
303 | // We must cache element 0 in the intra case
|
---|
304 | // (it needs special handling).
|
---|
305 | baseVector = vec_cts(vec_splat(row0, 0), 0);
|
---|
306 | vec_ste(baseVector, 0, &oldBaseValue);
|
---|
307 |
|
---|
308 | qmat = (vector signed int*)s->q_intra_matrix[qscale];
|
---|
309 | biasAddr = &(s->intra_quant_bias);
|
---|
310 | }
|
---|
311 | else
|
---|
312 | {
|
---|
313 | qmat = (vector signed int*)s->q_inter_matrix[qscale];
|
---|
314 | biasAddr = &(s->inter_quant_bias);
|
---|
315 | }
|
---|
316 |
|
---|
317 | // Load the bias vector (We add 0.5 to the bias so that we're
|
---|
318 | // rounding when we convert to int, instead of flooring.)
|
---|
319 | {
|
---|
320 | vector signed int biasInt;
|
---|
321 | const vector float negOneFloat = (vector float)FOUROF(-1.0f);
|
---|
322 | LOAD4(biasInt, biasAddr);
|
---|
323 | bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
|
---|
324 | negBias = vec_madd(bias, negOneFloat, zero);
|
---|
325 | }
|
---|
326 |
|
---|
327 | {
|
---|
328 | vector float q0, q1, q2, q3, q4, q5, q6, q7;
|
---|
329 |
|
---|
330 | q0 = vec_ctf(qmat[0], QMAT_SHIFT);
|
---|
331 | q1 = vec_ctf(qmat[2], QMAT_SHIFT);
|
---|
332 | q2 = vec_ctf(qmat[4], QMAT_SHIFT);
|
---|
333 | q3 = vec_ctf(qmat[6], QMAT_SHIFT);
|
---|
334 | q4 = vec_ctf(qmat[8], QMAT_SHIFT);
|
---|
335 | q5 = vec_ctf(qmat[10], QMAT_SHIFT);
|
---|
336 | q6 = vec_ctf(qmat[12], QMAT_SHIFT);
|
---|
337 | q7 = vec_ctf(qmat[14], QMAT_SHIFT);
|
---|
338 |
|
---|
339 | row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
|
---|
340 | vec_cmpgt(row0, zero));
|
---|
341 | row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
|
---|
342 | vec_cmpgt(row1, zero));
|
---|
343 | row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
|
---|
344 | vec_cmpgt(row2, zero));
|
---|
345 | row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
|
---|
346 | vec_cmpgt(row3, zero));
|
---|
347 | row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
|
---|
348 | vec_cmpgt(row4, zero));
|
---|
349 | row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
|
---|
350 | vec_cmpgt(row5, zero));
|
---|
351 | row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
|
---|
352 | vec_cmpgt(row6, zero));
|
---|
353 | row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
|
---|
354 | vec_cmpgt(row7, zero));
|
---|
355 |
|
---|
356 | q0 = vec_ctf(qmat[1], QMAT_SHIFT);
|
---|
357 | q1 = vec_ctf(qmat[3], QMAT_SHIFT);
|
---|
358 | q2 = vec_ctf(qmat[5], QMAT_SHIFT);
|
---|
359 | q3 = vec_ctf(qmat[7], QMAT_SHIFT);
|
---|
360 | q4 = vec_ctf(qmat[9], QMAT_SHIFT);
|
---|
361 | q5 = vec_ctf(qmat[11], QMAT_SHIFT);
|
---|
362 | q6 = vec_ctf(qmat[13], QMAT_SHIFT);
|
---|
363 | q7 = vec_ctf(qmat[15], QMAT_SHIFT);
|
---|
364 |
|
---|
365 | alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
|
---|
366 | vec_cmpgt(alt0, zero));
|
---|
367 | alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
|
---|
368 | vec_cmpgt(alt1, zero));
|
---|
369 | alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
|
---|
370 | vec_cmpgt(alt2, zero));
|
---|
371 | alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
|
---|
372 | vec_cmpgt(alt3, zero));
|
---|
373 | alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
|
---|
374 | vec_cmpgt(alt4, zero));
|
---|
375 | alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
|
---|
376 | vec_cmpgt(alt5, zero));
|
---|
377 | alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
|
---|
378 | vec_cmpgt(alt6, zero));
|
---|
379 | alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
|
---|
380 | vec_cmpgt(alt7, zero));
|
---|
381 | }
|
---|
382 |
|
---|
383 |
|
---|
384 | }
|
---|
385 |
|
---|
386 | // Store the data back into the original block
|
---|
387 | {
|
---|
388 | vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
|
---|
389 |
|
---|
390 | data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
|
---|
391 | data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
|
---|
392 | data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
|
---|
393 | data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
|
---|
394 | data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
|
---|
395 | data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
|
---|
396 | data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
|
---|
397 | data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
|
---|
398 |
|
---|
399 | {
|
---|
400 | // Clamp for overflow
|
---|
401 | vector signed int max_q_int, min_q_int;
|
---|
402 | vector signed short max_q, min_q;
|
---|
403 |
|
---|
404 | LOAD4(max_q_int, &(s->max_qcoeff));
|
---|
405 | LOAD4(min_q_int, &(s->min_qcoeff));
|
---|
406 |
|
---|
407 | max_q = vec_pack(max_q_int, max_q_int);
|
---|
408 | min_q = vec_pack(min_q_int, min_q_int);
|
---|
409 |
|
---|
410 | data0 = vec_max(vec_min(data0, max_q), min_q);
|
---|
411 | data1 = vec_max(vec_min(data1, max_q), min_q);
|
---|
412 | data2 = vec_max(vec_min(data2, max_q), min_q);
|
---|
413 | data4 = vec_max(vec_min(data4, max_q), min_q);
|
---|
414 | data5 = vec_max(vec_min(data5, max_q), min_q);
|
---|
415 | data6 = vec_max(vec_min(data6, max_q), min_q);
|
---|
416 | data7 = vec_max(vec_min(data7, max_q), min_q);
|
---|
417 | }
|
---|
418 |
|
---|
419 | {
|
---|
420 | vector bool char zero_01, zero_23, zero_45, zero_67;
|
---|
421 | vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
|
---|
422 | vector signed char negOne = vec_splat_s8(-1);
|
---|
423 | vector signed char* scanPtr =
|
---|
424 | (vector signed char*)(s->intra_scantable.inverse);
|
---|
425 | signed char lastNonZeroChar;
|
---|
426 |
|
---|
427 | // Determine the largest non-zero index.
|
---|
428 | zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
|
---|
429 | vec_cmpeq(data1, (vector signed short)zero));
|
---|
430 | zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
|
---|
431 | vec_cmpeq(data3, (vector signed short)zero));
|
---|
432 | zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
|
---|
433 | vec_cmpeq(data5, (vector signed short)zero));
|
---|
434 | zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
|
---|
435 | vec_cmpeq(data7, (vector signed short)zero));
|
---|
436 |
|
---|
437 | // 64 biggest values
|
---|
438 | scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
|
---|
439 | scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
|
---|
440 | scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
|
---|
441 | scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);
|
---|
442 |
|
---|
443 | // 32 largest values
|
---|
444 | scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
|
---|
445 | scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);
|
---|
446 |
|
---|
447 | // 16 largest values
|
---|
448 | scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);
|
---|
449 |
|
---|
450 | // 8 largest values
|
---|
451 | scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
|
---|
452 | vec_mergel(scanIndices_01, negOne));
|
---|
453 |
|
---|
454 | // 4 largest values
|
---|
455 | scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
|
---|
456 | vec_mergel(scanIndices_01, negOne));
|
---|
457 |
|
---|
458 | // 2 largest values
|
---|
459 | scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
|
---|
460 | vec_mergel(scanIndices_01, negOne));
|
---|
461 |
|
---|
462 | // largest value
|
---|
463 | scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
|
---|
464 | vec_mergel(scanIndices_01, negOne));
|
---|
465 |
|
---|
466 | scanIndices_01 = vec_splat(scanIndices_01, 0);
|
---|
467 |
|
---|
468 |
|
---|
469 | vec_ste(scanIndices_01, 0, &lastNonZeroChar);
|
---|
470 |
|
---|
471 | lastNonZero = lastNonZeroChar;
|
---|
472 |
|
---|
473 | // While the data is still in vectors we check for the transpose IDCT permute
|
---|
474 | // and handle it using the vector unit if we can. This is the permute used
|
---|
475 | // by the altivec idct, so it is common when using the altivec dct.
|
---|
476 |
|
---|
477 | if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
|
---|
478 | {
|
---|
479 | TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
|
---|
480 | }
|
---|
481 |
|
---|
482 | vec_st(data0, 0, data);
|
---|
483 | vec_st(data1, 16, data);
|
---|
484 | vec_st(data2, 32, data);
|
---|
485 | vec_st(data3, 48, data);
|
---|
486 | vec_st(data4, 64, data);
|
---|
487 | vec_st(data5, 80, data);
|
---|
488 | vec_st(data6, 96, data);
|
---|
489 | vec_st(data7, 112, data);
|
---|
490 | }
|
---|
491 | }
|
---|
492 |
|
---|
493 | // special handling of block[0]
|
---|
494 | if (s->mb_intra)
|
---|
495 | {
|
---|
496 | if (!s->h263_aic)
|
---|
497 | {
|
---|
498 | if (n < 4)
|
---|
499 | oldBaseValue /= s->y_dc_scale;
|
---|
500 | else
|
---|
501 | oldBaseValue /= s->c_dc_scale;
|
---|
502 | }
|
---|
503 |
|
---|
504 | // Divide by 8, rounding the result
|
---|
505 | data[0] = (oldBaseValue + 4) >> 3;
|
---|
506 | }
|
---|
507 |
|
---|
508 | // We handled the tranpose permutation above and we don't
|
---|
509 | // need to permute the "no" permutation case.
|
---|
510 | if ((lastNonZero > 0) &&
|
---|
511 | (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
|
---|
512 | (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM))
|
---|
513 | {
|
---|
514 | ff_block_permute(data, s->dsp.idct_permutation,
|
---|
515 | s->intra_scantable.scantable, lastNonZero);
|
---|
516 | }
|
---|
517 |
|
---|
518 | return lastNonZero;
|
---|
519 | }
|
---|
520 | #undef FOUROF
|
---|
521 |
|
---|
522 | /*
|
---|
523 | AltiVec version of dct_unquantize_h263
|
---|
524 | this code assumes `block' is 16 bytes-aligned
|
---|
525 | */
|
---|
526 | void dct_unquantize_h263_altivec(MpegEncContext *s,
|
---|
527 | DCTELEM *block, int n, int qscale)
|
---|
528 | {
|
---|
529 | POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
|
---|
530 | int i, level, qmul, qadd;
|
---|
531 | int nCoeffs;
|
---|
532 |
|
---|
533 | assert(s->block_last_index[n]>=0);
|
---|
534 |
|
---|
535 | POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
|
---|
536 |
|
---|
537 | qadd = (qscale - 1) | 1;
|
---|
538 | qmul = qscale << 1;
|
---|
539 |
|
---|
540 | if (s->mb_intra) {
|
---|
541 | if (!s->h263_aic) {
|
---|
542 | if (n < 4)
|
---|
543 | block[0] = block[0] * s->y_dc_scale;
|
---|
544 | else
|
---|
545 | block[0] = block[0] * s->c_dc_scale;
|
---|
546 | }else
|
---|
547 | qadd = 0;
|
---|
548 | i = 1;
|
---|
549 | nCoeffs= 63; //does not allways use zigzag table
|
---|
550 | } else {
|
---|
551 | i = 0;
|
---|
552 | nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
|
---|
553 | }
|
---|
554 |
|
---|
555 | #ifdef ALTIVEC_USE_REFERENCE_C_CODE
|
---|
556 | for(;i<=nCoeffs;i++) {
|
---|
557 | level = block[i];
|
---|
558 | if (level) {
|
---|
559 | if (level < 0) {
|
---|
560 | level = level * qmul - qadd;
|
---|
561 | } else {
|
---|
562 | level = level * qmul + qadd;
|
---|
563 | }
|
---|
564 | block[i] = level;
|
---|
565 | }
|
---|
566 | }
|
---|
567 | #else /* ALTIVEC_USE_REFERENCE_C_CODE */
|
---|
568 | {
|
---|
569 | register const_vector signed short vczero = (const_vector signed short)vec_splat_s16(0);
|
---|
570 | short __attribute__ ((aligned(16))) qmul8[] =
|
---|
571 | {
|
---|
572 | qmul, qmul, qmul, qmul,
|
---|
573 | qmul, qmul, qmul, qmul
|
---|
574 | };
|
---|
575 | short __attribute__ ((aligned(16))) qadd8[] =
|
---|
576 | {
|
---|
577 | qadd, qadd, qadd, qadd,
|
---|
578 | qadd, qadd, qadd, qadd
|
---|
579 | };
|
---|
580 | short __attribute__ ((aligned(16))) nqadd8[] =
|
---|
581 | {
|
---|
582 | -qadd, -qadd, -qadd, -qadd,
|
---|
583 | -qadd, -qadd, -qadd, -qadd
|
---|
584 | };
|
---|
585 | register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
|
---|
586 | register vector bool short blockv_null, blockv_neg;
|
---|
587 | register short backup_0 = block[0];
|
---|
588 | register int j = 0;
|
---|
589 |
|
---|
590 | qmulv = vec_ld(0, qmul8);
|
---|
591 | qaddv = vec_ld(0, qadd8);
|
---|
592 | nqaddv = vec_ld(0, nqadd8);
|
---|
593 |
|
---|
594 | #if 0 // block *is* 16 bytes-aligned, it seems.
|
---|
595 | // first make sure block[j] is 16 bytes-aligned
|
---|
596 | for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
|
---|
597 | level = block[j];
|
---|
598 | if (level) {
|
---|
599 | if (level < 0) {
|
---|
600 | level = level * qmul - qadd;
|
---|
601 | } else {
|
---|
602 | level = level * qmul + qadd;
|
---|
603 | }
|
---|
604 | block[j] = level;
|
---|
605 | }
|
---|
606 | }
|
---|
607 | #endif
|
---|
608 |
|
---|
609 | // vectorize all the 16 bytes-aligned blocks
|
---|
610 | // of 8 elements
|
---|
611 | for(; (j + 7) <= nCoeffs ; j+=8)
|
---|
612 | {
|
---|
613 | blockv = vec_ld(j << 1, block);
|
---|
614 | blockv_neg = vec_cmplt(blockv, vczero);
|
---|
615 | blockv_null = vec_cmpeq(blockv, vczero);
|
---|
616 | // choose between +qadd or -qadd as the third operand
|
---|
617 | temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
|
---|
618 | // multiply & add (block{i,i+7} * qmul [+-] qadd)
|
---|
619 | temp1 = vec_mladd(blockv, qmulv, temp1);
|
---|
620 | // put 0 where block[{i,i+7} used to have 0
|
---|
621 | blockv = vec_sel(temp1, blockv, blockv_null);
|
---|
622 | vec_st(blockv, j << 1, block);
|
---|
623 | }
|
---|
624 |
|
---|
625 | // if nCoeffs isn't a multiple of 8, finish the job
|
---|
626 | // using good old scalar units.
|
---|
627 | // (we could do it using a truncated vector,
|
---|
628 | // but I'm not sure it's worth the hassle)
|
---|
629 | for(; j <= nCoeffs ; j++) {
|
---|
630 | level = block[j];
|
---|
631 | if (level) {
|
---|
632 | if (level < 0) {
|
---|
633 | level = level * qmul - qadd;
|
---|
634 | } else {
|
---|
635 | level = level * qmul + qadd;
|
---|
636 | }
|
---|
637 | block[j] = level;
|
---|
638 | }
|
---|
639 | }
|
---|
640 |
|
---|
641 | if (i == 1)
|
---|
642 | { // cheat. this avoid special-casing the first iteration
|
---|
643 | block[0] = backup_0;
|
---|
644 | }
|
---|
645 | }
|
---|
646 | #endif /* ALTIVEC_USE_REFERENCE_C_CODE */
|
---|
647 |
|
---|
648 | POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
|
---|
649 | }
|
---|