1 | /*
|
---|
2 | * Copyright (C) 2003-2004 the ffmpeg project
|
---|
3 | *
|
---|
4 | * This library is free software; you can redistribute it and/or
|
---|
5 | * modify it under the terms of the GNU Lesser General Public
|
---|
6 | * License as published by the Free Software Foundation; either
|
---|
7 | * version 2 of the License, or (at your option) any later version.
|
---|
8 | *
|
---|
9 | * This library is distributed in the hope that it will be useful,
|
---|
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
12 | * Lesser General Public License for more details.
|
---|
13 | *
|
---|
14 | * You should have received a copy of the GNU Lesser General Public
|
---|
15 | * License along with this library; if not, write to the Free Software
|
---|
16 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
17 | *
|
---|
18 | */
|
---|
19 |
|
---|
20 | /**
|
---|
21 | * @file vp3.c
|
---|
22 | * On2 VP3 Video Decoder
|
---|
23 | *
|
---|
24 | * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
|
---|
25 | * For more information about the VP3 coding process, visit:
|
---|
26 | * http://multimedia.cx/
|
---|
27 | *
|
---|
28 | * Theora decoder by Alex Beregszaszi
|
---|
29 | */
|
---|
30 |
|
---|
31 | #include <stdio.h>
|
---|
32 | #include <stdlib.h>
|
---|
33 | #include <string.h>
|
---|
34 | #include <unistd.h>
|
---|
35 |
|
---|
36 | #include "common.h"
|
---|
37 | #include "avcodec.h"
|
---|
38 | #include "dsputil.h"
|
---|
39 | #include "mpegvideo.h"
|
---|
40 |
|
---|
41 | #include "vp3data.h"
|
---|
42 |
|
---|
43 | #define FRAGMENT_PIXELS 8
|
---|
44 |
|
---|
45 | /*
|
---|
46 | * Debugging Variables
|
---|
47 | *
|
---|
48 | * Define one or more of the following compile-time variables to 1 to obtain
|
---|
49 | * elaborate information about certain aspects of the decoding process.
|
---|
50 | *
|
---|
51 | * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
|
---|
52 | * DEBUG_VP3: high-level decoding flow
|
---|
53 | * DEBUG_INIT: initialization parameters
|
---|
54 | * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
|
---|
55 | * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
|
---|
56 | * DEBUG_MODES: unpacking the coding modes for individual fragments
|
---|
57 | * DEBUG_VECTORS: display the motion vectors
|
---|
58 | * DEBUG_TOKEN: display exhaustive information about each DCT token
|
---|
59 | * DEBUG_VLC: display the VLCs as they are extracted from the stream
|
---|
60 | * DEBUG_DC_PRED: display the process of reversing DC prediction
|
---|
61 | * DEBUG_IDCT: show every detail of the IDCT process
|
---|
62 | */
|
---|
63 |
|
---|
64 | #define KEYFRAMES_ONLY 0
|
---|
65 |
|
---|
66 | #define DEBUG_VP3 0
|
---|
67 | #define DEBUG_INIT 0
|
---|
68 | #define DEBUG_DEQUANTIZERS 0
|
---|
69 | #define DEBUG_BLOCK_CODING 0
|
---|
70 | #define DEBUG_MODES 0
|
---|
71 | #define DEBUG_VECTORS 0
|
---|
72 | #define DEBUG_TOKEN 0
|
---|
73 | #define DEBUG_VLC 0
|
---|
74 | #define DEBUG_DC_PRED 0
|
---|
75 | #define DEBUG_IDCT 0
|
---|
76 |
|
---|
77 | #if DEBUG_VP3
|
---|
78 | #define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
|
---|
79 | #else
|
---|
80 | static inline void debug_vp3(const char *format, ...) { }
|
---|
81 | #endif
|
---|
82 |
|
---|
83 | #if DEBUG_INIT
|
---|
84 | #define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
|
---|
85 | #else
|
---|
86 | static inline void debug_init(const char *format, ...) { }
|
---|
87 | #endif
|
---|
88 |
|
---|
89 | #if DEBUG_DEQUANTIZERS
|
---|
90 | #define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
|
---|
91 | #else
|
---|
92 | static inline void debug_dequantizers(const char *format, ...) { }
|
---|
93 | #endif
|
---|
94 |
|
---|
95 | #if DEBUG_BLOCK_CODING
|
---|
96 | #define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
|
---|
97 | #else
|
---|
98 | static inline void debug_block_coding(const char *format, ...) { }
|
---|
99 | #endif
|
---|
100 |
|
---|
101 | #if DEBUG_MODES
|
---|
102 | #define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
|
---|
103 | #else
|
---|
104 | static inline void debug_modes(const char *format, ...) { }
|
---|
105 | #endif
|
---|
106 |
|
---|
107 | #if DEBUG_VECTORS
|
---|
108 | #define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
|
---|
109 | #else
|
---|
110 | static inline void debug_vectors(const char *format, ...) { }
|
---|
111 | #endif
|
---|
112 |
|
---|
113 | #if DEBUG_TOKEN
|
---|
114 | #define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
|
---|
115 | #else
|
---|
116 | static inline void debug_token(const char *format, ...) { }
|
---|
117 | #endif
|
---|
118 |
|
---|
119 | #if DEBUG_VLC
|
---|
120 | #define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
|
---|
121 | #else
|
---|
122 | static inline void debug_vlc(const char *format, ...) { }
|
---|
123 | #endif
|
---|
124 |
|
---|
125 | #if DEBUG_DC_PRED
|
---|
126 | #define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
|
---|
127 | #else
|
---|
128 | static inline void debug_dc_pred(const char *format, ...) { }
|
---|
129 | #endif
|
---|
130 |
|
---|
131 | #if DEBUG_IDCT
|
---|
132 | #define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
|
---|
133 | #else
|
---|
134 | static inline void debug_idct(const char *format, ...) { }
|
---|
135 | #endif
|
---|
136 |
|
---|
137 | typedef struct Coeff {
|
---|
138 | struct Coeff *next;
|
---|
139 | DCTELEM coeff;
|
---|
140 | uint8_t index;
|
---|
141 | } Coeff;
|
---|
142 |
|
---|
143 | //FIXME split things out into their own arrays
|
---|
144 | typedef struct Vp3Fragment {
|
---|
145 | Coeff *next_coeff;
|
---|
146 | /* address of first pixel taking into account which plane the fragment
|
---|
147 | * lives on as well as the plane stride */
|
---|
148 | int first_pixel;
|
---|
149 | /* this is the macroblock that the fragment belongs to */
|
---|
150 | uint16_t macroblock;
|
---|
151 | uint8_t coding_method;
|
---|
152 | uint8_t coeff_count;
|
---|
153 | int8_t motion_x;
|
---|
154 | int8_t motion_y;
|
---|
155 | } Vp3Fragment;
|
---|
156 |
|
---|
157 | #define SB_NOT_CODED 0
|
---|
158 | #define SB_PARTIALLY_CODED 1
|
---|
159 | #define SB_FULLY_CODED 2
|
---|
160 |
|
---|
161 | #define MODE_INTER_NO_MV 0
|
---|
162 | #define MODE_INTRA 1
|
---|
163 | #define MODE_INTER_PLUS_MV 2
|
---|
164 | #define MODE_INTER_LAST_MV 3
|
---|
165 | #define MODE_INTER_PRIOR_LAST 4
|
---|
166 | #define MODE_USING_GOLDEN 5
|
---|
167 | #define MODE_GOLDEN_MV 6
|
---|
168 | #define MODE_INTER_FOURMV 7
|
---|
169 | #define CODING_MODE_COUNT 8
|
---|
170 |
|
---|
171 | /* special internal mode */
|
---|
172 | #define MODE_COPY 8
|
---|
173 |
|
---|
174 | /* There are 6 preset schemes, plus a free-form scheme */
|
---|
175 | static int ModeAlphabet[7][CODING_MODE_COUNT] =
|
---|
176 | {
|
---|
177 | /* this is the custom scheme */
|
---|
178 | { 0, 0, 0, 0, 0, 0, 0, 0 },
|
---|
179 |
|
---|
180 | /* scheme 1: Last motion vector dominates */
|
---|
181 | { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
|
---|
182 | MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
|
---|
183 | MODE_INTRA, MODE_USING_GOLDEN,
|
---|
184 | MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
---|
185 |
|
---|
186 | /* scheme 2 */
|
---|
187 | { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
|
---|
188 | MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
|
---|
189 | MODE_INTRA, MODE_USING_GOLDEN,
|
---|
190 | MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
---|
191 |
|
---|
192 | /* scheme 3 */
|
---|
193 | { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
|
---|
194 | MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
|
---|
195 | MODE_INTRA, MODE_USING_GOLDEN,
|
---|
196 | MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
---|
197 |
|
---|
198 | /* scheme 4 */
|
---|
199 | { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
|
---|
200 | MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
|
---|
201 | MODE_INTRA, MODE_USING_GOLDEN,
|
---|
202 | MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
---|
203 |
|
---|
204 | /* scheme 5: No motion vector dominates */
|
---|
205 | { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
|
---|
206 | MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
|
---|
207 | MODE_INTRA, MODE_USING_GOLDEN,
|
---|
208 | MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
---|
209 |
|
---|
210 | /* scheme 6 */
|
---|
211 | { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
|
---|
212 | MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
|
---|
213 | MODE_INTER_PLUS_MV, MODE_INTRA,
|
---|
214 | MODE_GOLDEN_MV, MODE_INTER_FOURMV },
|
---|
215 |
|
---|
216 | };
|
---|
217 |
|
---|
218 | #define MIN_DEQUANT_VAL 2
|
---|
219 |
|
---|
220 | typedef struct Vp3DecodeContext {
|
---|
221 | AVCodecContext *avctx;
|
---|
222 | int theora, theora_tables;
|
---|
223 | int version;
|
---|
224 | int width, height;
|
---|
225 | AVFrame golden_frame;
|
---|
226 | AVFrame last_frame;
|
---|
227 | AVFrame current_frame;
|
---|
228 | int keyframe;
|
---|
229 | DSPContext dsp;
|
---|
230 | int flipped_image;
|
---|
231 |
|
---|
232 | int quality_index;
|
---|
233 | int last_quality_index;
|
---|
234 |
|
---|
235 | int superblock_count;
|
---|
236 | int superblock_width;
|
---|
237 | int superblock_height;
|
---|
238 | int y_superblock_width;
|
---|
239 | int y_superblock_height;
|
---|
240 | int c_superblock_width;
|
---|
241 | int c_superblock_height;
|
---|
242 | int u_superblock_start;
|
---|
243 | int v_superblock_start;
|
---|
244 | unsigned char *superblock_coding;
|
---|
245 |
|
---|
246 | int macroblock_count;
|
---|
247 | int macroblock_width;
|
---|
248 | int macroblock_height;
|
---|
249 |
|
---|
250 | int fragment_count;
|
---|
251 | int fragment_width;
|
---|
252 | int fragment_height;
|
---|
253 |
|
---|
254 | Vp3Fragment *all_fragments;
|
---|
255 | Coeff *coeffs;
|
---|
256 | Coeff *next_coeff;
|
---|
257 | int u_fragment_start;
|
---|
258 | int v_fragment_start;
|
---|
259 |
|
---|
260 | ScanTable scantable;
|
---|
261 |
|
---|
262 | /* tables */
|
---|
263 | uint16_t coded_dc_scale_factor[64];
|
---|
264 | uint32_t coded_ac_scale_factor[64];
|
---|
265 | uint16_t coded_intra_y_dequant[64];
|
---|
266 | uint16_t coded_intra_c_dequant[64];
|
---|
267 | uint16_t coded_inter_dequant[64];
|
---|
268 |
|
---|
269 | /* this is a list of indices into the all_fragments array indicating
|
---|
270 | * which of the fragments are coded */
|
---|
271 | int *coded_fragment_list;
|
---|
272 | int coded_fragment_list_index;
|
---|
273 | int pixel_addresses_inited;
|
---|
274 |
|
---|
275 | VLC dc_vlc[16];
|
---|
276 | VLC ac_vlc_1[16];
|
---|
277 | VLC ac_vlc_2[16];
|
---|
278 | VLC ac_vlc_3[16];
|
---|
279 | VLC ac_vlc_4[16];
|
---|
280 |
|
---|
281 | VLC superblock_run_length_vlc;
|
---|
282 | VLC fragment_run_length_vlc;
|
---|
283 | VLC mode_code_vlc;
|
---|
284 | VLC motion_vector_vlc;
|
---|
285 |
|
---|
286 | /* these arrays need to be on 16-byte boundaries since SSE2 operations
|
---|
287 | * index into them */
|
---|
288 | DECLARE_ALIGNED_16(int16_t, intra_y_dequant[64]);
|
---|
289 | DECLARE_ALIGNED_16(int16_t, intra_c_dequant[64]);
|
---|
290 | DECLARE_ALIGNED_16(int16_t, inter_dequant[64]);
|
---|
291 |
|
---|
292 | /* This table contains superblock_count * 16 entries. Each set of 16
|
---|
293 | * numbers corresponds to the fragment indices 0..15 of the superblock.
|
---|
294 | * An entry will be -1 to indicate that no entry corresponds to that
|
---|
295 | * index. */
|
---|
296 | int *superblock_fragments;
|
---|
297 |
|
---|
298 | /* This table contains superblock_count * 4 entries. Each set of 4
|
---|
299 | * numbers corresponds to the macroblock indices 0..3 of the superblock.
|
---|
300 | * An entry will be -1 to indicate that no entry corresponds to that
|
---|
301 | * index. */
|
---|
302 | int *superblock_macroblocks;
|
---|
303 |
|
---|
304 | /* This table contains macroblock_count * 6 entries. Each set of 6
|
---|
305 | * numbers corresponds to the fragment indices 0..5 which comprise
|
---|
306 | * the macroblock (4 Y fragments and 2 C fragments). */
|
---|
307 | int *macroblock_fragments;
|
---|
308 | /* This is an array that indicates how a particular macroblock
|
---|
309 | * is coded. */
|
---|
310 | unsigned char *macroblock_coding;
|
---|
311 |
|
---|
312 | int first_coded_y_fragment;
|
---|
313 | int first_coded_c_fragment;
|
---|
314 | int last_coded_y_fragment;
|
---|
315 | int last_coded_c_fragment;
|
---|
316 |
|
---|
317 | uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
|
---|
318 | uint8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
|
---|
319 |
|
---|
320 | /* Huffman decode */
|
---|
321 | int hti;
|
---|
322 | unsigned int hbits;
|
---|
323 | int entries;
|
---|
324 | int huff_code_size;
|
---|
325 | uint16_t huffman_table[80][32][2];
|
---|
326 |
|
---|
327 | uint32_t filter_limit_values[64];
|
---|
328 | int bounding_values_array[256];
|
---|
329 | } Vp3DecodeContext;
|
---|
330 |
|
---|
331 | static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb);
|
---|
332 |
|
---|
333 | /************************************************************************
|
---|
334 | * VP3 specific functions
|
---|
335 | ************************************************************************/
|
---|
336 |
|
---|
337 | /*
|
---|
338 | * This function sets up all of the various blocks mappings:
|
---|
339 | * superblocks <-> fragments, macroblocks <-> fragments,
|
---|
340 | * superblocks <-> macroblocks
|
---|
341 | *
|
---|
342 | * Returns 0 is successful; returns 1 if *anything* went wrong.
|
---|
343 | */
|
---|
344 | static int init_block_mapping(Vp3DecodeContext *s)
|
---|
345 | {
|
---|
346 | int i, j;
|
---|
347 | signed int hilbert_walk_y[16];
|
---|
348 | signed int hilbert_walk_c[16];
|
---|
349 | signed int hilbert_walk_mb[4];
|
---|
350 |
|
---|
351 | int current_fragment = 0;
|
---|
352 | int current_width = 0;
|
---|
353 | int current_height = 0;
|
---|
354 | int right_edge = 0;
|
---|
355 | int bottom_edge = 0;
|
---|
356 | int superblock_row_inc = 0;
|
---|
357 | int *hilbert = NULL;
|
---|
358 | int mapping_index = 0;
|
---|
359 |
|
---|
360 | int current_macroblock;
|
---|
361 | int c_fragment;
|
---|
362 |
|
---|
363 | signed char travel_width[16] = {
|
---|
364 | 1, 1, 0, -1,
|
---|
365 | 0, 0, 1, 0,
|
---|
366 | 1, 0, 1, 0,
|
---|
367 | 0, -1, 0, 1
|
---|
368 | };
|
---|
369 |
|
---|
370 | signed char travel_height[16] = {
|
---|
371 | 0, 0, 1, 0,
|
---|
372 | 1, 1, 0, -1,
|
---|
373 | 0, 1, 0, -1,
|
---|
374 | -1, 0, -1, 0
|
---|
375 | };
|
---|
376 |
|
---|
377 | signed char travel_width_mb[4] = {
|
---|
378 | 1, 0, 1, 0
|
---|
379 | };
|
---|
380 |
|
---|
381 | signed char travel_height_mb[4] = {
|
---|
382 | 0, 1, 0, -1
|
---|
383 | };
|
---|
384 |
|
---|
385 | debug_vp3(" vp3: initialize block mapping tables\n");
|
---|
386 |
|
---|
387 | /* figure out hilbert pattern per these frame dimensions */
|
---|
388 | hilbert_walk_y[0] = 1;
|
---|
389 | hilbert_walk_y[1] = 1;
|
---|
390 | hilbert_walk_y[2] = s->fragment_width;
|
---|
391 | hilbert_walk_y[3] = -1;
|
---|
392 | hilbert_walk_y[4] = s->fragment_width;
|
---|
393 | hilbert_walk_y[5] = s->fragment_width;
|
---|
394 | hilbert_walk_y[6] = 1;
|
---|
395 | hilbert_walk_y[7] = -s->fragment_width;
|
---|
396 | hilbert_walk_y[8] = 1;
|
---|
397 | hilbert_walk_y[9] = s->fragment_width;
|
---|
398 | hilbert_walk_y[10] = 1;
|
---|
399 | hilbert_walk_y[11] = -s->fragment_width;
|
---|
400 | hilbert_walk_y[12] = -s->fragment_width;
|
---|
401 | hilbert_walk_y[13] = -1;
|
---|
402 | hilbert_walk_y[14] = -s->fragment_width;
|
---|
403 | hilbert_walk_y[15] = 1;
|
---|
404 |
|
---|
405 | hilbert_walk_c[0] = 1;
|
---|
406 | hilbert_walk_c[1] = 1;
|
---|
407 | hilbert_walk_c[2] = s->fragment_width / 2;
|
---|
408 | hilbert_walk_c[3] = -1;
|
---|
409 | hilbert_walk_c[4] = s->fragment_width / 2;
|
---|
410 | hilbert_walk_c[5] = s->fragment_width / 2;
|
---|
411 | hilbert_walk_c[6] = 1;
|
---|
412 | hilbert_walk_c[7] = -s->fragment_width / 2;
|
---|
413 | hilbert_walk_c[8] = 1;
|
---|
414 | hilbert_walk_c[9] = s->fragment_width / 2;
|
---|
415 | hilbert_walk_c[10] = 1;
|
---|
416 | hilbert_walk_c[11] = -s->fragment_width / 2;
|
---|
417 | hilbert_walk_c[12] = -s->fragment_width / 2;
|
---|
418 | hilbert_walk_c[13] = -1;
|
---|
419 | hilbert_walk_c[14] = -s->fragment_width / 2;
|
---|
420 | hilbert_walk_c[15] = 1;
|
---|
421 |
|
---|
422 | hilbert_walk_mb[0] = 1;
|
---|
423 | hilbert_walk_mb[1] = s->macroblock_width;
|
---|
424 | hilbert_walk_mb[2] = 1;
|
---|
425 | hilbert_walk_mb[3] = -s->macroblock_width;
|
---|
426 |
|
---|
427 | /* iterate through each superblock (all planes) and map the fragments */
|
---|
428 | for (i = 0; i < s->superblock_count; i++) {
|
---|
429 | debug_init(" superblock %d (u starts @ %d, v starts @ %d)\n",
|
---|
430 | i, s->u_superblock_start, s->v_superblock_start);
|
---|
431 |
|
---|
432 | /* time to re-assign the limits? */
|
---|
433 | if (i == 0) {
|
---|
434 |
|
---|
435 | /* start of Y superblocks */
|
---|
436 | right_edge = s->fragment_width;
|
---|
437 | bottom_edge = s->fragment_height;
|
---|
438 | current_width = -1;
|
---|
439 | current_height = 0;
|
---|
440 | superblock_row_inc = 3 * s->fragment_width -
|
---|
441 | (s->y_superblock_width * 4 - s->fragment_width);
|
---|
442 | hilbert = hilbert_walk_y;
|
---|
443 |
|
---|
444 | /* the first operation for this variable is to advance by 1 */
|
---|
445 | current_fragment = -1;
|
---|
446 |
|
---|
447 | } else if (i == s->u_superblock_start) {
|
---|
448 |
|
---|
449 | /* start of U superblocks */
|
---|
450 | right_edge = s->fragment_width / 2;
|
---|
451 | bottom_edge = s->fragment_height / 2;
|
---|
452 | current_width = -1;
|
---|
453 | current_height = 0;
|
---|
454 | superblock_row_inc = 3 * (s->fragment_width / 2) -
|
---|
455 | (s->c_superblock_width * 4 - s->fragment_width / 2);
|
---|
456 | hilbert = hilbert_walk_c;
|
---|
457 |
|
---|
458 | /* the first operation for this variable is to advance by 1 */
|
---|
459 | current_fragment = s->u_fragment_start - 1;
|
---|
460 |
|
---|
461 | } else if (i == s->v_superblock_start) {
|
---|
462 |
|
---|
463 | /* start of V superblocks */
|
---|
464 | right_edge = s->fragment_width / 2;
|
---|
465 | bottom_edge = s->fragment_height / 2;
|
---|
466 | current_width = -1;
|
---|
467 | current_height = 0;
|
---|
468 | superblock_row_inc = 3 * (s->fragment_width / 2) -
|
---|
469 | (s->c_superblock_width * 4 - s->fragment_width / 2);
|
---|
470 | hilbert = hilbert_walk_c;
|
---|
471 |
|
---|
472 | /* the first operation for this variable is to advance by 1 */
|
---|
473 | current_fragment = s->v_fragment_start - 1;
|
---|
474 |
|
---|
475 | }
|
---|
476 |
|
---|
477 | if (current_width >= right_edge - 1) {
|
---|
478 | /* reset width and move to next superblock row */
|
---|
479 | current_width = -1;
|
---|
480 | current_height += 4;
|
---|
481 |
|
---|
482 | /* fragment is now at the start of a new superblock row */
|
---|
483 | current_fragment += superblock_row_inc;
|
---|
484 | }
|
---|
485 |
|
---|
486 | /* iterate through all 16 fragments in a superblock */
|
---|
487 | for (j = 0; j < 16; j++) {
|
---|
488 | current_fragment += hilbert[j];
|
---|
489 | current_width += travel_width[j];
|
---|
490 | current_height += travel_height[j];
|
---|
491 |
|
---|
492 | /* check if the fragment is in bounds */
|
---|
493 | if ((current_width < right_edge) &&
|
---|
494 | (current_height < bottom_edge)) {
|
---|
495 | s->superblock_fragments[mapping_index] = current_fragment;
|
---|
496 | debug_init(" mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n",
|
---|
497 | s->superblock_fragments[mapping_index], i, j,
|
---|
498 | current_width, right_edge, current_height, bottom_edge);
|
---|
499 | } else {
|
---|
500 | s->superblock_fragments[mapping_index] = -1;
|
---|
501 | debug_init(" superblock %d, position %d has no fragment (%d/%d x %d/%d)\n",
|
---|
502 | i, j,
|
---|
503 | current_width, right_edge, current_height, bottom_edge);
|
---|
504 | }
|
---|
505 |
|
---|
506 | mapping_index++;
|
---|
507 | }
|
---|
508 | }
|
---|
509 |
|
---|
510 | /* initialize the superblock <-> macroblock mapping; iterate through
|
---|
511 | * all of the Y plane superblocks to build this mapping */
|
---|
512 | right_edge = s->macroblock_width;
|
---|
513 | bottom_edge = s->macroblock_height;
|
---|
514 | current_width = -1;
|
---|
515 | current_height = 0;
|
---|
516 | superblock_row_inc = s->macroblock_width -
|
---|
517 | (s->y_superblock_width * 2 - s->macroblock_width);;
|
---|
518 | hilbert = hilbert_walk_mb;
|
---|
519 | mapping_index = 0;
|
---|
520 | current_macroblock = -1;
|
---|
521 | for (i = 0; i < s->u_superblock_start; i++) {
|
---|
522 |
|
---|
523 | if (current_width >= right_edge - 1) {
|
---|
524 | /* reset width and move to next superblock row */
|
---|
525 | current_width = -1;
|
---|
526 | current_height += 2;
|
---|
527 |
|
---|
528 | /* macroblock is now at the start of a new superblock row */
|
---|
529 | current_macroblock += superblock_row_inc;
|
---|
530 | }
|
---|
531 |
|
---|
532 | /* iterate through each potential macroblock in the superblock */
|
---|
533 | for (j = 0; j < 4; j++) {
|
---|
534 | current_macroblock += hilbert_walk_mb[j];
|
---|
535 | current_width += travel_width_mb[j];
|
---|
536 | current_height += travel_height_mb[j];
|
---|
537 |
|
---|
538 | /* check if the macroblock is in bounds */
|
---|
539 | if ((current_width < right_edge) &&
|
---|
540 | (current_height < bottom_edge)) {
|
---|
541 | s->superblock_macroblocks[mapping_index] = current_macroblock;
|
---|
542 | debug_init(" mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
|
---|
543 | s->superblock_macroblocks[mapping_index], i, j,
|
---|
544 | current_width, right_edge, current_height, bottom_edge);
|
---|
545 | } else {
|
---|
546 | s->superblock_macroblocks[mapping_index] = -1;
|
---|
547 | debug_init(" superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
|
---|
548 | i, j,
|
---|
549 | current_width, right_edge, current_height, bottom_edge);
|
---|
550 | }
|
---|
551 |
|
---|
552 | mapping_index++;
|
---|
553 | }
|
---|
554 | }
|
---|
555 |
|
---|
556 | /* initialize the macroblock <-> fragment mapping */
|
---|
557 | current_fragment = 0;
|
---|
558 | current_macroblock = 0;
|
---|
559 | mapping_index = 0;
|
---|
560 | for (i = 0; i < s->fragment_height; i += 2) {
|
---|
561 |
|
---|
562 | for (j = 0; j < s->fragment_width; j += 2) {
|
---|
563 |
|
---|
564 | debug_init(" macroblock %d contains fragments: ", current_macroblock);
|
---|
565 | s->all_fragments[current_fragment].macroblock = current_macroblock;
|
---|
566 | s->macroblock_fragments[mapping_index++] = current_fragment;
|
---|
567 | debug_init("%d ", current_fragment);
|
---|
568 |
|
---|
569 | if (j + 1 < s->fragment_width) {
|
---|
570 | s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
|
---|
571 | s->macroblock_fragments[mapping_index++] = current_fragment + 1;
|
---|
572 | debug_init("%d ", current_fragment + 1);
|
---|
573 | } else
|
---|
574 | s->macroblock_fragments[mapping_index++] = -1;
|
---|
575 |
|
---|
576 | if (i + 1 < s->fragment_height) {
|
---|
577 | s->all_fragments[current_fragment + s->fragment_width].macroblock =
|
---|
578 | current_macroblock;
|
---|
579 | s->macroblock_fragments[mapping_index++] =
|
---|
580 | current_fragment + s->fragment_width;
|
---|
581 | debug_init("%d ", current_fragment + s->fragment_width);
|
---|
582 | } else
|
---|
583 | s->macroblock_fragments[mapping_index++] = -1;
|
---|
584 |
|
---|
585 | if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
|
---|
586 | s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
|
---|
587 | current_macroblock;
|
---|
588 | s->macroblock_fragments[mapping_index++] =
|
---|
589 | current_fragment + s->fragment_width + 1;
|
---|
590 | debug_init("%d ", current_fragment + s->fragment_width + 1);
|
---|
591 | } else
|
---|
592 | s->macroblock_fragments[mapping_index++] = -1;
|
---|
593 |
|
---|
594 | /* C planes */
|
---|
595 | c_fragment = s->u_fragment_start +
|
---|
596 | (i * s->fragment_width / 4) + (j / 2);
|
---|
597 | s->all_fragments[c_fragment].macroblock = s->macroblock_count;
|
---|
598 | s->macroblock_fragments[mapping_index++] = c_fragment;
|
---|
599 | debug_init("%d ", c_fragment);
|
---|
600 |
|
---|
601 | c_fragment = s->v_fragment_start +
|
---|
602 | (i * s->fragment_width / 4) + (j / 2);
|
---|
603 | s->all_fragments[c_fragment].macroblock = s->macroblock_count;
|
---|
604 | s->macroblock_fragments[mapping_index++] = c_fragment;
|
---|
605 | debug_init("%d ", c_fragment);
|
---|
606 |
|
---|
607 | debug_init("\n");
|
---|
608 |
|
---|
609 | if (j + 2 <= s->fragment_width)
|
---|
610 | current_fragment += 2;
|
---|
611 | else
|
---|
612 | current_fragment++;
|
---|
613 | current_macroblock++;
|
---|
614 | }
|
---|
615 |
|
---|
616 | current_fragment += s->fragment_width;
|
---|
617 | }
|
---|
618 |
|
---|
619 | return 0; /* successful path out */
|
---|
620 | }
|
---|
621 |
|
---|
622 | /*
|
---|
623 | * This function wipes out all of the fragment data.
|
---|
624 | */
|
---|
625 | static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
|
---|
626 | {
|
---|
627 | int i;
|
---|
628 |
|
---|
629 | /* zero out all of the fragment information */
|
---|
630 | s->coded_fragment_list_index = 0;
|
---|
631 | for (i = 0; i < s->fragment_count; i++) {
|
---|
632 | s->all_fragments[i].coeff_count = 0;
|
---|
633 | s->all_fragments[i].motion_x = 127;
|
---|
634 | s->all_fragments[i].motion_y = 127;
|
---|
635 | s->all_fragments[i].next_coeff= NULL;
|
---|
636 | s->coeffs[i].index=
|
---|
637 | s->coeffs[i].coeff=0;
|
---|
638 | s->coeffs[i].next= NULL;
|
---|
639 | }
|
---|
640 | }
|
---|
641 |
|
---|
642 | /*
|
---|
643 | * This function sets up the dequantization tables used for a particular
|
---|
644 | * frame.
|
---|
645 | */
|
---|
646 | static void init_dequantizer(Vp3DecodeContext *s)
|
---|
647 | {
|
---|
648 |
|
---|
649 | int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
|
---|
650 | int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
|
---|
651 | int i, j;
|
---|
652 |
|
---|
653 | debug_vp3(" vp3: initializing dequantization tables\n");
|
---|
654 |
|
---|
655 | /*
|
---|
656 | * Scale dequantizers:
|
---|
657 | *
|
---|
658 | * quantizer * sf
|
---|
659 | * --------------
|
---|
660 | * 100
|
---|
661 | *
|
---|
662 | * where sf = dc_scale_factor for DC quantizer
|
---|
663 | * or ac_scale_factor for AC quantizer
|
---|
664 | *
|
---|
665 | * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
|
---|
666 | */
|
---|
667 | #define SCALER 4
|
---|
668 |
|
---|
669 | /* scale DC quantizers */
|
---|
670 | s->intra_y_dequant[0] = s->coded_intra_y_dequant[0] * dc_scale_factor / 100;
|
---|
671 | if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
|
---|
672 | s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
|
---|
673 | s->intra_y_dequant[0] *= SCALER;
|
---|
674 |
|
---|
675 | s->intra_c_dequant[0] = s->coded_intra_c_dequant[0] * dc_scale_factor / 100;
|
---|
676 | if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
|
---|
677 | s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
|
---|
678 | s->intra_c_dequant[0] *= SCALER;
|
---|
679 |
|
---|
680 | s->inter_dequant[0] = s->coded_inter_dequant[0] * dc_scale_factor / 100;
|
---|
681 | if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
|
---|
682 | s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
|
---|
683 | s->inter_dequant[0] *= SCALER;
|
---|
684 |
|
---|
685 | /* scale AC quantizers, zigzag at the same time in preparation for
|
---|
686 | * the dequantization phase */
|
---|
687 | for (i = 1; i < 64; i++) {
|
---|
688 | int k= s->scantable.scantable[i];
|
---|
689 | j = s->scantable.permutated[i];
|
---|
690 |
|
---|
691 | s->intra_y_dequant[j] = s->coded_intra_y_dequant[k] * ac_scale_factor / 100;
|
---|
692 | if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
|
---|
693 | s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
|
---|
694 | s->intra_y_dequant[j] *= SCALER;
|
---|
695 |
|
---|
696 | s->intra_c_dequant[j] = s->coded_intra_c_dequant[k] * ac_scale_factor / 100;
|
---|
697 | if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
|
---|
698 | s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
|
---|
699 | s->intra_c_dequant[j] *= SCALER;
|
---|
700 |
|
---|
701 | s->inter_dequant[j] = s->coded_inter_dequant[k] * ac_scale_factor / 100;
|
---|
702 | if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
|
---|
703 | s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
|
---|
704 | s->inter_dequant[j] *= SCALER;
|
---|
705 | }
|
---|
706 |
|
---|
707 | memset(s->qscale_table, (FFMAX(s->intra_y_dequant[1], s->intra_c_dequant[1])+8)/16, 512); //FIXME finetune
|
---|
708 |
|
---|
709 | /* print debug information as requested */
|
---|
710 | debug_dequantizers("intra Y dequantizers:\n");
|
---|
711 | for (i = 0; i < 8; i++) {
|
---|
712 | for (j = i * 8; j < i * 8 + 8; j++) {
|
---|
713 | debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
|
---|
714 | }
|
---|
715 | debug_dequantizers("\n");
|
---|
716 | }
|
---|
717 | debug_dequantizers("\n");
|
---|
718 |
|
---|
719 | debug_dequantizers("intra C dequantizers:\n");
|
---|
720 | for (i = 0; i < 8; i++) {
|
---|
721 | for (j = i * 8; j < i * 8 + 8; j++) {
|
---|
722 | debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
|
---|
723 | }
|
---|
724 | debug_dequantizers("\n");
|
---|
725 | }
|
---|
726 | debug_dequantizers("\n");
|
---|
727 |
|
---|
728 | debug_dequantizers("interframe dequantizers:\n");
|
---|
729 | for (i = 0; i < 8; i++) {
|
---|
730 | for (j = i * 8; j < i * 8 + 8; j++) {
|
---|
731 | debug_dequantizers(" %4d,", s->inter_dequant[j]);
|
---|
732 | }
|
---|
733 | debug_dequantizers("\n");
|
---|
734 | }
|
---|
735 | debug_dequantizers("\n");
|
---|
736 | }
|
---|
737 |
|
---|
738 | /*
|
---|
739 | * This function initializes the loop filter boundary limits if the frame's
|
---|
740 | * quality index is different from the previous frame's.
|
---|
741 | */
|
---|
742 | static void init_loop_filter(Vp3DecodeContext *s)
|
---|
743 | {
|
---|
744 | int *bounding_values= s->bounding_values_array+127;
|
---|
745 | int filter_limit;
|
---|
746 | int x;
|
---|
747 |
|
---|
748 | filter_limit = s->filter_limit_values[s->quality_index];
|
---|
749 |
|
---|
750 | /* set up the bounding values */
|
---|
751 | memset(s->bounding_values_array, 0, 256 * sizeof(int));
|
---|
752 | for (x = 0; x < filter_limit; x++) {
|
---|
753 | bounding_values[-x - filter_limit] = -filter_limit + x;
|
---|
754 | bounding_values[-x] = -x;
|
---|
755 | bounding_values[x] = x;
|
---|
756 | bounding_values[x + filter_limit] = filter_limit - x;
|
---|
757 | }
|
---|
758 | }
|
---|
759 |
|
---|
760 | /*
|
---|
761 | * This function unpacks all of the superblock/macroblock/fragment coding
|
---|
762 | * information from the bitstream.
|
---|
763 | */
|
---|
764 | static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
|
---|
765 | {
|
---|
766 | int bit = 0;
|
---|
767 | int current_superblock = 0;
|
---|
768 | int current_run = 0;
|
---|
769 | int decode_fully_flags = 0;
|
---|
770 | int decode_partial_blocks = 0;
|
---|
771 | int first_c_fragment_seen;
|
---|
772 |
|
---|
773 | int i, j;
|
---|
774 | int current_fragment;
|
---|
775 |
|
---|
776 | debug_vp3(" vp3: unpacking superblock coding\n");
|
---|
777 |
|
---|
778 | if (s->keyframe) {
|
---|
779 |
|
---|
780 | debug_vp3(" keyframe-- all superblocks are fully coded\n");
|
---|
781 | memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
|
---|
782 |
|
---|
783 | } else {
|
---|
784 |
|
---|
785 | /* unpack the list of partially-coded superblocks */
|
---|
786 | bit = get_bits(gb, 1);
|
---|
787 | /* toggle the bit because as soon as the first run length is
|
---|
788 | * fetched the bit will be toggled again */
|
---|
789 | bit ^= 1;
|
---|
790 | while (current_superblock < s->superblock_count) {
|
---|
791 | if (current_run-- == 0) {
|
---|
792 | bit ^= 1;
|
---|
793 | current_run = get_vlc2(gb,
|
---|
794 | s->superblock_run_length_vlc.table, 6, 2);
|
---|
795 | if (current_run == 33)
|
---|
796 | current_run += get_bits(gb, 12);
|
---|
797 | debug_block_coding(" setting superblocks %d..%d to %s\n",
|
---|
798 | current_superblock,
|
---|
799 | current_superblock + current_run - 1,
|
---|
800 | (bit) ? "partially coded" : "not coded");
|
---|
801 |
|
---|
802 | /* if any of the superblocks are not partially coded, flag
|
---|
803 | * a boolean to decode the list of fully-coded superblocks */
|
---|
804 | if (bit == 0) {
|
---|
805 | decode_fully_flags = 1;
|
---|
806 | } else {
|
---|
807 |
|
---|
808 | /* make a note of the fact that there are partially coded
|
---|
809 | * superblocks */
|
---|
810 | decode_partial_blocks = 1;
|
---|
811 | }
|
---|
812 | }
|
---|
813 | s->superblock_coding[current_superblock++] = bit;
|
---|
814 | }
|
---|
815 |
|
---|
816 | /* unpack the list of fully coded superblocks if any of the blocks were
|
---|
817 | * not marked as partially coded in the previous step */
|
---|
818 | if (decode_fully_flags) {
|
---|
819 |
|
---|
820 | current_superblock = 0;
|
---|
821 | current_run = 0;
|
---|
822 | bit = get_bits(gb, 1);
|
---|
823 | /* toggle the bit because as soon as the first run length is
|
---|
824 | * fetched the bit will be toggled again */
|
---|
825 | bit ^= 1;
|
---|
826 | while (current_superblock < s->superblock_count) {
|
---|
827 |
|
---|
828 | /* skip any superblocks already marked as partially coded */
|
---|
829 | if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
|
---|
830 |
|
---|
831 | if (current_run-- == 0) {
|
---|
832 | bit ^= 1;
|
---|
833 | current_run = get_vlc2(gb,
|
---|
834 | s->superblock_run_length_vlc.table, 6, 2);
|
---|
835 | if (current_run == 33)
|
---|
836 | current_run += get_bits(gb, 12);
|
---|
837 | }
|
---|
838 |
|
---|
839 | debug_block_coding(" setting superblock %d to %s\n",
|
---|
840 | current_superblock,
|
---|
841 | (bit) ? "fully coded" : "not coded");
|
---|
842 | s->superblock_coding[current_superblock] = 2*bit;
|
---|
843 | }
|
---|
844 | current_superblock++;
|
---|
845 | }
|
---|
846 | }
|
---|
847 |
|
---|
848 | /* if there were partial blocks, initialize bitstream for
|
---|
849 | * unpacking fragment codings */
|
---|
850 | if (decode_partial_blocks) {
|
---|
851 |
|
---|
852 | current_run = 0;
|
---|
853 | bit = get_bits(gb, 1);
|
---|
854 | /* toggle the bit because as soon as the first run length is
|
---|
855 | * fetched the bit will be toggled again */
|
---|
856 | bit ^= 1;
|
---|
857 | }
|
---|
858 | }
|
---|
859 |
|
---|
860 | /* figure out which fragments are coded; iterate through each
|
---|
861 | * superblock (all planes) */
|
---|
862 | s->coded_fragment_list_index = 0;
|
---|
863 | s->next_coeff= s->coeffs + s->fragment_count;
|
---|
864 | s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
|
---|
865 | s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
|
---|
866 | first_c_fragment_seen = 0;
|
---|
867 | memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
|
---|
868 | for (i = 0; i < s->superblock_count; i++) {
|
---|
869 |
|
---|
870 | /* iterate through all 16 fragments in a superblock */
|
---|
871 | for (j = 0; j < 16; j++) {
|
---|
872 |
|
---|
873 | /* if the fragment is in bounds, check its coding status */
|
---|
874 | current_fragment = s->superblock_fragments[i * 16 + j];
|
---|
875 | if (current_fragment >= s->fragment_count) {
|
---|
876 | av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
|
---|
877 | current_fragment, s->fragment_count);
|
---|
878 | return 1;
|
---|
879 | }
|
---|
880 | if (current_fragment != -1) {
|
---|
881 | if (s->superblock_coding[i] == SB_NOT_CODED) {
|
---|
882 |
|
---|
883 | /* copy all the fragments from the prior frame */
|
---|
884 | s->all_fragments[current_fragment].coding_method =
|
---|
885 | MODE_COPY;
|
---|
886 |
|
---|
887 | } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
|
---|
888 |
|
---|
889 | /* fragment may or may not be coded; this is the case
|
---|
890 | * that cares about the fragment coding runs */
|
---|
891 | if (current_run-- == 0) {
|
---|
892 | bit ^= 1;
|
---|
893 | current_run = get_vlc2(gb,
|
---|
894 | s->fragment_run_length_vlc.table, 5, 2);
|
---|
895 | }
|
---|
896 |
|
---|
897 | if (bit) {
|
---|
898 | /* default mode; actual mode will be decoded in
|
---|
899 | * the next phase */
|
---|
900 | s->all_fragments[current_fragment].coding_method =
|
---|
901 | MODE_INTER_NO_MV;
|
---|
902 | s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
|
---|
903 | s->coded_fragment_list[s->coded_fragment_list_index] =
|
---|
904 | current_fragment;
|
---|
905 | if ((current_fragment >= s->u_fragment_start) &&
|
---|
906 | (s->last_coded_y_fragment == -1) &&
|
---|
907 | (!first_c_fragment_seen)) {
|
---|
908 | s->first_coded_c_fragment = s->coded_fragment_list_index;
|
---|
909 | s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
|
---|
910 | first_c_fragment_seen = 1;
|
---|
911 | }
|
---|
912 | s->coded_fragment_list_index++;
|
---|
913 | s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
|
---|
914 | debug_block_coding(" superblock %d is partially coded, fragment %d is coded\n",
|
---|
915 | i, current_fragment);
|
---|
916 | } else {
|
---|
917 | /* not coded; copy this fragment from the prior frame */
|
---|
918 | s->all_fragments[current_fragment].coding_method =
|
---|
919 | MODE_COPY;
|
---|
920 | debug_block_coding(" superblock %d is partially coded, fragment %d is not coded\n",
|
---|
921 | i, current_fragment);
|
---|
922 | }
|
---|
923 |
|
---|
924 | } else {
|
---|
925 |
|
---|
926 | /* fragments are fully coded in this superblock; actual
|
---|
927 | * coding will be determined in next step */
|
---|
928 | s->all_fragments[current_fragment].coding_method =
|
---|
929 | MODE_INTER_NO_MV;
|
---|
930 | s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
|
---|
931 | s->coded_fragment_list[s->coded_fragment_list_index] =
|
---|
932 | current_fragment;
|
---|
933 | if ((current_fragment >= s->u_fragment_start) &&
|
---|
934 | (s->last_coded_y_fragment == -1) &&
|
---|
935 | (!first_c_fragment_seen)) {
|
---|
936 | s->first_coded_c_fragment = s->coded_fragment_list_index;
|
---|
937 | s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
|
---|
938 | first_c_fragment_seen = 1;
|
---|
939 | }
|
---|
940 | s->coded_fragment_list_index++;
|
---|
941 | s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
|
---|
942 | debug_block_coding(" superblock %d is fully coded, fragment %d is coded\n",
|
---|
943 | i, current_fragment);
|
---|
944 | }
|
---|
945 | }
|
---|
946 | }
|
---|
947 | }
|
---|
948 |
|
---|
949 | if (!first_c_fragment_seen)
|
---|
950 | /* only Y fragments coded in this frame */
|
---|
951 | s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
|
---|
952 | else
|
---|
953 | /* end the list of coded C fragments */
|
---|
954 | s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
|
---|
955 |
|
---|
956 | debug_block_coding(" %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
|
---|
957 | s->coded_fragment_list_index,
|
---|
958 | s->first_coded_y_fragment,
|
---|
959 | s->last_coded_y_fragment,
|
---|
960 | s->first_coded_c_fragment,
|
---|
961 | s->last_coded_c_fragment);
|
---|
962 |
|
---|
963 | return 0;
|
---|
964 | }
|
---|
965 |
|
---|
966 | /*
|
---|
967 | * This function unpacks all the coding mode data for individual macroblocks
|
---|
968 | * from the bitstream.
|
---|
969 | */
|
---|
970 | static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
|
---|
971 | {
|
---|
972 | int i, j, k;
|
---|
973 | int scheme;
|
---|
974 | int current_macroblock;
|
---|
975 | int current_fragment;
|
---|
976 | int coding_mode;
|
---|
977 |
|
---|
978 | debug_vp3(" vp3: unpacking encoding modes\n");
|
---|
979 |
|
---|
980 | if (s->keyframe) {
|
---|
981 | debug_vp3(" keyframe-- all blocks are coded as INTRA\n");
|
---|
982 |
|
---|
983 | for (i = 0; i < s->fragment_count; i++)
|
---|
984 | s->all_fragments[i].coding_method = MODE_INTRA;
|
---|
985 |
|
---|
986 | } else {
|
---|
987 |
|
---|
988 | /* fetch the mode coding scheme for this frame */
|
---|
989 | scheme = get_bits(gb, 3);
|
---|
990 | debug_modes(" using mode alphabet %d\n", scheme);
|
---|
991 |
|
---|
992 | /* is it a custom coding scheme? */
|
---|
993 | if (scheme == 0) {
|
---|
994 | debug_modes(" custom mode alphabet ahead:\n");
|
---|
995 | for (i = 0; i < 8; i++)
|
---|
996 | ModeAlphabet[scheme][get_bits(gb, 3)] = i;
|
---|
997 | }
|
---|
998 |
|
---|
999 | for (i = 0; i < 8; i++)
|
---|
1000 | debug_modes(" mode[%d][%d] = %d\n", scheme, i,
|
---|
1001 | ModeAlphabet[scheme][i]);
|
---|
1002 |
|
---|
1003 | /* iterate through all of the macroblocks that contain 1 or more
|
---|
1004 | * coded fragments */
|
---|
1005 | for (i = 0; i < s->u_superblock_start; i++) {
|
---|
1006 |
|
---|
1007 | for (j = 0; j < 4; j++) {
|
---|
1008 | current_macroblock = s->superblock_macroblocks[i * 4 + j];
|
---|
1009 | if ((current_macroblock == -1) ||
|
---|
1010 | (s->macroblock_coding[current_macroblock] == MODE_COPY))
|
---|
1011 | continue;
|
---|
1012 | if (current_macroblock >= s->macroblock_count) {
|
---|
1013 | av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
|
---|
1014 | current_macroblock, s->macroblock_count);
|
---|
1015 | return 1;
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | /* mode 7 means get 3 bits for each coding mode */
|
---|
1019 | if (scheme == 7)
|
---|
1020 | coding_mode = get_bits(gb, 3);
|
---|
1021 | else
|
---|
1022 | coding_mode = ModeAlphabet[scheme]
|
---|
1023 | [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
|
---|
1024 |
|
---|
1025 | s->macroblock_coding[current_macroblock] = coding_mode;
|
---|
1026 | for (k = 0; k < 6; k++) {
|
---|
1027 | current_fragment =
|
---|
1028 | s->macroblock_fragments[current_macroblock * 6 + k];
|
---|
1029 | if (current_fragment == -1)
|
---|
1030 | continue;
|
---|
1031 | if (current_fragment >= s->fragment_count) {
|
---|
1032 | av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
|
---|
1033 | current_fragment, s->fragment_count);
|
---|
1034 | return 1;
|
---|
1035 | }
|
---|
1036 | if (s->all_fragments[current_fragment].coding_method !=
|
---|
1037 | MODE_COPY)
|
---|
1038 | s->all_fragments[current_fragment].coding_method =
|
---|
1039 | coding_mode;
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 | debug_modes(" coding method for macroblock starting @ fragment %d = %d\n",
|
---|
1043 | s->macroblock_fragments[current_macroblock * 6], coding_mode);
|
---|
1044 | }
|
---|
1045 | }
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 | return 0;
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | /*
|
---|
1052 | * This function unpacks all the motion vectors for the individual
|
---|
1053 | * macroblocks from the bitstream.
|
---|
1054 | */
|
---|
1055 | static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
|
---|
1056 | {
|
---|
1057 | int i, j, k;
|
---|
1058 | int coding_mode;
|
---|
1059 | int motion_x[6];
|
---|
1060 | int motion_y[6];
|
---|
1061 | int last_motion_x = 0;
|
---|
1062 | int last_motion_y = 0;
|
---|
1063 | int prior_last_motion_x = 0;
|
---|
1064 | int prior_last_motion_y = 0;
|
---|
1065 | int current_macroblock;
|
---|
1066 | int current_fragment;
|
---|
1067 |
|
---|
1068 | debug_vp3(" vp3: unpacking motion vectors\n");
|
---|
1069 | if (s->keyframe) {
|
---|
1070 |
|
---|
1071 | debug_vp3(" keyframe-- there are no motion vectors\n");
|
---|
1072 |
|
---|
1073 | } else {
|
---|
1074 |
|
---|
1075 | memset(motion_x, 0, 6 * sizeof(int));
|
---|
1076 | memset(motion_y, 0, 6 * sizeof(int));
|
---|
1077 |
|
---|
1078 | /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
|
---|
1079 | coding_mode = get_bits(gb, 1);
|
---|
1080 | debug_vectors(" using %s scheme for unpacking motion vectors\n",
|
---|
1081 | (coding_mode == 0) ? "VLC" : "fixed-length");
|
---|
1082 |
|
---|
1083 | /* iterate through all of the macroblocks that contain 1 or more
|
---|
1084 | * coded fragments */
|
---|
1085 | for (i = 0; i < s->u_superblock_start; i++) {
|
---|
1086 |
|
---|
1087 | for (j = 0; j < 4; j++) {
|
---|
1088 | current_macroblock = s->superblock_macroblocks[i * 4 + j];
|
---|
1089 | if ((current_macroblock == -1) ||
|
---|
1090 | (s->macroblock_coding[current_macroblock] == MODE_COPY))
|
---|
1091 | continue;
|
---|
1092 | if (current_macroblock >= s->macroblock_count) {
|
---|
1093 | av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
|
---|
1094 | current_macroblock, s->macroblock_count);
|
---|
1095 | return 1;
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | current_fragment = s->macroblock_fragments[current_macroblock * 6];
|
---|
1099 | if (current_fragment >= s->fragment_count) {
|
---|
1100 | av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
|
---|
1101 | current_fragment, s->fragment_count);
|
---|
1102 | return 1;
|
---|
1103 | }
|
---|
1104 | switch (s->macroblock_coding[current_macroblock]) {
|
---|
1105 |
|
---|
1106 | case MODE_INTER_PLUS_MV:
|
---|
1107 | case MODE_GOLDEN_MV:
|
---|
1108 | /* all 6 fragments use the same motion vector */
|
---|
1109 | if (coding_mode == 0) {
|
---|
1110 | motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
|
---|
1111 | motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
|
---|
1112 | } else {
|
---|
1113 | motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
|
---|
1114 | motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | for (k = 1; k < 6; k++) {
|
---|
1118 | motion_x[k] = motion_x[0];
|
---|
1119 | motion_y[k] = motion_y[0];
|
---|
1120 | }
|
---|
1121 |
|
---|
1122 | /* vector maintenance, only on MODE_INTER_PLUS_MV */
|
---|
1123 | if (s->macroblock_coding[current_macroblock] ==
|
---|
1124 | MODE_INTER_PLUS_MV) {
|
---|
1125 | prior_last_motion_x = last_motion_x;
|
---|
1126 | prior_last_motion_y = last_motion_y;
|
---|
1127 | last_motion_x = motion_x[0];
|
---|
1128 | last_motion_y = motion_y[0];
|
---|
1129 | }
|
---|
1130 | break;
|
---|
1131 |
|
---|
1132 | case MODE_INTER_FOURMV:
|
---|
1133 | /* fetch 4 vectors from the bitstream, one for each
|
---|
1134 | * Y fragment, then average for the C fragment vectors */
|
---|
1135 | motion_x[4] = motion_y[4] = 0;
|
---|
1136 | for (k = 0; k < 4; k++) {
|
---|
1137 | if (coding_mode == 0) {
|
---|
1138 | motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
|
---|
1139 | motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
|
---|
1140 | } else {
|
---|
1141 | motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
|
---|
1142 | motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
|
---|
1143 | }
|
---|
1144 | motion_x[4] += motion_x[k];
|
---|
1145 | motion_y[4] += motion_y[k];
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | if (motion_x[4] >= 0)
|
---|
1149 | motion_x[4] = (motion_x[4] + 2) / 4;
|
---|
1150 | else
|
---|
1151 | motion_x[4] = (motion_x[4] - 2) / 4;
|
---|
1152 | motion_x[5] = motion_x[4];
|
---|
1153 |
|
---|
1154 | if (motion_y[4] >= 0)
|
---|
1155 | motion_y[4] = (motion_y[4] + 2) / 4;
|
---|
1156 | else
|
---|
1157 | motion_y[4] = (motion_y[4] - 2) / 4;
|
---|
1158 | motion_y[5] = motion_y[4];
|
---|
1159 |
|
---|
1160 | /* vector maintenance; vector[3] is treated as the
|
---|
1161 | * last vector in this case */
|
---|
1162 | prior_last_motion_x = last_motion_x;
|
---|
1163 | prior_last_motion_y = last_motion_y;
|
---|
1164 | last_motion_x = motion_x[3];
|
---|
1165 | last_motion_y = motion_y[3];
|
---|
1166 | break;
|
---|
1167 |
|
---|
1168 | case MODE_INTER_LAST_MV:
|
---|
1169 | /* all 6 fragments use the last motion vector */
|
---|
1170 | motion_x[0] = last_motion_x;
|
---|
1171 | motion_y[0] = last_motion_y;
|
---|
1172 | for (k = 1; k < 6; k++) {
|
---|
1173 | motion_x[k] = motion_x[0];
|
---|
1174 | motion_y[k] = motion_y[0];
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | /* no vector maintenance (last vector remains the
|
---|
1178 | * last vector) */
|
---|
1179 | break;
|
---|
1180 |
|
---|
1181 | case MODE_INTER_PRIOR_LAST:
|
---|
1182 | /* all 6 fragments use the motion vector prior to the
|
---|
1183 | * last motion vector */
|
---|
1184 | motion_x[0] = prior_last_motion_x;
|
---|
1185 | motion_y[0] = prior_last_motion_y;
|
---|
1186 | for (k = 1; k < 6; k++) {
|
---|
1187 | motion_x[k] = motion_x[0];
|
---|
1188 | motion_y[k] = motion_y[0];
|
---|
1189 | }
|
---|
1190 |
|
---|
1191 | /* vector maintenance */
|
---|
1192 | prior_last_motion_x = last_motion_x;
|
---|
1193 | prior_last_motion_y = last_motion_y;
|
---|
1194 | last_motion_x = motion_x[0];
|
---|
1195 | last_motion_y = motion_y[0];
|
---|
1196 | break;
|
---|
1197 |
|
---|
1198 | default:
|
---|
1199 | /* covers intra, inter without MV, golden without MV */
|
---|
1200 | memset(motion_x, 0, 6 * sizeof(int));
|
---|
1201 | memset(motion_y, 0, 6 * sizeof(int));
|
---|
1202 |
|
---|
1203 | /* no vector maintenance */
|
---|
1204 | break;
|
---|
1205 | }
|
---|
1206 |
|
---|
1207 | /* assign the motion vectors to the correct fragments */
|
---|
1208 | debug_vectors(" vectors for macroblock starting @ fragment %d (coding method %d):\n",
|
---|
1209 | current_fragment,
|
---|
1210 | s->macroblock_coding[current_macroblock]);
|
---|
1211 | for (k = 0; k < 6; k++) {
|
---|
1212 | current_fragment =
|
---|
1213 | s->macroblock_fragments[current_macroblock * 6 + k];
|
---|
1214 | if (current_fragment == -1)
|
---|
1215 | continue;
|
---|
1216 | if (current_fragment >= s->fragment_count) {
|
---|
1217 | av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
|
---|
1218 | current_fragment, s->fragment_count);
|
---|
1219 | return 1;
|
---|
1220 | }
|
---|
1221 | s->all_fragments[current_fragment].motion_x = motion_x[k];
|
---|
1222 | s->all_fragments[current_fragment].motion_y = motion_y[k];
|
---|
1223 | debug_vectors(" vector %d: fragment %d = (%d, %d)\n",
|
---|
1224 | k, current_fragment, motion_x[k], motion_y[k]);
|
---|
1225 | }
|
---|
1226 | }
|
---|
1227 | }
|
---|
1228 | }
|
---|
1229 |
|
---|
1230 | return 0;
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | /*
|
---|
1234 | * This function is called by unpack_dct_coeffs() to extract the VLCs from
|
---|
1235 | * the bitstream. The VLCs encode tokens which are used to unpack DCT
|
---|
1236 | * data. This function unpacks all the VLCs for either the Y plane or both
|
---|
1237 | * C planes, and is called for DC coefficients or different AC coefficient
|
---|
1238 | * levels (since different coefficient types require different VLC tables.
|
---|
1239 | *
|
---|
1240 | * This function returns a residual eob run. E.g, if a particular token gave
|
---|
1241 | * instructions to EOB the next 5 fragments and there were only 2 fragments
|
---|
1242 | * left in the current fragment range, 3 would be returned so that it could
|
---|
1243 | * be passed into the next call to this same function.
|
---|
1244 | */
|
---|
1245 | static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
|
---|
1246 | VLC *table, int coeff_index,
|
---|
1247 | int first_fragment, int last_fragment,
|
---|
1248 | int eob_run)
|
---|
1249 | {
|
---|
1250 | int i;
|
---|
1251 | int token;
|
---|
1252 | int zero_run = 0;
|
---|
1253 | DCTELEM coeff = 0;
|
---|
1254 | Vp3Fragment *fragment;
|
---|
1255 | uint8_t *perm= s->scantable.permutated;
|
---|
1256 | int bits_to_get;
|
---|
1257 |
|
---|
1258 | if ((first_fragment >= s->fragment_count) ||
|
---|
1259 | (last_fragment >= s->fragment_count)) {
|
---|
1260 |
|
---|
1261 | av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
|
---|
1262 | first_fragment, last_fragment);
|
---|
1263 | return 0;
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 | for (i = first_fragment; i <= last_fragment; i++) {
|
---|
1267 |
|
---|
1268 | fragment = &s->all_fragments[s->coded_fragment_list[i]];
|
---|
1269 | if (fragment->coeff_count > coeff_index)
|
---|
1270 | continue;
|
---|
1271 |
|
---|
1272 | if (!eob_run) {
|
---|
1273 | /* decode a VLC into a token */
|
---|
1274 | token = get_vlc2(gb, table->table, 5, 3);
|
---|
1275 | debug_vlc(" token = %2d, ", token);
|
---|
1276 | /* use the token to get a zero run, a coefficient, and an eob run */
|
---|
1277 | if (token <= 6) {
|
---|
1278 | eob_run = eob_run_base[token];
|
---|
1279 | if (eob_run_get_bits[token])
|
---|
1280 | eob_run += get_bits(gb, eob_run_get_bits[token]);
|
---|
1281 | coeff = zero_run = 0;
|
---|
1282 | } else {
|
---|
1283 | bits_to_get = coeff_get_bits[token];
|
---|
1284 | if (!bits_to_get)
|
---|
1285 | coeff = coeff_tables[token][0];
|
---|
1286 | else
|
---|
1287 | coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
|
---|
1288 |
|
---|
1289 | zero_run = zero_run_base[token];
|
---|
1290 | if (zero_run_get_bits[token])
|
---|
1291 | zero_run += get_bits(gb, zero_run_get_bits[token]);
|
---|
1292 | }
|
---|
1293 | }
|
---|
1294 |
|
---|
1295 | if (!eob_run) {
|
---|
1296 | fragment->coeff_count += zero_run;
|
---|
1297 | if (fragment->coeff_count < 64){
|
---|
1298 | fragment->next_coeff->coeff= coeff;
|
---|
1299 | fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already?
|
---|
1300 | fragment->next_coeff->next= s->next_coeff;
|
---|
1301 | s->next_coeff->next=NULL;
|
---|
1302 | fragment->next_coeff= s->next_coeff++;
|
---|
1303 | }
|
---|
1304 | debug_vlc(" fragment %d coeff = %d\n",
|
---|
1305 | s->coded_fragment_list[i], fragment->next_coeff[coeff_index]);
|
---|
1306 | } else {
|
---|
1307 | fragment->coeff_count |= 128;
|
---|
1308 | debug_vlc(" fragment %d eob with %d coefficients\n",
|
---|
1309 | s->coded_fragment_list[i], fragment->coeff_count&127);
|
---|
1310 | eob_run--;
|
---|
1311 | }
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 | return eob_run;
|
---|
1315 | }
|
---|
1316 |
|
---|
1317 | /*
|
---|
1318 | * This function unpacks all of the DCT coefficient data from the
|
---|
1319 | * bitstream.
|
---|
1320 | */
|
---|
1321 | static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
|
---|
1322 | {
|
---|
1323 | int i;
|
---|
1324 | int dc_y_table;
|
---|
1325 | int dc_c_table;
|
---|
1326 | int ac_y_table;
|
---|
1327 | int ac_c_table;
|
---|
1328 | int residual_eob_run = 0;
|
---|
1329 |
|
---|
1330 | /* fetch the DC table indices */
|
---|
1331 | dc_y_table = get_bits(gb, 4);
|
---|
1332 | dc_c_table = get_bits(gb, 4);
|
---|
1333 |
|
---|
1334 | /* unpack the Y plane DC coefficients */
|
---|
1335 | debug_vp3(" vp3: unpacking Y plane DC coefficients using table %d\n",
|
---|
1336 | dc_y_table);
|
---|
1337 | residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
|
---|
1338 | s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
|
---|
1339 |
|
---|
1340 | /* unpack the C plane DC coefficients */
|
---|
1341 | debug_vp3(" vp3: unpacking C plane DC coefficients using table %d\n",
|
---|
1342 | dc_c_table);
|
---|
1343 | residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
|
---|
1344 | s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
|
---|
1345 |
|
---|
1346 | /* fetch the AC table indices */
|
---|
1347 | ac_y_table = get_bits(gb, 4);
|
---|
1348 | ac_c_table = get_bits(gb, 4);
|
---|
1349 |
|
---|
1350 | /* unpack the group 1 AC coefficients (coeffs 1-5) */
|
---|
1351 | for (i = 1; i <= 5; i++) {
|
---|
1352 |
|
---|
1353 | debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
|
---|
1354 | i, ac_y_table);
|
---|
1355 | residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
|
---|
1356 | s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
|
---|
1357 |
|
---|
1358 | debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
|
---|
1359 | i, ac_c_table);
|
---|
1360 | residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
|
---|
1361 | s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
|
---|
1362 | }
|
---|
1363 |
|
---|
1364 | /* unpack the group 2 AC coefficients (coeffs 6-14) */
|
---|
1365 | for (i = 6; i <= 14; i++) {
|
---|
1366 |
|
---|
1367 | debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
|
---|
1368 | i, ac_y_table);
|
---|
1369 | residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
|
---|
1370 | s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
|
---|
1371 |
|
---|
1372 | debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
|
---|
1373 | i, ac_c_table);
|
---|
1374 | residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
|
---|
1375 | s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
|
---|
1376 | }
|
---|
1377 |
|
---|
1378 | /* unpack the group 3 AC coefficients (coeffs 15-27) */
|
---|
1379 | for (i = 15; i <= 27; i++) {
|
---|
1380 |
|
---|
1381 | debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
|
---|
1382 | i, ac_y_table);
|
---|
1383 | residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
|
---|
1384 | s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
|
---|
1385 |
|
---|
1386 | debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
|
---|
1387 | i, ac_c_table);
|
---|
1388 | residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
|
---|
1389 | s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
|
---|
1390 | }
|
---|
1391 |
|
---|
1392 | /* unpack the group 4 AC coefficients (coeffs 28-63) */
|
---|
1393 | for (i = 28; i <= 63; i++) {
|
---|
1394 |
|
---|
1395 | debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
|
---|
1396 | i, ac_y_table);
|
---|
1397 | residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
|
---|
1398 | s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
|
---|
1399 |
|
---|
1400 | debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
|
---|
1401 | i, ac_c_table);
|
---|
1402 | residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
|
---|
1403 | s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
|
---|
1404 | }
|
---|
1405 |
|
---|
1406 | return 0;
|
---|
1407 | }
|
---|
1408 |
|
---|
1409 | /*
|
---|
1410 | * This function reverses the DC prediction for each coded fragment in
|
---|
1411 | * the frame. Much of this function is adapted directly from the original
|
---|
1412 | * VP3 source code.
|
---|
1413 | */
|
---|
1414 | #define COMPATIBLE_FRAME(x) \
|
---|
1415 | (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
|
---|
1416 | #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
|
---|
1417 | #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
|
---|
1418 | static inline int iabs (int x) { return ((x < 0) ? -x : x); }
|
---|
1419 |
|
---|
1420 | static void reverse_dc_prediction(Vp3DecodeContext *s,
|
---|
1421 | int first_fragment,
|
---|
1422 | int fragment_width,
|
---|
1423 | int fragment_height)
|
---|
1424 | {
|
---|
1425 |
|
---|
1426 | #define PUL 8
|
---|
1427 | #define PU 4
|
---|
1428 | #define PUR 2
|
---|
1429 | #define PL 1
|
---|
1430 |
|
---|
1431 | int x, y;
|
---|
1432 | int i = first_fragment;
|
---|
1433 |
|
---|
1434 | /*
|
---|
1435 | * Fragment prediction groups:
|
---|
1436 | *
|
---|
1437 | * 32222222226
|
---|
1438 | * 10000000004
|
---|
1439 | * 10000000004
|
---|
1440 | * 10000000004
|
---|
1441 | * 10000000004
|
---|
1442 | *
|
---|
1443 | * Note: Groups 5 and 7 do not exist as it would mean that the
|
---|
1444 | * fragment's x coordinate is both 0 and (width - 1) at the same time.
|
---|
1445 | */
|
---|
1446 | int predictor_group;
|
---|
1447 | short predicted_dc;
|
---|
1448 |
|
---|
1449 | /* validity flags for the left, up-left, up, and up-right fragments */
|
---|
1450 | int fl, ful, fu, fur;
|
---|
1451 |
|
---|
1452 | /* DC values for the left, up-left, up, and up-right fragments */
|
---|
1453 | int vl, vul, vu, vur;
|
---|
1454 |
|
---|
1455 | /* indices for the left, up-left, up, and up-right fragments */
|
---|
1456 | int l, ul, u, ur;
|
---|
1457 |
|
---|
1458 | /*
|
---|
1459 | * The 6 fields mean:
|
---|
1460 | * 0: up-left multiplier
|
---|
1461 | * 1: up multiplier
|
---|
1462 | * 2: up-right multiplier
|
---|
1463 | * 3: left multiplier
|
---|
1464 | * 4: mask
|
---|
1465 | * 5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
|
---|
1466 | */
|
---|
1467 | int predictor_transform[16][6] = {
|
---|
1468 | { 0, 0, 0, 0, 0, 0 },
|
---|
1469 | { 0, 0, 0, 1, 0, 0 }, // PL
|
---|
1470 | { 0, 0, 1, 0, 0, 0 }, // PUR
|
---|
1471 | { 0, 0, 53, 75, 127, 7 }, // PUR|PL
|
---|
1472 | { 0, 1, 0, 0, 0, 0 }, // PU
|
---|
1473 | { 0, 1, 0, 1, 1, 1 }, // PU|PL
|
---|
1474 | { 0, 1, 0, 0, 0, 0 }, // PU|PUR
|
---|
1475 | { 0, 0, 53, 75, 127, 7 }, // PU|PUR|PL
|
---|
1476 | { 1, 0, 0, 0, 0, 0 }, // PUL
|
---|
1477 | { 0, 0, 0, 1, 0, 0 }, // PUL|PL
|
---|
1478 | { 1, 0, 1, 0, 1, 1 }, // PUL|PUR
|
---|
1479 | { 0, 0, 53, 75, 127, 7 }, // PUL|PUR|PL
|
---|
1480 | { 0, 1, 0, 0, 0, 0 }, // PUL|PU
|
---|
1481 | {-26, 29, 0, 29, 31, 5 }, // PUL|PU|PL
|
---|
1482 | { 3, 10, 3, 0, 15, 4 }, // PUL|PU|PUR
|
---|
1483 | {-26, 29, 0, 29, 31, 5 } // PUL|PU|PUR|PL
|
---|
1484 | };
|
---|
1485 |
|
---|
1486 | /* This table shows which types of blocks can use other blocks for
|
---|
1487 | * prediction. For example, INTRA is the only mode in this table to
|
---|
1488 | * have a frame number of 0. That means INTRA blocks can only predict
|
---|
1489 | * from other INTRA blocks. There are 2 golden frame coding types;
|
---|
1490 | * blocks encoding in these modes can only predict from other blocks
|
---|
1491 | * that were encoded with these 1 of these 2 modes. */
|
---|
1492 | unsigned char compatible_frame[8] = {
|
---|
1493 | 1, /* MODE_INTER_NO_MV */
|
---|
1494 | 0, /* MODE_INTRA */
|
---|
1495 | 1, /* MODE_INTER_PLUS_MV */
|
---|
1496 | 1, /* MODE_INTER_LAST_MV */
|
---|
1497 | 1, /* MODE_INTER_PRIOR_MV */
|
---|
1498 | 2, /* MODE_USING_GOLDEN */
|
---|
1499 | 2, /* MODE_GOLDEN_MV */
|
---|
1500 | 1 /* MODE_INTER_FOUR_MV */
|
---|
1501 | };
|
---|
1502 | int current_frame_type;
|
---|
1503 |
|
---|
1504 | /* there is a last DC predictor for each of the 3 frame types */
|
---|
1505 | short last_dc[3];
|
---|
1506 |
|
---|
1507 | int transform = 0;
|
---|
1508 |
|
---|
1509 | debug_vp3(" vp3: reversing DC prediction\n");
|
---|
1510 |
|
---|
1511 | vul = vu = vur = vl = 0;
|
---|
1512 | last_dc[0] = last_dc[1] = last_dc[2] = 0;
|
---|
1513 |
|
---|
1514 | /* for each fragment row... */
|
---|
1515 | for (y = 0; y < fragment_height; y++) {
|
---|
1516 |
|
---|
1517 | /* for each fragment in a row... */
|
---|
1518 | for (x = 0; x < fragment_width; x++, i++) {
|
---|
1519 |
|
---|
1520 | /* reverse prediction if this block was coded */
|
---|
1521 | if (s->all_fragments[i].coding_method != MODE_COPY) {
|
---|
1522 |
|
---|
1523 | current_frame_type =
|
---|
1524 | compatible_frame[s->all_fragments[i].coding_method];
|
---|
1525 | predictor_group = (x == 0) + ((y == 0) << 1) +
|
---|
1526 | ((x + 1 == fragment_width) << 2);
|
---|
1527 | debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
|
---|
1528 | i, predictor_group, DC_COEFF(i));
|
---|
1529 |
|
---|
1530 | switch (predictor_group) {
|
---|
1531 |
|
---|
1532 | case 0:
|
---|
1533 | /* main body of fragments; consider all 4 possible
|
---|
1534 | * fragments for prediction */
|
---|
1535 |
|
---|
1536 | /* calculate the indices of the predicting fragments */
|
---|
1537 | ul = i - fragment_width - 1;
|
---|
1538 | u = i - fragment_width;
|
---|
1539 | ur = i - fragment_width + 1;
|
---|
1540 | l = i - 1;
|
---|
1541 |
|
---|
1542 | /* fetch the DC values for the predicting fragments */
|
---|
1543 | vul = DC_COEFF(ul);
|
---|
1544 | vu = DC_COEFF(u);
|
---|
1545 | vur = DC_COEFF(ur);
|
---|
1546 | vl = DC_COEFF(l);
|
---|
1547 |
|
---|
1548 | /* figure out which fragments are valid */
|
---|
1549 | ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
|
---|
1550 | fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
|
---|
1551 | fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
|
---|
1552 | fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
|
---|
1553 |
|
---|
1554 | /* decide which predictor transform to use */
|
---|
1555 | transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);
|
---|
1556 |
|
---|
1557 | break;
|
---|
1558 |
|
---|
1559 | case 1:
|
---|
1560 | /* left column of fragments, not including top corner;
|
---|
1561 | * only consider up and up-right fragments */
|
---|
1562 |
|
---|
1563 | /* calculate the indices of the predicting fragments */
|
---|
1564 | u = i - fragment_width;
|
---|
1565 | ur = i - fragment_width + 1;
|
---|
1566 |
|
---|
1567 | /* fetch the DC values for the predicting fragments */
|
---|
1568 | vu = DC_COEFF(u);
|
---|
1569 | vur = DC_COEFF(ur);
|
---|
1570 |
|
---|
1571 | /* figure out which fragments are valid */
|
---|
1572 | fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
|
---|
1573 | fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
|
---|
1574 |
|
---|
1575 | /* decide which predictor transform to use */
|
---|
1576 | transform = (fu*PU) | (fur*PUR);
|
---|
1577 |
|
---|
1578 | break;
|
---|
1579 |
|
---|
1580 | case 2:
|
---|
1581 | case 6:
|
---|
1582 | /* top row of fragments, not including top-left frag;
|
---|
1583 | * only consider the left fragment for prediction */
|
---|
1584 |
|
---|
1585 | /* calculate the indices of the predicting fragments */
|
---|
1586 | l = i - 1;
|
---|
1587 |
|
---|
1588 | /* fetch the DC values for the predicting fragments */
|
---|
1589 | vl = DC_COEFF(l);
|
---|
1590 |
|
---|
1591 | /* figure out which fragments are valid */
|
---|
1592 | fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
|
---|
1593 |
|
---|
1594 | /* decide which predictor transform to use */
|
---|
1595 | transform = (fl*PL);
|
---|
1596 |
|
---|
1597 | break;
|
---|
1598 |
|
---|
1599 | case 3:
|
---|
1600 | /* top-left fragment */
|
---|
1601 |
|
---|
1602 | /* nothing to predict from in this case */
|
---|
1603 | transform = 0;
|
---|
1604 |
|
---|
1605 | break;
|
---|
1606 |
|
---|
1607 | case 4:
|
---|
1608 | /* right column of fragments, not including top corner;
|
---|
1609 | * consider up-left, up, and left fragments for
|
---|
1610 | * prediction */
|
---|
1611 |
|
---|
1612 | /* calculate the indices of the predicting fragments */
|
---|
1613 | ul = i - fragment_width - 1;
|
---|
1614 | u = i - fragment_width;
|
---|
1615 | l = i - 1;
|
---|
1616 |
|
---|
1617 | /* fetch the DC values for the predicting fragments */
|
---|
1618 | vul = DC_COEFF(ul);
|
---|
1619 | vu = DC_COEFF(u);
|
---|
1620 | vl = DC_COEFF(l);
|
---|
1621 |
|
---|
1622 | /* figure out which fragments are valid */
|
---|
1623 | ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
|
---|
1624 | fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
|
---|
1625 | fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
|
---|
1626 |
|
---|
1627 | /* decide which predictor transform to use */
|
---|
1628 | transform = (fl*PL) | (fu*PU) | (ful*PUL);
|
---|
1629 |
|
---|
1630 | break;
|
---|
1631 |
|
---|
1632 | }
|
---|
1633 |
|
---|
1634 | debug_dc_pred("transform = %d, ", transform);
|
---|
1635 |
|
---|
1636 | if (transform == 0) {
|
---|
1637 |
|
---|
1638 | /* if there were no fragments to predict from, use last
|
---|
1639 | * DC saved */
|
---|
1640 | predicted_dc = last_dc[current_frame_type];
|
---|
1641 | debug_dc_pred("from last DC (%d) = %d\n",
|
---|
1642 | current_frame_type, DC_COEFF(i));
|
---|
1643 |
|
---|
1644 | } else {
|
---|
1645 |
|
---|
1646 | /* apply the appropriate predictor transform */
|
---|
1647 | predicted_dc =
|
---|
1648 | (predictor_transform[transform][0] * vul) +
|
---|
1649 | (predictor_transform[transform][1] * vu) +
|
---|
1650 | (predictor_transform[transform][2] * vur) +
|
---|
1651 | (predictor_transform[transform][3] * vl);
|
---|
1652 |
|
---|
1653 | /* if there is a shift value in the transform, add
|
---|
1654 | * the sign bit before the shift */
|
---|
1655 | if (predictor_transform[transform][5] != 0) {
|
---|
1656 | predicted_dc += ((predicted_dc >> 15) &
|
---|
1657 | predictor_transform[transform][4]);
|
---|
1658 | predicted_dc >>= predictor_transform[transform][5];
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | /* check for outranging on the [ul u l] and
|
---|
1662 | * [ul u ur l] predictors */
|
---|
1663 | if ((transform == 13) || (transform == 15)) {
|
---|
1664 | if (iabs(predicted_dc - vu) > 128)
|
---|
1665 | predicted_dc = vu;
|
---|
1666 | else if (iabs(predicted_dc - vl) > 128)
|
---|
1667 | predicted_dc = vl;
|
---|
1668 | else if (iabs(predicted_dc - vul) > 128)
|
---|
1669 | predicted_dc = vul;
|
---|
1670 | }
|
---|
1671 |
|
---|
1672 | debug_dc_pred("from pred DC = %d\n",
|
---|
1673 | DC_COEFF(i));
|
---|
1674 | }
|
---|
1675 |
|
---|
1676 | /* at long last, apply the predictor */
|
---|
1677 | if(s->coeffs[i].index){
|
---|
1678 | *s->next_coeff= s->coeffs[i];
|
---|
1679 | s->coeffs[i].index=0;
|
---|
1680 | s->coeffs[i].coeff=0;
|
---|
1681 | s->coeffs[i].next= s->next_coeff++;
|
---|
1682 | }
|
---|
1683 | s->coeffs[i].coeff += predicted_dc;
|
---|
1684 | /* save the DC */
|
---|
1685 | last_dc[current_frame_type] = DC_COEFF(i);
|
---|
1686 | if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){
|
---|
1687 | s->all_fragments[i].coeff_count= 129;
|
---|
1688 | // s->all_fragments[i].next_coeff= s->next_coeff;
|
---|
1689 | s->coeffs[i].next= s->next_coeff;
|
---|
1690 | (s->next_coeff++)->next=NULL;
|
---|
1691 | }
|
---|
1692 | }
|
---|
1693 | }
|
---|
1694 | }
|
---|
1695 | }
|
---|
1696 |
|
---|
1697 |
|
---|
1698 | static void horizontal_filter(unsigned char *first_pixel, int stride,
|
---|
1699 | int *bounding_values);
|
---|
1700 | static void vertical_filter(unsigned char *first_pixel, int stride,
|
---|
1701 | int *bounding_values);
|
---|
1702 |
|
---|
1703 | /*
|
---|
1704 | * Perform the final rendering for a particular slice of data.
|
---|
1705 | * The slice number ranges from 0..(macroblock_height - 1).
|
---|
1706 | */
|
---|
1707 | static void render_slice(Vp3DecodeContext *s, int slice)
|
---|
1708 | {
|
---|
1709 | int x, y;
|
---|
1710 | int m, n;
|
---|
1711 | int i; /* indicates current fragment */
|
---|
1712 | int16_t *dequantizer;
|
---|
1713 | DECLARE_ALIGNED_16(DCTELEM, block[64]);
|
---|
1714 | unsigned char *output_plane;
|
---|
1715 | unsigned char *last_plane;
|
---|
1716 | unsigned char *golden_plane;
|
---|
1717 | int stride;
|
---|
1718 | int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
|
---|
1719 | int upper_motion_limit, lower_motion_limit;
|
---|
1720 | int motion_halfpel_index;
|
---|
1721 | uint8_t *motion_source;
|
---|
1722 | int plane;
|
---|
1723 | int plane_width;
|
---|
1724 | int plane_height;
|
---|
1725 | int slice_height;
|
---|
1726 | int current_macroblock_entry = slice * s->macroblock_width * 6;
|
---|
1727 | int fragment_width;
|
---|
1728 |
|
---|
1729 | if (slice >= s->macroblock_height)
|
---|
1730 | return;
|
---|
1731 |
|
---|
1732 | for (plane = 0; plane < 3; plane++) {
|
---|
1733 |
|
---|
1734 | /* set up plane-specific parameters */
|
---|
1735 | if (plane == 0) {
|
---|
1736 | output_plane = s->current_frame.data[0];
|
---|
1737 | last_plane = s->last_frame.data[0];
|
---|
1738 | golden_plane = s->golden_frame.data[0];
|
---|
1739 | stride = s->current_frame.linesize[0];
|
---|
1740 | if (!s->flipped_image) stride = -stride;
|
---|
1741 | upper_motion_limit = 7 * s->current_frame.linesize[0];
|
---|
1742 | lower_motion_limit = s->height * s->current_frame.linesize[0] + s->width - 8;
|
---|
1743 | y = slice * FRAGMENT_PIXELS * 2;
|
---|
1744 | plane_width = s->width;
|
---|
1745 | plane_height = s->height;
|
---|
1746 | slice_height = y + FRAGMENT_PIXELS * 2;
|
---|
1747 | i = s->macroblock_fragments[current_macroblock_entry + 0];
|
---|
1748 | } else if (plane == 1) {
|
---|
1749 | output_plane = s->current_frame.data[1];
|
---|
1750 | last_plane = s->last_frame.data[1];
|
---|
1751 | golden_plane = s->golden_frame.data[1];
|
---|
1752 | stride = s->current_frame.linesize[1];
|
---|
1753 | if (!s->flipped_image) stride = -stride;
|
---|
1754 | upper_motion_limit = 7 * s->current_frame.linesize[1];
|
---|
1755 | lower_motion_limit = (s->height / 2) * s->current_frame.linesize[1] + (s->width / 2) - 8;
|
---|
1756 | y = slice * FRAGMENT_PIXELS;
|
---|
1757 | plane_width = s->width / 2;
|
---|
1758 | plane_height = s->height / 2;
|
---|
1759 | slice_height = y + FRAGMENT_PIXELS;
|
---|
1760 | i = s->macroblock_fragments[current_macroblock_entry + 4];
|
---|
1761 | } else {
|
---|
1762 | output_plane = s->current_frame.data[2];
|
---|
1763 | last_plane = s->last_frame.data[2];
|
---|
1764 | golden_plane = s->golden_frame.data[2];
|
---|
1765 | stride = s->current_frame.linesize[2];
|
---|
1766 | if (!s->flipped_image) stride = -stride;
|
---|
1767 | upper_motion_limit = 7 * s->current_frame.linesize[2];
|
---|
1768 | lower_motion_limit = (s->height / 2) * s->current_frame.linesize[2] + (s->width / 2) - 8;
|
---|
1769 | y = slice * FRAGMENT_PIXELS;
|
---|
1770 | plane_width = s->width / 2;
|
---|
1771 | plane_height = s->height / 2;
|
---|
1772 | slice_height = y + FRAGMENT_PIXELS;
|
---|
1773 | i = s->macroblock_fragments[current_macroblock_entry + 5];
|
---|
1774 | }
|
---|
1775 | fragment_width = plane_width / FRAGMENT_PIXELS;
|
---|
1776 |
|
---|
1777 | if(ABS(stride) > 2048)
|
---|
1778 | return; //various tables are fixed size
|
---|
1779 |
|
---|
1780 | /* for each fragment row in the slice (both of them)... */
|
---|
1781 | for (; y < slice_height; y += 8) {
|
---|
1782 |
|
---|
1783 | /* for each fragment in a row... */
|
---|
1784 | for (x = 0; x < plane_width; x += 8, i++) {
|
---|
1785 |
|
---|
1786 | if ((i < 0) || (i >= s->fragment_count)) {
|
---|
1787 | av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
|
---|
1788 | return;
|
---|
1789 | }
|
---|
1790 |
|
---|
1791 | /* transform if this block was coded */
|
---|
1792 | if ((s->all_fragments[i].coding_method != MODE_COPY) &&
|
---|
1793 | !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
|
---|
1794 |
|
---|
1795 | if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
|
---|
1796 | (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
|
---|
1797 | motion_source= golden_plane;
|
---|
1798 | else
|
---|
1799 | motion_source= last_plane;
|
---|
1800 |
|
---|
1801 | motion_source += s->all_fragments[i].first_pixel;
|
---|
1802 | motion_halfpel_index = 0;
|
---|
1803 |
|
---|
1804 | /* sort out the motion vector if this fragment is coded
|
---|
1805 | * using a motion vector method */
|
---|
1806 | if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
|
---|
1807 | (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
|
---|
1808 | int src_x, src_y;
|
---|
1809 | motion_x = s->all_fragments[i].motion_x;
|
---|
1810 | motion_y = s->all_fragments[i].motion_y;
|
---|
1811 | if(plane){
|
---|
1812 | motion_x= (motion_x>>1) | (motion_x&1);
|
---|
1813 | motion_y= (motion_y>>1) | (motion_y&1);
|
---|
1814 | }
|
---|
1815 |
|
---|
1816 | src_x= (motion_x>>1) + x;
|
---|
1817 | src_y= (motion_y>>1) + y;
|
---|
1818 | if ((motion_x == 127) || (motion_y == 127))
|
---|
1819 | av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
|
---|
1820 |
|
---|
1821 | motion_halfpel_index = motion_x & 0x01;
|
---|
1822 | motion_source += (motion_x >> 1);
|
---|
1823 |
|
---|
1824 | motion_halfpel_index |= (motion_y & 0x01) << 1;
|
---|
1825 | motion_source += ((motion_y >> 1) * stride);
|
---|
1826 |
|
---|
1827 | if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
|
---|
1828 | uint8_t *temp= s->edge_emu_buffer;
|
---|
1829 | if(stride<0) temp -= 9*stride;
|
---|
1830 | else temp += 9*stride;
|
---|
1831 |
|
---|
1832 | ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
|
---|
1833 | motion_source= temp;
|
---|
1834 | }
|
---|
1835 | }
|
---|
1836 |
|
---|
1837 |
|
---|
1838 | /* first, take care of copying a block from either the
|
---|
1839 | * previous or the golden frame */
|
---|
1840 | if (s->all_fragments[i].coding_method != MODE_INTRA) {
|
---|
1841 | /* Note, it is possible to implement all MC cases with
|
---|
1842 | put_no_rnd_pixels_l2 which would look more like the
|
---|
1843 | VP3 source but this would be slower as
|
---|
1844 | put_no_rnd_pixels_tab is better optimzed */
|
---|
1845 | if(motion_halfpel_index != 3){
|
---|
1846 | s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
|
---|
1847 | output_plane + s->all_fragments[i].first_pixel,
|
---|
1848 | motion_source, stride, 8);
|
---|
1849 | }else{
|
---|
1850 | int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
|
---|
1851 | s->dsp.put_no_rnd_pixels_l2[1](
|
---|
1852 | output_plane + s->all_fragments[i].first_pixel,
|
---|
1853 | motion_source - d,
|
---|
1854 | motion_source + stride + 1 + d,
|
---|
1855 | stride, 8);
|
---|
1856 | }
|
---|
1857 | dequantizer = s->inter_dequant;
|
---|
1858 | }else{
|
---|
1859 | if (plane == 0)
|
---|
1860 | dequantizer = s->intra_y_dequant;
|
---|
1861 | else
|
---|
1862 | dequantizer = s->intra_c_dequant;
|
---|
1863 | }
|
---|
1864 |
|
---|
1865 | /* dequantize the DCT coefficients */
|
---|
1866 | debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
|
---|
1867 | i, s->all_fragments[i].coding_method,
|
---|
1868 | DC_COEFF(i), dequantizer[0]);
|
---|
1869 |
|
---|
1870 | if(s->avctx->idct_algo==FF_IDCT_VP3){
|
---|
1871 | Coeff *coeff= s->coeffs + i;
|
---|
1872 | memset(block, 0, sizeof(block));
|
---|
1873 | while(coeff->next){
|
---|
1874 | block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
|
---|
1875 | coeff= coeff->next;
|
---|
1876 | }
|
---|
1877 | }else{
|
---|
1878 | Coeff *coeff= s->coeffs + i;
|
---|
1879 | memset(block, 0, sizeof(block));
|
---|
1880 | while(coeff->next){
|
---|
1881 | block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
|
---|
1882 | coeff= coeff->next;
|
---|
1883 | }
|
---|
1884 | }
|
---|
1885 |
|
---|
1886 | /* invert DCT and place (or add) in final output */
|
---|
1887 |
|
---|
1888 | if (s->all_fragments[i].coding_method == MODE_INTRA) {
|
---|
1889 | if(s->avctx->idct_algo!=FF_IDCT_VP3)
|
---|
1890 | block[0] += 128<<3;
|
---|
1891 | s->dsp.idct_put(
|
---|
1892 | output_plane + s->all_fragments[i].first_pixel,
|
---|
1893 | stride,
|
---|
1894 | block);
|
---|
1895 | } else {
|
---|
1896 | s->dsp.idct_add(
|
---|
1897 | output_plane + s->all_fragments[i].first_pixel,
|
---|
1898 | stride,
|
---|
1899 | block);
|
---|
1900 | }
|
---|
1901 |
|
---|
1902 | debug_idct("block after idct_%s():\n",
|
---|
1903 | (s->all_fragments[i].coding_method == MODE_INTRA)?
|
---|
1904 | "put" : "add");
|
---|
1905 | for (m = 0; m < 8; m++) {
|
---|
1906 | for (n = 0; n < 8; n++) {
|
---|
1907 | debug_idct(" %3d", *(output_plane +
|
---|
1908 | s->all_fragments[i].first_pixel + (m * stride + n)));
|
---|
1909 | }
|
---|
1910 | debug_idct("\n");
|
---|
1911 | }
|
---|
1912 | debug_idct("\n");
|
---|
1913 |
|
---|
1914 | } else {
|
---|
1915 |
|
---|
1916 | /* copy directly from the previous frame */
|
---|
1917 | s->dsp.put_pixels_tab[1][0](
|
---|
1918 | output_plane + s->all_fragments[i].first_pixel,
|
---|
1919 | last_plane + s->all_fragments[i].first_pixel,
|
---|
1920 | stride, 8);
|
---|
1921 |
|
---|
1922 | }
|
---|
1923 | #if 0
|
---|
1924 | /* perform the left edge filter if:
|
---|
1925 | * - the fragment is not on the left column
|
---|
1926 | * - the fragment is coded in this frame
|
---|
1927 | * - the fragment is not coded in this frame but the left
|
---|
1928 | * fragment is coded in this frame (this is done instead
|
---|
1929 | * of a right edge filter when rendering the left fragment
|
---|
1930 | * since this fragment is not available yet) */
|
---|
1931 | if ((x > 0) &&
|
---|
1932 | ((s->all_fragments[i].coding_method != MODE_COPY) ||
|
---|
1933 | ((s->all_fragments[i].coding_method == MODE_COPY) &&
|
---|
1934 | (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
|
---|
1935 | horizontal_filter(
|
---|
1936 | output_plane + s->all_fragments[i].first_pixel + 7*stride,
|
---|
1937 | -stride, bounding_values);
|
---|
1938 | }
|
---|
1939 |
|
---|
1940 | /* perform the top edge filter if:
|
---|
1941 | * - the fragment is not on the top row
|
---|
1942 | * - the fragment is coded in this frame
|
---|
1943 | * - the fragment is not coded in this frame but the above
|
---|
1944 | * fragment is coded in this frame (this is done instead
|
---|
1945 | * of a bottom edge filter when rendering the above
|
---|
1946 | * fragment since this fragment is not available yet) */
|
---|
1947 | if ((y > 0) &&
|
---|
1948 | ((s->all_fragments[i].coding_method != MODE_COPY) ||
|
---|
1949 | ((s->all_fragments[i].coding_method == MODE_COPY) &&
|
---|
1950 | (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
|
---|
1951 | vertical_filter(
|
---|
1952 | output_plane + s->all_fragments[i].first_pixel - stride,
|
---|
1953 | -stride, bounding_values);
|
---|
1954 | }
|
---|
1955 | #endif
|
---|
1956 | }
|
---|
1957 | }
|
---|
1958 | }
|
---|
1959 |
|
---|
1960 | /* this looks like a good place for slice dispatch... */
|
---|
1961 | /* algorithm:
|
---|
1962 | * if (slice == s->macroblock_height - 1)
|
---|
1963 | * dispatch (both last slice & 2nd-to-last slice);
|
---|
1964 | * else if (slice > 0)
|
---|
1965 | * dispatch (slice - 1);
|
---|
1966 | */
|
---|
1967 |
|
---|
1968 | emms_c();
|
---|
1969 | }
|
---|
1970 |
|
---|
1971 | static void horizontal_filter(unsigned char *first_pixel, int stride,
|
---|
1972 | int *bounding_values)
|
---|
1973 | {
|
---|
1974 | unsigned char *end;
|
---|
1975 | int filter_value;
|
---|
1976 |
|
---|
1977 | for (end= first_pixel + 8*stride; first_pixel < end; first_pixel += stride) {
|
---|
1978 | filter_value =
|
---|
1979 | (first_pixel[-2] - first_pixel[ 1])
|
---|
1980 | +3*(first_pixel[ 0] - first_pixel[-1]);
|
---|
1981 | filter_value = bounding_values[(filter_value + 4) >> 3];
|
---|
1982 | first_pixel[-1] = clip_uint8(first_pixel[-1] + filter_value);
|
---|
1983 | first_pixel[ 0] = clip_uint8(first_pixel[ 0] - filter_value);
|
---|
1984 | }
|
---|
1985 | }
|
---|
1986 |
|
---|
1987 | static void vertical_filter(unsigned char *first_pixel, int stride,
|
---|
1988 | int *bounding_values)
|
---|
1989 | {
|
---|
1990 | unsigned char *end;
|
---|
1991 | int filter_value;
|
---|
1992 | const int nstride= -stride;
|
---|
1993 |
|
---|
1994 | for (end= first_pixel + 8; first_pixel < end; first_pixel++) {
|
---|
1995 | filter_value =
|
---|
1996 | (first_pixel[2 * nstride] - first_pixel[ stride])
|
---|
1997 | +3*(first_pixel[0 ] - first_pixel[nstride]);
|
---|
1998 | filter_value = bounding_values[(filter_value + 4) >> 3];
|
---|
1999 | first_pixel[nstride] = clip_uint8(first_pixel[nstride] + filter_value);
|
---|
2000 | first_pixel[0] = clip_uint8(first_pixel[0] - filter_value);
|
---|
2001 | }
|
---|
2002 | }
|
---|
2003 |
|
---|
2004 | static void apply_loop_filter(Vp3DecodeContext *s)
|
---|
2005 | {
|
---|
2006 | int x, y, plane;
|
---|
2007 | int width, height;
|
---|
2008 | int fragment;
|
---|
2009 | int stride;
|
---|
2010 | unsigned char *plane_data;
|
---|
2011 | int *bounding_values= s->bounding_values_array+127;
|
---|
2012 |
|
---|
2013 | #if 0
|
---|
2014 | int bounding_values_array[256];
|
---|
2015 | int filter_limit;
|
---|
2016 |
|
---|
2017 | /* find the right loop limit value */
|
---|
2018 | for (x = 63; x >= 0; x--) {
|
---|
2019 | if (vp31_ac_scale_factor[x] >= s->quality_index)
|
---|
2020 | break;
|
---|
2021 | }
|
---|
2022 | filter_limit = vp31_filter_limit_values[s->quality_index];
|
---|
2023 |
|
---|
2024 | /* set up the bounding values */
|
---|
2025 | memset(bounding_values_array, 0, 256 * sizeof(int));
|
---|
2026 | for (x = 0; x < filter_limit; x++) {
|
---|
2027 | bounding_values[-x - filter_limit] = -filter_limit + x;
|
---|
2028 | bounding_values[-x] = -x;
|
---|
2029 | bounding_values[x] = x;
|
---|
2030 | bounding_values[x + filter_limit] = filter_limit - x;
|
---|
2031 | }
|
---|
2032 | #endif
|
---|
2033 |
|
---|
2034 | for (plane = 0; plane < 3; plane++) {
|
---|
2035 |
|
---|
2036 | if (plane == 0) {
|
---|
2037 | /* Y plane parameters */
|
---|
2038 | fragment = 0;
|
---|
2039 | width = s->fragment_width;
|
---|
2040 | height = s->fragment_height;
|
---|
2041 | stride = s->current_frame.linesize[0];
|
---|
2042 | plane_data = s->current_frame.data[0];
|
---|
2043 | } else if (plane == 1) {
|
---|
2044 | /* U plane parameters */
|
---|
2045 | fragment = s->u_fragment_start;
|
---|
2046 | width = s->fragment_width / 2;
|
---|
2047 | height = s->fragment_height / 2;
|
---|
2048 | stride = s->current_frame.linesize[1];
|
---|
2049 | plane_data = s->current_frame.data[1];
|
---|
2050 | } else {
|
---|
2051 | /* V plane parameters */
|
---|
2052 | fragment = s->v_fragment_start;
|
---|
2053 | width = s->fragment_width / 2;
|
---|
2054 | height = s->fragment_height / 2;
|
---|
2055 | stride = s->current_frame.linesize[2];
|
---|
2056 | plane_data = s->current_frame.data[2];
|
---|
2057 | }
|
---|
2058 |
|
---|
2059 | for (y = 0; y < height; y++) {
|
---|
2060 |
|
---|
2061 | for (x = 0; x < width; x++) {
|
---|
2062 | START_TIMER
|
---|
2063 | /* do not perform left edge filter for left columns frags */
|
---|
2064 | if ((x > 0) &&
|
---|
2065 | (s->all_fragments[fragment].coding_method != MODE_COPY)) {
|
---|
2066 | horizontal_filter(
|
---|
2067 | plane_data + s->all_fragments[fragment].first_pixel - 7*stride,
|
---|
2068 | stride, bounding_values);
|
---|
2069 | }
|
---|
2070 |
|
---|
2071 | /* do not perform top edge filter for top row fragments */
|
---|
2072 | if ((y > 0) &&
|
---|
2073 | (s->all_fragments[fragment].coding_method != MODE_COPY)) {
|
---|
2074 | vertical_filter(
|
---|
2075 | plane_data + s->all_fragments[fragment].first_pixel + stride,
|
---|
2076 | stride, bounding_values);
|
---|
2077 | }
|
---|
2078 |
|
---|
2079 | /* do not perform right edge filter for right column
|
---|
2080 | * fragments or if right fragment neighbor is also coded
|
---|
2081 | * in this frame (it will be filtered in next iteration) */
|
---|
2082 | if ((x < width - 1) &&
|
---|
2083 | (s->all_fragments[fragment].coding_method != MODE_COPY) &&
|
---|
2084 | (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
|
---|
2085 | horizontal_filter(
|
---|
2086 | plane_data + s->all_fragments[fragment + 1].first_pixel - 7*stride,
|
---|
2087 | stride, bounding_values);
|
---|
2088 | }
|
---|
2089 |
|
---|
2090 | /* do not perform bottom edge filter for bottom row
|
---|
2091 | * fragments or if bottom fragment neighbor is also coded
|
---|
2092 | * in this frame (it will be filtered in the next row) */
|
---|
2093 | if ((y < height - 1) &&
|
---|
2094 | (s->all_fragments[fragment].coding_method != MODE_COPY) &&
|
---|
2095 | (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
|
---|
2096 | vertical_filter(
|
---|
2097 | plane_data + s->all_fragments[fragment + width].first_pixel + stride,
|
---|
2098 | stride, bounding_values);
|
---|
2099 | }
|
---|
2100 |
|
---|
2101 | fragment++;
|
---|
2102 | STOP_TIMER("loop filter")
|
---|
2103 | }
|
---|
2104 | }
|
---|
2105 | }
|
---|
2106 | }
|
---|
2107 |
|
---|
2108 | /*
|
---|
2109 | * This function computes the first pixel addresses for each fragment.
|
---|
2110 | * This function needs to be invoked after the first frame is allocated
|
---|
2111 | * so that it has access to the plane strides.
|
---|
2112 | */
|
---|
2113 | static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
|
---|
2114 | {
|
---|
2115 |
|
---|
2116 | int i, x, y;
|
---|
2117 |
|
---|
2118 | /* figure out the first pixel addresses for each of the fragments */
|
---|
2119 | /* Y plane */
|
---|
2120 | i = 0;
|
---|
2121 | for (y = s->fragment_height; y > 0; y--) {
|
---|
2122 | for (x = 0; x < s->fragment_width; x++) {
|
---|
2123 | s->all_fragments[i++].first_pixel =
|
---|
2124 | s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
|
---|
2125 | s->golden_frame.linesize[0] +
|
---|
2126 | x * FRAGMENT_PIXELS;
|
---|
2127 | debug_init(" fragment %d, first pixel @ %d\n",
|
---|
2128 | i-1, s->all_fragments[i-1].first_pixel);
|
---|
2129 | }
|
---|
2130 | }
|
---|
2131 |
|
---|
2132 | /* U plane */
|
---|
2133 | i = s->u_fragment_start;
|
---|
2134 | for (y = s->fragment_height / 2; y > 0; y--) {
|
---|
2135 | for (x = 0; x < s->fragment_width / 2; x++) {
|
---|
2136 | s->all_fragments[i++].first_pixel =
|
---|
2137 | s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
|
---|
2138 | s->golden_frame.linesize[1] +
|
---|
2139 | x * FRAGMENT_PIXELS;
|
---|
2140 | debug_init(" fragment %d, first pixel @ %d\n",
|
---|
2141 | i-1, s->all_fragments[i-1].first_pixel);
|
---|
2142 | }
|
---|
2143 | }
|
---|
2144 |
|
---|
2145 | /* V plane */
|
---|
2146 | i = s->v_fragment_start;
|
---|
2147 | for (y = s->fragment_height / 2; y > 0; y--) {
|
---|
2148 | for (x = 0; x < s->fragment_width / 2; x++) {
|
---|
2149 | s->all_fragments[i++].first_pixel =
|
---|
2150 | s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
|
---|
2151 | s->golden_frame.linesize[2] +
|
---|
2152 | x * FRAGMENT_PIXELS;
|
---|
2153 | debug_init(" fragment %d, first pixel @ %d\n",
|
---|
2154 | i-1, s->all_fragments[i-1].first_pixel);
|
---|
2155 | }
|
---|
2156 | }
|
---|
2157 | }
|
---|
2158 |
|
---|
2159 | /* FIXME: this should be merged with the above! */
|
---|
2160 | static void theora_calculate_pixel_addresses(Vp3DecodeContext *s)
|
---|
2161 | {
|
---|
2162 |
|
---|
2163 | int i, x, y;
|
---|
2164 |
|
---|
2165 | /* figure out the first pixel addresses for each of the fragments */
|
---|
2166 | /* Y plane */
|
---|
2167 | i = 0;
|
---|
2168 | for (y = 1; y <= s->fragment_height; y++) {
|
---|
2169 | for (x = 0; x < s->fragment_width; x++) {
|
---|
2170 | s->all_fragments[i++].first_pixel =
|
---|
2171 | s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
|
---|
2172 | s->golden_frame.linesize[0] +
|
---|
2173 | x * FRAGMENT_PIXELS;
|
---|
2174 | debug_init(" fragment %d, first pixel @ %d\n",
|
---|
2175 | i-1, s->all_fragments[i-1].first_pixel);
|
---|
2176 | }
|
---|
2177 | }
|
---|
2178 |
|
---|
2179 | /* U plane */
|
---|
2180 | i = s->u_fragment_start;
|
---|
2181 | for (y = 1; y <= s->fragment_height / 2; y++) {
|
---|
2182 | for (x = 0; x < s->fragment_width / 2; x++) {
|
---|
2183 | s->all_fragments[i++].first_pixel =
|
---|
2184 | s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
|
---|
2185 | s->golden_frame.linesize[1] +
|
---|
2186 | x * FRAGMENT_PIXELS;
|
---|
2187 | debug_init(" fragment %d, first pixel @ %d\n",
|
---|
2188 | i-1, s->all_fragments[i-1].first_pixel);
|
---|
2189 | }
|
---|
2190 | }
|
---|
2191 |
|
---|
2192 | /* V plane */
|
---|
2193 | i = s->v_fragment_start;
|
---|
2194 | for (y = 1; y <= s->fragment_height / 2; y++) {
|
---|
2195 | for (x = 0; x < s->fragment_width / 2; x++) {
|
---|
2196 | s->all_fragments[i++].first_pixel =
|
---|
2197 | s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
|
---|
2198 | s->golden_frame.linesize[2] +
|
---|
2199 | x * FRAGMENT_PIXELS;
|
---|
2200 | debug_init(" fragment %d, first pixel @ %d\n",
|
---|
2201 | i-1, s->all_fragments[i-1].first_pixel);
|
---|
2202 | }
|
---|
2203 | }
|
---|
2204 | }
|
---|
2205 |
|
---|
2206 | /*
|
---|
2207 | * This is the ffmpeg/libavcodec API init function.
|
---|
2208 | */
|
---|
2209 | static int vp3_decode_init(AVCodecContext *avctx)
|
---|
2210 | {
|
---|
2211 | Vp3DecodeContext *s = avctx->priv_data;
|
---|
2212 | int i;
|
---|
2213 | int c_width;
|
---|
2214 | int c_height;
|
---|
2215 | int y_superblock_count;
|
---|
2216 | int c_superblock_count;
|
---|
2217 |
|
---|
2218 | if (avctx->codec_tag == MKTAG('V','P','3','0'))
|
---|
2219 | s->version = 0;
|
---|
2220 | else
|
---|
2221 | s->version = 1;
|
---|
2222 |
|
---|
2223 | s->avctx = avctx;
|
---|
2224 | s->width = (avctx->width + 15) & 0xFFFFFFF0;
|
---|
2225 | s->height = (avctx->height + 15) & 0xFFFFFFF0;
|
---|
2226 | avctx->pix_fmt = PIX_FMT_YUV420P;
|
---|
2227 | avctx->has_b_frames = 0;
|
---|
2228 | if(avctx->idct_algo==FF_IDCT_AUTO)
|
---|
2229 | avctx->idct_algo=FF_IDCT_VP3;
|
---|
2230 | dsputil_init(&s->dsp, avctx);
|
---|
2231 |
|
---|
2232 | ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
|
---|
2233 |
|
---|
2234 | /* initialize to an impossible value which will force a recalculation
|
---|
2235 | * in the first frame decode */
|
---|
2236 | s->quality_index = -1;
|
---|
2237 |
|
---|
2238 | s->y_superblock_width = (s->width + 31) / 32;
|
---|
2239 | s->y_superblock_height = (s->height + 31) / 32;
|
---|
2240 | y_superblock_count = s->y_superblock_width * s->y_superblock_height;
|
---|
2241 |
|
---|
2242 | /* work out the dimensions for the C planes */
|
---|
2243 | c_width = s->width / 2;
|
---|
2244 | c_height = s->height / 2;
|
---|
2245 | s->c_superblock_width = (c_width + 31) / 32;
|
---|
2246 | s->c_superblock_height = (c_height + 31) / 32;
|
---|
2247 | c_superblock_count = s->c_superblock_width * s->c_superblock_height;
|
---|
2248 |
|
---|
2249 | s->superblock_count = y_superblock_count + (c_superblock_count * 2);
|
---|
2250 | s->u_superblock_start = y_superblock_count;
|
---|
2251 | s->v_superblock_start = s->u_superblock_start + c_superblock_count;
|
---|
2252 | s->superblock_coding = av_malloc(s->superblock_count);
|
---|
2253 |
|
---|
2254 | s->macroblock_width = (s->width + 15) / 16;
|
---|
2255 | s->macroblock_height = (s->height + 15) / 16;
|
---|
2256 | s->macroblock_count = s->macroblock_width * s->macroblock_height;
|
---|
2257 |
|
---|
2258 | s->fragment_width = s->width / FRAGMENT_PIXELS;
|
---|
2259 | s->fragment_height = s->height / FRAGMENT_PIXELS;
|
---|
2260 |
|
---|
2261 | /* fragment count covers all 8x8 blocks for all 3 planes */
|
---|
2262 | s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
|
---|
2263 | s->u_fragment_start = s->fragment_width * s->fragment_height;
|
---|
2264 | s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;
|
---|
2265 |
|
---|
2266 | debug_init(" Y plane: %d x %d\n", s->width, s->height);
|
---|
2267 | debug_init(" C plane: %d x %d\n", c_width, c_height);
|
---|
2268 | debug_init(" Y superblocks: %d x %d, %d total\n",
|
---|
2269 | s->y_superblock_width, s->y_superblock_height, y_superblock_count);
|
---|
2270 | debug_init(" C superblocks: %d x %d, %d total\n",
|
---|
2271 | s->c_superblock_width, s->c_superblock_height, c_superblock_count);
|
---|
2272 | debug_init(" total superblocks = %d, U starts @ %d, V starts @ %d\n",
|
---|
2273 | s->superblock_count, s->u_superblock_start, s->v_superblock_start);
|
---|
2274 | debug_init(" macroblocks: %d x %d, %d total\n",
|
---|
2275 | s->macroblock_width, s->macroblock_height, s->macroblock_count);
|
---|
2276 | debug_init(" %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
|
---|
2277 | s->fragment_count,
|
---|
2278 | s->fragment_width,
|
---|
2279 | s->fragment_height,
|
---|
2280 | s->u_fragment_start,
|
---|
2281 | s->v_fragment_start);
|
---|
2282 |
|
---|
2283 | s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
|
---|
2284 | s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
|
---|
2285 | s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
|
---|
2286 | s->pixel_addresses_inited = 0;
|
---|
2287 |
|
---|
2288 | if (!s->theora_tables)
|
---|
2289 | {
|
---|
2290 | for (i = 0; i < 64; i++)
|
---|
2291 | s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
|
---|
2292 | for (i = 0; i < 64; i++)
|
---|
2293 | s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
|
---|
2294 | for (i = 0; i < 64; i++)
|
---|
2295 | s->coded_intra_y_dequant[i] = vp31_intra_y_dequant[i];
|
---|
2296 | for (i = 0; i < 64; i++)
|
---|
2297 | s->coded_intra_c_dequant[i] = vp31_intra_c_dequant[i];
|
---|
2298 | for (i = 0; i < 64; i++)
|
---|
2299 | s->coded_inter_dequant[i] = vp31_inter_dequant[i];
|
---|
2300 | for (i = 0; i < 64; i++)
|
---|
2301 | s->filter_limit_values[i] = vp31_filter_limit_values[i];
|
---|
2302 |
|
---|
2303 | /* init VLC tables */
|
---|
2304 | for (i = 0; i < 16; i++) {
|
---|
2305 |
|
---|
2306 | /* DC histograms */
|
---|
2307 | init_vlc(&s->dc_vlc[i], 5, 32,
|
---|
2308 | &dc_bias[i][0][1], 4, 2,
|
---|
2309 | &dc_bias[i][0][0], 4, 2, 0);
|
---|
2310 |
|
---|
2311 | /* group 1 AC histograms */
|
---|
2312 | init_vlc(&s->ac_vlc_1[i], 5, 32,
|
---|
2313 | &ac_bias_0[i][0][1], 4, 2,
|
---|
2314 | &ac_bias_0[i][0][0], 4, 2, 0);
|
---|
2315 |
|
---|
2316 | /* group 2 AC histograms */
|
---|
2317 | init_vlc(&s->ac_vlc_2[i], 5, 32,
|
---|
2318 | &ac_bias_1[i][0][1], 4, 2,
|
---|
2319 | &ac_bias_1[i][0][0], 4, 2, 0);
|
---|
2320 |
|
---|
2321 | /* group 3 AC histograms */
|
---|
2322 | init_vlc(&s->ac_vlc_3[i], 5, 32,
|
---|
2323 | &ac_bias_2[i][0][1], 4, 2,
|
---|
2324 | &ac_bias_2[i][0][0], 4, 2, 0);
|
---|
2325 |
|
---|
2326 | /* group 4 AC histograms */
|
---|
2327 | init_vlc(&s->ac_vlc_4[i], 5, 32,
|
---|
2328 | &ac_bias_3[i][0][1], 4, 2,
|
---|
2329 | &ac_bias_3[i][0][0], 4, 2, 0);
|
---|
2330 | }
|
---|
2331 | } else {
|
---|
2332 | for (i = 0; i < 16; i++) {
|
---|
2333 |
|
---|
2334 | /* DC histograms */
|
---|
2335 | init_vlc(&s->dc_vlc[i], 5, 32,
|
---|
2336 | &s->huffman_table[i][0][1], 4, 2,
|
---|
2337 | &s->huffman_table[i][0][0], 4, 2, 0);
|
---|
2338 |
|
---|
2339 | /* group 1 AC histograms */
|
---|
2340 | init_vlc(&s->ac_vlc_1[i], 5, 32,
|
---|
2341 | &s->huffman_table[i+16][0][1], 4, 2,
|
---|
2342 | &s->huffman_table[i+16][0][0], 4, 2, 0);
|
---|
2343 |
|
---|
2344 | /* group 2 AC histograms */
|
---|
2345 | init_vlc(&s->ac_vlc_2[i], 5, 32,
|
---|
2346 | &s->huffman_table[i+16*2][0][1], 4, 2,
|
---|
2347 | &s->huffman_table[i+16*2][0][0], 4, 2, 0);
|
---|
2348 |
|
---|
2349 | /* group 3 AC histograms */
|
---|
2350 | init_vlc(&s->ac_vlc_3[i], 5, 32,
|
---|
2351 | &s->huffman_table[i+16*3][0][1], 4, 2,
|
---|
2352 | &s->huffman_table[i+16*3][0][0], 4, 2, 0);
|
---|
2353 |
|
---|
2354 | /* group 4 AC histograms */
|
---|
2355 | init_vlc(&s->ac_vlc_4[i], 5, 32,
|
---|
2356 | &s->huffman_table[i+16*4][0][1], 4, 2,
|
---|
2357 | &s->huffman_table[i+16*4][0][0], 4, 2, 0);
|
---|
2358 | }
|
---|
2359 | }
|
---|
2360 |
|
---|
2361 | init_vlc(&s->superblock_run_length_vlc, 6, 34,
|
---|
2362 | &superblock_run_length_vlc_table[0][1], 4, 2,
|
---|
2363 | &superblock_run_length_vlc_table[0][0], 4, 2, 0);
|
---|
2364 |
|
---|
2365 | init_vlc(&s->fragment_run_length_vlc, 5, 30,
|
---|
2366 | &fragment_run_length_vlc_table[0][1], 4, 2,
|
---|
2367 | &fragment_run_length_vlc_table[0][0], 4, 2, 0);
|
---|
2368 |
|
---|
2369 | init_vlc(&s->mode_code_vlc, 3, 8,
|
---|
2370 | &mode_code_vlc_table[0][1], 2, 1,
|
---|
2371 | &mode_code_vlc_table[0][0], 2, 1, 0);
|
---|
2372 |
|
---|
2373 | init_vlc(&s->motion_vector_vlc, 6, 63,
|
---|
2374 | &motion_vector_vlc_table[0][1], 2, 1,
|
---|
2375 | &motion_vector_vlc_table[0][0], 2, 1, 0);
|
---|
2376 |
|
---|
2377 | /* work out the block mapping tables */
|
---|
2378 | s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
|
---|
2379 | s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
|
---|
2380 | s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
|
---|
2381 | s->macroblock_coding = av_malloc(s->macroblock_count + 1);
|
---|
2382 | init_block_mapping(s);
|
---|
2383 |
|
---|
2384 | for (i = 0; i < 3; i++) {
|
---|
2385 | s->current_frame.data[i] = NULL;
|
---|
2386 | s->last_frame.data[i] = NULL;
|
---|
2387 | s->golden_frame.data[i] = NULL;
|
---|
2388 | }
|
---|
2389 |
|
---|
2390 | return 0;
|
---|
2391 | }
|
---|
2392 |
|
---|
2393 | /*
|
---|
2394 | * This is the ffmpeg/libavcodec API frame decode function.
|
---|
2395 | */
|
---|
2396 | static int vp3_decode_frame(AVCodecContext *avctx,
|
---|
2397 | void *data, int *data_size,
|
---|
2398 | uint8_t *buf, int buf_size)
|
---|
2399 | {
|
---|
2400 | Vp3DecodeContext *s = avctx->priv_data;
|
---|
2401 | GetBitContext gb;
|
---|
2402 | static int counter = 0;
|
---|
2403 | int i;
|
---|
2404 |
|
---|
2405 | init_get_bits(&gb, buf, buf_size * 8);
|
---|
2406 |
|
---|
2407 | if (s->theora && get_bits1(&gb))
|
---|
2408 | {
|
---|
2409 | #if 1
|
---|
2410 | av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
|
---|
2411 | return -1;
|
---|
2412 | #else
|
---|
2413 | int ptype = get_bits(&gb, 7);
|
---|
2414 |
|
---|
2415 | skip_bits(&gb, 6*8); /* "theora" */
|
---|
2416 |
|
---|
2417 | switch(ptype)
|
---|
2418 | {
|
---|
2419 | case 1:
|
---|
2420 | theora_decode_comments(avctx, gb);
|
---|
2421 | break;
|
---|
2422 | case 2:
|
---|
2423 | theora_decode_tables(avctx, gb);
|
---|
2424 | init_dequantizer(s);
|
---|
2425 | break;
|
---|
2426 | default:
|
---|
2427 | av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
|
---|
2428 | }
|
---|
2429 | return buf_size;
|
---|
2430 | #endif
|
---|
2431 | }
|
---|
2432 |
|
---|
2433 | s->keyframe = !get_bits1(&gb);
|
---|
2434 | if (!s->theora)
|
---|
2435 | skip_bits(&gb, 1);
|
---|
2436 | s->last_quality_index = s->quality_index;
|
---|
2437 | s->quality_index = get_bits(&gb, 6);
|
---|
2438 | if (s->theora >= 0x030200)
|
---|
2439 | skip_bits1(&gb);
|
---|
2440 |
|
---|
2441 | if (s->avctx->debug & FF_DEBUG_PICT_INFO)
|
---|
2442 | av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
|
---|
2443 | s->keyframe?"key":"", counter, s->quality_index);
|
---|
2444 | counter++;
|
---|
2445 |
|
---|
2446 | if (s->quality_index != s->last_quality_index) {
|
---|
2447 | init_dequantizer(s);
|
---|
2448 | init_loop_filter(s);
|
---|
2449 | }
|
---|
2450 |
|
---|
2451 | if (s->keyframe) {
|
---|
2452 | if (!s->theora)
|
---|
2453 | {
|
---|
2454 | skip_bits(&gb, 4); /* width code */
|
---|
2455 | skip_bits(&gb, 4); /* height code */
|
---|
2456 | if (s->version)
|
---|
2457 | {
|
---|
2458 | s->version = get_bits(&gb, 5);
|
---|
2459 | if (counter == 1)
|
---|
2460 | av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
|
---|
2461 | }
|
---|
2462 | }
|
---|
2463 | if (s->version || s->theora)
|
---|
2464 | {
|
---|
2465 | if (get_bits1(&gb))
|
---|
2466 | av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
|
---|
2467 | skip_bits(&gb, 2); /* reserved? */
|
---|
2468 | }
|
---|
2469 |
|
---|
2470 | if (s->last_frame.data[0] == s->golden_frame.data[0]) {
|
---|
2471 | if (s->golden_frame.data[0])
|
---|
2472 | avctx->release_buffer(avctx, &s->golden_frame);
|
---|
2473 | s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
|
---|
2474 | } else {
|
---|
2475 | if (s->golden_frame.data[0])
|
---|
2476 | avctx->release_buffer(avctx, &s->golden_frame);
|
---|
2477 | if (s->last_frame.data[0])
|
---|
2478 | avctx->release_buffer(avctx, &s->last_frame);
|
---|
2479 | }
|
---|
2480 |
|
---|
2481 | s->golden_frame.reference = 3;
|
---|
2482 | if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
|
---|
2483 | av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
|
---|
2484 | return -1;
|
---|
2485 | }
|
---|
2486 |
|
---|
2487 | /* golden frame is also the current frame */
|
---|
2488 | memcpy(&s->current_frame, &s->golden_frame, sizeof(AVFrame));
|
---|
2489 |
|
---|
2490 | /* time to figure out pixel addresses? */
|
---|
2491 | if (!s->pixel_addresses_inited)
|
---|
2492 | {
|
---|
2493 | if (!s->flipped_image)
|
---|
2494 | vp3_calculate_pixel_addresses(s);
|
---|
2495 | else
|
---|
2496 | theora_calculate_pixel_addresses(s);
|
---|
2497 | }
|
---|
2498 | } else {
|
---|
2499 | /* allocate a new current frame */
|
---|
2500 | s->current_frame.reference = 3;
|
---|
2501 | if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
|
---|
2502 | av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
|
---|
2503 | return -1;
|
---|
2504 | }
|
---|
2505 | }
|
---|
2506 |
|
---|
2507 | s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
|
---|
2508 | s->current_frame.qstride= 0;
|
---|
2509 |
|
---|
2510 | {START_TIMER
|
---|
2511 | init_frame(s, &gb);
|
---|
2512 | STOP_TIMER("init_frame")}
|
---|
2513 |
|
---|
2514 | #if KEYFRAMES_ONLY
|
---|
2515 | if (!s->keyframe) {
|
---|
2516 |
|
---|
2517 | memcpy(s->current_frame.data[0], s->golden_frame.data[0],
|
---|
2518 | s->current_frame.linesize[0] * s->height);
|
---|
2519 | memcpy(s->current_frame.data[1], s->golden_frame.data[1],
|
---|
2520 | s->current_frame.linesize[1] * s->height / 2);
|
---|
2521 | memcpy(s->current_frame.data[2], s->golden_frame.data[2],
|
---|
2522 | s->current_frame.linesize[2] * s->height / 2);
|
---|
2523 |
|
---|
2524 | } else {
|
---|
2525 | #endif
|
---|
2526 |
|
---|
2527 | {START_TIMER
|
---|
2528 | if (unpack_superblocks(s, &gb)){
|
---|
2529 | av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
|
---|
2530 | return -1;
|
---|
2531 | }
|
---|
2532 | STOP_TIMER("unpack_superblocks")}
|
---|
2533 | {START_TIMER
|
---|
2534 | if (unpack_modes(s, &gb)){
|
---|
2535 | av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
|
---|
2536 | return -1;
|
---|
2537 | }
|
---|
2538 | STOP_TIMER("unpack_modes")}
|
---|
2539 | {START_TIMER
|
---|
2540 | if (unpack_vectors(s, &gb)){
|
---|
2541 | av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
|
---|
2542 | return -1;
|
---|
2543 | }
|
---|
2544 | STOP_TIMER("unpack_vectors")}
|
---|
2545 | {START_TIMER
|
---|
2546 | if (unpack_dct_coeffs(s, &gb)){
|
---|
2547 | av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
|
---|
2548 | return -1;
|
---|
2549 | }
|
---|
2550 | STOP_TIMER("unpack_dct_coeffs")}
|
---|
2551 | {START_TIMER
|
---|
2552 |
|
---|
2553 | reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
|
---|
2554 | if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
|
---|
2555 | reverse_dc_prediction(s, s->u_fragment_start,
|
---|
2556 | s->fragment_width / 2, s->fragment_height / 2);
|
---|
2557 | reverse_dc_prediction(s, s->v_fragment_start,
|
---|
2558 | s->fragment_width / 2, s->fragment_height / 2);
|
---|
2559 | }
|
---|
2560 | STOP_TIMER("reverse_dc_prediction")}
|
---|
2561 | {START_TIMER
|
---|
2562 |
|
---|
2563 | for (i = 0; i < s->macroblock_height; i++)
|
---|
2564 | render_slice(s, i);
|
---|
2565 | STOP_TIMER("render_fragments")}
|
---|
2566 |
|
---|
2567 | {START_TIMER
|
---|
2568 | apply_loop_filter(s);
|
---|
2569 | STOP_TIMER("apply_loop_filter")}
|
---|
2570 | #if KEYFRAMES_ONLY
|
---|
2571 | }
|
---|
2572 | #endif
|
---|
2573 |
|
---|
2574 | *data_size=sizeof(AVFrame);
|
---|
2575 | *(AVFrame*)data= s->current_frame;
|
---|
2576 |
|
---|
2577 | /* release the last frame, if it is allocated and if it is not the
|
---|
2578 | * golden frame */
|
---|
2579 | if ((s->last_frame.data[0]) &&
|
---|
2580 | (s->last_frame.data[0] != s->golden_frame.data[0]))
|
---|
2581 | avctx->release_buffer(avctx, &s->last_frame);
|
---|
2582 |
|
---|
2583 | /* shuffle frames (last = current) */
|
---|
2584 | memcpy(&s->last_frame, &s->current_frame, sizeof(AVFrame));
|
---|
2585 | s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
|
---|
2586 |
|
---|
2587 | return buf_size;
|
---|
2588 | }
|
---|
2589 |
|
---|
2590 | /*
|
---|
2591 | * This is the ffmpeg/libavcodec API module cleanup function.
|
---|
2592 | */
|
---|
2593 | static int vp3_decode_end(AVCodecContext *avctx)
|
---|
2594 | {
|
---|
2595 | Vp3DecodeContext *s = avctx->priv_data;
|
---|
2596 |
|
---|
2597 | av_free(s->all_fragments);
|
---|
2598 | av_free(s->coeffs);
|
---|
2599 | av_free(s->coded_fragment_list);
|
---|
2600 | av_free(s->superblock_fragments);
|
---|
2601 | av_free(s->superblock_macroblocks);
|
---|
2602 | av_free(s->macroblock_fragments);
|
---|
2603 | av_free(s->macroblock_coding);
|
---|
2604 |
|
---|
2605 | /* release all frames */
|
---|
2606 | if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
|
---|
2607 | avctx->release_buffer(avctx, &s->golden_frame);
|
---|
2608 | if (s->last_frame.data[0])
|
---|
2609 | avctx->release_buffer(avctx, &s->last_frame);
|
---|
2610 | /* no need to release the current_frame since it will always be pointing
|
---|
2611 | * to the same frame as either the golden or last frame */
|
---|
2612 |
|
---|
2613 | return 0;
|
---|
2614 | }
|
---|
2615 |
|
---|
2616 | static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
|
---|
2617 | {
|
---|
2618 | Vp3DecodeContext *s = avctx->priv_data;
|
---|
2619 |
|
---|
2620 | if (get_bits(gb, 1)) {
|
---|
2621 | int token;
|
---|
2622 | if (s->entries >= 32) { /* overflow */
|
---|
2623 | av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
|
---|
2624 | return -1;
|
---|
2625 | }
|
---|
2626 | token = get_bits(gb, 5);
|
---|
2627 | //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
|
---|
2628 | s->huffman_table[s->hti][token][0] = s->hbits;
|
---|
2629 | s->huffman_table[s->hti][token][1] = s->huff_code_size;
|
---|
2630 | s->entries++;
|
---|
2631 | }
|
---|
2632 | else {
|
---|
2633 | if (s->huff_code_size >= 32) {/* overflow */
|
---|
2634 | av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
|
---|
2635 | return -1;
|
---|
2636 | }
|
---|
2637 | s->huff_code_size++;
|
---|
2638 | s->hbits <<= 1;
|
---|
2639 | read_huffman_tree(avctx, gb);
|
---|
2640 | s->hbits |= 1;
|
---|
2641 | read_huffman_tree(avctx, gb);
|
---|
2642 | s->hbits >>= 1;
|
---|
2643 | s->huff_code_size--;
|
---|
2644 | }
|
---|
2645 | return 0;
|
---|
2646 | }
|
---|
2647 |
|
---|
2648 | static int theora_decode_header(AVCodecContext *avctx, GetBitContext gb)
|
---|
2649 | {
|
---|
2650 | Vp3DecodeContext *s = avctx->priv_data;
|
---|
2651 | int major, minor, micro;
|
---|
2652 |
|
---|
2653 | major = get_bits(&gb, 8); /* version major */
|
---|
2654 | minor = get_bits(&gb, 8); /* version minor */
|
---|
2655 | micro = get_bits(&gb, 8); /* version micro */
|
---|
2656 | av_log(avctx, AV_LOG_INFO, "Theora bitstream version %d.%d.%d\n",
|
---|
2657 | major, minor, micro);
|
---|
2658 |
|
---|
2659 | /* FIXME: endianess? */
|
---|
2660 | s->theora = (major << 16) | (minor << 8) | micro;
|
---|
2661 |
|
---|
2662 | /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
|
---|
2663 | /* but previous versions have the image flipped relative to vp3 */
|
---|
2664 | if (s->theora < 0x030200)
|
---|
2665 | {
|
---|
2666 | s->flipped_image = 1;
|
---|
2667 | av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
|
---|
2668 | }
|
---|
2669 |
|
---|
2670 | s->width = get_bits(&gb, 16) << 4;
|
---|
2671 | s->height = get_bits(&gb, 16) << 4;
|
---|
2672 |
|
---|
2673 | if(avcodec_check_dimensions(avctx, s->width, s->height)){
|
---|
2674 | av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
|
---|
2675 | s->width= s->height= 0;
|
---|
2676 | return -1;
|
---|
2677 | }
|
---|
2678 |
|
---|
2679 | if (s->theora >= 0x030400)
|
---|
2680 | {
|
---|
2681 | skip_bits(&gb, 32); /* total number of superblocks in a frame */
|
---|
2682 | // fixme, the next field is 36bits long
|
---|
2683 | skip_bits(&gb, 32); /* total number of blocks in a frame */
|
---|
2684 | skip_bits(&gb, 4); /* total number of blocks in a frame */
|
---|
2685 | skip_bits(&gb, 32); /* total number of macroblocks in a frame */
|
---|
2686 |
|
---|
2687 | skip_bits(&gb, 24); /* frame width */
|
---|
2688 | skip_bits(&gb, 24); /* frame height */
|
---|
2689 | }
|
---|
2690 | else
|
---|
2691 | {
|
---|
2692 | skip_bits(&gb, 24); /* frame width */
|
---|
2693 | skip_bits(&gb, 24); /* frame height */
|
---|
2694 | }
|
---|
2695 |
|
---|
2696 | skip_bits(&gb, 8); /* offset x */
|
---|
2697 | skip_bits(&gb, 8); /* offset y */
|
---|
2698 |
|
---|
2699 | skip_bits(&gb, 32); /* fps numerator */
|
---|
2700 | skip_bits(&gb, 32); /* fps denumerator */
|
---|
2701 | skip_bits(&gb, 24); /* aspect numerator */
|
---|
2702 | skip_bits(&gb, 24); /* aspect denumerator */
|
---|
2703 |
|
---|
2704 | if (s->theora < 0x030200)
|
---|
2705 | skip_bits(&gb, 5); /* keyframe frequency force */
|
---|
2706 | skip_bits(&gb, 8); /* colorspace */
|
---|
2707 | if (s->theora >= 0x030400)
|
---|
2708 | skip_bits(&gb, 2); /* pixel format: 420,res,422,444 */
|
---|
2709 | skip_bits(&gb, 24); /* bitrate */
|
---|
2710 |
|
---|
2711 | skip_bits(&gb, 6); /* quality hint */
|
---|
2712 |
|
---|
2713 | if (s->theora >= 0x030200)
|
---|
2714 | {
|
---|
2715 | skip_bits(&gb, 5); /* keyframe frequency force */
|
---|
2716 |
|
---|
2717 | if (s->theora < 0x030400)
|
---|
2718 | skip_bits(&gb, 5); /* spare bits */
|
---|
2719 | }
|
---|
2720 |
|
---|
2721 | // align_get_bits(&gb);
|
---|
2722 |
|
---|
2723 | avctx->width = s->width;
|
---|
2724 | avctx->height = s->height;
|
---|
2725 |
|
---|
2726 | return 0;
|
---|
2727 | }
|
---|
2728 |
|
---|
2729 | static inline int theora_get_32bit(GetBitContext gb)
|
---|
2730 | {
|
---|
2731 | int ret = get_bits(&gb, 8);
|
---|
2732 | ret += get_bits(&gb, 8) << 8;
|
---|
2733 | ret += get_bits(&gb, 8) << 16;
|
---|
2734 | ret += get_bits(&gb, 8) << 24;
|
---|
2735 |
|
---|
2736 | return ret;
|
---|
2737 | }
|
---|
2738 |
|
---|
2739 | static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb)
|
---|
2740 | {
|
---|
2741 | Vp3DecodeContext *s = avctx->priv_data;
|
---|
2742 | int i, n, matrices;
|
---|
2743 |
|
---|
2744 | if (s->theora >= 0x030200) {
|
---|
2745 | n = get_bits(&gb, 3);
|
---|
2746 | /* loop filter limit values table */
|
---|
2747 | for (i = 0; i < 64; i++)
|
---|
2748 | s->filter_limit_values[i] = get_bits(&gb, n);
|
---|
2749 | }
|
---|
2750 |
|
---|
2751 | if (s->theora >= 0x030200)
|
---|
2752 | n = get_bits(&gb, 4) + 1;
|
---|
2753 | else
|
---|
2754 | n = 16;
|
---|
2755 | /* quality threshold table */
|
---|
2756 | for (i = 0; i < 64; i++)
|
---|
2757 | s->coded_ac_scale_factor[i] = get_bits(&gb, n);
|
---|
2758 |
|
---|
2759 | if (s->theora >= 0x030200)
|
---|
2760 | n = get_bits(&gb, 4) + 1;
|
---|
2761 | else
|
---|
2762 | n = 16;
|
---|
2763 | /* dc scale factor table */
|
---|
2764 | for (i = 0; i < 64; i++)
|
---|
2765 | s->coded_dc_scale_factor[i] = get_bits(&gb, n);
|
---|
2766 |
|
---|
2767 | if (s->theora >= 0x030200)
|
---|
2768 | matrices = get_bits(&gb, 9) + 1;
|
---|
2769 | else
|
---|
2770 | matrices = 3;
|
---|
2771 | if (matrices != 3) {
|
---|
2772 | av_log(avctx,AV_LOG_ERROR, "unsupported matrices: %d\n", matrices);
|
---|
2773 | // return -1;
|
---|
2774 | }
|
---|
2775 | /* y coeffs */
|
---|
2776 | for (i = 0; i < 64; i++)
|
---|
2777 | s->coded_intra_y_dequant[i] = get_bits(&gb, 8);
|
---|
2778 |
|
---|
2779 | /* uv coeffs */
|
---|
2780 | for (i = 0; i < 64; i++)
|
---|
2781 | s->coded_intra_c_dequant[i] = get_bits(&gb, 8);
|
---|
2782 |
|
---|
2783 | /* inter coeffs */
|
---|
2784 | for (i = 0; i < 64; i++)
|
---|
2785 | s->coded_inter_dequant[i] = get_bits(&gb, 8);
|
---|
2786 |
|
---|
2787 | /* skip unknown matrices */
|
---|
2788 | n = matrices - 3;
|
---|
2789 | while(n--)
|
---|
2790 | for (i = 0; i < 64; i++)
|
---|
2791 | skip_bits(&gb, 8);
|
---|
2792 |
|
---|
2793 | for (i = 0; i <= 1; i++) {
|
---|
2794 | for (n = 0; n <= 2; n++) {
|
---|
2795 | int newqr;
|
---|
2796 | if (i > 0 || n > 0)
|
---|
2797 | newqr = get_bits(&gb, 1);
|
---|
2798 | else
|
---|
2799 | newqr = 1;
|
---|
2800 | if (!newqr) {
|
---|
2801 | if (i > 0)
|
---|
2802 | get_bits(&gb, 1);
|
---|
2803 | }
|
---|
2804 | else {
|
---|
2805 | int qi = 0;
|
---|
2806 | skip_bits(&gb, av_log2(matrices-1)+1);
|
---|
2807 | while (qi < 63) {
|
---|
2808 | qi += get_bits(&gb, av_log2(63-qi)+1) + 1;
|
---|
2809 | skip_bits(&gb, av_log2(matrices-1)+1);
|
---|
2810 | }
|
---|
2811 | if (qi > 63) {
|
---|
2812 | av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
|
---|
2813 | return -1;
|
---|
2814 | }
|
---|
2815 | }
|
---|
2816 | }
|
---|
2817 | }
|
---|
2818 |
|
---|
2819 | /* Huffman tables */
|
---|
2820 | for (s->hti = 0; s->hti < 80; s->hti++) {
|
---|
2821 | s->entries = 0;
|
---|
2822 | s->huff_code_size = 1;
|
---|
2823 | if (!get_bits(&gb, 1)) {
|
---|
2824 | s->hbits = 0;
|
---|
2825 | read_huffman_tree(avctx, &gb);
|
---|
2826 | s->hbits = 1;
|
---|
2827 | read_huffman_tree(avctx, &gb);
|
---|
2828 | }
|
---|
2829 | }
|
---|
2830 |
|
---|
2831 | s->theora_tables = 1;
|
---|
2832 |
|
---|
2833 | return 0;
|
---|
2834 | }
|
---|
2835 |
|
---|
2836 | static int theora_decode_init(AVCodecContext *avctx)
|
---|
2837 | {
|
---|
2838 | Vp3DecodeContext *s = avctx->priv_data;
|
---|
2839 | GetBitContext gb;
|
---|
2840 | int ptype;
|
---|
2841 | uint8_t *p= avctx->extradata;
|
---|
2842 | int op_bytes, i;
|
---|
2843 |
|
---|
2844 | s->theora = 1;
|
---|
2845 |
|
---|
2846 | if (!avctx->extradata_size)
|
---|
2847 | {
|
---|
2848 | av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
|
---|
2849 | return -1;
|
---|
2850 | }
|
---|
2851 |
|
---|
2852 | for(i=0;i<3;i++) {
|
---|
2853 | op_bytes = *(p++)<<8;
|
---|
2854 | op_bytes += *(p++);
|
---|
2855 |
|
---|
2856 | init_get_bits(&gb, p, op_bytes);
|
---|
2857 | p += op_bytes;
|
---|
2858 |
|
---|
2859 | ptype = get_bits(&gb, 8);
|
---|
2860 | debug_vp3("Theora headerpacket type: %x\n", ptype);
|
---|
2861 |
|
---|
2862 | if (!(ptype & 0x80))
|
---|
2863 | {
|
---|
2864 | av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
|
---|
2865 | return -1;
|
---|
2866 | }
|
---|
2867 |
|
---|
2868 | // FIXME: check for this aswell
|
---|
2869 | skip_bits(&gb, 6*8); /* "theora" */
|
---|
2870 |
|
---|
2871 | switch(ptype)
|
---|
2872 | {
|
---|
2873 | case 0x80:
|
---|
2874 | theora_decode_header(avctx, gb);
|
---|
2875 | break;
|
---|
2876 | case 0x81:
|
---|
2877 | // FIXME: is this needed? it breaks sometimes
|
---|
2878 | // theora_decode_comments(avctx, gb);
|
---|
2879 | break;
|
---|
2880 | case 0x82:
|
---|
2881 | theora_decode_tables(avctx, gb);
|
---|
2882 | break;
|
---|
2883 | default:
|
---|
2884 | av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
|
---|
2885 | break;
|
---|
2886 | }
|
---|
2887 | }
|
---|
2888 |
|
---|
2889 | vp3_decode_init(avctx);
|
---|
2890 | return 0;
|
---|
2891 | }
|
---|
2892 |
|
---|
2893 | AVCodec vp3_decoder = {
|
---|
2894 | "vp3",
|
---|
2895 | CODEC_TYPE_VIDEO,
|
---|
2896 | CODEC_ID_VP3,
|
---|
2897 | sizeof(Vp3DecodeContext),
|
---|
2898 | vp3_decode_init,
|
---|
2899 | NULL,
|
---|
2900 | vp3_decode_end,
|
---|
2901 | vp3_decode_frame,
|
---|
2902 | 0,
|
---|
2903 | NULL
|
---|
2904 | };
|
---|
2905 |
|
---|
2906 | #ifndef CONFIG_LIBTHEORA
|
---|
2907 | AVCodec theora_decoder = {
|
---|
2908 | "theora",
|
---|
2909 | CODEC_TYPE_VIDEO,
|
---|
2910 | CODEC_ID_THEORA,
|
---|
2911 | sizeof(Vp3DecodeContext),
|
---|
2912 | theora_decode_init,
|
---|
2913 | NULL,
|
---|
2914 | vp3_decode_end,
|
---|
2915 | vp3_decode_frame,
|
---|
2916 | 0,
|
---|
2917 | NULL
|
---|
2918 | };
|
---|
2919 | #endif
|
---|