VirtualBox

source: vbox/trunk/src/libs/ffmpeg-20060710/libavcodec/wmadec.c@ 11551

Last change on this file since 11551 was 5776, checked in by vboxsync, 17 years ago

ffmpeg: exported to OSE

File size: 42.3 KB
Line 
1/*
2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19
20/**
21 * @file wmadec.c
22 * WMA compatible decoder.
23 * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
24 * WMA v1 is identified by audio format 0x160 in Microsoft media files
25 * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
26 *
27 * To use this decoder, a calling application must supply the extra data
28 * bytes provided with the WMA data. These are the extra, codec-specific
29 * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
30 * to the decoder using the extradata[_size] fields in AVCodecContext. There
31 * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
32 */
33
34#include "avcodec.h"
35#include "bitstream.h"
36#include "dsputil.h"
37
38/* size of blocks */
39#define BLOCK_MIN_BITS 7
40#define BLOCK_MAX_BITS 11
41#define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
42
43#define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
44
45/* XXX: find exact max size */
46#define HIGH_BAND_MAX_SIZE 16
47
48#define NB_LSP_COEFS 10
49
50/* XXX: is it a suitable value ? */
51#define MAX_CODED_SUPERFRAME_SIZE 16384
52
53#define MAX_CHANNELS 2
54
55#define NOISE_TAB_SIZE 8192
56
57#define LSP_POW_BITS 7
58
59#define VLCBITS 9
60#define VLCMAX ((22+VLCBITS-1)/VLCBITS)
61
62#define EXPVLCBITS 8
63#define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
64
65#define HGAINVLCBITS 9
66#define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
67
68typedef struct WMADecodeContext {
69 GetBitContext gb;
70 int sample_rate;
71 int nb_channels;
72 int bit_rate;
73 int version; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
74 int block_align;
75 int use_bit_reservoir;
76 int use_variable_block_len;
77 int use_exp_vlc; /* exponent coding: 0 = lsp, 1 = vlc + delta */
78 int use_noise_coding; /* true if perceptual noise is added */
79 int byte_offset_bits;
80 VLC exp_vlc;
81 int exponent_sizes[BLOCK_NB_SIZES];
82 uint16_t exponent_bands[BLOCK_NB_SIZES][25];
83 int high_band_start[BLOCK_NB_SIZES]; /* index of first coef in high band */
84 int coefs_start; /* first coded coef */
85 int coefs_end[BLOCK_NB_SIZES]; /* max number of coded coefficients */
86 int exponent_high_sizes[BLOCK_NB_SIZES];
87 int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
88 VLC hgain_vlc;
89
90 /* coded values in high bands */
91 int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
92 int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
93
94 /* there are two possible tables for spectral coefficients */
95 VLC coef_vlc[2];
96 uint16_t *run_table[2];
97 uint16_t *level_table[2];
98 /* frame info */
99 int frame_len; /* frame length in samples */
100 int frame_len_bits; /* frame_len = 1 << frame_len_bits */
101 int nb_block_sizes; /* number of block sizes */
102 /* block info */
103 int reset_block_lengths;
104 int block_len_bits; /* log2 of current block length */
105 int next_block_len_bits; /* log2 of next block length */
106 int prev_block_len_bits; /* log2 of prev block length */
107 int block_len; /* block length in samples */
108 int block_num; /* block number in current frame */
109 int block_pos; /* current position in frame */
110 uint8_t ms_stereo; /* true if mid/side stereo mode */
111 uint8_t channel_coded[MAX_CHANNELS]; /* true if channel is coded */
112 DECLARE_ALIGNED_16(float, exponents[MAX_CHANNELS][BLOCK_MAX_SIZE]);
113 float max_exponent[MAX_CHANNELS];
114 int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
115 DECLARE_ALIGNED_16(float, coefs[MAX_CHANNELS][BLOCK_MAX_SIZE]);
116 MDCTContext mdct_ctx[BLOCK_NB_SIZES];
117 float *windows[BLOCK_NB_SIZES];
118 DECLARE_ALIGNED_16(FFTSample, mdct_tmp[BLOCK_MAX_SIZE]); /* temporary storage for imdct */
119 /* output buffer for one frame and the last for IMDCT windowing */
120 DECLARE_ALIGNED_16(float, frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2]);
121 /* last frame info */
122 uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
123 int last_bitoffset;
124 int last_superframe_len;
125 float noise_table[NOISE_TAB_SIZE];
126 int noise_index;
127 float noise_mult; /* XXX: suppress that and integrate it in the noise array */
128 /* lsp_to_curve tables */
129 float lsp_cos_table[BLOCK_MAX_SIZE];
130 float lsp_pow_e_table[256];
131 float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
132 float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
133
134#ifdef TRACE
135 int frame_count;
136#endif
137} WMADecodeContext;
138
139typedef struct CoefVLCTable {
140 int n; /* total number of codes */
141 const uint32_t *huffcodes; /* VLC bit values */
142 const uint8_t *huffbits; /* VLC bit size */
143 const uint16_t *levels; /* table to build run/level tables */
144} CoefVLCTable;
145
146static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
147
148#include "wmadata.h"
149
150#ifdef TRACE
151static void dump_shorts(const char *name, const short *tab, int n)
152{
153 int i;
154
155 tprintf("%s[%d]:\n", name, n);
156 for(i=0;i<n;i++) {
157 if ((i & 7) == 0)
158 tprintf("%4d: ", i);
159 tprintf(" %5d.0", tab[i]);
160 if ((i & 7) == 7)
161 tprintf("\n");
162 }
163}
164
165static void dump_floats(const char *name, int prec, const float *tab, int n)
166{
167 int i;
168
169 tprintf("%s[%d]:\n", name, n);
170 for(i=0;i<n;i++) {
171 if ((i & 7) == 0)
172 tprintf("%4d: ", i);
173 tprintf(" %8.*f", prec, tab[i]);
174 if ((i & 7) == 7)
175 tprintf("\n");
176 }
177 if ((i & 7) != 0)
178 tprintf("\n");
179}
180#endif
181
182/* XXX: use same run/length optimization as mpeg decoders */
183static void init_coef_vlc(VLC *vlc,
184 uint16_t **prun_table, uint16_t **plevel_table,
185 const CoefVLCTable *vlc_table)
186{
187 int n = vlc_table->n;
188 const uint8_t *table_bits = vlc_table->huffbits;
189 const uint32_t *table_codes = vlc_table->huffcodes;
190 const uint16_t *levels_table = vlc_table->levels;
191 uint16_t *run_table, *level_table;
192 const uint16_t *p;
193 int i, l, j, level;
194
195 init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
196
197 run_table = av_malloc(n * sizeof(uint16_t));
198 level_table = av_malloc(n * sizeof(uint16_t));
199 p = levels_table;
200 i = 2;
201 level = 1;
202 while (i < n) {
203 l = *p++;
204 for(j=0;j<l;j++) {
205 run_table[i] = j;
206 level_table[i] = level;
207 i++;
208 }
209 level++;
210 }
211 *prun_table = run_table;
212 *plevel_table = level_table;
213}
214
215static int wma_decode_init(AVCodecContext * avctx)
216{
217 WMADecodeContext *s = avctx->priv_data;
218 int i, flags1, flags2;
219 float *window;
220 uint8_t *extradata;
221 float bps1, high_freq;
222 volatile float bps;
223 int sample_rate1;
224 int coef_vlc_table;
225
226 s->sample_rate = avctx->sample_rate;
227 s->nb_channels = avctx->channels;
228 s->bit_rate = avctx->bit_rate;
229 s->block_align = avctx->block_align;
230
231 if (avctx->codec->id == CODEC_ID_WMAV1) {
232 s->version = 1;
233 } else {
234 s->version = 2;
235 }
236
237 /* extract flag infos */
238 flags1 = 0;
239 flags2 = 0;
240 extradata = avctx->extradata;
241 if (s->version == 1 && avctx->extradata_size >= 4) {
242 flags1 = extradata[0] | (extradata[1] << 8);
243 flags2 = extradata[2] | (extradata[3] << 8);
244 } else if (s->version == 2 && avctx->extradata_size >= 6) {
245 flags1 = extradata[0] | (extradata[1] << 8) |
246 (extradata[2] << 16) | (extradata[3] << 24);
247 flags2 = extradata[4] | (extradata[5] << 8);
248 }
249 s->use_exp_vlc = flags2 & 0x0001;
250 s->use_bit_reservoir = flags2 & 0x0002;
251 s->use_variable_block_len = flags2 & 0x0004;
252
253 /* compute MDCT block size */
254 if (s->sample_rate <= 16000) {
255 s->frame_len_bits = 9;
256 } else if (s->sample_rate <= 22050 ||
257 (s->sample_rate <= 32000 && s->version == 1)) {
258 s->frame_len_bits = 10;
259 } else {
260 s->frame_len_bits = 11;
261 }
262 s->frame_len = 1 << s->frame_len_bits;
263 if (s->use_variable_block_len) {
264 int nb_max, nb;
265 nb = ((flags2 >> 3) & 3) + 1;
266 if ((s->bit_rate / s->nb_channels) >= 32000)
267 nb += 2;
268 nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
269 if (nb > nb_max)
270 nb = nb_max;
271 s->nb_block_sizes = nb + 1;
272 } else {
273 s->nb_block_sizes = 1;
274 }
275
276 /* init rate dependant parameters */
277 s->use_noise_coding = 1;
278 high_freq = s->sample_rate * 0.5;
279
280 /* if version 2, then the rates are normalized */
281 sample_rate1 = s->sample_rate;
282 if (s->version == 2) {
283 if (sample_rate1 >= 44100)
284 sample_rate1 = 44100;
285 else if (sample_rate1 >= 22050)
286 sample_rate1 = 22050;
287 else if (sample_rate1 >= 16000)
288 sample_rate1 = 16000;
289 else if (sample_rate1 >= 11025)
290 sample_rate1 = 11025;
291 else if (sample_rate1 >= 8000)
292 sample_rate1 = 8000;
293 }
294
295 bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
296 s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
297
298 /* compute high frequency value and choose if noise coding should
299 be activated */
300 bps1 = bps;
301 if (s->nb_channels == 2)
302 bps1 = bps * 1.6;
303 if (sample_rate1 == 44100) {
304 if (bps1 >= 0.61)
305 s->use_noise_coding = 0;
306 else
307 high_freq = high_freq * 0.4;
308 } else if (sample_rate1 == 22050) {
309 if (bps1 >= 1.16)
310 s->use_noise_coding = 0;
311 else if (bps1 >= 0.72)
312 high_freq = high_freq * 0.7;
313 else
314 high_freq = high_freq * 0.6;
315 } else if (sample_rate1 == 16000) {
316 if (bps > 0.5)
317 high_freq = high_freq * 0.5;
318 else
319 high_freq = high_freq * 0.3;
320 } else if (sample_rate1 == 11025) {
321 high_freq = high_freq * 0.7;
322 } else if (sample_rate1 == 8000) {
323 if (bps <= 0.625) {
324 high_freq = high_freq * 0.5;
325 } else if (bps > 0.75) {
326 s->use_noise_coding = 0;
327 } else {
328 high_freq = high_freq * 0.65;
329 }
330 } else {
331 if (bps >= 0.8) {
332 high_freq = high_freq * 0.75;
333 } else if (bps >= 0.6) {
334 high_freq = high_freq * 0.6;
335 } else {
336 high_freq = high_freq * 0.5;
337 }
338 }
339 dprintf("flags1=0x%x flags2=0x%x\n", flags1, flags2);
340 dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
341 s->version, s->nb_channels, s->sample_rate, s->bit_rate,
342 s->block_align);
343 dprintf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
344 bps, bps1, high_freq, s->byte_offset_bits);
345 dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
346 s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
347
348 /* compute the scale factor band sizes for each MDCT block size */
349 {
350 int a, b, pos, lpos, k, block_len, i, j, n;
351 const uint8_t *table;
352
353 if (s->version == 1) {
354 s->coefs_start = 3;
355 } else {
356 s->coefs_start = 0;
357 }
358 for(k = 0; k < s->nb_block_sizes; k++) {
359 block_len = s->frame_len >> k;
360
361 if (s->version == 1) {
362 lpos = 0;
363 for(i=0;i<25;i++) {
364 a = wma_critical_freqs[i];
365 b = s->sample_rate;
366 pos = ((block_len * 2 * a) + (b >> 1)) / b;
367 if (pos > block_len)
368 pos = block_len;
369 s->exponent_bands[0][i] = pos - lpos;
370 if (pos >= block_len) {
371 i++;
372 break;
373 }
374 lpos = pos;
375 }
376 s->exponent_sizes[0] = i;
377 } else {
378 /* hardcoded tables */
379 table = NULL;
380 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
381 if (a < 3) {
382 if (s->sample_rate >= 44100)
383 table = exponent_band_44100[a];
384 else if (s->sample_rate >= 32000)
385 table = exponent_band_32000[a];
386 else if (s->sample_rate >= 22050)
387 table = exponent_band_22050[a];
388 }
389 if (table) {
390 n = *table++;
391 for(i=0;i<n;i++)
392 s->exponent_bands[k][i] = table[i];
393 s->exponent_sizes[k] = n;
394 } else {
395 j = 0;
396 lpos = 0;
397 for(i=0;i<25;i++) {
398 a = wma_critical_freqs[i];
399 b = s->sample_rate;
400 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
401 pos <<= 2;
402 if (pos > block_len)
403 pos = block_len;
404 if (pos > lpos)
405 s->exponent_bands[k][j++] = pos - lpos;
406 if (pos >= block_len)
407 break;
408 lpos = pos;
409 }
410 s->exponent_sizes[k] = j;
411 }
412 }
413
414 /* max number of coefs */
415 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
416 /* high freq computation */
417 s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
418 s->sample_rate + 0.5);
419 n = s->exponent_sizes[k];
420 j = 0;
421 pos = 0;
422 for(i=0;i<n;i++) {
423 int start, end;
424 start = pos;
425 pos += s->exponent_bands[k][i];
426 end = pos;
427 if (start < s->high_band_start[k])
428 start = s->high_band_start[k];
429 if (end > s->coefs_end[k])
430 end = s->coefs_end[k];
431 if (end > start)
432 s->exponent_high_bands[k][j++] = end - start;
433 }
434 s->exponent_high_sizes[k] = j;
435#if 0
436 tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
437 s->frame_len >> k,
438 s->coefs_end[k],
439 s->high_band_start[k],
440 s->exponent_high_sizes[k]);
441 for(j=0;j<s->exponent_high_sizes[k];j++)
442 tprintf(" %d", s->exponent_high_bands[k][j]);
443 tprintf("\n");
444#endif
445 }
446 }
447
448#ifdef TRACE
449 {
450 int i, j;
451 for(i = 0; i < s->nb_block_sizes; i++) {
452 tprintf("%5d: n=%2d:",
453 s->frame_len >> i,
454 s->exponent_sizes[i]);
455 for(j=0;j<s->exponent_sizes[i];j++)
456 tprintf(" %d", s->exponent_bands[i][j]);
457 tprintf("\n");
458 }
459 }
460#endif
461
462 /* init MDCT */
463 for(i = 0; i < s->nb_block_sizes; i++)
464 ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
465
466 /* init MDCT windows : simple sinus window */
467 for(i = 0; i < s->nb_block_sizes; i++) {
468 int n, j;
469 float alpha;
470 n = 1 << (s->frame_len_bits - i);
471 window = av_malloc(sizeof(float) * n);
472 alpha = M_PI / (2.0 * n);
473 for(j=0;j<n;j++) {
474 window[n - j - 1] = sin((j + 0.5) * alpha);
475 }
476 s->windows[i] = window;
477 }
478
479 s->reset_block_lengths = 1;
480
481 if (s->use_noise_coding) {
482
483 /* init the noise generator */
484 if (s->use_exp_vlc)
485 s->noise_mult = 0.02;
486 else
487 s->noise_mult = 0.04;
488
489#ifdef TRACE
490 for(i=0;i<NOISE_TAB_SIZE;i++)
491 s->noise_table[i] = 1.0 * s->noise_mult;
492#else
493 {
494 unsigned int seed;
495 float norm;
496 seed = 1;
497 norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
498 for(i=0;i<NOISE_TAB_SIZE;i++) {
499 seed = seed * 314159 + 1;
500 s->noise_table[i] = (float)((int)seed) * norm;
501 }
502 }
503#endif
504 init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits),
505 hgain_huffbits, 1, 1,
506 hgain_huffcodes, 2, 2, 0);
507 }
508
509 if (s->use_exp_vlc) {
510 init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits),
511 scale_huffbits, 1, 1,
512 scale_huffcodes, 4, 4, 0);
513 } else {
514 wma_lsp_to_curve_init(s, s->frame_len);
515 }
516
517 /* choose the VLC tables for the coefficients */
518 coef_vlc_table = 2;
519 if (s->sample_rate >= 32000) {
520 if (bps1 < 0.72)
521 coef_vlc_table = 0;
522 else if (bps1 < 1.16)
523 coef_vlc_table = 1;
524 }
525
526 init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
527 &coef_vlcs[coef_vlc_table * 2]);
528 init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
529 &coef_vlcs[coef_vlc_table * 2 + 1]);
530 return 0;
531}
532
533/* interpolate values for a bigger or smaller block. The block must
534 have multiple sizes */
535static void interpolate_array(float *scale, int old_size, int new_size)
536{
537 int i, j, jincr, k;
538 float v;
539
540 if (new_size > old_size) {
541 jincr = new_size / old_size;
542 j = new_size;
543 for(i = old_size - 1; i >=0; i--) {
544 v = scale[i];
545 k = jincr;
546 do {
547 scale[--j] = v;
548 } while (--k);
549 }
550 } else if (new_size < old_size) {
551 j = 0;
552 jincr = old_size / new_size;
553 for(i = 0; i < new_size; i++) {
554 scale[i] = scale[j];
555 j += jincr;
556 }
557 }
558}
559
560/* compute x^-0.25 with an exponent and mantissa table. We use linear
561 interpolation to reduce the mantissa table size at a small speed
562 expense (linear interpolation approximately doubles the number of
563 bits of precision). */
564static inline float pow_m1_4(WMADecodeContext *s, float x)
565{
566 union {
567 float f;
568 unsigned int v;
569 } u, t;
570 unsigned int e, m;
571 float a, b;
572
573 u.f = x;
574 e = u.v >> 23;
575 m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
576 /* build interpolation scale: 1 <= t < 2. */
577 t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
578 a = s->lsp_pow_m_table1[m];
579 b = s->lsp_pow_m_table2[m];
580 return s->lsp_pow_e_table[e] * (a + b * t.f);
581}
582
583static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
584{
585 float wdel, a, b;
586 int i, e, m;
587
588 wdel = M_PI / frame_len;
589 for(i=0;i<frame_len;i++)
590 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
591
592 /* tables for x^-0.25 computation */
593 for(i=0;i<256;i++) {
594 e = i - 126;
595 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
596 }
597
598 /* NOTE: these two tables are needed to avoid two operations in
599 pow_m1_4 */
600 b = 1.0;
601 for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
602 m = (1 << LSP_POW_BITS) + i;
603 a = (float)m * (0.5 / (1 << LSP_POW_BITS));
604 a = pow(a, -0.25);
605 s->lsp_pow_m_table1[i] = 2 * a - b;
606 s->lsp_pow_m_table2[i] = b - a;
607 b = a;
608 }
609#if 0
610 for(i=1;i<20;i++) {
611 float v, r1, r2;
612 v = 5.0 / i;
613 r1 = pow_m1_4(s, v);
614 r2 = pow(v,-0.25);
615 printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
616 }
617#endif
618}
619
620/* NOTE: We use the same code as Vorbis here */
621/* XXX: optimize it further with SSE/3Dnow */
622static void wma_lsp_to_curve(WMADecodeContext *s,
623 float *out, float *val_max_ptr,
624 int n, float *lsp)
625{
626 int i, j;
627 float p, q, w, v, val_max;
628
629 val_max = 0;
630 for(i=0;i<n;i++) {
631 p = 0.5f;
632 q = 0.5f;
633 w = s->lsp_cos_table[i];
634 for(j=1;j<NB_LSP_COEFS;j+=2){
635 q *= w - lsp[j - 1];
636 p *= w - lsp[j];
637 }
638 p *= p * (2.0f - w);
639 q *= q * (2.0f + w);
640 v = p + q;
641 v = pow_m1_4(s, v);
642 if (v > val_max)
643 val_max = v;
644 out[i] = v;
645 }
646 *val_max_ptr = val_max;
647}
648
649/* decode exponents coded with LSP coefficients (same idea as Vorbis) */
650static void decode_exp_lsp(WMADecodeContext *s, int ch)
651{
652 float lsp_coefs[NB_LSP_COEFS];
653 int val, i;
654
655 for(i = 0; i < NB_LSP_COEFS; i++) {
656 if (i == 0 || i >= 8)
657 val = get_bits(&s->gb, 3);
658 else
659 val = get_bits(&s->gb, 4);
660 lsp_coefs[i] = lsp_codebook[i][val];
661 }
662
663 wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
664 s->block_len, lsp_coefs);
665}
666
667/* decode exponents coded with VLC codes */
668static int decode_exp_vlc(WMADecodeContext *s, int ch)
669{
670 int last_exp, n, code;
671 const uint16_t *ptr, *band_ptr;
672 float v, *q, max_scale, *q_end;
673
674 band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
675 ptr = band_ptr;
676 q = s->exponents[ch];
677 q_end = q + s->block_len;
678 max_scale = 0;
679 if (s->version == 1) {
680 last_exp = get_bits(&s->gb, 5) + 10;
681 /* XXX: use a table */
682 v = pow(10, last_exp * (1.0 / 16.0));
683 max_scale = v;
684 n = *ptr++;
685 do {
686 *q++ = v;
687 } while (--n);
688 }
689 last_exp = 36;
690 while (q < q_end) {
691 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
692 if (code < 0)
693 return -1;
694 /* NOTE: this offset is the same as MPEG4 AAC ! */
695 last_exp += code - 60;
696 /* XXX: use a table */
697 v = pow(10, last_exp * (1.0 / 16.0));
698 if (v > max_scale)
699 max_scale = v;
700 n = *ptr++;
701 do {
702 *q++ = v;
703 } while (--n);
704 }
705 s->max_exponent[ch] = max_scale;
706 return 0;
707}
708
709/* return 0 if OK. return 1 if last block of frame. return -1 if
710 unrecorrable error. */
711static int wma_decode_block(WMADecodeContext *s)
712{
713 int n, v, a, ch, code, bsize;
714 int coef_nb_bits, total_gain, parse_exponents;
715 float window[BLOCK_MAX_SIZE * 2];
716// XXX: FIXME!! there's a bug somewhere which makes this mandatory under altivec
717#ifdef HAVE_ALTIVEC
718 volatile int nb_coefs[MAX_CHANNELS] __attribute__((aligned(16)));
719#else
720 int nb_coefs[MAX_CHANNELS];
721#endif
722 float mdct_norm;
723
724#ifdef TRACE
725 tprintf("***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
726#endif
727
728 /* compute current block length */
729 if (s->use_variable_block_len) {
730 n = av_log2(s->nb_block_sizes - 1) + 1;
731
732 if (s->reset_block_lengths) {
733 s->reset_block_lengths = 0;
734 v = get_bits(&s->gb, n);
735 if (v >= s->nb_block_sizes)
736 return -1;
737 s->prev_block_len_bits = s->frame_len_bits - v;
738 v = get_bits(&s->gb, n);
739 if (v >= s->nb_block_sizes)
740 return -1;
741 s->block_len_bits = s->frame_len_bits - v;
742 } else {
743 /* update block lengths */
744 s->prev_block_len_bits = s->block_len_bits;
745 s->block_len_bits = s->next_block_len_bits;
746 }
747 v = get_bits(&s->gb, n);
748 if (v >= s->nb_block_sizes)
749 return -1;
750 s->next_block_len_bits = s->frame_len_bits - v;
751 } else {
752 /* fixed block len */
753 s->next_block_len_bits = s->frame_len_bits;
754 s->prev_block_len_bits = s->frame_len_bits;
755 s->block_len_bits = s->frame_len_bits;
756 }
757
758 /* now check if the block length is coherent with the frame length */
759 s->block_len = 1 << s->block_len_bits;
760 if ((s->block_pos + s->block_len) > s->frame_len)
761 return -1;
762
763 if (s->nb_channels == 2) {
764 s->ms_stereo = get_bits(&s->gb, 1);
765 }
766 v = 0;
767 for(ch = 0; ch < s->nb_channels; ch++) {
768 a = get_bits(&s->gb, 1);
769 s->channel_coded[ch] = a;
770 v |= a;
771 }
772 /* if no channel coded, no need to go further */
773 /* XXX: fix potential framing problems */
774 if (!v)
775 goto next;
776
777 bsize = s->frame_len_bits - s->block_len_bits;
778
779 /* read total gain and extract corresponding number of bits for
780 coef escape coding */
781 total_gain = 1;
782 for(;;) {
783 a = get_bits(&s->gb, 7);
784 total_gain += a;
785 if (a != 127)
786 break;
787 }
788
789 if (total_gain < 15)
790 coef_nb_bits = 13;
791 else if (total_gain < 32)
792 coef_nb_bits = 12;
793 else if (total_gain < 40)
794 coef_nb_bits = 11;
795 else if (total_gain < 45)
796 coef_nb_bits = 10;
797 else
798 coef_nb_bits = 9;
799
800 /* compute number of coefficients */
801 n = s->coefs_end[bsize] - s->coefs_start;
802 for(ch = 0; ch < s->nb_channels; ch++)
803 nb_coefs[ch] = n;
804
805 /* complex coding */
806 if (s->use_noise_coding) {
807
808 for(ch = 0; ch < s->nb_channels; ch++) {
809 if (s->channel_coded[ch]) {
810 int i, n, a;
811 n = s->exponent_high_sizes[bsize];
812 for(i=0;i<n;i++) {
813 a = get_bits(&s->gb, 1);
814 s->high_band_coded[ch][i] = a;
815 /* if noise coding, the coefficients are not transmitted */
816 if (a)
817 nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
818 }
819 }
820 }
821 for(ch = 0; ch < s->nb_channels; ch++) {
822 if (s->channel_coded[ch]) {
823 int i, n, val, code;
824
825 n = s->exponent_high_sizes[bsize];
826 val = (int)0x80000000;
827 for(i=0;i<n;i++) {
828 if (s->high_band_coded[ch][i]) {
829 if (val == (int)0x80000000) {
830 val = get_bits(&s->gb, 7) - 19;
831 } else {
832 code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
833 if (code < 0)
834 return -1;
835 val += code - 18;
836 }
837 s->high_band_values[ch][i] = val;
838 }
839 }
840 }
841 }
842 }
843
844 /* exposant can be interpolated in short blocks. */
845 parse_exponents = 1;
846 if (s->block_len_bits != s->frame_len_bits) {
847 parse_exponents = get_bits(&s->gb, 1);
848 }
849
850 if (parse_exponents) {
851 for(ch = 0; ch < s->nb_channels; ch++) {
852 if (s->channel_coded[ch]) {
853 if (s->use_exp_vlc) {
854 if (decode_exp_vlc(s, ch) < 0)
855 return -1;
856 } else {
857 decode_exp_lsp(s, ch);
858 }
859 }
860 }
861 } else {
862 for(ch = 0; ch < s->nb_channels; ch++) {
863 if (s->channel_coded[ch]) {
864 interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
865 s->block_len);
866 }
867 }
868 }
869
870 /* parse spectral coefficients : just RLE encoding */
871 for(ch = 0; ch < s->nb_channels; ch++) {
872 if (s->channel_coded[ch]) {
873 VLC *coef_vlc;
874 int level, run, sign, tindex;
875 int16_t *ptr, *eptr;
876 const int16_t *level_table, *run_table;
877
878 /* special VLC tables are used for ms stereo because
879 there is potentially less energy there */
880 tindex = (ch == 1 && s->ms_stereo);
881 coef_vlc = &s->coef_vlc[tindex];
882 run_table = s->run_table[tindex];
883 level_table = s->level_table[tindex];
884 /* XXX: optimize */
885 ptr = &s->coefs1[ch][0];
886 eptr = ptr + nb_coefs[ch];
887 memset(ptr, 0, s->block_len * sizeof(int16_t));
888 for(;;) {
889 code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
890 if (code < 0)
891 return -1;
892 if (code == 1) {
893 /* EOB */
894 break;
895 } else if (code == 0) {
896 /* escape */
897 level = get_bits(&s->gb, coef_nb_bits);
898 /* NOTE: this is rather suboptimal. reading
899 block_len_bits would be better */
900 run = get_bits(&s->gb, s->frame_len_bits);
901 } else {
902 /* normal code */
903 run = run_table[code];
904 level = level_table[code];
905 }
906 sign = get_bits(&s->gb, 1);
907 if (!sign)
908 level = -level;
909 ptr += run;
910 if (ptr >= eptr)
911 {
912 av_log(NULL, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
913 break;
914 }
915 *ptr++ = level;
916 /* NOTE: EOB can be omitted */
917 if (ptr >= eptr)
918 break;
919 }
920 }
921 if (s->version == 1 && s->nb_channels >= 2) {
922 align_get_bits(&s->gb);
923 }
924 }
925
926 /* normalize */
927 {
928 int n4 = s->block_len / 2;
929 mdct_norm = 1.0 / (float)n4;
930 if (s->version == 1) {
931 mdct_norm *= sqrt(n4);
932 }
933 }
934
935 /* finally compute the MDCT coefficients */
936 for(ch = 0; ch < s->nb_channels; ch++) {
937 if (s->channel_coded[ch]) {
938 int16_t *coefs1;
939 float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
940 int i, j, n, n1, last_high_band;
941 float exp_power[HIGH_BAND_MAX_SIZE];
942
943 coefs1 = s->coefs1[ch];
944 exponents = s->exponents[ch];
945 mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
946 mult *= mdct_norm;
947 coefs = s->coefs[ch];
948 if (s->use_noise_coding) {
949 mult1 = mult;
950 /* very low freqs : noise */
951 for(i = 0;i < s->coefs_start; i++) {
952 *coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
953 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
954 }
955
956 n1 = s->exponent_high_sizes[bsize];
957
958 /* compute power of high bands */
959 exp_ptr = exponents +
960 s->high_band_start[bsize] -
961 s->coefs_start;
962 last_high_band = 0; /* avoid warning */
963 for(j=0;j<n1;j++) {
964 n = s->exponent_high_bands[s->frame_len_bits -
965 s->block_len_bits][j];
966 if (s->high_band_coded[ch][j]) {
967 float e2, v;
968 e2 = 0;
969 for(i = 0;i < n; i++) {
970 v = exp_ptr[i];
971 e2 += v * v;
972 }
973 exp_power[j] = e2 / n;
974 last_high_band = j;
975 tprintf("%d: power=%f (%d)\n", j, exp_power[j], n);
976 }
977 exp_ptr += n;
978 }
979
980 /* main freqs and high freqs */
981 for(j=-1;j<n1;j++) {
982 if (j < 0) {
983 n = s->high_band_start[bsize] -
984 s->coefs_start;
985 } else {
986 n = s->exponent_high_bands[s->frame_len_bits -
987 s->block_len_bits][j];
988 }
989 if (j >= 0 && s->high_band_coded[ch][j]) {
990 /* use noise with specified power */
991 mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
992 /* XXX: use a table */
993 mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
994 mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
995 mult1 *= mdct_norm;
996 for(i = 0;i < n; i++) {
997 noise = s->noise_table[s->noise_index];
998 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
999 *coefs++ = (*exponents++) * noise * mult1;
1000 }
1001 } else {
1002 /* coded values + small noise */
1003 for(i = 0;i < n; i++) {
1004 noise = s->noise_table[s->noise_index];
1005 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1006 *coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
1007 }
1008 }
1009 }
1010
1011 /* very high freqs : noise */
1012 n = s->block_len - s->coefs_end[bsize];
1013 mult1 = mult * exponents[-1];
1014 for(i = 0; i < n; i++) {
1015 *coefs++ = s->noise_table[s->noise_index] * mult1;
1016 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1017 }
1018 } else {
1019 /* XXX: optimize more */
1020 for(i = 0;i < s->coefs_start; i++)
1021 *coefs++ = 0.0;
1022 n = nb_coefs[ch];
1023 for(i = 0;i < n; i++) {
1024 *coefs++ = coefs1[i] * exponents[i] * mult;
1025 }
1026 n = s->block_len - s->coefs_end[bsize];
1027 for(i = 0;i < n; i++)
1028 *coefs++ = 0.0;
1029 }
1030 }
1031 }
1032
1033#ifdef TRACE
1034 for(ch = 0; ch < s->nb_channels; ch++) {
1035 if (s->channel_coded[ch]) {
1036 dump_floats("exponents", 3, s->exponents[ch], s->block_len);
1037 dump_floats("coefs", 1, s->coefs[ch], s->block_len);
1038 }
1039 }
1040#endif
1041
1042 if (s->ms_stereo && s->channel_coded[1]) {
1043 float a, b;
1044 int i;
1045
1046 /* nominal case for ms stereo: we do it before mdct */
1047 /* no need to optimize this case because it should almost
1048 never happen */
1049 if (!s->channel_coded[0]) {
1050 tprintf("rare ms-stereo case happened\n");
1051 memset(s->coefs[0], 0, sizeof(float) * s->block_len);
1052 s->channel_coded[0] = 1;
1053 }
1054
1055 for(i = 0; i < s->block_len; i++) {
1056 a = s->coefs[0][i];
1057 b = s->coefs[1][i];
1058 s->coefs[0][i] = a + b;
1059 s->coefs[1][i] = a - b;
1060 }
1061 }
1062
1063 /* build the window : we ensure that when the windows overlap
1064 their squared sum is always 1 (MDCT reconstruction rule) */
1065 /* XXX: merge with output */
1066 {
1067 int i, next_block_len, block_len, prev_block_len, n;
1068 float *wptr;
1069
1070 block_len = s->block_len;
1071 prev_block_len = 1 << s->prev_block_len_bits;
1072 next_block_len = 1 << s->next_block_len_bits;
1073
1074 /* right part */
1075 wptr = window + block_len;
1076 if (block_len <= next_block_len) {
1077 for(i=0;i<block_len;i++)
1078 *wptr++ = s->windows[bsize][i];
1079 } else {
1080 /* overlap */
1081 n = (block_len / 2) - (next_block_len / 2);
1082 for(i=0;i<n;i++)
1083 *wptr++ = 1.0;
1084 for(i=0;i<next_block_len;i++)
1085 *wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
1086 for(i=0;i<n;i++)
1087 *wptr++ = 0.0;
1088 }
1089
1090 /* left part */
1091 wptr = window + block_len;
1092 if (block_len <= prev_block_len) {
1093 for(i=0;i<block_len;i++)
1094 *--wptr = s->windows[bsize][i];
1095 } else {
1096 /* overlap */
1097 n = (block_len / 2) - (prev_block_len / 2);
1098 for(i=0;i<n;i++)
1099 *--wptr = 1.0;
1100 for(i=0;i<prev_block_len;i++)
1101 *--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
1102 for(i=0;i<n;i++)
1103 *--wptr = 0.0;
1104 }
1105 }
1106
1107
1108 for(ch = 0; ch < s->nb_channels; ch++) {
1109 if (s->channel_coded[ch]) {
1110 DECLARE_ALIGNED_16(FFTSample, output[BLOCK_MAX_SIZE * 2]);
1111 float *ptr;
1112 int i, n4, index, n;
1113
1114 n = s->block_len;
1115 n4 = s->block_len / 2;
1116 ff_imdct_calc(&s->mdct_ctx[bsize],
1117 output, s->coefs[ch], s->mdct_tmp);
1118
1119 /* XXX: optimize all that by build the window and
1120 multipying/adding at the same time */
1121 /* multiply by the window */
1122 for(i=0;i<n * 2;i++) {
1123 output[i] *= window[i];
1124 }
1125
1126 /* add in the frame */
1127 index = (s->frame_len / 2) + s->block_pos - n4;
1128 ptr = &s->frame_out[ch][index];
1129 for(i=0;i<n * 2;i++) {
1130 *ptr += output[i];
1131 ptr++;
1132 }
1133
1134 /* specific fast case for ms-stereo : add to second
1135 channel if it is not coded */
1136 if (s->ms_stereo && !s->channel_coded[1]) {
1137 ptr = &s->frame_out[1][index];
1138 for(i=0;i<n * 2;i++) {
1139 *ptr += output[i];
1140 ptr++;
1141 }
1142 }
1143 }
1144 }
1145 next:
1146 /* update block number */
1147 s->block_num++;
1148 s->block_pos += s->block_len;
1149 if (s->block_pos >= s->frame_len)
1150 return 1;
1151 else
1152 return 0;
1153}
1154
1155/* decode a frame of frame_len samples */
1156static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
1157{
1158 int ret, i, n, a, ch, incr;
1159 int16_t *ptr;
1160 float *iptr;
1161
1162#ifdef TRACE
1163 tprintf("***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
1164#endif
1165
1166 /* read each block */
1167 s->block_num = 0;
1168 s->block_pos = 0;
1169 for(;;) {
1170 ret = wma_decode_block(s);
1171 if (ret < 0)
1172 return -1;
1173 if (ret)
1174 break;
1175 }
1176
1177 /* convert frame to integer */
1178 n = s->frame_len;
1179 incr = s->nb_channels;
1180 for(ch = 0; ch < s->nb_channels; ch++) {
1181 ptr = samples + ch;
1182 iptr = s->frame_out[ch];
1183
1184 for(i=0;i<n;i++) {
1185 a = lrintf(*iptr++);
1186 if (a > 32767)
1187 a = 32767;
1188 else if (a < -32768)
1189 a = -32768;
1190 *ptr = a;
1191 ptr += incr;
1192 }
1193 /* prepare for next block */
1194 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1195 s->frame_len * sizeof(float));
1196 /* XXX: suppress this */
1197 memset(&s->frame_out[ch][s->frame_len], 0,
1198 s->frame_len * sizeof(float));
1199 }
1200
1201#ifdef TRACE
1202 dump_shorts("samples", samples, n * s->nb_channels);
1203#endif
1204 return 0;
1205}
1206
1207static int wma_decode_superframe(AVCodecContext *avctx,
1208 void *data, int *data_size,
1209 uint8_t *buf, int buf_size)
1210{
1211 WMADecodeContext *s = avctx->priv_data;
1212 int nb_frames, bit_offset, i, pos, len;
1213 uint8_t *q;
1214 int16_t *samples;
1215
1216 tprintf("***decode_superframe:\n");
1217
1218 if(buf_size==0){
1219 s->last_superframe_len = 0;
1220 return 0;
1221 }
1222
1223 samples = data;
1224
1225 init_get_bits(&s->gb, buf, buf_size*8);
1226
1227 if (s->use_bit_reservoir) {
1228 /* read super frame header */
1229 get_bits(&s->gb, 4); /* super frame index */
1230 nb_frames = get_bits(&s->gb, 4) - 1;
1231
1232 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1233
1234 if (s->last_superframe_len > 0) {
1235 // printf("skip=%d\n", s->last_bitoffset);
1236 /* add bit_offset bits to last frame */
1237 if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
1238 MAX_CODED_SUPERFRAME_SIZE)
1239 goto fail;
1240 q = s->last_superframe + s->last_superframe_len;
1241 len = bit_offset;
1242 while (len > 7) {
1243 *q++ = (get_bits)(&s->gb, 8);
1244 len -= 8;
1245 }
1246 if (len > 0) {
1247 *q++ = (get_bits)(&s->gb, len) << (8 - len);
1248 }
1249
1250 /* XXX: bit_offset bits into last frame */
1251 init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
1252 /* skip unused bits */
1253 if (s->last_bitoffset > 0)
1254 skip_bits(&s->gb, s->last_bitoffset);
1255 /* this frame is stored in the last superframe and in the
1256 current one */
1257 if (wma_decode_frame(s, samples) < 0)
1258 goto fail;
1259 samples += s->nb_channels * s->frame_len;
1260 }
1261
1262 /* read each frame starting from bit_offset */
1263 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1264 init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
1265 len = pos & 7;
1266 if (len > 0)
1267 skip_bits(&s->gb, len);
1268
1269 s->reset_block_lengths = 1;
1270 for(i=0;i<nb_frames;i++) {
1271 if (wma_decode_frame(s, samples) < 0)
1272 goto fail;
1273 samples += s->nb_channels * s->frame_len;
1274 }
1275
1276 /* we copy the end of the frame in the last frame buffer */
1277 pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1278 s->last_bitoffset = pos & 7;
1279 pos >>= 3;
1280 len = buf_size - pos;
1281 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
1282 goto fail;
1283 }
1284 s->last_superframe_len = len;
1285 memcpy(s->last_superframe, buf + pos, len);
1286 } else {
1287 /* single frame decode */
1288 if (wma_decode_frame(s, samples) < 0)
1289 goto fail;
1290 samples += s->nb_channels * s->frame_len;
1291 }
1292 *data_size = (int8_t *)samples - (int8_t *)data;
1293 return s->block_align;
1294 fail:
1295 /* when error, we reset the bit reservoir */
1296 s->last_superframe_len = 0;
1297 return -1;
1298}
1299
1300static int wma_decode_end(AVCodecContext *avctx)
1301{
1302 WMADecodeContext *s = avctx->priv_data;
1303 int i;
1304
1305 for(i = 0; i < s->nb_block_sizes; i++)
1306 ff_mdct_end(&s->mdct_ctx[i]);
1307 for(i = 0; i < s->nb_block_sizes; i++)
1308 av_free(s->windows[i]);
1309
1310 if (s->use_exp_vlc) {
1311 free_vlc(&s->exp_vlc);
1312 }
1313 if (s->use_noise_coding) {
1314 free_vlc(&s->hgain_vlc);
1315 }
1316 for(i = 0;i < 2; i++) {
1317 free_vlc(&s->coef_vlc[i]);
1318 av_free(s->run_table[i]);
1319 av_free(s->level_table[i]);
1320 }
1321
1322 return 0;
1323}
1324
1325AVCodec wmav1_decoder =
1326{
1327 "wmav1",
1328 CODEC_TYPE_AUDIO,
1329 CODEC_ID_WMAV1,
1330 sizeof(WMADecodeContext),
1331 wma_decode_init,
1332 NULL,
1333 wma_decode_end,
1334 wma_decode_superframe,
1335};
1336
1337AVCodec wmav2_decoder =
1338{
1339 "wmav2",
1340 CODEC_TYPE_AUDIO,
1341 CODEC_ID_WMAV2,
1342 sizeof(WMADecodeContext),
1343 wma_decode_init,
1344 NULL,
1345 wma_decode_end,
1346 wma_decode_superframe,
1347};
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette