1 | ///////////////////////////////////////////////////////////////////////////////
|
---|
2 | //
|
---|
3 | /// \file sha256.c
|
---|
4 | /// \brief SHA-256
|
---|
5 | ///
|
---|
6 | /// \todo Crypto++ has x86 ASM optimizations. They use SSE so if they
|
---|
7 | /// are imported to liblzma, SSE instructions need to be used
|
---|
8 | /// conditionally to keep the code working on older boxes.
|
---|
9 | //
|
---|
10 | // This code is based on the code found from 7-Zip, which has a modified
|
---|
11 | // version of the SHA-256 found from Crypto++ <http://www.cryptopp.com/>.
|
---|
12 | // The code was modified a little to fit into liblzma.
|
---|
13 | //
|
---|
14 | // Authors: Kevin Springle
|
---|
15 | // Wei Dai
|
---|
16 | // Igor Pavlov
|
---|
17 | // Lasse Collin
|
---|
18 | //
|
---|
19 | // This file has been put into the public domain.
|
---|
20 | // You can do whatever you want with this file.
|
---|
21 | //
|
---|
22 | ///////////////////////////////////////////////////////////////////////////////
|
---|
23 |
|
---|
24 | #include "check.h"
|
---|
25 |
|
---|
26 | // Rotate a uint32_t. GCC can optimize this to a rotate instruction
|
---|
27 | // at least on x86.
|
---|
28 | static inline uint32_t
|
---|
29 | rotr_32(uint32_t num, unsigned amount)
|
---|
30 | {
|
---|
31 | return (num >> amount) | (num << (32 - amount));
|
---|
32 | }
|
---|
33 |
|
---|
34 | #define blk0(i) (W[i] = conv32be(data[i]))
|
---|
35 | #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
|
---|
36 | + s0(W[(i - 15) & 15]))
|
---|
37 |
|
---|
38 | #define Ch(x, y, z) (z ^ (x & (y ^ z)))
|
---|
39 | #define Maj(x, y, z) ((x & (y ^ z)) + (y & z))
|
---|
40 |
|
---|
41 | #define a(i) T[(0 - i) & 7]
|
---|
42 | #define b(i) T[(1 - i) & 7]
|
---|
43 | #define c(i) T[(2 - i) & 7]
|
---|
44 | #define d(i) T[(3 - i) & 7]
|
---|
45 | #define e(i) T[(4 - i) & 7]
|
---|
46 | #define f(i) T[(5 - i) & 7]
|
---|
47 | #define g(i) T[(6 - i) & 7]
|
---|
48 | #define h(i) T[(7 - i) & 7]
|
---|
49 |
|
---|
50 | #define R(i, j, blk) \
|
---|
51 | h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] + blk; \
|
---|
52 | d(i) += h(i); \
|
---|
53 | h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
|
---|
54 | #define R0(i) R(i, 0, blk0(i))
|
---|
55 | #define R2(i) R(i, j, blk2(i))
|
---|
56 |
|
---|
57 | #define S0(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 9), 11), 2)
|
---|
58 | #define S1(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 14), 5), 6)
|
---|
59 | #define s0(x) (rotr_32(x ^ rotr_32(x, 11), 7) ^ (x >> 3))
|
---|
60 | #define s1(x) (rotr_32(x ^ rotr_32(x, 2), 17) ^ (x >> 10))
|
---|
61 |
|
---|
62 |
|
---|
63 | static const uint32_t SHA256_K[64] = {
|
---|
64 | 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
|
---|
65 | 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
|
---|
66 | 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
|
---|
67 | 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
|
---|
68 | 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
|
---|
69 | 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
|
---|
70 | 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
|
---|
71 | 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
|
---|
72 | 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
|
---|
73 | 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
|
---|
74 | 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
|
---|
75 | 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
|
---|
76 | 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
|
---|
77 | 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
|
---|
78 | 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
|
---|
79 | 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
|
---|
80 | };
|
---|
81 |
|
---|
82 |
|
---|
83 | static void
|
---|
84 | transform(uint32_t state[8], const uint32_t data[16])
|
---|
85 | {
|
---|
86 | uint32_t W[16];
|
---|
87 | uint32_t T[8];
|
---|
88 |
|
---|
89 | // Copy state[] to working vars.
|
---|
90 | memcpy(T, state, sizeof(T));
|
---|
91 |
|
---|
92 | // The first 16 operations unrolled
|
---|
93 | R0( 0); R0( 1); R0( 2); R0( 3);
|
---|
94 | R0( 4); R0( 5); R0( 6); R0( 7);
|
---|
95 | R0( 8); R0( 9); R0(10); R0(11);
|
---|
96 | R0(12); R0(13); R0(14); R0(15);
|
---|
97 |
|
---|
98 | // The remaining 48 operations partially unrolled
|
---|
99 | for (unsigned int j = 16; j < 64; j += 16) {
|
---|
100 | R2( 0); R2( 1); R2( 2); R2( 3);
|
---|
101 | R2( 4); R2( 5); R2( 6); R2( 7);
|
---|
102 | R2( 8); R2( 9); R2(10); R2(11);
|
---|
103 | R2(12); R2(13); R2(14); R2(15);
|
---|
104 | }
|
---|
105 |
|
---|
106 | // Add the working vars back into state[].
|
---|
107 | state[0] += a(0);
|
---|
108 | state[1] += b(0);
|
---|
109 | state[2] += c(0);
|
---|
110 | state[3] += d(0);
|
---|
111 | state[4] += e(0);
|
---|
112 | state[5] += f(0);
|
---|
113 | state[6] += g(0);
|
---|
114 | state[7] += h(0);
|
---|
115 | }
|
---|
116 |
|
---|
117 |
|
---|
118 | static void
|
---|
119 | process(lzma_check_state *check)
|
---|
120 | {
|
---|
121 | transform(check->state.sha256.state, check->buffer.u32);
|
---|
122 | return;
|
---|
123 | }
|
---|
124 |
|
---|
125 |
|
---|
126 | extern void
|
---|
127 | lzma_sha256_init(lzma_check_state *check)
|
---|
128 | {
|
---|
129 | static const uint32_t s[8] = {
|
---|
130 | 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
|
---|
131 | 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
|
---|
132 | };
|
---|
133 |
|
---|
134 | memcpy(check->state.sha256.state, s, sizeof(s));
|
---|
135 | check->state.sha256.size = 0;
|
---|
136 |
|
---|
137 | return;
|
---|
138 | }
|
---|
139 |
|
---|
140 |
|
---|
141 | extern void
|
---|
142 | lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check)
|
---|
143 | {
|
---|
144 | // Copy the input data into a properly aligned temporary buffer.
|
---|
145 | // This way we can be called with arbitrarily sized buffers
|
---|
146 | // (no need to be multiple of 64 bytes), and the code works also
|
---|
147 | // on architectures that don't allow unaligned memory access.
|
---|
148 | while (size > 0) {
|
---|
149 | const size_t copy_start = check->state.sha256.size & 0x3F;
|
---|
150 | size_t copy_size = 64 - copy_start;
|
---|
151 | if (copy_size > size)
|
---|
152 | copy_size = size;
|
---|
153 |
|
---|
154 | memcpy(check->buffer.u8 + copy_start, buf, copy_size);
|
---|
155 |
|
---|
156 | buf += copy_size;
|
---|
157 | size -= copy_size;
|
---|
158 | check->state.sha256.size += copy_size;
|
---|
159 |
|
---|
160 | if ((check->state.sha256.size & 0x3F) == 0)
|
---|
161 | process(check);
|
---|
162 | }
|
---|
163 |
|
---|
164 | return;
|
---|
165 | }
|
---|
166 |
|
---|
167 |
|
---|
168 | extern void
|
---|
169 | lzma_sha256_finish(lzma_check_state *check)
|
---|
170 | {
|
---|
171 | // Add padding as described in RFC 3174 (it describes SHA-1 but
|
---|
172 | // the same padding style is used for SHA-256 too).
|
---|
173 | size_t pos = check->state.sha256.size & 0x3F;
|
---|
174 | check->buffer.u8[pos++] = 0x80;
|
---|
175 |
|
---|
176 | while (pos != 64 - 8) {
|
---|
177 | if (pos == 64) {
|
---|
178 | process(check);
|
---|
179 | pos = 0;
|
---|
180 | }
|
---|
181 |
|
---|
182 | check->buffer.u8[pos++] = 0x00;
|
---|
183 | }
|
---|
184 |
|
---|
185 | // Convert the message size from bytes to bits.
|
---|
186 | check->state.sha256.size *= 8;
|
---|
187 |
|
---|
188 | check->buffer.u64[(64 - 8) / 8] = conv64be(check->state.sha256.size);
|
---|
189 |
|
---|
190 | process(check);
|
---|
191 |
|
---|
192 | for (size_t i = 0; i < 8; ++i)
|
---|
193 | check->buffer.u32[i] = conv32be(check->state.sha256.state[i]);
|
---|
194 |
|
---|
195 | return;
|
---|
196 | }
|
---|