VirtualBox

source: vbox/trunk/src/libs/liblzma-5.6.4/common/block_buffer_encoder.c@ 109046

Last change on this file since 109046 was 108905, checked in by vboxsync, 6 weeks ago

liblzma-5.6.4: Applied and adjusted our liblzma changes to 5.6.4. jiraref:VBP-1613

  • Property svn:eol-style set to LF
  • Property svn:keywords set to Author Date Id Revision
File size: 10.6 KB
Line 
1// SPDX-License-Identifier: 0BSD
2
3///////////////////////////////////////////////////////////////////////////////
4//
5/// \file block_buffer_encoder.c
6/// \brief Single-call .xz Block encoder
7//
8// Author: Lasse Collin
9//
10///////////////////////////////////////////////////////////////////////////////
11
12#include "block_buffer_encoder.h"
13#include "block_encoder.h"
14#include "filter_encoder.h"
15#include "lzma2_encoder.h"
16#include "check.h"
17
18
19/// Estimate the maximum size of the Block Header and Check fields for
20/// a Block that uses LZMA2 uncompressed chunks. We could use
21/// lzma_block_header_size() but this is simpler.
22///
23/// Block Header Size + Block Flags + Compressed Size
24/// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check
25/// and round up to the next multiple of four to take Header Padding
26/// into account.
27#define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \
28 + LZMA_CHECK_SIZE_MAX + 3) & ~3)
29
30
31static uint64_t
32lzma2_bound(uint64_t uncompressed_size)
33{
34 // Prevent integer overflow in overhead calculation.
35 if (uncompressed_size > COMPRESSED_SIZE_MAX)
36 return 0;
37
38 // Calculate the exact overhead of the LZMA2 headers: Round
39 // uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX,
40 // multiply by the size of per-chunk header, and add one byte for
41 // the end marker.
42 const uint64_t overhead = ((uncompressed_size + LZMA2_CHUNK_MAX - 1)
43 / LZMA2_CHUNK_MAX)
44 * LZMA2_HEADER_UNCOMPRESSED + 1;
45
46 // Catch the possible integer overflow.
47 if (COMPRESSED_SIZE_MAX - overhead < uncompressed_size)
48 return 0;
49
50 return uncompressed_size + overhead;
51}
52
53
54extern uint64_t
55lzma_block_buffer_bound64(uint64_t uncompressed_size)
56{
57 // If the data doesn't compress, we always use uncompressed
58 // LZMA2 chunks.
59 uint64_t lzma2_size = lzma2_bound(uncompressed_size);
60 if (lzma2_size == 0)
61 return 0;
62
63 // Take Block Padding into account.
64 lzma2_size = (lzma2_size + 3) & ~UINT64_C(3);
65
66 // No risk of integer overflow because lzma2_bound() already takes
67 // into account the size of the headers in the Block.
68 return HEADERS_BOUND + lzma2_size;
69}
70
71
72extern LZMA_API(size_t)
73lzma_block_buffer_bound(size_t uncompressed_size)
74{
75 uint64_t ret = lzma_block_buffer_bound64(uncompressed_size);
76
77#if SIZE_MAX < UINT64_MAX
78 // Catch the possible integer overflow on 32-bit systems.
79 if (ret > SIZE_MAX)
80 return 0;
81#endif
82
83 return ret;
84}
85
86
87static lzma_ret
88block_encode_uncompressed(lzma_block *block, const uint8_t *in, size_t in_size,
89 uint8_t *out, size_t *out_pos, size_t out_size)
90{
91 // Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at
92 // all, but LZMA2 always requires a dictionary, so use the minimum
93 // value to minimize memory usage of the decoder.
94 lzma_options_lzma lzma2 = {
95 .dict_size = LZMA_DICT_SIZE_MIN,
96 };
97
98 lzma_filter filters[2];
99 filters[0].id = LZMA_FILTER_LZMA2;
100 filters[0].options = &lzma2;
101 filters[1].id = LZMA_VLI_UNKNOWN;
102
103 // Set the above filter options to *block temporarily so that we can
104 // encode the Block Header.
105 lzma_filter *filters_orig = block->filters;
106 block->filters = filters;
107
108 if (lzma_block_header_size(block) != LZMA_OK) {
109 block->filters = filters_orig;
110 return LZMA_PROG_ERROR;
111 }
112
113 // Check that there's enough output space. The caller has already
114 // set block->compressed_size to what lzma2_bound() has returned,
115 // so we can reuse that value. We know that compressed_size is a
116 // known valid VLI and header_size is a small value so their sum
117 // will never overflow.
118 assert(block->compressed_size == lzma2_bound(in_size));
119 if (out_size - *out_pos
120 < block->header_size + block->compressed_size) {
121 block->filters = filters_orig;
122 return LZMA_BUF_ERROR;
123 }
124
125 if (lzma_block_header_encode(block, out + *out_pos) != LZMA_OK) {
126 block->filters = filters_orig;
127 return LZMA_PROG_ERROR;
128 }
129
130 block->filters = filters_orig;
131 *out_pos += block->header_size;
132
133 // Encode the data using LZMA2 uncompressed chunks.
134 size_t in_pos = 0;
135 uint8_t control = 0x01; // Dictionary reset
136
137 while (in_pos < in_size) {
138 // Control byte: Indicate uncompressed chunk, of which
139 // the first resets the dictionary.
140 out[(*out_pos)++] = control;
141 control = 0x02; // No dictionary reset
142
143 // Size of the uncompressed chunk
144 const size_t copy_size
145 = my_min(in_size - in_pos, LZMA2_CHUNK_MAX);
146 out[(*out_pos)++] = (copy_size - 1) >> 8;
147 out[(*out_pos)++] = (copy_size - 1) & 0xFF;
148
149 // The actual data
150 assert(*out_pos + copy_size <= out_size);
151 memcpy(out + *out_pos, in + in_pos, copy_size);
152
153 in_pos += copy_size;
154 *out_pos += copy_size;
155 }
156
157 // End marker
158 out[(*out_pos)++] = 0x00;
159 assert(*out_pos <= out_size);
160
161 return LZMA_OK;
162}
163
164
165static lzma_ret
166block_encode_normal(lzma_block *block, const lzma_allocator *allocator,
167 const uint8_t *in, size_t in_size,
168 uint8_t *out, size_t *out_pos, size_t out_size)
169{
170 // Find out the size of the Block Header.
171 return_if_error(lzma_block_header_size(block));
172
173 // Reserve space for the Block Header and skip it for now.
174 if (out_size - *out_pos <= block->header_size)
175 return LZMA_BUF_ERROR;
176
177 const size_t out_start = *out_pos;
178 *out_pos += block->header_size;
179
180 // Limit out_size so that we stop encoding if the output would grow
181 // bigger than what uncompressed Block would be.
182 if (out_size - *out_pos > block->compressed_size)
183 out_size = *out_pos + block->compressed_size;
184
185 // TODO: In many common cases this could be optimized to use
186 // significantly less memory.
187 lzma_next_coder raw_encoder = LZMA_NEXT_CODER_INIT;
188 lzma_ret ret = lzma_raw_encoder_init(
189 &raw_encoder, allocator, block->filters);
190
191 if (ret == LZMA_OK) {
192 size_t in_pos = 0;
193 ret = raw_encoder.code(raw_encoder.coder, allocator,
194 in, &in_pos, in_size, out, out_pos, out_size,
195 LZMA_FINISH);
196 }
197
198 // NOTE: This needs to be run even if lzma_raw_encoder_init() failed.
199 lzma_next_end(&raw_encoder, allocator);
200
201 if (ret == LZMA_STREAM_END) {
202 // Compression was successful. Write the Block Header.
203 block->compressed_size
204 = *out_pos - (out_start + block->header_size);
205 ret = lzma_block_header_encode(block, out + out_start);
206 if (ret != LZMA_OK)
207 ret = LZMA_PROG_ERROR;
208
209 } else if (ret == LZMA_OK) {
210 // Output buffer became full.
211 ret = LZMA_BUF_ERROR;
212 }
213
214 // Reset *out_pos if something went wrong.
215 if (ret != LZMA_OK)
216 *out_pos = out_start;
217
218 return ret;
219}
220
221
222static lzma_ret
223block_buffer_encode(lzma_block *block, const lzma_allocator *allocator,
224 const uint8_t *in, size_t in_size,
225 uint8_t *out, size_t *out_pos, size_t out_size,
226 bool try_to_compress)
227{
228 // Validate the arguments.
229 if (block == NULL || (in == NULL && in_size != 0) || out == NULL
230 || out_pos == NULL || *out_pos > out_size)
231 return LZMA_PROG_ERROR;
232
233 // The contents of the structure may depend on the version so
234 // check the version before validating the contents of *block.
235 if (block->version > 1)
236 return LZMA_OPTIONS_ERROR;
237
238 if ((unsigned int)(block->check) > LZMA_CHECK_ID_MAX
239 || (try_to_compress && block->filters == NULL))
240 return LZMA_PROG_ERROR;
241
242 if (!lzma_check_is_supported(block->check))
243 return LZMA_UNSUPPORTED_CHECK;
244
245 // Size of a Block has to be a multiple of four, so limit the size
246 // here already. This way we don't need to check it again when adding
247 // Block Padding.
248 out_size -= (out_size - *out_pos) & 3;
249
250 // Get the size of the Check field.
251 const size_t check_size = lzma_check_size(block->check);
252 assert(check_size != UINT32_MAX);
253
254 // Reserve space for the Check field.
255 if (out_size - *out_pos <= check_size)
256 return LZMA_BUF_ERROR;
257
258 out_size -= check_size;
259
260 // Initialize block->uncompressed_size and calculate the worst-case
261 // value for block->compressed_size.
262 block->uncompressed_size = in_size;
263 block->compressed_size = lzma2_bound(in_size);
264 if (block->compressed_size == 0)
265 return LZMA_DATA_ERROR;
266
267 // Do the actual compression.
268 lzma_ret ret = LZMA_BUF_ERROR;
269 if (try_to_compress)
270 ret = block_encode_normal(block, allocator,
271 in, in_size, out, out_pos, out_size);
272
273 if (ret != LZMA_OK) {
274 // If the error was something else than output buffer
275 // becoming full, return the error now.
276 if (ret != LZMA_BUF_ERROR)
277 return ret;
278
279 // The data was incompressible (at least with the options
280 // given to us) or the output buffer was too small. Use the
281 // uncompressed chunks of LZMA2 to wrap the data into a valid
282 // Block. If we haven't been given enough output space, even
283 // this may fail.
284 return_if_error(block_encode_uncompressed(block, in, in_size,
285 out, out_pos, out_size));
286 }
287
288 assert(*out_pos <= out_size);
289
290 // Block Padding. No buffer overflow here, because we already adjusted
291 // out_size so that (out_size - out_start) is a multiple of four.
292 // Thus, if the buffer is full, the loop body can never run.
293 for (size_t i = (size_t)(block->compressed_size); i & 3; ++i) {
294 assert(*out_pos < out_size);
295 out[(*out_pos)++] = 0x00;
296 }
297
298 // If there's no Check field, we are done now.
299 if (check_size > 0) {
300 // Calculate the integrity check. We reserved space for
301 // the Check field earlier so we don't need to check for
302 // available output space here.
303 lzma_check_state check;
304 lzma_check_init(&check, block->check);
305 lzma_check_update(&check, block->check, in, in_size);
306 lzma_check_finish(&check, block->check);
307
308 memcpy(block->raw_check, check.buffer.u8, check_size);
309 memcpy(out + *out_pos, check.buffer.u8, check_size);
310 *out_pos += check_size;
311 }
312
313 return LZMA_OK;
314}
315
316
317extern LZMA_API(lzma_ret)
318lzma_block_buffer_encode(lzma_block *block, const lzma_allocator *allocator,
319 const uint8_t *in, size_t in_size,
320 uint8_t *out, size_t *out_pos, size_t out_size)
321{
322 return block_buffer_encode(block, allocator,
323 in, in_size, out, out_pos, out_size, true);
324}
325
326
327#ifdef HAVE_SYMBOL_VERSIONS_LINUX
328// This is for compatibility with binaries linked against liblzma that
329// has been patched with xz-5.2.2-compat-libs.patch from RHEL/CentOS 7.
330LZMA_SYMVER_API("lzma_block_uncomp_encode@XZ_5.2.2",
331 lzma_ret, lzma_block_uncomp_encode_522)(lzma_block *block,
332 const uint8_t *in, size_t in_size,
333 uint8_t *out, size_t *out_pos, size_t out_size)
334 lzma_nothrow lzma_attr_warn_unused_result
335 __attribute__((__alias__("lzma_block_uncomp_encode_52")));
336
337LZMA_SYMVER_API("lzma_block_uncomp_encode@@XZ_5.2",
338 lzma_ret, lzma_block_uncomp_encode_52)(lzma_block *block,
339 const uint8_t *in, size_t in_size,
340 uint8_t *out, size_t *out_pos, size_t out_size)
341 lzma_nothrow lzma_attr_warn_unused_result;
342
343#define lzma_block_uncomp_encode lzma_block_uncomp_encode_52
344#endif
345extern LZMA_API(lzma_ret)
346lzma_block_uncomp_encode(lzma_block *block,
347 const uint8_t *in, size_t in_size,
348 uint8_t *out, size_t *out_pos, size_t out_size)
349{
350 // It won't allocate any memory from heap so no need
351 // for lzma_allocator.
352 return block_buffer_encode(block, NULL,
353 in, in_size, out, out_pos, out_size, false);
354}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette