1 | // SPDX-License-Identifier: 0BSD
|
---|
2 |
|
---|
3 | ///////////////////////////////////////////////////////////////////////////////
|
---|
4 | //
|
---|
5 | /// \file range_common.h
|
---|
6 | /// \brief Common things for range encoder and decoder
|
---|
7 | ///
|
---|
8 | // Authors: Igor Pavlov
|
---|
9 | // Lasse Collin
|
---|
10 | //
|
---|
11 | ///////////////////////////////////////////////////////////////////////////////
|
---|
12 |
|
---|
13 | #ifndef LZMA_RANGE_COMMON_H
|
---|
14 | #define LZMA_RANGE_COMMON_H
|
---|
15 |
|
---|
16 | // Skip common.h if building price_tablegen.c.
|
---|
17 | #ifndef BUILDING_PRICE_TABLEGEN
|
---|
18 | # include "common.h"
|
---|
19 | #endif
|
---|
20 |
|
---|
21 |
|
---|
22 | ///////////////
|
---|
23 | // Constants //
|
---|
24 | ///////////////
|
---|
25 |
|
---|
26 | #define RC_SHIFT_BITS 8
|
---|
27 | #define RC_TOP_BITS 24
|
---|
28 | #define RC_TOP_VALUE (UINT32_C(1) << RC_TOP_BITS)
|
---|
29 | #define RC_BIT_MODEL_TOTAL_BITS 11
|
---|
30 | #define RC_BIT_MODEL_TOTAL (UINT32_C(1) << RC_BIT_MODEL_TOTAL_BITS)
|
---|
31 | #define RC_MOVE_BITS 5
|
---|
32 |
|
---|
33 |
|
---|
34 | ////////////
|
---|
35 | // Macros //
|
---|
36 | ////////////
|
---|
37 |
|
---|
38 | // Resets the probability so that both 0 and 1 have probability of 50 %
|
---|
39 | #define bit_reset(prob) \
|
---|
40 | prob = RC_BIT_MODEL_TOTAL >> 1
|
---|
41 |
|
---|
42 | // This does the same for a complete bit tree.
|
---|
43 | // (A tree represented as an array.)
|
---|
44 | #define bittree_reset(probs, bit_levels) \
|
---|
45 | for (uint32_t bt_i = 0; bt_i < (1 << (bit_levels)); ++bt_i) \
|
---|
46 | bit_reset((probs)[bt_i])
|
---|
47 |
|
---|
48 |
|
---|
49 | //////////////////////
|
---|
50 | // Type definitions //
|
---|
51 | //////////////////////
|
---|
52 |
|
---|
53 | /// \brief Type of probabilities used with range coder
|
---|
54 | ///
|
---|
55 | /// This needs to be at least 12-bit integer, so uint16_t is a logical choice.
|
---|
56 | /// However, on some architecture and compiler combinations, a bigger type
|
---|
57 | /// may give better speed, because the probability variables are accessed
|
---|
58 | /// a lot. On the other hand, bigger probability type increases cache
|
---|
59 | /// footprint, since there are 2 to 14 thousand probability variables in
|
---|
60 | /// LZMA (assuming the limit of lc + lp <= 4; with lc + lp <= 12 there
|
---|
61 | /// would be about 1.5 million variables).
|
---|
62 | ///
|
---|
63 | /// With malicious files, the initialization speed of the LZMA decoder can
|
---|
64 | /// become important. In that case, smaller probability variables mean that
|
---|
65 | /// there is less bytes to write to RAM, which makes initialization faster.
|
---|
66 | /// With big probability type, the initialization can become so slow that it
|
---|
67 | /// can be a problem e.g. for email servers doing virus scanning.
|
---|
68 | ///
|
---|
69 | /// I will be sticking to uint16_t unless some specific architectures
|
---|
70 | /// are *much* faster (20-50 %) with uint32_t.
|
---|
71 | ///
|
---|
72 | /// Update in 2024: The branchless C and x86-64 assembly was written so that
|
---|
73 | /// probability is assumed to be uint16_t. (In contrast, LZMA SDK 23.01
|
---|
74 | /// assembly supports both types.)
|
---|
75 | typedef uint16_t probability;
|
---|
76 |
|
---|
77 | #endif
|
---|