VirtualBox

source: vbox/trunk/src/libs/liblzma-5.8.1/common/index.c@ 108911

Last change on this file since 108911 was 108911, checked in by vboxsync, 4 weeks ago

libs/liblzma: Applied and adjusted our liblzma changes to 5.8.1 and export to OSE. jiraref:VBP-1635

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
  • Property sync-process set to export
File size: 35.3 KB
Line 
1// SPDX-License-Identifier: 0BSD
2
3///////////////////////////////////////////////////////////////////////////////
4//
5/// \file index.c
6/// \brief Handling of .xz Indexes and some other Stream information
7//
8// Author: Lasse Collin
9//
10///////////////////////////////////////////////////////////////////////////////
11
12#include "common.h"
13#include "index.h"
14#include "stream_flags_common.h"
15
16
17/// \brief How many Records to allocate at once
18///
19/// This should be big enough to avoid making lots of tiny allocations
20/// but small enough to avoid too much unused memory at once.
21#define INDEX_GROUP_SIZE 512
22
23
24/// \brief How many Records can be allocated at once at maximum
25#define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
26
27
28/// \brief Base structure for index_stream and index_group structures
29typedef struct index_tree_node_s index_tree_node;
30struct index_tree_node_s {
31 /// Uncompressed start offset of this Stream (relative to the
32 /// beginning of the file) or Block (relative to the beginning
33 /// of the Stream)
34 lzma_vli uncompressed_base;
35
36 /// Compressed start offset of this Stream or Block
37 lzma_vli compressed_base;
38
39 index_tree_node *parent;
40 index_tree_node *left;
41 index_tree_node *right;
42};
43
44
45/// \brief AVL tree to hold index_stream or index_group structures
46typedef struct {
47 /// Root node
48 index_tree_node *root;
49
50 /// Leftmost node. Since the tree will be filled sequentially,
51 /// this won't change after the first node has been added to
52 /// the tree.
53 index_tree_node *leftmost;
54
55 /// The rightmost node in the tree. Since the tree is filled
56 /// sequentially, this is always the node where to add the new data.
57 index_tree_node *rightmost;
58
59 /// Number of nodes in the tree
60 uint32_t count;
61
62} index_tree;
63
64
65typedef struct {
66 lzma_vli uncompressed_sum;
67 lzma_vli unpadded_sum;
68} index_record;
69
70
71typedef struct {
72 /// Every Record group is part of index_stream.groups tree.
73 index_tree_node node;
74
75 /// Number of Blocks in this Stream before this group.
76 lzma_vli number_base;
77
78 /// Number of Records that can be put in records[].
79 size_t allocated;
80
81 /// Index of the last Record in use.
82 size_t last;
83
84 /// The sizes in this array are stored as cumulative sums relative
85 /// to the beginning of the Stream. This makes it possible to
86 /// use binary search in lzma_index_locate().
87 ///
88 /// Note that the cumulative summing is done specially for
89 /// unpadded_sum: The previous value is rounded up to the next
90 /// multiple of four before adding the Unpadded Size of the new
91 /// Block. The total encoded size of the Blocks in the Stream
92 /// is records[last].unpadded_sum in the last Record group of
93 /// the Stream.
94 ///
95 /// For example, if the Unpadded Sizes are 39, 57, and 81, the
96 /// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
97 /// The total encoded size of these Blocks is 184.
98 ///
99 /// This is a flexible array, because it makes easy to optimize
100 /// memory usage in case someone concatenates many Streams that
101 /// have only one or few Blocks.
102 index_record records[];
103
104} index_group;
105
106
107typedef struct {
108 /// Every index_stream is a node in the tree of Streams.
109 index_tree_node node;
110
111 /// Number of this Stream (first one is 1)
112 uint32_t number;
113
114 /// Total number of Blocks before this Stream
115 lzma_vli block_number_base;
116
117 /// Record groups of this Stream are stored in a tree.
118 /// It's a T-tree with AVL-tree balancing. There are
119 /// INDEX_GROUP_SIZE Records per node by default.
120 /// This keeps the number of memory allocations reasonable
121 /// and finding a Record is fast.
122 index_tree groups;
123
124 /// Number of Records in this Stream
125 lzma_vli record_count;
126
127 /// Size of the List of Records field in this Stream. This is used
128 /// together with record_count to calculate the size of the Index
129 /// field and thus the total size of the Stream.
130 lzma_vli index_list_size;
131
132 /// Stream Flags of this Stream. This is meaningful only if
133 /// the Stream Flags have been told us with lzma_index_stream_flags().
134 /// Initially stream_flags.version is set to UINT32_MAX to indicate
135 /// that the Stream Flags are unknown.
136 lzma_stream_flags stream_flags;
137
138 /// Amount of Stream Padding after this Stream. This defaults to
139 /// zero and can be set with lzma_index_stream_padding().
140 lzma_vli stream_padding;
141
142} index_stream;
143
144
145struct lzma_index_s {
146 /// AVL-tree containing the Stream(s). Often there is just one
147 /// Stream, but using a tree keeps lookups fast even when there
148 /// are many concatenated Streams.
149 index_tree streams;
150
151 /// Uncompressed size of all the Blocks in the Stream(s)
152 lzma_vli uncompressed_size;
153
154 /// Total size of all the Blocks in the Stream(s)
155 lzma_vli total_size;
156
157 /// Total number of Records in all Streams in this lzma_index
158 lzma_vli record_count;
159
160 /// Size of the List of Records field if all the Streams in this
161 /// lzma_index were packed into a single Stream (makes it simpler to
162 /// take many .xz files and combine them into a single Stream).
163 ///
164 /// This value together with record_count is needed to calculate
165 /// Backward Size that is stored into Stream Footer.
166 lzma_vli index_list_size;
167
168 /// How many Records to allocate at once in lzma_index_append().
169 /// This defaults to INDEX_GROUP_SIZE but can be overridden with
170 /// lzma_index_prealloc().
171 size_t prealloc;
172
173 /// Bitmask indicating what integrity check types have been used
174 /// as set by lzma_index_stream_flags(). The bit of the last Stream
175 /// is not included here, since it is possible to change it by
176 /// calling lzma_index_stream_flags() again.
177 uint32_t checks;
178};
179
180
181static void
182index_tree_init(index_tree *tree)
183{
184 tree->root = NULL;
185 tree->leftmost = NULL;
186 tree->rightmost = NULL;
187 tree->count = 0;
188 return;
189}
190
191
192/// Helper for index_tree_end()
193static void
194index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
195 void (*free_func)(void *node, const lzma_allocator *allocator))
196{
197 // The tree won't ever be very huge, so recursion should be fine.
198 // 20 levels in the tree is likely quite a lot already in practice.
199 if (node->left != NULL)
200 index_tree_node_end(node->left, allocator, free_func);
201
202 if (node->right != NULL)
203 index_tree_node_end(node->right, allocator, free_func);
204
205 free_func(node, allocator);
206 return;
207}
208
209
210/// Free the memory allocated for a tree. Each node is freed using the
211/// given free_func which is either &lzma_free or &index_stream_end.
212/// The latter is used to free the Record groups from each index_stream
213/// before freeing the index_stream itself.
214static void
215index_tree_end(index_tree *tree, const lzma_allocator *allocator,
216 void (*free_func)(void *node, const lzma_allocator *allocator))
217{
218 assert(free_func != NULL);
219
220 if (tree->root != NULL)
221 index_tree_node_end(tree->root, allocator, free_func);
222
223 return;
224}
225
226
227/// Add a new node to the tree. node->uncompressed_base and
228/// node->compressed_base must have been set by the caller already.
229static void
230index_tree_append(index_tree *tree, index_tree_node *node)
231{
232 node->parent = tree->rightmost;
233 node->left = NULL;
234 node->right = NULL;
235
236 ++tree->count;
237
238 // Handle the special case of adding the first node.
239 if (tree->root == NULL) {
240 tree->root = node;
241 tree->leftmost = node;
242 tree->rightmost = node;
243 return;
244 }
245
246 // The tree is always filled sequentially.
247 assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
248 assert(tree->rightmost->compressed_base < node->compressed_base);
249
250 // Add the new node after the rightmost node. It's the correct
251 // place due to the reason above.
252 tree->rightmost->right = node;
253 tree->rightmost = node;
254
255 // Balance the AVL-tree if needed. We don't need to keep the balance
256 // factors in nodes, because we always fill the tree sequentially,
257 // and thus know the state of the tree just by looking at the node
258 // count. From the node count we can calculate how many steps to go
259 // up in the tree to find the rotation root.
260 uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
261 if (up != 0) {
262 // Locate the root node for the rotation.
263 up = ctz32(tree->count) + 2;
264 do {
265 node = node->parent;
266 } while (--up > 0);
267
268 // Rotate left using node as the rotation root.
269 index_tree_node *pivot = node->right;
270
271 if (node->parent == NULL) {
272 tree->root = pivot;
273 } else {
274 assert(node->parent->right == node);
275 node->parent->right = pivot;
276 }
277
278 pivot->parent = node->parent;
279
280 node->right = pivot->left;
281 if (node->right != NULL)
282 node->right->parent = node;
283
284 pivot->left = node;
285 node->parent = pivot;
286 }
287
288 return;
289}
290
291
292/// Get the next node in the tree. Return NULL if there are no more nodes.
293static void *
294index_tree_next(const index_tree_node *node)
295{
296 if (node->right != NULL) {
297 node = node->right;
298 while (node->left != NULL)
299 node = node->left;
300
301 return (void *)(node);
302 }
303
304 while (node->parent != NULL && node->parent->right == node)
305 node = node->parent;
306
307 return (void *)(node->parent);
308}
309
310
311/// Locate a node that contains the given uncompressed offset. It is
312/// caller's job to check that target is not bigger than the uncompressed
313/// size of the tree (the last node would be returned in that case still).
314static void *
315index_tree_locate(const index_tree *tree, lzma_vli target)
316{
317 const index_tree_node *result = NULL;
318 const index_tree_node *node = tree->root;
319
320 assert(tree->leftmost == NULL
321 || tree->leftmost->uncompressed_base == 0);
322
323 // Consecutive nodes may have the same uncompressed_base.
324 // We must pick the rightmost one.
325 while (node != NULL) {
326 if (node->uncompressed_base > target) {
327 node = node->left;
328 } else {
329 result = node;
330 node = node->right;
331 }
332 }
333
334 return (void *)(result);
335}
336
337
338/// Allocate and initialize a new Stream using the given base offsets.
339static index_stream *
340index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
341 uint32_t stream_number, lzma_vli block_number_base,
342 const lzma_allocator *allocator)
343{
344 index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
345 if (s == NULL)
346 return NULL;
347
348 s->node.uncompressed_base = uncompressed_base;
349 s->node.compressed_base = compressed_base;
350 s->node.parent = NULL;
351 s->node.left = NULL;
352 s->node.right = NULL;
353
354 s->number = stream_number;
355 s->block_number_base = block_number_base;
356
357 index_tree_init(&s->groups);
358
359 s->record_count = 0;
360 s->index_list_size = 0;
361 s->stream_flags.version = UINT32_MAX;
362 s->stream_padding = 0;
363
364 return s;
365}
366
367
368/// Free the memory allocated for a Stream and its Record groups.
369static void
370index_stream_end(void *node, const lzma_allocator *allocator)
371{
372 index_stream *s = node;
373 index_tree_end(&s->groups, allocator, &lzma_free);
374 lzma_free(s, allocator);
375 return;
376}
377
378
379static lzma_index *
380index_init_plain(const lzma_allocator *allocator)
381{
382 lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
383 if (i != NULL) {
384 index_tree_init(&i->streams);
385 i->uncompressed_size = 0;
386 i->total_size = 0;
387 i->record_count = 0;
388 i->index_list_size = 0;
389 i->prealloc = INDEX_GROUP_SIZE;
390 i->checks = 0;
391 }
392
393 return i;
394}
395
396
397extern LZMA_API(lzma_index *)
398lzma_index_init(const lzma_allocator *allocator)
399{
400 lzma_index *i = index_init_plain(allocator);
401 if (i == NULL)
402 return NULL;
403
404 index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
405 if (s == NULL) {
406 lzma_free(i, allocator);
407 return NULL;
408 }
409
410 index_tree_append(&i->streams, &s->node);
411
412 return i;
413}
414
415
416extern LZMA_API(void)
417lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
418{
419 // NOTE: If you modify this function, check also the bottom
420 // of lzma_index_cat().
421 if (i != NULL) {
422 index_tree_end(&i->streams, allocator, &index_stream_end);
423 lzma_free(i, allocator);
424 }
425
426 return;
427}
428
429
430extern void
431lzma_index_prealloc(lzma_index *i, lzma_vli records)
432{
433 if (records > PREALLOC_MAX)
434 records = PREALLOC_MAX;
435
436 i->prealloc = (size_t)(records);
437 return;
438}
439
440
441extern LZMA_API(uint64_t)
442lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
443{
444 // This calculates an upper bound that is only a little bit
445 // bigger than the exact maximum memory usage with the given
446 // parameters.
447
448 // Typical malloc() overhead is 2 * sizeof(void *) but we take
449 // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
450 // instead would give too inaccurate estimate.
451 const size_t alloc_overhead = 4 * sizeof(void *);
452
453 // Amount of memory needed for each Stream base structures.
454 // We assume that every Stream has at least one Block and
455 // thus at least one group.
456 const size_t stream_base = sizeof(index_stream)
457 + sizeof(index_group) + 2 * alloc_overhead;
458
459 // Amount of memory needed per group.
460 const size_t group_base = sizeof(index_group)
461 + INDEX_GROUP_SIZE * sizeof(index_record)
462 + alloc_overhead;
463
464 // Number of groups. There may actually be more, but that overhead
465 // has been taken into account in stream_base already.
466 const lzma_vli groups
467 = (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
468
469 // Memory used by index_stream and index_group structures.
470 const uint64_t streams_mem = streams * stream_base;
471 const uint64_t groups_mem = groups * group_base;
472
473 // Memory used by the base structure.
474 const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
475
476 // Validate the arguments and catch integer overflows.
477 // Maximum number of Streams is "only" UINT32_MAX, because
478 // that limit is used by the tree containing the Streams.
479 const uint64_t limit = UINT64_MAX - index_base;
480 if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
481 || streams > limit / stream_base
482 || groups > limit / group_base
483 || limit - streams_mem < groups_mem)
484 return UINT64_MAX;
485
486 return index_base + streams_mem + groups_mem;
487}
488
489
490extern LZMA_API(uint64_t)
491lzma_index_memused(const lzma_index *i)
492{
493 return lzma_index_memusage(i->streams.count, i->record_count);
494}
495
496
497extern LZMA_API(lzma_vli)
498lzma_index_block_count(const lzma_index *i)
499{
500 return i->record_count;
501}
502
503
504extern LZMA_API(lzma_vli)
505lzma_index_stream_count(const lzma_index *i)
506{
507 return i->streams.count;
508}
509
510
511extern LZMA_API(lzma_vli)
512lzma_index_size(const lzma_index *i)
513{
514 return index_size(i->record_count, i->index_list_size);
515}
516
517
518extern LZMA_API(lzma_vli)
519lzma_index_total_size(const lzma_index *i)
520{
521 return i->total_size;
522}
523
524
525extern LZMA_API(lzma_vli)
526lzma_index_stream_size(const lzma_index *i)
527{
528 // Stream Header + Blocks + Index + Stream Footer
529 return LZMA_STREAM_HEADER_SIZE + i->total_size
530 + index_size(i->record_count, i->index_list_size)
531 + LZMA_STREAM_HEADER_SIZE;
532}
533
534
535static lzma_vli
536index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
537 lzma_vli record_count, lzma_vli index_list_size,
538 lzma_vli stream_padding)
539{
540 // Earlier Streams and Stream Paddings + Stream Header
541 // + Blocks + Index + Stream Footer + Stream Padding
542 //
543 // This might go over LZMA_VLI_MAX due to too big unpadded_sum
544 // when this function is used in lzma_index_append().
545 lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
546 + stream_padding + vli_ceil4(unpadded_sum);
547 if (file_size > LZMA_VLI_MAX)
548 return LZMA_VLI_UNKNOWN;
549
550 // The same applies here.
551 file_size += index_size(record_count, index_list_size);
552 if (file_size > LZMA_VLI_MAX)
553 return LZMA_VLI_UNKNOWN;
554
555 return file_size;
556}
557
558
559extern LZMA_API(lzma_vli)
560lzma_index_file_size(const lzma_index *i)
561{
562 const index_stream *s = (const index_stream *)(i->streams.rightmost);
563 const index_group *g = (const index_group *)(s->groups.rightmost);
564 return index_file_size(s->node.compressed_base,
565 g == NULL ? 0 : g->records[g->last].unpadded_sum,
566 s->record_count, s->index_list_size,
567 s->stream_padding);
568}
569
570
571extern LZMA_API(lzma_vli)
572lzma_index_uncompressed_size(const lzma_index *i)
573{
574 return i->uncompressed_size;
575}
576
577
578extern LZMA_API(uint32_t)
579lzma_index_checks(const lzma_index *i)
580{
581 uint32_t checks = i->checks;
582
583 // Get the type of the Check of the last Stream too.
584 const index_stream *s = (const index_stream *)(i->streams.rightmost);
585 if (s->stream_flags.version != UINT32_MAX)
586 checks |= UINT32_C(1) << s->stream_flags.check;
587
588 return checks;
589}
590
591
592extern uint32_t
593lzma_index_padding_size(const lzma_index *i)
594{
595 return (LZMA_VLI_C(4) - index_size_unpadded(
596 i->record_count, i->index_list_size)) & 3;
597}
598
599
600extern LZMA_API(lzma_ret)
601lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
602{
603 if (i == NULL || stream_flags == NULL)
604 return LZMA_PROG_ERROR;
605
606 // Validate the Stream Flags.
607 return_if_error(lzma_stream_flags_compare(
608 stream_flags, stream_flags));
609
610 index_stream *s = (index_stream *)(i->streams.rightmost);
611 s->stream_flags = *stream_flags;
612
613 return LZMA_OK;
614}
615
616
617extern LZMA_API(lzma_ret)
618lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
619{
620 if (i == NULL || stream_padding > LZMA_VLI_MAX
621 || (stream_padding & 3) != 0)
622 return LZMA_PROG_ERROR;
623
624 index_stream *s = (index_stream *)(i->streams.rightmost);
625
626 // Check that the new value won't make the file grow too big.
627 const lzma_vli old_stream_padding = s->stream_padding;
628 s->stream_padding = 0;
629 if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
630 s->stream_padding = old_stream_padding;
631 return LZMA_DATA_ERROR;
632 }
633
634 s->stream_padding = stream_padding;
635 return LZMA_OK;
636}
637
638
639extern LZMA_API(lzma_ret)
640lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
641 lzma_vli unpadded_size, lzma_vli uncompressed_size)
642{
643 // Validate.
644 if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
645 || unpadded_size > UNPADDED_SIZE_MAX
646 || uncompressed_size > LZMA_VLI_MAX)
647 return LZMA_PROG_ERROR;
648
649 index_stream *s = (index_stream *)(i->streams.rightmost);
650 index_group *g = (index_group *)(s->groups.rightmost);
651
652 const lzma_vli compressed_base = g == NULL ? 0
653 : vli_ceil4(g->records[g->last].unpadded_sum);
654 const lzma_vli uncompressed_base = g == NULL ? 0
655 : g->records[g->last].uncompressed_sum;
656 const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
657 + lzma_vli_size(uncompressed_size);
658
659 // Check that uncompressed size will not overflow.
660 if (uncompressed_base + uncompressed_size > LZMA_VLI_MAX)
661 return LZMA_DATA_ERROR;
662
663 // Check that the new unpadded sum will not overflow. This is
664 // checked again in index_file_size(), but the unpadded sum is
665 // passed to vli_ceil4() which expects a valid lzma_vli value.
666 if (compressed_base + unpadded_size > UNPADDED_SIZE_MAX)
667 return LZMA_DATA_ERROR;
668
669 // Check that the file size will stay within limits.
670 if (index_file_size(s->node.compressed_base,
671 compressed_base + unpadded_size, s->record_count + 1,
672 s->index_list_size + index_list_size_add,
673 s->stream_padding) == LZMA_VLI_UNKNOWN)
674 return LZMA_DATA_ERROR;
675
676 // The size of the Index field must not exceed the maximum value
677 // that can be stored in the Backward Size field.
678 if (index_size(i->record_count + 1,
679 i->index_list_size + index_list_size_add)
680 > LZMA_BACKWARD_SIZE_MAX)
681 return LZMA_DATA_ERROR;
682
683 if (g != NULL && g->last + 1 < g->allocated) {
684 // There is space in the last group at least for one Record.
685 ++g->last;
686 } else {
687 // We need to allocate a new group.
688 g = lzma_alloc(sizeof(index_group)
689 + i->prealloc * sizeof(index_record),
690 allocator);
691 if (g == NULL)
692 return LZMA_MEM_ERROR;
693
694 g->last = 0;
695 g->allocated = i->prealloc;
696
697 // Reset prealloc so that if the application happens to
698 // add new Records, the allocation size will be sane.
699 i->prealloc = INDEX_GROUP_SIZE;
700
701 // Set the start offsets of this group.
702 g->node.uncompressed_base = uncompressed_base;
703 g->node.compressed_base = compressed_base;
704 g->number_base = s->record_count + 1;
705
706 // Add the new group to the Stream.
707 index_tree_append(&s->groups, &g->node);
708 }
709
710 // Add the new Record to the group.
711 g->records[g->last].uncompressed_sum
712 = uncompressed_base + uncompressed_size;
713 g->records[g->last].unpadded_sum
714 = compressed_base + unpadded_size;
715
716 // Update the totals.
717 ++s->record_count;
718 s->index_list_size += index_list_size_add;
719
720 i->total_size += vli_ceil4(unpadded_size);
721 i->uncompressed_size += uncompressed_size;
722 ++i->record_count;
723 i->index_list_size += index_list_size_add;
724
725 return LZMA_OK;
726}
727
728
729/// Structure to pass info to index_cat_helper()
730typedef struct {
731 /// Uncompressed size of the destination
732 lzma_vli uncompressed_size;
733
734 /// Compressed file size of the destination
735 lzma_vli file_size;
736
737 /// Same as above but for Block numbers
738 lzma_vli block_number_add;
739
740 /// Number of Streams that were in the destination index before we
741 /// started appending new Streams from the source index. This is
742 /// used to fix the Stream numbering.
743 uint32_t stream_number_add;
744
745 /// Destination index' Stream tree
746 index_tree *streams;
747
748} index_cat_info;
749
750
751/// Add the Stream nodes from the source index to dest using recursion.
752/// Simplest iterative traversal of the source tree wouldn't work, because
753/// we update the pointers in nodes when moving them to the destination tree.
754static void
755index_cat_helper(const index_cat_info *info, index_stream *this)
756{
757 index_stream *left = (index_stream *)(this->node.left);
758 index_stream *right = (index_stream *)(this->node.right);
759
760 if (left != NULL)
761 index_cat_helper(info, left);
762
763 this->node.uncompressed_base += info->uncompressed_size;
764 this->node.compressed_base += info->file_size;
765 this->number += info->stream_number_add;
766 this->block_number_base += info->block_number_add;
767 index_tree_append(info->streams, &this->node);
768
769 if (right != NULL)
770 index_cat_helper(info, right);
771
772 return;
773}
774
775
776extern LZMA_API(lzma_ret)
777lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
778 const lzma_allocator *allocator)
779{
780 if (dest == NULL || src == NULL)
781 return LZMA_PROG_ERROR;
782
783 const lzma_vli dest_file_size = lzma_index_file_size(dest);
784
785 // Check that we don't exceed the file size limits.
786 if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
787 || dest->uncompressed_size + src->uncompressed_size
788 > LZMA_VLI_MAX)
789 return LZMA_DATA_ERROR;
790
791 // Check that the encoded size of the combined lzma_indexes stays
792 // within limits. In theory, this should be done only if we know
793 // that the user plans to actually combine the Streams and thus
794 // construct a single Index (probably rare). However, exceeding
795 // this limit is quite theoretical, so we do this check always
796 // to simplify things elsewhere.
797 {
798 const lzma_vli dest_size = index_size_unpadded(
799 dest->record_count, dest->index_list_size);
800 const lzma_vli src_size = index_size_unpadded(
801 src->record_count, src->index_list_size);
802 if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
803 return LZMA_DATA_ERROR;
804 }
805
806 // Optimize the last group to minimize memory usage. Allocation has
807 // to be done before modifying dest or src.
808 {
809 index_stream *s = (index_stream *)(dest->streams.rightmost);
810 index_group *g = (index_group *)(s->groups.rightmost);
811 if (g != NULL && g->last + 1 < g->allocated) {
812 assert(g->node.left == NULL);
813 assert(g->node.right == NULL);
814
815 index_group *newg = lzma_alloc(sizeof(index_group)
816 + (g->last + 1)
817 * sizeof(index_record),
818 allocator);
819 if (newg == NULL)
820 return LZMA_MEM_ERROR;
821
822 newg->node = g->node;
823 newg->allocated = g->last + 1;
824 newg->last = g->last;
825 newg->number_base = g->number_base;
826
827 memcpy(newg->records, g->records, newg->allocated
828 * sizeof(index_record));
829
830 if (g->node.parent != NULL) {
831 assert(g->node.parent->right == &g->node);
832 g->node.parent->right = &newg->node;
833 }
834
835 if (s->groups.leftmost == &g->node) {
836 assert(s->groups.root == &g->node);
837 s->groups.leftmost = &newg->node;
838 s->groups.root = &newg->node;
839 }
840
841 assert(s->groups.rightmost == &g->node);
842 s->groups.rightmost = &newg->node;
843
844 lzma_free(g, allocator);
845
846 // NOTE: newg isn't leaked here because
847 // newg == (void *)&newg->node.
848 }
849 }
850
851 // dest->checks includes the check types of all except the last Stream
852 // in dest. Set the bit for the check type of the last Stream now so
853 // that it won't get lost when Stream(s) from src are appended to dest.
854 dest->checks = lzma_index_checks(dest);
855
856 // Add all the Streams from src to dest. Update the base offsets
857 // of each Stream from src.
858 const index_cat_info info = {
859 .uncompressed_size = dest->uncompressed_size,
860 .file_size = dest_file_size,
861 .stream_number_add = dest->streams.count,
862 .block_number_add = dest->record_count,
863 .streams = &dest->streams,
864 };
865 index_cat_helper(&info, (index_stream *)(src->streams.root));
866
867 // Update info about all the combined Streams.
868 dest->uncompressed_size += src->uncompressed_size;
869 dest->total_size += src->total_size;
870 dest->record_count += src->record_count;
871 dest->index_list_size += src->index_list_size;
872 dest->checks |= src->checks;
873
874 // There's nothing else left in src than the base structure.
875 lzma_free(src, allocator);
876
877 return LZMA_OK;
878}
879
880
881/// Duplicate an index_stream.
882static index_stream *
883index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
884{
885 // Catch a somewhat theoretical integer overflow.
886 if (src->record_count > PREALLOC_MAX)
887 return NULL;
888
889 // Allocate and initialize a new Stream.
890 index_stream *dest = index_stream_init(src->node.compressed_base,
891 src->node.uncompressed_base, src->number,
892 src->block_number_base, allocator);
893 if (dest == NULL)
894 return NULL;
895
896 // Copy the overall information.
897 dest->record_count = src->record_count;
898 dest->index_list_size = src->index_list_size;
899 dest->stream_flags = src->stream_flags;
900 dest->stream_padding = src->stream_padding;
901
902 // Return if there are no groups to duplicate.
903 if (src->groups.leftmost == NULL)
904 return dest;
905
906 // Allocate memory for the Records. We put all the Records into
907 // a single group. It's simplest and also tends to make
908 // lzma_index_locate() a little bit faster with very big Indexes.
909 index_group *destg = lzma_alloc(sizeof(index_group)
910 + src->record_count * sizeof(index_record),
911 allocator);
912 if (destg == NULL) {
913 index_stream_end(dest, allocator);
914 return NULL;
915 }
916
917 // Initialize destg.
918 destg->node.uncompressed_base = 0;
919 destg->node.compressed_base = 0;
920 destg->number_base = 1;
921 destg->allocated = src->record_count;
922 destg->last = src->record_count - 1;
923
924 // Go through all the groups in src and copy the Records into destg.
925 const index_group *srcg = (const index_group *)(src->groups.leftmost);
926 size_t i = 0;
927 do {
928 memcpy(destg->records + i, srcg->records,
929 (srcg->last + 1) * sizeof(index_record));
930 i += srcg->last + 1;
931 srcg = index_tree_next(&srcg->node);
932 } while (srcg != NULL);
933
934 assert(i == destg->allocated);
935
936 // Add the group to the new Stream.
937 index_tree_append(&dest->groups, &destg->node);
938
939 return dest;
940}
941
942
943extern LZMA_API(lzma_index *)
944lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
945{
946 // Allocate the base structure (no initial Stream).
947 lzma_index *dest = index_init_plain(allocator);
948 if (dest == NULL)
949 return NULL;
950
951 // Copy the totals.
952 dest->uncompressed_size = src->uncompressed_size;
953 dest->total_size = src->total_size;
954 dest->record_count = src->record_count;
955 dest->index_list_size = src->index_list_size;
956
957 // Copy the Streams and the groups in them.
958 const index_stream *srcstream
959 = (const index_stream *)(src->streams.leftmost);
960 do {
961 index_stream *deststream = index_dup_stream(
962 srcstream, allocator);
963 if (deststream == NULL) {
964 lzma_index_end(dest, allocator);
965 return NULL;
966 }
967
968 index_tree_append(&dest->streams, &deststream->node);
969
970 srcstream = index_tree_next(&srcstream->node);
971 } while (srcstream != NULL);
972
973 return dest;
974}
975
976
977/// Indexing for lzma_index_iter.internal[]
978enum {
979 ITER_INDEX,
980 ITER_STREAM,
981 ITER_GROUP,
982 ITER_RECORD,
983 ITER_METHOD,
984};
985
986
987/// Values for lzma_index_iter.internal[ITER_METHOD].s
988enum {
989 ITER_METHOD_NORMAL,
990 ITER_METHOD_NEXT,
991 ITER_METHOD_LEFTMOST,
992};
993
994
995static void
996iter_set_info(lzma_index_iter *iter)
997{
998 const lzma_index *i = iter->internal[ITER_INDEX].p;
999 const index_stream *stream = iter->internal[ITER_STREAM].p;
1000 const index_group *group = iter->internal[ITER_GROUP].p;
1001 const size_t record = iter->internal[ITER_RECORD].s;
1002
1003 // lzma_index_iter.internal must not contain a pointer to the last
1004 // group in the index, because that may be reallocated by
1005 // lzma_index_cat().
1006 if (group == NULL) {
1007 // There are no groups.
1008 assert(stream->groups.root == NULL);
1009 iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
1010
1011 } else if (i->streams.rightmost != &stream->node
1012 || stream->groups.rightmost != &group->node) {
1013 // The group is not not the last group in the index.
1014 iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
1015
1016 } else if (stream->groups.leftmost != &group->node) {
1017 // The group isn't the only group in the Stream, thus we
1018 // know that it must have a parent group i.e. it's not
1019 // the root node.
1020 assert(stream->groups.root != &group->node);
1021 assert(group->node.parent->right == &group->node);
1022 iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
1023 iter->internal[ITER_GROUP].p = group->node.parent;
1024
1025 } else {
1026 // The Stream has only one group.
1027 assert(stream->groups.root == &group->node);
1028 assert(group->node.parent == NULL);
1029 iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
1030 iter->internal[ITER_GROUP].p = NULL;
1031 }
1032
1033 // NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
1034 // internally.
1035 iter->stream.number = stream->number;
1036 iter->stream.block_count = stream->record_count;
1037 iter->stream.compressed_offset = stream->node.compressed_base;
1038 iter->stream.uncompressed_offset = stream->node.uncompressed_base;
1039
1040 // iter->stream.flags will be NULL if the Stream Flags haven't been
1041 // set with lzma_index_stream_flags().
1042 iter->stream.flags = stream->stream_flags.version == UINT32_MAX
1043 ? NULL : &stream->stream_flags;
1044 iter->stream.padding = stream->stream_padding;
1045
1046 if (stream->groups.rightmost == NULL) {
1047 // Stream has no Blocks.
1048 iter->stream.compressed_size = index_size(0, 0)
1049 + 2 * LZMA_STREAM_HEADER_SIZE;
1050 iter->stream.uncompressed_size = 0;
1051 } else {
1052 const index_group *g = (const index_group *)(
1053 stream->groups.rightmost);
1054
1055 // Stream Header + Stream Footer + Index + Blocks
1056 iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
1057 + index_size(stream->record_count,
1058 stream->index_list_size)
1059 + vli_ceil4(g->records[g->last].unpadded_sum);
1060 iter->stream.uncompressed_size
1061 = g->records[g->last].uncompressed_sum;
1062 }
1063
1064 if (group != NULL) {
1065 iter->block.number_in_stream = group->number_base + record;
1066 iter->block.number_in_file = iter->block.number_in_stream
1067 + stream->block_number_base;
1068
1069 iter->block.compressed_stream_offset
1070 = record == 0 ? group->node.compressed_base
1071 : vli_ceil4(group->records[
1072 record - 1].unpadded_sum);
1073 iter->block.uncompressed_stream_offset
1074 = record == 0 ? group->node.uncompressed_base
1075 : group->records[record - 1].uncompressed_sum;
1076
1077 iter->block.uncompressed_size
1078 = group->records[record].uncompressed_sum
1079 - iter->block.uncompressed_stream_offset;
1080 iter->block.unpadded_size
1081 = group->records[record].unpadded_sum
1082 - iter->block.compressed_stream_offset;
1083 iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
1084
1085 iter->block.compressed_stream_offset
1086 += LZMA_STREAM_HEADER_SIZE;
1087
1088 iter->block.compressed_file_offset
1089 = iter->block.compressed_stream_offset
1090 + iter->stream.compressed_offset;
1091 iter->block.uncompressed_file_offset
1092 = iter->block.uncompressed_stream_offset
1093 + iter->stream.uncompressed_offset;
1094 }
1095
1096 return;
1097}
1098
1099
1100extern LZMA_API(void)
1101lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
1102{
1103 iter->internal[ITER_INDEX].p = i;
1104 lzma_index_iter_rewind(iter);
1105 return;
1106}
1107
1108
1109extern LZMA_API(void)
1110lzma_index_iter_rewind(lzma_index_iter *iter)
1111{
1112 iter->internal[ITER_STREAM].p = NULL;
1113 iter->internal[ITER_GROUP].p = NULL;
1114 iter->internal[ITER_RECORD].s = 0;
1115 iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
1116 return;
1117}
1118
1119
1120extern LZMA_API(lzma_bool)
1121lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
1122{
1123 // Catch unsupported mode values.
1124 if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
1125 return true;
1126
1127 const lzma_index *i = iter->internal[ITER_INDEX].p;
1128 const index_stream *stream = iter->internal[ITER_STREAM].p;
1129 const index_group *group = NULL;
1130 size_t record = iter->internal[ITER_RECORD].s;
1131
1132 // If we are being asked for the next Stream, leave group to NULL
1133 // so that the rest of the this function thinks that this Stream
1134 // has no groups and will thus go to the next Stream.
1135 if (mode != LZMA_INDEX_ITER_STREAM) {
1136 // Get the pointer to the current group. See iter_set_inf()
1137 // for explanation.
1138 switch (iter->internal[ITER_METHOD].s) {
1139 case ITER_METHOD_NORMAL:
1140 group = iter->internal[ITER_GROUP].p;
1141 break;
1142
1143 case ITER_METHOD_NEXT:
1144 group = index_tree_next(iter->internal[ITER_GROUP].p);
1145 break;
1146
1147 case ITER_METHOD_LEFTMOST:
1148 group = (const index_group *)(
1149 stream->groups.leftmost);
1150 break;
1151 }
1152 }
1153
1154again:
1155 if (stream == NULL) {
1156 // We at the beginning of the lzma_index.
1157 // Locate the first Stream.
1158 stream = (const index_stream *)(i->streams.leftmost);
1159 if (mode >= LZMA_INDEX_ITER_BLOCK) {
1160 // Since we are being asked to return information
1161 // about the first a Block, skip Streams that have
1162 // no Blocks.
1163 while (stream->groups.leftmost == NULL) {
1164 stream = index_tree_next(&stream->node);
1165 if (stream == NULL)
1166 return true;
1167 }
1168 }
1169
1170 // Start from the first Record in the Stream.
1171 group = (const index_group *)(stream->groups.leftmost);
1172 record = 0;
1173
1174 } else if (group != NULL && record < group->last) {
1175 // The next Record is in the same group.
1176 ++record;
1177
1178 } else {
1179 // This group has no more Records or this Stream has
1180 // no Blocks at all.
1181 record = 0;
1182
1183 // If group is not NULL, this Stream has at least one Block
1184 // and thus at least one group. Find the next group.
1185 if (group != NULL)
1186 group = index_tree_next(&group->node);
1187
1188 if (group == NULL) {
1189 // This Stream has no more Records. Find the next
1190 // Stream. If we are being asked to return information
1191 // about a Block, we skip empty Streams.
1192 do {
1193 stream = index_tree_next(&stream->node);
1194 if (stream == NULL)
1195 return true;
1196 } while (mode >= LZMA_INDEX_ITER_BLOCK
1197 && stream->groups.leftmost == NULL);
1198
1199 group = (const index_group *)(
1200 stream->groups.leftmost);
1201 }
1202 }
1203
1204 if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
1205 // We need to look for the next Block again if this Block
1206 // is empty.
1207 if (record == 0) {
1208 if (group->node.uncompressed_base
1209 == group->records[0].uncompressed_sum)
1210 goto again;
1211 } else if (group->records[record - 1].uncompressed_sum
1212 == group->records[record].uncompressed_sum) {
1213 goto again;
1214 }
1215 }
1216
1217 iter->internal[ITER_STREAM].p = stream;
1218 iter->internal[ITER_GROUP].p = group;
1219 iter->internal[ITER_RECORD].s = record;
1220
1221 iter_set_info(iter);
1222
1223 return false;
1224}
1225
1226
1227extern LZMA_API(lzma_bool)
1228lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
1229{
1230 const lzma_index *i = iter->internal[ITER_INDEX].p;
1231
1232 // If the target is past the end of the file, return immediately.
1233 if (i->uncompressed_size <= target)
1234 return true;
1235
1236 // Locate the Stream containing the target offset.
1237 const index_stream *stream = index_tree_locate(&i->streams, target);
1238 assert(stream != NULL);
1239 target -= stream->node.uncompressed_base;
1240
1241 // Locate the group containing the target offset.
1242 const index_group *group = index_tree_locate(&stream->groups, target);
1243 assert(group != NULL);
1244
1245 // Use binary search to locate the exact Record. It is the first
1246 // Record whose uncompressed_sum is greater than target.
1247 // This is because we want the rightmost Record that fulfills the
1248 // search criterion. It is possible that there are empty Blocks;
1249 // we don't want to return them.
1250 size_t left = 0;
1251 size_t right = group->last;
1252
1253 while (left < right) {
1254 const size_t pos = left + (right - left) / 2;
1255 if (group->records[pos].uncompressed_sum <= target)
1256 left = pos + 1;
1257 else
1258 right = pos;
1259 }
1260
1261 iter->internal[ITER_STREAM].p = stream;
1262 iter->internal[ITER_GROUP].p = group;
1263 iter->internal[ITER_RECORD].s = left;
1264
1265 iter_set_info(iter);
1266
1267 return false;
1268}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette