1 | // SPDX-License-Identifier: 0BSD
|
---|
2 |
|
---|
3 | ///////////////////////////////////////////////////////////////////////////////
|
---|
4 | //
|
---|
5 | /// \file lzma_encoder.c
|
---|
6 | /// \brief LZMA encoder
|
---|
7 | ///
|
---|
8 | // Authors: Igor Pavlov
|
---|
9 | // Lasse Collin
|
---|
10 | //
|
---|
11 | ///////////////////////////////////////////////////////////////////////////////
|
---|
12 |
|
---|
13 | #include "lzma2_encoder.h"
|
---|
14 | #include "lzma_encoder_private.h"
|
---|
15 | #include "fastpos.h"
|
---|
16 |
|
---|
17 |
|
---|
18 | /////////////
|
---|
19 | // Literal //
|
---|
20 | /////////////
|
---|
21 |
|
---|
22 | static inline void
|
---|
23 | literal_matched(lzma_range_encoder *rc, probability *subcoder,
|
---|
24 | uint32_t match_byte, uint32_t symbol)
|
---|
25 | {
|
---|
26 | uint32_t offset = 0x100;
|
---|
27 | symbol += UINT32_C(1) << 8;
|
---|
28 |
|
---|
29 | do {
|
---|
30 | match_byte <<= 1;
|
---|
31 | const uint32_t match_bit = match_byte & offset;
|
---|
32 | const uint32_t subcoder_index
|
---|
33 | = offset + match_bit + (symbol >> 8);
|
---|
34 | const uint32_t bit = (symbol >> 7) & 1;
|
---|
35 | rc_bit(rc, &subcoder[subcoder_index], bit);
|
---|
36 |
|
---|
37 | symbol <<= 1;
|
---|
38 | offset &= ~(match_byte ^ symbol);
|
---|
39 |
|
---|
40 | } while (symbol < (UINT32_C(1) << 16));
|
---|
41 | }
|
---|
42 |
|
---|
43 |
|
---|
44 | static inline void
|
---|
45 | literal(lzma_lzma1_encoder *coder, lzma_mf *mf, uint32_t position)
|
---|
46 | {
|
---|
47 | // Locate the literal byte to be encoded and the subcoder.
|
---|
48 | const uint8_t cur_byte = mf->buffer[
|
---|
49 | mf->read_pos - mf->read_ahead];
|
---|
50 | probability *subcoder = literal_subcoder(coder->literal,
|
---|
51 | coder->literal_context_bits, coder->literal_mask,
|
---|
52 | position, mf->buffer[mf->read_pos - mf->read_ahead - 1]);
|
---|
53 |
|
---|
54 | if (is_literal_state(coder->state)) {
|
---|
55 | // Previous LZMA-symbol was a literal. Encode a normal
|
---|
56 | // literal without a match byte.
|
---|
57 | update_literal_normal(coder->state);
|
---|
58 | rc_bittree(&coder->rc, subcoder, 8, cur_byte);
|
---|
59 | } else {
|
---|
60 | // Previous LZMA-symbol was a match. Use the last byte of
|
---|
61 | // the match as a "match byte". That is, compare the bits
|
---|
62 | // of the current literal and the match byte.
|
---|
63 | update_literal_matched(coder->state);
|
---|
64 | const uint8_t match_byte = mf->buffer[
|
---|
65 | mf->read_pos - coder->reps[0] - 1
|
---|
66 | - mf->read_ahead];
|
---|
67 | literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
|
---|
68 | }
|
---|
69 | }
|
---|
70 |
|
---|
71 |
|
---|
72 | //////////////////
|
---|
73 | // Match length //
|
---|
74 | //////////////////
|
---|
75 |
|
---|
76 | static void
|
---|
77 | length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state)
|
---|
78 | {
|
---|
79 | const uint32_t table_size = lc->table_size;
|
---|
80 | lc->counters[pos_state] = table_size;
|
---|
81 |
|
---|
82 | const uint32_t a0 = rc_bit_0_price(lc->choice);
|
---|
83 | const uint32_t a1 = rc_bit_1_price(lc->choice);
|
---|
84 | const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2);
|
---|
85 | const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2);
|
---|
86 | uint32_t *const prices = lc->prices[pos_state];
|
---|
87 |
|
---|
88 | uint32_t i;
|
---|
89 | for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i)
|
---|
90 | prices[i] = a0 + rc_bittree_price(lc->low[pos_state],
|
---|
91 | LEN_LOW_BITS, i);
|
---|
92 |
|
---|
93 | for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i)
|
---|
94 | prices[i] = b0 + rc_bittree_price(lc->mid[pos_state],
|
---|
95 | LEN_MID_BITS, i - LEN_LOW_SYMBOLS);
|
---|
96 |
|
---|
97 | for (; i < table_size; ++i)
|
---|
98 | prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS,
|
---|
99 | i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS);
|
---|
100 |
|
---|
101 | return;
|
---|
102 | }
|
---|
103 |
|
---|
104 |
|
---|
105 | static inline void
|
---|
106 | length(lzma_range_encoder *rc, lzma_length_encoder *lc,
|
---|
107 | const uint32_t pos_state, uint32_t len, const bool fast_mode)
|
---|
108 | {
|
---|
109 | assert(len <= MATCH_LEN_MAX);
|
---|
110 | len -= MATCH_LEN_MIN;
|
---|
111 |
|
---|
112 | if (len < LEN_LOW_SYMBOLS) {
|
---|
113 | rc_bit(rc, &lc->choice, 0);
|
---|
114 | rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
|
---|
115 | } else {
|
---|
116 | rc_bit(rc, &lc->choice, 1);
|
---|
117 | len -= LEN_LOW_SYMBOLS;
|
---|
118 |
|
---|
119 | if (len < LEN_MID_SYMBOLS) {
|
---|
120 | rc_bit(rc, &lc->choice2, 0);
|
---|
121 | rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
|
---|
122 | } else {
|
---|
123 | rc_bit(rc, &lc->choice2, 1);
|
---|
124 | len -= LEN_MID_SYMBOLS;
|
---|
125 | rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
|
---|
126 | }
|
---|
127 | }
|
---|
128 |
|
---|
129 | // Only getoptimum uses the prices so don't update the table when
|
---|
130 | // in fast mode.
|
---|
131 | if (!fast_mode)
|
---|
132 | if (--lc->counters[pos_state] == 0)
|
---|
133 | length_update_prices(lc, pos_state);
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | ///////////
|
---|
138 | // Match //
|
---|
139 | ///////////
|
---|
140 |
|
---|
141 | static inline void
|
---|
142 | match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
|
---|
143 | const uint32_t distance, const uint32_t len)
|
---|
144 | {
|
---|
145 | update_match(coder->state);
|
---|
146 |
|
---|
147 | length(&coder->rc, &coder->match_len_encoder, pos_state, len,
|
---|
148 | coder->fast_mode);
|
---|
149 |
|
---|
150 | const uint32_t dist_slot = get_dist_slot(distance);
|
---|
151 | const uint32_t dist_state = get_dist_state(len);
|
---|
152 | rc_bittree(&coder->rc, coder->dist_slot[dist_state],
|
---|
153 | DIST_SLOT_BITS, dist_slot);
|
---|
154 |
|
---|
155 | if (dist_slot >= DIST_MODEL_START) {
|
---|
156 | const uint32_t footer_bits = (dist_slot >> 1) - 1;
|
---|
157 | const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
|
---|
158 | const uint32_t dist_reduced = distance - base;
|
---|
159 |
|
---|
160 | if (dist_slot < DIST_MODEL_END) {
|
---|
161 | // Careful here: base - dist_slot - 1 can be -1, but
|
---|
162 | // rc_bittree_reverse starts at probs[1], not probs[0].
|
---|
163 | rc_bittree_reverse(&coder->rc,
|
---|
164 | coder->dist_special + base - dist_slot - 1,
|
---|
165 | footer_bits, dist_reduced);
|
---|
166 | } else {
|
---|
167 | rc_direct(&coder->rc, dist_reduced >> ALIGN_BITS,
|
---|
168 | footer_bits - ALIGN_BITS);
|
---|
169 | rc_bittree_reverse(
|
---|
170 | &coder->rc, coder->dist_align,
|
---|
171 | ALIGN_BITS, dist_reduced & ALIGN_MASK);
|
---|
172 | ++coder->align_price_count;
|
---|
173 | }
|
---|
174 | }
|
---|
175 |
|
---|
176 | coder->reps[3] = coder->reps[2];
|
---|
177 | coder->reps[2] = coder->reps[1];
|
---|
178 | coder->reps[1] = coder->reps[0];
|
---|
179 | coder->reps[0] = distance;
|
---|
180 | ++coder->match_price_count;
|
---|
181 | }
|
---|
182 |
|
---|
183 |
|
---|
184 | ////////////////////
|
---|
185 | // Repeated match //
|
---|
186 | ////////////////////
|
---|
187 |
|
---|
188 | static inline void
|
---|
189 | rep_match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
|
---|
190 | const uint32_t rep, const uint32_t len)
|
---|
191 | {
|
---|
192 | if (rep == 0) {
|
---|
193 | rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
|
---|
194 | rc_bit(&coder->rc,
|
---|
195 | &coder->is_rep0_long[coder->state][pos_state],
|
---|
196 | len != 1);
|
---|
197 | } else {
|
---|
198 | const uint32_t distance = coder->reps[rep];
|
---|
199 | rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
|
---|
200 |
|
---|
201 | if (rep == 1) {
|
---|
202 | rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
|
---|
203 | } else {
|
---|
204 | rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
|
---|
205 | rc_bit(&coder->rc, &coder->is_rep2[coder->state],
|
---|
206 | rep - 2);
|
---|
207 |
|
---|
208 | if (rep == 3)
|
---|
209 | coder->reps[3] = coder->reps[2];
|
---|
210 |
|
---|
211 | coder->reps[2] = coder->reps[1];
|
---|
212 | }
|
---|
213 |
|
---|
214 | coder->reps[1] = coder->reps[0];
|
---|
215 | coder->reps[0] = distance;
|
---|
216 | }
|
---|
217 |
|
---|
218 | if (len == 1) {
|
---|
219 | update_short_rep(coder->state);
|
---|
220 | } else {
|
---|
221 | length(&coder->rc, &coder->rep_len_encoder, pos_state, len,
|
---|
222 | coder->fast_mode);
|
---|
223 | update_long_rep(coder->state);
|
---|
224 | }
|
---|
225 | }
|
---|
226 |
|
---|
227 |
|
---|
228 | //////////
|
---|
229 | // Main //
|
---|
230 | //////////
|
---|
231 |
|
---|
232 | static void
|
---|
233 | encode_symbol(lzma_lzma1_encoder *coder, lzma_mf *mf,
|
---|
234 | uint32_t back, uint32_t len, uint32_t position)
|
---|
235 | {
|
---|
236 | const uint32_t pos_state = position & coder->pos_mask;
|
---|
237 |
|
---|
238 | if (back == UINT32_MAX) {
|
---|
239 | // Literal i.e. eight-bit byte
|
---|
240 | assert(len == 1);
|
---|
241 | rc_bit(&coder->rc,
|
---|
242 | &coder->is_match[coder->state][pos_state], 0);
|
---|
243 | literal(coder, mf, position);
|
---|
244 | } else {
|
---|
245 | // Some type of match
|
---|
246 | rc_bit(&coder->rc,
|
---|
247 | &coder->is_match[coder->state][pos_state], 1);
|
---|
248 |
|
---|
249 | if (back < REPS) {
|
---|
250 | // It's a repeated match i.e. the same distance
|
---|
251 | // has been used earlier.
|
---|
252 | rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
|
---|
253 | rep_match(coder, pos_state, back, len);
|
---|
254 | } else {
|
---|
255 | // Normal match
|
---|
256 | rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
|
---|
257 | match(coder, pos_state, back - REPS, len);
|
---|
258 | }
|
---|
259 | }
|
---|
260 |
|
---|
261 | assert(mf->read_ahead >= len);
|
---|
262 | mf->read_ahead -= len;
|
---|
263 | }
|
---|
264 |
|
---|
265 |
|
---|
266 | static bool
|
---|
267 | encode_init(lzma_lzma1_encoder *coder, lzma_mf *mf)
|
---|
268 | {
|
---|
269 | assert(mf_position(mf) == 0);
|
---|
270 | assert(coder->uncomp_size == 0);
|
---|
271 |
|
---|
272 | if (mf->read_pos == mf->read_limit) {
|
---|
273 | if (mf->action == LZMA_RUN)
|
---|
274 | return false; // We cannot do anything.
|
---|
275 |
|
---|
276 | // We are finishing (we cannot get here when flushing).
|
---|
277 | assert(mf->write_pos == mf->read_pos);
|
---|
278 | assert(mf->action == LZMA_FINISH);
|
---|
279 | } else {
|
---|
280 | // Do the actual initialization. The first LZMA symbol must
|
---|
281 | // always be a literal.
|
---|
282 | mf_skip(mf, 1);
|
---|
283 | mf->read_ahead = 0;
|
---|
284 | rc_bit(&coder->rc, &coder->is_match[0][0], 0);
|
---|
285 | rc_bittree(&coder->rc, coder->literal + 0, 8, mf->buffer[0]);
|
---|
286 | ++coder->uncomp_size;
|
---|
287 | }
|
---|
288 |
|
---|
289 | // Initialization is done (except if empty file).
|
---|
290 | coder->is_initialized = true;
|
---|
291 |
|
---|
292 | return true;
|
---|
293 | }
|
---|
294 |
|
---|
295 |
|
---|
296 | static void
|
---|
297 | encode_eopm(lzma_lzma1_encoder *coder, uint32_t position)
|
---|
298 | {
|
---|
299 | const uint32_t pos_state = position & coder->pos_mask;
|
---|
300 | rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
|
---|
301 | rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
|
---|
302 | match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN);
|
---|
303 | }
|
---|
304 |
|
---|
305 |
|
---|
306 | /// Number of bytes that a single encoding loop in lzma_lzma_encode() can
|
---|
307 | /// consume from the dictionary. This limit comes from lzma_lzma_optimum()
|
---|
308 | /// and may need to be updated if that function is significantly modified.
|
---|
309 | #define LOOP_INPUT_MAX (OPTS + 1)
|
---|
310 |
|
---|
311 |
|
---|
312 | extern lzma_ret
|
---|
313 | lzma_lzma_encode(lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
|
---|
314 | uint8_t *restrict out, size_t *restrict out_pos,
|
---|
315 | size_t out_size, uint32_t limit)
|
---|
316 | {
|
---|
317 | // Initialize the stream if no data has been encoded yet.
|
---|
318 | if (!coder->is_initialized && !encode_init(coder, mf))
|
---|
319 | return LZMA_OK;
|
---|
320 |
|
---|
321 | // Encode pending output bytes from the range encoder.
|
---|
322 | // At the start of the stream, encode_init() encodes one literal.
|
---|
323 | // Later there can be pending output only with LZMA1 because LZMA2
|
---|
324 | // ensures that there is always enough output space. Thus when using
|
---|
325 | // LZMA2, rc_encode() calls in this function will always return false.
|
---|
326 | if (rc_encode(&coder->rc, out, out_pos, out_size)) {
|
---|
327 | // We don't get here with LZMA2.
|
---|
328 | assert(limit == UINT32_MAX);
|
---|
329 | return LZMA_OK;
|
---|
330 | }
|
---|
331 |
|
---|
332 | // If the range encoder was flushed in an earlier call to this
|
---|
333 | // function but there wasn't enough output buffer space, those
|
---|
334 | // bytes would have now been encoded by the above rc_encode() call
|
---|
335 | // and the stream has now been finished. This can only happen with
|
---|
336 | // LZMA1 as LZMA2 always provides enough output buffer space.
|
---|
337 | if (coder->is_flushed) {
|
---|
338 | assert(limit == UINT32_MAX);
|
---|
339 | return LZMA_STREAM_END;
|
---|
340 | }
|
---|
341 |
|
---|
342 | while (true) {
|
---|
343 | // With LZMA2 we need to take care that compressed size of
|
---|
344 | // a chunk doesn't get too big.
|
---|
345 | // FIXME? Check if this could be improved.
|
---|
346 | if (limit != UINT32_MAX
|
---|
347 | && (mf->read_pos - mf->read_ahead >= limit
|
---|
348 | || *out_pos + rc_pending(&coder->rc)
|
---|
349 | >= LZMA2_CHUNK_MAX
|
---|
350 | - LOOP_INPUT_MAX))
|
---|
351 | break;
|
---|
352 |
|
---|
353 | // Check that there is some input to process.
|
---|
354 | if (mf->read_pos >= mf->read_limit) {
|
---|
355 | if (mf->action == LZMA_RUN)
|
---|
356 | return LZMA_OK;
|
---|
357 |
|
---|
358 | if (mf->read_ahead == 0)
|
---|
359 | break;
|
---|
360 | }
|
---|
361 |
|
---|
362 | // Get optimal match (repeat position and length).
|
---|
363 | // Value ranges for pos:
|
---|
364 | // - [0, REPS): repeated match
|
---|
365 | // - [REPS, UINT32_MAX):
|
---|
366 | // match at (pos - REPS)
|
---|
367 | // - UINT32_MAX: not a match but a literal
|
---|
368 | // Value ranges for len:
|
---|
369 | // - [MATCH_LEN_MIN, MATCH_LEN_MAX]
|
---|
370 | uint32_t len;
|
---|
371 | uint32_t back;
|
---|
372 |
|
---|
373 | if (coder->fast_mode)
|
---|
374 | lzma_lzma_optimum_fast(coder, mf, &back, &len);
|
---|
375 | else
|
---|
376 | lzma_lzma_optimum_normal(coder, mf, &back, &len,
|
---|
377 | (uint32_t)(coder->uncomp_size));
|
---|
378 |
|
---|
379 | encode_symbol(coder, mf, back, len,
|
---|
380 | (uint32_t)(coder->uncomp_size));
|
---|
381 |
|
---|
382 | // If output size limiting is active (out_limit != 0), check
|
---|
383 | // if encoding this LZMA symbol would make the output size
|
---|
384 | // exceed the specified limit.
|
---|
385 | if (coder->out_limit != 0 && rc_encode_dummy(
|
---|
386 | &coder->rc, coder->out_limit)) {
|
---|
387 | // The most recent LZMA symbol would make the output
|
---|
388 | // too big. Throw it away.
|
---|
389 | rc_forget(&coder->rc);
|
---|
390 |
|
---|
391 | // FIXME: Tell the LZ layer to not read more input as
|
---|
392 | // it would be waste of time. This doesn't matter if
|
---|
393 | // output-size-limited encoding is done with a single
|
---|
394 | // call though.
|
---|
395 |
|
---|
396 | break;
|
---|
397 | }
|
---|
398 |
|
---|
399 | // This symbol will be encoded so update the uncompressed size.
|
---|
400 | coder->uncomp_size += len;
|
---|
401 |
|
---|
402 | // Encode the LZMA symbol.
|
---|
403 | if (rc_encode(&coder->rc, out, out_pos, out_size)) {
|
---|
404 | // Once again, this can only happen with LZMA1.
|
---|
405 | assert(limit == UINT32_MAX);
|
---|
406 | return LZMA_OK;
|
---|
407 | }
|
---|
408 | }
|
---|
409 |
|
---|
410 | // Make the uncompressed size available to the application.
|
---|
411 | if (coder->uncomp_size_ptr != NULL)
|
---|
412 | *coder->uncomp_size_ptr = coder->uncomp_size;
|
---|
413 |
|
---|
414 | // LZMA2 doesn't use EOPM at LZMA level.
|
---|
415 | //
|
---|
416 | // Plain LZMA streams without EOPM aren't supported except when
|
---|
417 | // output size limiting is enabled.
|
---|
418 | if (coder->use_eopm)
|
---|
419 | encode_eopm(coder, (uint32_t)(coder->uncomp_size));
|
---|
420 |
|
---|
421 | // Flush the remaining bytes from the range encoder.
|
---|
422 | rc_flush(&coder->rc);
|
---|
423 |
|
---|
424 | // Copy the remaining bytes to the output buffer. If there
|
---|
425 | // isn't enough output space, we will copy out the remaining
|
---|
426 | // bytes on the next call to this function.
|
---|
427 | if (rc_encode(&coder->rc, out, out_pos, out_size)) {
|
---|
428 | // This cannot happen with LZMA2.
|
---|
429 | assert(limit == UINT32_MAX);
|
---|
430 |
|
---|
431 | coder->is_flushed = true;
|
---|
432 | return LZMA_OK;
|
---|
433 | }
|
---|
434 |
|
---|
435 | return LZMA_STREAM_END;
|
---|
436 | }
|
---|
437 |
|
---|
438 |
|
---|
439 | static lzma_ret
|
---|
440 | lzma_encode(void *coder, lzma_mf *restrict mf,
|
---|
441 | uint8_t *restrict out, size_t *restrict out_pos,
|
---|
442 | size_t out_size)
|
---|
443 | {
|
---|
444 | // Plain LZMA has no support for sync-flushing.
|
---|
445 | if (unlikely(mf->action == LZMA_SYNC_FLUSH))
|
---|
446 | return LZMA_OPTIONS_ERROR;
|
---|
447 |
|
---|
448 | return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX);
|
---|
449 | }
|
---|
450 |
|
---|
451 |
|
---|
452 | static lzma_ret
|
---|
453 | lzma_lzma_set_out_limit(
|
---|
454 | void *coder_ptr, uint64_t *uncomp_size, uint64_t out_limit)
|
---|
455 | {
|
---|
456 | // Minimum output size is 5 bytes but that cannot hold any output
|
---|
457 | // so we use 6 bytes.
|
---|
458 | if (out_limit < 6)
|
---|
459 | return LZMA_BUF_ERROR;
|
---|
460 |
|
---|
461 | lzma_lzma1_encoder *coder = coder_ptr;
|
---|
462 | coder->out_limit = out_limit;
|
---|
463 | coder->uncomp_size_ptr = uncomp_size;
|
---|
464 | coder->use_eopm = false;
|
---|
465 | return LZMA_OK;
|
---|
466 | }
|
---|
467 |
|
---|
468 |
|
---|
469 | ////////////////////
|
---|
470 | // Initialization //
|
---|
471 | ////////////////////
|
---|
472 |
|
---|
473 | static bool
|
---|
474 | is_options_valid(const lzma_options_lzma *options)
|
---|
475 | {
|
---|
476 | // Validate some of the options. LZ encoder validates nice_len too
|
---|
477 | // but we need a valid value here earlier.
|
---|
478 | return is_lclppb_valid(options)
|
---|
479 | && options->nice_len >= MATCH_LEN_MIN
|
---|
480 | && options->nice_len <= MATCH_LEN_MAX
|
---|
481 | && (options->mode == LZMA_MODE_FAST
|
---|
482 | || options->mode == LZMA_MODE_NORMAL);
|
---|
483 | }
|
---|
484 |
|
---|
485 |
|
---|
486 | static void
|
---|
487 | set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options)
|
---|
488 | {
|
---|
489 | // LZ encoder initialization does the validation for these so we
|
---|
490 | // don't need to validate here.
|
---|
491 | lz_options->before_size = OPTS;
|
---|
492 | lz_options->dict_size = options->dict_size;
|
---|
493 | lz_options->after_size = LOOP_INPUT_MAX;
|
---|
494 | lz_options->match_len_max = MATCH_LEN_MAX;
|
---|
495 | lz_options->nice_len = my_max(mf_get_hash_bytes(options->mf),
|
---|
496 | options->nice_len);
|
---|
497 | lz_options->match_finder = options->mf;
|
---|
498 | lz_options->depth = options->depth;
|
---|
499 | lz_options->preset_dict = options->preset_dict;
|
---|
500 | lz_options->preset_dict_size = options->preset_dict_size;
|
---|
501 | return;
|
---|
502 | }
|
---|
503 |
|
---|
504 |
|
---|
505 | static void
|
---|
506 | length_encoder_reset(lzma_length_encoder *lencoder,
|
---|
507 | const uint32_t num_pos_states, const bool fast_mode)
|
---|
508 | {
|
---|
509 | bit_reset(lencoder->choice);
|
---|
510 | bit_reset(lencoder->choice2);
|
---|
511 |
|
---|
512 | for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
|
---|
513 | bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS);
|
---|
514 | bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS);
|
---|
515 | }
|
---|
516 |
|
---|
517 | bittree_reset(lencoder->high, LEN_HIGH_BITS);
|
---|
518 |
|
---|
519 | if (!fast_mode)
|
---|
520 | for (uint32_t pos_state = 0; pos_state < num_pos_states;
|
---|
521 | ++pos_state)
|
---|
522 | length_update_prices(lencoder, pos_state);
|
---|
523 |
|
---|
524 | return;
|
---|
525 | }
|
---|
526 |
|
---|
527 |
|
---|
528 | extern lzma_ret
|
---|
529 | lzma_lzma_encoder_reset(lzma_lzma1_encoder *coder,
|
---|
530 | const lzma_options_lzma *options)
|
---|
531 | {
|
---|
532 | if (!is_options_valid(options))
|
---|
533 | return LZMA_OPTIONS_ERROR;
|
---|
534 |
|
---|
535 | coder->pos_mask = (1U << options->pb) - 1;
|
---|
536 | coder->literal_context_bits = options->lc;
|
---|
537 | coder->literal_mask = literal_mask_calc(options->lc, options->lp);
|
---|
538 |
|
---|
539 | // Range coder
|
---|
540 | rc_reset(&coder->rc);
|
---|
541 |
|
---|
542 | // State
|
---|
543 | coder->state = STATE_LIT_LIT;
|
---|
544 | for (size_t i = 0; i < REPS; ++i)
|
---|
545 | coder->reps[i] = 0;
|
---|
546 |
|
---|
547 | literal_init(coder->literal, options->lc, options->lp);
|
---|
548 |
|
---|
549 | // Bit encoders
|
---|
550 | for (size_t i = 0; i < STATES; ++i) {
|
---|
551 | for (size_t j = 0; j <= coder->pos_mask; ++j) {
|
---|
552 | bit_reset(coder->is_match[i][j]);
|
---|
553 | bit_reset(coder->is_rep0_long[i][j]);
|
---|
554 | }
|
---|
555 |
|
---|
556 | bit_reset(coder->is_rep[i]);
|
---|
557 | bit_reset(coder->is_rep0[i]);
|
---|
558 | bit_reset(coder->is_rep1[i]);
|
---|
559 | bit_reset(coder->is_rep2[i]);
|
---|
560 | }
|
---|
561 |
|
---|
562 | for (size_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
|
---|
563 | bit_reset(coder->dist_special[i]);
|
---|
564 |
|
---|
565 | // Bit tree encoders
|
---|
566 | for (size_t i = 0; i < DIST_STATES; ++i)
|
---|
567 | bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
|
---|
568 |
|
---|
569 | bittree_reset(coder->dist_align, ALIGN_BITS);
|
---|
570 |
|
---|
571 | // Length encoders
|
---|
572 | length_encoder_reset(&coder->match_len_encoder,
|
---|
573 | 1U << options->pb, coder->fast_mode);
|
---|
574 |
|
---|
575 | length_encoder_reset(&coder->rep_len_encoder,
|
---|
576 | 1U << options->pb, coder->fast_mode);
|
---|
577 |
|
---|
578 | // Price counts are incremented every time appropriate probabilities
|
---|
579 | // are changed. price counts are set to zero when the price tables
|
---|
580 | // are updated, which is done when the appropriate price counts have
|
---|
581 | // big enough value, and lzma_mf.read_ahead == 0 which happens at
|
---|
582 | // least every OPTS (a few thousand) possible price count increments.
|
---|
583 | //
|
---|
584 | // By resetting price counts to UINT32_MAX / 2, we make sure that the
|
---|
585 | // price tables will be initialized before they will be used (since
|
---|
586 | // the value is definitely big enough), and that it is OK to increment
|
---|
587 | // price counts without risk of integer overflow (since UINT32_MAX / 2
|
---|
588 | // is small enough). The current code doesn't increment price counts
|
---|
589 | // before initializing price tables, but it maybe done in future if
|
---|
590 | // we add support for saving the state between LZMA2 chunks.
|
---|
591 | coder->match_price_count = UINT32_MAX / 2;
|
---|
592 | coder->align_price_count = UINT32_MAX / 2;
|
---|
593 |
|
---|
594 | coder->opts_end_index = 0;
|
---|
595 | coder->opts_current_index = 0;
|
---|
596 |
|
---|
597 | return LZMA_OK;
|
---|
598 | }
|
---|
599 |
|
---|
600 |
|
---|
601 | extern lzma_ret
|
---|
602 | lzma_lzma_encoder_create(void **coder_ptr, const lzma_allocator *allocator,
|
---|
603 | lzma_vli id, const lzma_options_lzma *options,
|
---|
604 | lzma_lz_options *lz_options)
|
---|
605 | {
|
---|
606 | assert(id == LZMA_FILTER_LZMA1 || id == LZMA_FILTER_LZMA1EXT
|
---|
607 | || id == LZMA_FILTER_LZMA2);
|
---|
608 |
|
---|
609 | // Allocate lzma_lzma1_encoder if it wasn't already allocated.
|
---|
610 | if (*coder_ptr == NULL) {
|
---|
611 | *coder_ptr = lzma_alloc(sizeof(lzma_lzma1_encoder), allocator);
|
---|
612 | if (*coder_ptr == NULL)
|
---|
613 | return LZMA_MEM_ERROR;
|
---|
614 | }
|
---|
615 |
|
---|
616 | lzma_lzma1_encoder *coder = *coder_ptr;
|
---|
617 |
|
---|
618 | // Set compression mode. Note that we haven't validated the options
|
---|
619 | // yet. Invalid options will get rejected by lzma_lzma_encoder_reset()
|
---|
620 | // call at the end of this function.
|
---|
621 | switch (options->mode) {
|
---|
622 | case LZMA_MODE_FAST:
|
---|
623 | coder->fast_mode = true;
|
---|
624 | break;
|
---|
625 |
|
---|
626 | case LZMA_MODE_NORMAL: {
|
---|
627 | coder->fast_mode = false;
|
---|
628 |
|
---|
629 | // Set dist_table_size.
|
---|
630 | // Round the dictionary size up to next 2^n.
|
---|
631 | //
|
---|
632 | // Currently the maximum encoder dictionary size
|
---|
633 | // is 1.5 GiB due to lz_encoder.c and here we need
|
---|
634 | // to be below 2 GiB to make the rounded up value
|
---|
635 | // fit in an uint32_t and avoid an infinite while-loop
|
---|
636 | // (and undefined behavior due to a too large shift).
|
---|
637 | // So do the same check as in LZ encoder,
|
---|
638 | // limiting to 1.5 GiB.
|
---|
639 | if (options->dict_size > (UINT32_C(1) << 30)
|
---|
640 | + (UINT32_C(1) << 29))
|
---|
641 | return LZMA_OPTIONS_ERROR;
|
---|
642 |
|
---|
643 | uint32_t log_size = 0;
|
---|
644 | while ((UINT32_C(1) << log_size) < options->dict_size)
|
---|
645 | ++log_size;
|
---|
646 |
|
---|
647 | coder->dist_table_size = log_size * 2;
|
---|
648 |
|
---|
649 | // Length encoders' price table size
|
---|
650 | const uint32_t nice_len = my_max(
|
---|
651 | mf_get_hash_bytes(options->mf),
|
---|
652 | options->nice_len);
|
---|
653 |
|
---|
654 | coder->match_len_encoder.table_size
|
---|
655 | = nice_len + 1 - MATCH_LEN_MIN;
|
---|
656 | coder->rep_len_encoder.table_size
|
---|
657 | = nice_len + 1 - MATCH_LEN_MIN;
|
---|
658 | break;
|
---|
659 | }
|
---|
660 |
|
---|
661 | default:
|
---|
662 | return LZMA_OPTIONS_ERROR;
|
---|
663 | }
|
---|
664 |
|
---|
665 | // We don't need to write the first byte as literal if there is
|
---|
666 | // a non-empty preset dictionary. encode_init() wouldn't even work
|
---|
667 | // if there is a non-empty preset dictionary, because encode_init()
|
---|
668 | // assumes that position is zero and previous byte is also zero.
|
---|
669 | coder->is_initialized = options->preset_dict != NULL
|
---|
670 | && options->preset_dict_size > 0;
|
---|
671 | coder->is_flushed = false;
|
---|
672 | coder->uncomp_size = 0;
|
---|
673 | coder->uncomp_size_ptr = NULL;
|
---|
674 |
|
---|
675 | // Output size limiting is disabled by default.
|
---|
676 | coder->out_limit = 0;
|
---|
677 |
|
---|
678 | // Determine if end marker is wanted:
|
---|
679 | // - It is never used with LZMA2.
|
---|
680 | // - It is always used with LZMA_FILTER_LZMA1 (unless
|
---|
681 | // lzma_lzma_set_out_limit() is called later).
|
---|
682 | // - LZMA_FILTER_LZMA1EXT has a flag for it in the options.
|
---|
683 | coder->use_eopm = (id == LZMA_FILTER_LZMA1);
|
---|
684 | if (id == LZMA_FILTER_LZMA1EXT) {
|
---|
685 | // Check if unsupported flags are present.
|
---|
686 | if (options->ext_flags & ~LZMA_LZMA1EXT_ALLOW_EOPM)
|
---|
687 | return LZMA_OPTIONS_ERROR;
|
---|
688 |
|
---|
689 | coder->use_eopm = (options->ext_flags
|
---|
690 | & LZMA_LZMA1EXT_ALLOW_EOPM) != 0;
|
---|
691 |
|
---|
692 | // TODO? As long as there are no filters that change the size
|
---|
693 | // of the data, it is enough to look at lzma_stream.total_in
|
---|
694 | // after encoding has been finished to know the uncompressed
|
---|
695 | // size of the LZMA1 stream. But in the future there could be
|
---|
696 | // filters that change the size of the data and then total_in
|
---|
697 | // doesn't work as the LZMA1 stream size might be different
|
---|
698 | // due to another filter in the chain. The problem is simple
|
---|
699 | // to solve: Add another flag to ext_flags and then set
|
---|
700 | // coder->uncomp_size_ptr to the address stored in
|
---|
701 | // lzma_options_lzma.reserved_ptr2 (or _ptr1).
|
---|
702 | }
|
---|
703 |
|
---|
704 | set_lz_options(lz_options, options);
|
---|
705 |
|
---|
706 | return lzma_lzma_encoder_reset(coder, options);
|
---|
707 | }
|
---|
708 |
|
---|
709 |
|
---|
710 | static lzma_ret
|
---|
711 | lzma_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator,
|
---|
712 | lzma_vli id, const void *options, lzma_lz_options *lz_options)
|
---|
713 | {
|
---|
714 | if (options == NULL)
|
---|
715 | return LZMA_PROG_ERROR;
|
---|
716 |
|
---|
717 | lz->code = &lzma_encode;
|
---|
718 | lz->set_out_limit = &lzma_lzma_set_out_limit;
|
---|
719 | return lzma_lzma_encoder_create(
|
---|
720 | &lz->coder, allocator, id, options, lz_options);
|
---|
721 | }
|
---|
722 |
|
---|
723 |
|
---|
724 | extern lzma_ret
|
---|
725 | lzma_lzma_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
|
---|
726 | const lzma_filter_info *filters)
|
---|
727 | {
|
---|
728 | return lzma_lz_encoder_init(
|
---|
729 | next, allocator, filters, &lzma_encoder_init);
|
---|
730 | }
|
---|
731 |
|
---|
732 |
|
---|
733 | extern uint64_t
|
---|
734 | lzma_lzma_encoder_memusage(const void *options)
|
---|
735 | {
|
---|
736 | if (!is_options_valid(options))
|
---|
737 | return UINT64_MAX;
|
---|
738 |
|
---|
739 | lzma_lz_options lz_options;
|
---|
740 | set_lz_options(&lz_options, options);
|
---|
741 |
|
---|
742 | const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options);
|
---|
743 | if (lz_memusage == UINT64_MAX)
|
---|
744 | return UINT64_MAX;
|
---|
745 |
|
---|
746 | return (uint64_t)(sizeof(lzma_lzma1_encoder)) + lz_memusage;
|
---|
747 | }
|
---|
748 |
|
---|
749 |
|
---|
750 | extern bool
|
---|
751 | lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte)
|
---|
752 | {
|
---|
753 | if (!is_lclppb_valid(options))
|
---|
754 | return true;
|
---|
755 |
|
---|
756 | *byte = (options->pb * 5 + options->lp) * 9 + options->lc;
|
---|
757 | assert(*byte <= (4 * 5 + 4) * 9 + 8);
|
---|
758 |
|
---|
759 | return false;
|
---|
760 | }
|
---|
761 |
|
---|
762 |
|
---|
763 | #ifdef HAVE_ENCODER_LZMA1
|
---|
764 | extern lzma_ret
|
---|
765 | lzma_lzma_props_encode(const void *options, uint8_t *out)
|
---|
766 | {
|
---|
767 | if (options == NULL)
|
---|
768 | return LZMA_PROG_ERROR;
|
---|
769 |
|
---|
770 | const lzma_options_lzma *const opt = options;
|
---|
771 |
|
---|
772 | if (lzma_lzma_lclppb_encode(opt, out))
|
---|
773 | return LZMA_PROG_ERROR;
|
---|
774 |
|
---|
775 | write32le(out + 1, opt->dict_size);
|
---|
776 |
|
---|
777 | return LZMA_OK;
|
---|
778 | }
|
---|
779 | #endif
|
---|
780 |
|
---|
781 |
|
---|
782 | extern LZMA_API(lzma_bool)
|
---|
783 | lzma_mode_is_supported(lzma_mode mode)
|
---|
784 | {
|
---|
785 | return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL;
|
---|
786 | }
|
---|