1 | // SPDX-License-Identifier: 0BSD
|
---|
2 |
|
---|
3 | ///////////////////////////////////////////////////////////////////////////////
|
---|
4 | //
|
---|
5 | /// \file range_decoder.h
|
---|
6 | /// \brief Range Decoder
|
---|
7 | ///
|
---|
8 | // Authors: Igor Pavlov
|
---|
9 | // Lasse Collin
|
---|
10 | //
|
---|
11 | ///////////////////////////////////////////////////////////////////////////////
|
---|
12 |
|
---|
13 | #ifndef LZMA_RANGE_DECODER_H
|
---|
14 | #define LZMA_RANGE_DECODER_H
|
---|
15 |
|
---|
16 | #include "range_common.h"
|
---|
17 |
|
---|
18 |
|
---|
19 | // Choose the range decoder variants to use using a bitmask.
|
---|
20 | // If no bits are set, only the basic version is used.
|
---|
21 | // If more than one version is selected for the same feature,
|
---|
22 | // the last one on the list below is used.
|
---|
23 | //
|
---|
24 | // Bitwise-or of the following enable branchless C versions:
|
---|
25 | // 0x01 normal bittrees
|
---|
26 | // 0x02 fixed-sized reverse bittrees
|
---|
27 | // 0x04 variable-sized reverse bittrees (not faster)
|
---|
28 | // 0x08 matched literal (not faster)
|
---|
29 | //
|
---|
30 | // GCC & Clang compatible x86-64 inline assembly:
|
---|
31 | // 0x010 normal bittrees
|
---|
32 | // 0x020 fixed-sized reverse bittrees
|
---|
33 | // 0x040 variable-sized reverse bittrees
|
---|
34 | // 0x080 matched literal
|
---|
35 | // 0x100 direct bits
|
---|
36 | //
|
---|
37 | // The default can be overridden at build time by defining
|
---|
38 | // LZMA_RANGE_DECODER_CONFIG to the desired mask.
|
---|
39 | //
|
---|
40 | // 2024-02-22: Feedback from benchmarks:
|
---|
41 | // - Brancless C (0x003) can be better than basic on x86-64 but often it's
|
---|
42 | // slightly worse on other archs. Since asm is much better on x86-64,
|
---|
43 | // branchless C is not used at all.
|
---|
44 | // - With x86-64 asm, there are slight differences between GCC and Clang
|
---|
45 | // and different processors. Overall 0x1F0 seems to be the best choice.
|
---|
46 | #ifndef LZMA_RANGE_DECODER_CONFIG
|
---|
47 | # if defined(__x86_64__) && !defined(__ILP32__) \
|
---|
48 | && !defined(__NVCOMPILER) \
|
---|
49 | && (defined(__GNUC__) || defined(__clang__))
|
---|
50 | # define LZMA_RANGE_DECODER_CONFIG 0x1F0
|
---|
51 | # else
|
---|
52 | # define LZMA_RANGE_DECODER_CONFIG 0
|
---|
53 | # endif
|
---|
54 | #endif
|
---|
55 |
|
---|
56 |
|
---|
57 | // Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped.
|
---|
58 | // This is useful for updating probability variables in branchless decoding:
|
---|
59 | //
|
---|
60 | // uint32_t decoded_bit = ...;
|
---|
61 | // probability tmp = RC_BIT_MODEL_OFFSET;
|
---|
62 | // tmp &= decoded_bit - 1;
|
---|
63 | // prob -= (prob + tmp) >> RC_MOVE_BITS;
|
---|
64 | #define RC_BIT_MODEL_OFFSET \
|
---|
65 | ((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL)
|
---|
66 |
|
---|
67 |
|
---|
68 | typedef struct {
|
---|
69 | uint32_t range;
|
---|
70 | uint32_t code;
|
---|
71 | uint32_t init_bytes_left;
|
---|
72 | } lzma_range_decoder;
|
---|
73 |
|
---|
74 |
|
---|
75 | /// Reads the first five bytes to initialize the range decoder.
|
---|
76 | static inline lzma_ret
|
---|
77 | rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in,
|
---|
78 | size_t *restrict in_pos, size_t in_size)
|
---|
79 | {
|
---|
80 | while (rc->init_bytes_left > 0) {
|
---|
81 | if (*in_pos == in_size)
|
---|
82 | return LZMA_OK;
|
---|
83 |
|
---|
84 | // The first byte is always 0x00. It could have been omitted
|
---|
85 | // in LZMA2 but it wasn't, so one byte is wasted in every
|
---|
86 | // LZMA2 chunk.
|
---|
87 | if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00)
|
---|
88 | return LZMA_DATA_ERROR;
|
---|
89 |
|
---|
90 | rc->code = (rc->code << 8) | in[*in_pos];
|
---|
91 | ++*in_pos;
|
---|
92 | --rc->init_bytes_left;
|
---|
93 | }
|
---|
94 |
|
---|
95 | return LZMA_STREAM_END;
|
---|
96 | }
|
---|
97 |
|
---|
98 |
|
---|
99 | /// Makes local copies of range decoder and *in_pos variables. Doing this
|
---|
100 | /// improves speed significantly. The range decoder macros expect also
|
---|
101 | /// variables 'in' and 'in_size' to be defined.
|
---|
102 | #define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \
|
---|
103 | lzma_range_decoder rc = range_decoder; \
|
---|
104 | const uint8_t *rc_in_ptr = in + (in_pos); \
|
---|
105 | const uint8_t *rc_in_end = in + in_size; \
|
---|
106 | const uint8_t *rc_in_fast_end \
|
---|
107 | = (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \
|
---|
108 | ? rc_in_ptr \
|
---|
109 | : rc_in_end - (fast_mode_in_required); \
|
---|
110 | (void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \
|
---|
111 | uint32_t rc_bound
|
---|
112 |
|
---|
113 |
|
---|
114 | /// Evaluates to true if there is enough input remaining to use fast mode.
|
---|
115 | #define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end)
|
---|
116 |
|
---|
117 |
|
---|
118 | /// Stores the local copes back to the range decoder structure.
|
---|
119 | #define rc_from_local(range_decoder, in_pos) \
|
---|
120 | do { \
|
---|
121 | range_decoder = rc; \
|
---|
122 | in_pos = (size_t)(rc_in_ptr - in); \
|
---|
123 | } while (0)
|
---|
124 |
|
---|
125 |
|
---|
126 | /// Resets the range decoder structure.
|
---|
127 | #define rc_reset(range_decoder) \
|
---|
128 | do { \
|
---|
129 | (range_decoder).range = UINT32_MAX; \
|
---|
130 | (range_decoder).code = 0; \
|
---|
131 | (range_decoder).init_bytes_left = 5; \
|
---|
132 | } while (0)
|
---|
133 |
|
---|
134 |
|
---|
135 | /// When decoding has been properly finished, rc.code is always zero unless
|
---|
136 | /// the input stream is corrupt. So checking this can catch some corrupt
|
---|
137 | /// files especially if they don't have any other integrity check.
|
---|
138 | #define rc_is_finished(range_decoder) \
|
---|
139 | ((range_decoder).code == 0)
|
---|
140 |
|
---|
141 |
|
---|
142 | // Read the next input byte if needed.
|
---|
143 | #define rc_normalize() \
|
---|
144 | do { \
|
---|
145 | if (rc.range < RC_TOP_VALUE) { \
|
---|
146 | rc.range <<= RC_SHIFT_BITS; \
|
---|
147 | rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
|
---|
148 | } \
|
---|
149 | } while (0)
|
---|
150 |
|
---|
151 |
|
---|
152 | /// If more input is needed but there is
|
---|
153 | /// no more input available, "goto out" is used to jump out of the main
|
---|
154 | /// decoder loop. The "_safe" macros are used in the Resumable decoder
|
---|
155 | /// mode in order to save the sequence to continue decoding from that
|
---|
156 | /// point later.
|
---|
157 | #define rc_normalize_safe(seq) \
|
---|
158 | do { \
|
---|
159 | if (rc.range < RC_TOP_VALUE) { \
|
---|
160 | if (rc_in_ptr == rc_in_end) { \
|
---|
161 | coder->sequence = seq; \
|
---|
162 | goto out; \
|
---|
163 | } \
|
---|
164 | rc.range <<= RC_SHIFT_BITS; \
|
---|
165 | rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
|
---|
166 | } \
|
---|
167 | } while (0)
|
---|
168 |
|
---|
169 |
|
---|
170 | /// Start decoding a bit. This must be used together with rc_update_0()
|
---|
171 | /// and rc_update_1():
|
---|
172 | ///
|
---|
173 | /// rc_if_0(prob) {
|
---|
174 | /// rc_update_0(prob);
|
---|
175 | /// // Do something
|
---|
176 | /// } else {
|
---|
177 | /// rc_update_1(prob);
|
---|
178 | /// // Do something else
|
---|
179 | /// }
|
---|
180 | ///
|
---|
181 | #define rc_if_0(prob) \
|
---|
182 | rc_normalize(); \
|
---|
183 | rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
|
---|
184 | if (rc.code < rc_bound)
|
---|
185 |
|
---|
186 |
|
---|
187 | #define rc_if_0_safe(prob, seq) \
|
---|
188 | rc_normalize_safe(seq); \
|
---|
189 | rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
|
---|
190 | if (rc.code < rc_bound)
|
---|
191 |
|
---|
192 |
|
---|
193 | /// Update the range decoder state and the used probability variable to
|
---|
194 | /// match a decoded bit of 0.
|
---|
195 | ///
|
---|
196 | /// The x86-64 assembly uses the commented method but it seems that,
|
---|
197 | /// at least on x86-64, the first version is slightly faster as C code.
|
---|
198 | #define rc_update_0(prob) \
|
---|
199 | do { \
|
---|
200 | rc.range = rc_bound; \
|
---|
201 | prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \
|
---|
202 | /* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \
|
---|
203 | } while (0)
|
---|
204 |
|
---|
205 |
|
---|
206 | /// Update the range decoder state and the used probability variable to
|
---|
207 | /// match a decoded bit of 1.
|
---|
208 | #define rc_update_1(prob) \
|
---|
209 | do { \
|
---|
210 | rc.range -= rc_bound; \
|
---|
211 | rc.code -= rc_bound; \
|
---|
212 | prob -= (prob) >> RC_MOVE_BITS; \
|
---|
213 | } while (0)
|
---|
214 |
|
---|
215 |
|
---|
216 | /// Decodes one bit and runs action0 or action1 depending on the decoded bit.
|
---|
217 | /// This macro is used as the last step in bittree reverse decoders since
|
---|
218 | /// those don't use "symbol" for anything else than indexing the probability
|
---|
219 | /// arrays.
|
---|
220 | #define rc_bit_last(prob, action0, action1) \
|
---|
221 | do { \
|
---|
222 | rc_if_0(prob) { \
|
---|
223 | rc_update_0(prob); \
|
---|
224 | action0; \
|
---|
225 | } else { \
|
---|
226 | rc_update_1(prob); \
|
---|
227 | action1; \
|
---|
228 | } \
|
---|
229 | } while (0)
|
---|
230 |
|
---|
231 |
|
---|
232 | #define rc_bit_last_safe(prob, action0, action1, seq) \
|
---|
233 | do { \
|
---|
234 | rc_if_0_safe(prob, seq) { \
|
---|
235 | rc_update_0(prob); \
|
---|
236 | action0; \
|
---|
237 | } else { \
|
---|
238 | rc_update_1(prob); \
|
---|
239 | action1; \
|
---|
240 | } \
|
---|
241 | } while (0)
|
---|
242 |
|
---|
243 |
|
---|
244 | /// Decodes one bit, updates "symbol", and runs action0 or action1 depending
|
---|
245 | /// on the decoded bit.
|
---|
246 | #define rc_bit(prob, action0, action1) \
|
---|
247 | rc_bit_last(prob, \
|
---|
248 | symbol <<= 1; action0, \
|
---|
249 | symbol = (symbol << 1) + 1; action1);
|
---|
250 |
|
---|
251 |
|
---|
252 | #define rc_bit_safe(prob, action0, action1, seq) \
|
---|
253 | rc_bit_last_safe(prob, \
|
---|
254 | symbol <<= 1; action0, \
|
---|
255 | symbol = (symbol << 1) + 1; action1, \
|
---|
256 | seq);
|
---|
257 |
|
---|
258 | // Unroll fixed-sized bittree decoding.
|
---|
259 | //
|
---|
260 | // A compile-time constant in final_add can be used to get rid of the high bit
|
---|
261 | // from symbol that is used for the array indexing (1U << bittree_bits).
|
---|
262 | // final_add may also be used to add offset to the result (LZMA length
|
---|
263 | // decoder does that).
|
---|
264 | //
|
---|
265 | // The reason to have final_add here is that in the asm code the addition
|
---|
266 | // can be done for free: in x86-64 there is SBB instruction with -1 as
|
---|
267 | // the immediate value, and final_add is combined with that value.
|
---|
268 | #define rc_bittree_bit(prob) \
|
---|
269 | rc_bit(prob, , )
|
---|
270 |
|
---|
271 | #define rc_bittree3(probs, final_add) \
|
---|
272 | do { \
|
---|
273 | symbol = 1; \
|
---|
274 | rc_bittree_bit(probs[symbol]); \
|
---|
275 | rc_bittree_bit(probs[symbol]); \
|
---|
276 | rc_bittree_bit(probs[symbol]); \
|
---|
277 | symbol += (uint32_t)(final_add); \
|
---|
278 | } while (0)
|
---|
279 |
|
---|
280 | #define rc_bittree6(probs, final_add) \
|
---|
281 | do { \
|
---|
282 | symbol = 1; \
|
---|
283 | rc_bittree_bit(probs[symbol]); \
|
---|
284 | rc_bittree_bit(probs[symbol]); \
|
---|
285 | rc_bittree_bit(probs[symbol]); \
|
---|
286 | rc_bittree_bit(probs[symbol]); \
|
---|
287 | rc_bittree_bit(probs[symbol]); \
|
---|
288 | rc_bittree_bit(probs[symbol]); \
|
---|
289 | symbol += (uint32_t)(final_add); \
|
---|
290 | } while (0)
|
---|
291 |
|
---|
292 | #define rc_bittree8(probs, final_add) \
|
---|
293 | do { \
|
---|
294 | symbol = 1; \
|
---|
295 | rc_bittree_bit(probs[symbol]); \
|
---|
296 | rc_bittree_bit(probs[symbol]); \
|
---|
297 | rc_bittree_bit(probs[symbol]); \
|
---|
298 | rc_bittree_bit(probs[symbol]); \
|
---|
299 | rc_bittree_bit(probs[symbol]); \
|
---|
300 | rc_bittree_bit(probs[symbol]); \
|
---|
301 | rc_bittree_bit(probs[symbol]); \
|
---|
302 | rc_bittree_bit(probs[symbol]); \
|
---|
303 | symbol += (uint32_t)(final_add); \
|
---|
304 | } while (0)
|
---|
305 |
|
---|
306 |
|
---|
307 | // Fixed-sized reverse bittree
|
---|
308 | #define rc_bittree_rev4(probs) \
|
---|
309 | do { \
|
---|
310 | symbol = 0; \
|
---|
311 | rc_bit_last(probs[symbol + 1], , symbol += 1); \
|
---|
312 | rc_bit_last(probs[symbol + 2], , symbol += 2); \
|
---|
313 | rc_bit_last(probs[symbol + 4], , symbol += 4); \
|
---|
314 | rc_bit_last(probs[symbol + 8], , symbol += 8); \
|
---|
315 | } while (0)
|
---|
316 |
|
---|
317 |
|
---|
318 | // Decode one bit from variable-sized reverse bittree. The loop is done
|
---|
319 | // in the code that uses this macro. This could be changed if the assembly
|
---|
320 | // version benefited from having the loop done in assembly but it didn't
|
---|
321 | // seem so in early 2024.
|
---|
322 | //
|
---|
323 | // Also, if the loop was done here, the loop counter would likely be local
|
---|
324 | // to the macro so that it wouldn't modify yet another input variable.
|
---|
325 | // If a _safe version of a macro with a loop was done then a modifiable
|
---|
326 | // input variable couldn't be avoided though.
|
---|
327 | #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
|
---|
328 | rc_bit(probs[symbol], \
|
---|
329 | , \
|
---|
330 | dest += value_to_add_if_1);
|
---|
331 |
|
---|
332 |
|
---|
333 | // Matched literal
|
---|
334 | #define decode_with_match_bit \
|
---|
335 | t_match_byte <<= 1; \
|
---|
336 | t_match_bit = t_match_byte & t_offset; \
|
---|
337 | t_subcoder_index = t_offset + t_match_bit + symbol; \
|
---|
338 | rc_bit(probs[t_subcoder_index], \
|
---|
339 | t_offset &= ~t_match_bit, \
|
---|
340 | t_offset &= t_match_bit)
|
---|
341 |
|
---|
342 | #define rc_matched_literal(probs_base_var, match_byte) \
|
---|
343 | do { \
|
---|
344 | uint32_t t_match_byte = (match_byte); \
|
---|
345 | uint32_t t_match_bit; \
|
---|
346 | uint32_t t_subcoder_index; \
|
---|
347 | uint32_t t_offset = 0x100; \
|
---|
348 | symbol = 1; \
|
---|
349 | decode_with_match_bit; \
|
---|
350 | decode_with_match_bit; \
|
---|
351 | decode_with_match_bit; \
|
---|
352 | decode_with_match_bit; \
|
---|
353 | decode_with_match_bit; \
|
---|
354 | decode_with_match_bit; \
|
---|
355 | decode_with_match_bit; \
|
---|
356 | decode_with_match_bit; \
|
---|
357 | } while (0)
|
---|
358 |
|
---|
359 |
|
---|
360 | /// Decode a bit without using a probability.
|
---|
361 | //
|
---|
362 | // NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound
|
---|
363 | // calculation to use an arithmetic right shift so there's no need to provide
|
---|
364 | // the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't
|
---|
365 | // perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31);
|
---|
366 | #define rc_direct(dest, count_var) \
|
---|
367 | do { \
|
---|
368 | dest = (dest << 1) + 1; \
|
---|
369 | rc_normalize(); \
|
---|
370 | rc.range >>= 1; \
|
---|
371 | rc.code -= rc.range; \
|
---|
372 | rc_bound = UINT32_C(0) - (rc.code >> 31); \
|
---|
373 | dest += rc_bound; \
|
---|
374 | rc.code += rc.range & rc_bound; \
|
---|
375 | } while (--count_var > 0)
|
---|
376 |
|
---|
377 |
|
---|
378 |
|
---|
379 | #define rc_direct_safe(dest, count_var, seq) \
|
---|
380 | do { \
|
---|
381 | rc_normalize_safe(seq); \
|
---|
382 | rc.range >>= 1; \
|
---|
383 | rc.code -= rc.range; \
|
---|
384 | rc_bound = UINT32_C(0) - (rc.code >> 31); \
|
---|
385 | rc.code += rc.range & rc_bound; \
|
---|
386 | dest = (dest << 1) + (rc_bound + 1); \
|
---|
387 | } while (--count_var > 0)
|
---|
388 |
|
---|
389 |
|
---|
390 | //////////////////
|
---|
391 | // Branchless C //
|
---|
392 | //////////////////
|
---|
393 |
|
---|
394 | /// Decode a bit using a branchless method. This reduces the number of
|
---|
395 | /// mispredicted branches and thus can improve speed.
|
---|
396 | #define rc_c_bit(prob, action_bit, action_neg) \
|
---|
397 | do { \
|
---|
398 | probability *p = &(prob); \
|
---|
399 | rc_normalize(); \
|
---|
400 | rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \
|
---|
401 | uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \
|
---|
402 | action_bit; /* action when rc_mask is 0 or 1 */ \
|
---|
403 | /* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \
|
---|
404 | rc_mask = 0U - rc_mask; \
|
---|
405 | rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \
|
---|
406 | rc_bound ^= rc_mask; \
|
---|
407 | rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \
|
---|
408 | rc.range += rc_bound; \
|
---|
409 | rc_bound &= rc_mask; \
|
---|
410 | rc.code += rc_bound; \
|
---|
411 | action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \
|
---|
412 | rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \
|
---|
413 | rc_mask &= RC_BIT_MODEL_OFFSET; \
|
---|
414 | *p -= (*p + rc_mask) >> RC_MOVE_BITS; \
|
---|
415 | } while (0)
|
---|
416 |
|
---|
417 |
|
---|
418 | // Testing on x86-64 give an impression that only the normal bittrees and
|
---|
419 | // the fixed-sized reverse bittrees are worth the branchless C code.
|
---|
420 | // It should be tested on other archs for which there isn't assembly code
|
---|
421 | // in this file.
|
---|
422 |
|
---|
423 | // Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA
|
---|
424 | // or RISC-V SH1ADD instructions. Compilers might infer it from
|
---|
425 | // "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but
|
---|
426 | // the use of addition doesn't require such analysis from compilers.
|
---|
427 | #if LZMA_RANGE_DECODER_CONFIG & 0x01
|
---|
428 | #undef rc_bittree_bit
|
---|
429 | #define rc_bittree_bit(prob) \
|
---|
430 | rc_c_bit(prob, \
|
---|
431 | symbol = (symbol << 1) + rc_mask, \
|
---|
432 | )
|
---|
433 | #endif // LZMA_RANGE_DECODER_CONFIG & 0x01
|
---|
434 |
|
---|
435 | #if LZMA_RANGE_DECODER_CONFIG & 0x02
|
---|
436 | #undef rc_bittree_rev4
|
---|
437 | #define rc_bittree_rev4(probs) \
|
---|
438 | do { \
|
---|
439 | symbol = 0; \
|
---|
440 | rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \
|
---|
441 | rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \
|
---|
442 | rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \
|
---|
443 | rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \
|
---|
444 | } while (0)
|
---|
445 | #endif // LZMA_RANGE_DECODER_CONFIG & 0x02
|
---|
446 |
|
---|
447 | #if LZMA_RANGE_DECODER_CONFIG & 0x04
|
---|
448 | #undef rc_bit_add_if_1
|
---|
449 | #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
|
---|
450 | rc_c_bit(probs[symbol], \
|
---|
451 | symbol = (symbol << 1) + rc_mask, \
|
---|
452 | dest += (value_to_add_if_1) & rc_mask)
|
---|
453 | #endif // LZMA_RANGE_DECODER_CONFIG & 0x04
|
---|
454 |
|
---|
455 |
|
---|
456 | #if LZMA_RANGE_DECODER_CONFIG & 0x08
|
---|
457 | #undef decode_with_match_bit
|
---|
458 | #define decode_with_match_bit \
|
---|
459 | t_match_byte <<= 1; \
|
---|
460 | t_match_bit = t_match_byte & t_offset; \
|
---|
461 | t_subcoder_index = t_offset + t_match_bit + symbol; \
|
---|
462 | rc_c_bit(probs[t_subcoder_index], \
|
---|
463 | symbol = (symbol << 1) + rc_mask, \
|
---|
464 | t_offset &= ~t_match_bit ^ rc_mask)
|
---|
465 | #endif // LZMA_RANGE_DECODER_CONFIG & 0x08
|
---|
466 |
|
---|
467 |
|
---|
468 | ////////////
|
---|
469 | // x86-64 //
|
---|
470 | ////////////
|
---|
471 |
|
---|
472 | #if LZMA_RANGE_DECODER_CONFIG & 0x1F0
|
---|
473 |
|
---|
474 | // rc_asm_y and rc_asm_n are used as arguments to macros to control which
|
---|
475 | // strings to include or omit.
|
---|
476 | #define rc_asm_y(str) str
|
---|
477 | #define rc_asm_n(str)
|
---|
478 |
|
---|
479 | // There are a few possible variations for normalization.
|
---|
480 | // This is the smallest variant which is also used by LZMA SDK.
|
---|
481 | //
|
---|
482 | // - This has partial register write (the MOV from (%[in_ptr])).
|
---|
483 | //
|
---|
484 | // - INC saves one byte in code size over ADD. False dependency on
|
---|
485 | // partial flags from INC shouldn't become a problem on any processor
|
---|
486 | // because the instructions after normalization don't read the flags
|
---|
487 | // until SUB which sets all flags.
|
---|
488 | //
|
---|
489 | #define rc_asm_normalize \
|
---|
490 | "cmp %[top_value], %[range]\n\t" \
|
---|
491 | "jae 1f\n\t" \
|
---|
492 | "shl %[shift_bits], %[code]\n\t" \
|
---|
493 | "mov (%[in_ptr]), %b[code]\n\t" \
|
---|
494 | "shl %[shift_bits], %[range]\n\t" \
|
---|
495 | "inc %[in_ptr]\n" \
|
---|
496 | "1:\n"
|
---|
497 |
|
---|
498 | // rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)...
|
---|
499 | //
|
---|
500 | // rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
|
---|
501 | // if (rc.code < rc_bound)
|
---|
502 | //
|
---|
503 | // ...but the bound is stored in "range":
|
---|
504 | //
|
---|
505 | // t0 = range;
|
---|
506 | // range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
|
---|
507 | // t0 -= range;
|
---|
508 | // t1 = code;
|
---|
509 | // code -= range;
|
---|
510 | //
|
---|
511 | // The carry flag (CF) from the last subtraction holds the negation of
|
---|
512 | // the decoded bit (if CF==0 then the decoded bit is 1).
|
---|
513 | // The values in t0 and t1 are needed for rc_update_0(prob) and
|
---|
514 | // rc_update_1(prob). If the bit is 0, rc_update_0(prob)...
|
---|
515 | //
|
---|
516 | // rc.range = rc_bound;
|
---|
517 | //
|
---|
518 | // ...has already been done but the "code -= range" has to be reverted using
|
---|
519 | // the old value stored in t1. (Also, prob needs to be updated.)
|
---|
520 | //
|
---|
521 | // If the bit is 1, rc_update_1(prob)...
|
---|
522 | //
|
---|
523 | // rc.range -= rc_bound;
|
---|
524 | // rc.code -= rc_bound;
|
---|
525 | //
|
---|
526 | // ...is already done for "code" but the value for "range" needs to be taken
|
---|
527 | // from t0. (Also, prob needs to be updated here as well.)
|
---|
528 | //
|
---|
529 | // The assignments from t0 and t1 can be done in a branchless manner with CMOV
|
---|
530 | // after the instructions from this macro. The CF from SUB tells which moves
|
---|
531 | // are needed.
|
---|
532 | #define rc_asm_calc(prob) \
|
---|
533 | "mov %[range], %[t0]\n\t" \
|
---|
534 | "shr %[bit_model_total_bits], %[range]\n\t" \
|
---|
535 | "imul %[" prob "], %[range]\n\t" \
|
---|
536 | "sub %[range], %[t0]\n\t" \
|
---|
537 | "mov %[code], %[t1]\n\t" \
|
---|
538 | "sub %[range], %[code]\n\t"
|
---|
539 |
|
---|
540 | // Also, prob needs to be updated: The update math depends on the decoded bit.
|
---|
541 | // It can be expressed in a few slightly different ways but this is fairly
|
---|
542 | // convenient here:
|
---|
543 | //
|
---|
544 | // prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS;
|
---|
545 | //
|
---|
546 | // To do it in branchless way when the negation of the decoded bit is in CF,
|
---|
547 | // both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired
|
---|
548 | // value can be picked with CMOV. The addition can be done using LEA without
|
---|
549 | // affecting CF.
|
---|
550 | //
|
---|
551 | // (This prob update method is a tiny bit different from LZMA SDK 23.01.
|
---|
552 | // In the LZMA SDK a single register is reserved solely for a constant to
|
---|
553 | // be used with CMOV when updating prob. That is fine since there are enough
|
---|
554 | // free registers to do so. The method used here uses one fewer register,
|
---|
555 | // which is valuable with inline assembly.)
|
---|
556 | //
|
---|
557 | // * * *
|
---|
558 | //
|
---|
559 | // In bittree decoding, each (unrolled) loop iteration decodes one bit
|
---|
560 | // and needs one prob variable. To make it faster, the prob variable of
|
---|
561 | // the iteration N+1 is loaded during iteration N. There are two possible
|
---|
562 | // prob variables to choose from for N+1. Both are loaded from memory and
|
---|
563 | // the correct one is chosen with CMOV using the same CF as is used for
|
---|
564 | // other things described above.
|
---|
565 | //
|
---|
566 | // This preloading/prefetching requires an extra register. To avoid
|
---|
567 | // useless moves from "preloaded prob register" to "current prob register",
|
---|
568 | // the macros swap between the two registers for odd and even iterations.
|
---|
569 | //
|
---|
570 | // * * *
|
---|
571 | //
|
---|
572 | // Finally, the decoded bit has to be stored in "symbol". Since the negation
|
---|
573 | // of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is,
|
---|
574 | // if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0"
|
---|
575 | // and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is
|
---|
576 | // the same as "symbol += 1".
|
---|
577 | //
|
---|
578 | // The instructions for all things are intertwined for a few reasons:
|
---|
579 | // - freeing temporary registers for new use
|
---|
580 | // - not modifying CF too early
|
---|
581 | // - instruction scheduling
|
---|
582 | //
|
---|
583 | // The first and last iterations can cheat a little. For example,
|
---|
584 | // on the first iteration "symbol" is known to start from 1 so it
|
---|
585 | // doesn't need to be read; it can even be immediately initialized
|
---|
586 | // to 2 to prepare for the second iteration of the loop.
|
---|
587 | //
|
---|
588 | // * * *
|
---|
589 | //
|
---|
590 | // a = number of the current prob variable (0 or 1)
|
---|
591 | // b = number of the next prob variable (1 or 0)
|
---|
592 | // *_only = rc_asm_y or _n to include or exclude code marked with them
|
---|
593 | #define rc_asm_bittree(a, b, first_only, middle_only, last_only) \
|
---|
594 | first_only( \
|
---|
595 | "movzwl 2(%[probs_base]), %[prob" #a "]\n\t" \
|
---|
596 | "mov $2, %[symbol]\n\t" \
|
---|
597 | "movzwl 4(%[probs_base]), %[prob" #b "]\n\t" \
|
---|
598 | ) \
|
---|
599 | middle_only( \
|
---|
600 | /* Note the scaling of 4 instead of 2: */ \
|
---|
601 | "movzwl (%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \
|
---|
602 | ) \
|
---|
603 | last_only( \
|
---|
604 | "add %[symbol], %[symbol]\n\t" \
|
---|
605 | ) \
|
---|
606 | \
|
---|
607 | rc_asm_normalize \
|
---|
608 | rc_asm_calc("prob" #a) \
|
---|
609 | \
|
---|
610 | "cmovae %[t0], %[range]\n\t" \
|
---|
611 | \
|
---|
612 | first_only( \
|
---|
613 | "movzwl 6(%[probs_base]), %[t0]\n\t" \
|
---|
614 | "cmovae %[t0], %[prob" #b "]\n\t" \
|
---|
615 | ) \
|
---|
616 | middle_only( \
|
---|
617 | "movzwl 2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \
|
---|
618 | "lea (%q[symbol], %q[symbol]), %[symbol]\n\t" \
|
---|
619 | "cmovae %[t0], %[prob" #b "]\n\t" \
|
---|
620 | ) \
|
---|
621 | \
|
---|
622 | "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
|
---|
623 | "cmovb %[t1], %[code]\n\t" \
|
---|
624 | "mov %[symbol], %[t1]\n\t" \
|
---|
625 | "cmovae %[prob" #a "], %[t0]\n\t" \
|
---|
626 | \
|
---|
627 | first_only( \
|
---|
628 | "sbb $-1, %[symbol]\n\t" \
|
---|
629 | ) \
|
---|
630 | middle_only( \
|
---|
631 | "sbb $-1, %[symbol]\n\t" \
|
---|
632 | ) \
|
---|
633 | last_only( \
|
---|
634 | "sbb %[last_sbb], %[symbol]\n\t" \
|
---|
635 | ) \
|
---|
636 | \
|
---|
637 | "shr %[move_bits], %[t0]\n\t" \
|
---|
638 | "sub %[t0], %[prob" #a "]\n\t" \
|
---|
639 | /* Scaling of 1 instead of 2 because symbol <<= 1. */ \
|
---|
640 | "mov %w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t"
|
---|
641 |
|
---|
642 | // NOTE: The order of variables in __asm__ can affect speed and code size.
|
---|
643 | #define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \
|
---|
644 | do { \
|
---|
645 | uint32_t t0; \
|
---|
646 | uint32_t t1; \
|
---|
647 | uint32_t t_prob0; \
|
---|
648 | uint32_t t_prob1; \
|
---|
649 | \
|
---|
650 | __asm__( \
|
---|
651 | asm_str \
|
---|
652 | : \
|
---|
653 | [range] "+&r"(rc.range), \
|
---|
654 | [code] "+&r"(rc.code), \
|
---|
655 | [t0] "=&r"(t0), \
|
---|
656 | [t1] "=&r"(t1), \
|
---|
657 | [prob0] "=&r"(t_prob0), \
|
---|
658 | [prob1] "=&r"(t_prob1), \
|
---|
659 | [symbol] "=&r"(symbol), \
|
---|
660 | [in_ptr] "+&r"(rc_in_ptr) \
|
---|
661 | : \
|
---|
662 | [probs_base] "r"(probs_base_var), \
|
---|
663 | [last_sbb] "n"(-1 - (final_add)), \
|
---|
664 | [top_value] "n"(RC_TOP_VALUE), \
|
---|
665 | [shift_bits] "n"(RC_SHIFT_BITS), \
|
---|
666 | [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
|
---|
667 | [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
|
---|
668 | [move_bits] "n"(RC_MOVE_BITS) \
|
---|
669 | : \
|
---|
670 | "cc", "memory"); \
|
---|
671 | } while (0)
|
---|
672 |
|
---|
673 |
|
---|
674 | #if LZMA_RANGE_DECODER_CONFIG & 0x010
|
---|
675 | #undef rc_bittree3
|
---|
676 | #define rc_bittree3(probs_base_var, final_add) \
|
---|
677 | rc_asm_bittree_n(probs_base_var, final_add, \
|
---|
678 | rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
|
---|
679 | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
680 | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \
|
---|
681 | )
|
---|
682 |
|
---|
683 | #undef rc_bittree6
|
---|
684 | #define rc_bittree6(probs_base_var, final_add) \
|
---|
685 | rc_asm_bittree_n(probs_base_var, final_add, \
|
---|
686 | rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
|
---|
687 | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
688 | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
689 | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
690 | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
691 | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
|
---|
692 | )
|
---|
693 |
|
---|
694 | #undef rc_bittree8
|
---|
695 | #define rc_bittree8(probs_base_var, final_add) \
|
---|
696 | rc_asm_bittree_n(probs_base_var, final_add, \
|
---|
697 | rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
|
---|
698 | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
699 | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
700 | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
701 | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
702 | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
703 | rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
704 | rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
|
---|
705 | )
|
---|
706 | #endif // LZMA_RANGE_DECODER_CONFIG & 0x010
|
---|
707 |
|
---|
708 |
|
---|
709 | // Fixed-sized reverse bittree
|
---|
710 | //
|
---|
711 | // This uses the indexing that constructs the final value in symbol directly.
|
---|
712 | // add = 1, 2, 4, 8
|
---|
713 | // dcur = -, 4, 8, 16
|
---|
714 | // dnext0 = 4, 8, 16, -
|
---|
715 | // dnext0 = 6, 12, 24, -
|
---|
716 | #define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \
|
---|
717 | first_only, middle_only, last_only) \
|
---|
718 | first_only( \
|
---|
719 | "movzwl 2(%[probs_base]), %[prob" #a "]\n\t" \
|
---|
720 | "xor %[symbol], %[symbol]\n\t" \
|
---|
721 | "movzwl 4(%[probs_base]), %[prob" #b "]\n\t" \
|
---|
722 | ) \
|
---|
723 | middle_only( \
|
---|
724 | "movzwl " #dnext0 "(%[probs_base], %q[symbol], 2), " \
|
---|
725 | "%[prob" #b "]\n\t" \
|
---|
726 | ) \
|
---|
727 | \
|
---|
728 | rc_asm_normalize \
|
---|
729 | rc_asm_calc("prob" #a) \
|
---|
730 | \
|
---|
731 | "cmovae %[t0], %[range]\n\t" \
|
---|
732 | \
|
---|
733 | first_only( \
|
---|
734 | "movzwl 6(%[probs_base]), %[t0]\n\t" \
|
---|
735 | "cmovae %[t0], %[prob" #b "]\n\t" \
|
---|
736 | ) \
|
---|
737 | middle_only( \
|
---|
738 | "movzwl " #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \
|
---|
739 | "cmovae %[t0], %[prob" #b "]\n\t" \
|
---|
740 | ) \
|
---|
741 | \
|
---|
742 | "lea " #add "(%q[symbol]), %[t0]\n\t" \
|
---|
743 | "cmovb %[t1], %[code]\n\t" \
|
---|
744 | middle_only( \
|
---|
745 | "mov %[symbol], %[t1]\n\t" \
|
---|
746 | ) \
|
---|
747 | last_only( \
|
---|
748 | "mov %[symbol], %[t1]\n\t" \
|
---|
749 | ) \
|
---|
750 | "cmovae %[t0], %[symbol]\n\t" \
|
---|
751 | "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
|
---|
752 | "cmovae %[prob" #a "], %[t0]\n\t" \
|
---|
753 | \
|
---|
754 | "shr %[move_bits], %[t0]\n\t" \
|
---|
755 | "sub %[t0], %[prob" #a "]\n\t" \
|
---|
756 | first_only( \
|
---|
757 | "mov %w[prob" #a "], 2(%[probs_base])\n\t" \
|
---|
758 | ) \
|
---|
759 | middle_only( \
|
---|
760 | "mov %w[prob" #a "], " \
|
---|
761 | #dcur "(%[probs_base], %q[t1], 2)\n\t" \
|
---|
762 | ) \
|
---|
763 | last_only( \
|
---|
764 | "mov %w[prob" #a "], " \
|
---|
765 | #dcur "(%[probs_base], %q[t1], 2)\n\t" \
|
---|
766 | )
|
---|
767 |
|
---|
768 | #if LZMA_RANGE_DECODER_CONFIG & 0x020
|
---|
769 | #undef rc_bittree_rev4
|
---|
770 | #define rc_bittree_rev4(probs_base_var) \
|
---|
771 | rc_asm_bittree_n(probs_base_var, 4, \
|
---|
772 | rc_asm_bittree_rev(0, 1, 1, -, 4, 6, rc_asm_y, rc_asm_n, rc_asm_n) \
|
---|
773 | rc_asm_bittree_rev(1, 0, 2, 4, 8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
774 | rc_asm_bittree_rev(0, 1, 4, 8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \
|
---|
775 | rc_asm_bittree_rev(1, 0, 8, 16, -, -, rc_asm_n, rc_asm_n, rc_asm_y) \
|
---|
776 | )
|
---|
777 | #endif // LZMA_RANGE_DECODER_CONFIG & 0x020
|
---|
778 |
|
---|
779 |
|
---|
780 | #if LZMA_RANGE_DECODER_CONFIG & 0x040
|
---|
781 | #undef rc_bit_add_if_1
|
---|
782 | #define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \
|
---|
783 | do { \
|
---|
784 | uint32_t t0; \
|
---|
785 | uint32_t t1; \
|
---|
786 | uint32_t t2 = (value_to_add_if_1); \
|
---|
787 | uint32_t t_prob; \
|
---|
788 | uint32_t t_index; \
|
---|
789 | \
|
---|
790 | __asm__( \
|
---|
791 | "movzwl (%[probs_base], %q[symbol], 2), %[prob]\n\t" \
|
---|
792 | "mov %[symbol], %[index]\n\t" \
|
---|
793 | \
|
---|
794 | "add %[dest], %[t2]\n\t" \
|
---|
795 | "add %[symbol], %[symbol]\n\t" \
|
---|
796 | \
|
---|
797 | rc_asm_normalize \
|
---|
798 | rc_asm_calc("prob") \
|
---|
799 | \
|
---|
800 | "cmovae %[t0], %[range]\n\t" \
|
---|
801 | "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \
|
---|
802 | "cmovb %[t1], %[code]\n\t" \
|
---|
803 | "cmovae %[prob], %[t0]\n\t" \
|
---|
804 | \
|
---|
805 | "cmovae %[t2], %[dest]\n\t" \
|
---|
806 | "sbb $-1, %[symbol]\n\t" \
|
---|
807 | \
|
---|
808 | "sar %[move_bits], %[t0]\n\t" \
|
---|
809 | "sub %[t0], %[prob]\n\t" \
|
---|
810 | "mov %w[prob], (%[probs_base], %q[index], 2)" \
|
---|
811 | : \
|
---|
812 | [range] "+&r"(rc.range), \
|
---|
813 | [code] "+&r"(rc.code), \
|
---|
814 | [t0] "=&r"(t0), \
|
---|
815 | [t1] "=&r"(t1), \
|
---|
816 | [prob] "=&r"(t_prob), \
|
---|
817 | [index] "=&r"(t_index), \
|
---|
818 | [symbol] "+&r"(symbol), \
|
---|
819 | [t2] "+&r"(t2), \
|
---|
820 | [dest] "+&r"(dest_var), \
|
---|
821 | [in_ptr] "+&r"(rc_in_ptr) \
|
---|
822 | : \
|
---|
823 | [probs_base] "r"(probs_base_var), \
|
---|
824 | [top_value] "n"(RC_TOP_VALUE), \
|
---|
825 | [shift_bits] "n"(RC_SHIFT_BITS), \
|
---|
826 | [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
|
---|
827 | [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
|
---|
828 | [move_bits] "n"(RC_MOVE_BITS) \
|
---|
829 | : \
|
---|
830 | "cc", "memory"); \
|
---|
831 | } while (0)
|
---|
832 | #endif // LZMA_RANGE_DECODER_CONFIG & 0x040
|
---|
833 |
|
---|
834 |
|
---|
835 | // Literal decoding uses a normal 8-bit bittree but literal with match byte
|
---|
836 | // is more complex in picking the probability variable from the correct
|
---|
837 | // subtree. This doesn't use preloading/prefetching of the next prob because
|
---|
838 | // there are four choices instead of two.
|
---|
839 | //
|
---|
840 | // FIXME? The first iteration starts with symbol = 1 so it could be optimized
|
---|
841 | // by a tiny amount.
|
---|
842 | #define rc_asm_matched_literal(nonlast_only) \
|
---|
843 | "add %[offset], %[symbol]\n\t" \
|
---|
844 | "and %[offset], %[match_bit]\n\t" \
|
---|
845 | "add %[match_bit], %[symbol]\n\t" \
|
---|
846 | \
|
---|
847 | "movzwl (%[probs_base], %q[symbol], 2), %[prob]\n\t" \
|
---|
848 | \
|
---|
849 | "add %[symbol], %[symbol]\n\t" \
|
---|
850 | \
|
---|
851 | nonlast_only( \
|
---|
852 | "xor %[match_bit], %[offset]\n\t" \
|
---|
853 | "add %[match_byte], %[match_byte]\n\t" \
|
---|
854 | ) \
|
---|
855 | \
|
---|
856 | rc_asm_normalize \
|
---|
857 | rc_asm_calc("prob") \
|
---|
858 | \
|
---|
859 | "cmovae %[t0], %[range]\n\t" \
|
---|
860 | "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \
|
---|
861 | "cmovb %[t1], %[code]\n\t" \
|
---|
862 | "mov %[symbol], %[t1]\n\t" \
|
---|
863 | "cmovae %[prob], %[t0]\n\t" \
|
---|
864 | \
|
---|
865 | nonlast_only( \
|
---|
866 | "cmovae %[match_bit], %[offset]\n\t" \
|
---|
867 | "mov %[match_byte], %[match_bit]\n\t" \
|
---|
868 | ) \
|
---|
869 | \
|
---|
870 | "sbb $-1, %[symbol]\n\t" \
|
---|
871 | \
|
---|
872 | "shr %[move_bits], %[t0]\n\t" \
|
---|
873 | /* Undo symbol += match_bit + offset: */ \
|
---|
874 | "and $0x1FF, %[symbol]\n\t" \
|
---|
875 | "sub %[t0], %[prob]\n\t" \
|
---|
876 | \
|
---|
877 | /* Scaling of 1 instead of 2 because symbol <<= 1. */ \
|
---|
878 | "mov %w[prob], (%[probs_base], %q[t1], 1)\n\t"
|
---|
879 |
|
---|
880 |
|
---|
881 | #if LZMA_RANGE_DECODER_CONFIG & 0x080
|
---|
882 | #undef rc_matched_literal
|
---|
883 | #define rc_matched_literal(probs_base_var, match_byte_value) \
|
---|
884 | do { \
|
---|
885 | uint32_t t0; \
|
---|
886 | uint32_t t1; \
|
---|
887 | uint32_t t_prob; \
|
---|
888 | uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \
|
---|
889 | uint32_t t_match_bit = t_match_byte; \
|
---|
890 | uint32_t t_offset = 0x100; \
|
---|
891 | symbol = 1; \
|
---|
892 | \
|
---|
893 | __asm__( \
|
---|
894 | rc_asm_matched_literal(rc_asm_y) \
|
---|
895 | rc_asm_matched_literal(rc_asm_y) \
|
---|
896 | rc_asm_matched_literal(rc_asm_y) \
|
---|
897 | rc_asm_matched_literal(rc_asm_y) \
|
---|
898 | rc_asm_matched_literal(rc_asm_y) \
|
---|
899 | rc_asm_matched_literal(rc_asm_y) \
|
---|
900 | rc_asm_matched_literal(rc_asm_y) \
|
---|
901 | rc_asm_matched_literal(rc_asm_n) \
|
---|
902 | : \
|
---|
903 | [range] "+&r"(rc.range), \
|
---|
904 | [code] "+&r"(rc.code), \
|
---|
905 | [t0] "=&r"(t0), \
|
---|
906 | [t1] "=&r"(t1), \
|
---|
907 | [prob] "=&r"(t_prob), \
|
---|
908 | [match_bit] "+&r"(t_match_bit), \
|
---|
909 | [symbol] "+&r"(symbol), \
|
---|
910 | [match_byte] "+&r"(t_match_byte), \
|
---|
911 | [offset] "+&r"(t_offset), \
|
---|
912 | [in_ptr] "+&r"(rc_in_ptr) \
|
---|
913 | : \
|
---|
914 | [probs_base] "r"(probs_base_var), \
|
---|
915 | [top_value] "n"(RC_TOP_VALUE), \
|
---|
916 | [shift_bits] "n"(RC_SHIFT_BITS), \
|
---|
917 | [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
|
---|
918 | [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
|
---|
919 | [move_bits] "n"(RC_MOVE_BITS) \
|
---|
920 | : \
|
---|
921 | "cc", "memory"); \
|
---|
922 | } while (0)
|
---|
923 | #endif // LZMA_RANGE_DECODER_CONFIG & 0x080
|
---|
924 |
|
---|
925 |
|
---|
926 | // Doing the loop in asm instead of C seems to help a little.
|
---|
927 | #if LZMA_RANGE_DECODER_CONFIG & 0x100
|
---|
928 | #undef rc_direct
|
---|
929 | #define rc_direct(dest_var, count_var) \
|
---|
930 | do { \
|
---|
931 | uint32_t t0; \
|
---|
932 | uint32_t t1; \
|
---|
933 | \
|
---|
934 | __asm__( \
|
---|
935 | "2:\n\t" \
|
---|
936 | "add %[dest], %[dest]\n\t" \
|
---|
937 | "lea 1(%q[dest]), %[t1]\n\t" \
|
---|
938 | \
|
---|
939 | rc_asm_normalize \
|
---|
940 | \
|
---|
941 | "shr $1, %[range]\n\t" \
|
---|
942 | "mov %[code], %[t0]\n\t" \
|
---|
943 | "sub %[range], %[code]\n\t" \
|
---|
944 | "cmovns %[t1], %[dest]\n\t" \
|
---|
945 | "cmovs %[t0], %[code]\n\t" \
|
---|
946 | "dec %[count]\n\t" \
|
---|
947 | "jnz 2b\n\t" \
|
---|
948 | : \
|
---|
949 | [range] "+&r"(rc.range), \
|
---|
950 | [code] "+&r"(rc.code), \
|
---|
951 | [t0] "=&r"(t0), \
|
---|
952 | [t1] "=&r"(t1), \
|
---|
953 | [dest] "+&r"(dest_var), \
|
---|
954 | [count] "+&r"(count_var), \
|
---|
955 | [in_ptr] "+&r"(rc_in_ptr) \
|
---|
956 | : \
|
---|
957 | [top_value] "n"(RC_TOP_VALUE), \
|
---|
958 | [shift_bits] "n"(RC_SHIFT_BITS) \
|
---|
959 | : \
|
---|
960 | "cc", "memory"); \
|
---|
961 | } while (0)
|
---|
962 | #endif // LZMA_RANGE_DECODER_CONFIG & 0x100
|
---|
963 |
|
---|
964 | #endif // x86_64
|
---|
965 |
|
---|
966 | #endif
|
---|