VirtualBox

source: vbox/trunk/src/libs/libxml2-2.9.4/xmlregexp.c@ 71683

Last change on this file since 71683 was 65950, checked in by vboxsync, 8 years ago

libxml 2.9.4: fix export

  • Property svn:eol-style set to native
File size: 215.0 KB
Line 
1/*
2 * regexp.c: generic and extensible Regular Expression engine
3 *
4 * Basically designed with the purpose of compiling regexps for
5 * the variety of validation/shemas mechanisms now available in
6 * XML related specifications these include:
7 * - XML-1.0 DTD validation
8 * - XML Schemas structure part 1
9 * - XML Schemas Datatypes part 2 especially Appendix F
10 * - RELAX-NG/TREX i.e. the counter proposal
11 *
12 * See Copyright for the status of this software.
13 *
14 * Daniel Veillard <[email protected]>
15 */
16
17#define IN_LIBXML
18#include "libxml.h"
19
20#ifdef LIBXML_REGEXP_ENABLED
21
22/* #define DEBUG_ERR */
23
24#include <stdio.h>
25#include <string.h>
26#ifdef HAVE_LIMITS_H
27#include <limits.h>
28#endif
29
30#include <libxml/tree.h>
31#include <libxml/parserInternals.h>
32#include <libxml/xmlregexp.h>
33#include <libxml/xmlautomata.h>
34#include <libxml/xmlunicode.h>
35
36#ifndef INT_MAX
37#define INT_MAX 123456789 /* easy to flag and big enough for our needs */
38#endif
39
40/* #define DEBUG_REGEXP_GRAPH */
41/* #define DEBUG_REGEXP_EXEC */
42/* #define DEBUG_PUSH */
43/* #define DEBUG_COMPACTION */
44
45#define MAX_PUSH 10000000
46
47#ifdef ERROR
48#undef ERROR
49#endif
50#define ERROR(str) \
51 ctxt->error = XML_REGEXP_COMPILE_ERROR; \
52 xmlRegexpErrCompile(ctxt, str);
53#define NEXT ctxt->cur++
54#define CUR (*(ctxt->cur))
55#define NXT(index) (ctxt->cur[index])
56
57#define CUR_SCHAR(s, l) xmlStringCurrentChar(NULL, s, &l)
58#define NEXTL(l) ctxt->cur += l;
59#define XML_REG_STRING_SEPARATOR '|'
60/*
61 * Need PREV to check on a '-' within a Character Group. May only be used
62 * when it's guaranteed that cur is not at the beginning of ctxt->string!
63 */
64#define PREV (ctxt->cur[-1])
65
66/**
67 * TODO:
68 *
69 * macro to flag unimplemented blocks
70 */
71#define TODO \
72 xmlGenericError(xmlGenericErrorContext, \
73 "Unimplemented block at %s:%d\n", \
74 __FILE__, __LINE__);
75
76/************************************************************************
77 * *
78 * Datatypes and structures *
79 * *
80 ************************************************************************/
81
82/*
83 * Note: the order of the enums below is significant, do not shuffle
84 */
85typedef enum {
86 XML_REGEXP_EPSILON = 1,
87 XML_REGEXP_CHARVAL,
88 XML_REGEXP_RANGES,
89 XML_REGEXP_SUBREG, /* used for () sub regexps */
90 XML_REGEXP_STRING,
91 XML_REGEXP_ANYCHAR, /* . */
92 XML_REGEXP_ANYSPACE, /* \s */
93 XML_REGEXP_NOTSPACE, /* \S */
94 XML_REGEXP_INITNAME, /* \l */
95 XML_REGEXP_NOTINITNAME, /* \L */
96 XML_REGEXP_NAMECHAR, /* \c */
97 XML_REGEXP_NOTNAMECHAR, /* \C */
98 XML_REGEXP_DECIMAL, /* \d */
99 XML_REGEXP_NOTDECIMAL, /* \D */
100 XML_REGEXP_REALCHAR, /* \w */
101 XML_REGEXP_NOTREALCHAR, /* \W */
102 XML_REGEXP_LETTER = 100,
103 XML_REGEXP_LETTER_UPPERCASE,
104 XML_REGEXP_LETTER_LOWERCASE,
105 XML_REGEXP_LETTER_TITLECASE,
106 XML_REGEXP_LETTER_MODIFIER,
107 XML_REGEXP_LETTER_OTHERS,
108 XML_REGEXP_MARK,
109 XML_REGEXP_MARK_NONSPACING,
110 XML_REGEXP_MARK_SPACECOMBINING,
111 XML_REGEXP_MARK_ENCLOSING,
112 XML_REGEXP_NUMBER,
113 XML_REGEXP_NUMBER_DECIMAL,
114 XML_REGEXP_NUMBER_LETTER,
115 XML_REGEXP_NUMBER_OTHERS,
116 XML_REGEXP_PUNCT,
117 XML_REGEXP_PUNCT_CONNECTOR,
118 XML_REGEXP_PUNCT_DASH,
119 XML_REGEXP_PUNCT_OPEN,
120 XML_REGEXP_PUNCT_CLOSE,
121 XML_REGEXP_PUNCT_INITQUOTE,
122 XML_REGEXP_PUNCT_FINQUOTE,
123 XML_REGEXP_PUNCT_OTHERS,
124 XML_REGEXP_SEPAR,
125 XML_REGEXP_SEPAR_SPACE,
126 XML_REGEXP_SEPAR_LINE,
127 XML_REGEXP_SEPAR_PARA,
128 XML_REGEXP_SYMBOL,
129 XML_REGEXP_SYMBOL_MATH,
130 XML_REGEXP_SYMBOL_CURRENCY,
131 XML_REGEXP_SYMBOL_MODIFIER,
132 XML_REGEXP_SYMBOL_OTHERS,
133 XML_REGEXP_OTHER,
134 XML_REGEXP_OTHER_CONTROL,
135 XML_REGEXP_OTHER_FORMAT,
136 XML_REGEXP_OTHER_PRIVATE,
137 XML_REGEXP_OTHER_NA,
138 XML_REGEXP_BLOCK_NAME
139} xmlRegAtomType;
140
141typedef enum {
142 XML_REGEXP_QUANT_EPSILON = 1,
143 XML_REGEXP_QUANT_ONCE,
144 XML_REGEXP_QUANT_OPT,
145 XML_REGEXP_QUANT_MULT,
146 XML_REGEXP_QUANT_PLUS,
147 XML_REGEXP_QUANT_ONCEONLY,
148 XML_REGEXP_QUANT_ALL,
149 XML_REGEXP_QUANT_RANGE
150} xmlRegQuantType;
151
152typedef enum {
153 XML_REGEXP_START_STATE = 1,
154 XML_REGEXP_FINAL_STATE,
155 XML_REGEXP_TRANS_STATE,
156 XML_REGEXP_SINK_STATE,
157 XML_REGEXP_UNREACH_STATE
158} xmlRegStateType;
159
160typedef enum {
161 XML_REGEXP_MARK_NORMAL = 0,
162 XML_REGEXP_MARK_START,
163 XML_REGEXP_MARK_VISITED
164} xmlRegMarkedType;
165
166typedef struct _xmlRegRange xmlRegRange;
167typedef xmlRegRange *xmlRegRangePtr;
168
169struct _xmlRegRange {
170 int neg; /* 0 normal, 1 not, 2 exclude */
171 xmlRegAtomType type;
172 int start;
173 int end;
174 xmlChar *blockName;
175};
176
177typedef struct _xmlRegAtom xmlRegAtom;
178typedef xmlRegAtom *xmlRegAtomPtr;
179
180typedef struct _xmlAutomataState xmlRegState;
181typedef xmlRegState *xmlRegStatePtr;
182
183struct _xmlRegAtom {
184 int no;
185 xmlRegAtomType type;
186 xmlRegQuantType quant;
187 int min;
188 int max;
189
190 void *valuep;
191 void *valuep2;
192 int neg;
193 int codepoint;
194 xmlRegStatePtr start;
195 xmlRegStatePtr start0;
196 xmlRegStatePtr stop;
197 int maxRanges;
198 int nbRanges;
199 xmlRegRangePtr *ranges;
200 void *data;
201};
202
203typedef struct _xmlRegCounter xmlRegCounter;
204typedef xmlRegCounter *xmlRegCounterPtr;
205
206struct _xmlRegCounter {
207 int min;
208 int max;
209};
210
211typedef struct _xmlRegTrans xmlRegTrans;
212typedef xmlRegTrans *xmlRegTransPtr;
213
214struct _xmlRegTrans {
215 xmlRegAtomPtr atom;
216 int to;
217 int counter;
218 int count;
219 int nd;
220};
221
222struct _xmlAutomataState {
223 xmlRegStateType type;
224 xmlRegMarkedType mark;
225 xmlRegMarkedType markd;
226 xmlRegMarkedType reached;
227 int no;
228 int maxTrans;
229 int nbTrans;
230 xmlRegTrans *trans;
231 /* knowing states ponting to us can speed things up */
232 int maxTransTo;
233 int nbTransTo;
234 int *transTo;
235};
236
237typedef struct _xmlAutomata xmlRegParserCtxt;
238typedef xmlRegParserCtxt *xmlRegParserCtxtPtr;
239
240#define AM_AUTOMATA_RNG 1
241
242struct _xmlAutomata {
243 xmlChar *string;
244 xmlChar *cur;
245
246 int error;
247 int neg;
248
249 xmlRegStatePtr start;
250 xmlRegStatePtr end;
251 xmlRegStatePtr state;
252
253 xmlRegAtomPtr atom;
254
255 int maxAtoms;
256 int nbAtoms;
257 xmlRegAtomPtr *atoms;
258
259 int maxStates;
260 int nbStates;
261 xmlRegStatePtr *states;
262
263 int maxCounters;
264 int nbCounters;
265 xmlRegCounter *counters;
266
267 int determinist;
268 int negs;
269 int flags;
270};
271
272struct _xmlRegexp {
273 xmlChar *string;
274 int nbStates;
275 xmlRegStatePtr *states;
276 int nbAtoms;
277 xmlRegAtomPtr *atoms;
278 int nbCounters;
279 xmlRegCounter *counters;
280 int determinist;
281 int flags;
282 /*
283 * That's the compact form for determinists automatas
284 */
285 int nbstates;
286 int *compact;
287 void **transdata;
288 int nbstrings;
289 xmlChar **stringMap;
290};
291
292typedef struct _xmlRegExecRollback xmlRegExecRollback;
293typedef xmlRegExecRollback *xmlRegExecRollbackPtr;
294
295struct _xmlRegExecRollback {
296 xmlRegStatePtr state;/* the current state */
297 int index; /* the index in the input stack */
298 int nextbranch; /* the next transition to explore in that state */
299 int *counts; /* save the automata state if it has some */
300};
301
302typedef struct _xmlRegInputToken xmlRegInputToken;
303typedef xmlRegInputToken *xmlRegInputTokenPtr;
304
305struct _xmlRegInputToken {
306 xmlChar *value;
307 void *data;
308};
309
310struct _xmlRegExecCtxt {
311 int status; /* execution status != 0 indicate an error */
312 int determinist; /* did we find an indeterministic behaviour */
313 xmlRegexpPtr comp; /* the compiled regexp */
314 xmlRegExecCallbacks callback;
315 void *data;
316
317 xmlRegStatePtr state;/* the current state */
318 int transno; /* the current transition on that state */
319 int transcount; /* the number of chars in char counted transitions */
320
321 /*
322 * A stack of rollback states
323 */
324 int maxRollbacks;
325 int nbRollbacks;
326 xmlRegExecRollback *rollbacks;
327
328 /*
329 * The state of the automata if any
330 */
331 int *counts;
332
333 /*
334 * The input stack
335 */
336 int inputStackMax;
337 int inputStackNr;
338 int index;
339 int *charStack;
340 const xmlChar *inputString; /* when operating on characters */
341 xmlRegInputTokenPtr inputStack;/* when operating on strings */
342
343 /*
344 * error handling
345 */
346 int errStateNo; /* the error state number */
347 xmlRegStatePtr errState; /* the error state */
348 xmlChar *errString; /* the string raising the error */
349 int *errCounts; /* counters at the error state */
350 int nbPush;
351};
352
353#define REGEXP_ALL_COUNTER 0x123456
354#define REGEXP_ALL_LAX_COUNTER 0x123457
355
356static void xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top);
357static void xmlRegFreeState(xmlRegStatePtr state);
358static void xmlRegFreeAtom(xmlRegAtomPtr atom);
359static int xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr);
360static int xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint);
361static int xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint,
362 int neg, int start, int end, const xmlChar *blockName);
363
364void xmlAutomataSetFlags(xmlAutomataPtr am, int flags);
365
366/************************************************************************
367 * *
368 * Regexp memory error handler *
369 * *
370 ************************************************************************/
371/**
372 * xmlRegexpErrMemory:
373 * @extra: extra information
374 *
375 * Handle an out of memory condition
376 */
377static void
378xmlRegexpErrMemory(xmlRegParserCtxtPtr ctxt, const char *extra)
379{
380 const char *regexp = NULL;
381 if (ctxt != NULL) {
382 regexp = (const char *) ctxt->string;
383 ctxt->error = XML_ERR_NO_MEMORY;
384 }
385 __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
386 XML_ERR_NO_MEMORY, XML_ERR_FATAL, NULL, 0, extra,
387 regexp, NULL, 0, 0,
388 "Memory allocation failed : %s\n", extra);
389}
390
391/**
392 * xmlRegexpErrCompile:
393 * @extra: extra information
394 *
395 * Handle a compilation failure
396 */
397static void
398xmlRegexpErrCompile(xmlRegParserCtxtPtr ctxt, const char *extra)
399{
400 const char *regexp = NULL;
401 int idx = 0;
402
403 if (ctxt != NULL) {
404 regexp = (const char *) ctxt->string;
405 idx = ctxt->cur - ctxt->string;
406 ctxt->error = XML_REGEXP_COMPILE_ERROR;
407 }
408 __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
409 XML_REGEXP_COMPILE_ERROR, XML_ERR_FATAL, NULL, 0, extra,
410 regexp, NULL, idx, 0,
411 "failed to compile: %s\n", extra);
412}
413
414/************************************************************************
415 * *
416 * Allocation/Deallocation *
417 * *
418 ************************************************************************/
419
420static int xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt);
421/**
422 * xmlRegEpxFromParse:
423 * @ctxt: the parser context used to build it
424 *
425 * Allocate a new regexp and fill it with the result from the parser
426 *
427 * Returns the new regexp or NULL in case of error
428 */
429static xmlRegexpPtr
430xmlRegEpxFromParse(xmlRegParserCtxtPtr ctxt) {
431 xmlRegexpPtr ret;
432
433 ret = (xmlRegexpPtr) xmlMalloc(sizeof(xmlRegexp));
434 if (ret == NULL) {
435 xmlRegexpErrMemory(ctxt, "compiling regexp");
436 return(NULL);
437 }
438 memset(ret, 0, sizeof(xmlRegexp));
439 ret->string = ctxt->string;
440 ret->nbStates = ctxt->nbStates;
441 ret->states = ctxt->states;
442 ret->nbAtoms = ctxt->nbAtoms;
443 ret->atoms = ctxt->atoms;
444 ret->nbCounters = ctxt->nbCounters;
445 ret->counters = ctxt->counters;
446 ret->determinist = ctxt->determinist;
447 ret->flags = ctxt->flags;
448 if (ret->determinist == -1) {
449 xmlRegexpIsDeterminist(ret);
450 }
451
452 if ((ret->determinist != 0) &&
453 (ret->nbCounters == 0) &&
454 (ctxt->negs == 0) &&
455 (ret->atoms != NULL) &&
456 (ret->atoms[0] != NULL) &&
457 (ret->atoms[0]->type == XML_REGEXP_STRING)) {
458 int i, j, nbstates = 0, nbatoms = 0;
459 int *stateRemap;
460 int *stringRemap;
461 int *transitions;
462 void **transdata;
463 xmlChar **stringMap;
464 xmlChar *value;
465
466 /*
467 * Switch to a compact representation
468 * 1/ counting the effective number of states left
469 * 2/ counting the unique number of atoms, and check that
470 * they are all of the string type
471 * 3/ build a table state x atom for the transitions
472 */
473
474 stateRemap = xmlMalloc(ret->nbStates * sizeof(int));
475 if (stateRemap == NULL) {
476 xmlRegexpErrMemory(ctxt, "compiling regexp");
477 xmlFree(ret);
478 return(NULL);
479 }
480 for (i = 0;i < ret->nbStates;i++) {
481 if (ret->states[i] != NULL) {
482 stateRemap[i] = nbstates;
483 nbstates++;
484 } else {
485 stateRemap[i] = -1;
486 }
487 }
488#ifdef DEBUG_COMPACTION
489 printf("Final: %d states\n", nbstates);
490#endif
491 stringMap = xmlMalloc(ret->nbAtoms * sizeof(char *));
492 if (stringMap == NULL) {
493 xmlRegexpErrMemory(ctxt, "compiling regexp");
494 xmlFree(stateRemap);
495 xmlFree(ret);
496 return(NULL);
497 }
498 stringRemap = xmlMalloc(ret->nbAtoms * sizeof(int));
499 if (stringRemap == NULL) {
500 xmlRegexpErrMemory(ctxt, "compiling regexp");
501 xmlFree(stringMap);
502 xmlFree(stateRemap);
503 xmlFree(ret);
504 return(NULL);
505 }
506 for (i = 0;i < ret->nbAtoms;i++) {
507 if ((ret->atoms[i]->type == XML_REGEXP_STRING) &&
508 (ret->atoms[i]->quant == XML_REGEXP_QUANT_ONCE)) {
509 value = ret->atoms[i]->valuep;
510 for (j = 0;j < nbatoms;j++) {
511 if (xmlStrEqual(stringMap[j], value)) {
512 stringRemap[i] = j;
513 break;
514 }
515 }
516 if (j >= nbatoms) {
517 stringRemap[i] = nbatoms;
518 stringMap[nbatoms] = xmlStrdup(value);
519 if (stringMap[nbatoms] == NULL) {
520 for (i = 0;i < nbatoms;i++)
521 xmlFree(stringMap[i]);
522 xmlFree(stringRemap);
523 xmlFree(stringMap);
524 xmlFree(stateRemap);
525 xmlFree(ret);
526 return(NULL);
527 }
528 nbatoms++;
529 }
530 } else {
531 xmlFree(stateRemap);
532 xmlFree(stringRemap);
533 for (i = 0;i < nbatoms;i++)
534 xmlFree(stringMap[i]);
535 xmlFree(stringMap);
536 xmlFree(ret);
537 return(NULL);
538 }
539 }
540#ifdef DEBUG_COMPACTION
541 printf("Final: %d atoms\n", nbatoms);
542#endif
543 transitions = (int *) xmlMalloc((nbstates + 1) *
544 (nbatoms + 1) * sizeof(int));
545 if (transitions == NULL) {
546 xmlFree(stateRemap);
547 xmlFree(stringRemap);
548 xmlFree(stringMap);
549 xmlFree(ret);
550 return(NULL);
551 }
552 memset(transitions, 0, (nbstates + 1) * (nbatoms + 1) * sizeof(int));
553
554 /*
555 * Allocate the transition table. The first entry for each
556 * state corresponds to the state type.
557 */
558 transdata = NULL;
559
560 for (i = 0;i < ret->nbStates;i++) {
561 int stateno, atomno, targetno, prev;
562 xmlRegStatePtr state;
563 xmlRegTransPtr trans;
564
565 stateno = stateRemap[i];
566 if (stateno == -1)
567 continue;
568 state = ret->states[i];
569
570 transitions[stateno * (nbatoms + 1)] = state->type;
571
572 for (j = 0;j < state->nbTrans;j++) {
573 trans = &(state->trans[j]);
574 if ((trans->to == -1) || (trans->atom == NULL))
575 continue;
576 atomno = stringRemap[trans->atom->no];
577 if ((trans->atom->data != NULL) && (transdata == NULL)) {
578 transdata = (void **) xmlMalloc(nbstates * nbatoms *
579 sizeof(void *));
580 if (transdata != NULL)
581 memset(transdata, 0,
582 nbstates * nbatoms * sizeof(void *));
583 else {
584 xmlRegexpErrMemory(ctxt, "compiling regexp");
585 break;
586 }
587 }
588 targetno = stateRemap[trans->to];
589 /*
590 * if the same atom can generate transitions to 2 different
591 * states then it means the automata is not determinist and
592 * the compact form can't be used !
593 */
594 prev = transitions[stateno * (nbatoms + 1) + atomno + 1];
595 if (prev != 0) {
596 if (prev != targetno + 1) {
597 ret->determinist = 0;
598#ifdef DEBUG_COMPACTION
599 printf("Indet: state %d trans %d, atom %d to %d : %d to %d\n",
600 i, j, trans->atom->no, trans->to, atomno, targetno);
601 printf(" previous to is %d\n", prev);
602#endif
603 if (transdata != NULL)
604 xmlFree(transdata);
605 xmlFree(transitions);
606 xmlFree(stateRemap);
607 xmlFree(stringRemap);
608 for (i = 0;i < nbatoms;i++)
609 xmlFree(stringMap[i]);
610 xmlFree(stringMap);
611 goto not_determ;
612 }
613 } else {
614#if 0
615 printf("State %d trans %d: atom %d to %d : %d to %d\n",
616 i, j, trans->atom->no, trans->to, atomno, targetno);
617#endif
618 transitions[stateno * (nbatoms + 1) + atomno + 1] =
619 targetno + 1; /* to avoid 0 */
620 if (transdata != NULL)
621 transdata[stateno * nbatoms + atomno] =
622 trans->atom->data;
623 }
624 }
625 }
626 ret->determinist = 1;
627#ifdef DEBUG_COMPACTION
628 /*
629 * Debug
630 */
631 for (i = 0;i < nbstates;i++) {
632 for (j = 0;j < nbatoms + 1;j++) {
633 printf("%02d ", transitions[i * (nbatoms + 1) + j]);
634 }
635 printf("\n");
636 }
637 printf("\n");
638#endif
639 /*
640 * Cleanup of the old data
641 */
642 if (ret->states != NULL) {
643 for (i = 0;i < ret->nbStates;i++)
644 xmlRegFreeState(ret->states[i]);
645 xmlFree(ret->states);
646 }
647 ret->states = NULL;
648 ret->nbStates = 0;
649 if (ret->atoms != NULL) {
650 for (i = 0;i < ret->nbAtoms;i++)
651 xmlRegFreeAtom(ret->atoms[i]);
652 xmlFree(ret->atoms);
653 }
654 ret->atoms = NULL;
655 ret->nbAtoms = 0;
656
657 ret->compact = transitions;
658 ret->transdata = transdata;
659 ret->stringMap = stringMap;
660 ret->nbstrings = nbatoms;
661 ret->nbstates = nbstates;
662 xmlFree(stateRemap);
663 xmlFree(stringRemap);
664 }
665not_determ:
666 ctxt->string = NULL;
667 ctxt->nbStates = 0;
668 ctxt->states = NULL;
669 ctxt->nbAtoms = 0;
670 ctxt->atoms = NULL;
671 ctxt->nbCounters = 0;
672 ctxt->counters = NULL;
673 return(ret);
674}
675
676/**
677 * xmlRegNewParserCtxt:
678 * @string: the string to parse
679 *
680 * Allocate a new regexp parser context
681 *
682 * Returns the new context or NULL in case of error
683 */
684static xmlRegParserCtxtPtr
685xmlRegNewParserCtxt(const xmlChar *string) {
686 xmlRegParserCtxtPtr ret;
687
688 ret = (xmlRegParserCtxtPtr) xmlMalloc(sizeof(xmlRegParserCtxt));
689 if (ret == NULL)
690 return(NULL);
691 memset(ret, 0, sizeof(xmlRegParserCtxt));
692 if (string != NULL)
693 ret->string = xmlStrdup(string);
694 ret->cur = ret->string;
695 ret->neg = 0;
696 ret->negs = 0;
697 ret->error = 0;
698 ret->determinist = -1;
699 return(ret);
700}
701
702/**
703 * xmlRegNewRange:
704 * @ctxt: the regexp parser context
705 * @neg: is that negative
706 * @type: the type of range
707 * @start: the start codepoint
708 * @end: the end codepoint
709 *
710 * Allocate a new regexp range
711 *
712 * Returns the new range or NULL in case of error
713 */
714static xmlRegRangePtr
715xmlRegNewRange(xmlRegParserCtxtPtr ctxt,
716 int neg, xmlRegAtomType type, int start, int end) {
717 xmlRegRangePtr ret;
718
719 ret = (xmlRegRangePtr) xmlMalloc(sizeof(xmlRegRange));
720 if (ret == NULL) {
721 xmlRegexpErrMemory(ctxt, "allocating range");
722 return(NULL);
723 }
724 ret->neg = neg;
725 ret->type = type;
726 ret->start = start;
727 ret->end = end;
728 return(ret);
729}
730
731/**
732 * xmlRegFreeRange:
733 * @range: the regexp range
734 *
735 * Free a regexp range
736 */
737static void
738xmlRegFreeRange(xmlRegRangePtr range) {
739 if (range == NULL)
740 return;
741
742 if (range->blockName != NULL)
743 xmlFree(range->blockName);
744 xmlFree(range);
745}
746
747/**
748 * xmlRegCopyRange:
749 * @range: the regexp range
750 *
751 * Copy a regexp range
752 *
753 * Returns the new copy or NULL in case of error.
754 */
755static xmlRegRangePtr
756xmlRegCopyRange(xmlRegParserCtxtPtr ctxt, xmlRegRangePtr range) {
757 xmlRegRangePtr ret;
758
759 if (range == NULL)
760 return(NULL);
761
762 ret = xmlRegNewRange(ctxt, range->neg, range->type, range->start,
763 range->end);
764 if (ret == NULL)
765 return(NULL);
766 if (range->blockName != NULL) {
767 ret->blockName = xmlStrdup(range->blockName);
768 if (ret->blockName == NULL) {
769 xmlRegexpErrMemory(ctxt, "allocating range");
770 xmlRegFreeRange(ret);
771 return(NULL);
772 }
773 }
774 return(ret);
775}
776
777/**
778 * xmlRegNewAtom:
779 * @ctxt: the regexp parser context
780 * @type: the type of atom
781 *
782 * Allocate a new atom
783 *
784 * Returns the new atom or NULL in case of error
785 */
786static xmlRegAtomPtr
787xmlRegNewAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomType type) {
788 xmlRegAtomPtr ret;
789
790 ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
791 if (ret == NULL) {
792 xmlRegexpErrMemory(ctxt, "allocating atom");
793 return(NULL);
794 }
795 memset(ret, 0, sizeof(xmlRegAtom));
796 ret->type = type;
797 ret->quant = XML_REGEXP_QUANT_ONCE;
798 ret->min = 0;
799 ret->max = 0;
800 return(ret);
801}
802
803/**
804 * xmlRegFreeAtom:
805 * @atom: the regexp atom
806 *
807 * Free a regexp atom
808 */
809static void
810xmlRegFreeAtom(xmlRegAtomPtr atom) {
811 int i;
812
813 if (atom == NULL)
814 return;
815
816 for (i = 0;i < atom->nbRanges;i++)
817 xmlRegFreeRange(atom->ranges[i]);
818 if (atom->ranges != NULL)
819 xmlFree(atom->ranges);
820 if ((atom->type == XML_REGEXP_STRING) && (atom->valuep != NULL))
821 xmlFree(atom->valuep);
822 if ((atom->type == XML_REGEXP_STRING) && (atom->valuep2 != NULL))
823 xmlFree(atom->valuep2);
824 if ((atom->type == XML_REGEXP_BLOCK_NAME) && (atom->valuep != NULL))
825 xmlFree(atom->valuep);
826 xmlFree(atom);
827}
828
829/**
830 * xmlRegCopyAtom:
831 * @ctxt: the regexp parser context
832 * @atom: the oiginal atom
833 *
834 * Allocate a new regexp range
835 *
836 * Returns the new atom or NULL in case of error
837 */
838static xmlRegAtomPtr
839xmlRegCopyAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
840 xmlRegAtomPtr ret;
841
842 ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
843 if (ret == NULL) {
844 xmlRegexpErrMemory(ctxt, "copying atom");
845 return(NULL);
846 }
847 memset(ret, 0, sizeof(xmlRegAtom));
848 ret->type = atom->type;
849 ret->quant = atom->quant;
850 ret->min = atom->min;
851 ret->max = atom->max;
852 if (atom->nbRanges > 0) {
853 int i;
854
855 ret->ranges = (xmlRegRangePtr *) xmlMalloc(sizeof(xmlRegRangePtr) *
856 atom->nbRanges);
857 if (ret->ranges == NULL) {
858 xmlRegexpErrMemory(ctxt, "copying atom");
859 goto error;
860 }
861 for (i = 0;i < atom->nbRanges;i++) {
862 ret->ranges[i] = xmlRegCopyRange(ctxt, atom->ranges[i]);
863 if (ret->ranges[i] == NULL)
864 goto error;
865 ret->nbRanges = i + 1;
866 }
867 }
868 return(ret);
869
870error:
871 xmlRegFreeAtom(ret);
872 return(NULL);
873}
874
875static xmlRegStatePtr
876xmlRegNewState(xmlRegParserCtxtPtr ctxt) {
877 xmlRegStatePtr ret;
878
879 ret = (xmlRegStatePtr) xmlMalloc(sizeof(xmlRegState));
880 if (ret == NULL) {
881 xmlRegexpErrMemory(ctxt, "allocating state");
882 return(NULL);
883 }
884 memset(ret, 0, sizeof(xmlRegState));
885 ret->type = XML_REGEXP_TRANS_STATE;
886 ret->mark = XML_REGEXP_MARK_NORMAL;
887 return(ret);
888}
889
890/**
891 * xmlRegFreeState:
892 * @state: the regexp state
893 *
894 * Free a regexp state
895 */
896static void
897xmlRegFreeState(xmlRegStatePtr state) {
898 if (state == NULL)
899 return;
900
901 if (state->trans != NULL)
902 xmlFree(state->trans);
903 if (state->transTo != NULL)
904 xmlFree(state->transTo);
905 xmlFree(state);
906}
907
908/**
909 * xmlRegFreeParserCtxt:
910 * @ctxt: the regexp parser context
911 *
912 * Free a regexp parser context
913 */
914static void
915xmlRegFreeParserCtxt(xmlRegParserCtxtPtr ctxt) {
916 int i;
917 if (ctxt == NULL)
918 return;
919
920 if (ctxt->string != NULL)
921 xmlFree(ctxt->string);
922 if (ctxt->states != NULL) {
923 for (i = 0;i < ctxt->nbStates;i++)
924 xmlRegFreeState(ctxt->states[i]);
925 xmlFree(ctxt->states);
926 }
927 if (ctxt->atoms != NULL) {
928 for (i = 0;i < ctxt->nbAtoms;i++)
929 xmlRegFreeAtom(ctxt->atoms[i]);
930 xmlFree(ctxt->atoms);
931 }
932 if (ctxt->counters != NULL)
933 xmlFree(ctxt->counters);
934 xmlFree(ctxt);
935}
936
937/************************************************************************
938 * *
939 * Display of Data structures *
940 * *
941 ************************************************************************/
942
943static void
944xmlRegPrintAtomType(FILE *output, xmlRegAtomType type) {
945 switch (type) {
946 case XML_REGEXP_EPSILON:
947 fprintf(output, "epsilon "); break;
948 case XML_REGEXP_CHARVAL:
949 fprintf(output, "charval "); break;
950 case XML_REGEXP_RANGES:
951 fprintf(output, "ranges "); break;
952 case XML_REGEXP_SUBREG:
953 fprintf(output, "subexpr "); break;
954 case XML_REGEXP_STRING:
955 fprintf(output, "string "); break;
956 case XML_REGEXP_ANYCHAR:
957 fprintf(output, "anychar "); break;
958 case XML_REGEXP_ANYSPACE:
959 fprintf(output, "anyspace "); break;
960 case XML_REGEXP_NOTSPACE:
961 fprintf(output, "notspace "); break;
962 case XML_REGEXP_INITNAME:
963 fprintf(output, "initname "); break;
964 case XML_REGEXP_NOTINITNAME:
965 fprintf(output, "notinitname "); break;
966 case XML_REGEXP_NAMECHAR:
967 fprintf(output, "namechar "); break;
968 case XML_REGEXP_NOTNAMECHAR:
969 fprintf(output, "notnamechar "); break;
970 case XML_REGEXP_DECIMAL:
971 fprintf(output, "decimal "); break;
972 case XML_REGEXP_NOTDECIMAL:
973 fprintf(output, "notdecimal "); break;
974 case XML_REGEXP_REALCHAR:
975 fprintf(output, "realchar "); break;
976 case XML_REGEXP_NOTREALCHAR:
977 fprintf(output, "notrealchar "); break;
978 case XML_REGEXP_LETTER:
979 fprintf(output, "LETTER "); break;
980 case XML_REGEXP_LETTER_UPPERCASE:
981 fprintf(output, "LETTER_UPPERCASE "); break;
982 case XML_REGEXP_LETTER_LOWERCASE:
983 fprintf(output, "LETTER_LOWERCASE "); break;
984 case XML_REGEXP_LETTER_TITLECASE:
985 fprintf(output, "LETTER_TITLECASE "); break;
986 case XML_REGEXP_LETTER_MODIFIER:
987 fprintf(output, "LETTER_MODIFIER "); break;
988 case XML_REGEXP_LETTER_OTHERS:
989 fprintf(output, "LETTER_OTHERS "); break;
990 case XML_REGEXP_MARK:
991 fprintf(output, "MARK "); break;
992 case XML_REGEXP_MARK_NONSPACING:
993 fprintf(output, "MARK_NONSPACING "); break;
994 case XML_REGEXP_MARK_SPACECOMBINING:
995 fprintf(output, "MARK_SPACECOMBINING "); break;
996 case XML_REGEXP_MARK_ENCLOSING:
997 fprintf(output, "MARK_ENCLOSING "); break;
998 case XML_REGEXP_NUMBER:
999 fprintf(output, "NUMBER "); break;
1000 case XML_REGEXP_NUMBER_DECIMAL:
1001 fprintf(output, "NUMBER_DECIMAL "); break;
1002 case XML_REGEXP_NUMBER_LETTER:
1003 fprintf(output, "NUMBER_LETTER "); break;
1004 case XML_REGEXP_NUMBER_OTHERS:
1005 fprintf(output, "NUMBER_OTHERS "); break;
1006 case XML_REGEXP_PUNCT:
1007 fprintf(output, "PUNCT "); break;
1008 case XML_REGEXP_PUNCT_CONNECTOR:
1009 fprintf(output, "PUNCT_CONNECTOR "); break;
1010 case XML_REGEXP_PUNCT_DASH:
1011 fprintf(output, "PUNCT_DASH "); break;
1012 case XML_REGEXP_PUNCT_OPEN:
1013 fprintf(output, "PUNCT_OPEN "); break;
1014 case XML_REGEXP_PUNCT_CLOSE:
1015 fprintf(output, "PUNCT_CLOSE "); break;
1016 case XML_REGEXP_PUNCT_INITQUOTE:
1017 fprintf(output, "PUNCT_INITQUOTE "); break;
1018 case XML_REGEXP_PUNCT_FINQUOTE:
1019 fprintf(output, "PUNCT_FINQUOTE "); break;
1020 case XML_REGEXP_PUNCT_OTHERS:
1021 fprintf(output, "PUNCT_OTHERS "); break;
1022 case XML_REGEXP_SEPAR:
1023 fprintf(output, "SEPAR "); break;
1024 case XML_REGEXP_SEPAR_SPACE:
1025 fprintf(output, "SEPAR_SPACE "); break;
1026 case XML_REGEXP_SEPAR_LINE:
1027 fprintf(output, "SEPAR_LINE "); break;
1028 case XML_REGEXP_SEPAR_PARA:
1029 fprintf(output, "SEPAR_PARA "); break;
1030 case XML_REGEXP_SYMBOL:
1031 fprintf(output, "SYMBOL "); break;
1032 case XML_REGEXP_SYMBOL_MATH:
1033 fprintf(output, "SYMBOL_MATH "); break;
1034 case XML_REGEXP_SYMBOL_CURRENCY:
1035 fprintf(output, "SYMBOL_CURRENCY "); break;
1036 case XML_REGEXP_SYMBOL_MODIFIER:
1037 fprintf(output, "SYMBOL_MODIFIER "); break;
1038 case XML_REGEXP_SYMBOL_OTHERS:
1039 fprintf(output, "SYMBOL_OTHERS "); break;
1040 case XML_REGEXP_OTHER:
1041 fprintf(output, "OTHER "); break;
1042 case XML_REGEXP_OTHER_CONTROL:
1043 fprintf(output, "OTHER_CONTROL "); break;
1044 case XML_REGEXP_OTHER_FORMAT:
1045 fprintf(output, "OTHER_FORMAT "); break;
1046 case XML_REGEXP_OTHER_PRIVATE:
1047 fprintf(output, "OTHER_PRIVATE "); break;
1048 case XML_REGEXP_OTHER_NA:
1049 fprintf(output, "OTHER_NA "); break;
1050 case XML_REGEXP_BLOCK_NAME:
1051 fprintf(output, "BLOCK "); break;
1052 }
1053}
1054
1055static void
1056xmlRegPrintQuantType(FILE *output, xmlRegQuantType type) {
1057 switch (type) {
1058 case XML_REGEXP_QUANT_EPSILON:
1059 fprintf(output, "epsilon "); break;
1060 case XML_REGEXP_QUANT_ONCE:
1061 fprintf(output, "once "); break;
1062 case XML_REGEXP_QUANT_OPT:
1063 fprintf(output, "? "); break;
1064 case XML_REGEXP_QUANT_MULT:
1065 fprintf(output, "* "); break;
1066 case XML_REGEXP_QUANT_PLUS:
1067 fprintf(output, "+ "); break;
1068 case XML_REGEXP_QUANT_RANGE:
1069 fprintf(output, "range "); break;
1070 case XML_REGEXP_QUANT_ONCEONLY:
1071 fprintf(output, "onceonly "); break;
1072 case XML_REGEXP_QUANT_ALL:
1073 fprintf(output, "all "); break;
1074 }
1075}
1076static void
1077xmlRegPrintRange(FILE *output, xmlRegRangePtr range) {
1078 fprintf(output, " range: ");
1079 if (range->neg)
1080 fprintf(output, "negative ");
1081 xmlRegPrintAtomType(output, range->type);
1082 fprintf(output, "%c - %c\n", range->start, range->end);
1083}
1084
1085static void
1086xmlRegPrintAtom(FILE *output, xmlRegAtomPtr atom) {
1087 fprintf(output, " atom: ");
1088 if (atom == NULL) {
1089 fprintf(output, "NULL\n");
1090 return;
1091 }
1092 if (atom->neg)
1093 fprintf(output, "not ");
1094 xmlRegPrintAtomType(output, atom->type);
1095 xmlRegPrintQuantType(output, atom->quant);
1096 if (atom->quant == XML_REGEXP_QUANT_RANGE)
1097 fprintf(output, "%d-%d ", atom->min, atom->max);
1098 if (atom->type == XML_REGEXP_STRING)
1099 fprintf(output, "'%s' ", (char *) atom->valuep);
1100 if (atom->type == XML_REGEXP_CHARVAL)
1101 fprintf(output, "char %c\n", atom->codepoint);
1102 else if (atom->type == XML_REGEXP_RANGES) {
1103 int i;
1104 fprintf(output, "%d entries\n", atom->nbRanges);
1105 for (i = 0; i < atom->nbRanges;i++)
1106 xmlRegPrintRange(output, atom->ranges[i]);
1107 } else if (atom->type == XML_REGEXP_SUBREG) {
1108 fprintf(output, "start %d end %d\n", atom->start->no, atom->stop->no);
1109 } else {
1110 fprintf(output, "\n");
1111 }
1112}
1113
1114static void
1115xmlRegPrintTrans(FILE *output, xmlRegTransPtr trans) {
1116 fprintf(output, " trans: ");
1117 if (trans == NULL) {
1118 fprintf(output, "NULL\n");
1119 return;
1120 }
1121 if (trans->to < 0) {
1122 fprintf(output, "removed\n");
1123 return;
1124 }
1125 if (trans->nd != 0) {
1126 if (trans->nd == 2)
1127 fprintf(output, "last not determinist, ");
1128 else
1129 fprintf(output, "not determinist, ");
1130 }
1131 if (trans->counter >= 0) {
1132 fprintf(output, "counted %d, ", trans->counter);
1133 }
1134 if (trans->count == REGEXP_ALL_COUNTER) {
1135 fprintf(output, "all transition, ");
1136 } else if (trans->count >= 0) {
1137 fprintf(output, "count based %d, ", trans->count);
1138 }
1139 if (trans->atom == NULL) {
1140 fprintf(output, "epsilon to %d\n", trans->to);
1141 return;
1142 }
1143 if (trans->atom->type == XML_REGEXP_CHARVAL)
1144 fprintf(output, "char %c ", trans->atom->codepoint);
1145 fprintf(output, "atom %d, to %d\n", trans->atom->no, trans->to);
1146}
1147
1148static void
1149xmlRegPrintState(FILE *output, xmlRegStatePtr state) {
1150 int i;
1151
1152 fprintf(output, " state: ");
1153 if (state == NULL) {
1154 fprintf(output, "NULL\n");
1155 return;
1156 }
1157 if (state->type == XML_REGEXP_START_STATE)
1158 fprintf(output, "START ");
1159 if (state->type == XML_REGEXP_FINAL_STATE)
1160 fprintf(output, "FINAL ");
1161
1162 fprintf(output, "%d, %d transitions:\n", state->no, state->nbTrans);
1163 for (i = 0;i < state->nbTrans; i++) {
1164 xmlRegPrintTrans(output, &(state->trans[i]));
1165 }
1166}
1167
1168#ifdef DEBUG_REGEXP_GRAPH
1169static void
1170xmlRegPrintCtxt(FILE *output, xmlRegParserCtxtPtr ctxt) {
1171 int i;
1172
1173 fprintf(output, " ctxt: ");
1174 if (ctxt == NULL) {
1175 fprintf(output, "NULL\n");
1176 return;
1177 }
1178 fprintf(output, "'%s' ", ctxt->string);
1179 if (ctxt->error)
1180 fprintf(output, "error ");
1181 if (ctxt->neg)
1182 fprintf(output, "neg ");
1183 fprintf(output, "\n");
1184 fprintf(output, "%d atoms:\n", ctxt->nbAtoms);
1185 for (i = 0;i < ctxt->nbAtoms; i++) {
1186 fprintf(output, " %02d ", i);
1187 xmlRegPrintAtom(output, ctxt->atoms[i]);
1188 }
1189 if (ctxt->atom != NULL) {
1190 fprintf(output, "current atom:\n");
1191 xmlRegPrintAtom(output, ctxt->atom);
1192 }
1193 fprintf(output, "%d states:", ctxt->nbStates);
1194 if (ctxt->start != NULL)
1195 fprintf(output, " start: %d", ctxt->start->no);
1196 if (ctxt->end != NULL)
1197 fprintf(output, " end: %d", ctxt->end->no);
1198 fprintf(output, "\n");
1199 for (i = 0;i < ctxt->nbStates; i++) {
1200 xmlRegPrintState(output, ctxt->states[i]);
1201 }
1202 fprintf(output, "%d counters:\n", ctxt->nbCounters);
1203 for (i = 0;i < ctxt->nbCounters; i++) {
1204 fprintf(output, " %d: min %d max %d\n", i, ctxt->counters[i].min,
1205 ctxt->counters[i].max);
1206 }
1207}
1208#endif
1209
1210/************************************************************************
1211 * *
1212 * Finite Automata structures manipulations *
1213 * *
1214 ************************************************************************/
1215
1216static void
1217xmlRegAtomAddRange(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom,
1218 int neg, xmlRegAtomType type, int start, int end,
1219 xmlChar *blockName) {
1220 xmlRegRangePtr range;
1221
1222 if (atom == NULL) {
1223 ERROR("add range: atom is NULL");
1224 return;
1225 }
1226 if (atom->type != XML_REGEXP_RANGES) {
1227 ERROR("add range: atom is not ranges");
1228 return;
1229 }
1230 if (atom->maxRanges == 0) {
1231 atom->maxRanges = 4;
1232 atom->ranges = (xmlRegRangePtr *) xmlMalloc(atom->maxRanges *
1233 sizeof(xmlRegRangePtr));
1234 if (atom->ranges == NULL) {
1235 xmlRegexpErrMemory(ctxt, "adding ranges");
1236 atom->maxRanges = 0;
1237 return;
1238 }
1239 } else if (atom->nbRanges >= atom->maxRanges) {
1240 xmlRegRangePtr *tmp;
1241 atom->maxRanges *= 2;
1242 tmp = (xmlRegRangePtr *) xmlRealloc(atom->ranges, atom->maxRanges *
1243 sizeof(xmlRegRangePtr));
1244 if (tmp == NULL) {
1245 xmlRegexpErrMemory(ctxt, "adding ranges");
1246 atom->maxRanges /= 2;
1247 return;
1248 }
1249 atom->ranges = tmp;
1250 }
1251 range = xmlRegNewRange(ctxt, neg, type, start, end);
1252 if (range == NULL)
1253 return;
1254 range->blockName = blockName;
1255 atom->ranges[atom->nbRanges++] = range;
1256
1257}
1258
1259static int
1260xmlRegGetCounter(xmlRegParserCtxtPtr ctxt) {
1261 if (ctxt->maxCounters == 0) {
1262 ctxt->maxCounters = 4;
1263 ctxt->counters = (xmlRegCounter *) xmlMalloc(ctxt->maxCounters *
1264 sizeof(xmlRegCounter));
1265 if (ctxt->counters == NULL) {
1266 xmlRegexpErrMemory(ctxt, "allocating counter");
1267 ctxt->maxCounters = 0;
1268 return(-1);
1269 }
1270 } else if (ctxt->nbCounters >= ctxt->maxCounters) {
1271 xmlRegCounter *tmp;
1272 ctxt->maxCounters *= 2;
1273 tmp = (xmlRegCounter *) xmlRealloc(ctxt->counters, ctxt->maxCounters *
1274 sizeof(xmlRegCounter));
1275 if (tmp == NULL) {
1276 xmlRegexpErrMemory(ctxt, "allocating counter");
1277 ctxt->maxCounters /= 2;
1278 return(-1);
1279 }
1280 ctxt->counters = tmp;
1281 }
1282 ctxt->counters[ctxt->nbCounters].min = -1;
1283 ctxt->counters[ctxt->nbCounters].max = -1;
1284 return(ctxt->nbCounters++);
1285}
1286
1287static int
1288xmlRegAtomPush(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
1289 if (atom == NULL) {
1290 ERROR("atom push: atom is NULL");
1291 return(-1);
1292 }
1293 if (ctxt->maxAtoms == 0) {
1294 ctxt->maxAtoms = 4;
1295 ctxt->atoms = (xmlRegAtomPtr *) xmlMalloc(ctxt->maxAtoms *
1296 sizeof(xmlRegAtomPtr));
1297 if (ctxt->atoms == NULL) {
1298 xmlRegexpErrMemory(ctxt, "pushing atom");
1299 ctxt->maxAtoms = 0;
1300 return(-1);
1301 }
1302 } else if (ctxt->nbAtoms >= ctxt->maxAtoms) {
1303 xmlRegAtomPtr *tmp;
1304 ctxt->maxAtoms *= 2;
1305 tmp = (xmlRegAtomPtr *) xmlRealloc(ctxt->atoms, ctxt->maxAtoms *
1306 sizeof(xmlRegAtomPtr));
1307 if (tmp == NULL) {
1308 xmlRegexpErrMemory(ctxt, "allocating counter");
1309 ctxt->maxAtoms /= 2;
1310 return(-1);
1311 }
1312 ctxt->atoms = tmp;
1313 }
1314 atom->no = ctxt->nbAtoms;
1315 ctxt->atoms[ctxt->nbAtoms++] = atom;
1316 return(0);
1317}
1318
1319static void
1320xmlRegStateAddTransTo(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr target,
1321 int from) {
1322 if (target->maxTransTo == 0) {
1323 target->maxTransTo = 8;
1324 target->transTo = (int *) xmlMalloc(target->maxTransTo *
1325 sizeof(int));
1326 if (target->transTo == NULL) {
1327 xmlRegexpErrMemory(ctxt, "adding transition");
1328 target->maxTransTo = 0;
1329 return;
1330 }
1331 } else if (target->nbTransTo >= target->maxTransTo) {
1332 int *tmp;
1333 target->maxTransTo *= 2;
1334 tmp = (int *) xmlRealloc(target->transTo, target->maxTransTo *
1335 sizeof(int));
1336 if (tmp == NULL) {
1337 xmlRegexpErrMemory(ctxt, "adding transition");
1338 target->maxTransTo /= 2;
1339 return;
1340 }
1341 target->transTo = tmp;
1342 }
1343 target->transTo[target->nbTransTo] = from;
1344 target->nbTransTo++;
1345}
1346
1347static void
1348xmlRegStateAddTrans(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
1349 xmlRegAtomPtr atom, xmlRegStatePtr target,
1350 int counter, int count) {
1351
1352 int nrtrans;
1353
1354 if (state == NULL) {
1355 ERROR("add state: state is NULL");
1356 return;
1357 }
1358 if (target == NULL) {
1359 ERROR("add state: target is NULL");
1360 return;
1361 }
1362 /*
1363 * Other routines follow the philosophy 'When in doubt, add a transition'
1364 * so we check here whether such a transition is already present and, if
1365 * so, silently ignore this request.
1366 */
1367
1368 for (nrtrans = state->nbTrans - 1; nrtrans >= 0; nrtrans--) {
1369 xmlRegTransPtr trans = &(state->trans[nrtrans]);
1370 if ((trans->atom == atom) &&
1371 (trans->to == target->no) &&
1372 (trans->counter == counter) &&
1373 (trans->count == count)) {
1374#ifdef DEBUG_REGEXP_GRAPH
1375 printf("Ignoring duplicate transition from %d to %d\n",
1376 state->no, target->no);
1377#endif
1378 return;
1379 }
1380 }
1381
1382 if (state->maxTrans == 0) {
1383 state->maxTrans = 8;
1384 state->trans = (xmlRegTrans *) xmlMalloc(state->maxTrans *
1385 sizeof(xmlRegTrans));
1386 if (state->trans == NULL) {
1387 xmlRegexpErrMemory(ctxt, "adding transition");
1388 state->maxTrans = 0;
1389 return;
1390 }
1391 } else if (state->nbTrans >= state->maxTrans) {
1392 xmlRegTrans *tmp;
1393 state->maxTrans *= 2;
1394 tmp = (xmlRegTrans *) xmlRealloc(state->trans, state->maxTrans *
1395 sizeof(xmlRegTrans));
1396 if (tmp == NULL) {
1397 xmlRegexpErrMemory(ctxt, "adding transition");
1398 state->maxTrans /= 2;
1399 return;
1400 }
1401 state->trans = tmp;
1402 }
1403#ifdef DEBUG_REGEXP_GRAPH
1404 printf("Add trans from %d to %d ", state->no, target->no);
1405 if (count == REGEXP_ALL_COUNTER)
1406 printf("all transition\n");
1407 else if (count >= 0)
1408 printf("count based %d\n", count);
1409 else if (counter >= 0)
1410 printf("counted %d\n", counter);
1411 else if (atom == NULL)
1412 printf("epsilon transition\n");
1413 else if (atom != NULL)
1414 xmlRegPrintAtom(stdout, atom);
1415#endif
1416
1417 state->trans[state->nbTrans].atom = atom;
1418 state->trans[state->nbTrans].to = target->no;
1419 state->trans[state->nbTrans].counter = counter;
1420 state->trans[state->nbTrans].count = count;
1421 state->trans[state->nbTrans].nd = 0;
1422 state->nbTrans++;
1423 xmlRegStateAddTransTo(ctxt, target, state->no);
1424}
1425
1426static int
1427xmlRegStatePush(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) {
1428 if (state == NULL) return(-1);
1429 if (ctxt->maxStates == 0) {
1430 ctxt->maxStates = 4;
1431 ctxt->states = (xmlRegStatePtr *) xmlMalloc(ctxt->maxStates *
1432 sizeof(xmlRegStatePtr));
1433 if (ctxt->states == NULL) {
1434 xmlRegexpErrMemory(ctxt, "adding state");
1435 ctxt->maxStates = 0;
1436 return(-1);
1437 }
1438 } else if (ctxt->nbStates >= ctxt->maxStates) {
1439 xmlRegStatePtr *tmp;
1440 ctxt->maxStates *= 2;
1441 tmp = (xmlRegStatePtr *) xmlRealloc(ctxt->states, ctxt->maxStates *
1442 sizeof(xmlRegStatePtr));
1443 if (tmp == NULL) {
1444 xmlRegexpErrMemory(ctxt, "adding state");
1445 ctxt->maxStates /= 2;
1446 return(-1);
1447 }
1448 ctxt->states = tmp;
1449 }
1450 state->no = ctxt->nbStates;
1451 ctxt->states[ctxt->nbStates++] = state;
1452 return(0);
1453}
1454
1455/**
1456 * xmlFAGenerateAllTransition:
1457 * @ctxt: a regexp parser context
1458 * @from: the from state
1459 * @to: the target state or NULL for building a new one
1460 * @lax:
1461 *
1462 */
1463static void
1464xmlFAGenerateAllTransition(xmlRegParserCtxtPtr ctxt,
1465 xmlRegStatePtr from, xmlRegStatePtr to,
1466 int lax) {
1467 if (to == NULL) {
1468 to = xmlRegNewState(ctxt);
1469 xmlRegStatePush(ctxt, to);
1470 ctxt->state = to;
1471 }
1472 if (lax)
1473 xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_LAX_COUNTER);
1474 else
1475 xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_COUNTER);
1476}
1477
1478/**
1479 * xmlFAGenerateEpsilonTransition:
1480 * @ctxt: a regexp parser context
1481 * @from: the from state
1482 * @to: the target state or NULL for building a new one
1483 *
1484 */
1485static void
1486xmlFAGenerateEpsilonTransition(xmlRegParserCtxtPtr ctxt,
1487 xmlRegStatePtr from, xmlRegStatePtr to) {
1488 if (to == NULL) {
1489 to = xmlRegNewState(ctxt);
1490 xmlRegStatePush(ctxt, to);
1491 ctxt->state = to;
1492 }
1493 xmlRegStateAddTrans(ctxt, from, NULL, to, -1, -1);
1494}
1495
1496/**
1497 * xmlFAGenerateCountedEpsilonTransition:
1498 * @ctxt: a regexp parser context
1499 * @from: the from state
1500 * @to: the target state or NULL for building a new one
1501 * counter: the counter for that transition
1502 *
1503 */
1504static void
1505xmlFAGenerateCountedEpsilonTransition(xmlRegParserCtxtPtr ctxt,
1506 xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
1507 if (to == NULL) {
1508 to = xmlRegNewState(ctxt);
1509 xmlRegStatePush(ctxt, to);
1510 ctxt->state = to;
1511 }
1512 xmlRegStateAddTrans(ctxt, from, NULL, to, counter, -1);
1513}
1514
1515/**
1516 * xmlFAGenerateCountedTransition:
1517 * @ctxt: a regexp parser context
1518 * @from: the from state
1519 * @to: the target state or NULL for building a new one
1520 * counter: the counter for that transition
1521 *
1522 */
1523static void
1524xmlFAGenerateCountedTransition(xmlRegParserCtxtPtr ctxt,
1525 xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
1526 if (to == NULL) {
1527 to = xmlRegNewState(ctxt);
1528 xmlRegStatePush(ctxt, to);
1529 ctxt->state = to;
1530 }
1531 xmlRegStateAddTrans(ctxt, from, NULL, to, -1, counter);
1532}
1533
1534/**
1535 * xmlFAGenerateTransitions:
1536 * @ctxt: a regexp parser context
1537 * @from: the from state
1538 * @to: the target state or NULL for building a new one
1539 * @atom: the atom generating the transition
1540 *
1541 * Returns 0 if success and -1 in case of error.
1542 */
1543static int
1544xmlFAGenerateTransitions(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr from,
1545 xmlRegStatePtr to, xmlRegAtomPtr atom) {
1546 xmlRegStatePtr end;
1547 int nullable = 0;
1548
1549 if (atom == NULL) {
1550 ERROR("genrate transition: atom == NULL");
1551 return(-1);
1552 }
1553 if (atom->type == XML_REGEXP_SUBREG) {
1554 /*
1555 * this is a subexpression handling one should not need to
1556 * create a new node except for XML_REGEXP_QUANT_RANGE.
1557 */
1558 if (xmlRegAtomPush(ctxt, atom) < 0) {
1559 return(-1);
1560 }
1561 if ((to != NULL) && (atom->stop != to) &&
1562 (atom->quant != XML_REGEXP_QUANT_RANGE)) {
1563 /*
1564 * Generate an epsilon transition to link to the target
1565 */
1566 xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
1567#ifdef DV
1568 } else if ((to == NULL) && (atom->quant != XML_REGEXP_QUANT_RANGE) &&
1569 (atom->quant != XML_REGEXP_QUANT_ONCE)) {
1570 to = xmlRegNewState(ctxt);
1571 xmlRegStatePush(ctxt, to);
1572 ctxt->state = to;
1573 xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
1574#endif
1575 }
1576 switch (atom->quant) {
1577 case XML_REGEXP_QUANT_OPT:
1578 atom->quant = XML_REGEXP_QUANT_ONCE;
1579 /*
1580 * transition done to the state after end of atom.
1581 * 1. set transition from atom start to new state
1582 * 2. set transition from atom end to this state.
1583 */
1584 if (to == NULL) {
1585 xmlFAGenerateEpsilonTransition(ctxt, atom->start, 0);
1586 xmlFAGenerateEpsilonTransition(ctxt, atom->stop,
1587 ctxt->state);
1588 } else {
1589 xmlFAGenerateEpsilonTransition(ctxt, atom->start, to);
1590 }
1591 break;
1592 case XML_REGEXP_QUANT_MULT:
1593 atom->quant = XML_REGEXP_QUANT_ONCE;
1594 xmlFAGenerateEpsilonTransition(ctxt, atom->start, atom->stop);
1595 xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
1596 break;
1597 case XML_REGEXP_QUANT_PLUS:
1598 atom->quant = XML_REGEXP_QUANT_ONCE;
1599 xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
1600 break;
1601 case XML_REGEXP_QUANT_RANGE: {
1602 int counter;
1603 xmlRegStatePtr inter, newstate;
1604
1605 /*
1606 * create the final state now if needed
1607 */
1608 if (to != NULL) {
1609 newstate = to;
1610 } else {
1611 newstate = xmlRegNewState(ctxt);
1612 xmlRegStatePush(ctxt, newstate);
1613 }
1614
1615 /*
1616 * The principle here is to use counted transition
1617 * to avoid explosion in the number of states in the
1618 * graph. This is clearly more complex but should not
1619 * be exploitable at runtime.
1620 */
1621 if ((atom->min == 0) && (atom->start0 == NULL)) {
1622 xmlRegAtomPtr copy;
1623 /*
1624 * duplicate a transition based on atom to count next
1625 * occurences after 1. We cannot loop to atom->start
1626 * directly because we need an epsilon transition to
1627 * newstate.
1628 */
1629 /* ???? For some reason it seems we never reach that
1630 case, I suppose this got optimized out before when
1631 building the automata */
1632 copy = xmlRegCopyAtom(ctxt, atom);
1633 if (copy == NULL)
1634 return(-1);
1635 copy->quant = XML_REGEXP_QUANT_ONCE;
1636 copy->min = 0;
1637 copy->max = 0;
1638
1639 if (xmlFAGenerateTransitions(ctxt, atom->start, NULL, copy)
1640 < 0)
1641 return(-1);
1642 inter = ctxt->state;
1643 counter = xmlRegGetCounter(ctxt);
1644 ctxt->counters[counter].min = atom->min - 1;
1645 ctxt->counters[counter].max = atom->max - 1;
1646 /* count the number of times we see it again */
1647 xmlFAGenerateCountedEpsilonTransition(ctxt, inter,
1648 atom->stop, counter);
1649 /* allow a way out based on the count */
1650 xmlFAGenerateCountedTransition(ctxt, inter,
1651 newstate, counter);
1652 /* and also allow a direct exit for 0 */
1653 xmlFAGenerateEpsilonTransition(ctxt, atom->start,
1654 newstate);
1655 } else {
1656 /*
1657 * either we need the atom at least once or there
1658 * is an atom->start0 allowing to easilly plug the
1659 * epsilon transition.
1660 */
1661 counter = xmlRegGetCounter(ctxt);
1662 ctxt->counters[counter].min = atom->min - 1;
1663 ctxt->counters[counter].max = atom->max - 1;
1664 /* count the number of times we see it again */
1665 xmlFAGenerateCountedEpsilonTransition(ctxt, atom->stop,
1666 atom->start, counter);
1667 /* allow a way out based on the count */
1668 xmlFAGenerateCountedTransition(ctxt, atom->stop,
1669 newstate, counter);
1670 /* and if needed allow a direct exit for 0 */
1671 if (atom->min == 0)
1672 xmlFAGenerateEpsilonTransition(ctxt, atom->start0,
1673 newstate);
1674
1675 }
1676 atom->min = 0;
1677 atom->max = 0;
1678 atom->quant = XML_REGEXP_QUANT_ONCE;
1679 ctxt->state = newstate;
1680 }
1681 default:
1682 break;
1683 }
1684 return(0);
1685 }
1686 if ((atom->min == 0) && (atom->max == 0) &&
1687 (atom->quant == XML_REGEXP_QUANT_RANGE)) {
1688 /*
1689 * we can discard the atom and generate an epsilon transition instead
1690 */
1691 if (to == NULL) {
1692 to = xmlRegNewState(ctxt);
1693 if (to != NULL)
1694 xmlRegStatePush(ctxt, to);
1695 else {
1696 return(-1);
1697 }
1698 }
1699 xmlFAGenerateEpsilonTransition(ctxt, from, to);
1700 ctxt->state = to;
1701 xmlRegFreeAtom(atom);
1702 return(0);
1703 }
1704 if (to == NULL) {
1705 to = xmlRegNewState(ctxt);
1706 if (to != NULL)
1707 xmlRegStatePush(ctxt, to);
1708 else {
1709 return(-1);
1710 }
1711 }
1712 end = to;
1713 if ((atom->quant == XML_REGEXP_QUANT_MULT) ||
1714 (atom->quant == XML_REGEXP_QUANT_PLUS)) {
1715 /*
1716 * Do not pollute the target state by adding transitions from
1717 * it as it is likely to be the shared target of multiple branches.
1718 * So isolate with an epsilon transition.
1719 */
1720 xmlRegStatePtr tmp;
1721
1722 tmp = xmlRegNewState(ctxt);
1723 if (tmp != NULL)
1724 xmlRegStatePush(ctxt, tmp);
1725 else {
1726 return(-1);
1727 }
1728 xmlFAGenerateEpsilonTransition(ctxt, tmp, to);
1729 to = tmp;
1730 }
1731 if (xmlRegAtomPush(ctxt, atom) < 0) {
1732 return(-1);
1733 }
1734 if ((atom->quant == XML_REGEXP_QUANT_RANGE) &&
1735 (atom->min == 0) && (atom->max > 0)) {
1736 nullable = 1;
1737 atom->min = 1;
1738 if (atom->max == 1)
1739 atom->quant = XML_REGEXP_QUANT_OPT;
1740 }
1741 xmlRegStateAddTrans(ctxt, from, atom, to, -1, -1);
1742 ctxt->state = end;
1743 switch (atom->quant) {
1744 case XML_REGEXP_QUANT_OPT:
1745 atom->quant = XML_REGEXP_QUANT_ONCE;
1746 xmlFAGenerateEpsilonTransition(ctxt, from, to);
1747 break;
1748 case XML_REGEXP_QUANT_MULT:
1749 atom->quant = XML_REGEXP_QUANT_ONCE;
1750 xmlFAGenerateEpsilonTransition(ctxt, from, to);
1751 xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
1752 break;
1753 case XML_REGEXP_QUANT_PLUS:
1754 atom->quant = XML_REGEXP_QUANT_ONCE;
1755 xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
1756 break;
1757 case XML_REGEXP_QUANT_RANGE:
1758 if (nullable)
1759 xmlFAGenerateEpsilonTransition(ctxt, from, to);
1760 break;
1761 default:
1762 break;
1763 }
1764 return(0);
1765}
1766
1767/**
1768 * xmlFAReduceEpsilonTransitions:
1769 * @ctxt: a regexp parser context
1770 * @fromnr: the from state
1771 * @tonr: the to state
1772 * @counter: should that transition be associated to a counted
1773 *
1774 */
1775static void
1776xmlFAReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int fromnr,
1777 int tonr, int counter) {
1778 int transnr;
1779 xmlRegStatePtr from;
1780 xmlRegStatePtr to;
1781
1782#ifdef DEBUG_REGEXP_GRAPH
1783 printf("xmlFAReduceEpsilonTransitions(%d, %d)\n", fromnr, tonr);
1784#endif
1785 from = ctxt->states[fromnr];
1786 if (from == NULL)
1787 return;
1788 to = ctxt->states[tonr];
1789 if (to == NULL)
1790 return;
1791 if ((to->mark == XML_REGEXP_MARK_START) ||
1792 (to->mark == XML_REGEXP_MARK_VISITED))
1793 return;
1794
1795 to->mark = XML_REGEXP_MARK_VISITED;
1796 if (to->type == XML_REGEXP_FINAL_STATE) {
1797#ifdef DEBUG_REGEXP_GRAPH
1798 printf("State %d is final, so %d becomes final\n", tonr, fromnr);
1799#endif
1800 from->type = XML_REGEXP_FINAL_STATE;
1801 }
1802 for (transnr = 0;transnr < to->nbTrans;transnr++) {
1803 if (to->trans[transnr].to < 0)
1804 continue;
1805 if (to->trans[transnr].atom == NULL) {
1806 /*
1807 * Don't remove counted transitions
1808 * Don't loop either
1809 */
1810 if (to->trans[transnr].to != fromnr) {
1811 if (to->trans[transnr].count >= 0) {
1812 int newto = to->trans[transnr].to;
1813
1814 xmlRegStateAddTrans(ctxt, from, NULL,
1815 ctxt->states[newto],
1816 -1, to->trans[transnr].count);
1817 } else {
1818#ifdef DEBUG_REGEXP_GRAPH
1819 printf("Found epsilon trans %d from %d to %d\n",
1820 transnr, tonr, to->trans[transnr].to);
1821#endif
1822 if (to->trans[transnr].counter >= 0) {
1823 xmlFAReduceEpsilonTransitions(ctxt, fromnr,
1824 to->trans[transnr].to,
1825 to->trans[transnr].counter);
1826 } else {
1827 xmlFAReduceEpsilonTransitions(ctxt, fromnr,
1828 to->trans[transnr].to,
1829 counter);
1830 }
1831 }
1832 }
1833 } else {
1834 int newto = to->trans[transnr].to;
1835
1836 if (to->trans[transnr].counter >= 0) {
1837 xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom,
1838 ctxt->states[newto],
1839 to->trans[transnr].counter, -1);
1840 } else {
1841 xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom,
1842 ctxt->states[newto], counter, -1);
1843 }
1844 }
1845 }
1846 to->mark = XML_REGEXP_MARK_NORMAL;
1847}
1848
1849/**
1850 * xmlFAEliminateSimpleEpsilonTransitions:
1851 * @ctxt: a regexp parser context
1852 *
1853 * Eliminating general epsilon transitions can get costly in the general
1854 * algorithm due to the large amount of generated new transitions and
1855 * associated comparisons. However for simple epsilon transition used just
1856 * to separate building blocks when generating the automata this can be
1857 * reduced to state elimination:
1858 * - if there exists an epsilon from X to Y
1859 * - if there is no other transition from X
1860 * then X and Y are semantically equivalent and X can be eliminated
1861 * If X is the start state then make Y the start state, else replace the
1862 * target of all transitions to X by transitions to Y.
1863 */
1864static void
1865xmlFAEliminateSimpleEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
1866 int statenr, i, j, newto;
1867 xmlRegStatePtr state, tmp;
1868
1869 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
1870 state = ctxt->states[statenr];
1871 if (state == NULL)
1872 continue;
1873 if (state->nbTrans != 1)
1874 continue;
1875 if (state->type == XML_REGEXP_UNREACH_STATE)
1876 continue;
1877 /* is the only transition out a basic transition */
1878 if ((state->trans[0].atom == NULL) &&
1879 (state->trans[0].to >= 0) &&
1880 (state->trans[0].to != statenr) &&
1881 (state->trans[0].counter < 0) &&
1882 (state->trans[0].count < 0)) {
1883 newto = state->trans[0].to;
1884
1885 if (state->type == XML_REGEXP_START_STATE) {
1886#ifdef DEBUG_REGEXP_GRAPH
1887 printf("Found simple epsilon trans from start %d to %d\n",
1888 statenr, newto);
1889#endif
1890 } else {
1891#ifdef DEBUG_REGEXP_GRAPH
1892 printf("Found simple epsilon trans from %d to %d\n",
1893 statenr, newto);
1894#endif
1895 for (i = 0;i < state->nbTransTo;i++) {
1896 tmp = ctxt->states[state->transTo[i]];
1897 for (j = 0;j < tmp->nbTrans;j++) {
1898 if (tmp->trans[j].to == statenr) {
1899#ifdef DEBUG_REGEXP_GRAPH
1900 printf("Changed transition %d on %d to go to %d\n",
1901 j, tmp->no, newto);
1902#endif
1903 tmp->trans[j].to = -1;
1904 xmlRegStateAddTrans(ctxt, tmp, tmp->trans[j].atom,
1905 ctxt->states[newto],
1906 tmp->trans[j].counter,
1907 tmp->trans[j].count);
1908 }
1909 }
1910 }
1911 if (state->type == XML_REGEXP_FINAL_STATE)
1912 ctxt->states[newto]->type = XML_REGEXP_FINAL_STATE;
1913 /* eliminate the transition completely */
1914 state->nbTrans = 0;
1915
1916 state->type = XML_REGEXP_UNREACH_STATE;
1917
1918 }
1919
1920 }
1921 }
1922}
1923/**
1924 * xmlFAEliminateEpsilonTransitions:
1925 * @ctxt: a regexp parser context
1926 *
1927 */
1928static void
1929xmlFAEliminateEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
1930 int statenr, transnr;
1931 xmlRegStatePtr state;
1932 int has_epsilon;
1933
1934 if (ctxt->states == NULL) return;
1935
1936 /*
1937 * Eliminate simple epsilon transition and the associated unreachable
1938 * states.
1939 */
1940 xmlFAEliminateSimpleEpsilonTransitions(ctxt);
1941 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
1942 state = ctxt->states[statenr];
1943 if ((state != NULL) && (state->type == XML_REGEXP_UNREACH_STATE)) {
1944#ifdef DEBUG_REGEXP_GRAPH
1945 printf("Removed unreachable state %d\n", statenr);
1946#endif
1947 xmlRegFreeState(state);
1948 ctxt->states[statenr] = NULL;
1949 }
1950 }
1951
1952 has_epsilon = 0;
1953
1954 /*
1955 * Build the completed transitions bypassing the epsilons
1956 * Use a marking algorithm to avoid loops
1957 * Mark sink states too.
1958 * Process from the latests states backward to the start when
1959 * there is long cascading epsilon chains this minimize the
1960 * recursions and transition compares when adding the new ones
1961 */
1962 for (statenr = ctxt->nbStates - 1;statenr >= 0;statenr--) {
1963 state = ctxt->states[statenr];
1964 if (state == NULL)
1965 continue;
1966 if ((state->nbTrans == 0) &&
1967 (state->type != XML_REGEXP_FINAL_STATE)) {
1968 state->type = XML_REGEXP_SINK_STATE;
1969 }
1970 for (transnr = 0;transnr < state->nbTrans;transnr++) {
1971 if ((state->trans[transnr].atom == NULL) &&
1972 (state->trans[transnr].to >= 0)) {
1973 if (state->trans[transnr].to == statenr) {
1974 state->trans[transnr].to = -1;
1975#ifdef DEBUG_REGEXP_GRAPH
1976 printf("Removed loopback epsilon trans %d on %d\n",
1977 transnr, statenr);
1978#endif
1979 } else if (state->trans[transnr].count < 0) {
1980 int newto = state->trans[transnr].to;
1981
1982#ifdef DEBUG_REGEXP_GRAPH
1983 printf("Found epsilon trans %d from %d to %d\n",
1984 transnr, statenr, newto);
1985#endif
1986 has_epsilon = 1;
1987 state->trans[transnr].to = -2;
1988 state->mark = XML_REGEXP_MARK_START;
1989 xmlFAReduceEpsilonTransitions(ctxt, statenr,
1990 newto, state->trans[transnr].counter);
1991 state->mark = XML_REGEXP_MARK_NORMAL;
1992#ifdef DEBUG_REGEXP_GRAPH
1993 } else {
1994 printf("Found counted transition %d on %d\n",
1995 transnr, statenr);
1996#endif
1997 }
1998 }
1999 }
2000 }
2001 /*
2002 * Eliminate the epsilon transitions
2003 */
2004 if (has_epsilon) {
2005 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2006 state = ctxt->states[statenr];
2007 if (state == NULL)
2008 continue;
2009 for (transnr = 0;transnr < state->nbTrans;transnr++) {
2010 xmlRegTransPtr trans = &(state->trans[transnr]);
2011 if ((trans->atom == NULL) &&
2012 (trans->count < 0) &&
2013 (trans->to >= 0)) {
2014 trans->to = -1;
2015 }
2016 }
2017 }
2018 }
2019
2020 /*
2021 * Use this pass to detect unreachable states too
2022 */
2023 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2024 state = ctxt->states[statenr];
2025 if (state != NULL)
2026 state->reached = XML_REGEXP_MARK_NORMAL;
2027 }
2028 state = ctxt->states[0];
2029 if (state != NULL)
2030 state->reached = XML_REGEXP_MARK_START;
2031 while (state != NULL) {
2032 xmlRegStatePtr target = NULL;
2033 state->reached = XML_REGEXP_MARK_VISITED;
2034 /*
2035 * Mark all states reachable from the current reachable state
2036 */
2037 for (transnr = 0;transnr < state->nbTrans;transnr++) {
2038 if ((state->trans[transnr].to >= 0) &&
2039 ((state->trans[transnr].atom != NULL) ||
2040 (state->trans[transnr].count >= 0))) {
2041 int newto = state->trans[transnr].to;
2042
2043 if (ctxt->states[newto] == NULL)
2044 continue;
2045 if (ctxt->states[newto]->reached == XML_REGEXP_MARK_NORMAL) {
2046 ctxt->states[newto]->reached = XML_REGEXP_MARK_START;
2047 target = ctxt->states[newto];
2048 }
2049 }
2050 }
2051
2052 /*
2053 * find the next accessible state not explored
2054 */
2055 if (target == NULL) {
2056 for (statenr = 1;statenr < ctxt->nbStates;statenr++) {
2057 state = ctxt->states[statenr];
2058 if ((state != NULL) && (state->reached ==
2059 XML_REGEXP_MARK_START)) {
2060 target = state;
2061 break;
2062 }
2063 }
2064 }
2065 state = target;
2066 }
2067 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2068 state = ctxt->states[statenr];
2069 if ((state != NULL) && (state->reached == XML_REGEXP_MARK_NORMAL)) {
2070#ifdef DEBUG_REGEXP_GRAPH
2071 printf("Removed unreachable state %d\n", statenr);
2072#endif
2073 xmlRegFreeState(state);
2074 ctxt->states[statenr] = NULL;
2075 }
2076 }
2077
2078}
2079
2080static int
2081xmlFACompareRanges(xmlRegRangePtr range1, xmlRegRangePtr range2) {
2082 int ret = 0;
2083
2084 if ((range1->type == XML_REGEXP_RANGES) ||
2085 (range2->type == XML_REGEXP_RANGES) ||
2086 (range2->type == XML_REGEXP_SUBREG) ||
2087 (range1->type == XML_REGEXP_SUBREG) ||
2088 (range1->type == XML_REGEXP_STRING) ||
2089 (range2->type == XML_REGEXP_STRING))
2090 return(-1);
2091
2092 /* put them in order */
2093 if (range1->type > range2->type) {
2094 xmlRegRangePtr tmp;
2095
2096 tmp = range1;
2097 range1 = range2;
2098 range2 = tmp;
2099 }
2100 if ((range1->type == XML_REGEXP_ANYCHAR) ||
2101 (range2->type == XML_REGEXP_ANYCHAR)) {
2102 ret = 1;
2103 } else if ((range1->type == XML_REGEXP_EPSILON) ||
2104 (range2->type == XML_REGEXP_EPSILON)) {
2105 return(0);
2106 } else if (range1->type == range2->type) {
2107 if (range1->type != XML_REGEXP_CHARVAL)
2108 ret = 1;
2109 else if ((range1->end < range2->start) ||
2110 (range2->end < range1->start))
2111 ret = 0;
2112 else
2113 ret = 1;
2114 } else if (range1->type == XML_REGEXP_CHARVAL) {
2115 int codepoint;
2116 int neg = 0;
2117
2118 /*
2119 * just check all codepoints in the range for acceptance,
2120 * this is usually way cheaper since done only once at
2121 * compilation than testing over and over at runtime or
2122 * pushing too many states when evaluating.
2123 */
2124 if (((range1->neg == 0) && (range2->neg != 0)) ||
2125 ((range1->neg != 0) && (range2->neg == 0)))
2126 neg = 1;
2127
2128 for (codepoint = range1->start;codepoint <= range1->end ;codepoint++) {
2129 ret = xmlRegCheckCharacterRange(range2->type, codepoint,
2130 0, range2->start, range2->end,
2131 range2->blockName);
2132 if (ret < 0)
2133 return(-1);
2134 if (((neg == 1) && (ret == 0)) ||
2135 ((neg == 0) && (ret == 1)))
2136 return(1);
2137 }
2138 return(0);
2139 } else if ((range1->type == XML_REGEXP_BLOCK_NAME) ||
2140 (range2->type == XML_REGEXP_BLOCK_NAME)) {
2141 if (range1->type == range2->type) {
2142 ret = xmlStrEqual(range1->blockName, range2->blockName);
2143 } else {
2144 /*
2145 * comparing a block range with anything else is way
2146 * too costly, and maintining the table is like too much
2147 * memory too, so let's force the automata to save state
2148 * here.
2149 */
2150 return(1);
2151 }
2152 } else if ((range1->type < XML_REGEXP_LETTER) ||
2153 (range2->type < XML_REGEXP_LETTER)) {
2154 if ((range1->type == XML_REGEXP_ANYSPACE) &&
2155 (range2->type == XML_REGEXP_NOTSPACE))
2156 ret = 0;
2157 else if ((range1->type == XML_REGEXP_INITNAME) &&
2158 (range2->type == XML_REGEXP_NOTINITNAME))
2159 ret = 0;
2160 else if ((range1->type == XML_REGEXP_NAMECHAR) &&
2161 (range2->type == XML_REGEXP_NOTNAMECHAR))
2162 ret = 0;
2163 else if ((range1->type == XML_REGEXP_DECIMAL) &&
2164 (range2->type == XML_REGEXP_NOTDECIMAL))
2165 ret = 0;
2166 else if ((range1->type == XML_REGEXP_REALCHAR) &&
2167 (range2->type == XML_REGEXP_NOTREALCHAR))
2168 ret = 0;
2169 else {
2170 /* same thing to limit complexity */
2171 return(1);
2172 }
2173 } else {
2174 ret = 0;
2175 /* range1->type < range2->type here */
2176 switch (range1->type) {
2177 case XML_REGEXP_LETTER:
2178 /* all disjoint except in the subgroups */
2179 if ((range2->type == XML_REGEXP_LETTER_UPPERCASE) ||
2180 (range2->type == XML_REGEXP_LETTER_LOWERCASE) ||
2181 (range2->type == XML_REGEXP_LETTER_TITLECASE) ||
2182 (range2->type == XML_REGEXP_LETTER_MODIFIER) ||
2183 (range2->type == XML_REGEXP_LETTER_OTHERS))
2184 ret = 1;
2185 break;
2186 case XML_REGEXP_MARK:
2187 if ((range2->type == XML_REGEXP_MARK_NONSPACING) ||
2188 (range2->type == XML_REGEXP_MARK_SPACECOMBINING) ||
2189 (range2->type == XML_REGEXP_MARK_ENCLOSING))
2190 ret = 1;
2191 break;
2192 case XML_REGEXP_NUMBER:
2193 if ((range2->type == XML_REGEXP_NUMBER_DECIMAL) ||
2194 (range2->type == XML_REGEXP_NUMBER_LETTER) ||
2195 (range2->type == XML_REGEXP_NUMBER_OTHERS))
2196 ret = 1;
2197 break;
2198 case XML_REGEXP_PUNCT:
2199 if ((range2->type == XML_REGEXP_PUNCT_CONNECTOR) ||
2200 (range2->type == XML_REGEXP_PUNCT_DASH) ||
2201 (range2->type == XML_REGEXP_PUNCT_OPEN) ||
2202 (range2->type == XML_REGEXP_PUNCT_CLOSE) ||
2203 (range2->type == XML_REGEXP_PUNCT_INITQUOTE) ||
2204 (range2->type == XML_REGEXP_PUNCT_FINQUOTE) ||
2205 (range2->type == XML_REGEXP_PUNCT_OTHERS))
2206 ret = 1;
2207 break;
2208 case XML_REGEXP_SEPAR:
2209 if ((range2->type == XML_REGEXP_SEPAR_SPACE) ||
2210 (range2->type == XML_REGEXP_SEPAR_LINE) ||
2211 (range2->type == XML_REGEXP_SEPAR_PARA))
2212 ret = 1;
2213 break;
2214 case XML_REGEXP_SYMBOL:
2215 if ((range2->type == XML_REGEXP_SYMBOL_MATH) ||
2216 (range2->type == XML_REGEXP_SYMBOL_CURRENCY) ||
2217 (range2->type == XML_REGEXP_SYMBOL_MODIFIER) ||
2218 (range2->type == XML_REGEXP_SYMBOL_OTHERS))
2219 ret = 1;
2220 break;
2221 case XML_REGEXP_OTHER:
2222 if ((range2->type == XML_REGEXP_OTHER_CONTROL) ||
2223 (range2->type == XML_REGEXP_OTHER_FORMAT) ||
2224 (range2->type == XML_REGEXP_OTHER_PRIVATE))
2225 ret = 1;
2226 break;
2227 default:
2228 if ((range2->type >= XML_REGEXP_LETTER) &&
2229 (range2->type < XML_REGEXP_BLOCK_NAME))
2230 ret = 0;
2231 else {
2232 /* safety net ! */
2233 return(1);
2234 }
2235 }
2236 }
2237 if (((range1->neg == 0) && (range2->neg != 0)) ||
2238 ((range1->neg != 0) && (range2->neg == 0)))
2239 ret = !ret;
2240 return(ret);
2241}
2242
2243/**
2244 * xmlFACompareAtomTypes:
2245 * @type1: an atom type
2246 * @type2: an atom type
2247 *
2248 * Compares two atoms type to check whether they intersect in some ways,
2249 * this is used by xmlFACompareAtoms only
2250 *
2251 * Returns 1 if they may intersect and 0 otherwise
2252 */
2253static int
2254xmlFACompareAtomTypes(xmlRegAtomType type1, xmlRegAtomType type2) {
2255 if ((type1 == XML_REGEXP_EPSILON) ||
2256 (type1 == XML_REGEXP_CHARVAL) ||
2257 (type1 == XML_REGEXP_RANGES) ||
2258 (type1 == XML_REGEXP_SUBREG) ||
2259 (type1 == XML_REGEXP_STRING) ||
2260 (type1 == XML_REGEXP_ANYCHAR))
2261 return(1);
2262 if ((type2 == XML_REGEXP_EPSILON) ||
2263 (type2 == XML_REGEXP_CHARVAL) ||
2264 (type2 == XML_REGEXP_RANGES) ||
2265 (type2 == XML_REGEXP_SUBREG) ||
2266 (type2 == XML_REGEXP_STRING) ||
2267 (type2 == XML_REGEXP_ANYCHAR))
2268 return(1);
2269
2270 if (type1 == type2) return(1);
2271
2272 /* simplify subsequent compares by making sure type1 < type2 */
2273 if (type1 > type2) {
2274 xmlRegAtomType tmp = type1;
2275 type1 = type2;
2276 type2 = tmp;
2277 }
2278 switch (type1) {
2279 case XML_REGEXP_ANYSPACE: /* \s */
2280 /* can't be a letter, number, mark, pontuation, symbol */
2281 if ((type2 == XML_REGEXP_NOTSPACE) ||
2282 ((type2 >= XML_REGEXP_LETTER) &&
2283 (type2 <= XML_REGEXP_LETTER_OTHERS)) ||
2284 ((type2 >= XML_REGEXP_NUMBER) &&
2285 (type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
2286 ((type2 >= XML_REGEXP_MARK) &&
2287 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2288 ((type2 >= XML_REGEXP_PUNCT) &&
2289 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2290 ((type2 >= XML_REGEXP_SYMBOL) &&
2291 (type2 <= XML_REGEXP_SYMBOL_OTHERS))
2292 ) return(0);
2293 break;
2294 case XML_REGEXP_NOTSPACE: /* \S */
2295 break;
2296 case XML_REGEXP_INITNAME: /* \l */
2297 /* can't be a number, mark, separator, pontuation, symbol or other */
2298 if ((type2 == XML_REGEXP_NOTINITNAME) ||
2299 ((type2 >= XML_REGEXP_NUMBER) &&
2300 (type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
2301 ((type2 >= XML_REGEXP_MARK) &&
2302 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2303 ((type2 >= XML_REGEXP_SEPAR) &&
2304 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2305 ((type2 >= XML_REGEXP_PUNCT) &&
2306 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2307 ((type2 >= XML_REGEXP_SYMBOL) &&
2308 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2309 ((type2 >= XML_REGEXP_OTHER) &&
2310 (type2 <= XML_REGEXP_OTHER_NA))
2311 ) return(0);
2312 break;
2313 case XML_REGEXP_NOTINITNAME: /* \L */
2314 break;
2315 case XML_REGEXP_NAMECHAR: /* \c */
2316 /* can't be a mark, separator, pontuation, symbol or other */
2317 if ((type2 == XML_REGEXP_NOTNAMECHAR) ||
2318 ((type2 >= XML_REGEXP_MARK) &&
2319 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2320 ((type2 >= XML_REGEXP_PUNCT) &&
2321 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2322 ((type2 >= XML_REGEXP_SEPAR) &&
2323 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2324 ((type2 >= XML_REGEXP_SYMBOL) &&
2325 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2326 ((type2 >= XML_REGEXP_OTHER) &&
2327 (type2 <= XML_REGEXP_OTHER_NA))
2328 ) return(0);
2329 break;
2330 case XML_REGEXP_NOTNAMECHAR: /* \C */
2331 break;
2332 case XML_REGEXP_DECIMAL: /* \d */
2333 /* can't be a letter, mark, separator, pontuation, symbol or other */
2334 if ((type2 == XML_REGEXP_NOTDECIMAL) ||
2335 (type2 == XML_REGEXP_REALCHAR) ||
2336 ((type2 >= XML_REGEXP_LETTER) &&
2337 (type2 <= XML_REGEXP_LETTER_OTHERS)) ||
2338 ((type2 >= XML_REGEXP_MARK) &&
2339 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2340 ((type2 >= XML_REGEXP_PUNCT) &&
2341 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2342 ((type2 >= XML_REGEXP_SEPAR) &&
2343 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2344 ((type2 >= XML_REGEXP_SYMBOL) &&
2345 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2346 ((type2 >= XML_REGEXP_OTHER) &&
2347 (type2 <= XML_REGEXP_OTHER_NA))
2348 )return(0);
2349 break;
2350 case XML_REGEXP_NOTDECIMAL: /* \D */
2351 break;
2352 case XML_REGEXP_REALCHAR: /* \w */
2353 /* can't be a mark, separator, pontuation, symbol or other */
2354 if ((type2 == XML_REGEXP_NOTDECIMAL) ||
2355 ((type2 >= XML_REGEXP_MARK) &&
2356 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2357 ((type2 >= XML_REGEXP_PUNCT) &&
2358 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2359 ((type2 >= XML_REGEXP_SEPAR) &&
2360 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2361 ((type2 >= XML_REGEXP_SYMBOL) &&
2362 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2363 ((type2 >= XML_REGEXP_OTHER) &&
2364 (type2 <= XML_REGEXP_OTHER_NA))
2365 )return(0);
2366 break;
2367 case XML_REGEXP_NOTREALCHAR: /* \W */
2368 break;
2369 /*
2370 * at that point we know both type 1 and type2 are from
2371 * character categories are ordered and are different,
2372 * it becomes simple because this is a partition
2373 */
2374 case XML_REGEXP_LETTER:
2375 if (type2 <= XML_REGEXP_LETTER_OTHERS)
2376 return(1);
2377 return(0);
2378 case XML_REGEXP_LETTER_UPPERCASE:
2379 case XML_REGEXP_LETTER_LOWERCASE:
2380 case XML_REGEXP_LETTER_TITLECASE:
2381 case XML_REGEXP_LETTER_MODIFIER:
2382 case XML_REGEXP_LETTER_OTHERS:
2383 return(0);
2384 case XML_REGEXP_MARK:
2385 if (type2 <= XML_REGEXP_MARK_ENCLOSING)
2386 return(1);
2387 return(0);
2388 case XML_REGEXP_MARK_NONSPACING:
2389 case XML_REGEXP_MARK_SPACECOMBINING:
2390 case XML_REGEXP_MARK_ENCLOSING:
2391 return(0);
2392 case XML_REGEXP_NUMBER:
2393 if (type2 <= XML_REGEXP_NUMBER_OTHERS)
2394 return(1);
2395 return(0);
2396 case XML_REGEXP_NUMBER_DECIMAL:
2397 case XML_REGEXP_NUMBER_LETTER:
2398 case XML_REGEXP_NUMBER_OTHERS:
2399 return(0);
2400 case XML_REGEXP_PUNCT:
2401 if (type2 <= XML_REGEXP_PUNCT_OTHERS)
2402 return(1);
2403 return(0);
2404 case XML_REGEXP_PUNCT_CONNECTOR:
2405 case XML_REGEXP_PUNCT_DASH:
2406 case XML_REGEXP_PUNCT_OPEN:
2407 case XML_REGEXP_PUNCT_CLOSE:
2408 case XML_REGEXP_PUNCT_INITQUOTE:
2409 case XML_REGEXP_PUNCT_FINQUOTE:
2410 case XML_REGEXP_PUNCT_OTHERS:
2411 return(0);
2412 case XML_REGEXP_SEPAR:
2413 if (type2 <= XML_REGEXP_SEPAR_PARA)
2414 return(1);
2415 return(0);
2416 case XML_REGEXP_SEPAR_SPACE:
2417 case XML_REGEXP_SEPAR_LINE:
2418 case XML_REGEXP_SEPAR_PARA:
2419 return(0);
2420 case XML_REGEXP_SYMBOL:
2421 if (type2 <= XML_REGEXP_SYMBOL_OTHERS)
2422 return(1);
2423 return(0);
2424 case XML_REGEXP_SYMBOL_MATH:
2425 case XML_REGEXP_SYMBOL_CURRENCY:
2426 case XML_REGEXP_SYMBOL_MODIFIER:
2427 case XML_REGEXP_SYMBOL_OTHERS:
2428 return(0);
2429 case XML_REGEXP_OTHER:
2430 if (type2 <= XML_REGEXP_OTHER_NA)
2431 return(1);
2432 return(0);
2433 case XML_REGEXP_OTHER_CONTROL:
2434 case XML_REGEXP_OTHER_FORMAT:
2435 case XML_REGEXP_OTHER_PRIVATE:
2436 case XML_REGEXP_OTHER_NA:
2437 return(0);
2438 default:
2439 break;
2440 }
2441 return(1);
2442}
2443
2444/**
2445 * xmlFAEqualAtoms:
2446 * @atom1: an atom
2447 * @atom2: an atom
2448 * @deep: if not set only compare string pointers
2449 *
2450 * Compares two atoms to check whether they are the same exactly
2451 * this is used to remove equivalent transitions
2452 *
2453 * Returns 1 if same and 0 otherwise
2454 */
2455static int
2456xmlFAEqualAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
2457 int ret = 0;
2458
2459 if (atom1 == atom2)
2460 return(1);
2461 if ((atom1 == NULL) || (atom2 == NULL))
2462 return(0);
2463
2464 if (atom1->type != atom2->type)
2465 return(0);
2466 switch (atom1->type) {
2467 case XML_REGEXP_EPSILON:
2468 ret = 0;
2469 break;
2470 case XML_REGEXP_STRING:
2471 if (!deep)
2472 ret = (atom1->valuep == atom2->valuep);
2473 else
2474 ret = xmlStrEqual((xmlChar *)atom1->valuep,
2475 (xmlChar *)atom2->valuep);
2476 break;
2477 case XML_REGEXP_CHARVAL:
2478 ret = (atom1->codepoint == atom2->codepoint);
2479 break;
2480 case XML_REGEXP_RANGES:
2481 /* too hard to do in the general case */
2482 ret = 0;
2483 default:
2484 break;
2485 }
2486 return(ret);
2487}
2488
2489/**
2490 * xmlFACompareAtoms:
2491 * @atom1: an atom
2492 * @atom2: an atom
2493 * @deep: if not set only compare string pointers
2494 *
2495 * Compares two atoms to check whether they intersect in some ways,
2496 * this is used by xmlFAComputesDeterminism and xmlFARecurseDeterminism only
2497 *
2498 * Returns 1 if yes and 0 otherwise
2499 */
2500static int
2501xmlFACompareAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
2502 int ret = 1;
2503
2504 if (atom1 == atom2)
2505 return(1);
2506 if ((atom1 == NULL) || (atom2 == NULL))
2507 return(0);
2508
2509 if ((atom1->type == XML_REGEXP_ANYCHAR) ||
2510 (atom2->type == XML_REGEXP_ANYCHAR))
2511 return(1);
2512
2513 if (atom1->type > atom2->type) {
2514 xmlRegAtomPtr tmp;
2515 tmp = atom1;
2516 atom1 = atom2;
2517 atom2 = tmp;
2518 }
2519 if (atom1->type != atom2->type) {
2520 ret = xmlFACompareAtomTypes(atom1->type, atom2->type);
2521 /* if they can't intersect at the type level break now */
2522 if (ret == 0)
2523 return(0);
2524 }
2525 switch (atom1->type) {
2526 case XML_REGEXP_STRING:
2527 if (!deep)
2528 ret = (atom1->valuep != atom2->valuep);
2529 else
2530 ret = xmlRegStrEqualWildcard((xmlChar *)atom1->valuep,
2531 (xmlChar *)atom2->valuep);
2532 break;
2533 case XML_REGEXP_EPSILON:
2534 goto not_determinist;
2535 case XML_REGEXP_CHARVAL:
2536 if (atom2->type == XML_REGEXP_CHARVAL) {
2537 ret = (atom1->codepoint == atom2->codepoint);
2538 } else {
2539 ret = xmlRegCheckCharacter(atom2, atom1->codepoint);
2540 if (ret < 0)
2541 ret = 1;
2542 }
2543 break;
2544 case XML_REGEXP_RANGES:
2545 if (atom2->type == XML_REGEXP_RANGES) {
2546 int i, j, res;
2547 xmlRegRangePtr r1, r2;
2548
2549 /*
2550 * need to check that none of the ranges eventually matches
2551 */
2552 for (i = 0;i < atom1->nbRanges;i++) {
2553 for (j = 0;j < atom2->nbRanges;j++) {
2554 r1 = atom1->ranges[i];
2555 r2 = atom2->ranges[j];
2556 res = xmlFACompareRanges(r1, r2);
2557 if (res == 1) {
2558 ret = 1;
2559 goto done;
2560 }
2561 }
2562 }
2563 ret = 0;
2564 }
2565 break;
2566 default:
2567 goto not_determinist;
2568 }
2569done:
2570 if (atom1->neg != atom2->neg) {
2571 ret = !ret;
2572 }
2573 if (ret == 0)
2574 return(0);
2575not_determinist:
2576 return(1);
2577}
2578
2579/**
2580 * xmlFARecurseDeterminism:
2581 * @ctxt: a regexp parser context
2582 *
2583 * Check whether the associated regexp is determinist,
2584 * should be called after xmlFAEliminateEpsilonTransitions()
2585 *
2586 */
2587static int
2588xmlFARecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
2589 int to, xmlRegAtomPtr atom) {
2590 int ret = 1;
2591 int res;
2592 int transnr, nbTrans;
2593 xmlRegTransPtr t1;
2594 int deep = 1;
2595
2596 if (state == NULL)
2597 return(ret);
2598 if (state->markd == XML_REGEXP_MARK_VISITED)
2599 return(ret);
2600
2601 if (ctxt->flags & AM_AUTOMATA_RNG)
2602 deep = 0;
2603
2604 /*
2605 * don't recurse on transitions potentially added in the course of
2606 * the elimination.
2607 */
2608 nbTrans = state->nbTrans;
2609 for (transnr = 0;transnr < nbTrans;transnr++) {
2610 t1 = &(state->trans[transnr]);
2611 /*
2612 * check transitions conflicting with the one looked at
2613 */
2614 if (t1->atom == NULL) {
2615 if (t1->to < 0)
2616 continue;
2617 state->markd = XML_REGEXP_MARK_VISITED;
2618 res = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
2619 to, atom);
2620 state->markd = 0;
2621 if (res == 0) {
2622 ret = 0;
2623 /* t1->nd = 1; */
2624 }
2625 continue;
2626 }
2627 if (t1->to != to)
2628 continue;
2629 if (xmlFACompareAtoms(t1->atom, atom, deep)) {
2630 ret = 0;
2631 /* mark the transition as non-deterministic */
2632 t1->nd = 1;
2633 }
2634 }
2635 return(ret);
2636}
2637
2638/**
2639 * xmlFAComputesDeterminism:
2640 * @ctxt: a regexp parser context
2641 *
2642 * Check whether the associated regexp is determinist,
2643 * should be called after xmlFAEliminateEpsilonTransitions()
2644 *
2645 */
2646static int
2647xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt) {
2648 int statenr, transnr;
2649 xmlRegStatePtr state;
2650 xmlRegTransPtr t1, t2, last;
2651 int i;
2652 int ret = 1;
2653 int deep = 1;
2654
2655#ifdef DEBUG_REGEXP_GRAPH
2656 printf("xmlFAComputesDeterminism\n");
2657 xmlRegPrintCtxt(stdout, ctxt);
2658#endif
2659 if (ctxt->determinist != -1)
2660 return(ctxt->determinist);
2661
2662 if (ctxt->flags & AM_AUTOMATA_RNG)
2663 deep = 0;
2664
2665 /*
2666 * First cleanup the automata removing cancelled transitions
2667 */
2668 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2669 state = ctxt->states[statenr];
2670 if (state == NULL)
2671 continue;
2672 if (state->nbTrans < 2)
2673 continue;
2674 for (transnr = 0;transnr < state->nbTrans;transnr++) {
2675 t1 = &(state->trans[transnr]);
2676 /*
2677 * Determinism checks in case of counted or all transitions
2678 * will have to be handled separately
2679 */
2680 if (t1->atom == NULL) {
2681 /* t1->nd = 1; */
2682 continue;
2683 }
2684 if (t1->to == -1) /* eliminated */
2685 continue;
2686 for (i = 0;i < transnr;i++) {
2687 t2 = &(state->trans[i]);
2688 if (t2->to == -1) /* eliminated */
2689 continue;
2690 if (t2->atom != NULL) {
2691 if (t1->to == t2->to) {
2692 /*
2693 * Here we use deep because we want to keep the
2694 * transitions which indicate a conflict
2695 */
2696 if (xmlFAEqualAtoms(t1->atom, t2->atom, deep) &&
2697 (t1->counter == t2->counter) &&
2698 (t1->count == t2->count))
2699 t2->to = -1; /* eliminated */
2700 }
2701 }
2702 }
2703 }
2704 }
2705
2706 /*
2707 * Check for all states that there aren't 2 transitions
2708 * with the same atom and a different target.
2709 */
2710 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2711 state = ctxt->states[statenr];
2712 if (state == NULL)
2713 continue;
2714 if (state->nbTrans < 2)
2715 continue;
2716 last = NULL;
2717 for (transnr = 0;transnr < state->nbTrans;transnr++) {
2718 t1 = &(state->trans[transnr]);
2719 /*
2720 * Determinism checks in case of counted or all transitions
2721 * will have to be handled separately
2722 */
2723 if (t1->atom == NULL) {
2724 continue;
2725 }
2726 if (t1->to == -1) /* eliminated */
2727 continue;
2728 for (i = 0;i < transnr;i++) {
2729 t2 = &(state->trans[i]);
2730 if (t2->to == -1) /* eliminated */
2731 continue;
2732 if (t2->atom != NULL) {
2733 /*
2734 * But here we don't use deep because we want to
2735 * find transitions which indicate a conflict
2736 */
2737 if (xmlFACompareAtoms(t1->atom, t2->atom, 1)) {
2738 ret = 0;
2739 /* mark the transitions as non-deterministic ones */
2740 t1->nd = 1;
2741 t2->nd = 1;
2742 last = t1;
2743 }
2744 } else if (t1->to != -1) {
2745 /*
2746 * do the closure in case of remaining specific
2747 * epsilon transitions like choices or all
2748 */
2749 ret = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
2750 t2->to, t2->atom);
2751 /* don't shortcut the computation so all non deterministic
2752 transition get marked down
2753 if (ret == 0)
2754 return(0);
2755 */
2756 if (ret == 0) {
2757 t1->nd = 1;
2758 /* t2->nd = 1; */
2759 last = t1;
2760 }
2761 }
2762 }
2763 /* don't shortcut the computation so all non deterministic
2764 transition get marked down
2765 if (ret == 0)
2766 break; */
2767 }
2768
2769 /*
2770 * mark specifically the last non-deterministic transition
2771 * from a state since there is no need to set-up rollback
2772 * from it
2773 */
2774 if (last != NULL) {
2775 last->nd = 2;
2776 }
2777
2778 /* don't shortcut the computation so all non deterministic
2779 transition get marked down
2780 if (ret == 0)
2781 break; */
2782 }
2783
2784 ctxt->determinist = ret;
2785 return(ret);
2786}
2787
2788/************************************************************************
2789 * *
2790 * Routines to check input against transition atoms *
2791 * *
2792 ************************************************************************/
2793
2794static int
2795xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, int neg,
2796 int start, int end, const xmlChar *blockName) {
2797 int ret = 0;
2798
2799 switch (type) {
2800 case XML_REGEXP_STRING:
2801 case XML_REGEXP_SUBREG:
2802 case XML_REGEXP_RANGES:
2803 case XML_REGEXP_EPSILON:
2804 return(-1);
2805 case XML_REGEXP_ANYCHAR:
2806 ret = ((codepoint != '\n') && (codepoint != '\r'));
2807 break;
2808 case XML_REGEXP_CHARVAL:
2809 ret = ((codepoint >= start) && (codepoint <= end));
2810 break;
2811 case XML_REGEXP_NOTSPACE:
2812 neg = !neg;
2813 case XML_REGEXP_ANYSPACE:
2814 ret = ((codepoint == '\n') || (codepoint == '\r') ||
2815 (codepoint == '\t') || (codepoint == ' '));
2816 break;
2817 case XML_REGEXP_NOTINITNAME:
2818 neg = !neg;
2819 case XML_REGEXP_INITNAME:
2820 ret = (IS_LETTER(codepoint) ||
2821 (codepoint == '_') || (codepoint == ':'));
2822 break;
2823 case XML_REGEXP_NOTNAMECHAR:
2824 neg = !neg;
2825 case XML_REGEXP_NAMECHAR:
2826 ret = (IS_LETTER(codepoint) || IS_DIGIT(codepoint) ||
2827 (codepoint == '.') || (codepoint == '-') ||
2828 (codepoint == '_') || (codepoint == ':') ||
2829 IS_COMBINING(codepoint) || IS_EXTENDER(codepoint));
2830 break;
2831 case XML_REGEXP_NOTDECIMAL:
2832 neg = !neg;
2833 case XML_REGEXP_DECIMAL:
2834 ret = xmlUCSIsCatNd(codepoint);
2835 break;
2836 case XML_REGEXP_REALCHAR:
2837 neg = !neg;
2838 case XML_REGEXP_NOTREALCHAR:
2839 ret = xmlUCSIsCatP(codepoint);
2840 if (ret == 0)
2841 ret = xmlUCSIsCatZ(codepoint);
2842 if (ret == 0)
2843 ret = xmlUCSIsCatC(codepoint);
2844 break;
2845 case XML_REGEXP_LETTER:
2846 ret = xmlUCSIsCatL(codepoint);
2847 break;
2848 case XML_REGEXP_LETTER_UPPERCASE:
2849 ret = xmlUCSIsCatLu(codepoint);
2850 break;
2851 case XML_REGEXP_LETTER_LOWERCASE:
2852 ret = xmlUCSIsCatLl(codepoint);
2853 break;
2854 case XML_REGEXP_LETTER_TITLECASE:
2855 ret = xmlUCSIsCatLt(codepoint);
2856 break;
2857 case XML_REGEXP_LETTER_MODIFIER:
2858 ret = xmlUCSIsCatLm(codepoint);
2859 break;
2860 case XML_REGEXP_LETTER_OTHERS:
2861 ret = xmlUCSIsCatLo(codepoint);
2862 break;
2863 case XML_REGEXP_MARK:
2864 ret = xmlUCSIsCatM(codepoint);
2865 break;
2866 case XML_REGEXP_MARK_NONSPACING:
2867 ret = xmlUCSIsCatMn(codepoint);
2868 break;
2869 case XML_REGEXP_MARK_SPACECOMBINING:
2870 ret = xmlUCSIsCatMc(codepoint);
2871 break;
2872 case XML_REGEXP_MARK_ENCLOSING:
2873 ret = xmlUCSIsCatMe(codepoint);
2874 break;
2875 case XML_REGEXP_NUMBER:
2876 ret = xmlUCSIsCatN(codepoint);
2877 break;
2878 case XML_REGEXP_NUMBER_DECIMAL:
2879 ret = xmlUCSIsCatNd(codepoint);
2880 break;
2881 case XML_REGEXP_NUMBER_LETTER:
2882 ret = xmlUCSIsCatNl(codepoint);
2883 break;
2884 case XML_REGEXP_NUMBER_OTHERS:
2885 ret = xmlUCSIsCatNo(codepoint);
2886 break;
2887 case XML_REGEXP_PUNCT:
2888 ret = xmlUCSIsCatP(codepoint);
2889 break;
2890 case XML_REGEXP_PUNCT_CONNECTOR:
2891 ret = xmlUCSIsCatPc(codepoint);
2892 break;
2893 case XML_REGEXP_PUNCT_DASH:
2894 ret = xmlUCSIsCatPd(codepoint);
2895 break;
2896 case XML_REGEXP_PUNCT_OPEN:
2897 ret = xmlUCSIsCatPs(codepoint);
2898 break;
2899 case XML_REGEXP_PUNCT_CLOSE:
2900 ret = xmlUCSIsCatPe(codepoint);
2901 break;
2902 case XML_REGEXP_PUNCT_INITQUOTE:
2903 ret = xmlUCSIsCatPi(codepoint);
2904 break;
2905 case XML_REGEXP_PUNCT_FINQUOTE:
2906 ret = xmlUCSIsCatPf(codepoint);
2907 break;
2908 case XML_REGEXP_PUNCT_OTHERS:
2909 ret = xmlUCSIsCatPo(codepoint);
2910 break;
2911 case XML_REGEXP_SEPAR:
2912 ret = xmlUCSIsCatZ(codepoint);
2913 break;
2914 case XML_REGEXP_SEPAR_SPACE:
2915 ret = xmlUCSIsCatZs(codepoint);
2916 break;
2917 case XML_REGEXP_SEPAR_LINE:
2918 ret = xmlUCSIsCatZl(codepoint);
2919 break;
2920 case XML_REGEXP_SEPAR_PARA:
2921 ret = xmlUCSIsCatZp(codepoint);
2922 break;
2923 case XML_REGEXP_SYMBOL:
2924 ret = xmlUCSIsCatS(codepoint);
2925 break;
2926 case XML_REGEXP_SYMBOL_MATH:
2927 ret = xmlUCSIsCatSm(codepoint);
2928 break;
2929 case XML_REGEXP_SYMBOL_CURRENCY:
2930 ret = xmlUCSIsCatSc(codepoint);
2931 break;
2932 case XML_REGEXP_SYMBOL_MODIFIER:
2933 ret = xmlUCSIsCatSk(codepoint);
2934 break;
2935 case XML_REGEXP_SYMBOL_OTHERS:
2936 ret = xmlUCSIsCatSo(codepoint);
2937 break;
2938 case XML_REGEXP_OTHER:
2939 ret = xmlUCSIsCatC(codepoint);
2940 break;
2941 case XML_REGEXP_OTHER_CONTROL:
2942 ret = xmlUCSIsCatCc(codepoint);
2943 break;
2944 case XML_REGEXP_OTHER_FORMAT:
2945 ret = xmlUCSIsCatCf(codepoint);
2946 break;
2947 case XML_REGEXP_OTHER_PRIVATE:
2948 ret = xmlUCSIsCatCo(codepoint);
2949 break;
2950 case XML_REGEXP_OTHER_NA:
2951 /* ret = xmlUCSIsCatCn(codepoint); */
2952 /* Seems it doesn't exist anymore in recent Unicode releases */
2953 ret = 0;
2954 break;
2955 case XML_REGEXP_BLOCK_NAME:
2956 ret = xmlUCSIsBlock(codepoint, (const char *) blockName);
2957 break;
2958 }
2959 if (neg)
2960 return(!ret);
2961 return(ret);
2962}
2963
2964static int
2965xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint) {
2966 int i, ret = 0;
2967 xmlRegRangePtr range;
2968
2969 if ((atom == NULL) || (!IS_CHAR(codepoint)))
2970 return(-1);
2971
2972 switch (atom->type) {
2973 case XML_REGEXP_SUBREG:
2974 case XML_REGEXP_EPSILON:
2975 return(-1);
2976 case XML_REGEXP_CHARVAL:
2977 return(codepoint == atom->codepoint);
2978 case XML_REGEXP_RANGES: {
2979 int accept = 0;
2980
2981 for (i = 0;i < atom->nbRanges;i++) {
2982 range = atom->ranges[i];
2983 if (range->neg == 2) {
2984 ret = xmlRegCheckCharacterRange(range->type, codepoint,
2985 0, range->start, range->end,
2986 range->blockName);
2987 if (ret != 0)
2988 return(0); /* excluded char */
2989 } else if (range->neg) {
2990 ret = xmlRegCheckCharacterRange(range->type, codepoint,
2991 0, range->start, range->end,
2992 range->blockName);
2993 if (ret == 0)
2994 accept = 1;
2995 else
2996 return(0);
2997 } else {
2998 ret = xmlRegCheckCharacterRange(range->type, codepoint,
2999 0, range->start, range->end,
3000 range->blockName);
3001 if (ret != 0)
3002 accept = 1; /* might still be excluded */
3003 }
3004 }
3005 return(accept);
3006 }
3007 case XML_REGEXP_STRING:
3008 printf("TODO: XML_REGEXP_STRING\n");
3009 return(-1);
3010 case XML_REGEXP_ANYCHAR:
3011 case XML_REGEXP_ANYSPACE:
3012 case XML_REGEXP_NOTSPACE:
3013 case XML_REGEXP_INITNAME:
3014 case XML_REGEXP_NOTINITNAME:
3015 case XML_REGEXP_NAMECHAR:
3016 case XML_REGEXP_NOTNAMECHAR:
3017 case XML_REGEXP_DECIMAL:
3018 case XML_REGEXP_NOTDECIMAL:
3019 case XML_REGEXP_REALCHAR:
3020 case XML_REGEXP_NOTREALCHAR:
3021 case XML_REGEXP_LETTER:
3022 case XML_REGEXP_LETTER_UPPERCASE:
3023 case XML_REGEXP_LETTER_LOWERCASE:
3024 case XML_REGEXP_LETTER_TITLECASE:
3025 case XML_REGEXP_LETTER_MODIFIER:
3026 case XML_REGEXP_LETTER_OTHERS:
3027 case XML_REGEXP_MARK:
3028 case XML_REGEXP_MARK_NONSPACING:
3029 case XML_REGEXP_MARK_SPACECOMBINING:
3030 case XML_REGEXP_MARK_ENCLOSING:
3031 case XML_REGEXP_NUMBER:
3032 case XML_REGEXP_NUMBER_DECIMAL:
3033 case XML_REGEXP_NUMBER_LETTER:
3034 case XML_REGEXP_NUMBER_OTHERS:
3035 case XML_REGEXP_PUNCT:
3036 case XML_REGEXP_PUNCT_CONNECTOR:
3037 case XML_REGEXP_PUNCT_DASH:
3038 case XML_REGEXP_PUNCT_OPEN:
3039 case XML_REGEXP_PUNCT_CLOSE:
3040 case XML_REGEXP_PUNCT_INITQUOTE:
3041 case XML_REGEXP_PUNCT_FINQUOTE:
3042 case XML_REGEXP_PUNCT_OTHERS:
3043 case XML_REGEXP_SEPAR:
3044 case XML_REGEXP_SEPAR_SPACE:
3045 case XML_REGEXP_SEPAR_LINE:
3046 case XML_REGEXP_SEPAR_PARA:
3047 case XML_REGEXP_SYMBOL:
3048 case XML_REGEXP_SYMBOL_MATH:
3049 case XML_REGEXP_SYMBOL_CURRENCY:
3050 case XML_REGEXP_SYMBOL_MODIFIER:
3051 case XML_REGEXP_SYMBOL_OTHERS:
3052 case XML_REGEXP_OTHER:
3053 case XML_REGEXP_OTHER_CONTROL:
3054 case XML_REGEXP_OTHER_FORMAT:
3055 case XML_REGEXP_OTHER_PRIVATE:
3056 case XML_REGEXP_OTHER_NA:
3057 case XML_REGEXP_BLOCK_NAME:
3058 ret = xmlRegCheckCharacterRange(atom->type, codepoint, 0, 0, 0,
3059 (const xmlChar *)atom->valuep);
3060 if (atom->neg)
3061 ret = !ret;
3062 break;
3063 }
3064 return(ret);
3065}
3066
3067/************************************************************************
3068 * *
3069 * Saving and restoring state of an execution context *
3070 * *
3071 ************************************************************************/
3072
3073#ifdef DEBUG_REGEXP_EXEC
3074static void
3075xmlFARegDebugExec(xmlRegExecCtxtPtr exec) {
3076 printf("state: %d:%d:idx %d", exec->state->no, exec->transno, exec->index);
3077 if (exec->inputStack != NULL) {
3078 int i;
3079 printf(": ");
3080 for (i = 0;(i < 3) && (i < exec->inputStackNr);i++)
3081 printf("%s ", (const char *)
3082 exec->inputStack[exec->inputStackNr - (i + 1)].value);
3083 } else {
3084 printf(": %s", &(exec->inputString[exec->index]));
3085 }
3086 printf("\n");
3087}
3088#endif
3089
3090static void
3091xmlFARegExecSave(xmlRegExecCtxtPtr exec) {
3092#ifdef DEBUG_REGEXP_EXEC
3093 printf("saving ");
3094 exec->transno++;
3095 xmlFARegDebugExec(exec);
3096 exec->transno--;
3097#endif
3098#ifdef MAX_PUSH
3099 if (exec->nbPush > MAX_PUSH) {
3100 return;
3101 }
3102 exec->nbPush++;
3103#endif
3104
3105 if (exec->maxRollbacks == 0) {
3106 exec->maxRollbacks = 4;
3107 exec->rollbacks = (xmlRegExecRollback *) xmlMalloc(exec->maxRollbacks *
3108 sizeof(xmlRegExecRollback));
3109 if (exec->rollbacks == NULL) {
3110 xmlRegexpErrMemory(NULL, "saving regexp");
3111 exec->maxRollbacks = 0;
3112 return;
3113 }
3114 memset(exec->rollbacks, 0,
3115 exec->maxRollbacks * sizeof(xmlRegExecRollback));
3116 } else if (exec->nbRollbacks >= exec->maxRollbacks) {
3117 xmlRegExecRollback *tmp;
3118 int len = exec->maxRollbacks;
3119
3120 exec->maxRollbacks *= 2;
3121 tmp = (xmlRegExecRollback *) xmlRealloc(exec->rollbacks,
3122 exec->maxRollbacks * sizeof(xmlRegExecRollback));
3123 if (tmp == NULL) {
3124 xmlRegexpErrMemory(NULL, "saving regexp");
3125 exec->maxRollbacks /= 2;
3126 return;
3127 }
3128 exec->rollbacks = tmp;
3129 tmp = &exec->rollbacks[len];
3130 memset(tmp, 0, (exec->maxRollbacks - len) * sizeof(xmlRegExecRollback));
3131 }
3132 exec->rollbacks[exec->nbRollbacks].state = exec->state;
3133 exec->rollbacks[exec->nbRollbacks].index = exec->index;
3134 exec->rollbacks[exec->nbRollbacks].nextbranch = exec->transno + 1;
3135 if (exec->comp->nbCounters > 0) {
3136 if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
3137 exec->rollbacks[exec->nbRollbacks].counts = (int *)
3138 xmlMalloc(exec->comp->nbCounters * sizeof(int));
3139 if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
3140 xmlRegexpErrMemory(NULL, "saving regexp");
3141 exec->status = -5;
3142 return;
3143 }
3144 }
3145 memcpy(exec->rollbacks[exec->nbRollbacks].counts, exec->counts,
3146 exec->comp->nbCounters * sizeof(int));
3147 }
3148 exec->nbRollbacks++;
3149}
3150
3151static void
3152xmlFARegExecRollBack(xmlRegExecCtxtPtr exec) {
3153 if (exec->nbRollbacks <= 0) {
3154 exec->status = -1;
3155#ifdef DEBUG_REGEXP_EXEC
3156 printf("rollback failed on empty stack\n");
3157#endif
3158 return;
3159 }
3160 exec->nbRollbacks--;
3161 exec->state = exec->rollbacks[exec->nbRollbacks].state;
3162 exec->index = exec->rollbacks[exec->nbRollbacks].index;
3163 exec->transno = exec->rollbacks[exec->nbRollbacks].nextbranch;
3164 if (exec->comp->nbCounters > 0) {
3165 if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
3166 fprintf(stderr, "exec save: allocation failed");
3167 exec->status = -6;
3168 return;
3169 }
3170 if (exec->counts) {
3171 memcpy(exec->counts, exec->rollbacks[exec->nbRollbacks].counts,
3172 exec->comp->nbCounters * sizeof(int));
3173 }
3174 }
3175
3176#ifdef DEBUG_REGEXP_EXEC
3177 printf("restored ");
3178 xmlFARegDebugExec(exec);
3179#endif
3180}
3181
3182/************************************************************************
3183 * *
3184 * Verifier, running an input against a compiled regexp *
3185 * *
3186 ************************************************************************/
3187
3188static int
3189xmlFARegExec(xmlRegexpPtr comp, const xmlChar *content) {
3190 xmlRegExecCtxt execval;
3191 xmlRegExecCtxtPtr exec = &execval;
3192 int ret, codepoint = 0, len, deter;
3193
3194 exec->inputString = content;
3195 exec->index = 0;
3196 exec->nbPush = 0;
3197 exec->determinist = 1;
3198 exec->maxRollbacks = 0;
3199 exec->nbRollbacks = 0;
3200 exec->rollbacks = NULL;
3201 exec->status = 0;
3202 exec->comp = comp;
3203 exec->state = comp->states[0];
3204 exec->transno = 0;
3205 exec->transcount = 0;
3206 exec->inputStack = NULL;
3207 exec->inputStackMax = 0;
3208 if (comp->nbCounters > 0) {
3209 exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int));
3210 if (exec->counts == NULL) {
3211 xmlRegexpErrMemory(NULL, "running regexp");
3212 return(-1);
3213 }
3214 memset(exec->counts, 0, comp->nbCounters * sizeof(int));
3215 } else
3216 exec->counts = NULL;
3217 while ((exec->status == 0) && (exec->state != NULL) &&
3218 ((exec->inputString[exec->index] != 0) ||
3219 ((exec->state != NULL) &&
3220 (exec->state->type != XML_REGEXP_FINAL_STATE)))) {
3221 xmlRegTransPtr trans;
3222 xmlRegAtomPtr atom;
3223
3224 /*
3225 * If end of input on non-terminal state, rollback, however we may
3226 * still have epsilon like transition for counted transitions
3227 * on counters, in that case don't break too early. Additionally,
3228 * if we are working on a range like "AB{0,2}", where B is not present,
3229 * we don't want to break.
3230 */
3231 len = 1;
3232 if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) {
3233 /*
3234 * if there is a transition, we must check if
3235 * atom allows minOccurs of 0
3236 */
3237 if (exec->transno < exec->state->nbTrans) {
3238 trans = &exec->state->trans[exec->transno];
3239 if (trans->to >=0) {
3240 atom = trans->atom;
3241 if (!((atom->min == 0) && (atom->max > 0)))
3242 goto rollback;
3243 }
3244 } else
3245 goto rollback;
3246 }
3247
3248 exec->transcount = 0;
3249 for (;exec->transno < exec->state->nbTrans;exec->transno++) {
3250 trans = &exec->state->trans[exec->transno];
3251 if (trans->to < 0)
3252 continue;
3253 atom = trans->atom;
3254 ret = 0;
3255 deter = 1;
3256 if (trans->count >= 0) {
3257 int count;
3258 xmlRegCounterPtr counter;
3259
3260 if (exec->counts == NULL) {
3261 exec->status = -1;
3262 goto error;
3263 }
3264 /*
3265 * A counted transition.
3266 */
3267
3268 count = exec->counts[trans->count];
3269 counter = &exec->comp->counters[trans->count];
3270#ifdef DEBUG_REGEXP_EXEC
3271 printf("testing count %d: val %d, min %d, max %d\n",
3272 trans->count, count, counter->min, counter->max);
3273#endif
3274 ret = ((count >= counter->min) && (count <= counter->max));
3275 if ((ret) && (counter->min != counter->max))
3276 deter = 0;
3277 } else if (atom == NULL) {
3278 fprintf(stderr, "epsilon transition left at runtime\n");
3279 exec->status = -2;
3280 break;
3281 } else if (exec->inputString[exec->index] != 0) {
3282 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
3283 ret = xmlRegCheckCharacter(atom, codepoint);
3284 if ((ret == 1) && (atom->min >= 0) && (atom->max > 0)) {
3285 xmlRegStatePtr to = comp->states[trans->to];
3286
3287 /*
3288 * this is a multiple input sequence
3289 * If there is a counter associated increment it now.
3290 * before potentially saving and rollback
3291 * do not increment if the counter is already over the
3292 * maximum limit in which case get to next transition
3293 */
3294 if (trans->counter >= 0) {
3295 xmlRegCounterPtr counter;
3296
3297 if ((exec->counts == NULL) ||
3298 (exec->comp == NULL) ||
3299 (exec->comp->counters == NULL)) {
3300 exec->status = -1;
3301 goto error;
3302 }
3303 counter = &exec->comp->counters[trans->counter];
3304 if (exec->counts[trans->counter] >= counter->max)
3305 continue; /* for loop on transitions */
3306
3307#ifdef DEBUG_REGEXP_EXEC
3308 printf("Increasing count %d\n", trans->counter);
3309#endif
3310 exec->counts[trans->counter]++;
3311 }
3312 if (exec->state->nbTrans > exec->transno + 1) {
3313 xmlFARegExecSave(exec);
3314 }
3315 exec->transcount = 1;
3316 do {
3317 /*
3318 * Try to progress as much as possible on the input
3319 */
3320 if (exec->transcount == atom->max) {
3321 break;
3322 }
3323 exec->index += len;
3324 /*
3325 * End of input: stop here
3326 */
3327 if (exec->inputString[exec->index] == 0) {
3328 exec->index -= len;
3329 break;
3330 }
3331 if (exec->transcount >= atom->min) {
3332 int transno = exec->transno;
3333 xmlRegStatePtr state = exec->state;
3334
3335 /*
3336 * The transition is acceptable save it
3337 */
3338 exec->transno = -1; /* trick */
3339 exec->state = to;
3340 xmlFARegExecSave(exec);
3341 exec->transno = transno;
3342 exec->state = state;
3343 }
3344 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
3345 len);
3346 ret = xmlRegCheckCharacter(atom, codepoint);
3347 exec->transcount++;
3348 } while (ret == 1);
3349 if (exec->transcount < atom->min)
3350 ret = 0;
3351
3352 /*
3353 * If the last check failed but one transition was found
3354 * possible, rollback
3355 */
3356 if (ret < 0)
3357 ret = 0;
3358 if (ret == 0) {
3359 goto rollback;
3360 }
3361 if (trans->counter >= 0) {
3362 if (exec->counts == NULL) {
3363 exec->status = -1;
3364 goto error;
3365 }
3366#ifdef DEBUG_REGEXP_EXEC
3367 printf("Decreasing count %d\n", trans->counter);
3368#endif
3369 exec->counts[trans->counter]--;
3370 }
3371 } else if ((ret == 0) && (atom->min == 0) && (atom->max > 0)) {
3372 /*
3373 * we don't match on the codepoint, but minOccurs of 0
3374 * says that's ok. Setting len to 0 inhibits stepping
3375 * over the codepoint.
3376 */
3377 exec->transcount = 1;
3378 len = 0;
3379 ret = 1;
3380 }
3381 } else if ((atom->min == 0) && (atom->max > 0)) {
3382 /* another spot to match when minOccurs is 0 */
3383 exec->transcount = 1;
3384 len = 0;
3385 ret = 1;
3386 }
3387 if (ret == 1) {
3388 if ((trans->nd == 1) ||
3389 ((trans->count >= 0) && (deter == 0) &&
3390 (exec->state->nbTrans > exec->transno + 1))) {
3391#ifdef DEBUG_REGEXP_EXEC
3392 if (trans->nd == 1)
3393 printf("Saving on nd transition atom %d for %c at %d\n",
3394 trans->atom->no, codepoint, exec->index);
3395 else
3396 printf("Saving on counted transition count %d for %c at %d\n",
3397 trans->count, codepoint, exec->index);
3398#endif
3399 xmlFARegExecSave(exec);
3400 }
3401 if (trans->counter >= 0) {
3402 xmlRegCounterPtr counter;
3403
3404 /* make sure we don't go over the counter maximum value */
3405 if ((exec->counts == NULL) ||
3406 (exec->comp == NULL) ||
3407 (exec->comp->counters == NULL)) {
3408 exec->status = -1;
3409 goto error;
3410 }
3411 counter = &exec->comp->counters[trans->counter];
3412 if (exec->counts[trans->counter] >= counter->max)
3413 continue; /* for loop on transitions */
3414#ifdef DEBUG_REGEXP_EXEC
3415 printf("Increasing count %d\n", trans->counter);
3416#endif
3417 exec->counts[trans->counter]++;
3418 }
3419 if ((trans->count >= 0) &&
3420 (trans->count < REGEXP_ALL_COUNTER)) {
3421 if (exec->counts == NULL) {
3422 exec->status = -1;
3423 goto error;
3424 }
3425#ifdef DEBUG_REGEXP_EXEC
3426 printf("resetting count %d on transition\n",
3427 trans->count);
3428#endif
3429 exec->counts[trans->count] = 0;
3430 }
3431#ifdef DEBUG_REGEXP_EXEC
3432 printf("entering state %d\n", trans->to);
3433#endif
3434 exec->state = comp->states[trans->to];
3435 exec->transno = 0;
3436 if (trans->atom != NULL) {
3437 exec->index += len;
3438 }
3439 goto progress;
3440 } else if (ret < 0) {
3441 exec->status = -4;
3442 break;
3443 }
3444 }
3445 if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
3446rollback:
3447 /*
3448 * Failed to find a way out
3449 */
3450 exec->determinist = 0;
3451#ifdef DEBUG_REGEXP_EXEC
3452 printf("rollback from state %d on %d:%c\n", exec->state->no,
3453 codepoint,codepoint);
3454#endif
3455 xmlFARegExecRollBack(exec);
3456 }
3457progress:
3458 continue;
3459 }
3460error:
3461 if (exec->rollbacks != NULL) {
3462 if (exec->counts != NULL) {
3463 int i;
3464
3465 for (i = 0;i < exec->maxRollbacks;i++)
3466 if (exec->rollbacks[i].counts != NULL)
3467 xmlFree(exec->rollbacks[i].counts);
3468 }
3469 xmlFree(exec->rollbacks);
3470 }
3471 if (exec->state == NULL)
3472 return(-1);
3473 if (exec->counts != NULL)
3474 xmlFree(exec->counts);
3475 if (exec->status == 0)
3476 return(1);
3477 if (exec->status == -1) {
3478 if (exec->nbPush > MAX_PUSH)
3479 return(-1);
3480 return(0);
3481 }
3482 return(exec->status);
3483}
3484
3485/************************************************************************
3486 * *
3487 * Progressive interface to the verifier one atom at a time *
3488 * *
3489 ************************************************************************/
3490#ifdef DEBUG_ERR
3491static void testerr(xmlRegExecCtxtPtr exec);
3492#endif
3493
3494/**
3495 * xmlRegNewExecCtxt:
3496 * @comp: a precompiled regular expression
3497 * @callback: a callback function used for handling progresses in the
3498 * automata matching phase
3499 * @data: the context data associated to the callback in this context
3500 *
3501 * Build a context used for progressive evaluation of a regexp.
3502 *
3503 * Returns the new context
3504 */
3505xmlRegExecCtxtPtr
3506xmlRegNewExecCtxt(xmlRegexpPtr comp, xmlRegExecCallbacks callback, void *data) {
3507 xmlRegExecCtxtPtr exec;
3508
3509 if (comp == NULL)
3510 return(NULL);
3511 if ((comp->compact == NULL) && (comp->states == NULL))
3512 return(NULL);
3513 exec = (xmlRegExecCtxtPtr) xmlMalloc(sizeof(xmlRegExecCtxt));
3514 if (exec == NULL) {
3515 xmlRegexpErrMemory(NULL, "creating execution context");
3516 return(NULL);
3517 }
3518 memset(exec, 0, sizeof(xmlRegExecCtxt));
3519 exec->inputString = NULL;
3520 exec->index = 0;
3521 exec->determinist = 1;
3522 exec->maxRollbacks = 0;
3523 exec->nbRollbacks = 0;
3524 exec->rollbacks = NULL;
3525 exec->status = 0;
3526 exec->comp = comp;
3527 if (comp->compact == NULL)
3528 exec->state = comp->states[0];
3529 exec->transno = 0;
3530 exec->transcount = 0;
3531 exec->callback = callback;
3532 exec->data = data;
3533 if (comp->nbCounters > 0) {
3534 /*
3535 * For error handling, exec->counts is allocated twice the size
3536 * the second half is used to store the data in case of rollback
3537 */
3538 exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int)
3539 * 2);
3540 if (exec->counts == NULL) {
3541 xmlRegexpErrMemory(NULL, "creating execution context");
3542 xmlFree(exec);
3543 return(NULL);
3544 }
3545 memset(exec->counts, 0, comp->nbCounters * sizeof(int) * 2);
3546 exec->errCounts = &exec->counts[comp->nbCounters];
3547 } else {
3548 exec->counts = NULL;
3549 exec->errCounts = NULL;
3550 }
3551 exec->inputStackMax = 0;
3552 exec->inputStackNr = 0;
3553 exec->inputStack = NULL;
3554 exec->errStateNo = -1;
3555 exec->errString = NULL;
3556 exec->nbPush = 0;
3557 return(exec);
3558}
3559
3560/**
3561 * xmlRegFreeExecCtxt:
3562 * @exec: a regular expression evaulation context
3563 *
3564 * Free the structures associated to a regular expression evaulation context.
3565 */
3566void
3567xmlRegFreeExecCtxt(xmlRegExecCtxtPtr exec) {
3568 if (exec == NULL)
3569 return;
3570
3571 if (exec->rollbacks != NULL) {
3572 if (exec->counts != NULL) {
3573 int i;
3574
3575 for (i = 0;i < exec->maxRollbacks;i++)
3576 if (exec->rollbacks[i].counts != NULL)
3577 xmlFree(exec->rollbacks[i].counts);
3578 }
3579 xmlFree(exec->rollbacks);
3580 }
3581 if (exec->counts != NULL)
3582 xmlFree(exec->counts);
3583 if (exec->inputStack != NULL) {
3584 int i;
3585
3586 for (i = 0;i < exec->inputStackNr;i++) {
3587 if (exec->inputStack[i].value != NULL)
3588 xmlFree(exec->inputStack[i].value);
3589 }
3590 xmlFree(exec->inputStack);
3591 }
3592 if (exec->errString != NULL)
3593 xmlFree(exec->errString);
3594 xmlFree(exec);
3595}
3596
3597static void
3598xmlFARegExecSaveInputString(xmlRegExecCtxtPtr exec, const xmlChar *value,
3599 void *data) {
3600#ifdef DEBUG_PUSH
3601 printf("saving value: %d:%s\n", exec->inputStackNr, value);
3602#endif
3603 if (exec->inputStackMax == 0) {
3604 exec->inputStackMax = 4;
3605 exec->inputStack = (xmlRegInputTokenPtr)
3606 xmlMalloc(exec->inputStackMax * sizeof(xmlRegInputToken));
3607 if (exec->inputStack == NULL) {
3608 xmlRegexpErrMemory(NULL, "pushing input string");
3609 exec->inputStackMax = 0;
3610 return;
3611 }
3612 } else if (exec->inputStackNr + 1 >= exec->inputStackMax) {
3613 xmlRegInputTokenPtr tmp;
3614
3615 exec->inputStackMax *= 2;
3616 tmp = (xmlRegInputTokenPtr) xmlRealloc(exec->inputStack,
3617 exec->inputStackMax * sizeof(xmlRegInputToken));
3618 if (tmp == NULL) {
3619 xmlRegexpErrMemory(NULL, "pushing input string");
3620 exec->inputStackMax /= 2;
3621 return;
3622 }
3623 exec->inputStack = tmp;
3624 }
3625 exec->inputStack[exec->inputStackNr].value = xmlStrdup(value);
3626 exec->inputStack[exec->inputStackNr].data = data;
3627 exec->inputStackNr++;
3628 exec->inputStack[exec->inputStackNr].value = NULL;
3629 exec->inputStack[exec->inputStackNr].data = NULL;
3630}
3631
3632/**
3633 * xmlRegStrEqualWildcard:
3634 * @expStr: the string to be evaluated
3635 * @valStr: the validation string
3636 *
3637 * Checks if both strings are equal or have the same content. "*"
3638 * can be used as a wildcard in @valStr; "|" is used as a seperator of
3639 * substrings in both @expStr and @valStr.
3640 *
3641 * Returns 1 if the comparison is satisfied and the number of substrings
3642 * is equal, 0 otherwise.
3643 */
3644
3645static int
3646xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr) {
3647 if (expStr == valStr) return(1);
3648 if (expStr == NULL) return(0);
3649 if (valStr == NULL) return(0);
3650 do {
3651 /*
3652 * Eval if we have a wildcard for the current item.
3653 */
3654 if (*expStr != *valStr) {
3655 /* if one of them starts with a wildcard make valStr be it */
3656 if (*valStr == '*') {
3657 const xmlChar *tmp;
3658
3659 tmp = valStr;
3660 valStr = expStr;
3661 expStr = tmp;
3662 }
3663 if ((*valStr != 0) && (*expStr != 0) && (*expStr++ == '*')) {
3664 do {
3665 if (*valStr == XML_REG_STRING_SEPARATOR)
3666 break;
3667 valStr++;
3668 } while (*valStr != 0);
3669 continue;
3670 } else
3671 return(0);
3672 }
3673 expStr++;
3674 valStr++;
3675 } while (*valStr != 0);
3676 if (*expStr != 0)
3677 return (0);
3678 else
3679 return (1);
3680}
3681
3682/**
3683 * xmlRegCompactPushString:
3684 * @exec: a regexp execution context
3685 * @comp: the precompiled exec with a compact table
3686 * @value: a string token input
3687 * @data: data associated to the token to reuse in callbacks
3688 *
3689 * Push one input token in the execution context
3690 *
3691 * Returns: 1 if the regexp reached a final state, 0 if non-final, and
3692 * a negative value in case of error.
3693 */
3694static int
3695xmlRegCompactPushString(xmlRegExecCtxtPtr exec,
3696 xmlRegexpPtr comp,
3697 const xmlChar *value,
3698 void *data) {
3699 int state = exec->index;
3700 int i, target;
3701
3702 if ((comp == NULL) || (comp->compact == NULL) || (comp->stringMap == NULL))
3703 return(-1);
3704
3705 if (value == NULL) {
3706 /*
3707 * are we at a final state ?
3708 */
3709 if (comp->compact[state * (comp->nbstrings + 1)] ==
3710 XML_REGEXP_FINAL_STATE)
3711 return(1);
3712 return(0);
3713 }
3714
3715#ifdef DEBUG_PUSH
3716 printf("value pushed: %s\n", value);
3717#endif
3718
3719 /*
3720 * Examine all outside transitions from current state
3721 */
3722 for (i = 0;i < comp->nbstrings;i++) {
3723 target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
3724 if ((target > 0) && (target <= comp->nbstates)) {
3725 target--; /* to avoid 0 */
3726 if (xmlRegStrEqualWildcard(comp->stringMap[i], value)) {
3727 exec->index = target;
3728 if ((exec->callback != NULL) && (comp->transdata != NULL)) {
3729 exec->callback(exec->data, value,
3730 comp->transdata[state * comp->nbstrings + i], data);
3731 }
3732#ifdef DEBUG_PUSH
3733 printf("entering state %d\n", target);
3734#endif
3735 if (comp->compact[target * (comp->nbstrings + 1)] ==
3736 XML_REGEXP_SINK_STATE)
3737 goto error;
3738
3739 if (comp->compact[target * (comp->nbstrings + 1)] ==
3740 XML_REGEXP_FINAL_STATE)
3741 return(1);
3742 return(0);
3743 }
3744 }
3745 }
3746 /*
3747 * Failed to find an exit transition out from current state for the
3748 * current token
3749 */
3750#ifdef DEBUG_PUSH
3751 printf("failed to find a transition for %s on state %d\n", value, state);
3752#endif
3753error:
3754 if (exec->errString != NULL)
3755 xmlFree(exec->errString);
3756 exec->errString = xmlStrdup(value);
3757 exec->errStateNo = state;
3758 exec->status = -1;
3759#ifdef DEBUG_ERR
3760 testerr(exec);
3761#endif
3762 return(-1);
3763}
3764
3765/**
3766 * xmlRegExecPushStringInternal:
3767 * @exec: a regexp execution context or NULL to indicate the end
3768 * @value: a string token input
3769 * @data: data associated to the token to reuse in callbacks
3770 * @compound: value was assembled from 2 strings
3771 *
3772 * Push one input token in the execution context
3773 *
3774 * Returns: 1 if the regexp reached a final state, 0 if non-final, and
3775 * a negative value in case of error.
3776 */
3777static int
3778xmlRegExecPushStringInternal(xmlRegExecCtxtPtr exec, const xmlChar *value,
3779 void *data, int compound) {
3780 xmlRegTransPtr trans;
3781 xmlRegAtomPtr atom;
3782 int ret;
3783 int final = 0;
3784 int progress = 1;
3785
3786 if (exec == NULL)
3787 return(-1);
3788 if (exec->comp == NULL)
3789 return(-1);
3790 if (exec->status != 0)
3791 return(exec->status);
3792
3793 if (exec->comp->compact != NULL)
3794 return(xmlRegCompactPushString(exec, exec->comp, value, data));
3795
3796 if (value == NULL) {
3797 if (exec->state->type == XML_REGEXP_FINAL_STATE)
3798 return(1);
3799 final = 1;
3800 }
3801
3802#ifdef DEBUG_PUSH
3803 printf("value pushed: %s\n", value);
3804#endif
3805 /*
3806 * If we have an active rollback stack push the new value there
3807 * and get back to where we were left
3808 */
3809 if ((value != NULL) && (exec->inputStackNr > 0)) {
3810 xmlFARegExecSaveInputString(exec, value, data);
3811 value = exec->inputStack[exec->index].value;
3812 data = exec->inputStack[exec->index].data;
3813#ifdef DEBUG_PUSH
3814 printf("value loaded: %s\n", value);
3815#endif
3816 }
3817
3818 while ((exec->status == 0) &&
3819 ((value != NULL) ||
3820 ((final == 1) &&
3821 (exec->state->type != XML_REGEXP_FINAL_STATE)))) {
3822
3823 /*
3824 * End of input on non-terminal state, rollback, however we may
3825 * still have epsilon like transition for counted transitions
3826 * on counters, in that case don't break too early.
3827 */
3828 if ((value == NULL) && (exec->counts == NULL))
3829 goto rollback;
3830
3831 exec->transcount = 0;
3832 for (;exec->transno < exec->state->nbTrans;exec->transno++) {
3833 trans = &exec->state->trans[exec->transno];
3834 if (trans->to < 0)
3835 continue;
3836 atom = trans->atom;
3837 ret = 0;
3838 if (trans->count == REGEXP_ALL_LAX_COUNTER) {
3839 int i;
3840 int count;
3841 xmlRegTransPtr t;
3842 xmlRegCounterPtr counter;
3843
3844 ret = 0;
3845
3846#ifdef DEBUG_PUSH
3847 printf("testing all lax %d\n", trans->count);
3848#endif
3849 /*
3850 * Check all counted transitions from the current state
3851 */
3852 if ((value == NULL) && (final)) {
3853 ret = 1;
3854 } else if (value != NULL) {
3855 for (i = 0;i < exec->state->nbTrans;i++) {
3856 t = &exec->state->trans[i];
3857 if ((t->counter < 0) || (t == trans))
3858 continue;
3859 counter = &exec->comp->counters[t->counter];
3860 count = exec->counts[t->counter];
3861 if ((count < counter->max) &&
3862 (t->atom != NULL) &&
3863 (xmlStrEqual(value, t->atom->valuep))) {
3864 ret = 0;
3865 break;
3866 }
3867 if ((count >= counter->min) &&
3868 (count < counter->max) &&
3869 (t->atom != NULL) &&
3870 (xmlStrEqual(value, t->atom->valuep))) {
3871 ret = 1;
3872 break;
3873 }
3874 }
3875 }
3876 } else if (trans->count == REGEXP_ALL_COUNTER) {
3877 int i;
3878 int count;
3879 xmlRegTransPtr t;
3880 xmlRegCounterPtr counter;
3881
3882 ret = 1;
3883
3884#ifdef DEBUG_PUSH
3885 printf("testing all %d\n", trans->count);
3886#endif
3887 /*
3888 * Check all counted transitions from the current state
3889 */
3890 for (i = 0;i < exec->state->nbTrans;i++) {
3891 t = &exec->state->trans[i];
3892 if ((t->counter < 0) || (t == trans))
3893 continue;
3894 counter = &exec->comp->counters[t->counter];
3895 count = exec->counts[t->counter];
3896 if ((count < counter->min) || (count > counter->max)) {
3897 ret = 0;
3898 break;
3899 }
3900 }
3901 } else if (trans->count >= 0) {
3902 int count;
3903 xmlRegCounterPtr counter;
3904
3905 /*
3906 * A counted transition.
3907 */
3908
3909 count = exec->counts[trans->count];
3910 counter = &exec->comp->counters[trans->count];
3911#ifdef DEBUG_PUSH
3912 printf("testing count %d: val %d, min %d, max %d\n",
3913 trans->count, count, counter->min, counter->max);
3914#endif
3915 ret = ((count >= counter->min) && (count <= counter->max));
3916 } else if (atom == NULL) {
3917 fprintf(stderr, "epsilon transition left at runtime\n");
3918 exec->status = -2;
3919 break;
3920 } else if (value != NULL) {
3921 ret = xmlRegStrEqualWildcard(atom->valuep, value);
3922 if (atom->neg) {
3923 ret = !ret;
3924 if (!compound)
3925 ret = 0;
3926 }
3927 if ((ret == 1) && (trans->counter >= 0)) {
3928 xmlRegCounterPtr counter;
3929 int count;
3930
3931 count = exec->counts[trans->counter];
3932 counter = &exec->comp->counters[trans->counter];
3933 if (count >= counter->max)
3934 ret = 0;
3935 }
3936
3937 if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
3938 xmlRegStatePtr to = exec->comp->states[trans->to];
3939
3940 /*
3941 * this is a multiple input sequence
3942 */
3943 if (exec->state->nbTrans > exec->transno + 1) {
3944 if (exec->inputStackNr <= 0) {
3945 xmlFARegExecSaveInputString(exec, value, data);
3946 }
3947 xmlFARegExecSave(exec);
3948 }
3949 exec->transcount = 1;
3950 do {
3951 /*
3952 * Try to progress as much as possible on the input
3953 */
3954 if (exec->transcount == atom->max) {
3955 break;
3956 }
3957 exec->index++;
3958 value = exec->inputStack[exec->index].value;
3959 data = exec->inputStack[exec->index].data;
3960#ifdef DEBUG_PUSH
3961 printf("value loaded: %s\n", value);
3962#endif
3963
3964 /*
3965 * End of input: stop here
3966 */
3967 if (value == NULL) {
3968 exec->index --;
3969 break;
3970 }
3971 if (exec->transcount >= atom->min) {
3972 int transno = exec->transno;
3973 xmlRegStatePtr state = exec->state;
3974
3975 /*
3976 * The transition is acceptable save it
3977 */
3978 exec->transno = -1; /* trick */
3979 exec->state = to;
3980 if (exec->inputStackNr <= 0) {
3981 xmlFARegExecSaveInputString(exec, value, data);
3982 }
3983 xmlFARegExecSave(exec);
3984 exec->transno = transno;
3985 exec->state = state;
3986 }
3987 ret = xmlStrEqual(value, atom->valuep);
3988 exec->transcount++;
3989 } while (ret == 1);
3990 if (exec->transcount < atom->min)
3991 ret = 0;
3992
3993 /*
3994 * If the last check failed but one transition was found
3995 * possible, rollback
3996 */
3997 if (ret < 0)
3998 ret = 0;
3999 if (ret == 0) {
4000 goto rollback;
4001 }
4002 }
4003 }
4004 if (ret == 1) {
4005 if ((exec->callback != NULL) && (atom != NULL) &&
4006 (data != NULL)) {
4007 exec->callback(exec->data, atom->valuep,
4008 atom->data, data);
4009 }
4010 if (exec->state->nbTrans > exec->transno + 1) {
4011 if (exec->inputStackNr <= 0) {
4012 xmlFARegExecSaveInputString(exec, value, data);
4013 }
4014 xmlFARegExecSave(exec);
4015 }
4016 if (trans->counter >= 0) {
4017#ifdef DEBUG_PUSH
4018 printf("Increasing count %d\n", trans->counter);
4019#endif
4020 exec->counts[trans->counter]++;
4021 }
4022 if ((trans->count >= 0) &&
4023 (trans->count < REGEXP_ALL_COUNTER)) {
4024#ifdef DEBUG_REGEXP_EXEC
4025 printf("resetting count %d on transition\n",
4026 trans->count);
4027#endif
4028 exec->counts[trans->count] = 0;
4029 }
4030#ifdef DEBUG_PUSH
4031 printf("entering state %d\n", trans->to);
4032#endif
4033 if ((exec->comp->states[trans->to] != NULL) &&
4034 (exec->comp->states[trans->to]->type ==
4035 XML_REGEXP_SINK_STATE)) {
4036 /*
4037 * entering a sink state, save the current state as error
4038 * state.
4039 */
4040 if (exec->errString != NULL)
4041 xmlFree(exec->errString);
4042 exec->errString = xmlStrdup(value);
4043 exec->errState = exec->state;
4044 memcpy(exec->errCounts, exec->counts,
4045 exec->comp->nbCounters * sizeof(int));
4046 }
4047 exec->state = exec->comp->states[trans->to];
4048 exec->transno = 0;
4049 if (trans->atom != NULL) {
4050 if (exec->inputStack != NULL) {
4051 exec->index++;
4052 if (exec->index < exec->inputStackNr) {
4053 value = exec->inputStack[exec->index].value;
4054 data = exec->inputStack[exec->index].data;
4055#ifdef DEBUG_PUSH
4056 printf("value loaded: %s\n", value);
4057#endif
4058 } else {
4059 value = NULL;
4060 data = NULL;
4061#ifdef DEBUG_PUSH
4062 printf("end of input\n");
4063#endif
4064 }
4065 } else {
4066 value = NULL;
4067 data = NULL;
4068#ifdef DEBUG_PUSH
4069 printf("end of input\n");
4070#endif
4071 }
4072 }
4073 goto progress;
4074 } else if (ret < 0) {
4075 exec->status = -4;
4076 break;
4077 }
4078 }
4079 if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
4080rollback:
4081 /*
4082 * if we didn't yet rollback on the current input
4083 * store the current state as the error state.
4084 */
4085 if ((progress) && (exec->state != NULL) &&
4086 (exec->state->type != XML_REGEXP_SINK_STATE)) {
4087 progress = 0;
4088 if (exec->errString != NULL)
4089 xmlFree(exec->errString);
4090 exec->errString = xmlStrdup(value);
4091 exec->errState = exec->state;
4092 memcpy(exec->errCounts, exec->counts,
4093 exec->comp->nbCounters * sizeof(int));
4094 }
4095
4096 /*
4097 * Failed to find a way out
4098 */
4099 exec->determinist = 0;
4100 xmlFARegExecRollBack(exec);
4101 if ((exec->inputStack != NULL ) && (exec->status == 0)) {
4102 value = exec->inputStack[exec->index].value;
4103 data = exec->inputStack[exec->index].data;
4104#ifdef DEBUG_PUSH
4105 printf("value loaded: %s\n", value);
4106#endif
4107 }
4108 }
4109 continue;
4110progress:
4111 progress = 1;
4112 continue;
4113 }
4114 if (exec->status == 0) {
4115 return(exec->state->type == XML_REGEXP_FINAL_STATE);
4116 }
4117#ifdef DEBUG_ERR
4118 if (exec->status < 0) {
4119 testerr(exec);
4120 }
4121#endif
4122 return(exec->status);
4123}
4124
4125/**
4126 * xmlRegExecPushString:
4127 * @exec: a regexp execution context or NULL to indicate the end
4128 * @value: a string token input
4129 * @data: data associated to the token to reuse in callbacks
4130 *
4131 * Push one input token in the execution context
4132 *
4133 * Returns: 1 if the regexp reached a final state, 0 if non-final, and
4134 * a negative value in case of error.
4135 */
4136int
4137xmlRegExecPushString(xmlRegExecCtxtPtr exec, const xmlChar *value,
4138 void *data) {
4139 return(xmlRegExecPushStringInternal(exec, value, data, 0));
4140}
4141
4142/**
4143 * xmlRegExecPushString2:
4144 * @exec: a regexp execution context or NULL to indicate the end
4145 * @value: the first string token input
4146 * @value2: the second string token input
4147 * @data: data associated to the token to reuse in callbacks
4148 *
4149 * Push one input token in the execution context
4150 *
4151 * Returns: 1 if the regexp reached a final state, 0 if non-final, and
4152 * a negative value in case of error.
4153 */
4154int
4155xmlRegExecPushString2(xmlRegExecCtxtPtr exec, const xmlChar *value,
4156 const xmlChar *value2, void *data) {
4157 xmlChar buf[150];
4158 int lenn, lenp, ret;
4159 xmlChar *str;
4160
4161 if (exec == NULL)
4162 return(-1);
4163 if (exec->comp == NULL)
4164 return(-1);
4165 if (exec->status != 0)
4166 return(exec->status);
4167
4168 if (value2 == NULL)
4169 return(xmlRegExecPushString(exec, value, data));
4170
4171 lenn = strlen((char *) value2);
4172 lenp = strlen((char *) value);
4173
4174 if (150 < lenn + lenp + 2) {
4175 str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
4176 if (str == NULL) {
4177 exec->status = -1;
4178 return(-1);
4179 }
4180 } else {
4181 str = buf;
4182 }
4183 memcpy(&str[0], value, lenp);
4184 str[lenp] = XML_REG_STRING_SEPARATOR;
4185 memcpy(&str[lenp + 1], value2, lenn);
4186 str[lenn + lenp + 1] = 0;
4187
4188 if (exec->comp->compact != NULL)
4189 ret = xmlRegCompactPushString(exec, exec->comp, str, data);
4190 else
4191 ret = xmlRegExecPushStringInternal(exec, str, data, 1);
4192
4193 if (str != buf)
4194 xmlFree(str);
4195 return(ret);
4196}
4197
4198/**
4199 * xmlRegExecGetValues:
4200 * @exec: a regexp execution context
4201 * @err: error extraction or normal one
4202 * @nbval: pointer to the number of accepted values IN/OUT
4203 * @nbneg: return number of negative transitions
4204 * @values: pointer to the array of acceptable values
4205 * @terminal: return value if this was a terminal state
4206 *
4207 * Extract informations from the regexp execution, internal routine to
4208 * implement xmlRegExecNextValues() and xmlRegExecErrInfo()
4209 *
4210 * Returns: 0 in case of success or -1 in case of error.
4211 */
4212static int
4213xmlRegExecGetValues(xmlRegExecCtxtPtr exec, int err,
4214 int *nbval, int *nbneg,
4215 xmlChar **values, int *terminal) {
4216 int maxval;
4217 int nb = 0;
4218
4219 if ((exec == NULL) || (nbval == NULL) || (nbneg == NULL) ||
4220 (values == NULL) || (*nbval <= 0))
4221 return(-1);
4222
4223 maxval = *nbval;
4224 *nbval = 0;
4225 *nbneg = 0;
4226 if ((exec->comp != NULL) && (exec->comp->compact != NULL)) {
4227 xmlRegexpPtr comp;
4228 int target, i, state;
4229
4230 comp = exec->comp;
4231
4232 if (err) {
4233 if (exec->errStateNo == -1) return(-1);
4234 state = exec->errStateNo;
4235 } else {
4236 state = exec->index;
4237 }
4238 if (terminal != NULL) {
4239 if (comp->compact[state * (comp->nbstrings + 1)] ==
4240 XML_REGEXP_FINAL_STATE)
4241 *terminal = 1;
4242 else
4243 *terminal = 0;
4244 }
4245 for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
4246 target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
4247 if ((target > 0) && (target <= comp->nbstates) &&
4248 (comp->compact[(target - 1) * (comp->nbstrings + 1)] !=
4249 XML_REGEXP_SINK_STATE)) {
4250 values[nb++] = comp->stringMap[i];
4251 (*nbval)++;
4252 }
4253 }
4254 for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
4255 target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
4256 if ((target > 0) && (target <= comp->nbstates) &&
4257 (comp->compact[(target - 1) * (comp->nbstrings + 1)] ==
4258 XML_REGEXP_SINK_STATE)) {
4259 values[nb++] = comp->stringMap[i];
4260 (*nbneg)++;
4261 }
4262 }
4263 } else {
4264 int transno;
4265 xmlRegTransPtr trans;
4266 xmlRegAtomPtr atom;
4267 xmlRegStatePtr state;
4268
4269 if (terminal != NULL) {
4270 if (exec->state->type == XML_REGEXP_FINAL_STATE)
4271 *terminal = 1;
4272 else
4273 *terminal = 0;
4274 }
4275
4276 if (err) {
4277 if (exec->errState == NULL) return(-1);
4278 state = exec->errState;
4279 } else {
4280 if (exec->state == NULL) return(-1);
4281 state = exec->state;
4282 }
4283 for (transno = 0;
4284 (transno < state->nbTrans) && (nb < maxval);
4285 transno++) {
4286 trans = &state->trans[transno];
4287 if (trans->to < 0)
4288 continue;
4289 atom = trans->atom;
4290 if ((atom == NULL) || (atom->valuep == NULL))
4291 continue;
4292 if (trans->count == REGEXP_ALL_LAX_COUNTER) {
4293 /* this should not be reached but ... */
4294 TODO;
4295 } else if (trans->count == REGEXP_ALL_COUNTER) {
4296 /* this should not be reached but ... */
4297 TODO;
4298 } else if (trans->counter >= 0) {
4299 xmlRegCounterPtr counter = NULL;
4300 int count;
4301
4302 if (err)
4303 count = exec->errCounts[trans->counter];
4304 else
4305 count = exec->counts[trans->counter];
4306 if (exec->comp != NULL)
4307 counter = &exec->comp->counters[trans->counter];
4308 if ((counter == NULL) || (count < counter->max)) {
4309 if (atom->neg)
4310 values[nb++] = (xmlChar *) atom->valuep2;
4311 else
4312 values[nb++] = (xmlChar *) atom->valuep;
4313 (*nbval)++;
4314 }
4315 } else {
4316 if ((exec->comp != NULL) && (exec->comp->states[trans->to] != NULL) &&
4317 (exec->comp->states[trans->to]->type !=
4318 XML_REGEXP_SINK_STATE)) {
4319 if (atom->neg)
4320 values[nb++] = (xmlChar *) atom->valuep2;
4321 else
4322 values[nb++] = (xmlChar *) atom->valuep;
4323 (*nbval)++;
4324 }
4325 }
4326 }
4327 for (transno = 0;
4328 (transno < state->nbTrans) && (nb < maxval);
4329 transno++) {
4330 trans = &state->trans[transno];
4331 if (trans->to < 0)
4332 continue;
4333 atom = trans->atom;
4334 if ((atom == NULL) || (atom->valuep == NULL))
4335 continue;
4336 if (trans->count == REGEXP_ALL_LAX_COUNTER) {
4337 continue;
4338 } else if (trans->count == REGEXP_ALL_COUNTER) {
4339 continue;
4340 } else if (trans->counter >= 0) {
4341 continue;
4342 } else {
4343 if ((exec->comp->states[trans->to] != NULL) &&
4344 (exec->comp->states[trans->to]->type ==
4345 XML_REGEXP_SINK_STATE)) {
4346 if (atom->neg)
4347 values[nb++] = (xmlChar *) atom->valuep2;
4348 else
4349 values[nb++] = (xmlChar *) atom->valuep;
4350 (*nbneg)++;
4351 }
4352 }
4353 }
4354 }
4355 return(0);
4356}
4357
4358/**
4359 * xmlRegExecNextValues:
4360 * @exec: a regexp execution context
4361 * @nbval: pointer to the number of accepted values IN/OUT
4362 * @nbneg: return number of negative transitions
4363 * @values: pointer to the array of acceptable values
4364 * @terminal: return value if this was a terminal state
4365 *
4366 * Extract informations from the regexp execution,
4367 * the parameter @values must point to an array of @nbval string pointers
4368 * on return nbval will contain the number of possible strings in that
4369 * state and the @values array will be updated with them. The string values
4370 * returned will be freed with the @exec context and don't need to be
4371 * deallocated.
4372 *
4373 * Returns: 0 in case of success or -1 in case of error.
4374 */
4375int
4376xmlRegExecNextValues(xmlRegExecCtxtPtr exec, int *nbval, int *nbneg,
4377 xmlChar **values, int *terminal) {
4378 return(xmlRegExecGetValues(exec, 0, nbval, nbneg, values, terminal));
4379}
4380
4381/**
4382 * xmlRegExecErrInfo:
4383 * @exec: a regexp execution context generating an error
4384 * @string: return value for the error string
4385 * @nbval: pointer to the number of accepted values IN/OUT
4386 * @nbneg: return number of negative transitions
4387 * @values: pointer to the array of acceptable values
4388 * @terminal: return value if this was a terminal state
4389 *
4390 * Extract error informations from the regexp execution, the parameter
4391 * @string will be updated with the value pushed and not accepted,
4392 * the parameter @values must point to an array of @nbval string pointers
4393 * on return nbval will contain the number of possible strings in that
4394 * state and the @values array will be updated with them. The string values
4395 * returned will be freed with the @exec context and don't need to be
4396 * deallocated.
4397 *
4398 * Returns: 0 in case of success or -1 in case of error.
4399 */
4400int
4401xmlRegExecErrInfo(xmlRegExecCtxtPtr exec, const xmlChar **string,
4402 int *nbval, int *nbneg, xmlChar **values, int *terminal) {
4403 if (exec == NULL)
4404 return(-1);
4405 if (string != NULL) {
4406 if (exec->status != 0)
4407 *string = exec->errString;
4408 else
4409 *string = NULL;
4410 }
4411 return(xmlRegExecGetValues(exec, 1, nbval, nbneg, values, terminal));
4412}
4413
4414#ifdef DEBUG_ERR
4415static void testerr(xmlRegExecCtxtPtr exec) {
4416 const xmlChar *string;
4417 xmlChar *values[5];
4418 int nb = 5;
4419 int nbneg;
4420 int terminal;
4421 xmlRegExecErrInfo(exec, &string, &nb, &nbneg, &values[0], &terminal);
4422}
4423#endif
4424
4425#if 0
4426static int
4427xmlRegExecPushChar(xmlRegExecCtxtPtr exec, int UCS) {
4428 xmlRegTransPtr trans;
4429 xmlRegAtomPtr atom;
4430 int ret;
4431 int codepoint, len;
4432
4433 if (exec == NULL)
4434 return(-1);
4435 if (exec->status != 0)
4436 return(exec->status);
4437
4438 while ((exec->status == 0) &&
4439 ((exec->inputString[exec->index] != 0) ||
4440 (exec->state->type != XML_REGEXP_FINAL_STATE))) {
4441
4442 /*
4443 * End of input on non-terminal state, rollback, however we may
4444 * still have epsilon like transition for counted transitions
4445 * on counters, in that case don't break too early.
4446 */
4447 if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL))
4448 goto rollback;
4449
4450 exec->transcount = 0;
4451 for (;exec->transno < exec->state->nbTrans;exec->transno++) {
4452 trans = &exec->state->trans[exec->transno];
4453 if (trans->to < 0)
4454 continue;
4455 atom = trans->atom;
4456 ret = 0;
4457 if (trans->count >= 0) {
4458 int count;
4459 xmlRegCounterPtr counter;
4460
4461 /*
4462 * A counted transition.
4463 */
4464
4465 count = exec->counts[trans->count];
4466 counter = &exec->comp->counters[trans->count];
4467#ifdef DEBUG_REGEXP_EXEC
4468 printf("testing count %d: val %d, min %d, max %d\n",
4469 trans->count, count, counter->min, counter->max);
4470#endif
4471 ret = ((count >= counter->min) && (count <= counter->max));
4472 } else if (atom == NULL) {
4473 fprintf(stderr, "epsilon transition left at runtime\n");
4474 exec->status = -2;
4475 break;
4476 } else if (exec->inputString[exec->index] != 0) {
4477 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
4478 ret = xmlRegCheckCharacter(atom, codepoint);
4479 if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
4480 xmlRegStatePtr to = exec->comp->states[trans->to];
4481
4482 /*
4483 * this is a multiple input sequence
4484 */
4485 if (exec->state->nbTrans > exec->transno + 1) {
4486 xmlFARegExecSave(exec);
4487 }
4488 exec->transcount = 1;
4489 do {
4490 /*
4491 * Try to progress as much as possible on the input
4492 */
4493 if (exec->transcount == atom->max) {
4494 break;
4495 }
4496 exec->index += len;
4497 /*
4498 * End of input: stop here
4499 */
4500 if (exec->inputString[exec->index] == 0) {
4501 exec->index -= len;
4502 break;
4503 }
4504 if (exec->transcount >= atom->min) {
4505 int transno = exec->transno;
4506 xmlRegStatePtr state = exec->state;
4507
4508 /*
4509 * The transition is acceptable save it
4510 */
4511 exec->transno = -1; /* trick */
4512 exec->state = to;
4513 xmlFARegExecSave(exec);
4514 exec->transno = transno;
4515 exec->state = state;
4516 }
4517 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
4518 len);
4519 ret = xmlRegCheckCharacter(atom, codepoint);
4520 exec->transcount++;
4521 } while (ret == 1);
4522 if (exec->transcount < atom->min)
4523 ret = 0;
4524
4525 /*
4526 * If the last check failed but one transition was found
4527 * possible, rollback
4528 */
4529 if (ret < 0)
4530 ret = 0;
4531 if (ret == 0) {
4532 goto rollback;
4533 }
4534 }
4535 }
4536 if (ret == 1) {
4537 if (exec->state->nbTrans > exec->transno + 1) {
4538 xmlFARegExecSave(exec);
4539 }
4540 /*
4541 * restart count for expressions like this ((abc){2})*
4542 */
4543 if (trans->count >= 0) {
4544#ifdef DEBUG_REGEXP_EXEC
4545 printf("Reset count %d\n", trans->count);
4546#endif
4547 exec->counts[trans->count] = 0;
4548 }
4549 if (trans->counter >= 0) {
4550#ifdef DEBUG_REGEXP_EXEC
4551 printf("Increasing count %d\n", trans->counter);
4552#endif
4553 exec->counts[trans->counter]++;
4554 }
4555#ifdef DEBUG_REGEXP_EXEC
4556 printf("entering state %d\n", trans->to);
4557#endif
4558 exec->state = exec->comp->states[trans->to];
4559 exec->transno = 0;
4560 if (trans->atom != NULL) {
4561 exec->index += len;
4562 }
4563 goto progress;
4564 } else if (ret < 0) {
4565 exec->status = -4;
4566 break;
4567 }
4568 }
4569 if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
4570rollback:
4571 /*
4572 * Failed to find a way out
4573 */
4574 exec->determinist = 0;
4575 xmlFARegExecRollBack(exec);
4576 }
4577progress:
4578 continue;
4579 }
4580}
4581#endif
4582/************************************************************************
4583 * *
4584 * Parser for the Schemas Datatype Regular Expressions *
4585 * http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#regexs *
4586 * *
4587 ************************************************************************/
4588
4589/**
4590 * xmlFAIsChar:
4591 * @ctxt: a regexp parser context
4592 *
4593 * [10] Char ::= [^.\?*+()|#x5B#x5D]
4594 */
4595static int
4596xmlFAIsChar(xmlRegParserCtxtPtr ctxt) {
4597 int cur;
4598 int len;
4599
4600 cur = CUR_SCHAR(ctxt->cur, len);
4601 if ((cur == '.') || (cur == '\\') || (cur == '?') ||
4602 (cur == '*') || (cur == '+') || (cur == '(') ||
4603 (cur == ')') || (cur == '|') || (cur == 0x5B) ||
4604 (cur == 0x5D) || (cur == 0))
4605 return(-1);
4606 return(cur);
4607}
4608
4609/**
4610 * xmlFAParseCharProp:
4611 * @ctxt: a regexp parser context
4612 *
4613 * [27] charProp ::= IsCategory | IsBlock
4614 * [28] IsCategory ::= Letters | Marks | Numbers | Punctuation |
4615 * Separators | Symbols | Others
4616 * [29] Letters ::= 'L' [ultmo]?
4617 * [30] Marks ::= 'M' [nce]?
4618 * [31] Numbers ::= 'N' [dlo]?
4619 * [32] Punctuation ::= 'P' [cdseifo]?
4620 * [33] Separators ::= 'Z' [slp]?
4621 * [34] Symbols ::= 'S' [mcko]?
4622 * [35] Others ::= 'C' [cfon]?
4623 * [36] IsBlock ::= 'Is' [a-zA-Z0-9#x2D]+
4624 */
4625static void
4626xmlFAParseCharProp(xmlRegParserCtxtPtr ctxt) {
4627 int cur;
4628 xmlRegAtomType type = (xmlRegAtomType) 0;
4629 xmlChar *blockName = NULL;
4630
4631 cur = CUR;
4632 if (cur == 'L') {
4633 NEXT;
4634 cur = CUR;
4635 if (cur == 'u') {
4636 NEXT;
4637 type = XML_REGEXP_LETTER_UPPERCASE;
4638 } else if (cur == 'l') {
4639 NEXT;
4640 type = XML_REGEXP_LETTER_LOWERCASE;
4641 } else if (cur == 't') {
4642 NEXT;
4643 type = XML_REGEXP_LETTER_TITLECASE;
4644 } else if (cur == 'm') {
4645 NEXT;
4646 type = XML_REGEXP_LETTER_MODIFIER;
4647 } else if (cur == 'o') {
4648 NEXT;
4649 type = XML_REGEXP_LETTER_OTHERS;
4650 } else {
4651 type = XML_REGEXP_LETTER;
4652 }
4653 } else if (cur == 'M') {
4654 NEXT;
4655 cur = CUR;
4656 if (cur == 'n') {
4657 NEXT;
4658 /* nonspacing */
4659 type = XML_REGEXP_MARK_NONSPACING;
4660 } else if (cur == 'c') {
4661 NEXT;
4662 /* spacing combining */
4663 type = XML_REGEXP_MARK_SPACECOMBINING;
4664 } else if (cur == 'e') {
4665 NEXT;
4666 /* enclosing */
4667 type = XML_REGEXP_MARK_ENCLOSING;
4668 } else {
4669 /* all marks */
4670 type = XML_REGEXP_MARK;
4671 }
4672 } else if (cur == 'N') {
4673 NEXT;
4674 cur = CUR;
4675 if (cur == 'd') {
4676 NEXT;
4677 /* digital */
4678 type = XML_REGEXP_NUMBER_DECIMAL;
4679 } else if (cur == 'l') {
4680 NEXT;
4681 /* letter */
4682 type = XML_REGEXP_NUMBER_LETTER;
4683 } else if (cur == 'o') {
4684 NEXT;
4685 /* other */
4686 type = XML_REGEXP_NUMBER_OTHERS;
4687 } else {
4688 /* all numbers */
4689 type = XML_REGEXP_NUMBER;
4690 }
4691 } else if (cur == 'P') {
4692 NEXT;
4693 cur = CUR;
4694 if (cur == 'c') {
4695 NEXT;
4696 /* connector */
4697 type = XML_REGEXP_PUNCT_CONNECTOR;
4698 } else if (cur == 'd') {
4699 NEXT;
4700 /* dash */
4701 type = XML_REGEXP_PUNCT_DASH;
4702 } else if (cur == 's') {
4703 NEXT;
4704 /* open */
4705 type = XML_REGEXP_PUNCT_OPEN;
4706 } else if (cur == 'e') {
4707 NEXT;
4708 /* close */
4709 type = XML_REGEXP_PUNCT_CLOSE;
4710 } else if (cur == 'i') {
4711 NEXT;
4712 /* initial quote */
4713 type = XML_REGEXP_PUNCT_INITQUOTE;
4714 } else if (cur == 'f') {
4715 NEXT;
4716 /* final quote */
4717 type = XML_REGEXP_PUNCT_FINQUOTE;
4718 } else if (cur == 'o') {
4719 NEXT;
4720 /* other */
4721 type = XML_REGEXP_PUNCT_OTHERS;
4722 } else {
4723 /* all punctuation */
4724 type = XML_REGEXP_PUNCT;
4725 }
4726 } else if (cur == 'Z') {
4727 NEXT;
4728 cur = CUR;
4729 if (cur == 's') {
4730 NEXT;
4731 /* space */
4732 type = XML_REGEXP_SEPAR_SPACE;
4733 } else if (cur == 'l') {
4734 NEXT;
4735 /* line */
4736 type = XML_REGEXP_SEPAR_LINE;
4737 } else if (cur == 'p') {
4738 NEXT;
4739 /* paragraph */
4740 type = XML_REGEXP_SEPAR_PARA;
4741 } else {
4742 /* all separators */
4743 type = XML_REGEXP_SEPAR;
4744 }
4745 } else if (cur == 'S') {
4746 NEXT;
4747 cur = CUR;
4748 if (cur == 'm') {
4749 NEXT;
4750 type = XML_REGEXP_SYMBOL_MATH;
4751 /* math */
4752 } else if (cur == 'c') {
4753 NEXT;
4754 type = XML_REGEXP_SYMBOL_CURRENCY;
4755 /* currency */
4756 } else if (cur == 'k') {
4757 NEXT;
4758 type = XML_REGEXP_SYMBOL_MODIFIER;
4759 /* modifiers */
4760 } else if (cur == 'o') {
4761 NEXT;
4762 type = XML_REGEXP_SYMBOL_OTHERS;
4763 /* other */
4764 } else {
4765 /* all symbols */
4766 type = XML_REGEXP_SYMBOL;
4767 }
4768 } else if (cur == 'C') {
4769 NEXT;
4770 cur = CUR;
4771 if (cur == 'c') {
4772 NEXT;
4773 /* control */
4774 type = XML_REGEXP_OTHER_CONTROL;
4775 } else if (cur == 'f') {
4776 NEXT;
4777 /* format */
4778 type = XML_REGEXP_OTHER_FORMAT;
4779 } else if (cur == 'o') {
4780 NEXT;
4781 /* private use */
4782 type = XML_REGEXP_OTHER_PRIVATE;
4783 } else if (cur == 'n') {
4784 NEXT;
4785 /* not assigned */
4786 type = XML_REGEXP_OTHER_NA;
4787 } else {
4788 /* all others */
4789 type = XML_REGEXP_OTHER;
4790 }
4791 } else if (cur == 'I') {
4792 const xmlChar *start;
4793 NEXT;
4794 cur = CUR;
4795 if (cur != 's') {
4796 ERROR("IsXXXX expected");
4797 return;
4798 }
4799 NEXT;
4800 start = ctxt->cur;
4801 cur = CUR;
4802 if (((cur >= 'a') && (cur <= 'z')) ||
4803 ((cur >= 'A') && (cur <= 'Z')) ||
4804 ((cur >= '0') && (cur <= '9')) ||
4805 (cur == 0x2D)) {
4806 NEXT;
4807 cur = CUR;
4808 while (((cur >= 'a') && (cur <= 'z')) ||
4809 ((cur >= 'A') && (cur <= 'Z')) ||
4810 ((cur >= '0') && (cur <= '9')) ||
4811 (cur == 0x2D)) {
4812 NEXT;
4813 cur = CUR;
4814 }
4815 }
4816 type = XML_REGEXP_BLOCK_NAME;
4817 blockName = xmlStrndup(start, ctxt->cur - start);
4818 } else {
4819 ERROR("Unknown char property");
4820 return;
4821 }
4822 if (ctxt->atom == NULL) {
4823 ctxt->atom = xmlRegNewAtom(ctxt, type);
4824 if (ctxt->atom != NULL)
4825 ctxt->atom->valuep = blockName;
4826 } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4827 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4828 type, 0, 0, blockName);
4829 }
4830}
4831
4832/**
4833 * xmlFAParseCharClassEsc:
4834 * @ctxt: a regexp parser context
4835 *
4836 * [23] charClassEsc ::= ( SingleCharEsc | MultiCharEsc | catEsc | complEsc )
4837 * [24] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]
4838 * [25] catEsc ::= '\p{' charProp '}'
4839 * [26] complEsc ::= '\P{' charProp '}'
4840 * [37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])
4841 */
4842static void
4843xmlFAParseCharClassEsc(xmlRegParserCtxtPtr ctxt) {
4844 int cur;
4845
4846 if (CUR == '.') {
4847 if (ctxt->atom == NULL) {
4848 ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_ANYCHAR);
4849 } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4850 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4851 XML_REGEXP_ANYCHAR, 0, 0, NULL);
4852 }
4853 NEXT;
4854 return;
4855 }
4856 if (CUR != '\\') {
4857 ERROR("Escaped sequence: expecting \\");
4858 return;
4859 }
4860 NEXT;
4861 cur = CUR;
4862 if (cur == 'p') {
4863 NEXT;
4864 if (CUR != '{') {
4865 ERROR("Expecting '{'");
4866 return;
4867 }
4868 NEXT;
4869 xmlFAParseCharProp(ctxt);
4870 if (CUR != '}') {
4871 ERROR("Expecting '}'");
4872 return;
4873 }
4874 NEXT;
4875 } else if (cur == 'P') {
4876 NEXT;
4877 if (CUR != '{') {
4878 ERROR("Expecting '{'");
4879 return;
4880 }
4881 NEXT;
4882 xmlFAParseCharProp(ctxt);
4883 ctxt->atom->neg = 1;
4884 if (CUR != '}') {
4885 ERROR("Expecting '}'");
4886 return;
4887 }
4888 NEXT;
4889 } else if ((cur == 'n') || (cur == 'r') || (cur == 't') || (cur == '\\') ||
4890 (cur == '|') || (cur == '.') || (cur == '?') || (cur == '*') ||
4891 (cur == '+') || (cur == '(') || (cur == ')') || (cur == '{') ||
4892 (cur == '}') || (cur == 0x2D) || (cur == 0x5B) || (cur == 0x5D) ||
4893 (cur == 0x5E)) {
4894 if (ctxt->atom == NULL) {
4895 ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
4896 if (ctxt->atom != NULL) {
4897 switch (cur) {
4898 case 'n':
4899 ctxt->atom->codepoint = '\n';
4900 break;
4901 case 'r':
4902 ctxt->atom->codepoint = '\r';
4903 break;
4904 case 't':
4905 ctxt->atom->codepoint = '\t';
4906 break;
4907 default:
4908 ctxt->atom->codepoint = cur;
4909 }
4910 }
4911 } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4912 switch (cur) {
4913 case 'n':
4914 cur = '\n';
4915 break;
4916 case 'r':
4917 cur = '\r';
4918 break;
4919 case 't':
4920 cur = '\t';
4921 break;
4922 }
4923 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4924 XML_REGEXP_CHARVAL, cur, cur, NULL);
4925 }
4926 NEXT;
4927 } else if ((cur == 's') || (cur == 'S') || (cur == 'i') || (cur == 'I') ||
4928 (cur == 'c') || (cur == 'C') || (cur == 'd') || (cur == 'D') ||
4929 (cur == 'w') || (cur == 'W')) {
4930 xmlRegAtomType type = XML_REGEXP_ANYSPACE;
4931
4932 switch (cur) {
4933 case 's':
4934 type = XML_REGEXP_ANYSPACE;
4935 break;
4936 case 'S':
4937 type = XML_REGEXP_NOTSPACE;
4938 break;
4939 case 'i':
4940 type = XML_REGEXP_INITNAME;
4941 break;
4942 case 'I':
4943 type = XML_REGEXP_NOTINITNAME;
4944 break;
4945 case 'c':
4946 type = XML_REGEXP_NAMECHAR;
4947 break;
4948 case 'C':
4949 type = XML_REGEXP_NOTNAMECHAR;
4950 break;
4951 case 'd':
4952 type = XML_REGEXP_DECIMAL;
4953 break;
4954 case 'D':
4955 type = XML_REGEXP_NOTDECIMAL;
4956 break;
4957 case 'w':
4958 type = XML_REGEXP_REALCHAR;
4959 break;
4960 case 'W':
4961 type = XML_REGEXP_NOTREALCHAR;
4962 break;
4963 }
4964 NEXT;
4965 if (ctxt->atom == NULL) {
4966 ctxt->atom = xmlRegNewAtom(ctxt, type);
4967 } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4968 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4969 type, 0, 0, NULL);
4970 }
4971 } else {
4972 ERROR("Wrong escape sequence, misuse of character '\\'");
4973 }
4974}
4975
4976/**
4977 * xmlFAParseCharRange:
4978 * @ctxt: a regexp parser context
4979 *
4980 * [17] charRange ::= seRange | XmlCharRef | XmlCharIncDash
4981 * [18] seRange ::= charOrEsc '-' charOrEsc
4982 * [20] charOrEsc ::= XmlChar | SingleCharEsc
4983 * [21] XmlChar ::= [^\#x2D#x5B#x5D]
4984 * [22] XmlCharIncDash ::= [^\#x5B#x5D]
4985 */
4986static void
4987xmlFAParseCharRange(xmlRegParserCtxtPtr ctxt) {
4988 int cur, len;
4989 int start = -1;
4990 int end = -1;
4991
4992 if (CUR == '\0') {
4993 ERROR("Expecting ']'");
4994 return;
4995 }
4996
4997 cur = CUR;
4998 if (cur == '\\') {
4999 NEXT;
5000 cur = CUR;
5001 switch (cur) {
5002 case 'n': start = 0xA; break;
5003 case 'r': start = 0xD; break;
5004 case 't': start = 0x9; break;
5005 case '\\': case '|': case '.': case '-': case '^': case '?':
5006 case '*': case '+': case '{': case '}': case '(': case ')':
5007 case '[': case ']':
5008 start = cur; break;
5009 default:
5010 ERROR("Invalid escape value");
5011 return;
5012 }
5013 end = start;
5014 len = 1;
5015 } else if ((cur != 0x5B) && (cur != 0x5D)) {
5016 end = start = CUR_SCHAR(ctxt->cur, len);
5017 } else {
5018 ERROR("Expecting a char range");
5019 return;
5020 }
5021 /*
5022 * Since we are "inside" a range, we can assume ctxt->cur is past
5023 * the start of ctxt->string, and PREV should be safe
5024 */
5025 if ((start == '-') && (NXT(1) != ']') && (PREV != '[') && (PREV != '^')) {
5026 NEXTL(len);
5027 return;
5028 }
5029 NEXTL(len);
5030 cur = CUR;
5031 if ((cur != '-') || (NXT(1) == ']')) {
5032 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
5033 XML_REGEXP_CHARVAL, start, end, NULL);
5034 return;
5035 }
5036 NEXT;
5037 cur = CUR;
5038 if (cur == '\\') {
5039 NEXT;
5040 cur = CUR;
5041 switch (cur) {
5042 case 'n': end = 0xA; break;
5043 case 'r': end = 0xD; break;
5044 case 't': end = 0x9; break;
5045 case '\\': case '|': case '.': case '-': case '^': case '?':
5046 case '*': case '+': case '{': case '}': case '(': case ')':
5047 case '[': case ']':
5048 end = cur; break;
5049 default:
5050 ERROR("Invalid escape value");
5051 return;
5052 }
5053 len = 1;
5054 } else if ((cur != 0x5B) && (cur != 0x5D)) {
5055 end = CUR_SCHAR(ctxt->cur, len);
5056 } else {
5057 ERROR("Expecting the end of a char range");
5058 return;
5059 }
5060
5061 /* TODO check that the values are acceptable character ranges for XML */
5062 if (end < start) {
5063 ERROR("End of range is before start of range");
5064 } else {
5065 NEXTL(len);
5066 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
5067 XML_REGEXP_CHARVAL, start, end, NULL);
5068 }
5069 return;
5070}
5071
5072/**
5073 * xmlFAParsePosCharGroup:
5074 * @ctxt: a regexp parser context
5075 *
5076 * [14] posCharGroup ::= ( charRange | charClassEsc )+
5077 */
5078static void
5079xmlFAParsePosCharGroup(xmlRegParserCtxtPtr ctxt) {
5080 do {
5081 if (CUR == '\\') {
5082 xmlFAParseCharClassEsc(ctxt);
5083 } else {
5084 xmlFAParseCharRange(ctxt);
5085 }
5086 } while ((CUR != ']') && (CUR != '^') && (CUR != '-') &&
5087 (CUR != 0) && (ctxt->error == 0));
5088}
5089
5090/**
5091 * xmlFAParseCharGroup:
5092 * @ctxt: a regexp parser context
5093 *
5094 * [13] charGroup ::= posCharGroup | negCharGroup | charClassSub
5095 * [15] negCharGroup ::= '^' posCharGroup
5096 * [16] charClassSub ::= ( posCharGroup | negCharGroup ) '-' charClassExpr
5097 * [12] charClassExpr ::= '[' charGroup ']'
5098 */
5099static void
5100xmlFAParseCharGroup(xmlRegParserCtxtPtr ctxt) {
5101 int n = ctxt->neg;
5102 while ((CUR != ']') && (ctxt->error == 0)) {
5103 if (CUR == '^') {
5104 int neg = ctxt->neg;
5105
5106 NEXT;
5107 ctxt->neg = !ctxt->neg;
5108 xmlFAParsePosCharGroup(ctxt);
5109 ctxt->neg = neg;
5110 } else if ((CUR == '-') && (NXT(1) == '[')) {
5111 int neg = ctxt->neg;
5112 ctxt->neg = 2;
5113 NEXT; /* eat the '-' */
5114 NEXT; /* eat the '[' */
5115 xmlFAParseCharGroup(ctxt);
5116 if (CUR == ']') {
5117 NEXT;
5118 } else {
5119 ERROR("charClassExpr: ']' expected");
5120 break;
5121 }
5122 ctxt->neg = neg;
5123 break;
5124 } else if (CUR != ']') {
5125 xmlFAParsePosCharGroup(ctxt);
5126 }
5127 }
5128 ctxt->neg = n;
5129}
5130
5131/**
5132 * xmlFAParseCharClass:
5133 * @ctxt: a regexp parser context
5134 *
5135 * [11] charClass ::= charClassEsc | charClassExpr
5136 * [12] charClassExpr ::= '[' charGroup ']'
5137 */
5138static void
5139xmlFAParseCharClass(xmlRegParserCtxtPtr ctxt) {
5140 if (CUR == '[') {
5141 NEXT;
5142 ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_RANGES);
5143 if (ctxt->atom == NULL)
5144 return;
5145 xmlFAParseCharGroup(ctxt);
5146 if (CUR == ']') {
5147 NEXT;
5148 } else {
5149 ERROR("xmlFAParseCharClass: ']' expected");
5150 }
5151 } else {
5152 xmlFAParseCharClassEsc(ctxt);
5153 }
5154}
5155
5156/**
5157 * xmlFAParseQuantExact:
5158 * @ctxt: a regexp parser context
5159 *
5160 * [8] QuantExact ::= [0-9]+
5161 *
5162 * Returns 0 if success or -1 in case of error
5163 */
5164static int
5165xmlFAParseQuantExact(xmlRegParserCtxtPtr ctxt) {
5166 int ret = 0;
5167 int ok = 0;
5168
5169 while ((CUR >= '0') && (CUR <= '9')) {
5170 ret = ret * 10 + (CUR - '0');
5171 ok = 1;
5172 NEXT;
5173 }
5174 if (ok != 1) {
5175 return(-1);
5176 }
5177 return(ret);
5178}
5179
5180/**
5181 * xmlFAParseQuantifier:
5182 * @ctxt: a regexp parser context
5183 *
5184 * [4] quantifier ::= [?*+] | ( '{' quantity '}' )
5185 * [5] quantity ::= quantRange | quantMin | QuantExact
5186 * [6] quantRange ::= QuantExact ',' QuantExact
5187 * [7] quantMin ::= QuantExact ','
5188 * [8] QuantExact ::= [0-9]+
5189 */
5190static int
5191xmlFAParseQuantifier(xmlRegParserCtxtPtr ctxt) {
5192 int cur;
5193
5194 cur = CUR;
5195 if ((cur == '?') || (cur == '*') || (cur == '+')) {
5196 if (ctxt->atom != NULL) {
5197 if (cur == '?')
5198 ctxt->atom->quant = XML_REGEXP_QUANT_OPT;
5199 else if (cur == '*')
5200 ctxt->atom->quant = XML_REGEXP_QUANT_MULT;
5201 else if (cur == '+')
5202 ctxt->atom->quant = XML_REGEXP_QUANT_PLUS;
5203 }
5204 NEXT;
5205 return(1);
5206 }
5207 if (cur == '{') {
5208 int min = 0, max = 0;
5209
5210 NEXT;
5211 cur = xmlFAParseQuantExact(ctxt);
5212 if (cur >= 0)
5213 min = cur;
5214 if (CUR == ',') {
5215 NEXT;
5216 if (CUR == '}')
5217 max = INT_MAX;
5218 else {
5219 cur = xmlFAParseQuantExact(ctxt);
5220 if (cur >= 0)
5221 max = cur;
5222 else {
5223 ERROR("Improper quantifier");
5224 }
5225 }
5226 }
5227 if (CUR == '}') {
5228 NEXT;
5229 } else {
5230 ERROR("Unterminated quantifier");
5231 }
5232 if (max == 0)
5233 max = min;
5234 if (ctxt->atom != NULL) {
5235 ctxt->atom->quant = XML_REGEXP_QUANT_RANGE;
5236 ctxt->atom->min = min;
5237 ctxt->atom->max = max;
5238 }
5239 return(1);
5240 }
5241 return(0);
5242}
5243
5244/**
5245 * xmlFAParseAtom:
5246 * @ctxt: a regexp parser context
5247 *
5248 * [9] atom ::= Char | charClass | ( '(' regExp ')' )
5249 */
5250static int
5251xmlFAParseAtom(xmlRegParserCtxtPtr ctxt) {
5252 int codepoint, len;
5253
5254 codepoint = xmlFAIsChar(ctxt);
5255 if (codepoint > 0) {
5256 ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
5257 if (ctxt->atom == NULL)
5258 return(-1);
5259 codepoint = CUR_SCHAR(ctxt->cur, len);
5260 ctxt->atom->codepoint = codepoint;
5261 NEXTL(len);
5262 return(1);
5263 } else if (CUR == '|') {
5264 return(0);
5265 } else if (CUR == 0) {
5266 return(0);
5267 } else if (CUR == ')') {
5268 return(0);
5269 } else if (CUR == '(') {
5270 xmlRegStatePtr start, oldend, start0;
5271
5272 NEXT;
5273 /*
5274 * this extra Epsilon transition is needed if we count with 0 allowed
5275 * unfortunately this can't be known at that point
5276 */
5277 xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
5278 start0 = ctxt->state;
5279 xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
5280 start = ctxt->state;
5281 oldend = ctxt->end;
5282 ctxt->end = NULL;
5283 ctxt->atom = NULL;
5284 xmlFAParseRegExp(ctxt, 0);
5285 if (CUR == ')') {
5286 NEXT;
5287 } else {
5288 ERROR("xmlFAParseAtom: expecting ')'");
5289 }
5290 ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_SUBREG);
5291 if (ctxt->atom == NULL)
5292 return(-1);
5293 ctxt->atom->start = start;
5294 ctxt->atom->start0 = start0;
5295 ctxt->atom->stop = ctxt->state;
5296 ctxt->end = oldend;
5297 return(1);
5298 } else if ((CUR == '[') || (CUR == '\\') || (CUR == '.')) {
5299 xmlFAParseCharClass(ctxt);
5300 return(1);
5301 }
5302 return(0);
5303}
5304
5305/**
5306 * xmlFAParsePiece:
5307 * @ctxt: a regexp parser context
5308 *
5309 * [3] piece ::= atom quantifier?
5310 */
5311static int
5312xmlFAParsePiece(xmlRegParserCtxtPtr ctxt) {
5313 int ret;
5314
5315 ctxt->atom = NULL;
5316 ret = xmlFAParseAtom(ctxt);
5317 if (ret == 0)
5318 return(0);
5319 if (ctxt->atom == NULL) {
5320 ERROR("internal: no atom generated");
5321 }
5322 xmlFAParseQuantifier(ctxt);
5323 return(1);
5324}
5325
5326/**
5327 * xmlFAParseBranch:
5328 * @ctxt: a regexp parser context
5329 * @to: optional target to the end of the branch
5330 *
5331 * @to is used to optimize by removing duplicate path in automata
5332 * in expressions like (a|b)(c|d)
5333 *
5334 * [2] branch ::= piece*
5335 */
5336static int
5337xmlFAParseBranch(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr to) {
5338 xmlRegStatePtr previous;
5339 int ret;
5340
5341 previous = ctxt->state;
5342 ret = xmlFAParsePiece(ctxt);
5343 if (ret != 0) {
5344 if (xmlFAGenerateTransitions(ctxt, previous,
5345 (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0)
5346 return(-1);
5347 previous = ctxt->state;
5348 ctxt->atom = NULL;
5349 }
5350 while ((ret != 0) && (ctxt->error == 0)) {
5351 ret = xmlFAParsePiece(ctxt);
5352 if (ret != 0) {
5353 if (xmlFAGenerateTransitions(ctxt, previous,
5354 (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0)
5355 return(-1);
5356 previous = ctxt->state;
5357 ctxt->atom = NULL;
5358 }
5359 }
5360 return(0);
5361}
5362
5363/**
5364 * xmlFAParseRegExp:
5365 * @ctxt: a regexp parser context
5366 * @top: is this the top-level expression ?
5367 *
5368 * [1] regExp ::= branch ( '|' branch )*
5369 */
5370static void
5371xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top) {
5372 xmlRegStatePtr start, end;
5373
5374 /* if not top start should have been generated by an epsilon trans */
5375 start = ctxt->state;
5376 ctxt->end = NULL;
5377 xmlFAParseBranch(ctxt, NULL);
5378 if (top) {
5379#ifdef DEBUG_REGEXP_GRAPH
5380 printf("State %d is final\n", ctxt->state->no);
5381#endif
5382 ctxt->state->type = XML_REGEXP_FINAL_STATE;
5383 }
5384 if (CUR != '|') {
5385 ctxt->end = ctxt->state;
5386 return;
5387 }
5388 end = ctxt->state;
5389 while ((CUR == '|') && (ctxt->error == 0)) {
5390 NEXT;
5391 if (CUR == 0) {
5392 ERROR("expecting a branch after |")
5393 return;
5394 }
5395 ctxt->state = start;
5396 ctxt->end = NULL;
5397 xmlFAParseBranch(ctxt, end);
5398 }
5399 if (!top) {
5400 ctxt->state = end;
5401 ctxt->end = end;
5402 }
5403}
5404
5405/************************************************************************
5406 * *
5407 * The basic API *
5408 * *
5409 ************************************************************************/
5410
5411/**
5412 * xmlRegexpPrint:
5413 * @output: the file for the output debug
5414 * @regexp: the compiled regexp
5415 *
5416 * Print the content of the compiled regular expression
5417 */
5418void
5419xmlRegexpPrint(FILE *output, xmlRegexpPtr regexp) {
5420 int i;
5421
5422 if (output == NULL)
5423 return;
5424 fprintf(output, " regexp: ");
5425 if (regexp == NULL) {
5426 fprintf(output, "NULL\n");
5427 return;
5428 }
5429 fprintf(output, "'%s' ", regexp->string);
5430 fprintf(output, "\n");
5431 fprintf(output, "%d atoms:\n", regexp->nbAtoms);
5432 for (i = 0;i < regexp->nbAtoms; i++) {
5433 fprintf(output, " %02d ", i);
5434 xmlRegPrintAtom(output, regexp->atoms[i]);
5435 }
5436 fprintf(output, "%d states:", regexp->nbStates);
5437 fprintf(output, "\n");
5438 for (i = 0;i < regexp->nbStates; i++) {
5439 xmlRegPrintState(output, regexp->states[i]);
5440 }
5441 fprintf(output, "%d counters:\n", regexp->nbCounters);
5442 for (i = 0;i < regexp->nbCounters; i++) {
5443 fprintf(output, " %d: min %d max %d\n", i, regexp->counters[i].min,
5444 regexp->counters[i].max);
5445 }
5446}
5447
5448/**
5449 * xmlRegexpCompile:
5450 * @regexp: a regular expression string
5451 *
5452 * Parses a regular expression conforming to XML Schemas Part 2 Datatype
5453 * Appendix F and builds an automata suitable for testing strings against
5454 * that regular expression
5455 *
5456 * Returns the compiled expression or NULL in case of error
5457 */
5458xmlRegexpPtr
5459xmlRegexpCompile(const xmlChar *regexp) {
5460 xmlRegexpPtr ret;
5461 xmlRegParserCtxtPtr ctxt;
5462
5463 ctxt = xmlRegNewParserCtxt(regexp);
5464 if (ctxt == NULL)
5465 return(NULL);
5466
5467 /* initialize the parser */
5468 ctxt->end = NULL;
5469 ctxt->start = ctxt->state = xmlRegNewState(ctxt);
5470 xmlRegStatePush(ctxt, ctxt->start);
5471
5472 /* parse the expression building an automata */
5473 xmlFAParseRegExp(ctxt, 1);
5474 if (CUR != 0) {
5475 ERROR("xmlFAParseRegExp: extra characters");
5476 }
5477 if (ctxt->error != 0) {
5478 xmlRegFreeParserCtxt(ctxt);
5479 return(NULL);
5480 }
5481 ctxt->end = ctxt->state;
5482 ctxt->start->type = XML_REGEXP_START_STATE;
5483 ctxt->end->type = XML_REGEXP_FINAL_STATE;
5484
5485 /* remove the Epsilon except for counted transitions */
5486 xmlFAEliminateEpsilonTransitions(ctxt);
5487
5488
5489 if (ctxt->error != 0) {
5490 xmlRegFreeParserCtxt(ctxt);
5491 return(NULL);
5492 }
5493 ret = xmlRegEpxFromParse(ctxt);
5494 xmlRegFreeParserCtxt(ctxt);
5495 return(ret);
5496}
5497
5498/**
5499 * xmlRegexpExec:
5500 * @comp: the compiled regular expression
5501 * @content: the value to check against the regular expression
5502 *
5503 * Check if the regular expression generates the value
5504 *
5505 * Returns 1 if it matches, 0 if not and a negative value in case of error
5506 */
5507int
5508xmlRegexpExec(xmlRegexpPtr comp, const xmlChar *content) {
5509 if ((comp == NULL) || (content == NULL))
5510 return(-1);
5511 return(xmlFARegExec(comp, content));
5512}
5513
5514/**
5515 * xmlRegexpIsDeterminist:
5516 * @comp: the compiled regular expression
5517 *
5518 * Check if the regular expression is determinist
5519 *
5520 * Returns 1 if it yes, 0 if not and a negative value in case of error
5521 */
5522int
5523xmlRegexpIsDeterminist(xmlRegexpPtr comp) {
5524 xmlAutomataPtr am;
5525 int ret;
5526
5527 if (comp == NULL)
5528 return(-1);
5529 if (comp->determinist != -1)
5530 return(comp->determinist);
5531
5532 am = xmlNewAutomata();
5533 if (am->states != NULL) {
5534 int i;
5535
5536 for (i = 0;i < am->nbStates;i++)
5537 xmlRegFreeState(am->states[i]);
5538 xmlFree(am->states);
5539 }
5540 am->nbAtoms = comp->nbAtoms;
5541 am->atoms = comp->atoms;
5542 am->nbStates = comp->nbStates;
5543 am->states = comp->states;
5544 am->determinist = -1;
5545 am->flags = comp->flags;
5546 ret = xmlFAComputesDeterminism(am);
5547 am->atoms = NULL;
5548 am->states = NULL;
5549 xmlFreeAutomata(am);
5550 comp->determinist = ret;
5551 return(ret);
5552}
5553
5554/**
5555 * xmlRegFreeRegexp:
5556 * @regexp: the regexp
5557 *
5558 * Free a regexp
5559 */
5560void
5561xmlRegFreeRegexp(xmlRegexpPtr regexp) {
5562 int i;
5563 if (regexp == NULL)
5564 return;
5565
5566 if (regexp->string != NULL)
5567 xmlFree(regexp->string);
5568 if (regexp->states != NULL) {
5569 for (i = 0;i < regexp->nbStates;i++)
5570 xmlRegFreeState(regexp->states[i]);
5571 xmlFree(regexp->states);
5572 }
5573 if (regexp->atoms != NULL) {
5574 for (i = 0;i < regexp->nbAtoms;i++)
5575 xmlRegFreeAtom(regexp->atoms[i]);
5576 xmlFree(regexp->atoms);
5577 }
5578 if (regexp->counters != NULL)
5579 xmlFree(regexp->counters);
5580 if (regexp->compact != NULL)
5581 xmlFree(regexp->compact);
5582 if (regexp->transdata != NULL)
5583 xmlFree(regexp->transdata);
5584 if (regexp->stringMap != NULL) {
5585 for (i = 0; i < regexp->nbstrings;i++)
5586 xmlFree(regexp->stringMap[i]);
5587 xmlFree(regexp->stringMap);
5588 }
5589
5590 xmlFree(regexp);
5591}
5592
5593#ifdef LIBXML_AUTOMATA_ENABLED
5594/************************************************************************
5595 * *
5596 * The Automata interface *
5597 * *
5598 ************************************************************************/
5599
5600/**
5601 * xmlNewAutomata:
5602 *
5603 * Create a new automata
5604 *
5605 * Returns the new object or NULL in case of failure
5606 */
5607xmlAutomataPtr
5608xmlNewAutomata(void) {
5609 xmlAutomataPtr ctxt;
5610
5611 ctxt = xmlRegNewParserCtxt(NULL);
5612 if (ctxt == NULL)
5613 return(NULL);
5614
5615 /* initialize the parser */
5616 ctxt->end = NULL;
5617 ctxt->start = ctxt->state = xmlRegNewState(ctxt);
5618 if (ctxt->start == NULL) {
5619 xmlFreeAutomata(ctxt);
5620 return(NULL);
5621 }
5622 ctxt->start->type = XML_REGEXP_START_STATE;
5623 if (xmlRegStatePush(ctxt, ctxt->start) < 0) {
5624 xmlRegFreeState(ctxt->start);
5625 xmlFreeAutomata(ctxt);
5626 return(NULL);
5627 }
5628 ctxt->flags = 0;
5629
5630 return(ctxt);
5631}
5632
5633/**
5634 * xmlFreeAutomata:
5635 * @am: an automata
5636 *
5637 * Free an automata
5638 */
5639void
5640xmlFreeAutomata(xmlAutomataPtr am) {
5641 if (am == NULL)
5642 return;
5643 xmlRegFreeParserCtxt(am);
5644}
5645
5646/**
5647 * xmlAutomataSetFlags:
5648 * @am: an automata
5649 * @flags: a set of internal flags
5650 *
5651 * Set some flags on the automata
5652 */
5653void
5654xmlAutomataSetFlags(xmlAutomataPtr am, int flags) {
5655 if (am == NULL)
5656 return;
5657 am->flags |= flags;
5658}
5659
5660/**
5661 * xmlAutomataGetInitState:
5662 * @am: an automata
5663 *
5664 * Initial state lookup
5665 *
5666 * Returns the initial state of the automata
5667 */
5668xmlAutomataStatePtr
5669xmlAutomataGetInitState(xmlAutomataPtr am) {
5670 if (am == NULL)
5671 return(NULL);
5672 return(am->start);
5673}
5674
5675/**
5676 * xmlAutomataSetFinalState:
5677 * @am: an automata
5678 * @state: a state in this automata
5679 *
5680 * Makes that state a final state
5681 *
5682 * Returns 0 or -1 in case of error
5683 */
5684int
5685xmlAutomataSetFinalState(xmlAutomataPtr am, xmlAutomataStatePtr state) {
5686 if ((am == NULL) || (state == NULL))
5687 return(-1);
5688 state->type = XML_REGEXP_FINAL_STATE;
5689 return(0);
5690}
5691
5692/**
5693 * xmlAutomataNewTransition:
5694 * @am: an automata
5695 * @from: the starting point of the transition
5696 * @to: the target point of the transition or NULL
5697 * @token: the input string associated to that transition
5698 * @data: data passed to the callback function if the transition is activated
5699 *
5700 * If @to is NULL, this creates first a new target state in the automata
5701 * and then adds a transition from the @from state to the target state
5702 * activated by the value of @token
5703 *
5704 * Returns the target state or NULL in case of error
5705 */
5706xmlAutomataStatePtr
5707xmlAutomataNewTransition(xmlAutomataPtr am, xmlAutomataStatePtr from,
5708 xmlAutomataStatePtr to, const xmlChar *token,
5709 void *data) {
5710 xmlRegAtomPtr atom;
5711
5712 if ((am == NULL) || (from == NULL) || (token == NULL))
5713 return(NULL);
5714 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5715 if (atom == NULL)
5716 return(NULL);
5717 atom->data = data;
5718 atom->valuep = xmlStrdup(token);
5719
5720 if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
5721 xmlRegFreeAtom(atom);
5722 return(NULL);
5723 }
5724 if (to == NULL)
5725 return(am->state);
5726 return(to);
5727}
5728
5729/**
5730 * xmlAutomataNewTransition2:
5731 * @am: an automata
5732 * @from: the starting point of the transition
5733 * @to: the target point of the transition or NULL
5734 * @token: the first input string associated to that transition
5735 * @token2: the second input string associated to that transition
5736 * @data: data passed to the callback function if the transition is activated
5737 *
5738 * If @to is NULL, this creates first a new target state in the automata
5739 * and then adds a transition from the @from state to the target state
5740 * activated by the value of @token
5741 *
5742 * Returns the target state or NULL in case of error
5743 */
5744xmlAutomataStatePtr
5745xmlAutomataNewTransition2(xmlAutomataPtr am, xmlAutomataStatePtr from,
5746 xmlAutomataStatePtr to, const xmlChar *token,
5747 const xmlChar *token2, void *data) {
5748 xmlRegAtomPtr atom;
5749
5750 if ((am == NULL) || (from == NULL) || (token == NULL))
5751 return(NULL);
5752 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5753 if (atom == NULL)
5754 return(NULL);
5755 atom->data = data;
5756 if ((token2 == NULL) || (*token2 == 0)) {
5757 atom->valuep = xmlStrdup(token);
5758 } else {
5759 int lenn, lenp;
5760 xmlChar *str;
5761
5762 lenn = strlen((char *) token2);
5763 lenp = strlen((char *) token);
5764
5765 str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
5766 if (str == NULL) {
5767 xmlRegFreeAtom(atom);
5768 return(NULL);
5769 }
5770 memcpy(&str[0], token, lenp);
5771 str[lenp] = '|';
5772 memcpy(&str[lenp + 1], token2, lenn);
5773 str[lenn + lenp + 1] = 0;
5774
5775 atom->valuep = str;
5776 }
5777
5778 if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
5779 xmlRegFreeAtom(atom);
5780 return(NULL);
5781 }
5782 if (to == NULL)
5783 return(am->state);
5784 return(to);
5785}
5786
5787/**
5788 * xmlAutomataNewNegTrans:
5789 * @am: an automata
5790 * @from: the starting point of the transition
5791 * @to: the target point of the transition or NULL
5792 * @token: the first input string associated to that transition
5793 * @token2: the second input string associated to that transition
5794 * @data: data passed to the callback function if the transition is activated
5795 *
5796 * If @to is NULL, this creates first a new target state in the automata
5797 * and then adds a transition from the @from state to the target state
5798 * activated by any value except (@token,@token2)
5799 * Note that if @token2 is not NULL, then (X, NULL) won't match to follow
5800 # the semantic of XSD ##other
5801 *
5802 * Returns the target state or NULL in case of error
5803 */
5804xmlAutomataStatePtr
5805xmlAutomataNewNegTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
5806 xmlAutomataStatePtr to, const xmlChar *token,
5807 const xmlChar *token2, void *data) {
5808 xmlRegAtomPtr atom;
5809 xmlChar err_msg[200];
5810
5811 if ((am == NULL) || (from == NULL) || (token == NULL))
5812 return(NULL);
5813 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5814 if (atom == NULL)
5815 return(NULL);
5816 atom->data = data;
5817 atom->neg = 1;
5818 if ((token2 == NULL) || (*token2 == 0)) {
5819 atom->valuep = xmlStrdup(token);
5820 } else {
5821 int lenn, lenp;
5822 xmlChar *str;
5823
5824 lenn = strlen((char *) token2);
5825 lenp = strlen((char *) token);
5826
5827 str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
5828 if (str == NULL) {
5829 xmlRegFreeAtom(atom);
5830 return(NULL);
5831 }
5832 memcpy(&str[0], token, lenp);
5833 str[lenp] = '|';
5834 memcpy(&str[lenp + 1], token2, lenn);
5835 str[lenn + lenp + 1] = 0;
5836
5837 atom->valuep = str;
5838 }
5839 snprintf((char *) err_msg, 199, "not %s", (const char *) atom->valuep);
5840 err_msg[199] = 0;
5841 atom->valuep2 = xmlStrdup(err_msg);
5842
5843 if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
5844 xmlRegFreeAtom(atom);
5845 return(NULL);
5846 }
5847 am->negs++;
5848 if (to == NULL)
5849 return(am->state);
5850 return(to);
5851}
5852
5853/**
5854 * xmlAutomataNewCountTrans2:
5855 * @am: an automata
5856 * @from: the starting point of the transition
5857 * @to: the target point of the transition or NULL
5858 * @token: the input string associated to that transition
5859 * @token2: the second input string associated to that transition
5860 * @min: the minimum successive occurences of token
5861 * @max: the maximum successive occurences of token
5862 * @data: data associated to the transition
5863 *
5864 * If @to is NULL, this creates first a new target state in the automata
5865 * and then adds a transition from the @from state to the target state
5866 * activated by a succession of input of value @token and @token2 and
5867 * whose number is between @min and @max
5868 *
5869 * Returns the target state or NULL in case of error
5870 */
5871xmlAutomataStatePtr
5872xmlAutomataNewCountTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
5873 xmlAutomataStatePtr to, const xmlChar *token,
5874 const xmlChar *token2,
5875 int min, int max, void *data) {
5876 xmlRegAtomPtr atom;
5877 int counter;
5878
5879 if ((am == NULL) || (from == NULL) || (token == NULL))
5880 return(NULL);
5881 if (min < 0)
5882 return(NULL);
5883 if ((max < min) || (max < 1))
5884 return(NULL);
5885 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5886 if (atom == NULL)
5887 return(NULL);
5888 if ((token2 == NULL) || (*token2 == 0)) {
5889 atom->valuep = xmlStrdup(token);
5890 } else {
5891 int lenn, lenp;
5892 xmlChar *str;
5893
5894 lenn = strlen((char *) token2);
5895 lenp = strlen((char *) token);
5896
5897 str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
5898 if (str == NULL) {
5899 xmlRegFreeAtom(atom);
5900 return(NULL);
5901 }
5902 memcpy(&str[0], token, lenp);
5903 str[lenp] = '|';
5904 memcpy(&str[lenp + 1], token2, lenn);
5905 str[lenn + lenp + 1] = 0;
5906
5907 atom->valuep = str;
5908 }
5909 atom->data = data;
5910 if (min == 0)
5911 atom->min = 1;
5912 else
5913 atom->min = min;
5914 atom->max = max;
5915
5916 /*
5917 * associate a counter to the transition.
5918 */
5919 counter = xmlRegGetCounter(am);
5920 am->counters[counter].min = min;
5921 am->counters[counter].max = max;
5922
5923 /* xmlFAGenerateTransitions(am, from, to, atom); */
5924 if (to == NULL) {
5925 to = xmlRegNewState(am);
5926 xmlRegStatePush(am, to);
5927 }
5928 xmlRegStateAddTrans(am, from, atom, to, counter, -1);
5929 xmlRegAtomPush(am, atom);
5930 am->state = to;
5931
5932 if (to == NULL)
5933 to = am->state;
5934 if (to == NULL)
5935 return(NULL);
5936 if (min == 0)
5937 xmlFAGenerateEpsilonTransition(am, from, to);
5938 return(to);
5939}
5940
5941/**
5942 * xmlAutomataNewCountTrans:
5943 * @am: an automata
5944 * @from: the starting point of the transition
5945 * @to: the target point of the transition or NULL
5946 * @token: the input string associated to that transition
5947 * @min: the minimum successive occurences of token
5948 * @max: the maximum successive occurences of token
5949 * @data: data associated to the transition
5950 *
5951 * If @to is NULL, this creates first a new target state in the automata
5952 * and then adds a transition from the @from state to the target state
5953 * activated by a succession of input of value @token and whose number
5954 * is between @min and @max
5955 *
5956 * Returns the target state or NULL in case of error
5957 */
5958xmlAutomataStatePtr
5959xmlAutomataNewCountTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
5960 xmlAutomataStatePtr to, const xmlChar *token,
5961 int min, int max, void *data) {
5962 xmlRegAtomPtr atom;
5963 int counter;
5964
5965 if ((am == NULL) || (from == NULL) || (token == NULL))
5966 return(NULL);
5967 if (min < 0)
5968 return(NULL);
5969 if ((max < min) || (max < 1))
5970 return(NULL);
5971 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5972 if (atom == NULL)
5973 return(NULL);
5974 atom->valuep = xmlStrdup(token);
5975 atom->data = data;
5976 if (min == 0)
5977 atom->min = 1;
5978 else
5979 atom->min = min;
5980 atom->max = max;
5981
5982 /*
5983 * associate a counter to the transition.
5984 */
5985 counter = xmlRegGetCounter(am);
5986 am->counters[counter].min = min;
5987 am->counters[counter].max = max;
5988
5989 /* xmlFAGenerateTransitions(am, from, to, atom); */
5990 if (to == NULL) {
5991 to = xmlRegNewState(am);
5992 xmlRegStatePush(am, to);
5993 }
5994 xmlRegStateAddTrans(am, from, atom, to, counter, -1);
5995 xmlRegAtomPush(am, atom);
5996 am->state = to;
5997
5998 if (to == NULL)
5999 to = am->state;
6000 if (to == NULL)
6001 return(NULL);
6002 if (min == 0)
6003 xmlFAGenerateEpsilonTransition(am, from, to);
6004 return(to);
6005}
6006
6007/**
6008 * xmlAutomataNewOnceTrans2:
6009 * @am: an automata
6010 * @from: the starting point of the transition
6011 * @to: the target point of the transition or NULL
6012 * @token: the input string associated to that transition
6013 * @token2: the second input string associated to that transition
6014 * @min: the minimum successive occurences of token
6015 * @max: the maximum successive occurences of token
6016 * @data: data associated to the transition
6017 *
6018 * If @to is NULL, this creates first a new target state in the automata
6019 * and then adds a transition from the @from state to the target state
6020 * activated by a succession of input of value @token and @token2 and whose
6021 * number is between @min and @max, moreover that transition can only be
6022 * crossed once.
6023 *
6024 * Returns the target state or NULL in case of error
6025 */
6026xmlAutomataStatePtr
6027xmlAutomataNewOnceTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
6028 xmlAutomataStatePtr to, const xmlChar *token,
6029 const xmlChar *token2,
6030 int min, int max, void *data) {
6031 xmlRegAtomPtr atom;
6032 int counter;
6033
6034 if ((am == NULL) || (from == NULL) || (token == NULL))
6035 return(NULL);
6036 if (min < 1)
6037 return(NULL);
6038 if ((max < min) || (max < 1))
6039 return(NULL);
6040 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
6041 if (atom == NULL)
6042 return(NULL);
6043 if ((token2 == NULL) || (*token2 == 0)) {
6044 atom->valuep = xmlStrdup(token);
6045 } else {
6046 int lenn, lenp;
6047 xmlChar *str;
6048
6049 lenn = strlen((char *) token2);
6050 lenp = strlen((char *) token);
6051
6052 str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
6053 if (str == NULL) {
6054 xmlRegFreeAtom(atom);
6055 return(NULL);
6056 }
6057 memcpy(&str[0], token, lenp);
6058 str[lenp] = '|';
6059 memcpy(&str[lenp + 1], token2, lenn);
6060 str[lenn + lenp + 1] = 0;
6061
6062 atom->valuep = str;
6063 }
6064 atom->data = data;
6065 atom->quant = XML_REGEXP_QUANT_ONCEONLY;
6066 atom->min = min;
6067 atom->max = max;
6068 /*
6069 * associate a counter to the transition.
6070 */
6071 counter = xmlRegGetCounter(am);
6072 am->counters[counter].min = 1;
6073 am->counters[counter].max = 1;
6074
6075 /* xmlFAGenerateTransitions(am, from, to, atom); */
6076 if (to == NULL) {
6077 to = xmlRegNewState(am);
6078 xmlRegStatePush(am, to);
6079 }
6080 xmlRegStateAddTrans(am, from, atom, to, counter, -1);
6081 xmlRegAtomPush(am, atom);
6082 am->state = to;
6083 return(to);
6084}
6085
6086
6087
6088/**
6089 * xmlAutomataNewOnceTrans:
6090 * @am: an automata
6091 * @from: the starting point of the transition
6092 * @to: the target point of the transition or NULL
6093 * @token: the input string associated to that transition
6094 * @min: the minimum successive occurences of token
6095 * @max: the maximum successive occurences of token
6096 * @data: data associated to the transition
6097 *
6098 * If @to is NULL, this creates first a new target state in the automata
6099 * and then adds a transition from the @from state to the target state
6100 * activated by a succession of input of value @token and whose number
6101 * is between @min and @max, moreover that transition can only be crossed
6102 * once.
6103 *
6104 * Returns the target state or NULL in case of error
6105 */
6106xmlAutomataStatePtr
6107xmlAutomataNewOnceTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6108 xmlAutomataStatePtr to, const xmlChar *token,
6109 int min, int max, void *data) {
6110 xmlRegAtomPtr atom;
6111 int counter;
6112
6113 if ((am == NULL) || (from == NULL) || (token == NULL))
6114 return(NULL);
6115 if (min < 1)
6116 return(NULL);
6117 if ((max < min) || (max < 1))
6118 return(NULL);
6119 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
6120 if (atom == NULL)
6121 return(NULL);
6122 atom->valuep = xmlStrdup(token);
6123 atom->data = data;
6124 atom->quant = XML_REGEXP_QUANT_ONCEONLY;
6125 atom->min = min;
6126 atom->max = max;
6127 /*
6128 * associate a counter to the transition.
6129 */
6130 counter = xmlRegGetCounter(am);
6131 am->counters[counter].min = 1;
6132 am->counters[counter].max = 1;
6133
6134 /* xmlFAGenerateTransitions(am, from, to, atom); */
6135 if (to == NULL) {
6136 to = xmlRegNewState(am);
6137 xmlRegStatePush(am, to);
6138 }
6139 xmlRegStateAddTrans(am, from, atom, to, counter, -1);
6140 xmlRegAtomPush(am, atom);
6141 am->state = to;
6142 return(to);
6143}
6144
6145/**
6146 * xmlAutomataNewState:
6147 * @am: an automata
6148 *
6149 * Create a new disconnected state in the automata
6150 *
6151 * Returns the new state or NULL in case of error
6152 */
6153xmlAutomataStatePtr
6154xmlAutomataNewState(xmlAutomataPtr am) {
6155 xmlAutomataStatePtr to;
6156
6157 if (am == NULL)
6158 return(NULL);
6159 to = xmlRegNewState(am);
6160 xmlRegStatePush(am, to);
6161 return(to);
6162}
6163
6164/**
6165 * xmlAutomataNewEpsilon:
6166 * @am: an automata
6167 * @from: the starting point of the transition
6168 * @to: the target point of the transition or NULL
6169 *
6170 * If @to is NULL, this creates first a new target state in the automata
6171 * and then adds an epsilon transition from the @from state to the
6172 * target state
6173 *
6174 * Returns the target state or NULL in case of error
6175 */
6176xmlAutomataStatePtr
6177xmlAutomataNewEpsilon(xmlAutomataPtr am, xmlAutomataStatePtr from,
6178 xmlAutomataStatePtr to) {
6179 if ((am == NULL) || (from == NULL))
6180 return(NULL);
6181 xmlFAGenerateEpsilonTransition(am, from, to);
6182 if (to == NULL)
6183 return(am->state);
6184 return(to);
6185}
6186
6187/**
6188 * xmlAutomataNewAllTrans:
6189 * @am: an automata
6190 * @from: the starting point of the transition
6191 * @to: the target point of the transition or NULL
6192 * @lax: allow to transition if not all all transitions have been activated
6193 *
6194 * If @to is NULL, this creates first a new target state in the automata
6195 * and then adds a an ALL transition from the @from state to the
6196 * target state. That transition is an epsilon transition allowed only when
6197 * all transitions from the @from node have been activated.
6198 *
6199 * Returns the target state or NULL in case of error
6200 */
6201xmlAutomataStatePtr
6202xmlAutomataNewAllTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6203 xmlAutomataStatePtr to, int lax) {
6204 if ((am == NULL) || (from == NULL))
6205 return(NULL);
6206 xmlFAGenerateAllTransition(am, from, to, lax);
6207 if (to == NULL)
6208 return(am->state);
6209 return(to);
6210}
6211
6212/**
6213 * xmlAutomataNewCounter:
6214 * @am: an automata
6215 * @min: the minimal value on the counter
6216 * @max: the maximal value on the counter
6217 *
6218 * Create a new counter
6219 *
6220 * Returns the counter number or -1 in case of error
6221 */
6222int
6223xmlAutomataNewCounter(xmlAutomataPtr am, int min, int max) {
6224 int ret;
6225
6226 if (am == NULL)
6227 return(-1);
6228
6229 ret = xmlRegGetCounter(am);
6230 if (ret < 0)
6231 return(-1);
6232 am->counters[ret].min = min;
6233 am->counters[ret].max = max;
6234 return(ret);
6235}
6236
6237/**
6238 * xmlAutomataNewCountedTrans:
6239 * @am: an automata
6240 * @from: the starting point of the transition
6241 * @to: the target point of the transition or NULL
6242 * @counter: the counter associated to that transition
6243 *
6244 * If @to is NULL, this creates first a new target state in the automata
6245 * and then adds an epsilon transition from the @from state to the target state
6246 * which will increment the counter provided
6247 *
6248 * Returns the target state or NULL in case of error
6249 */
6250xmlAutomataStatePtr
6251xmlAutomataNewCountedTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6252 xmlAutomataStatePtr to, int counter) {
6253 if ((am == NULL) || (from == NULL) || (counter < 0))
6254 return(NULL);
6255 xmlFAGenerateCountedEpsilonTransition(am, from, to, counter);
6256 if (to == NULL)
6257 return(am->state);
6258 return(to);
6259}
6260
6261/**
6262 * xmlAutomataNewCounterTrans:
6263 * @am: an automata
6264 * @from: the starting point of the transition
6265 * @to: the target point of the transition or NULL
6266 * @counter: the counter associated to that transition
6267 *
6268 * If @to is NULL, this creates first a new target state in the automata
6269 * and then adds an epsilon transition from the @from state to the target state
6270 * which will be allowed only if the counter is within the right range.
6271 *
6272 * Returns the target state or NULL in case of error
6273 */
6274xmlAutomataStatePtr
6275xmlAutomataNewCounterTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6276 xmlAutomataStatePtr to, int counter) {
6277 if ((am == NULL) || (from == NULL) || (counter < 0))
6278 return(NULL);
6279 xmlFAGenerateCountedTransition(am, from, to, counter);
6280 if (to == NULL)
6281 return(am->state);
6282 return(to);
6283}
6284
6285/**
6286 * xmlAutomataCompile:
6287 * @am: an automata
6288 *
6289 * Compile the automata into a Reg Exp ready for being executed.
6290 * The automata should be free after this point.
6291 *
6292 * Returns the compiled regexp or NULL in case of error
6293 */
6294xmlRegexpPtr
6295xmlAutomataCompile(xmlAutomataPtr am) {
6296 xmlRegexpPtr ret;
6297
6298 if ((am == NULL) || (am->error != 0)) return(NULL);
6299 xmlFAEliminateEpsilonTransitions(am);
6300 /* xmlFAComputesDeterminism(am); */
6301 ret = xmlRegEpxFromParse(am);
6302
6303 return(ret);
6304}
6305
6306/**
6307 * xmlAutomataIsDeterminist:
6308 * @am: an automata
6309 *
6310 * Checks if an automata is determinist.
6311 *
6312 * Returns 1 if true, 0 if not, and -1 in case of error
6313 */
6314int
6315xmlAutomataIsDeterminist(xmlAutomataPtr am) {
6316 int ret;
6317
6318 if (am == NULL)
6319 return(-1);
6320
6321 ret = xmlFAComputesDeterminism(am);
6322 return(ret);
6323}
6324#endif /* LIBXML_AUTOMATA_ENABLED */
6325
6326#ifdef LIBXML_EXPR_ENABLED
6327/************************************************************************
6328 * *
6329 * Formal Expression handling code *
6330 * *
6331 ************************************************************************/
6332/************************************************************************
6333 * *
6334 * Expression handling context *
6335 * *
6336 ************************************************************************/
6337
6338struct _xmlExpCtxt {
6339 xmlDictPtr dict;
6340 xmlExpNodePtr *table;
6341 int size;
6342 int nbElems;
6343 int nb_nodes;
6344 int maxNodes;
6345 const char *expr;
6346 const char *cur;
6347 int nb_cons;
6348 int tabSize;
6349};
6350
6351/**
6352 * xmlExpNewCtxt:
6353 * @maxNodes: the maximum number of nodes
6354 * @dict: optional dictionary to use internally
6355 *
6356 * Creates a new context for manipulating expressions
6357 *
6358 * Returns the context or NULL in case of error
6359 */
6360xmlExpCtxtPtr
6361xmlExpNewCtxt(int maxNodes, xmlDictPtr dict) {
6362 xmlExpCtxtPtr ret;
6363 int size = 256;
6364
6365 if (maxNodes <= 4096)
6366 maxNodes = 4096;
6367
6368 ret = (xmlExpCtxtPtr) xmlMalloc(sizeof(xmlExpCtxt));
6369 if (ret == NULL)
6370 return(NULL);
6371 memset(ret, 0, sizeof(xmlExpCtxt));
6372 ret->size = size;
6373 ret->nbElems = 0;
6374 ret->maxNodes = maxNodes;
6375 ret->table = xmlMalloc(size * sizeof(xmlExpNodePtr));
6376 if (ret->table == NULL) {
6377 xmlFree(ret);
6378 return(NULL);
6379 }
6380 memset(ret->table, 0, size * sizeof(xmlExpNodePtr));
6381 if (dict == NULL) {
6382 ret->dict = xmlDictCreate();
6383 if (ret->dict == NULL) {
6384 xmlFree(ret->table);
6385 xmlFree(ret);
6386 return(NULL);
6387 }
6388 } else {
6389 ret->dict = dict;
6390 xmlDictReference(ret->dict);
6391 }
6392 return(ret);
6393}
6394
6395/**
6396 * xmlExpFreeCtxt:
6397 * @ctxt: an expression context
6398 *
6399 * Free an expression context
6400 */
6401void
6402xmlExpFreeCtxt(xmlExpCtxtPtr ctxt) {
6403 if (ctxt == NULL)
6404 return;
6405 xmlDictFree(ctxt->dict);
6406 if (ctxt->table != NULL)
6407 xmlFree(ctxt->table);
6408 xmlFree(ctxt);
6409}
6410
6411/************************************************************************
6412 * *
6413 * Structure associated to an expression node *
6414 * *
6415 ************************************************************************/
6416#define MAX_NODES 10000
6417
6418/* #define DEBUG_DERIV */
6419
6420/*
6421 * TODO:
6422 * - Wildcards
6423 * - public API for creation
6424 *
6425 * Started
6426 * - regression testing
6427 *
6428 * Done
6429 * - split into module and test tool
6430 * - memleaks
6431 */
6432
6433typedef enum {
6434 XML_EXP_NILABLE = (1 << 0)
6435} xmlExpNodeInfo;
6436
6437#define IS_NILLABLE(node) ((node)->info & XML_EXP_NILABLE)
6438
6439struct _xmlExpNode {
6440 unsigned char type;/* xmlExpNodeType */
6441 unsigned char info;/* OR of xmlExpNodeInfo */
6442 unsigned short key; /* the hash key */
6443 unsigned int ref; /* The number of references */
6444 int c_max; /* the maximum length it can consume */
6445 xmlExpNodePtr exp_left;
6446 xmlExpNodePtr next;/* the next node in the hash table or free list */
6447 union {
6448 struct {
6449 int f_min;
6450 int f_max;
6451 } count;
6452 struct {
6453 xmlExpNodePtr f_right;
6454 } children;
6455 const xmlChar *f_str;
6456 } field;
6457};
6458
6459#define exp_min field.count.f_min
6460#define exp_max field.count.f_max
6461/* #define exp_left field.children.f_left */
6462#define exp_right field.children.f_right
6463#define exp_str field.f_str
6464
6465static xmlExpNodePtr xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type);
6466static xmlExpNode forbiddenExpNode = {
6467 XML_EXP_FORBID, 0, 0, 0, 0, NULL, NULL, {{ 0, 0}}
6468};
6469xmlExpNodePtr forbiddenExp = &forbiddenExpNode;
6470static xmlExpNode emptyExpNode = {
6471 XML_EXP_EMPTY, 1, 0, 0, 0, NULL, NULL, {{ 0, 0}}
6472};
6473xmlExpNodePtr emptyExp = &emptyExpNode;
6474
6475/************************************************************************
6476 * *
6477 * The custom hash table for unicity and canonicalization *
6478 * of sub-expressions pointers *
6479 * *
6480 ************************************************************************/
6481/*
6482 * xmlExpHashNameComputeKey:
6483 * Calculate the hash key for a token
6484 */
6485static unsigned short
6486xmlExpHashNameComputeKey(const xmlChar *name) {
6487 unsigned short value = 0L;
6488 char ch;
6489
6490 if (name != NULL) {
6491 value += 30 * (*name);
6492 while ((ch = *name++) != 0) {
6493 value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch);
6494 }
6495 }
6496 return (value);
6497}
6498
6499/*
6500 * xmlExpHashComputeKey:
6501 * Calculate the hash key for a compound expression
6502 */
6503static unsigned short
6504xmlExpHashComputeKey(xmlExpNodeType type, xmlExpNodePtr left,
6505 xmlExpNodePtr right) {
6506 unsigned long value;
6507 unsigned short ret;
6508
6509 switch (type) {
6510 case XML_EXP_SEQ:
6511 value = left->key;
6512 value += right->key;
6513 value *= 3;
6514 ret = (unsigned short) value;
6515 break;
6516 case XML_EXP_OR:
6517 value = left->key;
6518 value += right->key;
6519 value *= 7;
6520 ret = (unsigned short) value;
6521 break;
6522 case XML_EXP_COUNT:
6523 value = left->key;
6524 value += right->key;
6525 ret = (unsigned short) value;
6526 break;
6527 default:
6528 ret = 0;
6529 }
6530 return(ret);
6531}
6532
6533
6534static xmlExpNodePtr
6535xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type) {
6536 xmlExpNodePtr ret;
6537
6538 if (ctxt->nb_nodes >= MAX_NODES)
6539 return(NULL);
6540 ret = (xmlExpNodePtr) xmlMalloc(sizeof(xmlExpNode));
6541 if (ret == NULL)
6542 return(NULL);
6543 memset(ret, 0, sizeof(xmlExpNode));
6544 ret->type = type;
6545 ret->next = NULL;
6546 ctxt->nb_nodes++;
6547 ctxt->nb_cons++;
6548 return(ret);
6549}
6550
6551/**
6552 * xmlExpHashGetEntry:
6553 * @table: the hash table
6554 *
6555 * Get the unique entry from the hash table. The entry is created if
6556 * needed. @left and @right are consumed, i.e. their ref count will
6557 * be decremented by the operation.
6558 *
6559 * Returns the pointer or NULL in case of error
6560 */
6561static xmlExpNodePtr
6562xmlExpHashGetEntry(xmlExpCtxtPtr ctxt, xmlExpNodeType type,
6563 xmlExpNodePtr left, xmlExpNodePtr right,
6564 const xmlChar *name, int min, int max) {
6565 unsigned short kbase, key;
6566 xmlExpNodePtr entry;
6567 xmlExpNodePtr insert;
6568
6569 if (ctxt == NULL)
6570 return(NULL);
6571
6572 /*
6573 * Check for duplicate and insertion location.
6574 */
6575 if (type == XML_EXP_ATOM) {
6576 kbase = xmlExpHashNameComputeKey(name);
6577 } else if (type == XML_EXP_COUNT) {
6578 /* COUNT reduction rule 1 */
6579 /* a{1} -> a */
6580 if (min == max) {
6581 if (min == 1) {
6582 return(left);
6583 }
6584 if (min == 0) {
6585 xmlExpFree(ctxt, left);
6586 return(emptyExp);
6587 }
6588 }
6589 if (min < 0) {
6590 xmlExpFree(ctxt, left);
6591 return(forbiddenExp);
6592 }
6593 if (max == -1)
6594 kbase = min + 79;
6595 else
6596 kbase = max - min;
6597 kbase += left->key;
6598 } else if (type == XML_EXP_OR) {
6599 /* Forbid reduction rules */
6600 if (left->type == XML_EXP_FORBID) {
6601 xmlExpFree(ctxt, left);
6602 return(right);
6603 }
6604 if (right->type == XML_EXP_FORBID) {
6605 xmlExpFree(ctxt, right);
6606 return(left);
6607 }
6608
6609 /* OR reduction rule 1 */
6610 /* a | a reduced to a */
6611 if (left == right) {
6612 left->ref--;
6613 return(left);
6614 }
6615 /* OR canonicalization rule 1 */
6616 /* linearize (a | b) | c into a | (b | c) */
6617 if ((left->type == XML_EXP_OR) && (right->type != XML_EXP_OR)) {
6618 xmlExpNodePtr tmp = left;
6619 left = right;
6620 right = tmp;
6621 }
6622 /* OR reduction rule 2 */
6623 /* a | (a | b) and b | (a | b) are reduced to a | b */
6624 if (right->type == XML_EXP_OR) {
6625 if ((left == right->exp_left) ||
6626 (left == right->exp_right)) {
6627 xmlExpFree(ctxt, left);
6628 return(right);
6629 }
6630 }
6631 /* OR canonicalization rule 2 */
6632 /* linearize (a | b) | c into a | (b | c) */
6633 if (left->type == XML_EXP_OR) {
6634 xmlExpNodePtr tmp;
6635
6636 /* OR canonicalization rule 2 */
6637 if ((left->exp_right->type != XML_EXP_OR) &&
6638 (left->exp_right->key < left->exp_left->key)) {
6639 tmp = left->exp_right;
6640 left->exp_right = left->exp_left;
6641 left->exp_left = tmp;
6642 }
6643 left->exp_right->ref++;
6644 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_right, right,
6645 NULL, 0, 0);
6646 left->exp_left->ref++;
6647 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_left, tmp,
6648 NULL, 0, 0);
6649
6650 xmlExpFree(ctxt, left);
6651 return(tmp);
6652 }
6653 if (right->type == XML_EXP_OR) {
6654 /* Ordering in the tree */
6655 /* C | (A | B) -> A | (B | C) */
6656 if (left->key > right->exp_right->key) {
6657 xmlExpNodePtr tmp;
6658 right->exp_right->ref++;
6659 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_right,
6660 left, NULL, 0, 0);
6661 right->exp_left->ref++;
6662 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
6663 tmp, NULL, 0, 0);
6664 xmlExpFree(ctxt, right);
6665 return(tmp);
6666 }
6667 /* Ordering in the tree */
6668 /* B | (A | C) -> A | (B | C) */
6669 if (left->key > right->exp_left->key) {
6670 xmlExpNodePtr tmp;
6671 right->exp_right->ref++;
6672 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left,
6673 right->exp_right, NULL, 0, 0);
6674 right->exp_left->ref++;
6675 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
6676 tmp, NULL, 0, 0);
6677 xmlExpFree(ctxt, right);
6678 return(tmp);
6679 }
6680 }
6681 /* we know both types are != XML_EXP_OR here */
6682 else if (left->key > right->key) {
6683 xmlExpNodePtr tmp = left;
6684 left = right;
6685 right = tmp;
6686 }
6687 kbase = xmlExpHashComputeKey(type, left, right);
6688 } else if (type == XML_EXP_SEQ) {
6689 /* Forbid reduction rules */
6690 if (left->type == XML_EXP_FORBID) {
6691 xmlExpFree(ctxt, right);
6692 return(left);
6693 }
6694 if (right->type == XML_EXP_FORBID) {
6695 xmlExpFree(ctxt, left);
6696 return(right);
6697 }
6698 /* Empty reduction rules */
6699 if (right->type == XML_EXP_EMPTY) {
6700 return(left);
6701 }
6702 if (left->type == XML_EXP_EMPTY) {
6703 return(right);
6704 }
6705 kbase = xmlExpHashComputeKey(type, left, right);
6706 } else
6707 return(NULL);
6708
6709 key = kbase % ctxt->size;
6710 if (ctxt->table[key] != NULL) {
6711 for (insert = ctxt->table[key]; insert != NULL;
6712 insert = insert->next) {
6713 if ((insert->key == kbase) &&
6714 (insert->type == type)) {
6715 if (type == XML_EXP_ATOM) {
6716 if (name == insert->exp_str) {
6717 insert->ref++;
6718 return(insert);
6719 }
6720 } else if (type == XML_EXP_COUNT) {
6721 if ((insert->exp_min == min) && (insert->exp_max == max) &&
6722 (insert->exp_left == left)) {
6723 insert->ref++;
6724 left->ref--;
6725 return(insert);
6726 }
6727 } else if ((insert->exp_left == left) &&
6728 (insert->exp_right == right)) {
6729 insert->ref++;
6730 left->ref--;
6731 right->ref--;
6732 return(insert);
6733 }
6734 }
6735 }
6736 }
6737
6738 entry = xmlExpNewNode(ctxt, type);
6739 if (entry == NULL)
6740 return(NULL);
6741 entry->key = kbase;
6742 if (type == XML_EXP_ATOM) {
6743 entry->exp_str = name;
6744 entry->c_max = 1;
6745 } else if (type == XML_EXP_COUNT) {
6746 entry->exp_min = min;
6747 entry->exp_max = max;
6748 entry->exp_left = left;
6749 if ((min == 0) || (IS_NILLABLE(left)))
6750 entry->info |= XML_EXP_NILABLE;
6751 if (max < 0)
6752 entry->c_max = -1;
6753 else
6754 entry->c_max = max * entry->exp_left->c_max;
6755 } else {
6756 entry->exp_left = left;
6757 entry->exp_right = right;
6758 if (type == XML_EXP_OR) {
6759 if ((IS_NILLABLE(left)) || (IS_NILLABLE(right)))
6760 entry->info |= XML_EXP_NILABLE;
6761 if ((entry->exp_left->c_max == -1) ||
6762 (entry->exp_right->c_max == -1))
6763 entry->c_max = -1;
6764 else if (entry->exp_left->c_max > entry->exp_right->c_max)
6765 entry->c_max = entry->exp_left->c_max;
6766 else
6767 entry->c_max = entry->exp_right->c_max;
6768 } else {
6769 if ((IS_NILLABLE(left)) && (IS_NILLABLE(right)))
6770 entry->info |= XML_EXP_NILABLE;
6771 if ((entry->exp_left->c_max == -1) ||
6772 (entry->exp_right->c_max == -1))
6773 entry->c_max = -1;
6774 else
6775 entry->c_max = entry->exp_left->c_max + entry->exp_right->c_max;
6776 }
6777 }
6778 entry->ref = 1;
6779 if (ctxt->table[key] != NULL)
6780 entry->next = ctxt->table[key];
6781
6782 ctxt->table[key] = entry;
6783 ctxt->nbElems++;
6784
6785 return(entry);
6786}
6787
6788/**
6789 * xmlExpFree:
6790 * @ctxt: the expression context
6791 * @exp: the expression
6792 *
6793 * Dereference the expression
6794 */
6795void
6796xmlExpFree(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp) {
6797 if ((exp == NULL) || (exp == forbiddenExp) || (exp == emptyExp))
6798 return;
6799 exp->ref--;
6800 if (exp->ref == 0) {
6801 unsigned short key;
6802
6803 /* Unlink it first from the hash table */
6804 key = exp->key % ctxt->size;
6805 if (ctxt->table[key] == exp) {
6806 ctxt->table[key] = exp->next;
6807 } else {
6808 xmlExpNodePtr tmp;
6809
6810 tmp = ctxt->table[key];
6811 while (tmp != NULL) {
6812 if (tmp->next == exp) {
6813 tmp->next = exp->next;
6814 break;
6815 }
6816 tmp = tmp->next;
6817 }
6818 }
6819
6820 if ((exp->type == XML_EXP_SEQ) || (exp->type == XML_EXP_OR)) {
6821 xmlExpFree(ctxt, exp->exp_left);
6822 xmlExpFree(ctxt, exp->exp_right);
6823 } else if (exp->type == XML_EXP_COUNT) {
6824 xmlExpFree(ctxt, exp->exp_left);
6825 }
6826 xmlFree(exp);
6827 ctxt->nb_nodes--;
6828 }
6829}
6830
6831/**
6832 * xmlExpRef:
6833 * @exp: the expression
6834 *
6835 * Increase the reference count of the expression
6836 */
6837void
6838xmlExpRef(xmlExpNodePtr exp) {
6839 if (exp != NULL)
6840 exp->ref++;
6841}
6842
6843/**
6844 * xmlExpNewAtom:
6845 * @ctxt: the expression context
6846 * @name: the atom name
6847 * @len: the atom name length in byte (or -1);
6848 *
6849 * Get the atom associated to this name from that context
6850 *
6851 * Returns the node or NULL in case of error
6852 */
6853xmlExpNodePtr
6854xmlExpNewAtom(xmlExpCtxtPtr ctxt, const xmlChar *name, int len) {
6855 if ((ctxt == NULL) || (name == NULL))
6856 return(NULL);
6857 name = xmlDictLookup(ctxt->dict, name, len);
6858 if (name == NULL)
6859 return(NULL);
6860 return(xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, name, 0, 0));
6861}
6862
6863/**
6864 * xmlExpNewOr:
6865 * @ctxt: the expression context
6866 * @left: left expression
6867 * @right: right expression
6868 *
6869 * Get the atom associated to the choice @left | @right
6870 * Note that @left and @right are consumed in the operation, to keep
6871 * an handle on them use xmlExpRef() and use xmlExpFree() to release them,
6872 * this is true even in case of failure (unless ctxt == NULL).
6873 *
6874 * Returns the node or NULL in case of error
6875 */
6876xmlExpNodePtr
6877xmlExpNewOr(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
6878 if (ctxt == NULL)
6879 return(NULL);
6880 if ((left == NULL) || (right == NULL)) {
6881 xmlExpFree(ctxt, left);
6882 xmlExpFree(ctxt, right);
6883 return(NULL);
6884 }
6885 return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, left, right, NULL, 0, 0));
6886}
6887
6888/**
6889 * xmlExpNewSeq:
6890 * @ctxt: the expression context
6891 * @left: left expression
6892 * @right: right expression
6893 *
6894 * Get the atom associated to the sequence @left , @right
6895 * Note that @left and @right are consumed in the operation, to keep
6896 * an handle on them use xmlExpRef() and use xmlExpFree() to release them,
6897 * this is true even in case of failure (unless ctxt == NULL).
6898 *
6899 * Returns the node or NULL in case of error
6900 */
6901xmlExpNodePtr
6902xmlExpNewSeq(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
6903 if (ctxt == NULL)
6904 return(NULL);
6905 if ((left == NULL) || (right == NULL)) {
6906 xmlExpFree(ctxt, left);
6907 xmlExpFree(ctxt, right);
6908 return(NULL);
6909 }
6910 return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, left, right, NULL, 0, 0));
6911}
6912
6913/**
6914 * xmlExpNewRange:
6915 * @ctxt: the expression context
6916 * @subset: the expression to be repeated
6917 * @min: the lower bound for the repetition
6918 * @max: the upper bound for the repetition, -1 means infinite
6919 *
6920 * Get the atom associated to the range (@subset){@min, @max}
6921 * Note that @subset is consumed in the operation, to keep
6922 * an handle on it use xmlExpRef() and use xmlExpFree() to release it,
6923 * this is true even in case of failure (unless ctxt == NULL).
6924 *
6925 * Returns the node or NULL in case of error
6926 */
6927xmlExpNodePtr
6928xmlExpNewRange(xmlExpCtxtPtr ctxt, xmlExpNodePtr subset, int min, int max) {
6929 if (ctxt == NULL)
6930 return(NULL);
6931 if ((subset == NULL) || (min < 0) || (max < -1) ||
6932 ((max >= 0) && (min > max))) {
6933 xmlExpFree(ctxt, subset);
6934 return(NULL);
6935 }
6936 return(xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, subset,
6937 NULL, NULL, min, max));
6938}
6939
6940/************************************************************************
6941 * *
6942 * Public API for operations on expressions *
6943 * *
6944 ************************************************************************/
6945
6946static int
6947xmlExpGetLanguageInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
6948 const xmlChar**list, int len, int nb) {
6949 int tmp, tmp2;
6950tail:
6951 switch (exp->type) {
6952 case XML_EXP_EMPTY:
6953 return(0);
6954 case XML_EXP_ATOM:
6955 for (tmp = 0;tmp < nb;tmp++)
6956 if (list[tmp] == exp->exp_str)
6957 return(0);
6958 if (nb >= len)
6959 return(-2);
6960 list[nb] = exp->exp_str;
6961 return(1);
6962 case XML_EXP_COUNT:
6963 exp = exp->exp_left;
6964 goto tail;
6965 case XML_EXP_SEQ:
6966 case XML_EXP_OR:
6967 tmp = xmlExpGetLanguageInt(ctxt, exp->exp_left, list, len, nb);
6968 if (tmp < 0)
6969 return(tmp);
6970 tmp2 = xmlExpGetLanguageInt(ctxt, exp->exp_right, list, len,
6971 nb + tmp);
6972 if (tmp2 < 0)
6973 return(tmp2);
6974 return(tmp + tmp2);
6975 }
6976 return(-1);
6977}
6978
6979/**
6980 * xmlExpGetLanguage:
6981 * @ctxt: the expression context
6982 * @exp: the expression
6983 * @langList: where to store the tokens
6984 * @len: the allocated length of @list
6985 *
6986 * Find all the strings used in @exp and store them in @list
6987 *
6988 * Returns the number of unique strings found, -1 in case of errors and
6989 * -2 if there is more than @len strings
6990 */
6991int
6992xmlExpGetLanguage(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
6993 const xmlChar**langList, int len) {
6994 if ((ctxt == NULL) || (exp == NULL) || (langList == NULL) || (len <= 0))
6995 return(-1);
6996 return(xmlExpGetLanguageInt(ctxt, exp, langList, len, 0));
6997}
6998
6999static int
7000xmlExpGetStartInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7001 const xmlChar**list, int len, int nb) {
7002 int tmp, tmp2;
7003tail:
7004 switch (exp->type) {
7005 case XML_EXP_FORBID:
7006 return(0);
7007 case XML_EXP_EMPTY:
7008 return(0);
7009 case XML_EXP_ATOM:
7010 for (tmp = 0;tmp < nb;tmp++)
7011 if (list[tmp] == exp->exp_str)
7012 return(0);
7013 if (nb >= len)
7014 return(-2);
7015 list[nb] = exp->exp_str;
7016 return(1);
7017 case XML_EXP_COUNT:
7018 exp = exp->exp_left;
7019 goto tail;
7020 case XML_EXP_SEQ:
7021 tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
7022 if (tmp < 0)
7023 return(tmp);
7024 if (IS_NILLABLE(exp->exp_left)) {
7025 tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
7026 nb + tmp);
7027 if (tmp2 < 0)
7028 return(tmp2);
7029 tmp += tmp2;
7030 }
7031 return(tmp);
7032 case XML_EXP_OR:
7033 tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
7034 if (tmp < 0)
7035 return(tmp);
7036 tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
7037 nb + tmp);
7038 if (tmp2 < 0)
7039 return(tmp2);
7040 return(tmp + tmp2);
7041 }
7042 return(-1);
7043}
7044
7045/**
7046 * xmlExpGetStart:
7047 * @ctxt: the expression context
7048 * @exp: the expression
7049 * @tokList: where to store the tokens
7050 * @len: the allocated length of @list
7051 *
7052 * Find all the strings that appears at the start of the languages
7053 * accepted by @exp and store them in @list. E.g. for (a, b) | c
7054 * it will return the list [a, c]
7055 *
7056 * Returns the number of unique strings found, -1 in case of errors and
7057 * -2 if there is more than @len strings
7058 */
7059int
7060xmlExpGetStart(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7061 const xmlChar**tokList, int len) {
7062 if ((ctxt == NULL) || (exp == NULL) || (tokList == NULL) || (len <= 0))
7063 return(-1);
7064 return(xmlExpGetStartInt(ctxt, exp, tokList, len, 0));
7065}
7066
7067/**
7068 * xmlExpIsNillable:
7069 * @exp: the expression
7070 *
7071 * Finds if the expression is nillable, i.e. if it accepts the empty sequqnce
7072 *
7073 * Returns 1 if nillable, 0 if not and -1 in case of error
7074 */
7075int
7076xmlExpIsNillable(xmlExpNodePtr exp) {
7077 if (exp == NULL)
7078 return(-1);
7079 return(IS_NILLABLE(exp) != 0);
7080}
7081
7082static xmlExpNodePtr
7083xmlExpStringDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, const xmlChar *str)
7084{
7085 xmlExpNodePtr ret;
7086
7087 switch (exp->type) {
7088 case XML_EXP_EMPTY:
7089 return(forbiddenExp);
7090 case XML_EXP_FORBID:
7091 return(forbiddenExp);
7092 case XML_EXP_ATOM:
7093 if (exp->exp_str == str) {
7094#ifdef DEBUG_DERIV
7095 printf("deriv atom: equal => Empty\n");
7096#endif
7097 ret = emptyExp;
7098 } else {
7099#ifdef DEBUG_DERIV
7100 printf("deriv atom: mismatch => forbid\n");
7101#endif
7102 /* TODO wildcards here */
7103 ret = forbiddenExp;
7104 }
7105 return(ret);
7106 case XML_EXP_OR: {
7107 xmlExpNodePtr tmp;
7108
7109#ifdef DEBUG_DERIV
7110 printf("deriv or: => or(derivs)\n");
7111#endif
7112 tmp = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
7113 if (tmp == NULL) {
7114 return(NULL);
7115 }
7116 ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
7117 if (ret == NULL) {
7118 xmlExpFree(ctxt, tmp);
7119 return(NULL);
7120 }
7121 ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret,
7122 NULL, 0, 0);
7123 return(ret);
7124 }
7125 case XML_EXP_SEQ:
7126#ifdef DEBUG_DERIV
7127 printf("deriv seq: starting with left\n");
7128#endif
7129 ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
7130 if (ret == NULL) {
7131 return(NULL);
7132 } else if (ret == forbiddenExp) {
7133 if (IS_NILLABLE(exp->exp_left)) {
7134#ifdef DEBUG_DERIV
7135 printf("deriv seq: left failed but nillable\n");
7136#endif
7137 ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
7138 }
7139 } else {
7140#ifdef DEBUG_DERIV
7141 printf("deriv seq: left match => sequence\n");
7142#endif
7143 exp->exp_right->ref++;
7144 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, exp->exp_right,
7145 NULL, 0, 0);
7146 }
7147 return(ret);
7148 case XML_EXP_COUNT: {
7149 int min, max;
7150 xmlExpNodePtr tmp;
7151
7152 if (exp->exp_max == 0)
7153 return(forbiddenExp);
7154 ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
7155 if (ret == NULL)
7156 return(NULL);
7157 if (ret == forbiddenExp) {
7158#ifdef DEBUG_DERIV
7159 printf("deriv count: pattern mismatch => forbid\n");
7160#endif
7161 return(ret);
7162 }
7163 if (exp->exp_max == 1)
7164 return(ret);
7165 if (exp->exp_max < 0) /* unbounded */
7166 max = -1;
7167 else
7168 max = exp->exp_max - 1;
7169 if (exp->exp_min > 0)
7170 min = exp->exp_min - 1;
7171 else
7172 min = 0;
7173 exp->exp_left->ref++;
7174 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, NULL,
7175 NULL, min, max);
7176 if (ret == emptyExp) {
7177#ifdef DEBUG_DERIV
7178 printf("deriv count: match to empty => new count\n");
7179#endif
7180 return(tmp);
7181 }
7182#ifdef DEBUG_DERIV
7183 printf("deriv count: match => sequence with new count\n");
7184#endif
7185 return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, tmp,
7186 NULL, 0, 0));
7187 }
7188 }
7189 return(NULL);
7190}
7191
7192/**
7193 * xmlExpStringDerive:
7194 * @ctxt: the expression context
7195 * @exp: the expression
7196 * @str: the string
7197 * @len: the string len in bytes if available
7198 *
7199 * Do one step of Brzozowski derivation of the expression @exp with
7200 * respect to the input string
7201 *
7202 * Returns the resulting expression or NULL in case of internal error
7203 */
7204xmlExpNodePtr
7205xmlExpStringDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7206 const xmlChar *str, int len) {
7207 const xmlChar *input;
7208
7209 if ((exp == NULL) || (ctxt == NULL) || (str == NULL)) {
7210 return(NULL);
7211 }
7212 /*
7213 * check the string is in the dictionary, if yes use an interned
7214 * copy, otherwise we know it's not an acceptable input
7215 */
7216 input = xmlDictExists(ctxt->dict, str, len);
7217 if (input == NULL) {
7218 return(forbiddenExp);
7219 }
7220 return(xmlExpStringDeriveInt(ctxt, exp, input));
7221}
7222
7223static int
7224xmlExpCheckCard(xmlExpNodePtr exp, xmlExpNodePtr sub) {
7225 int ret = 1;
7226
7227 if (sub->c_max == -1) {
7228 if (exp->c_max != -1)
7229 ret = 0;
7230 } else if ((exp->c_max >= 0) && (exp->c_max < sub->c_max)) {
7231 ret = 0;
7232 }
7233#if 0
7234 if ((IS_NILLABLE(sub)) && (!IS_NILLABLE(exp)))
7235 ret = 0;
7236#endif
7237 return(ret);
7238}
7239
7240static xmlExpNodePtr xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7241 xmlExpNodePtr sub);
7242/**
7243 * xmlExpDivide:
7244 * @ctxt: the expressions context
7245 * @exp: the englobing expression
7246 * @sub: the subexpression
7247 * @mult: the multiple expression
7248 * @remain: the remain from the derivation of the multiple
7249 *
7250 * Check if exp is a multiple of sub, i.e. if there is a finite number n
7251 * so that sub{n} subsume exp
7252 *
7253 * Returns the multiple value if successful, 0 if it is not a multiple
7254 * and -1 in case of internel error.
7255 */
7256
7257static int
7258xmlExpDivide(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub,
7259 xmlExpNodePtr *mult, xmlExpNodePtr *remain) {
7260 int i;
7261 xmlExpNodePtr tmp, tmp2;
7262
7263 if (mult != NULL) *mult = NULL;
7264 if (remain != NULL) *remain = NULL;
7265 if (exp->c_max == -1) return(0);
7266 if (IS_NILLABLE(exp) && (!IS_NILLABLE(sub))) return(0);
7267
7268 for (i = 1;i <= exp->c_max;i++) {
7269 sub->ref++;
7270 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
7271 sub, NULL, NULL, i, i);
7272 if (tmp == NULL) {
7273 return(-1);
7274 }
7275 if (!xmlExpCheckCard(tmp, exp)) {
7276 xmlExpFree(ctxt, tmp);
7277 continue;
7278 }
7279 tmp2 = xmlExpExpDeriveInt(ctxt, tmp, exp);
7280 if (tmp2 == NULL) {
7281 xmlExpFree(ctxt, tmp);
7282 return(-1);
7283 }
7284 if ((tmp2 != forbiddenExp) && (IS_NILLABLE(tmp2))) {
7285 if (remain != NULL)
7286 *remain = tmp2;
7287 else
7288 xmlExpFree(ctxt, tmp2);
7289 if (mult != NULL)
7290 *mult = tmp;
7291 else
7292 xmlExpFree(ctxt, tmp);
7293#ifdef DEBUG_DERIV
7294 printf("Divide succeeded %d\n", i);
7295#endif
7296 return(i);
7297 }
7298 xmlExpFree(ctxt, tmp);
7299 xmlExpFree(ctxt, tmp2);
7300 }
7301#ifdef DEBUG_DERIV
7302 printf("Divide failed\n");
7303#endif
7304 return(0);
7305}
7306
7307/**
7308 * xmlExpExpDeriveInt:
7309 * @ctxt: the expressions context
7310 * @exp: the englobing expression
7311 * @sub: the subexpression
7312 *
7313 * Try to do a step of Brzozowski derivation but at a higher level
7314 * the input being a subexpression.
7315 *
7316 * Returns the resulting expression or NULL in case of internal error
7317 */
7318static xmlExpNodePtr
7319xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
7320 xmlExpNodePtr ret, tmp, tmp2, tmp3;
7321 const xmlChar **tab;
7322 int len, i;
7323
7324 /*
7325 * In case of equality and if the expression can only consume a finite
7326 * amount, then the derivation is empty
7327 */
7328 if ((exp == sub) && (exp->c_max >= 0)) {
7329#ifdef DEBUG_DERIV
7330 printf("Equal(exp, sub) and finite -> Empty\n");
7331#endif
7332 return(emptyExp);
7333 }
7334 /*
7335 * decompose sub sequence first
7336 */
7337 if (sub->type == XML_EXP_EMPTY) {
7338#ifdef DEBUG_DERIV
7339 printf("Empty(sub) -> Empty\n");
7340#endif
7341 exp->ref++;
7342 return(exp);
7343 }
7344 if (sub->type == XML_EXP_SEQ) {
7345#ifdef DEBUG_DERIV
7346 printf("Seq(sub) -> decompose\n");
7347#endif
7348 tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
7349 if (tmp == NULL)
7350 return(NULL);
7351 if (tmp == forbiddenExp)
7352 return(tmp);
7353 ret = xmlExpExpDeriveInt(ctxt, tmp, sub->exp_right);
7354 xmlExpFree(ctxt, tmp);
7355 return(ret);
7356 }
7357 if (sub->type == XML_EXP_OR) {
7358#ifdef DEBUG_DERIV
7359 printf("Or(sub) -> decompose\n");
7360#endif
7361 tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
7362 if (tmp == forbiddenExp)
7363 return(tmp);
7364 if (tmp == NULL)
7365 return(NULL);
7366 ret = xmlExpExpDeriveInt(ctxt, exp, sub->exp_right);
7367 if ((ret == NULL) || (ret == forbiddenExp)) {
7368 xmlExpFree(ctxt, tmp);
7369 return(ret);
7370 }
7371 return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret, NULL, 0, 0));
7372 }
7373 if (!xmlExpCheckCard(exp, sub)) {
7374#ifdef DEBUG_DERIV
7375 printf("CheckCard(exp, sub) failed -> Forbid\n");
7376#endif
7377 return(forbiddenExp);
7378 }
7379 switch (exp->type) {
7380 case XML_EXP_EMPTY:
7381 if (sub == emptyExp)
7382 return(emptyExp);
7383#ifdef DEBUG_DERIV
7384 printf("Empty(exp) -> Forbid\n");
7385#endif
7386 return(forbiddenExp);
7387 case XML_EXP_FORBID:
7388#ifdef DEBUG_DERIV
7389 printf("Forbid(exp) -> Forbid\n");
7390#endif
7391 return(forbiddenExp);
7392 case XML_EXP_ATOM:
7393 if (sub->type == XML_EXP_ATOM) {
7394 /* TODO: handle wildcards */
7395 if (exp->exp_str == sub->exp_str) {
7396#ifdef DEBUG_DERIV
7397 printf("Atom match -> Empty\n");
7398#endif
7399 return(emptyExp);
7400 }
7401#ifdef DEBUG_DERIV
7402 printf("Atom mismatch -> Forbid\n");
7403#endif
7404 return(forbiddenExp);
7405 }
7406 if ((sub->type == XML_EXP_COUNT) &&
7407 (sub->exp_max == 1) &&
7408 (sub->exp_left->type == XML_EXP_ATOM)) {
7409 /* TODO: handle wildcards */
7410 if (exp->exp_str == sub->exp_left->exp_str) {
7411#ifdef DEBUG_DERIV
7412 printf("Atom match -> Empty\n");
7413#endif
7414 return(emptyExp);
7415 }
7416#ifdef DEBUG_DERIV
7417 printf("Atom mismatch -> Forbid\n");
7418#endif
7419 return(forbiddenExp);
7420 }
7421#ifdef DEBUG_DERIV
7422 printf("Compex exp vs Atom -> Forbid\n");
7423#endif
7424 return(forbiddenExp);
7425 case XML_EXP_SEQ:
7426 /* try to get the sequence consumed only if possible */
7427 if (xmlExpCheckCard(exp->exp_left, sub)) {
7428 /* See if the sequence can be consumed directly */
7429#ifdef DEBUG_DERIV
7430 printf("Seq trying left only\n");
7431#endif
7432 ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
7433 if ((ret != forbiddenExp) && (ret != NULL)) {
7434#ifdef DEBUG_DERIV
7435 printf("Seq trying left only worked\n");
7436#endif
7437 /*
7438 * TODO: assumption here that we are determinist
7439 * i.e. we won't get to a nillable exp left
7440 * subset which could be matched by the right
7441 * part too.
7442 * e.g.: (a | b)+,(a | c) and 'a+,a'
7443 */
7444 exp->exp_right->ref++;
7445 return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
7446 exp->exp_right, NULL, 0, 0));
7447 }
7448#ifdef DEBUG_DERIV
7449 } else {
7450 printf("Seq: left too short\n");
7451#endif
7452 }
7453 /* Try instead to decompose */
7454 if (sub->type == XML_EXP_COUNT) {
7455 int min, max;
7456
7457#ifdef DEBUG_DERIV
7458 printf("Seq: sub is a count\n");
7459#endif
7460 ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
7461 if (ret == NULL)
7462 return(NULL);
7463 if (ret != forbiddenExp) {
7464#ifdef DEBUG_DERIV
7465 printf("Seq , Count match on left\n");
7466#endif
7467 if (sub->exp_max < 0)
7468 max = -1;
7469 else
7470 max = sub->exp_max -1;
7471 if (sub->exp_min > 0)
7472 min = sub->exp_min -1;
7473 else
7474 min = 0;
7475 exp->exp_right->ref++;
7476 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
7477 exp->exp_right, NULL, 0, 0);
7478 if (tmp == NULL)
7479 return(NULL);
7480
7481 sub->exp_left->ref++;
7482 tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
7483 sub->exp_left, NULL, NULL, min, max);
7484 if (tmp2 == NULL) {
7485 xmlExpFree(ctxt, tmp);
7486 return(NULL);
7487 }
7488 ret = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
7489 xmlExpFree(ctxt, tmp);
7490 xmlExpFree(ctxt, tmp2);
7491 return(ret);
7492 }
7493 }
7494 /* we made no progress on structured operations */
7495 break;
7496 case XML_EXP_OR:
7497#ifdef DEBUG_DERIV
7498 printf("Or , trying both side\n");
7499#endif
7500 ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
7501 if (ret == NULL)
7502 return(NULL);
7503 tmp = xmlExpExpDeriveInt(ctxt, exp->exp_right, sub);
7504 if (tmp == NULL) {
7505 xmlExpFree(ctxt, ret);
7506 return(NULL);
7507 }
7508 return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp, NULL, 0, 0));
7509 case XML_EXP_COUNT: {
7510 int min, max;
7511
7512 if (sub->type == XML_EXP_COUNT) {
7513 /*
7514 * Try to see if the loop is completely subsumed
7515 */
7516 tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
7517 if (tmp == NULL)
7518 return(NULL);
7519 if (tmp == forbiddenExp) {
7520 int mult;
7521
7522#ifdef DEBUG_DERIV
7523 printf("Count, Count inner don't subsume\n");
7524#endif
7525 mult = xmlExpDivide(ctxt, sub->exp_left, exp->exp_left,
7526 NULL, &tmp);
7527 if (mult <= 0) {
7528#ifdef DEBUG_DERIV
7529 printf("Count, Count not multiple => forbidden\n");
7530#endif
7531 return(forbiddenExp);
7532 }
7533 if (sub->exp_max == -1) {
7534 max = -1;
7535 if (exp->exp_max == -1) {
7536 if (exp->exp_min <= sub->exp_min * mult)
7537 min = 0;
7538 else
7539 min = exp->exp_min - sub->exp_min * mult;
7540 } else {
7541#ifdef DEBUG_DERIV
7542 printf("Count, Count finite can't subsume infinite\n");
7543#endif
7544 xmlExpFree(ctxt, tmp);
7545 return(forbiddenExp);
7546 }
7547 } else {
7548 if (exp->exp_max == -1) {
7549#ifdef DEBUG_DERIV
7550 printf("Infinite loop consume mult finite loop\n");
7551#endif
7552 if (exp->exp_min > sub->exp_min * mult) {
7553 max = -1;
7554 min = exp->exp_min - sub->exp_min * mult;
7555 } else {
7556 max = -1;
7557 min = 0;
7558 }
7559 } else {
7560 if (exp->exp_max < sub->exp_max * mult) {
7561#ifdef DEBUG_DERIV
7562 printf("loops max mult mismatch => forbidden\n");
7563#endif
7564 xmlExpFree(ctxt, tmp);
7565 return(forbiddenExp);
7566 }
7567 if (sub->exp_max * mult > exp->exp_min)
7568 min = 0;
7569 else
7570 min = exp->exp_min - sub->exp_max * mult;
7571 max = exp->exp_max - sub->exp_max * mult;
7572 }
7573 }
7574 } else if (!IS_NILLABLE(tmp)) {
7575 /*
7576 * TODO: loop here to try to grow if working on finite
7577 * blocks.
7578 */
7579#ifdef DEBUG_DERIV
7580 printf("Count, Count remain not nillable => forbidden\n");
7581#endif
7582 xmlExpFree(ctxt, tmp);
7583 return(forbiddenExp);
7584 } else if (sub->exp_max == -1) {
7585 if (exp->exp_max == -1) {
7586 if (exp->exp_min <= sub->exp_min) {
7587#ifdef DEBUG_DERIV
7588 printf("Infinite loops Okay => COUNT(0,Inf)\n");
7589#endif
7590 max = -1;
7591 min = 0;
7592 } else {
7593#ifdef DEBUG_DERIV
7594 printf("Infinite loops min => Count(X,Inf)\n");
7595#endif
7596 max = -1;
7597 min = exp->exp_min - sub->exp_min;
7598 }
7599 } else if (exp->exp_min > sub->exp_min) {
7600#ifdef DEBUG_DERIV
7601 printf("loops min mismatch 1 => forbidden ???\n");
7602#endif
7603 xmlExpFree(ctxt, tmp);
7604 return(forbiddenExp);
7605 } else {
7606 max = -1;
7607 min = 0;
7608 }
7609 } else {
7610 if (exp->exp_max == -1) {
7611#ifdef DEBUG_DERIV
7612 printf("Infinite loop consume finite loop\n");
7613#endif
7614 if (exp->exp_min > sub->exp_min) {
7615 max = -1;
7616 min = exp->exp_min - sub->exp_min;
7617 } else {
7618 max = -1;
7619 min = 0;
7620 }
7621 } else {
7622 if (exp->exp_max < sub->exp_max) {
7623#ifdef DEBUG_DERIV
7624 printf("loops max mismatch => forbidden\n");
7625#endif
7626 xmlExpFree(ctxt, tmp);
7627 return(forbiddenExp);
7628 }
7629 if (sub->exp_max > exp->exp_min)
7630 min = 0;
7631 else
7632 min = exp->exp_min - sub->exp_max;
7633 max = exp->exp_max - sub->exp_max;
7634 }
7635 }
7636#ifdef DEBUG_DERIV
7637 printf("loops match => SEQ(COUNT())\n");
7638#endif
7639 exp->exp_left->ref++;
7640 tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
7641 NULL, NULL, min, max);
7642 if (tmp2 == NULL) {
7643 return(NULL);
7644 }
7645 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
7646 NULL, 0, 0);
7647 return(ret);
7648 }
7649 tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
7650 if (tmp == NULL)
7651 return(NULL);
7652 if (tmp == forbiddenExp) {
7653#ifdef DEBUG_DERIV
7654 printf("loop mismatch => forbidden\n");
7655#endif
7656 return(forbiddenExp);
7657 }
7658 if (exp->exp_min > 0)
7659 min = exp->exp_min - 1;
7660 else
7661 min = 0;
7662 if (exp->exp_max < 0)
7663 max = -1;
7664 else
7665 max = exp->exp_max - 1;
7666
7667#ifdef DEBUG_DERIV
7668 printf("loop match => SEQ(COUNT())\n");
7669#endif
7670 exp->exp_left->ref++;
7671 tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
7672 NULL, NULL, min, max);
7673 if (tmp2 == NULL)
7674 return(NULL);
7675 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
7676 NULL, 0, 0);
7677 return(ret);
7678 }
7679 }
7680
7681#ifdef DEBUG_DERIV
7682 printf("Fallback to derivative\n");
7683#endif
7684 if (IS_NILLABLE(sub)) {
7685 if (!(IS_NILLABLE(exp)))
7686 return(forbiddenExp);
7687 else
7688 ret = emptyExp;
7689 } else
7690 ret = NULL;
7691 /*
7692 * here the structured derivation made no progress so
7693 * we use the default token based derivation to force one more step
7694 */
7695 if (ctxt->tabSize == 0)
7696 ctxt->tabSize = 40;
7697
7698 tab = (const xmlChar **) xmlMalloc(ctxt->tabSize *
7699 sizeof(const xmlChar *));
7700 if (tab == NULL) {
7701 return(NULL);
7702 }
7703
7704 /*
7705 * collect all the strings accepted by the subexpression on input
7706 */
7707 len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
7708 while (len < 0) {
7709 const xmlChar **temp;
7710 temp = (const xmlChar **) xmlRealloc((xmlChar **) tab, ctxt->tabSize * 2 *
7711 sizeof(const xmlChar *));
7712 if (temp == NULL) {
7713 xmlFree((xmlChar **) tab);
7714 return(NULL);
7715 }
7716 tab = temp;
7717 ctxt->tabSize *= 2;
7718 len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
7719 }
7720 for (i = 0;i < len;i++) {
7721 tmp = xmlExpStringDeriveInt(ctxt, exp, tab[i]);
7722 if ((tmp == NULL) || (tmp == forbiddenExp)) {
7723 xmlExpFree(ctxt, ret);
7724 xmlFree((xmlChar **) tab);
7725 return(tmp);
7726 }
7727 tmp2 = xmlExpStringDeriveInt(ctxt, sub, tab[i]);
7728 if ((tmp2 == NULL) || (tmp2 == forbiddenExp)) {
7729 xmlExpFree(ctxt, tmp);
7730 xmlExpFree(ctxt, ret);
7731 xmlFree((xmlChar **) tab);
7732 return(tmp);
7733 }
7734 tmp3 = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
7735 xmlExpFree(ctxt, tmp);
7736 xmlExpFree(ctxt, tmp2);
7737
7738 if ((tmp3 == NULL) || (tmp3 == forbiddenExp)) {
7739 xmlExpFree(ctxt, ret);
7740 xmlFree((xmlChar **) tab);
7741 return(tmp3);
7742 }
7743
7744 if (ret == NULL)
7745 ret = tmp3;
7746 else {
7747 ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp3, NULL, 0, 0);
7748 if (ret == NULL) {
7749 xmlFree((xmlChar **) tab);
7750 return(NULL);
7751 }
7752 }
7753 }
7754 xmlFree((xmlChar **) tab);
7755 return(ret);
7756}
7757
7758/**
7759 * xmlExpExpDerive:
7760 * @ctxt: the expressions context
7761 * @exp: the englobing expression
7762 * @sub: the subexpression
7763 *
7764 * Evaluates the expression resulting from @exp consuming a sub expression @sub
7765 * Based on algebraic derivation and sometimes direct Brzozowski derivation
7766 * it usually tatkes less than linear time and can handle expressions generating
7767 * infinite languages.
7768 *
7769 * Returns the resulting expression or NULL in case of internal error, the
7770 * result must be freed
7771 */
7772xmlExpNodePtr
7773xmlExpExpDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
7774 if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
7775 return(NULL);
7776
7777 /*
7778 * O(1) speedups
7779 */
7780 if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
7781#ifdef DEBUG_DERIV
7782 printf("Sub nillable and not exp : can't subsume\n");
7783#endif
7784 return(forbiddenExp);
7785 }
7786 if (xmlExpCheckCard(exp, sub) == 0) {
7787#ifdef DEBUG_DERIV
7788 printf("sub generate longuer sequances than exp : can't subsume\n");
7789#endif
7790 return(forbiddenExp);
7791 }
7792 return(xmlExpExpDeriveInt(ctxt, exp, sub));
7793}
7794
7795/**
7796 * xmlExpSubsume:
7797 * @ctxt: the expressions context
7798 * @exp: the englobing expression
7799 * @sub: the subexpression
7800 *
7801 * Check whether @exp accepts all the languages accexpted by @sub
7802 * the input being a subexpression.
7803 *
7804 * Returns 1 if true 0 if false and -1 in case of failure.
7805 */
7806int
7807xmlExpSubsume(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
7808 xmlExpNodePtr tmp;
7809
7810 if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
7811 return(-1);
7812
7813 /*
7814 * TODO: speedup by checking the language of sub is a subset of the
7815 * language of exp
7816 */
7817 /*
7818 * O(1) speedups
7819 */
7820 if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
7821#ifdef DEBUG_DERIV
7822 printf("Sub nillable and not exp : can't subsume\n");
7823#endif
7824 return(0);
7825 }
7826 if (xmlExpCheckCard(exp, sub) == 0) {
7827#ifdef DEBUG_DERIV
7828 printf("sub generate longuer sequances than exp : can't subsume\n");
7829#endif
7830 return(0);
7831 }
7832 tmp = xmlExpExpDeriveInt(ctxt, exp, sub);
7833#ifdef DEBUG_DERIV
7834 printf("Result derivation :\n");
7835 PRINT_EXP(tmp);
7836#endif
7837 if (tmp == NULL)
7838 return(-1);
7839 if (tmp == forbiddenExp)
7840 return(0);
7841 if (tmp == emptyExp)
7842 return(1);
7843 if ((tmp != NULL) && (IS_NILLABLE(tmp))) {
7844 xmlExpFree(ctxt, tmp);
7845 return(1);
7846 }
7847 xmlExpFree(ctxt, tmp);
7848 return(0);
7849}
7850
7851/************************************************************************
7852 * *
7853 * Parsing expression *
7854 * *
7855 ************************************************************************/
7856
7857static xmlExpNodePtr xmlExpParseExpr(xmlExpCtxtPtr ctxt);
7858
7859#undef CUR
7860#define CUR (*ctxt->cur)
7861#undef NEXT
7862#define NEXT ctxt->cur++;
7863#undef IS_BLANK
7864#define IS_BLANK(c) ((c == ' ') || (c == '\n') || (c == '\r') || (c == '\t'))
7865#define SKIP_BLANKS while (IS_BLANK(*ctxt->cur)) ctxt->cur++;
7866
7867static int
7868xmlExpParseNumber(xmlExpCtxtPtr ctxt) {
7869 int ret = 0;
7870
7871 SKIP_BLANKS
7872 if (CUR == '*') {
7873 NEXT
7874 return(-1);
7875 }
7876 if ((CUR < '0') || (CUR > '9'))
7877 return(-1);
7878 while ((CUR >= '0') && (CUR <= '9')) {
7879 ret = ret * 10 + (CUR - '0');
7880 NEXT
7881 }
7882 return(ret);
7883}
7884
7885static xmlExpNodePtr
7886xmlExpParseOr(xmlExpCtxtPtr ctxt) {
7887 const char *base;
7888 xmlExpNodePtr ret;
7889 const xmlChar *val;
7890
7891 SKIP_BLANKS
7892 base = ctxt->cur;
7893 if (*ctxt->cur == '(') {
7894 NEXT
7895 ret = xmlExpParseExpr(ctxt);
7896 SKIP_BLANKS
7897 if (*ctxt->cur != ')') {
7898 fprintf(stderr, "unbalanced '(' : %s\n", base);
7899 xmlExpFree(ctxt, ret);
7900 return(NULL);
7901 }
7902 NEXT;
7903 SKIP_BLANKS
7904 goto parse_quantifier;
7905 }
7906 while ((CUR != 0) && (!(IS_BLANK(CUR))) && (CUR != '(') &&
7907 (CUR != ')') && (CUR != '|') && (CUR != ',') && (CUR != '{') &&
7908 (CUR != '*') && (CUR != '+') && (CUR != '?') && (CUR != '}'))
7909 NEXT;
7910 val = xmlDictLookup(ctxt->dict, BAD_CAST base, ctxt->cur - base);
7911 if (val == NULL)
7912 return(NULL);
7913 ret = xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, val, 0, 0);
7914 if (ret == NULL)
7915 return(NULL);
7916 SKIP_BLANKS
7917parse_quantifier:
7918 if (CUR == '{') {
7919 int min, max;
7920
7921 NEXT
7922 min = xmlExpParseNumber(ctxt);
7923 if (min < 0) {
7924 xmlExpFree(ctxt, ret);
7925 return(NULL);
7926 }
7927 SKIP_BLANKS
7928 if (CUR == ',') {
7929 NEXT
7930 max = xmlExpParseNumber(ctxt);
7931 SKIP_BLANKS
7932 } else
7933 max = min;
7934 if (CUR != '}') {
7935 xmlExpFree(ctxt, ret);
7936 return(NULL);
7937 }
7938 NEXT
7939 ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7940 min, max);
7941 SKIP_BLANKS
7942 } else if (CUR == '?') {
7943 NEXT
7944 ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7945 0, 1);
7946 SKIP_BLANKS
7947 } else if (CUR == '+') {
7948 NEXT
7949 ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7950 1, -1);
7951 SKIP_BLANKS
7952 } else if (CUR == '*') {
7953 NEXT
7954 ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7955 0, -1);
7956 SKIP_BLANKS
7957 }
7958 return(ret);
7959}
7960
7961
7962static xmlExpNodePtr
7963xmlExpParseSeq(xmlExpCtxtPtr ctxt) {
7964 xmlExpNodePtr ret, right;
7965
7966 ret = xmlExpParseOr(ctxt);
7967 SKIP_BLANKS
7968 while (CUR == '|') {
7969 NEXT
7970 right = xmlExpParseOr(ctxt);
7971 if (right == NULL) {
7972 xmlExpFree(ctxt, ret);
7973 return(NULL);
7974 }
7975 ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, right, NULL, 0, 0);
7976 if (ret == NULL)
7977 return(NULL);
7978 }
7979 return(ret);
7980}
7981
7982static xmlExpNodePtr
7983xmlExpParseExpr(xmlExpCtxtPtr ctxt) {
7984 xmlExpNodePtr ret, right;
7985
7986 ret = xmlExpParseSeq(ctxt);
7987 SKIP_BLANKS
7988 while (CUR == ',') {
7989 NEXT
7990 right = xmlExpParseSeq(ctxt);
7991 if (right == NULL) {
7992 xmlExpFree(ctxt, ret);
7993 return(NULL);
7994 }
7995 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, right, NULL, 0, 0);
7996 if (ret == NULL)
7997 return(NULL);
7998 }
7999 return(ret);
8000}
8001
8002/**
8003 * xmlExpParse:
8004 * @ctxt: the expressions context
8005 * @expr: the 0 terminated string
8006 *
8007 * Minimal parser for regexps, it understand the following constructs
8008 * - string terminals
8009 * - choice operator |
8010 * - sequence operator ,
8011 * - subexpressions (...)
8012 * - usual cardinality operators + * and ?
8013 * - finite sequences { min, max }
8014 * - infinite sequences { min, * }
8015 * There is minimal checkings made especially no checking on strings values
8016 *
8017 * Returns a new expression or NULL in case of failure
8018 */
8019xmlExpNodePtr
8020xmlExpParse(xmlExpCtxtPtr ctxt, const char *expr) {
8021 xmlExpNodePtr ret;
8022
8023 ctxt->expr = expr;
8024 ctxt->cur = expr;
8025
8026 ret = xmlExpParseExpr(ctxt);
8027 SKIP_BLANKS
8028 if (*ctxt->cur != 0) {
8029 xmlExpFree(ctxt, ret);
8030 return(NULL);
8031 }
8032 return(ret);
8033}
8034
8035static void
8036xmlExpDumpInt(xmlBufferPtr buf, xmlExpNodePtr expr, int glob) {
8037 xmlExpNodePtr c;
8038
8039 if (expr == NULL) return;
8040 if (glob) xmlBufferWriteChar(buf, "(");
8041 switch (expr->type) {
8042 case XML_EXP_EMPTY:
8043 xmlBufferWriteChar(buf, "empty");
8044 break;
8045 case XML_EXP_FORBID:
8046 xmlBufferWriteChar(buf, "forbidden");
8047 break;
8048 case XML_EXP_ATOM:
8049 xmlBufferWriteCHAR(buf, expr->exp_str);
8050 break;
8051 case XML_EXP_SEQ:
8052 c = expr->exp_left;
8053 if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
8054 xmlExpDumpInt(buf, c, 1);
8055 else
8056 xmlExpDumpInt(buf, c, 0);
8057 xmlBufferWriteChar(buf, " , ");
8058 c = expr->exp_right;
8059 if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
8060 xmlExpDumpInt(buf, c, 1);
8061 else
8062 xmlExpDumpInt(buf, c, 0);
8063 break;
8064 case XML_EXP_OR:
8065 c = expr->exp_left;
8066 if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
8067 xmlExpDumpInt(buf, c, 1);
8068 else
8069 xmlExpDumpInt(buf, c, 0);
8070 xmlBufferWriteChar(buf, " | ");
8071 c = expr->exp_right;
8072 if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
8073 xmlExpDumpInt(buf, c, 1);
8074 else
8075 xmlExpDumpInt(buf, c, 0);
8076 break;
8077 case XML_EXP_COUNT: {
8078 char rep[40];
8079
8080 c = expr->exp_left;
8081 if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
8082 xmlExpDumpInt(buf, c, 1);
8083 else
8084 xmlExpDumpInt(buf, c, 0);
8085 if ((expr->exp_min == 0) && (expr->exp_max == 1)) {
8086 rep[0] = '?';
8087 rep[1] = 0;
8088 } else if ((expr->exp_min == 0) && (expr->exp_max == -1)) {
8089 rep[0] = '*';
8090 rep[1] = 0;
8091 } else if ((expr->exp_min == 1) && (expr->exp_max == -1)) {
8092 rep[0] = '+';
8093 rep[1] = 0;
8094 } else if (expr->exp_max == expr->exp_min) {
8095 snprintf(rep, 39, "{%d}", expr->exp_min);
8096 } else if (expr->exp_max < 0) {
8097 snprintf(rep, 39, "{%d,inf}", expr->exp_min);
8098 } else {
8099 snprintf(rep, 39, "{%d,%d}", expr->exp_min, expr->exp_max);
8100 }
8101 rep[39] = 0;
8102 xmlBufferWriteChar(buf, rep);
8103 break;
8104 }
8105 default:
8106 fprintf(stderr, "Error in tree\n");
8107 }
8108 if (glob)
8109 xmlBufferWriteChar(buf, ")");
8110}
8111/**
8112 * xmlExpDump:
8113 * @buf: a buffer to receive the output
8114 * @expr: the compiled expression
8115 *
8116 * Serialize the expression as compiled to the buffer
8117 */
8118void
8119xmlExpDump(xmlBufferPtr buf, xmlExpNodePtr expr) {
8120 if ((buf == NULL) || (expr == NULL))
8121 return;
8122 xmlExpDumpInt(buf, expr, 0);
8123}
8124
8125/**
8126 * xmlExpMaxToken:
8127 * @expr: a compiled expression
8128 *
8129 * Indicate the maximum number of input a expression can accept
8130 *
8131 * Returns the maximum length or -1 in case of error
8132 */
8133int
8134xmlExpMaxToken(xmlExpNodePtr expr) {
8135 if (expr == NULL)
8136 return(-1);
8137 return(expr->c_max);
8138}
8139
8140/**
8141 * xmlExpCtxtNbNodes:
8142 * @ctxt: an expression context
8143 *
8144 * Debugging facility provides the number of allocated nodes at a that point
8145 *
8146 * Returns the number of nodes in use or -1 in case of error
8147 */
8148int
8149xmlExpCtxtNbNodes(xmlExpCtxtPtr ctxt) {
8150 if (ctxt == NULL)
8151 return(-1);
8152 return(ctxt->nb_nodes);
8153}
8154
8155/**
8156 * xmlExpCtxtNbCons:
8157 * @ctxt: an expression context
8158 *
8159 * Debugging facility provides the number of allocated nodes over lifetime
8160 *
8161 * Returns the number of nodes ever allocated or -1 in case of error
8162 */
8163int
8164xmlExpCtxtNbCons(xmlExpCtxtPtr ctxt) {
8165 if (ctxt == NULL)
8166 return(-1);
8167 return(ctxt->nb_cons);
8168}
8169
8170#endif /* LIBXML_EXPR_ENABLED */
8171#define bottom_xmlregexp
8172#include "elfgcchack.h"
8173#endif /* LIBXML_REGEXP_ENABLED */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette