1 | =pod
|
---|
2 |
|
---|
3 | =head1 NAME
|
---|
4 |
|
---|
5 | bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words,
|
---|
6 | bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8,
|
---|
7 | bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
|
---|
8 | bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
|
---|
9 | bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive,
|
---|
10 | bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top,
|
---|
11 | bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low - BIGNUM
|
---|
12 | library internal functions
|
---|
13 |
|
---|
14 | =head1 SYNOPSIS
|
---|
15 |
|
---|
16 | #include <openssl/bn.h>
|
---|
17 |
|
---|
18 | BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
|
---|
19 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
|
---|
20 | BN_ULONG w);
|
---|
21 | void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
|
---|
22 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
|
---|
23 | BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
|
---|
24 | int num);
|
---|
25 | BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
|
---|
26 | int num);
|
---|
27 |
|
---|
28 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
|
---|
29 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
|
---|
30 | void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
|
---|
31 | void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);
|
---|
32 |
|
---|
33 | int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);
|
---|
34 |
|
---|
35 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
|
---|
36 | int nb);
|
---|
37 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
|
---|
38 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
---|
39 | int dna, int dnb, BN_ULONG *tmp);
|
---|
40 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
|
---|
41 | int n, int tna, int tnb, BN_ULONG *tmp);
|
---|
42 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
|
---|
43 | int n2, BN_ULONG *tmp);
|
---|
44 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
|
---|
45 | int n2, BN_ULONG *tmp);
|
---|
46 |
|
---|
47 | void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
|
---|
48 | void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);
|
---|
49 |
|
---|
50 | void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
|
---|
51 | void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
|
---|
52 | void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);
|
---|
53 |
|
---|
54 | BIGNUM *bn_expand(BIGNUM *a, int bits);
|
---|
55 | BIGNUM *bn_wexpand(BIGNUM *a, int n);
|
---|
56 | BIGNUM *bn_expand2(BIGNUM *a, int n);
|
---|
57 | void bn_fix_top(BIGNUM *a);
|
---|
58 |
|
---|
59 | void bn_check_top(BIGNUM *a);
|
---|
60 | void bn_print(BIGNUM *a);
|
---|
61 | void bn_dump(BN_ULONG *d, int n);
|
---|
62 | void bn_set_max(BIGNUM *a);
|
---|
63 | void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
|
---|
64 | void bn_set_low(BIGNUM *r, BIGNUM *a, int n);
|
---|
65 |
|
---|
66 | =head1 DESCRIPTION
|
---|
67 |
|
---|
68 | This page documents the internal functions used by the OpenSSL
|
---|
69 | B<BIGNUM> implementation. They are described here to facilitate
|
---|
70 | debugging and extending the library. They are I<not> to be used by
|
---|
71 | applications.
|
---|
72 |
|
---|
73 | =head2 The BIGNUM structure
|
---|
74 |
|
---|
75 | typedef struct bignum_st BIGNUM;
|
---|
76 |
|
---|
77 | struct bignum_st
|
---|
78 | {
|
---|
79 | BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */
|
---|
80 | int top; /* Index of last used d +1. */
|
---|
81 | /* The next are internal book keeping for bn_expand. */
|
---|
82 | int dmax; /* Size of the d array. */
|
---|
83 | int neg; /* one if the number is negative */
|
---|
84 | int flags;
|
---|
85 | };
|
---|
86 |
|
---|
87 |
|
---|
88 | The integer value is stored in B<d>, a malloc()ed array of words (B<BN_ULONG>),
|
---|
89 | least significant word first. A B<BN_ULONG> can be either 16, 32 or 64 bits
|
---|
90 | in size, depending on the 'number of bits' (B<BITS2>) specified in
|
---|
91 | C<openssl/bn.h>.
|
---|
92 |
|
---|
93 | B<dmax> is the size of the B<d> array that has been allocated. B<top>
|
---|
94 | is the number of words being used, so for a value of 4, bn.d[0]=4 and
|
---|
95 | bn.top=1. B<neg> is 1 if the number is negative. When a B<BIGNUM> is
|
---|
96 | B<0>, the B<d> field can be B<NULL> and B<top> == B<0>.
|
---|
97 |
|
---|
98 | B<flags> is a bit field of flags which are defined in C<openssl/bn.h>. The
|
---|
99 | flags begin with B<BN_FLG_>. The macros BN_set_flags(b, n) and
|
---|
100 | BN_get_flags(b, n) exist to enable or fetch flag(s) B<n> from B<BIGNUM>
|
---|
101 | structure B<b>.
|
---|
102 |
|
---|
103 | Various routines in this library require the use of temporary
|
---|
104 | B<BIGNUM> variables during their execution. Since dynamic memory
|
---|
105 | allocation to create B<BIGNUM>s is rather expensive when used in
|
---|
106 | conjunction with repeated subroutine calls, the B<BN_CTX> structure is
|
---|
107 | used. This structure contains B<BN_CTX_NUM> B<BIGNUM>s, see
|
---|
108 | L<BN_CTX_start(3)>.
|
---|
109 |
|
---|
110 | =head2 Low-level arithmetic operations
|
---|
111 |
|
---|
112 | These functions are implemented in C and for several platforms in
|
---|
113 | assembly language:
|
---|
114 |
|
---|
115 | bn_mul_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> word
|
---|
116 | arrays B<rp> and B<ap>. It computes B<ap> * B<w>, places the result
|
---|
117 | in B<rp>, and returns the high word (carry).
|
---|
118 |
|
---|
119 | bn_mul_add_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num>
|
---|
120 | word arrays B<rp> and B<ap>. It computes B<ap> * B<w> + B<rp>, places
|
---|
121 | the result in B<rp>, and returns the high word (carry).
|
---|
122 |
|
---|
123 | bn_sqr_words(B<rp>, B<ap>, B<n>) operates on the B<num> word array
|
---|
124 | B<ap> and the 2*B<num> word array B<ap>. It computes B<ap> * B<ap>
|
---|
125 | word-wise, and places the low and high bytes of the result in B<rp>.
|
---|
126 |
|
---|
127 | bn_div_words(B<h>, B<l>, B<d>) divides the two word number (B<h>, B<l>)
|
---|
128 | by B<d> and returns the result.
|
---|
129 |
|
---|
130 | bn_add_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word
|
---|
131 | arrays B<ap>, B<bp> and B<rp>. It computes B<ap> + B<bp>, places the
|
---|
132 | result in B<rp>, and returns the high word (carry).
|
---|
133 |
|
---|
134 | bn_sub_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word
|
---|
135 | arrays B<ap>, B<bp> and B<rp>. It computes B<ap> - B<bp>, places the
|
---|
136 | result in B<rp>, and returns the carry (1 if B<bp> E<gt> B<ap>, 0
|
---|
137 | otherwise).
|
---|
138 |
|
---|
139 | bn_mul_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and
|
---|
140 | B<b> and the 8 word array B<r>. It computes B<a>*B<b> and places the
|
---|
141 | result in B<r>.
|
---|
142 |
|
---|
143 | bn_mul_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and
|
---|
144 | B<b> and the 16 word array B<r>. It computes B<a>*B<b> and places the
|
---|
145 | result in B<r>.
|
---|
146 |
|
---|
147 | bn_sqr_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and
|
---|
148 | B<b> and the 8 word array B<r>.
|
---|
149 |
|
---|
150 | bn_sqr_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and
|
---|
151 | B<b> and the 16 word array B<r>.
|
---|
152 |
|
---|
153 | The following functions are implemented in C:
|
---|
154 |
|
---|
155 | bn_cmp_words(B<a>, B<b>, B<n>) operates on the B<n> word arrays B<a>
|
---|
156 | and B<b>. It returns 1, 0 and -1 if B<a> is greater than, equal and
|
---|
157 | less than B<b>.
|
---|
158 |
|
---|
159 | bn_mul_normal(B<r>, B<a>, B<na>, B<b>, B<nb>) operates on the B<na>
|
---|
160 | word array B<a>, the B<nb> word array B<b> and the B<na>+B<nb> word
|
---|
161 | array B<r>. It computes B<a>*B<b> and places the result in B<r>.
|
---|
162 |
|
---|
163 | bn_mul_low_normal(B<r>, B<a>, B<b>, B<n>) operates on the B<n> word
|
---|
164 | arrays B<r>, B<a> and B<b>. It computes the B<n> low words of
|
---|
165 | B<a>*B<b> and places the result in B<r>.
|
---|
166 |
|
---|
167 | bn_mul_recursive(B<r>, B<a>, B<b>, B<n2>, B<dna>, B<dnb>, B<t>) operates
|
---|
168 | on the word arrays B<a> and B<b> of length B<n2>+B<dna> and B<n2>+B<dnb>
|
---|
169 | (B<dna> and B<dnb> are currently allowed to be 0 or negative) and the 2*B<n2>
|
---|
170 | word arrays B<r> and B<t>. B<n2> must be a power of 2. It computes
|
---|
171 | B<a>*B<b> and places the result in B<r>.
|
---|
172 |
|
---|
173 | bn_mul_part_recursive(B<r>, B<a>, B<b>, B<n>, B<tna>, B<tnb>, B<tmp>)
|
---|
174 | operates on the word arrays B<a> and B<b> of length B<n>+B<tna> and
|
---|
175 | B<n>+B<tnb> and the 4*B<n> word arrays B<r> and B<tmp>.
|
---|
176 |
|
---|
177 | bn_mul_low_recursive(B<r>, B<a>, B<b>, B<n2>, B<tmp>) operates on the
|
---|
178 | B<n2> word arrays B<r> and B<tmp> and the B<n2>/2 word arrays B<a>
|
---|
179 | and B<b>.
|
---|
180 |
|
---|
181 | bn_mul_high(B<r>, B<a>, B<b>, B<l>, B<n2>, B<tmp>) operates on the
|
---|
182 | B<n2> word arrays B<r>, B<a>, B<b> and B<l> (?) and the 3*B<n2> word
|
---|
183 | array B<tmp>.
|
---|
184 |
|
---|
185 | BN_mul() calls bn_mul_normal(), or an optimized implementation if the
|
---|
186 | factors have the same size: bn_mul_comba8() is used if they are 8
|
---|
187 | words long, bn_mul_recursive() if they are larger than
|
---|
188 | B<BN_MULL_SIZE_NORMAL> and the size is an exact multiple of the word
|
---|
189 | size, and bn_mul_part_recursive() for others that are larger than
|
---|
190 | B<BN_MULL_SIZE_NORMAL>.
|
---|
191 |
|
---|
192 | bn_sqr_normal(B<r>, B<a>, B<n>, B<tmp>) operates on the B<n> word array
|
---|
193 | B<a> and the 2*B<n> word arrays B<tmp> and B<r>.
|
---|
194 |
|
---|
195 | The implementations use the following macros which, depending on the
|
---|
196 | architecture, may use "long long" C operations or inline assembler.
|
---|
197 | They are defined in C<bn_lcl.h>.
|
---|
198 |
|
---|
199 | mul(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<c> and places the
|
---|
200 | low word of the result in B<r> and the high word in B<c>.
|
---|
201 |
|
---|
202 | mul_add(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<r>+B<c> and
|
---|
203 | places the low word of the result in B<r> and the high word in B<c>.
|
---|
204 |
|
---|
205 | sqr(B<r0>, B<r1>, B<a>) computes B<a>*B<a> and places the low word
|
---|
206 | of the result in B<r0> and the high word in B<r1>.
|
---|
207 |
|
---|
208 | =head2 Size changes
|
---|
209 |
|
---|
210 | bn_expand() ensures that B<b> has enough space for a B<bits> bit
|
---|
211 | number. bn_wexpand() ensures that B<b> has enough space for an
|
---|
212 | B<n> word number. If the number has to be expanded, both macros
|
---|
213 | call bn_expand2(), which allocates a new B<d> array and copies the
|
---|
214 | data. They return B<NULL> on error, B<b> otherwise.
|
---|
215 |
|
---|
216 | The bn_fix_top() macro reduces B<a-E<gt>top> to point to the most
|
---|
217 | significant non-zero word plus one when B<a> has shrunk.
|
---|
218 |
|
---|
219 | =head2 Debugging
|
---|
220 |
|
---|
221 | bn_check_top() verifies that C<((a)-E<gt>top E<gt>= 0 && (a)-E<gt>top
|
---|
222 | E<lt>= (a)-E<gt>dmax)>. A violation will cause the program to abort.
|
---|
223 |
|
---|
224 | bn_print() prints B<a> to stderr. bn_dump() prints B<n> words at B<d>
|
---|
225 | (in reverse order, i.e. most significant word first) to stderr.
|
---|
226 |
|
---|
227 | bn_set_max() makes B<a> a static number with a B<dmax> of its current size.
|
---|
228 | This is used by bn_set_low() and bn_set_high() to make B<r> a read-only
|
---|
229 | B<BIGNUM> that contains the B<n> low or high words of B<a>.
|
---|
230 |
|
---|
231 | If B<BN_DEBUG> is not defined, bn_check_top(), bn_print(), bn_dump()
|
---|
232 | and bn_set_max() are defined as empty macros.
|
---|
233 |
|
---|
234 | =head1 SEE ALSO
|
---|
235 |
|
---|
236 | L<bn(3)>
|
---|
237 |
|
---|
238 | =head1 COPYRIGHT
|
---|
239 |
|
---|
240 | Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.
|
---|
241 |
|
---|
242 | Licensed under the OpenSSL license (the "License"). You may not use
|
---|
243 | this file except in compliance with the License. You can obtain a copy
|
---|
244 | in the file LICENSE in the source distribution or at
|
---|
245 | L<https://www.openssl.org/source/license.html>.
|
---|
246 |
|
---|
247 | =cut
|
---|