1 | /*
|
---|
2 | * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include "internal/cryptlib.h"
|
---|
11 | #include "bn_lcl.h"
|
---|
12 |
|
---|
13 | /* r must not be a */
|
---|
14 | /*
|
---|
15 | * I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96
|
---|
16 | */
|
---|
17 | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
|
---|
18 | {
|
---|
19 | int max, al;
|
---|
20 | int ret = 0;
|
---|
21 | BIGNUM *tmp, *rr;
|
---|
22 |
|
---|
23 | bn_check_top(a);
|
---|
24 |
|
---|
25 | al = a->top;
|
---|
26 | if (al <= 0) {
|
---|
27 | r->top = 0;
|
---|
28 | r->neg = 0;
|
---|
29 | return 1;
|
---|
30 | }
|
---|
31 |
|
---|
32 | BN_CTX_start(ctx);
|
---|
33 | rr = (a != r) ? r : BN_CTX_get(ctx);
|
---|
34 | tmp = BN_CTX_get(ctx);
|
---|
35 | if (!rr || !tmp)
|
---|
36 | goto err;
|
---|
37 |
|
---|
38 | max = 2 * al; /* Non-zero (from above) */
|
---|
39 | if (bn_wexpand(rr, max) == NULL)
|
---|
40 | goto err;
|
---|
41 |
|
---|
42 | if (al == 4) {
|
---|
43 | #ifndef BN_SQR_COMBA
|
---|
44 | BN_ULONG t[8];
|
---|
45 | bn_sqr_normal(rr->d, a->d, 4, t);
|
---|
46 | #else
|
---|
47 | bn_sqr_comba4(rr->d, a->d);
|
---|
48 | #endif
|
---|
49 | } else if (al == 8) {
|
---|
50 | #ifndef BN_SQR_COMBA
|
---|
51 | BN_ULONG t[16];
|
---|
52 | bn_sqr_normal(rr->d, a->d, 8, t);
|
---|
53 | #else
|
---|
54 | bn_sqr_comba8(rr->d, a->d);
|
---|
55 | #endif
|
---|
56 | } else {
|
---|
57 | #if defined(BN_RECURSION)
|
---|
58 | if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
|
---|
59 | BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
|
---|
60 | bn_sqr_normal(rr->d, a->d, al, t);
|
---|
61 | } else {
|
---|
62 | int j, k;
|
---|
63 |
|
---|
64 | j = BN_num_bits_word((BN_ULONG)al);
|
---|
65 | j = 1 << (j - 1);
|
---|
66 | k = j + j;
|
---|
67 | if (al == j) {
|
---|
68 | if (bn_wexpand(tmp, k * 2) == NULL)
|
---|
69 | goto err;
|
---|
70 | bn_sqr_recursive(rr->d, a->d, al, tmp->d);
|
---|
71 | } else {
|
---|
72 | if (bn_wexpand(tmp, max) == NULL)
|
---|
73 | goto err;
|
---|
74 | bn_sqr_normal(rr->d, a->d, al, tmp->d);
|
---|
75 | }
|
---|
76 | }
|
---|
77 | #else
|
---|
78 | if (bn_wexpand(tmp, max) == NULL)
|
---|
79 | goto err;
|
---|
80 | bn_sqr_normal(rr->d, a->d, al, tmp->d);
|
---|
81 | #endif
|
---|
82 | }
|
---|
83 |
|
---|
84 | rr->neg = 0;
|
---|
85 | /*
|
---|
86 | * If the most-significant half of the top word of 'a' is zero, then the
|
---|
87 | * square of 'a' will max-1 words.
|
---|
88 | */
|
---|
89 | if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l))
|
---|
90 | rr->top = max - 1;
|
---|
91 | else
|
---|
92 | rr->top = max;
|
---|
93 | if (r != rr && BN_copy(r, rr) == NULL)
|
---|
94 | goto err;
|
---|
95 |
|
---|
96 | ret = 1;
|
---|
97 | err:
|
---|
98 | bn_check_top(rr);
|
---|
99 | bn_check_top(tmp);
|
---|
100 | BN_CTX_end(ctx);
|
---|
101 | return (ret);
|
---|
102 | }
|
---|
103 |
|
---|
104 | /* tmp must have 2*n words */
|
---|
105 | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp)
|
---|
106 | {
|
---|
107 | int i, j, max;
|
---|
108 | const BN_ULONG *ap;
|
---|
109 | BN_ULONG *rp;
|
---|
110 |
|
---|
111 | max = n * 2;
|
---|
112 | ap = a;
|
---|
113 | rp = r;
|
---|
114 | rp[0] = rp[max - 1] = 0;
|
---|
115 | rp++;
|
---|
116 | j = n;
|
---|
117 |
|
---|
118 | if (--j > 0) {
|
---|
119 | ap++;
|
---|
120 | rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
|
---|
121 | rp += 2;
|
---|
122 | }
|
---|
123 |
|
---|
124 | for (i = n - 2; i > 0; i--) {
|
---|
125 | j--;
|
---|
126 | ap++;
|
---|
127 | rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
|
---|
128 | rp += 2;
|
---|
129 | }
|
---|
130 |
|
---|
131 | bn_add_words(r, r, r, max);
|
---|
132 |
|
---|
133 | /* There will not be a carry */
|
---|
134 |
|
---|
135 | bn_sqr_words(tmp, a, n);
|
---|
136 |
|
---|
137 | bn_add_words(r, r, tmp, max);
|
---|
138 | }
|
---|
139 |
|
---|
140 | #ifdef BN_RECURSION
|
---|
141 | /*-
|
---|
142 | * r is 2*n words in size,
|
---|
143 | * a and b are both n words in size. (There's not actually a 'b' here ...)
|
---|
144 | * n must be a power of 2.
|
---|
145 | * We multiply and return the result.
|
---|
146 | * t must be 2*n words in size
|
---|
147 | * We calculate
|
---|
148 | * a[0]*b[0]
|
---|
149 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
|
---|
150 | * a[1]*b[1]
|
---|
151 | */
|
---|
152 | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t)
|
---|
153 | {
|
---|
154 | int n = n2 / 2;
|
---|
155 | int zero, c1;
|
---|
156 | BN_ULONG ln, lo, *p;
|
---|
157 |
|
---|
158 | if (n2 == 4) {
|
---|
159 | # ifndef BN_SQR_COMBA
|
---|
160 | bn_sqr_normal(r, a, 4, t);
|
---|
161 | # else
|
---|
162 | bn_sqr_comba4(r, a);
|
---|
163 | # endif
|
---|
164 | return;
|
---|
165 | } else if (n2 == 8) {
|
---|
166 | # ifndef BN_SQR_COMBA
|
---|
167 | bn_sqr_normal(r, a, 8, t);
|
---|
168 | # else
|
---|
169 | bn_sqr_comba8(r, a);
|
---|
170 | # endif
|
---|
171 | return;
|
---|
172 | }
|
---|
173 | if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
|
---|
174 | bn_sqr_normal(r, a, n2, t);
|
---|
175 | return;
|
---|
176 | }
|
---|
177 | /* r=(a[0]-a[1])*(a[1]-a[0]) */
|
---|
178 | c1 = bn_cmp_words(a, &(a[n]), n);
|
---|
179 | zero = 0;
|
---|
180 | if (c1 > 0)
|
---|
181 | bn_sub_words(t, a, &(a[n]), n);
|
---|
182 | else if (c1 < 0)
|
---|
183 | bn_sub_words(t, &(a[n]), a, n);
|
---|
184 | else
|
---|
185 | zero = 1;
|
---|
186 |
|
---|
187 | /* The result will always be negative unless it is zero */
|
---|
188 | p = &(t[n2 * 2]);
|
---|
189 |
|
---|
190 | if (!zero)
|
---|
191 | bn_sqr_recursive(&(t[n2]), t, n, p);
|
---|
192 | else
|
---|
193 | memset(&t[n2], 0, sizeof(*t) * n2);
|
---|
194 | bn_sqr_recursive(r, a, n, p);
|
---|
195 | bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
|
---|
196 |
|
---|
197 | /*-
|
---|
198 | * t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
|
---|
199 | * r[10] holds (a[0]*b[0])
|
---|
200 | * r[32] holds (b[1]*b[1])
|
---|
201 | */
|
---|
202 |
|
---|
203 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
|
---|
204 |
|
---|
205 | /* t[32] is negative */
|
---|
206 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
|
---|
207 |
|
---|
208 | /*-
|
---|
209 | * t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
|
---|
210 | * r[10] holds (a[0]*a[0])
|
---|
211 | * r[32] holds (a[1]*a[1])
|
---|
212 | * c1 holds the carry bits
|
---|
213 | */
|
---|
214 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
|
---|
215 | if (c1) {
|
---|
216 | p = &(r[n + n2]);
|
---|
217 | lo = *p;
|
---|
218 | ln = (lo + c1) & BN_MASK2;
|
---|
219 | *p = ln;
|
---|
220 |
|
---|
221 | /*
|
---|
222 | * The overflow will stop before we over write words we should not
|
---|
223 | * overwrite
|
---|
224 | */
|
---|
225 | if (ln < (BN_ULONG)c1) {
|
---|
226 | do {
|
---|
227 | p++;
|
---|
228 | lo = *p;
|
---|
229 | ln = (lo + 1) & BN_MASK2;
|
---|
230 | *p = ln;
|
---|
231 | } while (ln == 0);
|
---|
232 | }
|
---|
233 | }
|
---|
234 | }
|
---|
235 | #endif
|
---|