1 | /*
|
---|
2 | * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /* ====================================================================
|
---|
11 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
---|
12 | * Portions of this software developed by SUN MICROSYSTEMS, INC.,
|
---|
13 | * and contributed to the OpenSSL project.
|
---|
14 | */
|
---|
15 |
|
---|
16 | #include <openssl/err.h>
|
---|
17 | #include <openssl/symhacks.h>
|
---|
18 |
|
---|
19 | #include "ec_lcl.h"
|
---|
20 |
|
---|
21 | const EC_METHOD *EC_GFp_simple_method(void)
|
---|
22 | {
|
---|
23 | static const EC_METHOD ret = {
|
---|
24 | EC_FLAGS_DEFAULT_OCT,
|
---|
25 | NID_X9_62_prime_field,
|
---|
26 | ec_GFp_simple_group_init,
|
---|
27 | ec_GFp_simple_group_finish,
|
---|
28 | ec_GFp_simple_group_clear_finish,
|
---|
29 | ec_GFp_simple_group_copy,
|
---|
30 | ec_GFp_simple_group_set_curve,
|
---|
31 | ec_GFp_simple_group_get_curve,
|
---|
32 | ec_GFp_simple_group_get_degree,
|
---|
33 | ec_group_simple_order_bits,
|
---|
34 | ec_GFp_simple_group_check_discriminant,
|
---|
35 | ec_GFp_simple_point_init,
|
---|
36 | ec_GFp_simple_point_finish,
|
---|
37 | ec_GFp_simple_point_clear_finish,
|
---|
38 | ec_GFp_simple_point_copy,
|
---|
39 | ec_GFp_simple_point_set_to_infinity,
|
---|
40 | ec_GFp_simple_set_Jprojective_coordinates_GFp,
|
---|
41 | ec_GFp_simple_get_Jprojective_coordinates_GFp,
|
---|
42 | ec_GFp_simple_point_set_affine_coordinates,
|
---|
43 | ec_GFp_simple_point_get_affine_coordinates,
|
---|
44 | 0, 0, 0,
|
---|
45 | ec_GFp_simple_add,
|
---|
46 | ec_GFp_simple_dbl,
|
---|
47 | ec_GFp_simple_invert,
|
---|
48 | ec_GFp_simple_is_at_infinity,
|
---|
49 | ec_GFp_simple_is_on_curve,
|
---|
50 | ec_GFp_simple_cmp,
|
---|
51 | ec_GFp_simple_make_affine,
|
---|
52 | ec_GFp_simple_points_make_affine,
|
---|
53 | 0 /* mul */ ,
|
---|
54 | 0 /* precompute_mult */ ,
|
---|
55 | 0 /* have_precompute_mult */ ,
|
---|
56 | ec_GFp_simple_field_mul,
|
---|
57 | ec_GFp_simple_field_sqr,
|
---|
58 | 0 /* field_div */ ,
|
---|
59 | 0 /* field_encode */ ,
|
---|
60 | 0 /* field_decode */ ,
|
---|
61 | 0, /* field_set_to_one */
|
---|
62 | ec_key_simple_priv2oct,
|
---|
63 | ec_key_simple_oct2priv,
|
---|
64 | 0, /* set private */
|
---|
65 | ec_key_simple_generate_key,
|
---|
66 | ec_key_simple_check_key,
|
---|
67 | ec_key_simple_generate_public_key,
|
---|
68 | 0, /* keycopy */
|
---|
69 | 0, /* keyfinish */
|
---|
70 | ecdh_simple_compute_key
|
---|
71 | };
|
---|
72 |
|
---|
73 | return &ret;
|
---|
74 | }
|
---|
75 |
|
---|
76 | /*
|
---|
77 | * Most method functions in this file are designed to work with
|
---|
78 | * non-trivial representations of field elements if necessary
|
---|
79 | * (see ecp_mont.c): while standard modular addition and subtraction
|
---|
80 | * are used, the field_mul and field_sqr methods will be used for
|
---|
81 | * multiplication, and field_encode and field_decode (if defined)
|
---|
82 | * will be used for converting between representations.
|
---|
83 | *
|
---|
84 | * Functions ec_GFp_simple_points_make_affine() and
|
---|
85 | * ec_GFp_simple_point_get_affine_coordinates() specifically assume
|
---|
86 | * that if a non-trivial representation is used, it is a Montgomery
|
---|
87 | * representation (i.e. 'encoding' means multiplying by some factor R).
|
---|
88 | */
|
---|
89 |
|
---|
90 | int ec_GFp_simple_group_init(EC_GROUP *group)
|
---|
91 | {
|
---|
92 | group->field = BN_new();
|
---|
93 | group->a = BN_new();
|
---|
94 | group->b = BN_new();
|
---|
95 | if (group->field == NULL || group->a == NULL || group->b == NULL) {
|
---|
96 | BN_free(group->field);
|
---|
97 | BN_free(group->a);
|
---|
98 | BN_free(group->b);
|
---|
99 | return 0;
|
---|
100 | }
|
---|
101 | group->a_is_minus3 = 0;
|
---|
102 | return 1;
|
---|
103 | }
|
---|
104 |
|
---|
105 | void ec_GFp_simple_group_finish(EC_GROUP *group)
|
---|
106 | {
|
---|
107 | BN_free(group->field);
|
---|
108 | BN_free(group->a);
|
---|
109 | BN_free(group->b);
|
---|
110 | }
|
---|
111 |
|
---|
112 | void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
|
---|
113 | {
|
---|
114 | BN_clear_free(group->field);
|
---|
115 | BN_clear_free(group->a);
|
---|
116 | BN_clear_free(group->b);
|
---|
117 | }
|
---|
118 |
|
---|
119 | int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
|
---|
120 | {
|
---|
121 | if (!BN_copy(dest->field, src->field))
|
---|
122 | return 0;
|
---|
123 | if (!BN_copy(dest->a, src->a))
|
---|
124 | return 0;
|
---|
125 | if (!BN_copy(dest->b, src->b))
|
---|
126 | return 0;
|
---|
127 |
|
---|
128 | dest->a_is_minus3 = src->a_is_minus3;
|
---|
129 |
|
---|
130 | return 1;
|
---|
131 | }
|
---|
132 |
|
---|
133 | int ec_GFp_simple_group_set_curve(EC_GROUP *group,
|
---|
134 | const BIGNUM *p, const BIGNUM *a,
|
---|
135 | const BIGNUM *b, BN_CTX *ctx)
|
---|
136 | {
|
---|
137 | int ret = 0;
|
---|
138 | BN_CTX *new_ctx = NULL;
|
---|
139 | BIGNUM *tmp_a;
|
---|
140 |
|
---|
141 | /* p must be a prime > 3 */
|
---|
142 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
|
---|
143 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
|
---|
144 | return 0;
|
---|
145 | }
|
---|
146 |
|
---|
147 | if (ctx == NULL) {
|
---|
148 | ctx = new_ctx = BN_CTX_new();
|
---|
149 | if (ctx == NULL)
|
---|
150 | return 0;
|
---|
151 | }
|
---|
152 |
|
---|
153 | BN_CTX_start(ctx);
|
---|
154 | tmp_a = BN_CTX_get(ctx);
|
---|
155 | if (tmp_a == NULL)
|
---|
156 | goto err;
|
---|
157 |
|
---|
158 | /* group->field */
|
---|
159 | if (!BN_copy(group->field, p))
|
---|
160 | goto err;
|
---|
161 | BN_set_negative(group->field, 0);
|
---|
162 |
|
---|
163 | /* group->a */
|
---|
164 | if (!BN_nnmod(tmp_a, a, p, ctx))
|
---|
165 | goto err;
|
---|
166 | if (group->meth->field_encode) {
|
---|
167 | if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
|
---|
168 | goto err;
|
---|
169 | } else if (!BN_copy(group->a, tmp_a))
|
---|
170 | goto err;
|
---|
171 |
|
---|
172 | /* group->b */
|
---|
173 | if (!BN_nnmod(group->b, b, p, ctx))
|
---|
174 | goto err;
|
---|
175 | if (group->meth->field_encode)
|
---|
176 | if (!group->meth->field_encode(group, group->b, group->b, ctx))
|
---|
177 | goto err;
|
---|
178 |
|
---|
179 | /* group->a_is_minus3 */
|
---|
180 | if (!BN_add_word(tmp_a, 3))
|
---|
181 | goto err;
|
---|
182 | group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
|
---|
183 |
|
---|
184 | ret = 1;
|
---|
185 |
|
---|
186 | err:
|
---|
187 | BN_CTX_end(ctx);
|
---|
188 | BN_CTX_free(new_ctx);
|
---|
189 | return ret;
|
---|
190 | }
|
---|
191 |
|
---|
192 | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
|
---|
193 | BIGNUM *b, BN_CTX *ctx)
|
---|
194 | {
|
---|
195 | int ret = 0;
|
---|
196 | BN_CTX *new_ctx = NULL;
|
---|
197 |
|
---|
198 | if (p != NULL) {
|
---|
199 | if (!BN_copy(p, group->field))
|
---|
200 | return 0;
|
---|
201 | }
|
---|
202 |
|
---|
203 | if (a != NULL || b != NULL) {
|
---|
204 | if (group->meth->field_decode) {
|
---|
205 | if (ctx == NULL) {
|
---|
206 | ctx = new_ctx = BN_CTX_new();
|
---|
207 | if (ctx == NULL)
|
---|
208 | return 0;
|
---|
209 | }
|
---|
210 | if (a != NULL) {
|
---|
211 | if (!group->meth->field_decode(group, a, group->a, ctx))
|
---|
212 | goto err;
|
---|
213 | }
|
---|
214 | if (b != NULL) {
|
---|
215 | if (!group->meth->field_decode(group, b, group->b, ctx))
|
---|
216 | goto err;
|
---|
217 | }
|
---|
218 | } else {
|
---|
219 | if (a != NULL) {
|
---|
220 | if (!BN_copy(a, group->a))
|
---|
221 | goto err;
|
---|
222 | }
|
---|
223 | if (b != NULL) {
|
---|
224 | if (!BN_copy(b, group->b))
|
---|
225 | goto err;
|
---|
226 | }
|
---|
227 | }
|
---|
228 | }
|
---|
229 |
|
---|
230 | ret = 1;
|
---|
231 |
|
---|
232 | err:
|
---|
233 | BN_CTX_free(new_ctx);
|
---|
234 | return ret;
|
---|
235 | }
|
---|
236 |
|
---|
237 | int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
|
---|
238 | {
|
---|
239 | return BN_num_bits(group->field);
|
---|
240 | }
|
---|
241 |
|
---|
242 | int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
|
---|
243 | {
|
---|
244 | int ret = 0;
|
---|
245 | BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
|
---|
246 | const BIGNUM *p = group->field;
|
---|
247 | BN_CTX *new_ctx = NULL;
|
---|
248 |
|
---|
249 | if (ctx == NULL) {
|
---|
250 | ctx = new_ctx = BN_CTX_new();
|
---|
251 | if (ctx == NULL) {
|
---|
252 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
|
---|
253 | ERR_R_MALLOC_FAILURE);
|
---|
254 | goto err;
|
---|
255 | }
|
---|
256 | }
|
---|
257 | BN_CTX_start(ctx);
|
---|
258 | a = BN_CTX_get(ctx);
|
---|
259 | b = BN_CTX_get(ctx);
|
---|
260 | tmp_1 = BN_CTX_get(ctx);
|
---|
261 | tmp_2 = BN_CTX_get(ctx);
|
---|
262 | order = BN_CTX_get(ctx);
|
---|
263 | if (order == NULL)
|
---|
264 | goto err;
|
---|
265 |
|
---|
266 | if (group->meth->field_decode) {
|
---|
267 | if (!group->meth->field_decode(group, a, group->a, ctx))
|
---|
268 | goto err;
|
---|
269 | if (!group->meth->field_decode(group, b, group->b, ctx))
|
---|
270 | goto err;
|
---|
271 | } else {
|
---|
272 | if (!BN_copy(a, group->a))
|
---|
273 | goto err;
|
---|
274 | if (!BN_copy(b, group->b))
|
---|
275 | goto err;
|
---|
276 | }
|
---|
277 |
|
---|
278 | /*-
|
---|
279 | * check the discriminant:
|
---|
280 | * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
|
---|
281 | * 0 =< a, b < p
|
---|
282 | */
|
---|
283 | if (BN_is_zero(a)) {
|
---|
284 | if (BN_is_zero(b))
|
---|
285 | goto err;
|
---|
286 | } else if (!BN_is_zero(b)) {
|
---|
287 | if (!BN_mod_sqr(tmp_1, a, p, ctx))
|
---|
288 | goto err;
|
---|
289 | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
|
---|
290 | goto err;
|
---|
291 | if (!BN_lshift(tmp_1, tmp_2, 2))
|
---|
292 | goto err;
|
---|
293 | /* tmp_1 = 4*a^3 */
|
---|
294 |
|
---|
295 | if (!BN_mod_sqr(tmp_2, b, p, ctx))
|
---|
296 | goto err;
|
---|
297 | if (!BN_mul_word(tmp_2, 27))
|
---|
298 | goto err;
|
---|
299 | /* tmp_2 = 27*b^2 */
|
---|
300 |
|
---|
301 | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
|
---|
302 | goto err;
|
---|
303 | if (BN_is_zero(a))
|
---|
304 | goto err;
|
---|
305 | }
|
---|
306 | ret = 1;
|
---|
307 |
|
---|
308 | err:
|
---|
309 | if (ctx != NULL)
|
---|
310 | BN_CTX_end(ctx);
|
---|
311 | BN_CTX_free(new_ctx);
|
---|
312 | return ret;
|
---|
313 | }
|
---|
314 |
|
---|
315 | int ec_GFp_simple_point_init(EC_POINT *point)
|
---|
316 | {
|
---|
317 | point->X = BN_new();
|
---|
318 | point->Y = BN_new();
|
---|
319 | point->Z = BN_new();
|
---|
320 | point->Z_is_one = 0;
|
---|
321 |
|
---|
322 | if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
|
---|
323 | BN_free(point->X);
|
---|
324 | BN_free(point->Y);
|
---|
325 | BN_free(point->Z);
|
---|
326 | return 0;
|
---|
327 | }
|
---|
328 | return 1;
|
---|
329 | }
|
---|
330 |
|
---|
331 | void ec_GFp_simple_point_finish(EC_POINT *point)
|
---|
332 | {
|
---|
333 | BN_free(point->X);
|
---|
334 | BN_free(point->Y);
|
---|
335 | BN_free(point->Z);
|
---|
336 | }
|
---|
337 |
|
---|
338 | void ec_GFp_simple_point_clear_finish(EC_POINT *point)
|
---|
339 | {
|
---|
340 | BN_clear_free(point->X);
|
---|
341 | BN_clear_free(point->Y);
|
---|
342 | BN_clear_free(point->Z);
|
---|
343 | point->Z_is_one = 0;
|
---|
344 | }
|
---|
345 |
|
---|
346 | int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
|
---|
347 | {
|
---|
348 | if (!BN_copy(dest->X, src->X))
|
---|
349 | return 0;
|
---|
350 | if (!BN_copy(dest->Y, src->Y))
|
---|
351 | return 0;
|
---|
352 | if (!BN_copy(dest->Z, src->Z))
|
---|
353 | return 0;
|
---|
354 | dest->Z_is_one = src->Z_is_one;
|
---|
355 |
|
---|
356 | return 1;
|
---|
357 | }
|
---|
358 |
|
---|
359 | int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
|
---|
360 | EC_POINT *point)
|
---|
361 | {
|
---|
362 | point->Z_is_one = 0;
|
---|
363 | BN_zero(point->Z);
|
---|
364 | return 1;
|
---|
365 | }
|
---|
366 |
|
---|
367 | int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
|
---|
368 | EC_POINT *point,
|
---|
369 | const BIGNUM *x,
|
---|
370 | const BIGNUM *y,
|
---|
371 | const BIGNUM *z,
|
---|
372 | BN_CTX *ctx)
|
---|
373 | {
|
---|
374 | BN_CTX *new_ctx = NULL;
|
---|
375 | int ret = 0;
|
---|
376 |
|
---|
377 | if (ctx == NULL) {
|
---|
378 | ctx = new_ctx = BN_CTX_new();
|
---|
379 | if (ctx == NULL)
|
---|
380 | return 0;
|
---|
381 | }
|
---|
382 |
|
---|
383 | if (x != NULL) {
|
---|
384 | if (!BN_nnmod(point->X, x, group->field, ctx))
|
---|
385 | goto err;
|
---|
386 | if (group->meth->field_encode) {
|
---|
387 | if (!group->meth->field_encode(group, point->X, point->X, ctx))
|
---|
388 | goto err;
|
---|
389 | }
|
---|
390 | }
|
---|
391 |
|
---|
392 | if (y != NULL) {
|
---|
393 | if (!BN_nnmod(point->Y, y, group->field, ctx))
|
---|
394 | goto err;
|
---|
395 | if (group->meth->field_encode) {
|
---|
396 | if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
|
---|
397 | goto err;
|
---|
398 | }
|
---|
399 | }
|
---|
400 |
|
---|
401 | if (z != NULL) {
|
---|
402 | int Z_is_one;
|
---|
403 |
|
---|
404 | if (!BN_nnmod(point->Z, z, group->field, ctx))
|
---|
405 | goto err;
|
---|
406 | Z_is_one = BN_is_one(point->Z);
|
---|
407 | if (group->meth->field_encode) {
|
---|
408 | if (Z_is_one && (group->meth->field_set_to_one != 0)) {
|
---|
409 | if (!group->meth->field_set_to_one(group, point->Z, ctx))
|
---|
410 | goto err;
|
---|
411 | } else {
|
---|
412 | if (!group->
|
---|
413 | meth->field_encode(group, point->Z, point->Z, ctx))
|
---|
414 | goto err;
|
---|
415 | }
|
---|
416 | }
|
---|
417 | point->Z_is_one = Z_is_one;
|
---|
418 | }
|
---|
419 |
|
---|
420 | ret = 1;
|
---|
421 |
|
---|
422 | err:
|
---|
423 | BN_CTX_free(new_ctx);
|
---|
424 | return ret;
|
---|
425 | }
|
---|
426 |
|
---|
427 | int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
|
---|
428 | const EC_POINT *point,
|
---|
429 | BIGNUM *x, BIGNUM *y,
|
---|
430 | BIGNUM *z, BN_CTX *ctx)
|
---|
431 | {
|
---|
432 | BN_CTX *new_ctx = NULL;
|
---|
433 | int ret = 0;
|
---|
434 |
|
---|
435 | if (group->meth->field_decode != 0) {
|
---|
436 | if (ctx == NULL) {
|
---|
437 | ctx = new_ctx = BN_CTX_new();
|
---|
438 | if (ctx == NULL)
|
---|
439 | return 0;
|
---|
440 | }
|
---|
441 |
|
---|
442 | if (x != NULL) {
|
---|
443 | if (!group->meth->field_decode(group, x, point->X, ctx))
|
---|
444 | goto err;
|
---|
445 | }
|
---|
446 | if (y != NULL) {
|
---|
447 | if (!group->meth->field_decode(group, y, point->Y, ctx))
|
---|
448 | goto err;
|
---|
449 | }
|
---|
450 | if (z != NULL) {
|
---|
451 | if (!group->meth->field_decode(group, z, point->Z, ctx))
|
---|
452 | goto err;
|
---|
453 | }
|
---|
454 | } else {
|
---|
455 | if (x != NULL) {
|
---|
456 | if (!BN_copy(x, point->X))
|
---|
457 | goto err;
|
---|
458 | }
|
---|
459 | if (y != NULL) {
|
---|
460 | if (!BN_copy(y, point->Y))
|
---|
461 | goto err;
|
---|
462 | }
|
---|
463 | if (z != NULL) {
|
---|
464 | if (!BN_copy(z, point->Z))
|
---|
465 | goto err;
|
---|
466 | }
|
---|
467 | }
|
---|
468 |
|
---|
469 | ret = 1;
|
---|
470 |
|
---|
471 | err:
|
---|
472 | BN_CTX_free(new_ctx);
|
---|
473 | return ret;
|
---|
474 | }
|
---|
475 |
|
---|
476 | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
|
---|
477 | EC_POINT *point,
|
---|
478 | const BIGNUM *x,
|
---|
479 | const BIGNUM *y, BN_CTX *ctx)
|
---|
480 | {
|
---|
481 | if (x == NULL || y == NULL) {
|
---|
482 | /*
|
---|
483 | * unlike for projective coordinates, we do not tolerate this
|
---|
484 | */
|
---|
485 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,
|
---|
486 | ERR_R_PASSED_NULL_PARAMETER);
|
---|
487 | return 0;
|
---|
488 | }
|
---|
489 |
|
---|
490 | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
|
---|
491 | BN_value_one(), ctx);
|
---|
492 | }
|
---|
493 |
|
---|
494 | int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
|
---|
495 | const EC_POINT *point,
|
---|
496 | BIGNUM *x, BIGNUM *y,
|
---|
497 | BN_CTX *ctx)
|
---|
498 | {
|
---|
499 | BN_CTX *new_ctx = NULL;
|
---|
500 | BIGNUM *Z, *Z_1, *Z_2, *Z_3;
|
---|
501 | const BIGNUM *Z_;
|
---|
502 | int ret = 0;
|
---|
503 |
|
---|
504 | if (EC_POINT_is_at_infinity(group, point)) {
|
---|
505 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
|
---|
506 | EC_R_POINT_AT_INFINITY);
|
---|
507 | return 0;
|
---|
508 | }
|
---|
509 |
|
---|
510 | if (ctx == NULL) {
|
---|
511 | ctx = new_ctx = BN_CTX_new();
|
---|
512 | if (ctx == NULL)
|
---|
513 | return 0;
|
---|
514 | }
|
---|
515 |
|
---|
516 | BN_CTX_start(ctx);
|
---|
517 | Z = BN_CTX_get(ctx);
|
---|
518 | Z_1 = BN_CTX_get(ctx);
|
---|
519 | Z_2 = BN_CTX_get(ctx);
|
---|
520 | Z_3 = BN_CTX_get(ctx);
|
---|
521 | if (Z_3 == NULL)
|
---|
522 | goto err;
|
---|
523 |
|
---|
524 | /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
|
---|
525 |
|
---|
526 | if (group->meth->field_decode) {
|
---|
527 | if (!group->meth->field_decode(group, Z, point->Z, ctx))
|
---|
528 | goto err;
|
---|
529 | Z_ = Z;
|
---|
530 | } else {
|
---|
531 | Z_ = point->Z;
|
---|
532 | }
|
---|
533 |
|
---|
534 | if (BN_is_one(Z_)) {
|
---|
535 | if (group->meth->field_decode) {
|
---|
536 | if (x != NULL) {
|
---|
537 | if (!group->meth->field_decode(group, x, point->X, ctx))
|
---|
538 | goto err;
|
---|
539 | }
|
---|
540 | if (y != NULL) {
|
---|
541 | if (!group->meth->field_decode(group, y, point->Y, ctx))
|
---|
542 | goto err;
|
---|
543 | }
|
---|
544 | } else {
|
---|
545 | if (x != NULL) {
|
---|
546 | if (!BN_copy(x, point->X))
|
---|
547 | goto err;
|
---|
548 | }
|
---|
549 | if (y != NULL) {
|
---|
550 | if (!BN_copy(y, point->Y))
|
---|
551 | goto err;
|
---|
552 | }
|
---|
553 | }
|
---|
554 | } else {
|
---|
555 | if (!BN_mod_inverse(Z_1, Z_, group->field, ctx)) {
|
---|
556 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
|
---|
557 | ERR_R_BN_LIB);
|
---|
558 | goto err;
|
---|
559 | }
|
---|
560 |
|
---|
561 | if (group->meth->field_encode == 0) {
|
---|
562 | /* field_sqr works on standard representation */
|
---|
563 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
|
---|
564 | goto err;
|
---|
565 | } else {
|
---|
566 | if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
|
---|
567 | goto err;
|
---|
568 | }
|
---|
569 |
|
---|
570 | if (x != NULL) {
|
---|
571 | /*
|
---|
572 | * in the Montgomery case, field_mul will cancel out Montgomery
|
---|
573 | * factor in X:
|
---|
574 | */
|
---|
575 | if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
|
---|
576 | goto err;
|
---|
577 | }
|
---|
578 |
|
---|
579 | if (y != NULL) {
|
---|
580 | if (group->meth->field_encode == 0) {
|
---|
581 | /*
|
---|
582 | * field_mul works on standard representation
|
---|
583 | */
|
---|
584 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
|
---|
585 | goto err;
|
---|
586 | } else {
|
---|
587 | if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
|
---|
588 | goto err;
|
---|
589 | }
|
---|
590 |
|
---|
591 | /*
|
---|
592 | * in the Montgomery case, field_mul will cancel out Montgomery
|
---|
593 | * factor in Y:
|
---|
594 | */
|
---|
595 | if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
|
---|
596 | goto err;
|
---|
597 | }
|
---|
598 | }
|
---|
599 |
|
---|
600 | ret = 1;
|
---|
601 |
|
---|
602 | err:
|
---|
603 | BN_CTX_end(ctx);
|
---|
604 | BN_CTX_free(new_ctx);
|
---|
605 | return ret;
|
---|
606 | }
|
---|
607 |
|
---|
608 | int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
---|
609 | const EC_POINT *b, BN_CTX *ctx)
|
---|
610 | {
|
---|
611 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
---|
612 | const BIGNUM *, BN_CTX *);
|
---|
613 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
---|
614 | const BIGNUM *p;
|
---|
615 | BN_CTX *new_ctx = NULL;
|
---|
616 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
|
---|
617 | int ret = 0;
|
---|
618 |
|
---|
619 | if (a == b)
|
---|
620 | return EC_POINT_dbl(group, r, a, ctx);
|
---|
621 | if (EC_POINT_is_at_infinity(group, a))
|
---|
622 | return EC_POINT_copy(r, b);
|
---|
623 | if (EC_POINT_is_at_infinity(group, b))
|
---|
624 | return EC_POINT_copy(r, a);
|
---|
625 |
|
---|
626 | field_mul = group->meth->field_mul;
|
---|
627 | field_sqr = group->meth->field_sqr;
|
---|
628 | p = group->field;
|
---|
629 |
|
---|
630 | if (ctx == NULL) {
|
---|
631 | ctx = new_ctx = BN_CTX_new();
|
---|
632 | if (ctx == NULL)
|
---|
633 | return 0;
|
---|
634 | }
|
---|
635 |
|
---|
636 | BN_CTX_start(ctx);
|
---|
637 | n0 = BN_CTX_get(ctx);
|
---|
638 | n1 = BN_CTX_get(ctx);
|
---|
639 | n2 = BN_CTX_get(ctx);
|
---|
640 | n3 = BN_CTX_get(ctx);
|
---|
641 | n4 = BN_CTX_get(ctx);
|
---|
642 | n5 = BN_CTX_get(ctx);
|
---|
643 | n6 = BN_CTX_get(ctx);
|
---|
644 | if (n6 == NULL)
|
---|
645 | goto end;
|
---|
646 |
|
---|
647 | /*
|
---|
648 | * Note that in this function we must not read components of 'a' or 'b'
|
---|
649 | * once we have written the corresponding components of 'r'. ('r' might
|
---|
650 | * be one of 'a' or 'b'.)
|
---|
651 | */
|
---|
652 |
|
---|
653 | /* n1, n2 */
|
---|
654 | if (b->Z_is_one) {
|
---|
655 | if (!BN_copy(n1, a->X))
|
---|
656 | goto end;
|
---|
657 | if (!BN_copy(n2, a->Y))
|
---|
658 | goto end;
|
---|
659 | /* n1 = X_a */
|
---|
660 | /* n2 = Y_a */
|
---|
661 | } else {
|
---|
662 | if (!field_sqr(group, n0, b->Z, ctx))
|
---|
663 | goto end;
|
---|
664 | if (!field_mul(group, n1, a->X, n0, ctx))
|
---|
665 | goto end;
|
---|
666 | /* n1 = X_a * Z_b^2 */
|
---|
667 |
|
---|
668 | if (!field_mul(group, n0, n0, b->Z, ctx))
|
---|
669 | goto end;
|
---|
670 | if (!field_mul(group, n2, a->Y, n0, ctx))
|
---|
671 | goto end;
|
---|
672 | /* n2 = Y_a * Z_b^3 */
|
---|
673 | }
|
---|
674 |
|
---|
675 | /* n3, n4 */
|
---|
676 | if (a->Z_is_one) {
|
---|
677 | if (!BN_copy(n3, b->X))
|
---|
678 | goto end;
|
---|
679 | if (!BN_copy(n4, b->Y))
|
---|
680 | goto end;
|
---|
681 | /* n3 = X_b */
|
---|
682 | /* n4 = Y_b */
|
---|
683 | } else {
|
---|
684 | if (!field_sqr(group, n0, a->Z, ctx))
|
---|
685 | goto end;
|
---|
686 | if (!field_mul(group, n3, b->X, n0, ctx))
|
---|
687 | goto end;
|
---|
688 | /* n3 = X_b * Z_a^2 */
|
---|
689 |
|
---|
690 | if (!field_mul(group, n0, n0, a->Z, ctx))
|
---|
691 | goto end;
|
---|
692 | if (!field_mul(group, n4, b->Y, n0, ctx))
|
---|
693 | goto end;
|
---|
694 | /* n4 = Y_b * Z_a^3 */
|
---|
695 | }
|
---|
696 |
|
---|
697 | /* n5, n6 */
|
---|
698 | if (!BN_mod_sub_quick(n5, n1, n3, p))
|
---|
699 | goto end;
|
---|
700 | if (!BN_mod_sub_quick(n6, n2, n4, p))
|
---|
701 | goto end;
|
---|
702 | /* n5 = n1 - n3 */
|
---|
703 | /* n6 = n2 - n4 */
|
---|
704 |
|
---|
705 | if (BN_is_zero(n5)) {
|
---|
706 | if (BN_is_zero(n6)) {
|
---|
707 | /* a is the same point as b */
|
---|
708 | BN_CTX_end(ctx);
|
---|
709 | ret = EC_POINT_dbl(group, r, a, ctx);
|
---|
710 | ctx = NULL;
|
---|
711 | goto end;
|
---|
712 | } else {
|
---|
713 | /* a is the inverse of b */
|
---|
714 | BN_zero(r->Z);
|
---|
715 | r->Z_is_one = 0;
|
---|
716 | ret = 1;
|
---|
717 | goto end;
|
---|
718 | }
|
---|
719 | }
|
---|
720 |
|
---|
721 | /* 'n7', 'n8' */
|
---|
722 | if (!BN_mod_add_quick(n1, n1, n3, p))
|
---|
723 | goto end;
|
---|
724 | if (!BN_mod_add_quick(n2, n2, n4, p))
|
---|
725 | goto end;
|
---|
726 | /* 'n7' = n1 + n3 */
|
---|
727 | /* 'n8' = n2 + n4 */
|
---|
728 |
|
---|
729 | /* Z_r */
|
---|
730 | if (a->Z_is_one && b->Z_is_one) {
|
---|
731 | if (!BN_copy(r->Z, n5))
|
---|
732 | goto end;
|
---|
733 | } else {
|
---|
734 | if (a->Z_is_one) {
|
---|
735 | if (!BN_copy(n0, b->Z))
|
---|
736 | goto end;
|
---|
737 | } else if (b->Z_is_one) {
|
---|
738 | if (!BN_copy(n0, a->Z))
|
---|
739 | goto end;
|
---|
740 | } else {
|
---|
741 | if (!field_mul(group, n0, a->Z, b->Z, ctx))
|
---|
742 | goto end;
|
---|
743 | }
|
---|
744 | if (!field_mul(group, r->Z, n0, n5, ctx))
|
---|
745 | goto end;
|
---|
746 | }
|
---|
747 | r->Z_is_one = 0;
|
---|
748 | /* Z_r = Z_a * Z_b * n5 */
|
---|
749 |
|
---|
750 | /* X_r */
|
---|
751 | if (!field_sqr(group, n0, n6, ctx))
|
---|
752 | goto end;
|
---|
753 | if (!field_sqr(group, n4, n5, ctx))
|
---|
754 | goto end;
|
---|
755 | if (!field_mul(group, n3, n1, n4, ctx))
|
---|
756 | goto end;
|
---|
757 | if (!BN_mod_sub_quick(r->X, n0, n3, p))
|
---|
758 | goto end;
|
---|
759 | /* X_r = n6^2 - n5^2 * 'n7' */
|
---|
760 |
|
---|
761 | /* 'n9' */
|
---|
762 | if (!BN_mod_lshift1_quick(n0, r->X, p))
|
---|
763 | goto end;
|
---|
764 | if (!BN_mod_sub_quick(n0, n3, n0, p))
|
---|
765 | goto end;
|
---|
766 | /* n9 = n5^2 * 'n7' - 2 * X_r */
|
---|
767 |
|
---|
768 | /* Y_r */
|
---|
769 | if (!field_mul(group, n0, n0, n6, ctx))
|
---|
770 | goto end;
|
---|
771 | if (!field_mul(group, n5, n4, n5, ctx))
|
---|
772 | goto end; /* now n5 is n5^3 */
|
---|
773 | if (!field_mul(group, n1, n2, n5, ctx))
|
---|
774 | goto end;
|
---|
775 | if (!BN_mod_sub_quick(n0, n0, n1, p))
|
---|
776 | goto end;
|
---|
777 | if (BN_is_odd(n0))
|
---|
778 | if (!BN_add(n0, n0, p))
|
---|
779 | goto end;
|
---|
780 | /* now 0 <= n0 < 2*p, and n0 is even */
|
---|
781 | if (!BN_rshift1(r->Y, n0))
|
---|
782 | goto end;
|
---|
783 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
|
---|
784 |
|
---|
785 | ret = 1;
|
---|
786 |
|
---|
787 | end:
|
---|
788 | if (ctx) /* otherwise we already called BN_CTX_end */
|
---|
789 | BN_CTX_end(ctx);
|
---|
790 | BN_CTX_free(new_ctx);
|
---|
791 | return ret;
|
---|
792 | }
|
---|
793 |
|
---|
794 | int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
---|
795 | BN_CTX *ctx)
|
---|
796 | {
|
---|
797 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
---|
798 | const BIGNUM *, BN_CTX *);
|
---|
799 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
---|
800 | const BIGNUM *p;
|
---|
801 | BN_CTX *new_ctx = NULL;
|
---|
802 | BIGNUM *n0, *n1, *n2, *n3;
|
---|
803 | int ret = 0;
|
---|
804 |
|
---|
805 | if (EC_POINT_is_at_infinity(group, a)) {
|
---|
806 | BN_zero(r->Z);
|
---|
807 | r->Z_is_one = 0;
|
---|
808 | return 1;
|
---|
809 | }
|
---|
810 |
|
---|
811 | field_mul = group->meth->field_mul;
|
---|
812 | field_sqr = group->meth->field_sqr;
|
---|
813 | p = group->field;
|
---|
814 |
|
---|
815 | if (ctx == NULL) {
|
---|
816 | ctx = new_ctx = BN_CTX_new();
|
---|
817 | if (ctx == NULL)
|
---|
818 | return 0;
|
---|
819 | }
|
---|
820 |
|
---|
821 | BN_CTX_start(ctx);
|
---|
822 | n0 = BN_CTX_get(ctx);
|
---|
823 | n1 = BN_CTX_get(ctx);
|
---|
824 | n2 = BN_CTX_get(ctx);
|
---|
825 | n3 = BN_CTX_get(ctx);
|
---|
826 | if (n3 == NULL)
|
---|
827 | goto err;
|
---|
828 |
|
---|
829 | /*
|
---|
830 | * Note that in this function we must not read components of 'a' once we
|
---|
831 | * have written the corresponding components of 'r'. ('r' might the same
|
---|
832 | * as 'a'.)
|
---|
833 | */
|
---|
834 |
|
---|
835 | /* n1 */
|
---|
836 | if (a->Z_is_one) {
|
---|
837 | if (!field_sqr(group, n0, a->X, ctx))
|
---|
838 | goto err;
|
---|
839 | if (!BN_mod_lshift1_quick(n1, n0, p))
|
---|
840 | goto err;
|
---|
841 | if (!BN_mod_add_quick(n0, n0, n1, p))
|
---|
842 | goto err;
|
---|
843 | if (!BN_mod_add_quick(n1, n0, group->a, p))
|
---|
844 | goto err;
|
---|
845 | /* n1 = 3 * X_a^2 + a_curve */
|
---|
846 | } else if (group->a_is_minus3) {
|
---|
847 | if (!field_sqr(group, n1, a->Z, ctx))
|
---|
848 | goto err;
|
---|
849 | if (!BN_mod_add_quick(n0, a->X, n1, p))
|
---|
850 | goto err;
|
---|
851 | if (!BN_mod_sub_quick(n2, a->X, n1, p))
|
---|
852 | goto err;
|
---|
853 | if (!field_mul(group, n1, n0, n2, ctx))
|
---|
854 | goto err;
|
---|
855 | if (!BN_mod_lshift1_quick(n0, n1, p))
|
---|
856 | goto err;
|
---|
857 | if (!BN_mod_add_quick(n1, n0, n1, p))
|
---|
858 | goto err;
|
---|
859 | /*-
|
---|
860 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
|
---|
861 | * = 3 * X_a^2 - 3 * Z_a^4
|
---|
862 | */
|
---|
863 | } else {
|
---|
864 | if (!field_sqr(group, n0, a->X, ctx))
|
---|
865 | goto err;
|
---|
866 | if (!BN_mod_lshift1_quick(n1, n0, p))
|
---|
867 | goto err;
|
---|
868 | if (!BN_mod_add_quick(n0, n0, n1, p))
|
---|
869 | goto err;
|
---|
870 | if (!field_sqr(group, n1, a->Z, ctx))
|
---|
871 | goto err;
|
---|
872 | if (!field_sqr(group, n1, n1, ctx))
|
---|
873 | goto err;
|
---|
874 | if (!field_mul(group, n1, n1, group->a, ctx))
|
---|
875 | goto err;
|
---|
876 | if (!BN_mod_add_quick(n1, n1, n0, p))
|
---|
877 | goto err;
|
---|
878 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
|
---|
879 | }
|
---|
880 |
|
---|
881 | /* Z_r */
|
---|
882 | if (a->Z_is_one) {
|
---|
883 | if (!BN_copy(n0, a->Y))
|
---|
884 | goto err;
|
---|
885 | } else {
|
---|
886 | if (!field_mul(group, n0, a->Y, a->Z, ctx))
|
---|
887 | goto err;
|
---|
888 | }
|
---|
889 | if (!BN_mod_lshift1_quick(r->Z, n0, p))
|
---|
890 | goto err;
|
---|
891 | r->Z_is_one = 0;
|
---|
892 | /* Z_r = 2 * Y_a * Z_a */
|
---|
893 |
|
---|
894 | /* n2 */
|
---|
895 | if (!field_sqr(group, n3, a->Y, ctx))
|
---|
896 | goto err;
|
---|
897 | if (!field_mul(group, n2, a->X, n3, ctx))
|
---|
898 | goto err;
|
---|
899 | if (!BN_mod_lshift_quick(n2, n2, 2, p))
|
---|
900 | goto err;
|
---|
901 | /* n2 = 4 * X_a * Y_a^2 */
|
---|
902 |
|
---|
903 | /* X_r */
|
---|
904 | if (!BN_mod_lshift1_quick(n0, n2, p))
|
---|
905 | goto err;
|
---|
906 | if (!field_sqr(group, r->X, n1, ctx))
|
---|
907 | goto err;
|
---|
908 | if (!BN_mod_sub_quick(r->X, r->X, n0, p))
|
---|
909 | goto err;
|
---|
910 | /* X_r = n1^2 - 2 * n2 */
|
---|
911 |
|
---|
912 | /* n3 */
|
---|
913 | if (!field_sqr(group, n0, n3, ctx))
|
---|
914 | goto err;
|
---|
915 | if (!BN_mod_lshift_quick(n3, n0, 3, p))
|
---|
916 | goto err;
|
---|
917 | /* n3 = 8 * Y_a^4 */
|
---|
918 |
|
---|
919 | /* Y_r */
|
---|
920 | if (!BN_mod_sub_quick(n0, n2, r->X, p))
|
---|
921 | goto err;
|
---|
922 | if (!field_mul(group, n0, n1, n0, ctx))
|
---|
923 | goto err;
|
---|
924 | if (!BN_mod_sub_quick(r->Y, n0, n3, p))
|
---|
925 | goto err;
|
---|
926 | /* Y_r = n1 * (n2 - X_r) - n3 */
|
---|
927 |
|
---|
928 | ret = 1;
|
---|
929 |
|
---|
930 | err:
|
---|
931 | BN_CTX_end(ctx);
|
---|
932 | BN_CTX_free(new_ctx);
|
---|
933 | return ret;
|
---|
934 | }
|
---|
935 |
|
---|
936 | int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
|
---|
937 | {
|
---|
938 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
|
---|
939 | /* point is its own inverse */
|
---|
940 | return 1;
|
---|
941 |
|
---|
942 | return BN_usub(point->Y, group->field, point->Y);
|
---|
943 | }
|
---|
944 |
|
---|
945 | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
|
---|
946 | {
|
---|
947 | return BN_is_zero(point->Z);
|
---|
948 | }
|
---|
949 |
|
---|
950 | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
|
---|
951 | BN_CTX *ctx)
|
---|
952 | {
|
---|
953 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
---|
954 | const BIGNUM *, BN_CTX *);
|
---|
955 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
---|
956 | const BIGNUM *p;
|
---|
957 | BN_CTX *new_ctx = NULL;
|
---|
958 | BIGNUM *rh, *tmp, *Z4, *Z6;
|
---|
959 | int ret = -1;
|
---|
960 |
|
---|
961 | if (EC_POINT_is_at_infinity(group, point))
|
---|
962 | return 1;
|
---|
963 |
|
---|
964 | field_mul = group->meth->field_mul;
|
---|
965 | field_sqr = group->meth->field_sqr;
|
---|
966 | p = group->field;
|
---|
967 |
|
---|
968 | if (ctx == NULL) {
|
---|
969 | ctx = new_ctx = BN_CTX_new();
|
---|
970 | if (ctx == NULL)
|
---|
971 | return -1;
|
---|
972 | }
|
---|
973 |
|
---|
974 | BN_CTX_start(ctx);
|
---|
975 | rh = BN_CTX_get(ctx);
|
---|
976 | tmp = BN_CTX_get(ctx);
|
---|
977 | Z4 = BN_CTX_get(ctx);
|
---|
978 | Z6 = BN_CTX_get(ctx);
|
---|
979 | if (Z6 == NULL)
|
---|
980 | goto err;
|
---|
981 |
|
---|
982 | /*-
|
---|
983 | * We have a curve defined by a Weierstrass equation
|
---|
984 | * y^2 = x^3 + a*x + b.
|
---|
985 | * The point to consider is given in Jacobian projective coordinates
|
---|
986 | * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
|
---|
987 | * Substituting this and multiplying by Z^6 transforms the above equation into
|
---|
988 | * Y^2 = X^3 + a*X*Z^4 + b*Z^6.
|
---|
989 | * To test this, we add up the right-hand side in 'rh'.
|
---|
990 | */
|
---|
991 |
|
---|
992 | /* rh := X^2 */
|
---|
993 | if (!field_sqr(group, rh, point->X, ctx))
|
---|
994 | goto err;
|
---|
995 |
|
---|
996 | if (!point->Z_is_one) {
|
---|
997 | if (!field_sqr(group, tmp, point->Z, ctx))
|
---|
998 | goto err;
|
---|
999 | if (!field_sqr(group, Z4, tmp, ctx))
|
---|
1000 | goto err;
|
---|
1001 | if (!field_mul(group, Z6, Z4, tmp, ctx))
|
---|
1002 | goto err;
|
---|
1003 |
|
---|
1004 | /* rh := (rh + a*Z^4)*X */
|
---|
1005 | if (group->a_is_minus3) {
|
---|
1006 | if (!BN_mod_lshift1_quick(tmp, Z4, p))
|
---|
1007 | goto err;
|
---|
1008 | if (!BN_mod_add_quick(tmp, tmp, Z4, p))
|
---|
1009 | goto err;
|
---|
1010 | if (!BN_mod_sub_quick(rh, rh, tmp, p))
|
---|
1011 | goto err;
|
---|
1012 | if (!field_mul(group, rh, rh, point->X, ctx))
|
---|
1013 | goto err;
|
---|
1014 | } else {
|
---|
1015 | if (!field_mul(group, tmp, Z4, group->a, ctx))
|
---|
1016 | goto err;
|
---|
1017 | if (!BN_mod_add_quick(rh, rh, tmp, p))
|
---|
1018 | goto err;
|
---|
1019 | if (!field_mul(group, rh, rh, point->X, ctx))
|
---|
1020 | goto err;
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | /* rh := rh + b*Z^6 */
|
---|
1024 | if (!field_mul(group, tmp, group->b, Z6, ctx))
|
---|
1025 | goto err;
|
---|
1026 | if (!BN_mod_add_quick(rh, rh, tmp, p))
|
---|
1027 | goto err;
|
---|
1028 | } else {
|
---|
1029 | /* point->Z_is_one */
|
---|
1030 |
|
---|
1031 | /* rh := (rh + a)*X */
|
---|
1032 | if (!BN_mod_add_quick(rh, rh, group->a, p))
|
---|
1033 | goto err;
|
---|
1034 | if (!field_mul(group, rh, rh, point->X, ctx))
|
---|
1035 | goto err;
|
---|
1036 | /* rh := rh + b */
|
---|
1037 | if (!BN_mod_add_quick(rh, rh, group->b, p))
|
---|
1038 | goto err;
|
---|
1039 | }
|
---|
1040 |
|
---|
1041 | /* 'lh' := Y^2 */
|
---|
1042 | if (!field_sqr(group, tmp, point->Y, ctx))
|
---|
1043 | goto err;
|
---|
1044 |
|
---|
1045 | ret = (0 == BN_ucmp(tmp, rh));
|
---|
1046 |
|
---|
1047 | err:
|
---|
1048 | BN_CTX_end(ctx);
|
---|
1049 | BN_CTX_free(new_ctx);
|
---|
1050 | return ret;
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 | int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
|
---|
1054 | const EC_POINT *b, BN_CTX *ctx)
|
---|
1055 | {
|
---|
1056 | /*-
|
---|
1057 | * return values:
|
---|
1058 | * -1 error
|
---|
1059 | * 0 equal (in affine coordinates)
|
---|
1060 | * 1 not equal
|
---|
1061 | */
|
---|
1062 |
|
---|
1063 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
---|
1064 | const BIGNUM *, BN_CTX *);
|
---|
1065 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
---|
1066 | BN_CTX *new_ctx = NULL;
|
---|
1067 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
|
---|
1068 | const BIGNUM *tmp1_, *tmp2_;
|
---|
1069 | int ret = -1;
|
---|
1070 |
|
---|
1071 | if (EC_POINT_is_at_infinity(group, a)) {
|
---|
1072 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
|
---|
1073 | }
|
---|
1074 |
|
---|
1075 | if (EC_POINT_is_at_infinity(group, b))
|
---|
1076 | return 1;
|
---|
1077 |
|
---|
1078 | if (a->Z_is_one && b->Z_is_one) {
|
---|
1079 | return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 | field_mul = group->meth->field_mul;
|
---|
1083 | field_sqr = group->meth->field_sqr;
|
---|
1084 |
|
---|
1085 | if (ctx == NULL) {
|
---|
1086 | ctx = new_ctx = BN_CTX_new();
|
---|
1087 | if (ctx == NULL)
|
---|
1088 | return -1;
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 | BN_CTX_start(ctx);
|
---|
1092 | tmp1 = BN_CTX_get(ctx);
|
---|
1093 | tmp2 = BN_CTX_get(ctx);
|
---|
1094 | Za23 = BN_CTX_get(ctx);
|
---|
1095 | Zb23 = BN_CTX_get(ctx);
|
---|
1096 | if (Zb23 == NULL)
|
---|
1097 | goto end;
|
---|
1098 |
|
---|
1099 | /*-
|
---|
1100 | * We have to decide whether
|
---|
1101 | * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
|
---|
1102 | * or equivalently, whether
|
---|
1103 | * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
|
---|
1104 | */
|
---|
1105 |
|
---|
1106 | if (!b->Z_is_one) {
|
---|
1107 | if (!field_sqr(group, Zb23, b->Z, ctx))
|
---|
1108 | goto end;
|
---|
1109 | if (!field_mul(group, tmp1, a->X, Zb23, ctx))
|
---|
1110 | goto end;
|
---|
1111 | tmp1_ = tmp1;
|
---|
1112 | } else
|
---|
1113 | tmp1_ = a->X;
|
---|
1114 | if (!a->Z_is_one) {
|
---|
1115 | if (!field_sqr(group, Za23, a->Z, ctx))
|
---|
1116 | goto end;
|
---|
1117 | if (!field_mul(group, tmp2, b->X, Za23, ctx))
|
---|
1118 | goto end;
|
---|
1119 | tmp2_ = tmp2;
|
---|
1120 | } else
|
---|
1121 | tmp2_ = b->X;
|
---|
1122 |
|
---|
1123 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */
|
---|
1124 | if (BN_cmp(tmp1_, tmp2_) != 0) {
|
---|
1125 | ret = 1; /* points differ */
|
---|
1126 | goto end;
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 | if (!b->Z_is_one) {
|
---|
1130 | if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
|
---|
1131 | goto end;
|
---|
1132 | if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
|
---|
1133 | goto end;
|
---|
1134 | /* tmp1_ = tmp1 */
|
---|
1135 | } else
|
---|
1136 | tmp1_ = a->Y;
|
---|
1137 | if (!a->Z_is_one) {
|
---|
1138 | if (!field_mul(group, Za23, Za23, a->Z, ctx))
|
---|
1139 | goto end;
|
---|
1140 | if (!field_mul(group, tmp2, b->Y, Za23, ctx))
|
---|
1141 | goto end;
|
---|
1142 | /* tmp2_ = tmp2 */
|
---|
1143 | } else
|
---|
1144 | tmp2_ = b->Y;
|
---|
1145 |
|
---|
1146 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
|
---|
1147 | if (BN_cmp(tmp1_, tmp2_) != 0) {
|
---|
1148 | ret = 1; /* points differ */
|
---|
1149 | goto end;
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 | /* points are equal */
|
---|
1153 | ret = 0;
|
---|
1154 |
|
---|
1155 | end:
|
---|
1156 | BN_CTX_end(ctx);
|
---|
1157 | BN_CTX_free(new_ctx);
|
---|
1158 | return ret;
|
---|
1159 | }
|
---|
1160 |
|
---|
1161 | int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
|
---|
1162 | BN_CTX *ctx)
|
---|
1163 | {
|
---|
1164 | BN_CTX *new_ctx = NULL;
|
---|
1165 | BIGNUM *x, *y;
|
---|
1166 | int ret = 0;
|
---|
1167 |
|
---|
1168 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
|
---|
1169 | return 1;
|
---|
1170 |
|
---|
1171 | if (ctx == NULL) {
|
---|
1172 | ctx = new_ctx = BN_CTX_new();
|
---|
1173 | if (ctx == NULL)
|
---|
1174 | return 0;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | BN_CTX_start(ctx);
|
---|
1178 | x = BN_CTX_get(ctx);
|
---|
1179 | y = BN_CTX_get(ctx);
|
---|
1180 | if (y == NULL)
|
---|
1181 | goto err;
|
---|
1182 |
|
---|
1183 | if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx))
|
---|
1184 | goto err;
|
---|
1185 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx))
|
---|
1186 | goto err;
|
---|
1187 | if (!point->Z_is_one) {
|
---|
1188 | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
|
---|
1189 | goto err;
|
---|
1190 | }
|
---|
1191 |
|
---|
1192 | ret = 1;
|
---|
1193 |
|
---|
1194 | err:
|
---|
1195 | BN_CTX_end(ctx);
|
---|
1196 | BN_CTX_free(new_ctx);
|
---|
1197 | return ret;
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
|
---|
1201 | EC_POINT *points[], BN_CTX *ctx)
|
---|
1202 | {
|
---|
1203 | BN_CTX *new_ctx = NULL;
|
---|
1204 | BIGNUM *tmp, *tmp_Z;
|
---|
1205 | BIGNUM **prod_Z = NULL;
|
---|
1206 | size_t i;
|
---|
1207 | int ret = 0;
|
---|
1208 |
|
---|
1209 | if (num == 0)
|
---|
1210 | return 1;
|
---|
1211 |
|
---|
1212 | if (ctx == NULL) {
|
---|
1213 | ctx = new_ctx = BN_CTX_new();
|
---|
1214 | if (ctx == NULL)
|
---|
1215 | return 0;
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 | BN_CTX_start(ctx);
|
---|
1219 | tmp = BN_CTX_get(ctx);
|
---|
1220 | tmp_Z = BN_CTX_get(ctx);
|
---|
1221 | if (tmp == NULL || tmp_Z == NULL)
|
---|
1222 | goto err;
|
---|
1223 |
|
---|
1224 | prod_Z = OPENSSL_malloc(num * sizeof prod_Z[0]);
|
---|
1225 | if (prod_Z == NULL)
|
---|
1226 | goto err;
|
---|
1227 | for (i = 0; i < num; i++) {
|
---|
1228 | prod_Z[i] = BN_new();
|
---|
1229 | if (prod_Z[i] == NULL)
|
---|
1230 | goto err;
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | /*
|
---|
1234 | * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
|
---|
1235 | * skipping any zero-valued inputs (pretend that they're 1).
|
---|
1236 | */
|
---|
1237 |
|
---|
1238 | if (!BN_is_zero(points[0]->Z)) {
|
---|
1239 | if (!BN_copy(prod_Z[0], points[0]->Z))
|
---|
1240 | goto err;
|
---|
1241 | } else {
|
---|
1242 | if (group->meth->field_set_to_one != 0) {
|
---|
1243 | if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
|
---|
1244 | goto err;
|
---|
1245 | } else {
|
---|
1246 | if (!BN_one(prod_Z[0]))
|
---|
1247 | goto err;
|
---|
1248 | }
|
---|
1249 | }
|
---|
1250 |
|
---|
1251 | for (i = 1; i < num; i++) {
|
---|
1252 | if (!BN_is_zero(points[i]->Z)) {
|
---|
1253 | if (!group->
|
---|
1254 | meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
|
---|
1255 | ctx))
|
---|
1256 | goto err;
|
---|
1257 | } else {
|
---|
1258 | if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
|
---|
1259 | goto err;
|
---|
1260 | }
|
---|
1261 | }
|
---|
1262 |
|
---|
1263 | /*
|
---|
1264 | * Now use a single explicit inversion to replace every non-zero
|
---|
1265 | * points[i]->Z by its inverse.
|
---|
1266 | */
|
---|
1267 |
|
---|
1268 | if (!BN_mod_inverse(tmp, prod_Z[num - 1], group->field, ctx)) {
|
---|
1269 | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
|
---|
1270 | goto err;
|
---|
1271 | }
|
---|
1272 | if (group->meth->field_encode != 0) {
|
---|
1273 | /*
|
---|
1274 | * In the Montgomery case, we just turned R*H (representing H) into
|
---|
1275 | * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
|
---|
1276 | * multiply by the Montgomery factor twice.
|
---|
1277 | */
|
---|
1278 | if (!group->meth->field_encode(group, tmp, tmp, ctx))
|
---|
1279 | goto err;
|
---|
1280 | if (!group->meth->field_encode(group, tmp, tmp, ctx))
|
---|
1281 | goto err;
|
---|
1282 | }
|
---|
1283 |
|
---|
1284 | for (i = num - 1; i > 0; --i) {
|
---|
1285 | /*
|
---|
1286 | * Loop invariant: tmp is the product of the inverses of points[0]->Z
|
---|
1287 | * .. points[i]->Z (zero-valued inputs skipped).
|
---|
1288 | */
|
---|
1289 | if (!BN_is_zero(points[i]->Z)) {
|
---|
1290 | /*
|
---|
1291 | * Set tmp_Z to the inverse of points[i]->Z (as product of Z
|
---|
1292 | * inverses 0 .. i, Z values 0 .. i - 1).
|
---|
1293 | */
|
---|
1294 | if (!group->
|
---|
1295 | meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
|
---|
1296 | goto err;
|
---|
1297 | /*
|
---|
1298 | * Update tmp to satisfy the loop invariant for i - 1.
|
---|
1299 | */
|
---|
1300 | if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
|
---|
1301 | goto err;
|
---|
1302 | /* Replace points[i]->Z by its inverse. */
|
---|
1303 | if (!BN_copy(points[i]->Z, tmp_Z))
|
---|
1304 | goto err;
|
---|
1305 | }
|
---|
1306 | }
|
---|
1307 |
|
---|
1308 | if (!BN_is_zero(points[0]->Z)) {
|
---|
1309 | /* Replace points[0]->Z by its inverse. */
|
---|
1310 | if (!BN_copy(points[0]->Z, tmp))
|
---|
1311 | goto err;
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 | /* Finally, fix up the X and Y coordinates for all points. */
|
---|
1315 |
|
---|
1316 | for (i = 0; i < num; i++) {
|
---|
1317 | EC_POINT *p = points[i];
|
---|
1318 |
|
---|
1319 | if (!BN_is_zero(p->Z)) {
|
---|
1320 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
|
---|
1321 |
|
---|
1322 | if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
|
---|
1323 | goto err;
|
---|
1324 | if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
|
---|
1325 | goto err;
|
---|
1326 |
|
---|
1327 | if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
|
---|
1328 | goto err;
|
---|
1329 | if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
|
---|
1330 | goto err;
|
---|
1331 |
|
---|
1332 | if (group->meth->field_set_to_one != 0) {
|
---|
1333 | if (!group->meth->field_set_to_one(group, p->Z, ctx))
|
---|
1334 | goto err;
|
---|
1335 | } else {
|
---|
1336 | if (!BN_one(p->Z))
|
---|
1337 | goto err;
|
---|
1338 | }
|
---|
1339 | p->Z_is_one = 1;
|
---|
1340 | }
|
---|
1341 | }
|
---|
1342 |
|
---|
1343 | ret = 1;
|
---|
1344 |
|
---|
1345 | err:
|
---|
1346 | BN_CTX_end(ctx);
|
---|
1347 | BN_CTX_free(new_ctx);
|
---|
1348 | if (prod_Z != NULL) {
|
---|
1349 | for (i = 0; i < num; i++) {
|
---|
1350 | if (prod_Z[i] == NULL)
|
---|
1351 | break;
|
---|
1352 | BN_clear_free(prod_Z[i]);
|
---|
1353 | }
|
---|
1354 | OPENSSL_free(prod_Z);
|
---|
1355 | }
|
---|
1356 | return ret;
|
---|
1357 | }
|
---|
1358 |
|
---|
1359 | int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
---|
1360 | const BIGNUM *b, BN_CTX *ctx)
|
---|
1361 | {
|
---|
1362 | return BN_mod_mul(r, a, b, group->field, ctx);
|
---|
1363 | }
|
---|
1364 |
|
---|
1365 | int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
---|
1366 | BN_CTX *ctx)
|
---|
1367 | {
|
---|
1368 | return BN_mod_sqr(r, a, group->field, ctx);
|
---|
1369 | }
|
---|