VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.0g/crypto/modes/asm/ghashv8-armx.pl@ 69881

Last change on this file since 69881 was 69881, checked in by vboxsync, 7 years ago

Update OpenSSL to 1.1.0g.
bugref:8070: src/libs maintenance

  • Property svn:eol-style set to LF
  • Property svn:executable set to *
File size: 11.6 KB
Line 
1#! /usr/bin/env perl
2# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
18#
19# June 2014
20#
21# Initial version was developed in tight cooperation with Ard
22# Biesheuvel <[email protected]> from bits-n-pieces from
23# other assembly modules. Just like aesv8-armx.pl this module
24# supports both AArch32 and AArch64 execution modes.
25#
26# July 2014
27#
28# Implement 2x aggregated reduction [see ghash-x86.pl for background
29# information].
30#
31# Current performance in cycles per processed byte:
32#
33# PMULL[2] 32-bit NEON(*)
34# Apple A7 0.92 5.62
35# Cortex-A53 1.01 8.39
36# Cortex-A57 1.17 7.61
37# Denver 0.71 6.02
38# Mongoose 1.10 8.06
39#
40# (*) presented for reference/comparison purposes;
41
42$flavour = shift;
43$output = shift;
44
45$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
46( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
47( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
48die "can't locate arm-xlate.pl";
49
50open OUT,"| \"$^X\" $xlate $flavour $output";
51*STDOUT=*OUT;
52
53$Xi="x0"; # argument block
54$Htbl="x1";
55$inp="x2";
56$len="x3";
57
58$inc="x12";
59
60{
61my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
62my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));
63
64$code=<<___;
65#include "arm_arch.h"
66
67.text
68___
69$code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/);
70$code.=<<___ if ($flavour !~ /64/);
71.fpu neon
72.code 32
73#undef __thumb2__
74___
75
76################################################################################
77# void gcm_init_v8(u128 Htable[16],const u64 H[2]);
78#
79# input: 128-bit H - secret parameter E(K,0^128)
80# output: precomputed table filled with degrees of twisted H;
81# H is twisted to handle reverse bitness of GHASH;
82# only few of 16 slots of Htable[16] are used;
83# data is opaque to outside world (which allows to
84# optimize the code independently);
85#
86$code.=<<___;
87.global gcm_init_v8
88.type gcm_init_v8,%function
89.align 4
90gcm_init_v8:
91 vld1.64 {$t1},[x1] @ load input H
92 vmov.i8 $xC2,#0xe1
93 vshl.i64 $xC2,$xC2,#57 @ 0xc2.0
94 vext.8 $IN,$t1,$t1,#8
95 vshr.u64 $t2,$xC2,#63
96 vdup.32 $t1,${t1}[1]
97 vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01
98 vshr.u64 $t2,$IN,#63
99 vshr.s32 $t1,$t1,#31 @ broadcast carry bit
100 vand $t2,$t2,$t0
101 vshl.i64 $IN,$IN,#1
102 vext.8 $t2,$t2,$t2,#8
103 vand $t0,$t0,$t1
104 vorr $IN,$IN,$t2 @ H<<<=1
105 veor $H,$IN,$t0 @ twisted H
106 vst1.64 {$H},[x0],#16 @ store Htable[0]
107
108 @ calculate H^2
109 vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing
110 vpmull.p64 $Xl,$H,$H
111 veor $t0,$t0,$H
112 vpmull2.p64 $Xh,$H,$H
113 vpmull.p64 $Xm,$t0,$t0
114
115 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
116 veor $t2,$Xl,$Xh
117 veor $Xm,$Xm,$t1
118 veor $Xm,$Xm,$t2
119 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase
120
121 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
122 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
123 veor $Xl,$Xm,$t2
124
125 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase
126 vpmull.p64 $Xl,$Xl,$xC2
127 veor $t2,$t2,$Xh
128 veor $H2,$Xl,$t2
129
130 vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing
131 veor $t1,$t1,$H2
132 vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed
133 vst1.64 {$Hhl-$H2},[x0] @ store Htable[1..2]
134
135 ret
136.size gcm_init_v8,.-gcm_init_v8
137___
138################################################################################
139# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
140#
141# input: Xi - current hash value;
142# Htable - table precomputed in gcm_init_v8;
143# output: Xi - next hash value Xi;
144#
145$code.=<<___;
146.global gcm_gmult_v8
147.type gcm_gmult_v8,%function
148.align 4
149gcm_gmult_v8:
150 vld1.64 {$t1},[$Xi] @ load Xi
151 vmov.i8 $xC2,#0xe1
152 vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ...
153 vshl.u64 $xC2,$xC2,#57
154#ifndef __ARMEB__
155 vrev64.8 $t1,$t1
156#endif
157 vext.8 $IN,$t1,$t1,#8
158
159 vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo
160 veor $t1,$t1,$IN @ Karatsuba pre-processing
161 vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi
162 vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi)
163
164 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
165 veor $t2,$Xl,$Xh
166 veor $Xm,$Xm,$t1
167 veor $Xm,$Xm,$t2
168 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
169
170 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
171 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
172 veor $Xl,$Xm,$t2
173
174 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
175 vpmull.p64 $Xl,$Xl,$xC2
176 veor $t2,$t2,$Xh
177 veor $Xl,$Xl,$t2
178
179#ifndef __ARMEB__
180 vrev64.8 $Xl,$Xl
181#endif
182 vext.8 $Xl,$Xl,$Xl,#8
183 vst1.64 {$Xl},[$Xi] @ write out Xi
184
185 ret
186.size gcm_gmult_v8,.-gcm_gmult_v8
187___
188################################################################################
189# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
190#
191# input: table precomputed in gcm_init_v8;
192# current hash value Xi;
193# pointer to input data;
194# length of input data in bytes, but divisible by block size;
195# output: next hash value Xi;
196#
197$code.=<<___;
198.global gcm_ghash_v8
199.type gcm_ghash_v8,%function
200.align 4
201gcm_ghash_v8:
202___
203$code.=<<___ if ($flavour !~ /64/);
204 vstmdb sp!,{d8-d15} @ 32-bit ABI says so
205___
206$code.=<<___;
207 vld1.64 {$Xl},[$Xi] @ load [rotated] Xi
208 @ "[rotated]" means that
209 @ loaded value would have
210 @ to be rotated in order to
211 @ make it appear as in
212 @ alorithm specification
213 subs $len,$len,#32 @ see if $len is 32 or larger
214 mov $inc,#16 @ $inc is used as post-
215 @ increment for input pointer;
216 @ as loop is modulo-scheduled
217 @ $inc is zeroed just in time
218 @ to preclude oversteping
219 @ inp[len], which means that
220 @ last block[s] are actually
221 @ loaded twice, but last
222 @ copy is not processed
223 vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2
224 vmov.i8 $xC2,#0xe1
225 vld1.64 {$H2},[$Htbl]
226 cclr $inc,eq @ is it time to zero $inc?
227 vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi
228 vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0]
229 vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant
230#ifndef __ARMEB__
231 vrev64.8 $t0,$t0
232 vrev64.8 $Xl,$Xl
233#endif
234 vext.8 $IN,$t0,$t0,#8 @ rotate I[0]
235 b.lo .Lodd_tail_v8 @ $len was less than 32
236___
237{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
238 #######
239 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
240 # [(H*Ii+1) + (H*Xi+1)] mod P =
241 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
242 #
243$code.=<<___;
244 vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1]
245#ifndef __ARMEB__
246 vrev64.8 $t1,$t1
247#endif
248 vext.8 $In,$t1,$t1,#8
249 veor $IN,$IN,$Xl @ I[i]^=Xi
250 vpmull.p64 $Xln,$H,$In @ H·Ii+1
251 veor $t1,$t1,$In @ Karatsuba pre-processing
252 vpmull2.p64 $Xhn,$H,$In
253 b .Loop_mod2x_v8
254
255.align 4
256.Loop_mod2x_v8:
257 vext.8 $t2,$IN,$IN,#8
258 subs $len,$len,#32 @ is there more data?
259 vpmull.p64 $Xl,$H2,$IN @ H^2.lo·Xi.lo
260 cclr $inc,lo @ is it time to zero $inc?
261
262 vpmull.p64 $Xmn,$Hhl,$t1
263 veor $t2,$t2,$IN @ Karatsuba pre-processing
264 vpmull2.p64 $Xh,$H2,$IN @ H^2.hi·Xi.hi
265 veor $Xl,$Xl,$Xln @ accumulate
266 vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi)
267 vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2]
268
269 veor $Xh,$Xh,$Xhn
270 cclr $inc,eq @ is it time to zero $inc?
271 veor $Xm,$Xm,$Xmn
272
273 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
274 veor $t2,$Xl,$Xh
275 veor $Xm,$Xm,$t1
276 vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3]
277#ifndef __ARMEB__
278 vrev64.8 $t0,$t0
279#endif
280 veor $Xm,$Xm,$t2
281 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
282
283#ifndef __ARMEB__
284 vrev64.8 $t1,$t1
285#endif
286 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
287 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
288 vext.8 $In,$t1,$t1,#8
289 vext.8 $IN,$t0,$t0,#8
290 veor $Xl,$Xm,$t2
291 vpmull.p64 $Xln,$H,$In @ H·Ii+1
292 veor $IN,$IN,$Xh @ accumulate $IN early
293
294 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
295 vpmull.p64 $Xl,$Xl,$xC2
296 veor $IN,$IN,$t2
297 veor $t1,$t1,$In @ Karatsuba pre-processing
298 veor $IN,$IN,$Xl
299 vpmull2.p64 $Xhn,$H,$In
300 b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes
301
302 veor $Xh,$Xh,$t2
303 vext.8 $IN,$t0,$t0,#8 @ re-construct $IN
304 adds $len,$len,#32 @ re-construct $len
305 veor $Xl,$Xl,$Xh @ re-construct $Xl
306 b.eq .Ldone_v8 @ is $len zero?
307___
308}
309$code.=<<___;
310.Lodd_tail_v8:
311 vext.8 $t2,$Xl,$Xl,#8
312 veor $IN,$IN,$Xl @ inp^=Xi
313 veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi
314
315 vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo
316 veor $t1,$t1,$IN @ Karatsuba pre-processing
317 vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi
318 vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi)
319
320 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
321 veor $t2,$Xl,$Xh
322 veor $Xm,$Xm,$t1
323 veor $Xm,$Xm,$t2
324 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
325
326 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
327 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
328 veor $Xl,$Xm,$t2
329
330 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
331 vpmull.p64 $Xl,$Xl,$xC2
332 veor $t2,$t2,$Xh
333 veor $Xl,$Xl,$t2
334
335.Ldone_v8:
336#ifndef __ARMEB__
337 vrev64.8 $Xl,$Xl
338#endif
339 vext.8 $Xl,$Xl,$Xl,#8
340 vst1.64 {$Xl},[$Xi] @ write out Xi
341
342___
343$code.=<<___ if ($flavour !~ /64/);
344 vldmia sp!,{d8-d15} @ 32-bit ABI says so
345___
346$code.=<<___;
347 ret
348.size gcm_ghash_v8,.-gcm_ghash_v8
349___
350}
351$code.=<<___;
352.asciz "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
353.align 2
354___
355
356if ($flavour =~ /64/) { ######## 64-bit code
357 sub unvmov {
358 my $arg=shift;
359
360 $arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
361 sprintf "ins v%d.d[%d],v%d.d[%d]",$1,($2 eq "lo")?0:1,$3,($4 eq "lo")?0:1;
362 }
363 foreach(split("\n",$code)) {
364 s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel $1$2,$1zr,$1$2,$3/o or
365 s/vmov\.i8/movi/o or # fix up legacy mnemonics
366 s/vmov\s+(.*)/unvmov($1)/geo or
367 s/vext\.8/ext/o or
368 s/vshr\.s/sshr\.s/o or
369 s/vshr/ushr/o or
370 s/^(\s+)v/$1/o or # strip off v prefix
371 s/\bbx\s+lr\b/ret/o;
372
373 s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo; # old->new registers
374 s/@\s/\/\//o; # old->new style commentary
375
376 # fix up remainig legacy suffixes
377 s/\.[ui]?8(\s)/$1/o;
378 s/\.[uis]?32//o and s/\.16b/\.4s/go;
379 m/\.p64/o and s/\.16b/\.1q/o; # 1st pmull argument
380 m/l\.p64/o and s/\.16b/\.1d/go; # 2nd and 3rd pmull arguments
381 s/\.[uisp]?64//o and s/\.16b/\.2d/go;
382 s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;
383
384 print $_,"\n";
385 }
386} else { ######## 32-bit code
387 sub unvdup32 {
388 my $arg=shift;
389
390 $arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
391 sprintf "vdup.32 q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
392 }
393 sub unvpmullp64 {
394 my ($mnemonic,$arg)=@_;
395
396 if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
397 my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
398 |(($2&7)<<17)|(($2&8)<<4)
399 |(($3&7)<<1) |(($3&8)<<2);
400 $word |= 0x00010001 if ($mnemonic =~ "2");
401 # since ARMv7 instructions are always encoded little-endian.
402 # correct solution is to use .inst directive, but older
403 # assemblers don't implement it:-(
404 sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
405 $word&0xff,($word>>8)&0xff,
406 ($word>>16)&0xff,($word>>24)&0xff,
407 $mnemonic,$arg;
408 }
409 }
410
411 foreach(split("\n",$code)) {
412 s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers
413 s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers
414 s/\/\/\s?/@ /o; # new->old style commentary
415
416 # fix up remainig new-style suffixes
417 s/\],#[0-9]+/]!/o;
418
419 s/cclr\s+([^,]+),\s*([a-z]+)/mov$2 $1,#0/o or
420 s/vdup\.32\s+(.*)/unvdup32($1)/geo or
421 s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo or
422 s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or
423 s/^(\s+)b\./$1b/o or
424 s/^(\s+)ret/$1bx\tlr/o;
425
426 print $_,"\n";
427 }
428}
429
430close STDOUT; # enforce flush
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette