VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.0g/crypto/rc4/asm/rc4-x86_64.pl@ 69881

Last change on this file since 69881 was 69881, checked in by vboxsync, 7 years ago

Update OpenSSL to 1.1.0g.
bugref:8070: src/libs maintenance

  • Property svn:eol-style set to LF
  • Property svn:executable set to *
File size: 15.8 KB
Line 
1#! /usr/bin/env perl
2# Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# July 2004
18#
19# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
20# "hand-coded assembler"] doesn't stand for the whole improvement
21# coefficient. It turned out that eliminating RC4_CHAR from config
22# line results in ~40% improvement (yes, even for C implementation).
23# Presumably it has everything to do with AMD cache architecture and
24# RAW or whatever penalties. Once again! The module *requires* config
25# line *without* RC4_CHAR! As for coding "secret," I bet on partial
26# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
27# I simply 'inc %r8b'. Even though optimization manual discourages
28# to operate on partial registers, it turned out to be the best bet.
29# At least for AMD... How IA32E would perform remains to be seen...
30
31# November 2004
32#
33# As was shown by Marc Bevand reordering of couple of load operations
34# results in even higher performance gain of 3.3x:-) At least on
35# Opteron... For reference, 1x in this case is RC4_CHAR C-code
36# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
37# Latter means that if you want to *estimate* what to expect from
38# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
39
40# November 2004
41#
42# Intel P4 EM64T core was found to run the AMD64 code really slow...
43# The only way to achieve comparable performance on P4 was to keep
44# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
45# compose blended code, which would perform even within 30% marginal
46# on either AMD and Intel platforms, I implement both cases. See
47# rc4_skey.c for further details...
48
49# April 2005
50#
51# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
52# those with add/sub results in 50% performance improvement of folded
53# loop...
54
55# May 2005
56#
57# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
58# performance by >30% [unlike P4 32-bit case that is]. But this is
59# provided that loads are reordered even more aggressively! Both code
60# paths, AMD64 and EM64T, reorder loads in essentially same manner
61# as my IA-64 implementation. On Opteron this resulted in modest 5%
62# improvement [I had to test it], while final Intel P4 performance
63# achieves respectful 432MBps on 2.8GHz processor now. For reference.
64# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
65# RC4_INT code-path. While if executed on Opteron, it's only 25%
66# slower than the RC4_INT one [meaning that if CPU µ-arch detection
67# is not implemented, then this final RC4_CHAR code-path should be
68# preferred, as it provides better *all-round* performance].
69
70# March 2007
71#
72# Intel Core2 was observed to perform poorly on both code paths:-( It
73# apparently suffers from some kind of partial register stall, which
74# occurs in 64-bit mode only [as virtually identical 32-bit loop was
75# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
76# cloop1 boosts its performance by 80%! This loop appears to be optimal
77# fit for Core2 and therefore the code was modified to skip cloop8 on
78# this CPU.
79
80# May 2010
81#
82# Intel Westmere was observed to perform suboptimally. Adding yet
83# another movzb to cloop1 improved performance by almost 50%! Core2
84# performance is improved too, but nominally...
85
86# May 2011
87#
88# The only code path that was not modified is P4-specific one. Non-P4
89# Intel code path optimization is heavily based on submission by Maxim
90# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
91# some of the ideas even in attempt to optmize the original RC4_INT
92# code path... Current performance in cycles per processed byte (less
93# is better) and improvement coefficients relative to previous
94# version of this module are:
95#
96# Opteron 5.3/+0%(*)
97# P4 6.5
98# Core2 6.2/+15%(**)
99# Westmere 4.2/+60%
100# Sandy Bridge 4.2/+120%
101# Atom 9.3/+80%
102# VIA Nano 6.4/+4%
103# Ivy Bridge 4.1/+30%
104# Bulldozer 4.5/+30%(*)
105#
106# (*) But corresponding loop has less instructions, which should have
107# positive effect on upcoming Bulldozer, which has one less ALU.
108# For reference, Intel code runs at 6.8 cpb rate on Opteron.
109# (**) Note that Core2 result is ~15% lower than corresponding result
110# for 32-bit code, meaning that it's possible to improve it,
111# but more than likely at the cost of the others (see rc4-586.pl
112# to get the idea)...
113
114$flavour = shift;
115$output = shift;
116if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
117
118$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
119
120$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
121( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
122( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
123die "can't locate x86_64-xlate.pl";
124
125open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
126*STDOUT=*OUT;
127
128$dat="%rdi"; # arg1
129$len="%rsi"; # arg2
130$inp="%rdx"; # arg3
131$out="%rcx"; # arg4
132
133{
134$code=<<___;
135.text
136.extern OPENSSL_ia32cap_P
137
138.globl RC4
139.type RC4,\@function,4
140.align 16
141RC4: or $len,$len
142 jne .Lentry
143 ret
144.Lentry:
145 push %rbx
146 push %r12
147 push %r13
148.Lprologue:
149 mov $len,%r11
150 mov $inp,%r12
151 mov $out,%r13
152___
153my $len="%r11"; # reassign input arguments
154my $inp="%r12";
155my $out="%r13";
156
157my @XX=("%r10","%rsi");
158my @TX=("%rax","%rbx");
159my $YY="%rcx";
160my $TY="%rdx";
161
162$code.=<<___;
163 xor $XX[0],$XX[0]
164 xor $YY,$YY
165
166 lea 8($dat),$dat
167 mov -8($dat),$XX[0]#b
168 mov -4($dat),$YY#b
169 cmpl \$-1,256($dat)
170 je .LRC4_CHAR
171 mov OPENSSL_ia32cap_P(%rip),%r8d
172 xor $TX[1],$TX[1]
173 inc $XX[0]#b
174 sub $XX[0],$TX[1]
175 sub $inp,$out
176 movl ($dat,$XX[0],4),$TX[0]#d
177 test \$-16,$len
178 jz .Lloop1
179 bt \$30,%r8d # Intel CPU?
180 jc .Lintel
181 and \$7,$TX[1]
182 lea 1($XX[0]),$XX[1]
183 jz .Loop8
184 sub $TX[1],$len
185.Loop8_warmup:
186 add $TX[0]#b,$YY#b
187 movl ($dat,$YY,4),$TY#d
188 movl $TX[0]#d,($dat,$YY,4)
189 movl $TY#d,($dat,$XX[0],4)
190 add $TY#b,$TX[0]#b
191 inc $XX[0]#b
192 movl ($dat,$TX[0],4),$TY#d
193 movl ($dat,$XX[0],4),$TX[0]#d
194 xorb ($inp),$TY#b
195 movb $TY#b,($out,$inp)
196 lea 1($inp),$inp
197 dec $TX[1]
198 jnz .Loop8_warmup
199
200 lea 1($XX[0]),$XX[1]
201 jmp .Loop8
202.align 16
203.Loop8:
204___
205for ($i=0;$i<8;$i++) {
206$code.=<<___ if ($i==7);
207 add \$8,$XX[1]#b
208___
209$code.=<<___;
210 add $TX[0]#b,$YY#b
211 movl ($dat,$YY,4),$TY#d
212 movl $TX[0]#d,($dat,$YY,4)
213 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
214 ror \$8,%r8 # ror is redundant when $i=0
215 movl $TY#d,4*$i($dat,$XX[0],4)
216 add $TX[0]#b,$TY#b
217 movb ($dat,$TY,4),%r8b
218___
219push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
220}
221$code.=<<___;
222 add \$8,$XX[0]#b
223 ror \$8,%r8
224 sub \$8,$len
225
226 xor ($inp),%r8
227 mov %r8,($out,$inp)
228 lea 8($inp),$inp
229
230 test \$-8,$len
231 jnz .Loop8
232 cmp \$0,$len
233 jne .Lloop1
234 jmp .Lexit
235
236.align 16
237.Lintel:
238 test \$-32,$len
239 jz .Lloop1
240 and \$15,$TX[1]
241 jz .Loop16_is_hot
242 sub $TX[1],$len
243.Loop16_warmup:
244 add $TX[0]#b,$YY#b
245 movl ($dat,$YY,4),$TY#d
246 movl $TX[0]#d,($dat,$YY,4)
247 movl $TY#d,($dat,$XX[0],4)
248 add $TY#b,$TX[0]#b
249 inc $XX[0]#b
250 movl ($dat,$TX[0],4),$TY#d
251 movl ($dat,$XX[0],4),$TX[0]#d
252 xorb ($inp),$TY#b
253 movb $TY#b,($out,$inp)
254 lea 1($inp),$inp
255 dec $TX[1]
256 jnz .Loop16_warmup
257
258 mov $YY,$TX[1]
259 xor $YY,$YY
260 mov $TX[1]#b,$YY#b
261
262.Loop16_is_hot:
263 lea ($dat,$XX[0],4),$XX[1]
264___
265sub RC4_loop {
266 my $i=shift;
267 my $j=$i<0?0:$i;
268 my $xmm="%xmm".($j&1);
269
270 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
271 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
272 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
273 $code.=" movl ($dat,$YY,4),$TY#d\n";
274 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
275 $code.=" psllq \$8,%xmm1\n" if ($i==0);
276 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
277 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
278 $code.=" add $TY#b,$TX[0]#b\n";
279 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
280 $code.=" movz $TX[0]#b,$TX[0]#d\n";
281 $code.=" movl $TY#d,4*$j($XX[1])\n";
282 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
283 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
284 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
285 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
286 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
287 $code.=" lea 16($inp),$inp\n" if ($i==0);
288 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
289}
290 RC4_loop(-1);
291$code.=<<___;
292 jmp .Loop16_enter
293.align 16
294.Loop16:
295___
296
297for ($i=0;$i<16;$i++) {
298 $code.=".Loop16_enter:\n" if ($i==1);
299 RC4_loop($i);
300 push(@TX,shift(@TX)); # "rotate" registers
301}
302$code.=<<___;
303 mov $YY,$TX[1]
304 xor $YY,$YY # keyword to partial register
305 sub \$16,$len
306 mov $TX[1]#b,$YY#b
307 test \$-16,$len
308 jnz .Loop16
309
310 psllq \$8,%xmm1
311 pxor %xmm0,%xmm2
312 pxor %xmm1,%xmm2
313 movdqu %xmm2,($out,$inp)
314 lea 16($inp),$inp
315
316 cmp \$0,$len
317 jne .Lloop1
318 jmp .Lexit
319
320.align 16
321.Lloop1:
322 add $TX[0]#b,$YY#b
323 movl ($dat,$YY,4),$TY#d
324 movl $TX[0]#d,($dat,$YY,4)
325 movl $TY#d,($dat,$XX[0],4)
326 add $TY#b,$TX[0]#b
327 inc $XX[0]#b
328 movl ($dat,$TX[0],4),$TY#d
329 movl ($dat,$XX[0],4),$TX[0]#d
330 xorb ($inp),$TY#b
331 movb $TY#b,($out,$inp)
332 lea 1($inp),$inp
333 dec $len
334 jnz .Lloop1
335 jmp .Lexit
336
337.align 16
338.LRC4_CHAR:
339 add \$1,$XX[0]#b
340 movzb ($dat,$XX[0]),$TX[0]#d
341 test \$-8,$len
342 jz .Lcloop1
343 jmp .Lcloop8
344.align 16
345.Lcloop8:
346 mov ($inp),%r8d
347 mov 4($inp),%r9d
348___
349# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
350for ($i=0;$i<4;$i++) {
351$code.=<<___;
352 add $TX[0]#b,$YY#b
353 lea 1($XX[0]),$XX[1]
354 movzb ($dat,$YY),$TY#d
355 movzb $XX[1]#b,$XX[1]#d
356 movzb ($dat,$XX[1]),$TX[1]#d
357 movb $TX[0]#b,($dat,$YY)
358 cmp $XX[1],$YY
359 movb $TY#b,($dat,$XX[0])
360 jne .Lcmov$i # Intel cmov is sloooow...
361 mov $TX[0],$TX[1]
362.Lcmov$i:
363 add $TX[0]#b,$TY#b
364 xor ($dat,$TY),%r8b
365 ror \$8,%r8d
366___
367push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
368}
369for ($i=4;$i<8;$i++) {
370$code.=<<___;
371 add $TX[0]#b,$YY#b
372 lea 1($XX[0]),$XX[1]
373 movzb ($dat,$YY),$TY#d
374 movzb $XX[1]#b,$XX[1]#d
375 movzb ($dat,$XX[1]),$TX[1]#d
376 movb $TX[0]#b,($dat,$YY)
377 cmp $XX[1],$YY
378 movb $TY#b,($dat,$XX[0])
379 jne .Lcmov$i # Intel cmov is sloooow...
380 mov $TX[0],$TX[1]
381.Lcmov$i:
382 add $TX[0]#b,$TY#b
383 xor ($dat,$TY),%r9b
384 ror \$8,%r9d
385___
386push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
387}
388$code.=<<___;
389 lea -8($len),$len
390 mov %r8d,($out)
391 lea 8($inp),$inp
392 mov %r9d,4($out)
393 lea 8($out),$out
394
395 test \$-8,$len
396 jnz .Lcloop8
397 cmp \$0,$len
398 jne .Lcloop1
399 jmp .Lexit
400___
401$code.=<<___;
402.align 16
403.Lcloop1:
404 add $TX[0]#b,$YY#b
405 movzb $YY#b,$YY#d
406 movzb ($dat,$YY),$TY#d
407 movb $TX[0]#b,($dat,$YY)
408 movb $TY#b,($dat,$XX[0])
409 add $TX[0]#b,$TY#b
410 add \$1,$XX[0]#b
411 movzb $TY#b,$TY#d
412 movzb $XX[0]#b,$XX[0]#d
413 movzb ($dat,$TY),$TY#d
414 movzb ($dat,$XX[0]),$TX[0]#d
415 xorb ($inp),$TY#b
416 lea 1($inp),$inp
417 movb $TY#b,($out)
418 lea 1($out),$out
419 sub \$1,$len
420 jnz .Lcloop1
421 jmp .Lexit
422
423.align 16
424.Lexit:
425 sub \$1,$XX[0]#b
426 movl $XX[0]#d,-8($dat)
427 movl $YY#d,-4($dat)
428
429 mov (%rsp),%r13
430 mov 8(%rsp),%r12
431 mov 16(%rsp),%rbx
432 add \$24,%rsp
433.Lepilogue:
434 ret
435.size RC4,.-RC4
436___
437}
438
439$idx="%r8";
440$ido="%r9";
441
442$code.=<<___;
443.globl RC4_set_key
444.type RC4_set_key,\@function,3
445.align 16
446RC4_set_key:
447 lea 8($dat),$dat
448 lea ($inp,$len),$inp
449 neg $len
450 mov $len,%rcx
451 xor %eax,%eax
452 xor $ido,$ido
453 xor %r10,%r10
454 xor %r11,%r11
455
456 mov OPENSSL_ia32cap_P(%rip),$idx#d
457 bt \$20,$idx#d # RC4_CHAR?
458 jc .Lc1stloop
459 jmp .Lw1stloop
460
461.align 16
462.Lw1stloop:
463 mov %eax,($dat,%rax,4)
464 add \$1,%al
465 jnc .Lw1stloop
466
467 xor $ido,$ido
468 xor $idx,$idx
469.align 16
470.Lw2ndloop:
471 mov ($dat,$ido,4),%r10d
472 add ($inp,$len,1),$idx#b
473 add %r10b,$idx#b
474 add \$1,$len
475 mov ($dat,$idx,4),%r11d
476 cmovz %rcx,$len
477 mov %r10d,($dat,$idx,4)
478 mov %r11d,($dat,$ido,4)
479 add \$1,$ido#b
480 jnc .Lw2ndloop
481 jmp .Lexit_key
482
483.align 16
484.Lc1stloop:
485 mov %al,($dat,%rax)
486 add \$1,%al
487 jnc .Lc1stloop
488
489 xor $ido,$ido
490 xor $idx,$idx
491.align 16
492.Lc2ndloop:
493 mov ($dat,$ido),%r10b
494 add ($inp,$len),$idx#b
495 add %r10b,$idx#b
496 add \$1,$len
497 mov ($dat,$idx),%r11b
498 jnz .Lcnowrap
499 mov %rcx,$len
500.Lcnowrap:
501 mov %r10b,($dat,$idx)
502 mov %r11b,($dat,$ido)
503 add \$1,$ido#b
504 jnc .Lc2ndloop
505 movl \$-1,256($dat)
506
507.align 16
508.Lexit_key:
509 xor %eax,%eax
510 mov %eax,-8($dat)
511 mov %eax,-4($dat)
512 ret
513.size RC4_set_key,.-RC4_set_key
514
515.globl RC4_options
516.type RC4_options,\@abi-omnipotent
517.align 16
518RC4_options:
519 lea .Lopts(%rip),%rax
520 mov OPENSSL_ia32cap_P(%rip),%edx
521 bt \$20,%edx
522 jc .L8xchar
523 bt \$30,%edx
524 jnc .Ldone
525 add \$25,%rax
526 ret
527.L8xchar:
528 add \$12,%rax
529.Ldone:
530 ret
531.align 64
532.Lopts:
533.asciz "rc4(8x,int)"
534.asciz "rc4(8x,char)"
535.asciz "rc4(16x,int)"
536.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
537.align 64
538.size RC4_options,.-RC4_options
539___
540
541# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
542# CONTEXT *context,DISPATCHER_CONTEXT *disp)
543if ($win64) {
544$rec="%rcx";
545$frame="%rdx";
546$context="%r8";
547$disp="%r9";
548
549$code.=<<___;
550.extern __imp_RtlVirtualUnwind
551.type stream_se_handler,\@abi-omnipotent
552.align 16
553stream_se_handler:
554 push %rsi
555 push %rdi
556 push %rbx
557 push %rbp
558 push %r12
559 push %r13
560 push %r14
561 push %r15
562 pushfq
563 sub \$64,%rsp
564
565 mov 120($context),%rax # pull context->Rax
566 mov 248($context),%rbx # pull context->Rip
567
568 lea .Lprologue(%rip),%r10
569 cmp %r10,%rbx # context->Rip<prologue label
570 jb .Lin_prologue
571
572 mov 152($context),%rax # pull context->Rsp
573
574 lea .Lepilogue(%rip),%r10
575 cmp %r10,%rbx # context->Rip>=epilogue label
576 jae .Lin_prologue
577
578 lea 24(%rax),%rax
579
580 mov -8(%rax),%rbx
581 mov -16(%rax),%r12
582 mov -24(%rax),%r13
583 mov %rbx,144($context) # restore context->Rbx
584 mov %r12,216($context) # restore context->R12
585 mov %r13,224($context) # restore context->R13
586
587.Lin_prologue:
588 mov 8(%rax),%rdi
589 mov 16(%rax),%rsi
590 mov %rax,152($context) # restore context->Rsp
591 mov %rsi,168($context) # restore context->Rsi
592 mov %rdi,176($context) # restore context->Rdi
593
594 jmp .Lcommon_seh_exit
595.size stream_se_handler,.-stream_se_handler
596
597.type key_se_handler,\@abi-omnipotent
598.align 16
599key_se_handler:
600 push %rsi
601 push %rdi
602 push %rbx
603 push %rbp
604 push %r12
605 push %r13
606 push %r14
607 push %r15
608 pushfq
609 sub \$64,%rsp
610
611 mov 152($context),%rax # pull context->Rsp
612 mov 8(%rax),%rdi
613 mov 16(%rax),%rsi
614 mov %rsi,168($context) # restore context->Rsi
615 mov %rdi,176($context) # restore context->Rdi
616
617.Lcommon_seh_exit:
618
619 mov 40($disp),%rdi # disp->ContextRecord
620 mov $context,%rsi # context
621 mov \$154,%ecx # sizeof(CONTEXT)
622 .long 0xa548f3fc # cld; rep movsq
623
624 mov $disp,%rsi
625 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
626 mov 8(%rsi),%rdx # arg2, disp->ImageBase
627 mov 0(%rsi),%r8 # arg3, disp->ControlPc
628 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
629 mov 40(%rsi),%r10 # disp->ContextRecord
630 lea 56(%rsi),%r11 # &disp->HandlerData
631 lea 24(%rsi),%r12 # &disp->EstablisherFrame
632 mov %r10,32(%rsp) # arg5
633 mov %r11,40(%rsp) # arg6
634 mov %r12,48(%rsp) # arg7
635 mov %rcx,56(%rsp) # arg8, (NULL)
636 call *__imp_RtlVirtualUnwind(%rip)
637
638 mov \$1,%eax # ExceptionContinueSearch
639 add \$64,%rsp
640 popfq
641 pop %r15
642 pop %r14
643 pop %r13
644 pop %r12
645 pop %rbp
646 pop %rbx
647 pop %rdi
648 pop %rsi
649 ret
650.size key_se_handler,.-key_se_handler
651
652.section .pdata
653.align 4
654 .rva .LSEH_begin_RC4
655 .rva .LSEH_end_RC4
656 .rva .LSEH_info_RC4
657
658 .rva .LSEH_begin_RC4_set_key
659 .rva .LSEH_end_RC4_set_key
660 .rva .LSEH_info_RC4_set_key
661
662.section .xdata
663.align 8
664.LSEH_info_RC4:
665 .byte 9,0,0,0
666 .rva stream_se_handler
667.LSEH_info_RC4_set_key:
668 .byte 9,0,0,0
669 .rva key_se_handler
670___
671}
672
673sub reg_part {
674my ($reg,$conv)=@_;
675 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
676 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
677 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
678 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
679 return $reg;
680}
681
682$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
683$code =~ s/\`([^\`]*)\`/eval $1/gem;
684
685print $code;
686
687close STDOUT;
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette