1 | /*
|
---|
2 | * Copyright 2012-2016 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include "internal/constant_time_locl.h"
|
---|
11 | #include "ssl_locl.h"
|
---|
12 |
|
---|
13 | #include <openssl/md5.h>
|
---|
14 | #include <openssl/sha.h>
|
---|
15 |
|
---|
16 | /*
|
---|
17 | * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
|
---|
18 | * length field. (SHA-384/512 have 128-bit length.)
|
---|
19 | */
|
---|
20 | #define MAX_HASH_BIT_COUNT_BYTES 16
|
---|
21 |
|
---|
22 | /*
|
---|
23 | * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
|
---|
24 | * Currently SHA-384/512 has a 128-byte block size and that's the largest
|
---|
25 | * supported by TLS.)
|
---|
26 | */
|
---|
27 | #define MAX_HASH_BLOCK_SIZE 128
|
---|
28 |
|
---|
29 | /*
|
---|
30 | * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
|
---|
31 | * little-endian order. The value of p is advanced by four.
|
---|
32 | */
|
---|
33 | #define u32toLE(n, p) \
|
---|
34 | (*((p)++)=(unsigned char)(n), \
|
---|
35 | *((p)++)=(unsigned char)(n>>8), \
|
---|
36 | *((p)++)=(unsigned char)(n>>16), \
|
---|
37 | *((p)++)=(unsigned char)(n>>24))
|
---|
38 |
|
---|
39 | /*
|
---|
40 | * These functions serialize the state of a hash and thus perform the
|
---|
41 | * standard "final" operation without adding the padding and length that such
|
---|
42 | * a function typically does.
|
---|
43 | */
|
---|
44 | static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
|
---|
45 | {
|
---|
46 | MD5_CTX *md5 = ctx;
|
---|
47 | u32toLE(md5->A, md_out);
|
---|
48 | u32toLE(md5->B, md_out);
|
---|
49 | u32toLE(md5->C, md_out);
|
---|
50 | u32toLE(md5->D, md_out);
|
---|
51 | }
|
---|
52 |
|
---|
53 | static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
|
---|
54 | {
|
---|
55 | SHA_CTX *sha1 = ctx;
|
---|
56 | l2n(sha1->h0, md_out);
|
---|
57 | l2n(sha1->h1, md_out);
|
---|
58 | l2n(sha1->h2, md_out);
|
---|
59 | l2n(sha1->h3, md_out);
|
---|
60 | l2n(sha1->h4, md_out);
|
---|
61 | }
|
---|
62 |
|
---|
63 | static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
|
---|
64 | {
|
---|
65 | SHA256_CTX *sha256 = ctx;
|
---|
66 | unsigned i;
|
---|
67 |
|
---|
68 | for (i = 0; i < 8; i++) {
|
---|
69 | l2n(sha256->h[i], md_out);
|
---|
70 | }
|
---|
71 | }
|
---|
72 |
|
---|
73 | static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
|
---|
74 | {
|
---|
75 | SHA512_CTX *sha512 = ctx;
|
---|
76 | unsigned i;
|
---|
77 |
|
---|
78 | for (i = 0; i < 8; i++) {
|
---|
79 | l2n8(sha512->h[i], md_out);
|
---|
80 | }
|
---|
81 | }
|
---|
82 |
|
---|
83 | #undef LARGEST_DIGEST_CTX
|
---|
84 | #define LARGEST_DIGEST_CTX SHA512_CTX
|
---|
85 |
|
---|
86 | /*
|
---|
87 | * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
|
---|
88 | * which ssl3_cbc_digest_record supports.
|
---|
89 | */
|
---|
90 | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
|
---|
91 | {
|
---|
92 | if (FIPS_mode())
|
---|
93 | return 0;
|
---|
94 | switch (EVP_MD_CTX_type(ctx)) {
|
---|
95 | case NID_md5:
|
---|
96 | case NID_sha1:
|
---|
97 | case NID_sha224:
|
---|
98 | case NID_sha256:
|
---|
99 | case NID_sha384:
|
---|
100 | case NID_sha512:
|
---|
101 | return 1;
|
---|
102 | default:
|
---|
103 | return 0;
|
---|
104 | }
|
---|
105 | }
|
---|
106 |
|
---|
107 | /*-
|
---|
108 | * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
|
---|
109 | * record.
|
---|
110 | *
|
---|
111 | * ctx: the EVP_MD_CTX from which we take the hash function.
|
---|
112 | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
|
---|
113 | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
|
---|
114 | * md_out_size: if non-NULL, the number of output bytes is written here.
|
---|
115 | * header: the 13-byte, TLS record header.
|
---|
116 | * data: the record data itself, less any preceding explicit IV.
|
---|
117 | * data_plus_mac_size: the secret, reported length of the data and MAC
|
---|
118 | * once the padding has been removed.
|
---|
119 | * data_plus_mac_plus_padding_size: the public length of the whole
|
---|
120 | * record, including padding.
|
---|
121 | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
|
---|
122 | *
|
---|
123 | * On entry: by virtue of having been through one of the remove_padding
|
---|
124 | * functions, above, we know that data_plus_mac_size is large enough to contain
|
---|
125 | * a padding byte and MAC. (If the padding was invalid, it might contain the
|
---|
126 | * padding too. )
|
---|
127 | * Returns 1 on success or 0 on error
|
---|
128 | */
|
---|
129 | int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
|
---|
130 | unsigned char *md_out,
|
---|
131 | size_t *md_out_size,
|
---|
132 | const unsigned char header[13],
|
---|
133 | const unsigned char *data,
|
---|
134 | size_t data_plus_mac_size,
|
---|
135 | size_t data_plus_mac_plus_padding_size,
|
---|
136 | const unsigned char *mac_secret,
|
---|
137 | unsigned mac_secret_length, char is_sslv3)
|
---|
138 | {
|
---|
139 | union {
|
---|
140 | double align;
|
---|
141 | unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
|
---|
142 | } md_state;
|
---|
143 | void (*md_final_raw) (void *ctx, unsigned char *md_out);
|
---|
144 | void (*md_transform) (void *ctx, const unsigned char *block);
|
---|
145 | unsigned md_size, md_block_size = 64;
|
---|
146 | unsigned sslv3_pad_length = 40, header_length, variance_blocks,
|
---|
147 | len, max_mac_bytes, num_blocks,
|
---|
148 | num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
|
---|
149 | unsigned int bits; /* at most 18 bits */
|
---|
150 | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
|
---|
151 | /* hmac_pad is the masked HMAC key. */
|
---|
152 | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
|
---|
153 | unsigned char first_block[MAX_HASH_BLOCK_SIZE];
|
---|
154 | unsigned char mac_out[EVP_MAX_MD_SIZE];
|
---|
155 | unsigned i, j, md_out_size_u;
|
---|
156 | EVP_MD_CTX *md_ctx = NULL;
|
---|
157 | /*
|
---|
158 | * mdLengthSize is the number of bytes in the length field that
|
---|
159 | * terminates * the hash.
|
---|
160 | */
|
---|
161 | unsigned md_length_size = 8;
|
---|
162 | char length_is_big_endian = 1;
|
---|
163 | int ret;
|
---|
164 |
|
---|
165 | /*
|
---|
166 | * This is a, hopefully redundant, check that allows us to forget about
|
---|
167 | * many possible overflows later in this function.
|
---|
168 | */
|
---|
169 | OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
|
---|
170 |
|
---|
171 | switch (EVP_MD_CTX_type(ctx)) {
|
---|
172 | case NID_md5:
|
---|
173 | if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
|
---|
174 | return 0;
|
---|
175 | md_final_raw = tls1_md5_final_raw;
|
---|
176 | md_transform =
|
---|
177 | (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
|
---|
178 | md_size = 16;
|
---|
179 | sslv3_pad_length = 48;
|
---|
180 | length_is_big_endian = 0;
|
---|
181 | break;
|
---|
182 | case NID_sha1:
|
---|
183 | if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
|
---|
184 | return 0;
|
---|
185 | md_final_raw = tls1_sha1_final_raw;
|
---|
186 | md_transform =
|
---|
187 | (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
|
---|
188 | md_size = 20;
|
---|
189 | break;
|
---|
190 | case NID_sha224:
|
---|
191 | if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
|
---|
192 | return 0;
|
---|
193 | md_final_raw = tls1_sha256_final_raw;
|
---|
194 | md_transform =
|
---|
195 | (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
|
---|
196 | md_size = 224 / 8;
|
---|
197 | break;
|
---|
198 | case NID_sha256:
|
---|
199 | if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
|
---|
200 | return 0;
|
---|
201 | md_final_raw = tls1_sha256_final_raw;
|
---|
202 | md_transform =
|
---|
203 | (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
|
---|
204 | md_size = 32;
|
---|
205 | break;
|
---|
206 | case NID_sha384:
|
---|
207 | if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
|
---|
208 | return 0;
|
---|
209 | md_final_raw = tls1_sha512_final_raw;
|
---|
210 | md_transform =
|
---|
211 | (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
|
---|
212 | md_size = 384 / 8;
|
---|
213 | md_block_size = 128;
|
---|
214 | md_length_size = 16;
|
---|
215 | break;
|
---|
216 | case NID_sha512:
|
---|
217 | if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
|
---|
218 | return 0;
|
---|
219 | md_final_raw = tls1_sha512_final_raw;
|
---|
220 | md_transform =
|
---|
221 | (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
|
---|
222 | md_size = 64;
|
---|
223 | md_block_size = 128;
|
---|
224 | md_length_size = 16;
|
---|
225 | break;
|
---|
226 | default:
|
---|
227 | /*
|
---|
228 | * ssl3_cbc_record_digest_supported should have been called first to
|
---|
229 | * check that the hash function is supported.
|
---|
230 | */
|
---|
231 | OPENSSL_assert(0);
|
---|
232 | if (md_out_size)
|
---|
233 | *md_out_size = 0;
|
---|
234 | return 0;
|
---|
235 | }
|
---|
236 |
|
---|
237 | OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
|
---|
238 | OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
|
---|
239 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
|
---|
240 |
|
---|
241 | header_length = 13;
|
---|
242 | if (is_sslv3) {
|
---|
243 | header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
|
---|
244 | * number */ +
|
---|
245 | 1 /* record type */ +
|
---|
246 | 2 /* record length */ ;
|
---|
247 | }
|
---|
248 |
|
---|
249 | /*
|
---|
250 | * variance_blocks is the number of blocks of the hash that we have to
|
---|
251 | * calculate in constant time because they could be altered by the
|
---|
252 | * padding value. In SSLv3, the padding must be minimal so the end of
|
---|
253 | * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
|
---|
254 | * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
|
---|
255 | * of hash termination (0x80 + 64-bit length) don't fit in the final
|
---|
256 | * block, we say that the final two blocks can vary based on the padding.
|
---|
257 | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
|
---|
258 | * required to be minimal. Therefore we say that the final six blocks can
|
---|
259 | * vary based on the padding. Later in the function, if the message is
|
---|
260 | * short and there obviously cannot be this many blocks then
|
---|
261 | * variance_blocks can be reduced.
|
---|
262 | */
|
---|
263 | variance_blocks = is_sslv3 ? 2 : 6;
|
---|
264 | /*
|
---|
265 | * From now on we're dealing with the MAC, which conceptually has 13
|
---|
266 | * bytes of `header' before the start of the data (TLS) or 71/75 bytes
|
---|
267 | * (SSLv3)
|
---|
268 | */
|
---|
269 | len = data_plus_mac_plus_padding_size + header_length;
|
---|
270 | /*
|
---|
271 | * max_mac_bytes contains the maximum bytes of bytes in the MAC,
|
---|
272 | * including * |header|, assuming that there's no padding.
|
---|
273 | */
|
---|
274 | max_mac_bytes = len - md_size - 1;
|
---|
275 | /* num_blocks is the maximum number of hash blocks. */
|
---|
276 | num_blocks =
|
---|
277 | (max_mac_bytes + 1 + md_length_size + md_block_size -
|
---|
278 | 1) / md_block_size;
|
---|
279 | /*
|
---|
280 | * In order to calculate the MAC in constant time we have to handle the
|
---|
281 | * final blocks specially because the padding value could cause the end
|
---|
282 | * to appear somewhere in the final |variance_blocks| blocks and we can't
|
---|
283 | * leak where. However, |num_starting_blocks| worth of data can be hashed
|
---|
284 | * right away because no padding value can affect whether they are
|
---|
285 | * plaintext.
|
---|
286 | */
|
---|
287 | num_starting_blocks = 0;
|
---|
288 | /*
|
---|
289 | * k is the starting byte offset into the conceptual header||data where
|
---|
290 | * we start processing.
|
---|
291 | */
|
---|
292 | k = 0;
|
---|
293 | /*
|
---|
294 | * mac_end_offset is the index just past the end of the data to be MACed.
|
---|
295 | */
|
---|
296 | mac_end_offset = data_plus_mac_size + header_length - md_size;
|
---|
297 | /*
|
---|
298 | * c is the index of the 0x80 byte in the final hash block that contains
|
---|
299 | * application data.
|
---|
300 | */
|
---|
301 | c = mac_end_offset % md_block_size;
|
---|
302 | /*
|
---|
303 | * index_a is the hash block number that contains the 0x80 terminating
|
---|
304 | * value.
|
---|
305 | */
|
---|
306 | index_a = mac_end_offset / md_block_size;
|
---|
307 | /*
|
---|
308 | * index_b is the hash block number that contains the 64-bit hash length,
|
---|
309 | * in bits.
|
---|
310 | */
|
---|
311 | index_b = (mac_end_offset + md_length_size) / md_block_size;
|
---|
312 | /*
|
---|
313 | * bits is the hash-length in bits. It includes the additional hash block
|
---|
314 | * for the masked HMAC key, or whole of |header| in the case of SSLv3.
|
---|
315 | */
|
---|
316 |
|
---|
317 | /*
|
---|
318 | * For SSLv3, if we're going to have any starting blocks then we need at
|
---|
319 | * least two because the header is larger than a single block.
|
---|
320 | */
|
---|
321 | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
|
---|
322 | num_starting_blocks = num_blocks - variance_blocks;
|
---|
323 | k = md_block_size * num_starting_blocks;
|
---|
324 | }
|
---|
325 |
|
---|
326 | bits = 8 * mac_end_offset;
|
---|
327 | if (!is_sslv3) {
|
---|
328 | /*
|
---|
329 | * Compute the initial HMAC block. For SSLv3, the padding and secret
|
---|
330 | * bytes are included in |header| because they take more than a
|
---|
331 | * single block.
|
---|
332 | */
|
---|
333 | bits += 8 * md_block_size;
|
---|
334 | memset(hmac_pad, 0, md_block_size);
|
---|
335 | OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
|
---|
336 | memcpy(hmac_pad, mac_secret, mac_secret_length);
|
---|
337 | for (i = 0; i < md_block_size; i++)
|
---|
338 | hmac_pad[i] ^= 0x36;
|
---|
339 |
|
---|
340 | md_transform(md_state.c, hmac_pad);
|
---|
341 | }
|
---|
342 |
|
---|
343 | if (length_is_big_endian) {
|
---|
344 | memset(length_bytes, 0, md_length_size - 4);
|
---|
345 | length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
|
---|
346 | length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
|
---|
347 | length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
|
---|
348 | length_bytes[md_length_size - 1] = (unsigned char)bits;
|
---|
349 | } else {
|
---|
350 | memset(length_bytes, 0, md_length_size);
|
---|
351 | length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
|
---|
352 | length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
|
---|
353 | length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
|
---|
354 | length_bytes[md_length_size - 8] = (unsigned char)bits;
|
---|
355 | }
|
---|
356 |
|
---|
357 | if (k > 0) {
|
---|
358 | if (is_sslv3) {
|
---|
359 | unsigned overhang;
|
---|
360 |
|
---|
361 | /*
|
---|
362 | * The SSLv3 header is larger than a single block. overhang is
|
---|
363 | * the number of bytes beyond a single block that the header
|
---|
364 | * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
|
---|
365 | * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
|
---|
366 | * therefore we can be confident that the header_length will be
|
---|
367 | * greater than |md_block_size|. However we add a sanity check just
|
---|
368 | * in case
|
---|
369 | */
|
---|
370 | if (header_length <= md_block_size) {
|
---|
371 | /* Should never happen */
|
---|
372 | return 0;
|
---|
373 | }
|
---|
374 | overhang = header_length - md_block_size;
|
---|
375 | md_transform(md_state.c, header);
|
---|
376 | memcpy(first_block, header + md_block_size, overhang);
|
---|
377 | memcpy(first_block + overhang, data, md_block_size - overhang);
|
---|
378 | md_transform(md_state.c, first_block);
|
---|
379 | for (i = 1; i < k / md_block_size - 1; i++)
|
---|
380 | md_transform(md_state.c, data + md_block_size * i - overhang);
|
---|
381 | } else {
|
---|
382 | /* k is a multiple of md_block_size. */
|
---|
383 | memcpy(first_block, header, 13);
|
---|
384 | memcpy(first_block + 13, data, md_block_size - 13);
|
---|
385 | md_transform(md_state.c, first_block);
|
---|
386 | for (i = 1; i < k / md_block_size; i++)
|
---|
387 | md_transform(md_state.c, data + md_block_size * i - 13);
|
---|
388 | }
|
---|
389 | }
|
---|
390 |
|
---|
391 | memset(mac_out, 0, sizeof(mac_out));
|
---|
392 |
|
---|
393 | /*
|
---|
394 | * We now process the final hash blocks. For each block, we construct it
|
---|
395 | * in constant time. If the |i==index_a| then we'll include the 0x80
|
---|
396 | * bytes and zero pad etc. For each block we selectively copy it, in
|
---|
397 | * constant time, to |mac_out|.
|
---|
398 | */
|
---|
399 | for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
|
---|
400 | i++) {
|
---|
401 | unsigned char block[MAX_HASH_BLOCK_SIZE];
|
---|
402 | unsigned char is_block_a = constant_time_eq_8(i, index_a);
|
---|
403 | unsigned char is_block_b = constant_time_eq_8(i, index_b);
|
---|
404 | for (j = 0; j < md_block_size; j++) {
|
---|
405 | unsigned char b = 0, is_past_c, is_past_cp1;
|
---|
406 | if (k < header_length)
|
---|
407 | b = header[k];
|
---|
408 | else if (k < data_plus_mac_plus_padding_size + header_length)
|
---|
409 | b = data[k - header_length];
|
---|
410 | k++;
|
---|
411 |
|
---|
412 | is_past_c = is_block_a & constant_time_ge_8(j, c);
|
---|
413 | is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
|
---|
414 | /*
|
---|
415 | * If this is the block containing the end of the application
|
---|
416 | * data, and we are at the offset for the 0x80 value, then
|
---|
417 | * overwrite b with 0x80.
|
---|
418 | */
|
---|
419 | b = constant_time_select_8(is_past_c, 0x80, b);
|
---|
420 | /*
|
---|
421 | * If this the the block containing the end of the application
|
---|
422 | * data and we're past the 0x80 value then just write zero.
|
---|
423 | */
|
---|
424 | b = b & ~is_past_cp1;
|
---|
425 | /*
|
---|
426 | * If this is index_b (the final block), but not index_a (the end
|
---|
427 | * of the data), then the 64-bit length didn't fit into index_a
|
---|
428 | * and we're having to add an extra block of zeros.
|
---|
429 | */
|
---|
430 | b &= ~is_block_b | is_block_a;
|
---|
431 |
|
---|
432 | /*
|
---|
433 | * The final bytes of one of the blocks contains the length.
|
---|
434 | */
|
---|
435 | if (j >= md_block_size - md_length_size) {
|
---|
436 | /* If this is index_b, write a length byte. */
|
---|
437 | b = constant_time_select_8(is_block_b,
|
---|
438 | length_bytes[j -
|
---|
439 | (md_block_size -
|
---|
440 | md_length_size)], b);
|
---|
441 | }
|
---|
442 | block[j] = b;
|
---|
443 | }
|
---|
444 |
|
---|
445 | md_transform(md_state.c, block);
|
---|
446 | md_final_raw(md_state.c, block);
|
---|
447 | /* If this is index_b, copy the hash value to |mac_out|. */
|
---|
448 | for (j = 0; j < md_size; j++)
|
---|
449 | mac_out[j] |= block[j] & is_block_b;
|
---|
450 | }
|
---|
451 |
|
---|
452 | md_ctx = EVP_MD_CTX_new();
|
---|
453 | if (md_ctx == NULL)
|
---|
454 | goto err;
|
---|
455 | if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0)
|
---|
456 | goto err;
|
---|
457 | if (is_sslv3) {
|
---|
458 | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
|
---|
459 | memset(hmac_pad, 0x5c, sslv3_pad_length);
|
---|
460 |
|
---|
461 | if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
|
---|
462 | || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
|
---|
463 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
|
---|
464 | goto err;
|
---|
465 | } else {
|
---|
466 | /* Complete the HMAC in the standard manner. */
|
---|
467 | for (i = 0; i < md_block_size; i++)
|
---|
468 | hmac_pad[i] ^= 0x6a;
|
---|
469 |
|
---|
470 | if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
|
---|
471 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
|
---|
472 | goto err;
|
---|
473 | }
|
---|
474 | ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
|
---|
475 | if (ret && md_out_size)
|
---|
476 | *md_out_size = md_out_size_u;
|
---|
477 | EVP_MD_CTX_free(md_ctx);
|
---|
478 |
|
---|
479 | return 1;
|
---|
480 | err:
|
---|
481 | EVP_MD_CTX_free(md_ctx);
|
---|
482 | return 0;
|
---|
483 | }
|
---|
484 |
|
---|
485 | /*
|
---|
486 | * Due to the need to use EVP in FIPS mode we can't reimplement digests but
|
---|
487 | * we can ensure the number of blocks processed is equal for all cases by
|
---|
488 | * digesting additional data.
|
---|
489 | */
|
---|
490 |
|
---|
491 | int tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
|
---|
492 | EVP_MD_CTX *mac_ctx, const unsigned char *data,
|
---|
493 | size_t data_len, size_t orig_len)
|
---|
494 | {
|
---|
495 | size_t block_size, digest_pad, blocks_data, blocks_orig;
|
---|
496 | if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
|
---|
497 | return 1;
|
---|
498 | block_size = EVP_MD_CTX_block_size(mac_ctx);
|
---|
499 | /*-
|
---|
500 | * We are in FIPS mode if we get this far so we know we have only SHA*
|
---|
501 | * digests and TLS to deal with.
|
---|
502 | * Minimum digest padding length is 17 for SHA384/SHA512 and 9
|
---|
503 | * otherwise.
|
---|
504 | * Additional header is 13 bytes. To get the number of digest blocks
|
---|
505 | * processed round up the amount of data plus padding to the nearest
|
---|
506 | * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
|
---|
507 | * So we have:
|
---|
508 | * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
|
---|
509 | * equivalently:
|
---|
510 | * blocks = (payload_len + digest_pad + 12)/block_size + 1
|
---|
511 | * HMAC adds a constant overhead.
|
---|
512 | * We're ultimately only interested in differences so this becomes
|
---|
513 | * blocks = (payload_len + 29)/128
|
---|
514 | * for SHA384/SHA512 and
|
---|
515 | * blocks = (payload_len + 21)/64
|
---|
516 | * otherwise.
|
---|
517 | */
|
---|
518 | digest_pad = block_size == 64 ? 21 : 29;
|
---|
519 | blocks_orig = (orig_len + digest_pad) / block_size;
|
---|
520 | blocks_data = (data_len + digest_pad) / block_size;
|
---|
521 | /*
|
---|
522 | * MAC enough blocks to make up the difference between the original and
|
---|
523 | * actual lengths plus one extra block to ensure this is never a no op.
|
---|
524 | * The "data" pointer should always have enough space to perform this
|
---|
525 | * operation as it is large enough for a maximum length TLS buffer.
|
---|
526 | */
|
---|
527 | return EVP_DigestSignUpdate(mac_ctx, data,
|
---|
528 | (blocks_orig - blocks_data + 1) * block_size);
|
---|
529 | }
|
---|