1 | /*
|
---|
2 | * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include "internal/cryptlib.h"
|
---|
11 | #include "bn_local.h"
|
---|
12 |
|
---|
13 | /* least significant word */
|
---|
14 | #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
|
---|
15 |
|
---|
16 | /* Returns -2 for errors because both -1 and 0 are valid results. */
|
---|
17 | int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
---|
18 | {
|
---|
19 | int i;
|
---|
20 | int ret = -2; /* avoid 'uninitialized' warning */
|
---|
21 | int err = 0;
|
---|
22 | BIGNUM *A, *B, *tmp;
|
---|
23 | /*-
|
---|
24 | * In 'tab', only odd-indexed entries are relevant:
|
---|
25 | * For any odd BIGNUM n,
|
---|
26 | * tab[BN_lsw(n) & 7]
|
---|
27 | * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
|
---|
28 | * Note that the sign of n does not matter.
|
---|
29 | */
|
---|
30 | static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 };
|
---|
31 |
|
---|
32 | bn_check_top(a);
|
---|
33 | bn_check_top(b);
|
---|
34 |
|
---|
35 | BN_CTX_start(ctx);
|
---|
36 | A = BN_CTX_get(ctx);
|
---|
37 | B = BN_CTX_get(ctx);
|
---|
38 | if (B == NULL)
|
---|
39 | goto end;
|
---|
40 |
|
---|
41 | err = !BN_copy(A, a);
|
---|
42 | if (err)
|
---|
43 | goto end;
|
---|
44 | err = !BN_copy(B, b);
|
---|
45 | if (err)
|
---|
46 | goto end;
|
---|
47 |
|
---|
48 | /*
|
---|
49 | * Kronecker symbol, implemented according to Henri Cohen,
|
---|
50 | * "A Course in Computational Algebraic Number Theory"
|
---|
51 | * (algorithm 1.4.10).
|
---|
52 | */
|
---|
53 |
|
---|
54 | /* Cohen's step 1: */
|
---|
55 |
|
---|
56 | if (BN_is_zero(B)) {
|
---|
57 | ret = BN_abs_is_word(A, 1);
|
---|
58 | goto end;
|
---|
59 | }
|
---|
60 |
|
---|
61 | /* Cohen's step 2: */
|
---|
62 |
|
---|
63 | if (!BN_is_odd(A) && !BN_is_odd(B)) {
|
---|
64 | ret = 0;
|
---|
65 | goto end;
|
---|
66 | }
|
---|
67 |
|
---|
68 | /* now B is non-zero */
|
---|
69 | i = 0;
|
---|
70 | while (!BN_is_bit_set(B, i))
|
---|
71 | i++;
|
---|
72 | err = !BN_rshift(B, B, i);
|
---|
73 | if (err)
|
---|
74 | goto end;
|
---|
75 | if (i & 1) {
|
---|
76 | /* i is odd */
|
---|
77 | /* (thus B was even, thus A must be odd!) */
|
---|
78 |
|
---|
79 | /* set 'ret' to $(-1)^{(A^2-1)/8}$ */
|
---|
80 | ret = tab[BN_lsw(A) & 7];
|
---|
81 | } else {
|
---|
82 | /* i is even */
|
---|
83 | ret = 1;
|
---|
84 | }
|
---|
85 |
|
---|
86 | if (B->neg) {
|
---|
87 | B->neg = 0;
|
---|
88 | if (A->neg)
|
---|
89 | ret = -ret;
|
---|
90 | }
|
---|
91 |
|
---|
92 | /*
|
---|
93 | * now B is positive and odd, so what remains to be done is to compute
|
---|
94 | * the Jacobi symbol (A/B) and multiply it by 'ret'
|
---|
95 | */
|
---|
96 |
|
---|
97 | while (1) {
|
---|
98 | /* Cohen's step 3: */
|
---|
99 |
|
---|
100 | /* B is positive and odd */
|
---|
101 |
|
---|
102 | if (BN_is_zero(A)) {
|
---|
103 | ret = BN_is_one(B) ? ret : 0;
|
---|
104 | goto end;
|
---|
105 | }
|
---|
106 |
|
---|
107 | /* now A is non-zero */
|
---|
108 | i = 0;
|
---|
109 | while (!BN_is_bit_set(A, i))
|
---|
110 | i++;
|
---|
111 | err = !BN_rshift(A, A, i);
|
---|
112 | if (err)
|
---|
113 | goto end;
|
---|
114 | if (i & 1) {
|
---|
115 | /* i is odd */
|
---|
116 | /* multiply 'ret' by $(-1)^{(B^2-1)/8}$ */
|
---|
117 | ret = ret * tab[BN_lsw(B) & 7];
|
---|
118 | }
|
---|
119 |
|
---|
120 | /* Cohen's step 4: */
|
---|
121 | /* multiply 'ret' by $(-1)^{(A-1)(B-1)/4}$ */
|
---|
122 | if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
|
---|
123 | ret = -ret;
|
---|
124 |
|
---|
125 | /* (A, B) := (B mod |A|, |A|) */
|
---|
126 | err = !BN_nnmod(B, B, A, ctx);
|
---|
127 | if (err)
|
---|
128 | goto end;
|
---|
129 | tmp = A;
|
---|
130 | A = B;
|
---|
131 | B = tmp;
|
---|
132 | tmp->neg = 0;
|
---|
133 | }
|
---|
134 | end:
|
---|
135 | BN_CTX_end(ctx);
|
---|
136 | if (err)
|
---|
137 | return -2;
|
---|
138 | else
|
---|
139 | return ret;
|
---|
140 | }
|
---|