1 | /*
|
---|
2 | * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdio.h>
|
---|
11 | #include <time.h>
|
---|
12 | #include "internal/cryptlib.h"
|
---|
13 | #include "bn_local.h"
|
---|
14 |
|
---|
15 | /*
|
---|
16 | * The quick sieve algorithm approach to weeding out primes is Philip
|
---|
17 | * Zimmermann's, as implemented in PGP. I have had a read of his comments
|
---|
18 | * and implemented my own version.
|
---|
19 | */
|
---|
20 | #include "bn_prime.h"
|
---|
21 |
|
---|
22 | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
|
---|
23 | const BIGNUM *a1_odd, int k, BN_CTX *ctx,
|
---|
24 | BN_MONT_CTX *mont);
|
---|
25 | static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods);
|
---|
26 | static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
|
---|
27 | const BIGNUM *add, const BIGNUM *rem,
|
---|
28 | BN_CTX *ctx);
|
---|
29 |
|
---|
30 | #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
|
---|
31 |
|
---|
32 | int BN_GENCB_call(BN_GENCB *cb, int a, int b)
|
---|
33 | {
|
---|
34 | /* No callback means continue */
|
---|
35 | if (!cb)
|
---|
36 | return 1;
|
---|
37 | switch (cb->ver) {
|
---|
38 | case 1:
|
---|
39 | /* Deprecated-style callbacks */
|
---|
40 | if (!cb->cb.cb_1)
|
---|
41 | return 1;
|
---|
42 | cb->cb.cb_1(a, b, cb->arg);
|
---|
43 | return 1;
|
---|
44 | case 2:
|
---|
45 | /* New-style callbacks */
|
---|
46 | return cb->cb.cb_2(a, b, cb);
|
---|
47 | default:
|
---|
48 | break;
|
---|
49 | }
|
---|
50 | /* Unrecognised callback type */
|
---|
51 | return 0;
|
---|
52 | }
|
---|
53 |
|
---|
54 | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
|
---|
55 | const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
|
---|
56 | {
|
---|
57 | BIGNUM *t;
|
---|
58 | int found = 0;
|
---|
59 | int i, j, c1 = 0;
|
---|
60 | BN_CTX *ctx = NULL;
|
---|
61 | prime_t *mods = NULL;
|
---|
62 | int checks = BN_prime_checks_for_size(bits);
|
---|
63 |
|
---|
64 | if (bits < 2) {
|
---|
65 | /* There are no prime numbers this small. */
|
---|
66 | BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
|
---|
67 | return 0;
|
---|
68 | } else if (add == NULL && safe && bits < 6 && bits != 3) {
|
---|
69 | /*
|
---|
70 | * The smallest safe prime (7) is three bits.
|
---|
71 | * But the following two safe primes with less than 6 bits (11, 23)
|
---|
72 | * are unreachable for BN_rand with BN_RAND_TOP_TWO.
|
---|
73 | */
|
---|
74 | BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
|
---|
75 | return 0;
|
---|
76 | }
|
---|
77 |
|
---|
78 | mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
|
---|
79 | if (mods == NULL)
|
---|
80 | goto err;
|
---|
81 |
|
---|
82 | ctx = BN_CTX_new();
|
---|
83 | if (ctx == NULL)
|
---|
84 | goto err;
|
---|
85 | BN_CTX_start(ctx);
|
---|
86 | t = BN_CTX_get(ctx);
|
---|
87 | if (t == NULL)
|
---|
88 | goto err;
|
---|
89 | loop:
|
---|
90 | /* make a random number and set the top and bottom bits */
|
---|
91 | if (add == NULL) {
|
---|
92 | if (!probable_prime(ret, bits, safe, mods))
|
---|
93 | goto err;
|
---|
94 | } else {
|
---|
95 | if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx))
|
---|
96 | goto err;
|
---|
97 | }
|
---|
98 |
|
---|
99 | if (!BN_GENCB_call(cb, 0, c1++))
|
---|
100 | /* aborted */
|
---|
101 | goto err;
|
---|
102 |
|
---|
103 | if (!safe) {
|
---|
104 | i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
|
---|
105 | if (i == -1)
|
---|
106 | goto err;
|
---|
107 | if (i == 0)
|
---|
108 | goto loop;
|
---|
109 | } else {
|
---|
110 | /*
|
---|
111 | * for "safe prime" generation, check that (p-1)/2 is prime. Since a
|
---|
112 | * prime is odd, We just need to divide by 2
|
---|
113 | */
|
---|
114 | if (!BN_rshift1(t, ret))
|
---|
115 | goto err;
|
---|
116 |
|
---|
117 | for (i = 0; i < checks; i++) {
|
---|
118 | j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
|
---|
119 | if (j == -1)
|
---|
120 | goto err;
|
---|
121 | if (j == 0)
|
---|
122 | goto loop;
|
---|
123 |
|
---|
124 | j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
|
---|
125 | if (j == -1)
|
---|
126 | goto err;
|
---|
127 | if (j == 0)
|
---|
128 | goto loop;
|
---|
129 |
|
---|
130 | if (!BN_GENCB_call(cb, 2, c1 - 1))
|
---|
131 | goto err;
|
---|
132 | /* We have a safe prime test pass */
|
---|
133 | }
|
---|
134 | }
|
---|
135 | /* we have a prime :-) */
|
---|
136 | found = 1;
|
---|
137 | err:
|
---|
138 | OPENSSL_free(mods);
|
---|
139 | BN_CTX_end(ctx);
|
---|
140 | BN_CTX_free(ctx);
|
---|
141 | bn_check_top(ret);
|
---|
142 | return found;
|
---|
143 | }
|
---|
144 |
|
---|
145 | int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
|
---|
146 | BN_GENCB *cb)
|
---|
147 | {
|
---|
148 | return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
|
---|
149 | }
|
---|
150 |
|
---|
151 | int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
|
---|
152 | int do_trial_division, BN_GENCB *cb)
|
---|
153 | {
|
---|
154 | int i, j, ret = -1;
|
---|
155 | int k;
|
---|
156 | BN_CTX *ctx = NULL;
|
---|
157 | BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */
|
---|
158 | BN_MONT_CTX *mont = NULL;
|
---|
159 |
|
---|
160 | /* Take care of the really small primes 2 & 3 */
|
---|
161 | if (BN_is_word(a, 2) || BN_is_word(a, 3))
|
---|
162 | return 1;
|
---|
163 |
|
---|
164 | /* Check odd and bigger than 1 */
|
---|
165 | if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0)
|
---|
166 | return 0;
|
---|
167 |
|
---|
168 | if (checks == BN_prime_checks)
|
---|
169 | checks = BN_prime_checks_for_size(BN_num_bits(a));
|
---|
170 |
|
---|
171 | /* first look for small factors */
|
---|
172 | if (do_trial_division) {
|
---|
173 | for (i = 1; i < NUMPRIMES; i++) {
|
---|
174 | BN_ULONG mod = BN_mod_word(a, primes[i]);
|
---|
175 | if (mod == (BN_ULONG)-1)
|
---|
176 | goto err;
|
---|
177 | if (mod == 0)
|
---|
178 | return BN_is_word(a, primes[i]);
|
---|
179 | }
|
---|
180 | if (!BN_GENCB_call(cb, 1, -1))
|
---|
181 | goto err;
|
---|
182 | }
|
---|
183 |
|
---|
184 | if (ctx_passed != NULL)
|
---|
185 | ctx = ctx_passed;
|
---|
186 | else if ((ctx = BN_CTX_new()) == NULL)
|
---|
187 | goto err;
|
---|
188 | BN_CTX_start(ctx);
|
---|
189 |
|
---|
190 | A1 = BN_CTX_get(ctx);
|
---|
191 | A3 = BN_CTX_get(ctx);
|
---|
192 | A1_odd = BN_CTX_get(ctx);
|
---|
193 | check = BN_CTX_get(ctx);
|
---|
194 | if (check == NULL)
|
---|
195 | goto err;
|
---|
196 |
|
---|
197 | /* compute A1 := a - 1 */
|
---|
198 | if (!BN_copy(A1, a) || !BN_sub_word(A1, 1))
|
---|
199 | goto err;
|
---|
200 | /* compute A3 := a - 3 */
|
---|
201 | if (!BN_copy(A3, a) || !BN_sub_word(A3, 3))
|
---|
202 | goto err;
|
---|
203 |
|
---|
204 | /* write A1 as A1_odd * 2^k */
|
---|
205 | k = 1;
|
---|
206 | while (!BN_is_bit_set(A1, k))
|
---|
207 | k++;
|
---|
208 | if (!BN_rshift(A1_odd, A1, k))
|
---|
209 | goto err;
|
---|
210 |
|
---|
211 | /* Montgomery setup for computations mod a */
|
---|
212 | mont = BN_MONT_CTX_new();
|
---|
213 | if (mont == NULL)
|
---|
214 | goto err;
|
---|
215 | if (!BN_MONT_CTX_set(mont, a, ctx))
|
---|
216 | goto err;
|
---|
217 |
|
---|
218 | for (i = 0; i < checks; i++) {
|
---|
219 | /* 1 < check < a-1 */
|
---|
220 | if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2))
|
---|
221 | goto err;
|
---|
222 |
|
---|
223 | j = witness(check, a, A1, A1_odd, k, ctx, mont);
|
---|
224 | if (j == -1)
|
---|
225 | goto err;
|
---|
226 | if (j) {
|
---|
227 | ret = 0;
|
---|
228 | goto err;
|
---|
229 | }
|
---|
230 | if (!BN_GENCB_call(cb, 1, i))
|
---|
231 | goto err;
|
---|
232 | }
|
---|
233 | ret = 1;
|
---|
234 | err:
|
---|
235 | if (ctx != NULL) {
|
---|
236 | BN_CTX_end(ctx);
|
---|
237 | if (ctx_passed == NULL)
|
---|
238 | BN_CTX_free(ctx);
|
---|
239 | }
|
---|
240 | BN_MONT_CTX_free(mont);
|
---|
241 |
|
---|
242 | return ret;
|
---|
243 | }
|
---|
244 |
|
---|
245 | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
|
---|
246 | const BIGNUM *a1_odd, int k, BN_CTX *ctx,
|
---|
247 | BN_MONT_CTX *mont)
|
---|
248 | {
|
---|
249 | if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
|
---|
250 | return -1;
|
---|
251 | if (BN_is_one(w))
|
---|
252 | return 0; /* probably prime */
|
---|
253 | if (BN_cmp(w, a1) == 0)
|
---|
254 | return 0; /* w == -1 (mod a), 'a' is probably prime */
|
---|
255 | while (--k) {
|
---|
256 | if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
|
---|
257 | return -1;
|
---|
258 | if (BN_is_one(w))
|
---|
259 | return 1; /* 'a' is composite, otherwise a previous 'w'
|
---|
260 | * would have been == -1 (mod 'a') */
|
---|
261 | if (BN_cmp(w, a1) == 0)
|
---|
262 | return 0; /* w == -1 (mod a), 'a' is probably prime */
|
---|
263 | }
|
---|
264 | /*
|
---|
265 | * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
|
---|
266 | * it is neither -1 nor +1 -- so 'a' cannot be prime
|
---|
267 | */
|
---|
268 | bn_check_top(w);
|
---|
269 | return 1;
|
---|
270 | }
|
---|
271 |
|
---|
272 | static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods)
|
---|
273 | {
|
---|
274 | int i;
|
---|
275 | BN_ULONG delta;
|
---|
276 | BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
|
---|
277 |
|
---|
278 | again:
|
---|
279 | /* TODO: Not all primes are private */
|
---|
280 | if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD))
|
---|
281 | return 0;
|
---|
282 | if (safe && !BN_set_bit(rnd, 1))
|
---|
283 | return 0;
|
---|
284 | /* we now have a random number 'rnd' to test. */
|
---|
285 | for (i = 1; i < NUMPRIMES; i++) {
|
---|
286 | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
|
---|
287 | if (mod == (BN_ULONG)-1)
|
---|
288 | return 0;
|
---|
289 | mods[i] = (prime_t) mod;
|
---|
290 | }
|
---|
291 | delta = 0;
|
---|
292 | loop:
|
---|
293 | for (i = 1; i < NUMPRIMES; i++) {
|
---|
294 | /*
|
---|
295 | * check that rnd is a prime and also that
|
---|
296 | * gcd(rnd-1,primes) == 1 (except for 2)
|
---|
297 | * do the second check only if we are interested in safe primes
|
---|
298 | * in the case that the candidate prime is a single word then
|
---|
299 | * we check only the primes up to sqrt(rnd)
|
---|
300 | */
|
---|
301 | if (bits <= 31 && delta <= 0x7fffffff
|
---|
302 | && square(primes[i]) > BN_get_word(rnd) + delta)
|
---|
303 | break;
|
---|
304 | if (safe ? (mods[i] + delta) % primes[i] <= 1
|
---|
305 | : (mods[i] + delta) % primes[i] == 0) {
|
---|
306 | delta += safe ? 4 : 2;
|
---|
307 | if (delta > maxdelta)
|
---|
308 | goto again;
|
---|
309 | goto loop;
|
---|
310 | }
|
---|
311 | }
|
---|
312 | if (!BN_add_word(rnd, delta))
|
---|
313 | return 0;
|
---|
314 | if (BN_num_bits(rnd) != bits)
|
---|
315 | goto again;
|
---|
316 | bn_check_top(rnd);
|
---|
317 | return 1;
|
---|
318 | }
|
---|
319 |
|
---|
320 | static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
|
---|
321 | const BIGNUM *add, const BIGNUM *rem,
|
---|
322 | BN_CTX *ctx)
|
---|
323 | {
|
---|
324 | int i, ret = 0;
|
---|
325 | BIGNUM *t1;
|
---|
326 | BN_ULONG delta;
|
---|
327 | BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
|
---|
328 |
|
---|
329 | BN_CTX_start(ctx);
|
---|
330 | if ((t1 = BN_CTX_get(ctx)) == NULL)
|
---|
331 | goto err;
|
---|
332 |
|
---|
333 | if (maxdelta > BN_MASK2 - BN_get_word(add))
|
---|
334 | maxdelta = BN_MASK2 - BN_get_word(add);
|
---|
335 |
|
---|
336 | again:
|
---|
337 | if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
|
---|
338 | goto err;
|
---|
339 |
|
---|
340 | /* we need ((rnd-rem) % add) == 0 */
|
---|
341 |
|
---|
342 | if (!BN_mod(t1, rnd, add, ctx))
|
---|
343 | goto err;
|
---|
344 | if (!BN_sub(rnd, rnd, t1))
|
---|
345 | goto err;
|
---|
346 | if (rem == NULL) {
|
---|
347 | if (!BN_add_word(rnd, safe ? 3u : 1u))
|
---|
348 | goto err;
|
---|
349 | } else {
|
---|
350 | if (!BN_add(rnd, rnd, rem))
|
---|
351 | goto err;
|
---|
352 | }
|
---|
353 |
|
---|
354 | if (BN_num_bits(rnd) < bits
|
---|
355 | || BN_get_word(rnd) < (safe ? 5u : 3u)) {
|
---|
356 | if (!BN_add(rnd, rnd, add))
|
---|
357 | goto err;
|
---|
358 | }
|
---|
359 |
|
---|
360 | /* we now have a random number 'rnd' to test. */
|
---|
361 | for (i = 1; i < NUMPRIMES; i++) {
|
---|
362 | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
|
---|
363 | if (mod == (BN_ULONG)-1)
|
---|
364 | goto err;
|
---|
365 | mods[i] = (prime_t) mod;
|
---|
366 | }
|
---|
367 | delta = 0;
|
---|
368 | loop:
|
---|
369 | for (i = 1; i < NUMPRIMES; i++) {
|
---|
370 | /* check that rnd is a prime */
|
---|
371 | if (bits <= 31 && delta <= 0x7fffffff
|
---|
372 | && square(primes[i]) > BN_get_word(rnd) + delta)
|
---|
373 | break;
|
---|
374 | /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */
|
---|
375 | if (safe ? (mods[i] + delta) % primes[i] <= 1
|
---|
376 | : (mods[i] + delta) % primes[i] == 0) {
|
---|
377 | delta += BN_get_word(add);
|
---|
378 | if (delta > maxdelta)
|
---|
379 | goto again;
|
---|
380 | goto loop;
|
---|
381 | }
|
---|
382 | }
|
---|
383 | if (!BN_add_word(rnd, delta))
|
---|
384 | goto err;
|
---|
385 | ret = 1;
|
---|
386 |
|
---|
387 | err:
|
---|
388 | BN_CTX_end(ctx);
|
---|
389 | bn_check_top(rnd);
|
---|
390 | return ret;
|
---|
391 | }
|
---|