1 | /*
|
---|
2 | * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
---|
4 | *
|
---|
5 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
6 | * this file except in compliance with the License. You can obtain a copy
|
---|
7 | * in the file LICENSE in the source distribution or at
|
---|
8 | * https://www.openssl.org/source/license.html
|
---|
9 | */
|
---|
10 |
|
---|
11 | #include <openssl/err.h>
|
---|
12 |
|
---|
13 | #include "crypto/bn.h"
|
---|
14 | #include "ec_local.h"
|
---|
15 |
|
---|
16 | #ifndef OPENSSL_NO_EC2M
|
---|
17 |
|
---|
18 | /*
|
---|
19 | * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
|
---|
20 | * are handled by EC_GROUP_new.
|
---|
21 | */
|
---|
22 | int ec_GF2m_simple_group_init(EC_GROUP *group)
|
---|
23 | {
|
---|
24 | group->field = BN_new();
|
---|
25 | group->a = BN_new();
|
---|
26 | group->b = BN_new();
|
---|
27 |
|
---|
28 | if (group->field == NULL || group->a == NULL || group->b == NULL) {
|
---|
29 | BN_free(group->field);
|
---|
30 | BN_free(group->a);
|
---|
31 | BN_free(group->b);
|
---|
32 | return 0;
|
---|
33 | }
|
---|
34 | return 1;
|
---|
35 | }
|
---|
36 |
|
---|
37 | /*
|
---|
38 | * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
|
---|
39 | * handled by EC_GROUP_free.
|
---|
40 | */
|
---|
41 | void ec_GF2m_simple_group_finish(EC_GROUP *group)
|
---|
42 | {
|
---|
43 | BN_free(group->field);
|
---|
44 | BN_free(group->a);
|
---|
45 | BN_free(group->b);
|
---|
46 | }
|
---|
47 |
|
---|
48 | /*
|
---|
49 | * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
|
---|
50 | * members are handled by EC_GROUP_clear_free.
|
---|
51 | */
|
---|
52 | void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
|
---|
53 | {
|
---|
54 | BN_clear_free(group->field);
|
---|
55 | BN_clear_free(group->a);
|
---|
56 | BN_clear_free(group->b);
|
---|
57 | group->poly[0] = 0;
|
---|
58 | group->poly[1] = 0;
|
---|
59 | group->poly[2] = 0;
|
---|
60 | group->poly[3] = 0;
|
---|
61 | group->poly[4] = 0;
|
---|
62 | group->poly[5] = -1;
|
---|
63 | }
|
---|
64 |
|
---|
65 | /*
|
---|
66 | * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
|
---|
67 | * handled by EC_GROUP_copy.
|
---|
68 | */
|
---|
69 | int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
|
---|
70 | {
|
---|
71 | if (!BN_copy(dest->field, src->field))
|
---|
72 | return 0;
|
---|
73 | if (!BN_copy(dest->a, src->a))
|
---|
74 | return 0;
|
---|
75 | if (!BN_copy(dest->b, src->b))
|
---|
76 | return 0;
|
---|
77 | dest->poly[0] = src->poly[0];
|
---|
78 | dest->poly[1] = src->poly[1];
|
---|
79 | dest->poly[2] = src->poly[2];
|
---|
80 | dest->poly[3] = src->poly[3];
|
---|
81 | dest->poly[4] = src->poly[4];
|
---|
82 | dest->poly[5] = src->poly[5];
|
---|
83 | if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
|
---|
84 | NULL)
|
---|
85 | return 0;
|
---|
86 | if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
|
---|
87 | NULL)
|
---|
88 | return 0;
|
---|
89 | bn_set_all_zero(dest->a);
|
---|
90 | bn_set_all_zero(dest->b);
|
---|
91 | return 1;
|
---|
92 | }
|
---|
93 |
|
---|
94 | /* Set the curve parameters of an EC_GROUP structure. */
|
---|
95 | int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
|
---|
96 | const BIGNUM *p, const BIGNUM *a,
|
---|
97 | const BIGNUM *b, BN_CTX *ctx)
|
---|
98 | {
|
---|
99 | int ret = 0, i;
|
---|
100 |
|
---|
101 | /* group->field */
|
---|
102 | if (!BN_copy(group->field, p))
|
---|
103 | goto err;
|
---|
104 | i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
|
---|
105 | if ((i != 5) && (i != 3)) {
|
---|
106 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
|
---|
107 | goto err;
|
---|
108 | }
|
---|
109 |
|
---|
110 | /* group->a */
|
---|
111 | if (!BN_GF2m_mod_arr(group->a, a, group->poly))
|
---|
112 | goto err;
|
---|
113 | if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
|
---|
114 | == NULL)
|
---|
115 | goto err;
|
---|
116 | bn_set_all_zero(group->a);
|
---|
117 |
|
---|
118 | /* group->b */
|
---|
119 | if (!BN_GF2m_mod_arr(group->b, b, group->poly))
|
---|
120 | goto err;
|
---|
121 | if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
|
---|
122 | == NULL)
|
---|
123 | goto err;
|
---|
124 | bn_set_all_zero(group->b);
|
---|
125 |
|
---|
126 | ret = 1;
|
---|
127 | err:
|
---|
128 | return ret;
|
---|
129 | }
|
---|
130 |
|
---|
131 | /*
|
---|
132 | * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
|
---|
133 | * then there values will not be set but the method will return with success.
|
---|
134 | */
|
---|
135 | int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
|
---|
136 | BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
|
---|
137 | {
|
---|
138 | int ret = 0;
|
---|
139 |
|
---|
140 | if (p != NULL) {
|
---|
141 | if (!BN_copy(p, group->field))
|
---|
142 | return 0;
|
---|
143 | }
|
---|
144 |
|
---|
145 | if (a != NULL) {
|
---|
146 | if (!BN_copy(a, group->a))
|
---|
147 | goto err;
|
---|
148 | }
|
---|
149 |
|
---|
150 | if (b != NULL) {
|
---|
151 | if (!BN_copy(b, group->b))
|
---|
152 | goto err;
|
---|
153 | }
|
---|
154 |
|
---|
155 | ret = 1;
|
---|
156 |
|
---|
157 | err:
|
---|
158 | return ret;
|
---|
159 | }
|
---|
160 |
|
---|
161 | /*
|
---|
162 | * Gets the degree of the field. For a curve over GF(2^m) this is the value
|
---|
163 | * m.
|
---|
164 | */
|
---|
165 | int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
|
---|
166 | {
|
---|
167 | return BN_num_bits(group->field) - 1;
|
---|
168 | }
|
---|
169 |
|
---|
170 | /*
|
---|
171 | * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
|
---|
172 | * elliptic curve <=> b != 0 (mod p)
|
---|
173 | */
|
---|
174 | int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
|
---|
175 | BN_CTX *ctx)
|
---|
176 | {
|
---|
177 | int ret = 0;
|
---|
178 | BIGNUM *b;
|
---|
179 | BN_CTX *new_ctx = NULL;
|
---|
180 |
|
---|
181 | if (ctx == NULL) {
|
---|
182 | ctx = new_ctx = BN_CTX_new();
|
---|
183 | if (ctx == NULL) {
|
---|
184 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
|
---|
185 | ERR_R_MALLOC_FAILURE);
|
---|
186 | goto err;
|
---|
187 | }
|
---|
188 | }
|
---|
189 | BN_CTX_start(ctx);
|
---|
190 | b = BN_CTX_get(ctx);
|
---|
191 | if (b == NULL)
|
---|
192 | goto err;
|
---|
193 |
|
---|
194 | if (!BN_GF2m_mod_arr(b, group->b, group->poly))
|
---|
195 | goto err;
|
---|
196 |
|
---|
197 | /*
|
---|
198 | * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
|
---|
199 | * curve <=> b != 0 (mod p)
|
---|
200 | */
|
---|
201 | if (BN_is_zero(b))
|
---|
202 | goto err;
|
---|
203 |
|
---|
204 | ret = 1;
|
---|
205 |
|
---|
206 | err:
|
---|
207 | BN_CTX_end(ctx);
|
---|
208 | BN_CTX_free(new_ctx);
|
---|
209 | return ret;
|
---|
210 | }
|
---|
211 |
|
---|
212 | /* Initializes an EC_POINT. */
|
---|
213 | int ec_GF2m_simple_point_init(EC_POINT *point)
|
---|
214 | {
|
---|
215 | point->X = BN_new();
|
---|
216 | point->Y = BN_new();
|
---|
217 | point->Z = BN_new();
|
---|
218 |
|
---|
219 | if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
|
---|
220 | BN_free(point->X);
|
---|
221 | BN_free(point->Y);
|
---|
222 | BN_free(point->Z);
|
---|
223 | return 0;
|
---|
224 | }
|
---|
225 | return 1;
|
---|
226 | }
|
---|
227 |
|
---|
228 | /* Frees an EC_POINT. */
|
---|
229 | void ec_GF2m_simple_point_finish(EC_POINT *point)
|
---|
230 | {
|
---|
231 | BN_free(point->X);
|
---|
232 | BN_free(point->Y);
|
---|
233 | BN_free(point->Z);
|
---|
234 | }
|
---|
235 |
|
---|
236 | /* Clears and frees an EC_POINT. */
|
---|
237 | void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
|
---|
238 | {
|
---|
239 | BN_clear_free(point->X);
|
---|
240 | BN_clear_free(point->Y);
|
---|
241 | BN_clear_free(point->Z);
|
---|
242 | point->Z_is_one = 0;
|
---|
243 | }
|
---|
244 |
|
---|
245 | /*
|
---|
246 | * Copy the contents of one EC_POINT into another. Assumes dest is
|
---|
247 | * initialized.
|
---|
248 | */
|
---|
249 | int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
|
---|
250 | {
|
---|
251 | if (!BN_copy(dest->X, src->X))
|
---|
252 | return 0;
|
---|
253 | if (!BN_copy(dest->Y, src->Y))
|
---|
254 | return 0;
|
---|
255 | if (!BN_copy(dest->Z, src->Z))
|
---|
256 | return 0;
|
---|
257 | dest->Z_is_one = src->Z_is_one;
|
---|
258 | dest->curve_name = src->curve_name;
|
---|
259 |
|
---|
260 | return 1;
|
---|
261 | }
|
---|
262 |
|
---|
263 | /*
|
---|
264 | * Set an EC_POINT to the point at infinity. A point at infinity is
|
---|
265 | * represented by having Z=0.
|
---|
266 | */
|
---|
267 | int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
|
---|
268 | EC_POINT *point)
|
---|
269 | {
|
---|
270 | point->Z_is_one = 0;
|
---|
271 | BN_zero(point->Z);
|
---|
272 | return 1;
|
---|
273 | }
|
---|
274 |
|
---|
275 | /*
|
---|
276 | * Set the coordinates of an EC_POINT using affine coordinates. Note that
|
---|
277 | * the simple implementation only uses affine coordinates.
|
---|
278 | */
|
---|
279 | int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
|
---|
280 | EC_POINT *point,
|
---|
281 | const BIGNUM *x,
|
---|
282 | const BIGNUM *y, BN_CTX *ctx)
|
---|
283 | {
|
---|
284 | int ret = 0;
|
---|
285 | if (x == NULL || y == NULL) {
|
---|
286 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
|
---|
287 | ERR_R_PASSED_NULL_PARAMETER);
|
---|
288 | return 0;
|
---|
289 | }
|
---|
290 |
|
---|
291 | if (!BN_copy(point->X, x))
|
---|
292 | goto err;
|
---|
293 | BN_set_negative(point->X, 0);
|
---|
294 | if (!BN_copy(point->Y, y))
|
---|
295 | goto err;
|
---|
296 | BN_set_negative(point->Y, 0);
|
---|
297 | if (!BN_copy(point->Z, BN_value_one()))
|
---|
298 | goto err;
|
---|
299 | BN_set_negative(point->Z, 0);
|
---|
300 | point->Z_is_one = 1;
|
---|
301 | ret = 1;
|
---|
302 |
|
---|
303 | err:
|
---|
304 | return ret;
|
---|
305 | }
|
---|
306 |
|
---|
307 | /*
|
---|
308 | * Gets the affine coordinates of an EC_POINT. Note that the simple
|
---|
309 | * implementation only uses affine coordinates.
|
---|
310 | */
|
---|
311 | int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
|
---|
312 | const EC_POINT *point,
|
---|
313 | BIGNUM *x, BIGNUM *y,
|
---|
314 | BN_CTX *ctx)
|
---|
315 | {
|
---|
316 | int ret = 0;
|
---|
317 |
|
---|
318 | if (EC_POINT_is_at_infinity(group, point)) {
|
---|
319 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
|
---|
320 | EC_R_POINT_AT_INFINITY);
|
---|
321 | return 0;
|
---|
322 | }
|
---|
323 |
|
---|
324 | if (BN_cmp(point->Z, BN_value_one())) {
|
---|
325 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
|
---|
326 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
---|
327 | return 0;
|
---|
328 | }
|
---|
329 | if (x != NULL) {
|
---|
330 | if (!BN_copy(x, point->X))
|
---|
331 | goto err;
|
---|
332 | BN_set_negative(x, 0);
|
---|
333 | }
|
---|
334 | if (y != NULL) {
|
---|
335 | if (!BN_copy(y, point->Y))
|
---|
336 | goto err;
|
---|
337 | BN_set_negative(y, 0);
|
---|
338 | }
|
---|
339 | ret = 1;
|
---|
340 |
|
---|
341 | err:
|
---|
342 | return ret;
|
---|
343 | }
|
---|
344 |
|
---|
345 | /*
|
---|
346 | * Computes a + b and stores the result in r. r could be a or b, a could be
|
---|
347 | * b. Uses algorithm A.10.2 of IEEE P1363.
|
---|
348 | */
|
---|
349 | int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
---|
350 | const EC_POINT *b, BN_CTX *ctx)
|
---|
351 | {
|
---|
352 | BN_CTX *new_ctx = NULL;
|
---|
353 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
|
---|
354 | int ret = 0;
|
---|
355 |
|
---|
356 | if (EC_POINT_is_at_infinity(group, a)) {
|
---|
357 | if (!EC_POINT_copy(r, b))
|
---|
358 | return 0;
|
---|
359 | return 1;
|
---|
360 | }
|
---|
361 |
|
---|
362 | if (EC_POINT_is_at_infinity(group, b)) {
|
---|
363 | if (!EC_POINT_copy(r, a))
|
---|
364 | return 0;
|
---|
365 | return 1;
|
---|
366 | }
|
---|
367 |
|
---|
368 | if (ctx == NULL) {
|
---|
369 | ctx = new_ctx = BN_CTX_new();
|
---|
370 | if (ctx == NULL)
|
---|
371 | return 0;
|
---|
372 | }
|
---|
373 |
|
---|
374 | BN_CTX_start(ctx);
|
---|
375 | x0 = BN_CTX_get(ctx);
|
---|
376 | y0 = BN_CTX_get(ctx);
|
---|
377 | x1 = BN_CTX_get(ctx);
|
---|
378 | y1 = BN_CTX_get(ctx);
|
---|
379 | x2 = BN_CTX_get(ctx);
|
---|
380 | y2 = BN_CTX_get(ctx);
|
---|
381 | s = BN_CTX_get(ctx);
|
---|
382 | t = BN_CTX_get(ctx);
|
---|
383 | if (t == NULL)
|
---|
384 | goto err;
|
---|
385 |
|
---|
386 | if (a->Z_is_one) {
|
---|
387 | if (!BN_copy(x0, a->X))
|
---|
388 | goto err;
|
---|
389 | if (!BN_copy(y0, a->Y))
|
---|
390 | goto err;
|
---|
391 | } else {
|
---|
392 | if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
|
---|
393 | goto err;
|
---|
394 | }
|
---|
395 | if (b->Z_is_one) {
|
---|
396 | if (!BN_copy(x1, b->X))
|
---|
397 | goto err;
|
---|
398 | if (!BN_copy(y1, b->Y))
|
---|
399 | goto err;
|
---|
400 | } else {
|
---|
401 | if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
|
---|
402 | goto err;
|
---|
403 | }
|
---|
404 |
|
---|
405 | if (BN_GF2m_cmp(x0, x1)) {
|
---|
406 | if (!BN_GF2m_add(t, x0, x1))
|
---|
407 | goto err;
|
---|
408 | if (!BN_GF2m_add(s, y0, y1))
|
---|
409 | goto err;
|
---|
410 | if (!group->meth->field_div(group, s, s, t, ctx))
|
---|
411 | goto err;
|
---|
412 | if (!group->meth->field_sqr(group, x2, s, ctx))
|
---|
413 | goto err;
|
---|
414 | if (!BN_GF2m_add(x2, x2, group->a))
|
---|
415 | goto err;
|
---|
416 | if (!BN_GF2m_add(x2, x2, s))
|
---|
417 | goto err;
|
---|
418 | if (!BN_GF2m_add(x2, x2, t))
|
---|
419 | goto err;
|
---|
420 | } else {
|
---|
421 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
|
---|
422 | if (!EC_POINT_set_to_infinity(group, r))
|
---|
423 | goto err;
|
---|
424 | ret = 1;
|
---|
425 | goto err;
|
---|
426 | }
|
---|
427 | if (!group->meth->field_div(group, s, y1, x1, ctx))
|
---|
428 | goto err;
|
---|
429 | if (!BN_GF2m_add(s, s, x1))
|
---|
430 | goto err;
|
---|
431 |
|
---|
432 | if (!group->meth->field_sqr(group, x2, s, ctx))
|
---|
433 | goto err;
|
---|
434 | if (!BN_GF2m_add(x2, x2, s))
|
---|
435 | goto err;
|
---|
436 | if (!BN_GF2m_add(x2, x2, group->a))
|
---|
437 | goto err;
|
---|
438 | }
|
---|
439 |
|
---|
440 | if (!BN_GF2m_add(y2, x1, x2))
|
---|
441 | goto err;
|
---|
442 | if (!group->meth->field_mul(group, y2, y2, s, ctx))
|
---|
443 | goto err;
|
---|
444 | if (!BN_GF2m_add(y2, y2, x2))
|
---|
445 | goto err;
|
---|
446 | if (!BN_GF2m_add(y2, y2, y1))
|
---|
447 | goto err;
|
---|
448 |
|
---|
449 | if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
|
---|
450 | goto err;
|
---|
451 |
|
---|
452 | ret = 1;
|
---|
453 |
|
---|
454 | err:
|
---|
455 | BN_CTX_end(ctx);
|
---|
456 | BN_CTX_free(new_ctx);
|
---|
457 | return ret;
|
---|
458 | }
|
---|
459 |
|
---|
460 | /*
|
---|
461 | * Computes 2 * a and stores the result in r. r could be a. Uses algorithm
|
---|
462 | * A.10.2 of IEEE P1363.
|
---|
463 | */
|
---|
464 | int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
---|
465 | BN_CTX *ctx)
|
---|
466 | {
|
---|
467 | return ec_GF2m_simple_add(group, r, a, a, ctx);
|
---|
468 | }
|
---|
469 |
|
---|
470 | int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
|
---|
471 | {
|
---|
472 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
|
---|
473 | /* point is its own inverse */
|
---|
474 | return 1;
|
---|
475 |
|
---|
476 | if (!EC_POINT_make_affine(group, point, ctx))
|
---|
477 | return 0;
|
---|
478 | return BN_GF2m_add(point->Y, point->X, point->Y);
|
---|
479 | }
|
---|
480 |
|
---|
481 | /* Indicates whether the given point is the point at infinity. */
|
---|
482 | int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
|
---|
483 | const EC_POINT *point)
|
---|
484 | {
|
---|
485 | return BN_is_zero(point->Z);
|
---|
486 | }
|
---|
487 |
|
---|
488 | /*-
|
---|
489 | * Determines whether the given EC_POINT is an actual point on the curve defined
|
---|
490 | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
|
---|
491 | * y^2 + x*y = x^3 + a*x^2 + b.
|
---|
492 | */
|
---|
493 | int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
|
---|
494 | BN_CTX *ctx)
|
---|
495 | {
|
---|
496 | int ret = -1;
|
---|
497 | BN_CTX *new_ctx = NULL;
|
---|
498 | BIGNUM *lh, *y2;
|
---|
499 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
---|
500 | const BIGNUM *, BN_CTX *);
|
---|
501 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
---|
502 |
|
---|
503 | if (EC_POINT_is_at_infinity(group, point))
|
---|
504 | return 1;
|
---|
505 |
|
---|
506 | field_mul = group->meth->field_mul;
|
---|
507 | field_sqr = group->meth->field_sqr;
|
---|
508 |
|
---|
509 | /* only support affine coordinates */
|
---|
510 | if (!point->Z_is_one)
|
---|
511 | return -1;
|
---|
512 |
|
---|
513 | if (ctx == NULL) {
|
---|
514 | ctx = new_ctx = BN_CTX_new();
|
---|
515 | if (ctx == NULL)
|
---|
516 | return -1;
|
---|
517 | }
|
---|
518 |
|
---|
519 | BN_CTX_start(ctx);
|
---|
520 | y2 = BN_CTX_get(ctx);
|
---|
521 | lh = BN_CTX_get(ctx);
|
---|
522 | if (lh == NULL)
|
---|
523 | goto err;
|
---|
524 |
|
---|
525 | /*-
|
---|
526 | * We have a curve defined by a Weierstrass equation
|
---|
527 | * y^2 + x*y = x^3 + a*x^2 + b.
|
---|
528 | * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
|
---|
529 | * <=> ((x + a) * x + y ) * x + b + y^2 = 0
|
---|
530 | */
|
---|
531 | if (!BN_GF2m_add(lh, point->X, group->a))
|
---|
532 | goto err;
|
---|
533 | if (!field_mul(group, lh, lh, point->X, ctx))
|
---|
534 | goto err;
|
---|
535 | if (!BN_GF2m_add(lh, lh, point->Y))
|
---|
536 | goto err;
|
---|
537 | if (!field_mul(group, lh, lh, point->X, ctx))
|
---|
538 | goto err;
|
---|
539 | if (!BN_GF2m_add(lh, lh, group->b))
|
---|
540 | goto err;
|
---|
541 | if (!field_sqr(group, y2, point->Y, ctx))
|
---|
542 | goto err;
|
---|
543 | if (!BN_GF2m_add(lh, lh, y2))
|
---|
544 | goto err;
|
---|
545 | ret = BN_is_zero(lh);
|
---|
546 |
|
---|
547 | err:
|
---|
548 | BN_CTX_end(ctx);
|
---|
549 | BN_CTX_free(new_ctx);
|
---|
550 | return ret;
|
---|
551 | }
|
---|
552 |
|
---|
553 | /*-
|
---|
554 | * Indicates whether two points are equal.
|
---|
555 | * Return values:
|
---|
556 | * -1 error
|
---|
557 | * 0 equal (in affine coordinates)
|
---|
558 | * 1 not equal
|
---|
559 | */
|
---|
560 | int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
|
---|
561 | const EC_POINT *b, BN_CTX *ctx)
|
---|
562 | {
|
---|
563 | BIGNUM *aX, *aY, *bX, *bY;
|
---|
564 | BN_CTX *new_ctx = NULL;
|
---|
565 | int ret = -1;
|
---|
566 |
|
---|
567 | if (EC_POINT_is_at_infinity(group, a)) {
|
---|
568 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
|
---|
569 | }
|
---|
570 |
|
---|
571 | if (EC_POINT_is_at_infinity(group, b))
|
---|
572 | return 1;
|
---|
573 |
|
---|
574 | if (a->Z_is_one && b->Z_is_one) {
|
---|
575 | return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
|
---|
576 | }
|
---|
577 |
|
---|
578 | if (ctx == NULL) {
|
---|
579 | ctx = new_ctx = BN_CTX_new();
|
---|
580 | if (ctx == NULL)
|
---|
581 | return -1;
|
---|
582 | }
|
---|
583 |
|
---|
584 | BN_CTX_start(ctx);
|
---|
585 | aX = BN_CTX_get(ctx);
|
---|
586 | aY = BN_CTX_get(ctx);
|
---|
587 | bX = BN_CTX_get(ctx);
|
---|
588 | bY = BN_CTX_get(ctx);
|
---|
589 | if (bY == NULL)
|
---|
590 | goto err;
|
---|
591 |
|
---|
592 | if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
|
---|
593 | goto err;
|
---|
594 | if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
|
---|
595 | goto err;
|
---|
596 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
|
---|
597 |
|
---|
598 | err:
|
---|
599 | BN_CTX_end(ctx);
|
---|
600 | BN_CTX_free(new_ctx);
|
---|
601 | return ret;
|
---|
602 | }
|
---|
603 |
|
---|
604 | /* Forces the given EC_POINT to internally use affine coordinates. */
|
---|
605 | int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
|
---|
606 | BN_CTX *ctx)
|
---|
607 | {
|
---|
608 | BN_CTX *new_ctx = NULL;
|
---|
609 | BIGNUM *x, *y;
|
---|
610 | int ret = 0;
|
---|
611 |
|
---|
612 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
|
---|
613 | return 1;
|
---|
614 |
|
---|
615 | if (ctx == NULL) {
|
---|
616 | ctx = new_ctx = BN_CTX_new();
|
---|
617 | if (ctx == NULL)
|
---|
618 | return 0;
|
---|
619 | }
|
---|
620 |
|
---|
621 | BN_CTX_start(ctx);
|
---|
622 | x = BN_CTX_get(ctx);
|
---|
623 | y = BN_CTX_get(ctx);
|
---|
624 | if (y == NULL)
|
---|
625 | goto err;
|
---|
626 |
|
---|
627 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
|
---|
628 | goto err;
|
---|
629 | if (!BN_copy(point->X, x))
|
---|
630 | goto err;
|
---|
631 | if (!BN_copy(point->Y, y))
|
---|
632 | goto err;
|
---|
633 | if (!BN_one(point->Z))
|
---|
634 | goto err;
|
---|
635 | point->Z_is_one = 1;
|
---|
636 |
|
---|
637 | ret = 1;
|
---|
638 |
|
---|
639 | err:
|
---|
640 | BN_CTX_end(ctx);
|
---|
641 | BN_CTX_free(new_ctx);
|
---|
642 | return ret;
|
---|
643 | }
|
---|
644 |
|
---|
645 | /*
|
---|
646 | * Forces each of the EC_POINTs in the given array to use affine coordinates.
|
---|
647 | */
|
---|
648 | int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
|
---|
649 | EC_POINT *points[], BN_CTX *ctx)
|
---|
650 | {
|
---|
651 | size_t i;
|
---|
652 |
|
---|
653 | for (i = 0; i < num; i++) {
|
---|
654 | if (!group->meth->make_affine(group, points[i], ctx))
|
---|
655 | return 0;
|
---|
656 | }
|
---|
657 |
|
---|
658 | return 1;
|
---|
659 | }
|
---|
660 |
|
---|
661 | /* Wrapper to simple binary polynomial field multiplication implementation. */
|
---|
662 | int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
|
---|
663 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
---|
664 | {
|
---|
665 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
|
---|
666 | }
|
---|
667 |
|
---|
668 | /* Wrapper to simple binary polynomial field squaring implementation. */
|
---|
669 | int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
|
---|
670 | const BIGNUM *a, BN_CTX *ctx)
|
---|
671 | {
|
---|
672 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
|
---|
673 | }
|
---|
674 |
|
---|
675 | /* Wrapper to simple binary polynomial field division implementation. */
|
---|
676 | int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
|
---|
677 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
---|
678 | {
|
---|
679 | return BN_GF2m_mod_div(r, a, b, group->field, ctx);
|
---|
680 | }
|
---|
681 |
|
---|
682 | /*-
|
---|
683 | * Lopez-Dahab ladder, pre step.
|
---|
684 | * See e.g. "Guide to ECC" Alg 3.40.
|
---|
685 | * Modified to blind s and r independently.
|
---|
686 | * s:= p, r := 2p
|
---|
687 | */
|
---|
688 | static
|
---|
689 | int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
|
---|
690 | EC_POINT *r, EC_POINT *s,
|
---|
691 | EC_POINT *p, BN_CTX *ctx)
|
---|
692 | {
|
---|
693 | /* if p is not affine, something is wrong */
|
---|
694 | if (p->Z_is_one == 0)
|
---|
695 | return 0;
|
---|
696 |
|
---|
697 | /* s blinding: make sure lambda (s->Z here) is not zero */
|
---|
698 | do {
|
---|
699 | if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,
|
---|
700 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
|
---|
701 | ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
|
---|
702 | return 0;
|
---|
703 | }
|
---|
704 | } while (BN_is_zero(s->Z));
|
---|
705 |
|
---|
706 | /* if field_encode defined convert between representations */
|
---|
707 | if ((group->meth->field_encode != NULL
|
---|
708 | && !group->meth->field_encode(group, s->Z, s->Z, ctx))
|
---|
709 | || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
|
---|
710 | return 0;
|
---|
711 |
|
---|
712 | /* r blinding: make sure lambda (r->Y here for storage) is not zero */
|
---|
713 | do {
|
---|
714 | if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,
|
---|
715 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
|
---|
716 | ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
|
---|
717 | return 0;
|
---|
718 | }
|
---|
719 | } while (BN_is_zero(r->Y));
|
---|
720 |
|
---|
721 | if ((group->meth->field_encode != NULL
|
---|
722 | && !group->meth->field_encode(group, r->Y, r->Y, ctx))
|
---|
723 | || !group->meth->field_sqr(group, r->Z, p->X, ctx)
|
---|
724 | || !group->meth->field_sqr(group, r->X, r->Z, ctx)
|
---|
725 | || !BN_GF2m_add(r->X, r->X, group->b)
|
---|
726 | || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
|
---|
727 | || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
|
---|
728 | return 0;
|
---|
729 |
|
---|
730 | s->Z_is_one = 0;
|
---|
731 | r->Z_is_one = 0;
|
---|
732 |
|
---|
733 | return 1;
|
---|
734 | }
|
---|
735 |
|
---|
736 | /*-
|
---|
737 | * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
|
---|
738 | * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
|
---|
739 | * s := r + s, r := 2r
|
---|
740 | */
|
---|
741 | static
|
---|
742 | int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
|
---|
743 | EC_POINT *r, EC_POINT *s,
|
---|
744 | EC_POINT *p, BN_CTX *ctx)
|
---|
745 | {
|
---|
746 | if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
|
---|
747 | || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
|
---|
748 | || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
|
---|
749 | || !group->meth->field_sqr(group, r->Z, r->X, ctx)
|
---|
750 | || !BN_GF2m_add(s->Z, r->Y, s->X)
|
---|
751 | || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
|
---|
752 | || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
|
---|
753 | || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
|
---|
754 | || !BN_GF2m_add(s->X, s->X, r->Y)
|
---|
755 | || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
|
---|
756 | || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
|
---|
757 | || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
|
---|
758 | || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
|
---|
759 | || !BN_GF2m_add(r->X, r->Y, s->Y))
|
---|
760 | return 0;
|
---|
761 |
|
---|
762 | return 1;
|
---|
763 | }
|
---|
764 |
|
---|
765 | /*-
|
---|
766 | * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
|
---|
767 | * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
|
---|
768 | * without Precomputation" (Lopez and Dahab, CHES 1999),
|
---|
769 | * Appendix Alg Mxy.
|
---|
770 | */
|
---|
771 | static
|
---|
772 | int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
|
---|
773 | EC_POINT *r, EC_POINT *s,
|
---|
774 | EC_POINT *p, BN_CTX *ctx)
|
---|
775 | {
|
---|
776 | int ret = 0;
|
---|
777 | BIGNUM *t0, *t1, *t2 = NULL;
|
---|
778 |
|
---|
779 | if (BN_is_zero(r->Z))
|
---|
780 | return EC_POINT_set_to_infinity(group, r);
|
---|
781 |
|
---|
782 | if (BN_is_zero(s->Z)) {
|
---|
783 | if (!EC_POINT_copy(r, p)
|
---|
784 | || !EC_POINT_invert(group, r, ctx)) {
|
---|
785 | ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
|
---|
786 | return 0;
|
---|
787 | }
|
---|
788 | return 1;
|
---|
789 | }
|
---|
790 |
|
---|
791 | BN_CTX_start(ctx);
|
---|
792 | t0 = BN_CTX_get(ctx);
|
---|
793 | t1 = BN_CTX_get(ctx);
|
---|
794 | t2 = BN_CTX_get(ctx);
|
---|
795 | if (t2 == NULL) {
|
---|
796 | ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
|
---|
797 | goto err;
|
---|
798 | }
|
---|
799 |
|
---|
800 | if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
|
---|
801 | || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
|
---|
802 | || !BN_GF2m_add(t1, r->X, t1)
|
---|
803 | || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
|
---|
804 | || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
|
---|
805 | || !BN_GF2m_add(t2, t2, s->X)
|
---|
806 | || !group->meth->field_mul(group, t1, t1, t2, ctx)
|
---|
807 | || !group->meth->field_sqr(group, t2, p->X, ctx)
|
---|
808 | || !BN_GF2m_add(t2, p->Y, t2)
|
---|
809 | || !group->meth->field_mul(group, t2, t2, t0, ctx)
|
---|
810 | || !BN_GF2m_add(t1, t2, t1)
|
---|
811 | || !group->meth->field_mul(group, t2, p->X, t0, ctx)
|
---|
812 | || !group->meth->field_inv(group, t2, t2, ctx)
|
---|
813 | || !group->meth->field_mul(group, t1, t1, t2, ctx)
|
---|
814 | || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
|
---|
815 | || !BN_GF2m_add(t2, p->X, r->X)
|
---|
816 | || !group->meth->field_mul(group, t2, t2, t1, ctx)
|
---|
817 | || !BN_GF2m_add(r->Y, p->Y, t2)
|
---|
818 | || !BN_one(r->Z))
|
---|
819 | goto err;
|
---|
820 |
|
---|
821 | r->Z_is_one = 1;
|
---|
822 |
|
---|
823 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
|
---|
824 | BN_set_negative(r->X, 0);
|
---|
825 | BN_set_negative(r->Y, 0);
|
---|
826 |
|
---|
827 | ret = 1;
|
---|
828 |
|
---|
829 | err:
|
---|
830 | BN_CTX_end(ctx);
|
---|
831 | return ret;
|
---|
832 | }
|
---|
833 |
|
---|
834 | static
|
---|
835 | int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
|
---|
836 | const BIGNUM *scalar, size_t num,
|
---|
837 | const EC_POINT *points[],
|
---|
838 | const BIGNUM *scalars[],
|
---|
839 | BN_CTX *ctx)
|
---|
840 | {
|
---|
841 | int ret = 0;
|
---|
842 | EC_POINT *t = NULL;
|
---|
843 |
|
---|
844 | /*-
|
---|
845 | * We limit use of the ladder only to the following cases:
|
---|
846 | * - r := scalar * G
|
---|
847 | * Fixed point mul: scalar != NULL && num == 0;
|
---|
848 | * - r := scalars[0] * points[0]
|
---|
849 | * Variable point mul: scalar == NULL && num == 1;
|
---|
850 | * - r := scalar * G + scalars[0] * points[0]
|
---|
851 | * used, e.g., in ECDSA verification: scalar != NULL && num == 1
|
---|
852 | *
|
---|
853 | * In any other case (num > 1) we use the default wNAF implementation.
|
---|
854 | *
|
---|
855 | * We also let the default implementation handle degenerate cases like group
|
---|
856 | * order or cofactor set to 0.
|
---|
857 | */
|
---|
858 | if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
|
---|
859 | return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
|
---|
860 |
|
---|
861 | if (scalar != NULL && num == 0)
|
---|
862 | /* Fixed point multiplication */
|
---|
863 | return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
|
---|
864 |
|
---|
865 | if (scalar == NULL && num == 1)
|
---|
866 | /* Variable point multiplication */
|
---|
867 | return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
|
---|
868 |
|
---|
869 | /*-
|
---|
870 | * Double point multiplication:
|
---|
871 | * r := scalar * G + scalars[0] * points[0]
|
---|
872 | */
|
---|
873 |
|
---|
874 | if ((t = EC_POINT_new(group)) == NULL) {
|
---|
875 | ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE);
|
---|
876 | return 0;
|
---|
877 | }
|
---|
878 |
|
---|
879 | if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
|
---|
880 | || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
|
---|
881 | || !EC_POINT_add(group, r, t, r, ctx))
|
---|
882 | goto err;
|
---|
883 |
|
---|
884 | ret = 1;
|
---|
885 |
|
---|
886 | err:
|
---|
887 | EC_POINT_free(t);
|
---|
888 | return ret;
|
---|
889 | }
|
---|
890 |
|
---|
891 | /*-
|
---|
892 | * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.
|
---|
893 | * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
|
---|
894 | * SCA hardening is with blinding: BN_GF2m_mod_inv does that.
|
---|
895 | */
|
---|
896 | static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
|
---|
897 | const BIGNUM *a, BN_CTX *ctx)
|
---|
898 | {
|
---|
899 | int ret;
|
---|
900 |
|
---|
901 | if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))
|
---|
902 | ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
|
---|
903 | return ret;
|
---|
904 | }
|
---|
905 |
|
---|
906 | const EC_METHOD *EC_GF2m_simple_method(void)
|
---|
907 | {
|
---|
908 | static const EC_METHOD ret = {
|
---|
909 | EC_FLAGS_DEFAULT_OCT,
|
---|
910 | NID_X9_62_characteristic_two_field,
|
---|
911 | ec_GF2m_simple_group_init,
|
---|
912 | ec_GF2m_simple_group_finish,
|
---|
913 | ec_GF2m_simple_group_clear_finish,
|
---|
914 | ec_GF2m_simple_group_copy,
|
---|
915 | ec_GF2m_simple_group_set_curve,
|
---|
916 | ec_GF2m_simple_group_get_curve,
|
---|
917 | ec_GF2m_simple_group_get_degree,
|
---|
918 | ec_group_simple_order_bits,
|
---|
919 | ec_GF2m_simple_group_check_discriminant,
|
---|
920 | ec_GF2m_simple_point_init,
|
---|
921 | ec_GF2m_simple_point_finish,
|
---|
922 | ec_GF2m_simple_point_clear_finish,
|
---|
923 | ec_GF2m_simple_point_copy,
|
---|
924 | ec_GF2m_simple_point_set_to_infinity,
|
---|
925 | 0, /* set_Jprojective_coordinates_GFp */
|
---|
926 | 0, /* get_Jprojective_coordinates_GFp */
|
---|
927 | ec_GF2m_simple_point_set_affine_coordinates,
|
---|
928 | ec_GF2m_simple_point_get_affine_coordinates,
|
---|
929 | 0, /* point_set_compressed_coordinates */
|
---|
930 | 0, /* point2oct */
|
---|
931 | 0, /* oct2point */
|
---|
932 | ec_GF2m_simple_add,
|
---|
933 | ec_GF2m_simple_dbl,
|
---|
934 | ec_GF2m_simple_invert,
|
---|
935 | ec_GF2m_simple_is_at_infinity,
|
---|
936 | ec_GF2m_simple_is_on_curve,
|
---|
937 | ec_GF2m_simple_cmp,
|
---|
938 | ec_GF2m_simple_make_affine,
|
---|
939 | ec_GF2m_simple_points_make_affine,
|
---|
940 | ec_GF2m_simple_points_mul,
|
---|
941 | 0, /* precompute_mult */
|
---|
942 | 0, /* have_precompute_mult */
|
---|
943 | ec_GF2m_simple_field_mul,
|
---|
944 | ec_GF2m_simple_field_sqr,
|
---|
945 | ec_GF2m_simple_field_div,
|
---|
946 | ec_GF2m_simple_field_inv,
|
---|
947 | 0, /* field_encode */
|
---|
948 | 0, /* field_decode */
|
---|
949 | 0, /* field_set_to_one */
|
---|
950 | ec_key_simple_priv2oct,
|
---|
951 | ec_key_simple_oct2priv,
|
---|
952 | 0, /* set private */
|
---|
953 | ec_key_simple_generate_key,
|
---|
954 | ec_key_simple_check_key,
|
---|
955 | ec_key_simple_generate_public_key,
|
---|
956 | 0, /* keycopy */
|
---|
957 | 0, /* keyfinish */
|
---|
958 | ecdh_simple_compute_key,
|
---|
959 | 0, /* field_inverse_mod_ord */
|
---|
960 | 0, /* blind_coordinates */
|
---|
961 | ec_GF2m_simple_ladder_pre,
|
---|
962 | ec_GF2m_simple_ladder_step,
|
---|
963 | ec_GF2m_simple_ladder_post
|
---|
964 | };
|
---|
965 |
|
---|
966 | return &ret;
|
---|
967 | }
|
---|
968 |
|
---|
969 | #endif
|
---|