VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1f/crypto/ec/ecp_nistp224.c@ 83531

Last change on this file since 83531 was 83531, checked in by vboxsync, 5 years ago

setting svn:sync-process=export for openssl-1.1.1f, all files except tests

File size: 59.3 KB
Line 
1/*
2 * Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/* Copyright 2011 Google Inc.
11 *
12 * Licensed under the Apache License, Version 2.0 (the "License");
13 *
14 * you may not use this file except in compliance with the License.
15 * You may obtain a copy of the License at
16 *
17 * http://www.apache.org/licenses/LICENSE-2.0
18 *
19 * Unless required by applicable law or agreed to in writing, software
20 * distributed under the License is distributed on an "AS IS" BASIS,
21 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22 * See the License for the specific language governing permissions and
23 * limitations under the License.
24 */
25
26/*
27 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
28 *
29 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
30 * and Adam Langley's public domain 64-bit C implementation of curve25519
31 */
32
33#include <openssl/opensslconf.h>
34#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
35NON_EMPTY_TRANSLATION_UNIT
36#else
37
38# include <stdint.h>
39# include <string.h>
40# include <openssl/err.h>
41# include "ec_local.h"
42
43# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44 /* even with gcc, the typedef won't work for 32-bit platforms */
45typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
46 * platforms */
47# else
48# error "Your compiler doesn't appear to support 128-bit integer types"
49# endif
50
51typedef uint8_t u8;
52typedef uint64_t u64;
53
54/******************************************************************************/
55/*-
56 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
57 *
58 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
59 * using 64-bit coefficients called 'limbs',
60 * and sometimes (for multiplication results) as
61 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
62 * using 128-bit coefficients called 'widelimbs'.
63 * A 4-limb representation is an 'felem';
64 * a 7-widelimb representation is a 'widefelem'.
65 * Even within felems, bits of adjacent limbs overlap, and we don't always
66 * reduce the representations: we ensure that inputs to each felem
67 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
68 * and fit into a 128-bit word without overflow. The coefficients are then
69 * again partially reduced to obtain an felem satisfying a_i < 2^57.
70 * We only reduce to the unique minimal representation at the end of the
71 * computation.
72 */
73
74typedef uint64_t limb;
75typedef uint128_t widelimb;
76
77typedef limb felem[4];
78typedef widelimb widefelem[7];
79
80/*
81 * Field element represented as a byte array. 28*8 = 224 bits is also the
82 * group order size for the elliptic curve, and we also use this type for
83 * scalars for point multiplication.
84 */
85typedef u8 felem_bytearray[28];
86
87static const felem_bytearray nistp224_curve_params[5] = {
88 {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
89 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
90 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
91 {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
92 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
93 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
94 {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
95 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
96 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
97 {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
98 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
99 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
100 {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
101 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
102 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
103};
104
105/*-
106 * Precomputed multiples of the standard generator
107 * Points are given in coordinates (X, Y, Z) where Z normally is 1
108 * (0 for the point at infinity).
109 * For each field element, slice a_0 is word 0, etc.
110 *
111 * The table has 2 * 16 elements, starting with the following:
112 * index | bits | point
113 * ------+---------+------------------------------
114 * 0 | 0 0 0 0 | 0G
115 * 1 | 0 0 0 1 | 1G
116 * 2 | 0 0 1 0 | 2^56G
117 * 3 | 0 0 1 1 | (2^56 + 1)G
118 * 4 | 0 1 0 0 | 2^112G
119 * 5 | 0 1 0 1 | (2^112 + 1)G
120 * 6 | 0 1 1 0 | (2^112 + 2^56)G
121 * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
122 * 8 | 1 0 0 0 | 2^168G
123 * 9 | 1 0 0 1 | (2^168 + 1)G
124 * 10 | 1 0 1 0 | (2^168 + 2^56)G
125 * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
126 * 12 | 1 1 0 0 | (2^168 + 2^112)G
127 * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
128 * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
129 * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
130 * followed by a copy of this with each element multiplied by 2^28.
131 *
132 * The reason for this is so that we can clock bits into four different
133 * locations when doing simple scalar multiplies against the base point,
134 * and then another four locations using the second 16 elements.
135 */
136static const felem gmul[2][16][3] = {
137{{{0, 0, 0, 0},
138 {0, 0, 0, 0},
139 {0, 0, 0, 0}},
140 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
141 {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
142 {1, 0, 0, 0}},
143 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
144 {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
145 {1, 0, 0, 0}},
146 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
147 {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
148 {1, 0, 0, 0}},
149 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
150 {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
151 {1, 0, 0, 0}},
152 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
153 {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
154 {1, 0, 0, 0}},
155 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
156 {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
157 {1, 0, 0, 0}},
158 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
159 {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
160 {1, 0, 0, 0}},
161 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
162 {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
163 {1, 0, 0, 0}},
164 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
165 {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
166 {1, 0, 0, 0}},
167 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
168 {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
169 {1, 0, 0, 0}},
170 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
171 {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
172 {1, 0, 0, 0}},
173 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
174 {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
175 {1, 0, 0, 0}},
176 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
177 {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
178 {1, 0, 0, 0}},
179 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
180 {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
181 {1, 0, 0, 0}},
182 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
183 {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
184 {1, 0, 0, 0}}},
185{{{0, 0, 0, 0},
186 {0, 0, 0, 0},
187 {0, 0, 0, 0}},
188 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
189 {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
190 {1, 0, 0, 0}},
191 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
192 {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
193 {1, 0, 0, 0}},
194 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
195 {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
196 {1, 0, 0, 0}},
197 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
198 {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
199 {1, 0, 0, 0}},
200 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
201 {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
202 {1, 0, 0, 0}},
203 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
204 {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
205 {1, 0, 0, 0}},
206 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
207 {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
208 {1, 0, 0, 0}},
209 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
210 {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
211 {1, 0, 0, 0}},
212 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
213 {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
214 {1, 0, 0, 0}},
215 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
216 {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
217 {1, 0, 0, 0}},
218 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
219 {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
220 {1, 0, 0, 0}},
221 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
222 {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
223 {1, 0, 0, 0}},
224 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
225 {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
226 {1, 0, 0, 0}},
227 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
228 {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
229 {1, 0, 0, 0}},
230 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
231 {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
232 {1, 0, 0, 0}}}
233};
234
235/* Precomputation for the group generator. */
236struct nistp224_pre_comp_st {
237 felem g_pre_comp[2][16][3];
238 CRYPTO_REF_COUNT references;
239 CRYPTO_RWLOCK *lock;
240};
241
242const EC_METHOD *EC_GFp_nistp224_method(void)
243{
244 static const EC_METHOD ret = {
245 EC_FLAGS_DEFAULT_OCT,
246 NID_X9_62_prime_field,
247 ec_GFp_nistp224_group_init,
248 ec_GFp_simple_group_finish,
249 ec_GFp_simple_group_clear_finish,
250 ec_GFp_nist_group_copy,
251 ec_GFp_nistp224_group_set_curve,
252 ec_GFp_simple_group_get_curve,
253 ec_GFp_simple_group_get_degree,
254 ec_group_simple_order_bits,
255 ec_GFp_simple_group_check_discriminant,
256 ec_GFp_simple_point_init,
257 ec_GFp_simple_point_finish,
258 ec_GFp_simple_point_clear_finish,
259 ec_GFp_simple_point_copy,
260 ec_GFp_simple_point_set_to_infinity,
261 ec_GFp_simple_set_Jprojective_coordinates_GFp,
262 ec_GFp_simple_get_Jprojective_coordinates_GFp,
263 ec_GFp_simple_point_set_affine_coordinates,
264 ec_GFp_nistp224_point_get_affine_coordinates,
265 0 /* point_set_compressed_coordinates */ ,
266 0 /* point2oct */ ,
267 0 /* oct2point */ ,
268 ec_GFp_simple_add,
269 ec_GFp_simple_dbl,
270 ec_GFp_simple_invert,
271 ec_GFp_simple_is_at_infinity,
272 ec_GFp_simple_is_on_curve,
273 ec_GFp_simple_cmp,
274 ec_GFp_simple_make_affine,
275 ec_GFp_simple_points_make_affine,
276 ec_GFp_nistp224_points_mul,
277 ec_GFp_nistp224_precompute_mult,
278 ec_GFp_nistp224_have_precompute_mult,
279 ec_GFp_nist_field_mul,
280 ec_GFp_nist_field_sqr,
281 0 /* field_div */ ,
282 ec_GFp_simple_field_inv,
283 0 /* field_encode */ ,
284 0 /* field_decode */ ,
285 0, /* field_set_to_one */
286 ec_key_simple_priv2oct,
287 ec_key_simple_oct2priv,
288 0, /* set private */
289 ec_key_simple_generate_key,
290 ec_key_simple_check_key,
291 ec_key_simple_generate_public_key,
292 0, /* keycopy */
293 0, /* keyfinish */
294 ecdh_simple_compute_key,
295 0, /* field_inverse_mod_ord */
296 0, /* blind_coordinates */
297 0, /* ladder_pre */
298 0, /* ladder_step */
299 0 /* ladder_post */
300 };
301
302 return &ret;
303}
304
305/*
306 * Helper functions to convert field elements to/from internal representation
307 */
308static void bin28_to_felem(felem out, const u8 in[28])
309{
310 out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
311 out[1] = (*((const uint64_t *)(in + 7))) & 0x00ffffffffffffff;
312 out[2] = (*((const uint64_t *)(in + 14))) & 0x00ffffffffffffff;
313 out[3] = (*((const uint64_t *)(in+20))) >> 8;
314}
315
316static void felem_to_bin28(u8 out[28], const felem in)
317{
318 unsigned i;
319 for (i = 0; i < 7; ++i) {
320 out[i] = in[0] >> (8 * i);
321 out[i + 7] = in[1] >> (8 * i);
322 out[i + 14] = in[2] >> (8 * i);
323 out[i + 21] = in[3] >> (8 * i);
324 }
325}
326
327/* From OpenSSL BIGNUM to internal representation */
328static int BN_to_felem(felem out, const BIGNUM *bn)
329{
330 felem_bytearray b_out;
331 int num_bytes;
332
333 if (BN_is_negative(bn)) {
334 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
335 return 0;
336 }
337 num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
338 if (num_bytes < 0) {
339 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
340 return 0;
341 }
342 bin28_to_felem(out, b_out);
343 return 1;
344}
345
346/* From internal representation to OpenSSL BIGNUM */
347static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
348{
349 felem_bytearray b_out;
350 felem_to_bin28(b_out, in);
351 return BN_lebin2bn(b_out, sizeof(b_out), out);
352}
353
354/******************************************************************************/
355/*-
356 * FIELD OPERATIONS
357 *
358 * Field operations, using the internal representation of field elements.
359 * NB! These operations are specific to our point multiplication and cannot be
360 * expected to be correct in general - e.g., multiplication with a large scalar
361 * will cause an overflow.
362 *
363 */
364
365static void felem_one(felem out)
366{
367 out[0] = 1;
368 out[1] = 0;
369 out[2] = 0;
370 out[3] = 0;
371}
372
373static void felem_assign(felem out, const felem in)
374{
375 out[0] = in[0];
376 out[1] = in[1];
377 out[2] = in[2];
378 out[3] = in[3];
379}
380
381/* Sum two field elements: out += in */
382static void felem_sum(felem out, const felem in)
383{
384 out[0] += in[0];
385 out[1] += in[1];
386 out[2] += in[2];
387 out[3] += in[3];
388}
389
390/* Subtract field elements: out -= in */
391/* Assumes in[i] < 2^57 */
392static void felem_diff(felem out, const felem in)
393{
394 static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
395 static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
396 static const limb two58m42m2 = (((limb) 1) << 58) -
397 (((limb) 1) << 42) - (((limb) 1) << 2);
398
399 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
400 out[0] += two58p2;
401 out[1] += two58m42m2;
402 out[2] += two58m2;
403 out[3] += two58m2;
404
405 out[0] -= in[0];
406 out[1] -= in[1];
407 out[2] -= in[2];
408 out[3] -= in[3];
409}
410
411/* Subtract in unreduced 128-bit mode: out -= in */
412/* Assumes in[i] < 2^119 */
413static void widefelem_diff(widefelem out, const widefelem in)
414{
415 static const widelimb two120 = ((widelimb) 1) << 120;
416 static const widelimb two120m64 = (((widelimb) 1) << 120) -
417 (((widelimb) 1) << 64);
418 static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
419 (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
420
421 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
422 out[0] += two120;
423 out[1] += two120m64;
424 out[2] += two120m64;
425 out[3] += two120;
426 out[4] += two120m104m64;
427 out[5] += two120m64;
428 out[6] += two120m64;
429
430 out[0] -= in[0];
431 out[1] -= in[1];
432 out[2] -= in[2];
433 out[3] -= in[3];
434 out[4] -= in[4];
435 out[5] -= in[5];
436 out[6] -= in[6];
437}
438
439/* Subtract in mixed mode: out128 -= in64 */
440/* in[i] < 2^63 */
441static void felem_diff_128_64(widefelem out, const felem in)
442{
443 static const widelimb two64p8 = (((widelimb) 1) << 64) +
444 (((widelimb) 1) << 8);
445 static const widelimb two64m8 = (((widelimb) 1) << 64) -
446 (((widelimb) 1) << 8);
447 static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
448 (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
449
450 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
451 out[0] += two64p8;
452 out[1] += two64m48m8;
453 out[2] += two64m8;
454 out[3] += two64m8;
455
456 out[0] -= in[0];
457 out[1] -= in[1];
458 out[2] -= in[2];
459 out[3] -= in[3];
460}
461
462/*
463 * Multiply a field element by a scalar: out = out * scalar The scalars we
464 * actually use are small, so results fit without overflow
465 */
466static void felem_scalar(felem out, const limb scalar)
467{
468 out[0] *= scalar;
469 out[1] *= scalar;
470 out[2] *= scalar;
471 out[3] *= scalar;
472}
473
474/*
475 * Multiply an unreduced field element by a scalar: out = out * scalar The
476 * scalars we actually use are small, so results fit without overflow
477 */
478static void widefelem_scalar(widefelem out, const widelimb scalar)
479{
480 out[0] *= scalar;
481 out[1] *= scalar;
482 out[2] *= scalar;
483 out[3] *= scalar;
484 out[4] *= scalar;
485 out[5] *= scalar;
486 out[6] *= scalar;
487}
488
489/* Square a field element: out = in^2 */
490static void felem_square(widefelem out, const felem in)
491{
492 limb tmp0, tmp1, tmp2;
493 tmp0 = 2 * in[0];
494 tmp1 = 2 * in[1];
495 tmp2 = 2 * in[2];
496 out[0] = ((widelimb) in[0]) * in[0];
497 out[1] = ((widelimb) in[0]) * tmp1;
498 out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
499 out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
500 out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
501 out[5] = ((widelimb) in[3]) * tmp2;
502 out[6] = ((widelimb) in[3]) * in[3];
503}
504
505/* Multiply two field elements: out = in1 * in2 */
506static void felem_mul(widefelem out, const felem in1, const felem in2)
507{
508 out[0] = ((widelimb) in1[0]) * in2[0];
509 out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
510 out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
511 ((widelimb) in1[2]) * in2[0];
512 out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
513 ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
514 out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
515 ((widelimb) in1[3]) * in2[1];
516 out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
517 out[6] = ((widelimb) in1[3]) * in2[3];
518}
519
520/*-
521 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
522 * Requires in[i] < 2^126,
523 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
524static void felem_reduce(felem out, const widefelem in)
525{
526 static const widelimb two127p15 = (((widelimb) 1) << 127) +
527 (((widelimb) 1) << 15);
528 static const widelimb two127m71 = (((widelimb) 1) << 127) -
529 (((widelimb) 1) << 71);
530 static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
531 (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
532 widelimb output[5];
533
534 /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
535 output[0] = in[0] + two127p15;
536 output[1] = in[1] + two127m71m55;
537 output[2] = in[2] + two127m71;
538 output[3] = in[3];
539 output[4] = in[4];
540
541 /* Eliminate in[4], in[5], in[6] */
542 output[4] += in[6] >> 16;
543 output[3] += (in[6] & 0xffff) << 40;
544 output[2] -= in[6];
545
546 output[3] += in[5] >> 16;
547 output[2] += (in[5] & 0xffff) << 40;
548 output[1] -= in[5];
549
550 output[2] += output[4] >> 16;
551 output[1] += (output[4] & 0xffff) << 40;
552 output[0] -= output[4];
553
554 /* Carry 2 -> 3 -> 4 */
555 output[3] += output[2] >> 56;
556 output[2] &= 0x00ffffffffffffff;
557
558 output[4] = output[3] >> 56;
559 output[3] &= 0x00ffffffffffffff;
560
561 /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
562
563 /* Eliminate output[4] */
564 output[2] += output[4] >> 16;
565 /* output[2] < 2^56 + 2^56 = 2^57 */
566 output[1] += (output[4] & 0xffff) << 40;
567 output[0] -= output[4];
568
569 /* Carry 0 -> 1 -> 2 -> 3 */
570 output[1] += output[0] >> 56;
571 out[0] = output[0] & 0x00ffffffffffffff;
572
573 output[2] += output[1] >> 56;
574 /* output[2] < 2^57 + 2^72 */
575 out[1] = output[1] & 0x00ffffffffffffff;
576 output[3] += output[2] >> 56;
577 /* output[3] <= 2^56 + 2^16 */
578 out[2] = output[2] & 0x00ffffffffffffff;
579
580 /*-
581 * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
582 * out[3] <= 2^56 + 2^16 (due to final carry),
583 * so out < 2*p
584 */
585 out[3] = output[3];
586}
587
588static void felem_square_reduce(felem out, const felem in)
589{
590 widefelem tmp;
591 felem_square(tmp, in);
592 felem_reduce(out, tmp);
593}
594
595static void felem_mul_reduce(felem out, const felem in1, const felem in2)
596{
597 widefelem tmp;
598 felem_mul(tmp, in1, in2);
599 felem_reduce(out, tmp);
600}
601
602/*
603 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
604 * call felem_reduce first)
605 */
606static void felem_contract(felem out, const felem in)
607{
608 static const int64_t two56 = ((limb) 1) << 56;
609 /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
610 /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
611 int64_t tmp[4], a;
612 tmp[0] = in[0];
613 tmp[1] = in[1];
614 tmp[2] = in[2];
615 tmp[3] = in[3];
616 /* Case 1: a = 1 iff in >= 2^224 */
617 a = (in[3] >> 56);
618 tmp[0] -= a;
619 tmp[1] += a << 40;
620 tmp[3] &= 0x00ffffffffffffff;
621 /*
622 * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
623 * and the lower part is non-zero
624 */
625 a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
626 (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
627 a &= 0x00ffffffffffffff;
628 /* turn a into an all-one mask (if a = 0) or an all-zero mask */
629 a = (a - 1) >> 63;
630 /* subtract 2^224 - 2^96 + 1 if a is all-one */
631 tmp[3] &= a ^ 0xffffffffffffffff;
632 tmp[2] &= a ^ 0xffffffffffffffff;
633 tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
634 tmp[0] -= 1 & a;
635
636 /*
637 * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
638 * non-zero, so we only need one step
639 */
640 a = tmp[0] >> 63;
641 tmp[0] += two56 & a;
642 tmp[1] -= 1 & a;
643
644 /* carry 1 -> 2 -> 3 */
645 tmp[2] += tmp[1] >> 56;
646 tmp[1] &= 0x00ffffffffffffff;
647
648 tmp[3] += tmp[2] >> 56;
649 tmp[2] &= 0x00ffffffffffffff;
650
651 /* Now 0 <= out < p */
652 out[0] = tmp[0];
653 out[1] = tmp[1];
654 out[2] = tmp[2];
655 out[3] = tmp[3];
656}
657
658/*
659 * Get negative value: out = -in
660 * Requires in[i] < 2^63,
661 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
662 */
663static void felem_neg(felem out, const felem in)
664{
665 widefelem tmp = {0};
666 felem_diff_128_64(tmp, in);
667 felem_reduce(out, tmp);
668}
669
670/*
671 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
672 * elements are reduced to in < 2^225, so we only need to check three cases:
673 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
674 */
675static limb felem_is_zero(const felem in)
676{
677 limb zero, two224m96p1, two225m97p2;
678
679 zero = in[0] | in[1] | in[2] | in[3];
680 zero = (((int64_t) (zero) - 1) >> 63) & 1;
681 two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
682 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
683 two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
684 two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
685 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
686 two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
687 return (zero | two224m96p1 | two225m97p2);
688}
689
690static int felem_is_zero_int(const void *in)
691{
692 return (int)(felem_is_zero(in) & ((limb) 1));
693}
694
695/* Invert a field element */
696/* Computation chain copied from djb's code */
697static void felem_inv(felem out, const felem in)
698{
699 felem ftmp, ftmp2, ftmp3, ftmp4;
700 widefelem tmp;
701 unsigned i;
702
703 felem_square(tmp, in);
704 felem_reduce(ftmp, tmp); /* 2 */
705 felem_mul(tmp, in, ftmp);
706 felem_reduce(ftmp, tmp); /* 2^2 - 1 */
707 felem_square(tmp, ftmp);
708 felem_reduce(ftmp, tmp); /* 2^3 - 2 */
709 felem_mul(tmp, in, ftmp);
710 felem_reduce(ftmp, tmp); /* 2^3 - 1 */
711 felem_square(tmp, ftmp);
712 felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
713 felem_square(tmp, ftmp2);
714 felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
715 felem_square(tmp, ftmp2);
716 felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
717 felem_mul(tmp, ftmp2, ftmp);
718 felem_reduce(ftmp, tmp); /* 2^6 - 1 */
719 felem_square(tmp, ftmp);
720 felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
721 for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
722 felem_square(tmp, ftmp2);
723 felem_reduce(ftmp2, tmp);
724 }
725 felem_mul(tmp, ftmp2, ftmp);
726 felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
727 felem_square(tmp, ftmp2);
728 felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
729 for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */
730 felem_square(tmp, ftmp3);
731 felem_reduce(ftmp3, tmp);
732 }
733 felem_mul(tmp, ftmp3, ftmp2);
734 felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
735 felem_square(tmp, ftmp2);
736 felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
737 for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */
738 felem_square(tmp, ftmp3);
739 felem_reduce(ftmp3, tmp);
740 }
741 felem_mul(tmp, ftmp3, ftmp2);
742 felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
743 felem_square(tmp, ftmp3);
744 felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
745 for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */
746 felem_square(tmp, ftmp4);
747 felem_reduce(ftmp4, tmp);
748 }
749 felem_mul(tmp, ftmp3, ftmp4);
750 felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
751 felem_square(tmp, ftmp3);
752 felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
753 for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */
754 felem_square(tmp, ftmp4);
755 felem_reduce(ftmp4, tmp);
756 }
757 felem_mul(tmp, ftmp2, ftmp4);
758 felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
759 for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
760 felem_square(tmp, ftmp2);
761 felem_reduce(ftmp2, tmp);
762 }
763 felem_mul(tmp, ftmp2, ftmp);
764 felem_reduce(ftmp, tmp); /* 2^126 - 1 */
765 felem_square(tmp, ftmp);
766 felem_reduce(ftmp, tmp); /* 2^127 - 2 */
767 felem_mul(tmp, ftmp, in);
768 felem_reduce(ftmp, tmp); /* 2^127 - 1 */
769 for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */
770 felem_square(tmp, ftmp);
771 felem_reduce(ftmp, tmp);
772 }
773 felem_mul(tmp, ftmp, ftmp3);
774 felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
775}
776
777/*
778 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
779 * out to itself.
780 */
781static void copy_conditional(felem out, const felem in, limb icopy)
782{
783 unsigned i;
784 /*
785 * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
786 */
787 const limb copy = -icopy;
788 for (i = 0; i < 4; ++i) {
789 const limb tmp = copy & (in[i] ^ out[i]);
790 out[i] ^= tmp;
791 }
792}
793
794/******************************************************************************/
795/*-
796 * ELLIPTIC CURVE POINT OPERATIONS
797 *
798 * Points are represented in Jacobian projective coordinates:
799 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
800 * or to the point at infinity if Z == 0.
801 *
802 */
803
804/*-
805 * Double an elliptic curve point:
806 * (X', Y', Z') = 2 * (X, Y, Z), where
807 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
808 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
809 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
810 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
811 * while x_out == y_in is not (maybe this works, but it's not tested).
812 */
813static void
814point_double(felem x_out, felem y_out, felem z_out,
815 const felem x_in, const felem y_in, const felem z_in)
816{
817 widefelem tmp, tmp2;
818 felem delta, gamma, beta, alpha, ftmp, ftmp2;
819
820 felem_assign(ftmp, x_in);
821 felem_assign(ftmp2, x_in);
822
823 /* delta = z^2 */
824 felem_square(tmp, z_in);
825 felem_reduce(delta, tmp);
826
827 /* gamma = y^2 */
828 felem_square(tmp, y_in);
829 felem_reduce(gamma, tmp);
830
831 /* beta = x*gamma */
832 felem_mul(tmp, x_in, gamma);
833 felem_reduce(beta, tmp);
834
835 /* alpha = 3*(x-delta)*(x+delta) */
836 felem_diff(ftmp, delta);
837 /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
838 felem_sum(ftmp2, delta);
839 /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
840 felem_scalar(ftmp2, 3);
841 /* ftmp2[i] < 3 * 2^58 < 2^60 */
842 felem_mul(tmp, ftmp, ftmp2);
843 /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
844 felem_reduce(alpha, tmp);
845
846 /* x' = alpha^2 - 8*beta */
847 felem_square(tmp, alpha);
848 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
849 felem_assign(ftmp, beta);
850 felem_scalar(ftmp, 8);
851 /* ftmp[i] < 8 * 2^57 = 2^60 */
852 felem_diff_128_64(tmp, ftmp);
853 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
854 felem_reduce(x_out, tmp);
855
856 /* z' = (y + z)^2 - gamma - delta */
857 felem_sum(delta, gamma);
858 /* delta[i] < 2^57 + 2^57 = 2^58 */
859 felem_assign(ftmp, y_in);
860 felem_sum(ftmp, z_in);
861 /* ftmp[i] < 2^57 + 2^57 = 2^58 */
862 felem_square(tmp, ftmp);
863 /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
864 felem_diff_128_64(tmp, delta);
865 /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
866 felem_reduce(z_out, tmp);
867
868 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
869 felem_scalar(beta, 4);
870 /* beta[i] < 4 * 2^57 = 2^59 */
871 felem_diff(beta, x_out);
872 /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
873 felem_mul(tmp, alpha, beta);
874 /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
875 felem_square(tmp2, gamma);
876 /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
877 widefelem_scalar(tmp2, 8);
878 /* tmp2[i] < 8 * 2^116 = 2^119 */
879 widefelem_diff(tmp, tmp2);
880 /* tmp[i] < 2^119 + 2^120 < 2^121 */
881 felem_reduce(y_out, tmp);
882}
883
884/*-
885 * Add two elliptic curve points:
886 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
887 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
888 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
889 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
890 * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
891 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
892 *
893 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
894 */
895
896/*
897 * This function is not entirely constant-time: it includes a branch for
898 * checking whether the two input points are equal, (while not equal to the
899 * point at infinity). This case never happens during single point
900 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
901 */
902static void point_add(felem x3, felem y3, felem z3,
903 const felem x1, const felem y1, const felem z1,
904 const int mixed, const felem x2, const felem y2,
905 const felem z2)
906{
907 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
908 widefelem tmp, tmp2;
909 limb z1_is_zero, z2_is_zero, x_equal, y_equal;
910 limb points_equal;
911
912 if (!mixed) {
913 /* ftmp2 = z2^2 */
914 felem_square(tmp, z2);
915 felem_reduce(ftmp2, tmp);
916
917 /* ftmp4 = z2^3 */
918 felem_mul(tmp, ftmp2, z2);
919 felem_reduce(ftmp4, tmp);
920
921 /* ftmp4 = z2^3*y1 */
922 felem_mul(tmp2, ftmp4, y1);
923 felem_reduce(ftmp4, tmp2);
924
925 /* ftmp2 = z2^2*x1 */
926 felem_mul(tmp2, ftmp2, x1);
927 felem_reduce(ftmp2, tmp2);
928 } else {
929 /*
930 * We'll assume z2 = 1 (special case z2 = 0 is handled later)
931 */
932
933 /* ftmp4 = z2^3*y1 */
934 felem_assign(ftmp4, y1);
935
936 /* ftmp2 = z2^2*x1 */
937 felem_assign(ftmp2, x1);
938 }
939
940 /* ftmp = z1^2 */
941 felem_square(tmp, z1);
942 felem_reduce(ftmp, tmp);
943
944 /* ftmp3 = z1^3 */
945 felem_mul(tmp, ftmp, z1);
946 felem_reduce(ftmp3, tmp);
947
948 /* tmp = z1^3*y2 */
949 felem_mul(tmp, ftmp3, y2);
950 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
951
952 /* ftmp3 = z1^3*y2 - z2^3*y1 */
953 felem_diff_128_64(tmp, ftmp4);
954 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
955 felem_reduce(ftmp3, tmp);
956
957 /* tmp = z1^2*x2 */
958 felem_mul(tmp, ftmp, x2);
959 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
960
961 /* ftmp = z1^2*x2 - z2^2*x1 */
962 felem_diff_128_64(tmp, ftmp2);
963 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
964 felem_reduce(ftmp, tmp);
965
966 /*
967 * The formulae are incorrect if the points are equal, in affine coordinates
968 * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
969 * happens.
970 *
971 * We use bitwise operations to avoid potential side-channels introduced by
972 * the short-circuiting behaviour of boolean operators.
973 */
974 x_equal = felem_is_zero(ftmp);
975 y_equal = felem_is_zero(ftmp3);
976 /*
977 * The special case of either point being the point at infinity (z1 and/or
978 * z2 are zero), is handled separately later on in this function, so we
979 * avoid jumping to point_double here in those special cases.
980 */
981 z1_is_zero = felem_is_zero(z1);
982 z2_is_zero = felem_is_zero(z2);
983
984 /*
985 * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
986 * specific implementation `felem_is_zero()` returns truth as `0x1`
987 * (rather than `0xff..ff`).
988 *
989 * This implies that `~true` in this implementation becomes
990 * `0xff..fe` (rather than `0x0`): for this reason, to be used in
991 * the if expression, we mask out only the last bit in the next
992 * line.
993 */
994 points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
995
996 if (points_equal) {
997 /*
998 * This is obviously not constant-time but, as mentioned before, this
999 * case never happens during single point multiplication, so there is no
1000 * timing leak for ECDH or ECDSA signing.
1001 */
1002 point_double(x3, y3, z3, x1, y1, z1);
1003 return;
1004 }
1005
1006 /* ftmp5 = z1*z2 */
1007 if (!mixed) {
1008 felem_mul(tmp, z1, z2);
1009 felem_reduce(ftmp5, tmp);
1010 } else {
1011 /* special case z2 = 0 is handled later */
1012 felem_assign(ftmp5, z1);
1013 }
1014
1015 /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1016 felem_mul(tmp, ftmp, ftmp5);
1017 felem_reduce(z_out, tmp);
1018
1019 /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1020 felem_assign(ftmp5, ftmp);
1021 felem_square(tmp, ftmp);
1022 felem_reduce(ftmp, tmp);
1023
1024 /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1025 felem_mul(tmp, ftmp, ftmp5);
1026 felem_reduce(ftmp5, tmp);
1027
1028 /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1029 felem_mul(tmp, ftmp2, ftmp);
1030 felem_reduce(ftmp2, tmp);
1031
1032 /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1033 felem_mul(tmp, ftmp4, ftmp5);
1034 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1035
1036 /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1037 felem_square(tmp2, ftmp3);
1038 /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1039
1040 /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1041 felem_diff_128_64(tmp2, ftmp5);
1042 /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1043
1044 /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1045 felem_assign(ftmp5, ftmp2);
1046 felem_scalar(ftmp5, 2);
1047 /* ftmp5[i] < 2 * 2^57 = 2^58 */
1048
1049 /*-
1050 * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1051 * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1052 */
1053 felem_diff_128_64(tmp2, ftmp5);
1054 /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1055 felem_reduce(x_out, tmp2);
1056
1057 /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1058 felem_diff(ftmp2, x_out);
1059 /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1060
1061 /*
1062 * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1063 */
1064 felem_mul(tmp2, ftmp3, ftmp2);
1065 /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1066
1067 /*-
1068 * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1069 * z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1070 */
1071 widefelem_diff(tmp2, tmp);
1072 /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1073 felem_reduce(y_out, tmp2);
1074
1075 /*
1076 * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1077 * the point at infinity, so we need to check for this separately
1078 */
1079
1080 /*
1081 * if point 1 is at infinity, copy point 2 to output, and vice versa
1082 */
1083 copy_conditional(x_out, x2, z1_is_zero);
1084 copy_conditional(x_out, x1, z2_is_zero);
1085 copy_conditional(y_out, y2, z1_is_zero);
1086 copy_conditional(y_out, y1, z2_is_zero);
1087 copy_conditional(z_out, z2, z1_is_zero);
1088 copy_conditional(z_out, z1, z2_is_zero);
1089 felem_assign(x3, x_out);
1090 felem_assign(y3, y_out);
1091 felem_assign(z3, z_out);
1092}
1093
1094/*
1095 * select_point selects the |idx|th point from a precomputation table and
1096 * copies it to out.
1097 * The pre_comp array argument should be size of |size| argument
1098 */
1099static void select_point(const u64 idx, unsigned int size,
1100 const felem pre_comp[][3], felem out[3])
1101{
1102 unsigned i, j;
1103 limb *outlimbs = &out[0][0];
1104
1105 memset(out, 0, sizeof(*out) * 3);
1106 for (i = 0; i < size; i++) {
1107 const limb *inlimbs = &pre_comp[i][0][0];
1108 u64 mask = i ^ idx;
1109 mask |= mask >> 4;
1110 mask |= mask >> 2;
1111 mask |= mask >> 1;
1112 mask &= 1;
1113 mask--;
1114 for (j = 0; j < 4 * 3; j++)
1115 outlimbs[j] |= inlimbs[j] & mask;
1116 }
1117}
1118
1119/* get_bit returns the |i|th bit in |in| */
1120static char get_bit(const felem_bytearray in, unsigned i)
1121{
1122 if (i >= 224)
1123 return 0;
1124 return (in[i >> 3] >> (i & 7)) & 1;
1125}
1126
1127/*
1128 * Interleaved point multiplication using precomputed point multiples: The
1129 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1130 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1131 * generator, using certain (large) precomputed multiples in g_pre_comp.
1132 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1133 */
1134static void batch_mul(felem x_out, felem y_out, felem z_out,
1135 const felem_bytearray scalars[],
1136 const unsigned num_points, const u8 *g_scalar,
1137 const int mixed, const felem pre_comp[][17][3],
1138 const felem g_pre_comp[2][16][3])
1139{
1140 int i, skip;
1141 unsigned num;
1142 unsigned gen_mul = (g_scalar != NULL);
1143 felem nq[3], tmp[4];
1144 u64 bits;
1145 u8 sign, digit;
1146
1147 /* set nq to the point at infinity */
1148 memset(nq, 0, sizeof(nq));
1149
1150 /*
1151 * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1152 * of the generator (two in each of the last 28 rounds) and additions of
1153 * other points multiples (every 5th round).
1154 */
1155 skip = 1; /* save two point operations in the first
1156 * round */
1157 for (i = (num_points ? 220 : 27); i >= 0; --i) {
1158 /* double */
1159 if (!skip)
1160 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1161
1162 /* add multiples of the generator */
1163 if (gen_mul && (i <= 27)) {
1164 /* first, look 28 bits upwards */
1165 bits = get_bit(g_scalar, i + 196) << 3;
1166 bits |= get_bit(g_scalar, i + 140) << 2;
1167 bits |= get_bit(g_scalar, i + 84) << 1;
1168 bits |= get_bit(g_scalar, i + 28);
1169 /* select the point to add, in constant time */
1170 select_point(bits, 16, g_pre_comp[1], tmp);
1171
1172 if (!skip) {
1173 /* value 1 below is argument for "mixed" */
1174 point_add(nq[0], nq[1], nq[2],
1175 nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1176 } else {
1177 memcpy(nq, tmp, 3 * sizeof(felem));
1178 skip = 0;
1179 }
1180
1181 /* second, look at the current position */
1182 bits = get_bit(g_scalar, i + 168) << 3;
1183 bits |= get_bit(g_scalar, i + 112) << 2;
1184 bits |= get_bit(g_scalar, i + 56) << 1;
1185 bits |= get_bit(g_scalar, i);
1186 /* select the point to add, in constant time */
1187 select_point(bits, 16, g_pre_comp[0], tmp);
1188 point_add(nq[0], nq[1], nq[2],
1189 nq[0], nq[1], nq[2],
1190 1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1191 }
1192
1193 /* do other additions every 5 doublings */
1194 if (num_points && (i % 5 == 0)) {
1195 /* loop over all scalars */
1196 for (num = 0; num < num_points; ++num) {
1197 bits = get_bit(scalars[num], i + 4) << 5;
1198 bits |= get_bit(scalars[num], i + 3) << 4;
1199 bits |= get_bit(scalars[num], i + 2) << 3;
1200 bits |= get_bit(scalars[num], i + 1) << 2;
1201 bits |= get_bit(scalars[num], i) << 1;
1202 bits |= get_bit(scalars[num], i - 1);
1203 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1204
1205 /* select the point to add or subtract */
1206 select_point(digit, 17, pre_comp[num], tmp);
1207 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1208 * point */
1209 copy_conditional(tmp[1], tmp[3], sign);
1210
1211 if (!skip) {
1212 point_add(nq[0], nq[1], nq[2],
1213 nq[0], nq[1], nq[2],
1214 mixed, tmp[0], tmp[1], tmp[2]);
1215 } else {
1216 memcpy(nq, tmp, 3 * sizeof(felem));
1217 skip = 0;
1218 }
1219 }
1220 }
1221 }
1222 felem_assign(x_out, nq[0]);
1223 felem_assign(y_out, nq[1]);
1224 felem_assign(z_out, nq[2]);
1225}
1226
1227/******************************************************************************/
1228/*
1229 * FUNCTIONS TO MANAGE PRECOMPUTATION
1230 */
1231
1232static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1233{
1234 NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1235
1236 if (!ret) {
1237 ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1238 return ret;
1239 }
1240
1241 ret->references = 1;
1242
1243 ret->lock = CRYPTO_THREAD_lock_new();
1244 if (ret->lock == NULL) {
1245 ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1246 OPENSSL_free(ret);
1247 return NULL;
1248 }
1249 return ret;
1250}
1251
1252NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1253{
1254 int i;
1255 if (p != NULL)
1256 CRYPTO_UP_REF(&p->references, &i, p->lock);
1257 return p;
1258}
1259
1260void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1261{
1262 int i;
1263
1264 if (p == NULL)
1265 return;
1266
1267 CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1268 REF_PRINT_COUNT("EC_nistp224", x);
1269 if (i > 0)
1270 return;
1271 REF_ASSERT_ISNT(i < 0);
1272
1273 CRYPTO_THREAD_lock_free(p->lock);
1274 OPENSSL_free(p);
1275}
1276
1277/******************************************************************************/
1278/*
1279 * OPENSSL EC_METHOD FUNCTIONS
1280 */
1281
1282int ec_GFp_nistp224_group_init(EC_GROUP *group)
1283{
1284 int ret;
1285 ret = ec_GFp_simple_group_init(group);
1286 group->a_is_minus3 = 1;
1287 return ret;
1288}
1289
1290int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1291 const BIGNUM *a, const BIGNUM *b,
1292 BN_CTX *ctx)
1293{
1294 int ret = 0;
1295 BN_CTX *new_ctx = NULL;
1296 BIGNUM *curve_p, *curve_a, *curve_b;
1297
1298 if (ctx == NULL)
1299 if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1300 return 0;
1301 BN_CTX_start(ctx);
1302 curve_p = BN_CTX_get(ctx);
1303 curve_a = BN_CTX_get(ctx);
1304 curve_b = BN_CTX_get(ctx);
1305 if (curve_b == NULL)
1306 goto err;
1307 BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1308 BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1309 BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1310 if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1311 ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
1312 EC_R_WRONG_CURVE_PARAMETERS);
1313 goto err;
1314 }
1315 group->field_mod_func = BN_nist_mod_224;
1316 ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1317 err:
1318 BN_CTX_end(ctx);
1319 BN_CTX_free(new_ctx);
1320 return ret;
1321}
1322
1323/*
1324 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1325 * (X/Z^2, Y/Z^3)
1326 */
1327int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1328 const EC_POINT *point,
1329 BIGNUM *x, BIGNUM *y,
1330 BN_CTX *ctx)
1331{
1332 felem z1, z2, x_in, y_in, x_out, y_out;
1333 widefelem tmp;
1334
1335 if (EC_POINT_is_at_infinity(group, point)) {
1336 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1337 EC_R_POINT_AT_INFINITY);
1338 return 0;
1339 }
1340 if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1341 (!BN_to_felem(z1, point->Z)))
1342 return 0;
1343 felem_inv(z2, z1);
1344 felem_square(tmp, z2);
1345 felem_reduce(z1, tmp);
1346 felem_mul(tmp, x_in, z1);
1347 felem_reduce(x_in, tmp);
1348 felem_contract(x_out, x_in);
1349 if (x != NULL) {
1350 if (!felem_to_BN(x, x_out)) {
1351 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1352 ERR_R_BN_LIB);
1353 return 0;
1354 }
1355 }
1356 felem_mul(tmp, z1, z2);
1357 felem_reduce(z1, tmp);
1358 felem_mul(tmp, y_in, z1);
1359 felem_reduce(y_in, tmp);
1360 felem_contract(y_out, y_in);
1361 if (y != NULL) {
1362 if (!felem_to_BN(y, y_out)) {
1363 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1364 ERR_R_BN_LIB);
1365 return 0;
1366 }
1367 }
1368 return 1;
1369}
1370
1371static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1372 felem tmp_felems[ /* num+1 */ ])
1373{
1374 /*
1375 * Runs in constant time, unless an input is the point at infinity (which
1376 * normally shouldn't happen).
1377 */
1378 ec_GFp_nistp_points_make_affine_internal(num,
1379 points,
1380 sizeof(felem),
1381 tmp_felems,
1382 (void (*)(void *))felem_one,
1383 felem_is_zero_int,
1384 (void (*)(void *, const void *))
1385 felem_assign,
1386 (void (*)(void *, const void *))
1387 felem_square_reduce, (void (*)
1388 (void *,
1389 const void
1390 *,
1391 const void
1392 *))
1393 felem_mul_reduce,
1394 (void (*)(void *, const void *))
1395 felem_inv,
1396 (void (*)(void *, const void *))
1397 felem_contract);
1398}
1399
1400/*
1401 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1402 * values Result is stored in r (r can equal one of the inputs).
1403 */
1404int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1405 const BIGNUM *scalar, size_t num,
1406 const EC_POINT *points[],
1407 const BIGNUM *scalars[], BN_CTX *ctx)
1408{
1409 int ret = 0;
1410 int j;
1411 unsigned i;
1412 int mixed = 0;
1413 BIGNUM *x, *y, *z, *tmp_scalar;
1414 felem_bytearray g_secret;
1415 felem_bytearray *secrets = NULL;
1416 felem (*pre_comp)[17][3] = NULL;
1417 felem *tmp_felems = NULL;
1418 int num_bytes;
1419 int have_pre_comp = 0;
1420 size_t num_points = num;
1421 felem x_in, y_in, z_in, x_out, y_out, z_out;
1422 NISTP224_PRE_COMP *pre = NULL;
1423 const felem(*g_pre_comp)[16][3] = NULL;
1424 EC_POINT *generator = NULL;
1425 const EC_POINT *p = NULL;
1426 const BIGNUM *p_scalar = NULL;
1427
1428 BN_CTX_start(ctx);
1429 x = BN_CTX_get(ctx);
1430 y = BN_CTX_get(ctx);
1431 z = BN_CTX_get(ctx);
1432 tmp_scalar = BN_CTX_get(ctx);
1433 if (tmp_scalar == NULL)
1434 goto err;
1435
1436 if (scalar != NULL) {
1437 pre = group->pre_comp.nistp224;
1438 if (pre)
1439 /* we have precomputation, try to use it */
1440 g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1441 else
1442 /* try to use the standard precomputation */
1443 g_pre_comp = &gmul[0];
1444 generator = EC_POINT_new(group);
1445 if (generator == NULL)
1446 goto err;
1447 /* get the generator from precomputation */
1448 if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1449 !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1450 !felem_to_BN(z, g_pre_comp[0][1][2])) {
1451 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1452 goto err;
1453 }
1454 if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1455 generator, x, y, z,
1456 ctx))
1457 goto err;
1458 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1459 /* precomputation matches generator */
1460 have_pre_comp = 1;
1461 else
1462 /*
1463 * we don't have valid precomputation: treat the generator as a
1464 * random point
1465 */
1466 num_points = num_points + 1;
1467 }
1468
1469 if (num_points > 0) {
1470 if (num_points >= 3) {
1471 /*
1472 * unless we precompute multiples for just one or two points,
1473 * converting those into affine form is time well spent
1474 */
1475 mixed = 1;
1476 }
1477 secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1478 pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1479 if (mixed)
1480 tmp_felems =
1481 OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1482 if ((secrets == NULL) || (pre_comp == NULL)
1483 || (mixed && (tmp_felems == NULL))) {
1484 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1485 goto err;
1486 }
1487
1488 /*
1489 * we treat NULL scalars as 0, and NULL points as points at infinity,
1490 * i.e., they contribute nothing to the linear combination
1491 */
1492 for (i = 0; i < num_points; ++i) {
1493 if (i == num) {
1494 /* the generator */
1495 p = EC_GROUP_get0_generator(group);
1496 p_scalar = scalar;
1497 } else {
1498 /* the i^th point */
1499 p = points[i];
1500 p_scalar = scalars[i];
1501 }
1502 if ((p_scalar != NULL) && (p != NULL)) {
1503 /* reduce scalar to 0 <= scalar < 2^224 */
1504 if ((BN_num_bits(p_scalar) > 224)
1505 || (BN_is_negative(p_scalar))) {
1506 /*
1507 * this is an unusual input, and we don't guarantee
1508 * constant-timeness
1509 */
1510 if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1511 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1512 goto err;
1513 }
1514 num_bytes = BN_bn2lebinpad(tmp_scalar,
1515 secrets[i], sizeof(secrets[i]));
1516 } else {
1517 num_bytes = BN_bn2lebinpad(p_scalar,
1518 secrets[i], sizeof(secrets[i]));
1519 }
1520 if (num_bytes < 0) {
1521 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1522 goto err;
1523 }
1524 /* precompute multiples */
1525 if ((!BN_to_felem(x_out, p->X)) ||
1526 (!BN_to_felem(y_out, p->Y)) ||
1527 (!BN_to_felem(z_out, p->Z)))
1528 goto err;
1529 felem_assign(pre_comp[i][1][0], x_out);
1530 felem_assign(pre_comp[i][1][1], y_out);
1531 felem_assign(pre_comp[i][1][2], z_out);
1532 for (j = 2; j <= 16; ++j) {
1533 if (j & 1) {
1534 point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1535 pre_comp[i][j][2], pre_comp[i][1][0],
1536 pre_comp[i][1][1], pre_comp[i][1][2], 0,
1537 pre_comp[i][j - 1][0],
1538 pre_comp[i][j - 1][1],
1539 pre_comp[i][j - 1][2]);
1540 } else {
1541 point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1542 pre_comp[i][j][2], pre_comp[i][j / 2][0],
1543 pre_comp[i][j / 2][1],
1544 pre_comp[i][j / 2][2]);
1545 }
1546 }
1547 }
1548 }
1549 if (mixed)
1550 make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1551 }
1552
1553 /* the scalar for the generator */
1554 if ((scalar != NULL) && (have_pre_comp)) {
1555 memset(g_secret, 0, sizeof(g_secret));
1556 /* reduce scalar to 0 <= scalar < 2^224 */
1557 if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1558 /*
1559 * this is an unusual input, and we don't guarantee
1560 * constant-timeness
1561 */
1562 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1563 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1564 goto err;
1565 }
1566 num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1567 } else {
1568 num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1569 }
1570 /* do the multiplication with generator precomputation */
1571 batch_mul(x_out, y_out, z_out,
1572 (const felem_bytearray(*))secrets, num_points,
1573 g_secret,
1574 mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1575 } else {
1576 /* do the multiplication without generator precomputation */
1577 batch_mul(x_out, y_out, z_out,
1578 (const felem_bytearray(*))secrets, num_points,
1579 NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1580 }
1581 /* reduce the output to its unique minimal representation */
1582 felem_contract(x_in, x_out);
1583 felem_contract(y_in, y_out);
1584 felem_contract(z_in, z_out);
1585 if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1586 (!felem_to_BN(z, z_in))) {
1587 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1588 goto err;
1589 }
1590 ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1591
1592 err:
1593 BN_CTX_end(ctx);
1594 EC_POINT_free(generator);
1595 OPENSSL_free(secrets);
1596 OPENSSL_free(pre_comp);
1597 OPENSSL_free(tmp_felems);
1598 return ret;
1599}
1600
1601int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1602{
1603 int ret = 0;
1604 NISTP224_PRE_COMP *pre = NULL;
1605 int i, j;
1606 BN_CTX *new_ctx = NULL;
1607 BIGNUM *x, *y;
1608 EC_POINT *generator = NULL;
1609 felem tmp_felems[32];
1610
1611 /* throw away old precomputation */
1612 EC_pre_comp_free(group);
1613 if (ctx == NULL)
1614 if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1615 return 0;
1616 BN_CTX_start(ctx);
1617 x = BN_CTX_get(ctx);
1618 y = BN_CTX_get(ctx);
1619 if (y == NULL)
1620 goto err;
1621 /* get the generator */
1622 if (group->generator == NULL)
1623 goto err;
1624 generator = EC_POINT_new(group);
1625 if (generator == NULL)
1626 goto err;
1627 BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1628 BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1629 if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1630 goto err;
1631 if ((pre = nistp224_pre_comp_new()) == NULL)
1632 goto err;
1633 /*
1634 * if the generator is the standard one, use built-in precomputation
1635 */
1636 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1637 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1638 goto done;
1639 }
1640 if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1641 (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1642 (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1643 goto err;
1644 /*
1645 * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1646 * 2^140*G, 2^196*G for the second one
1647 */
1648 for (i = 1; i <= 8; i <<= 1) {
1649 point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1650 pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1651 pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1652 for (j = 0; j < 27; ++j) {
1653 point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1654 pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1655 pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1656 }
1657 if (i == 8)
1658 break;
1659 point_double(pre->g_pre_comp[0][2 * i][0],
1660 pre->g_pre_comp[0][2 * i][1],
1661 pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1662 pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1663 for (j = 0; j < 27; ++j) {
1664 point_double(pre->g_pre_comp[0][2 * i][0],
1665 pre->g_pre_comp[0][2 * i][1],
1666 pre->g_pre_comp[0][2 * i][2],
1667 pre->g_pre_comp[0][2 * i][0],
1668 pre->g_pre_comp[0][2 * i][1],
1669 pre->g_pre_comp[0][2 * i][2]);
1670 }
1671 }
1672 for (i = 0; i < 2; i++) {
1673 /* g_pre_comp[i][0] is the point at infinity */
1674 memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1675 /* the remaining multiples */
1676 /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1677 point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1678 pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1679 pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1680 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1681 pre->g_pre_comp[i][2][2]);
1682 /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1683 point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1684 pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1685 pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1686 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1687 pre->g_pre_comp[i][2][2]);
1688 /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1689 point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1690 pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1691 pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1692 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1693 pre->g_pre_comp[i][4][2]);
1694 /*
1695 * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1696 */
1697 point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1698 pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1699 pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1700 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1701 pre->g_pre_comp[i][2][2]);
1702 for (j = 1; j < 8; ++j) {
1703 /* odd multiples: add G resp. 2^28*G */
1704 point_add(pre->g_pre_comp[i][2 * j + 1][0],
1705 pre->g_pre_comp[i][2 * j + 1][1],
1706 pre->g_pre_comp[i][2 * j + 1][2],
1707 pre->g_pre_comp[i][2 * j][0],
1708 pre->g_pre_comp[i][2 * j][1],
1709 pre->g_pre_comp[i][2 * j][2], 0,
1710 pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1711 pre->g_pre_comp[i][1][2]);
1712 }
1713 }
1714 make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1715
1716 done:
1717 SETPRECOMP(group, nistp224, pre);
1718 pre = NULL;
1719 ret = 1;
1720 err:
1721 BN_CTX_end(ctx);
1722 EC_POINT_free(generator);
1723 BN_CTX_free(new_ctx);
1724 EC_nistp224_pre_comp_free(pre);
1725 return ret;
1726}
1727
1728int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1729{
1730 return HAVEPRECOMP(group, nistp224);
1731}
1732
1733#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette