VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1f/crypto/ec/ecp_nistz256.c@ 83531

Last change on this file since 83531 was 83531, checked in by vboxsync, 5 years ago

setting svn:sync-process=export for openssl-1.1.1f, all files except tests

File size: 59.0 KB
Line 
1/*
2 * Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4 * Copyright (c) 2015, CloudFlare, Inc.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 *
11 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13 * (2) University of Haifa, Israel
14 * (3) CloudFlare, Inc.
15 *
16 * Reference:
17 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18 * 256 Bit Primes"
19 */
20
21#include <string.h>
22
23#include "internal/cryptlib.h"
24#include "crypto/bn.h"
25#include "ec_local.h"
26#include "internal/refcount.h"
27
28#if BN_BITS2 != 64
29# define TOBN(hi,lo) lo,hi
30#else
31# define TOBN(hi,lo) ((BN_ULONG)hi<<32|lo)
32#endif
33
34#if defined(__GNUC__)
35# define ALIGN32 __attribute((aligned(32)))
36#elif defined(_MSC_VER)
37# define ALIGN32 __declspec(align(32))
38#else
39# define ALIGN32
40#endif
41
42#define ALIGNPTR(p,N) ((unsigned char *)p+N-(size_t)p%N)
43#define P256_LIMBS (256/BN_BITS2)
44
45typedef unsigned short u16;
46
47typedef struct {
48 BN_ULONG X[P256_LIMBS];
49 BN_ULONG Y[P256_LIMBS];
50 BN_ULONG Z[P256_LIMBS];
51} P256_POINT;
52
53typedef struct {
54 BN_ULONG X[P256_LIMBS];
55 BN_ULONG Y[P256_LIMBS];
56} P256_POINT_AFFINE;
57
58typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
59
60/* structure for precomputed multiples of the generator */
61struct nistz256_pre_comp_st {
62 const EC_GROUP *group; /* Parent EC_GROUP object */
63 size_t w; /* Window size */
64 /*
65 * Constant time access to the X and Y coordinates of the pre-computed,
66 * generator multiplies, in the Montgomery domain. Pre-calculated
67 * multiplies are stored in affine form.
68 */
69 PRECOMP256_ROW *precomp;
70 void *precomp_storage;
71 CRYPTO_REF_COUNT references;
72 CRYPTO_RWLOCK *lock;
73};
74
75/* Functions implemented in assembly */
76/*
77 * Most of below mentioned functions *preserve* the property of inputs
78 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
79 * inputs are fully reduced, then output is too. Note that reverse is
80 * not true, in sense that given partially reduced inputs output can be
81 * either, not unlikely reduced. And "most" in first sentence refers to
82 * the fact that given the calculations flow one can tolerate that
83 * addition, 1st function below, produces partially reduced result *if*
84 * multiplications by 2 and 3, which customarily use addition, fully
85 * reduce it. This effectively gives two options: a) addition produces
86 * fully reduced result [as long as inputs are, just like remaining
87 * functions]; b) addition is allowed to produce partially reduced
88 * result, but multiplications by 2 and 3 perform additional reduction
89 * step. Choice between the two can be platform-specific, but it was a)
90 * in all cases so far...
91 */
92/* Modular add: res = a+b mod P */
93void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
94 const BN_ULONG a[P256_LIMBS],
95 const BN_ULONG b[P256_LIMBS]);
96/* Modular mul by 2: res = 2*a mod P */
97void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
98 const BN_ULONG a[P256_LIMBS]);
99/* Modular mul by 3: res = 3*a mod P */
100void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
101 const BN_ULONG a[P256_LIMBS]);
102
103/* Modular div by 2: res = a/2 mod P */
104void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
105 const BN_ULONG a[P256_LIMBS]);
106/* Modular sub: res = a-b mod P */
107void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
108 const BN_ULONG a[P256_LIMBS],
109 const BN_ULONG b[P256_LIMBS]);
110/* Modular neg: res = -a mod P */
111void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
112/* Montgomery mul: res = a*b*2^-256 mod P */
113void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
114 const BN_ULONG a[P256_LIMBS],
115 const BN_ULONG b[P256_LIMBS]);
116/* Montgomery sqr: res = a*a*2^-256 mod P */
117void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
118 const BN_ULONG a[P256_LIMBS]);
119/* Convert a number from Montgomery domain, by multiplying with 1 */
120void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
121 const BN_ULONG in[P256_LIMBS]);
122/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
123void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
124 const BN_ULONG in[P256_LIMBS]);
125/* Functions that perform constant time access to the precomputed tables */
126void ecp_nistz256_scatter_w5(P256_POINT *val,
127 const P256_POINT *in_t, int idx);
128void ecp_nistz256_gather_w5(P256_POINT *val,
129 const P256_POINT *in_t, int idx);
130void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
131 const P256_POINT_AFFINE *in_t, int idx);
132void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
133 const P256_POINT_AFFINE *in_t, int idx);
134
135/* One converted into the Montgomery domain */
136static const BN_ULONG ONE[P256_LIMBS] = {
137 TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
138 TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
139};
140
141static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
142
143/* Precomputed tables for the default generator */
144extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
145
146/* Recode window to a signed digit, see ecp_nistputil.c for details */
147static unsigned int _booth_recode_w5(unsigned int in)
148{
149 unsigned int s, d;
150
151 s = ~((in >> 5) - 1);
152 d = (1 << 6) - in - 1;
153 d = (d & s) | (in & ~s);
154 d = (d >> 1) + (d & 1);
155
156 return (d << 1) + (s & 1);
157}
158
159static unsigned int _booth_recode_w7(unsigned int in)
160{
161 unsigned int s, d;
162
163 s = ~((in >> 7) - 1);
164 d = (1 << 8) - in - 1;
165 d = (d & s) | (in & ~s);
166 d = (d >> 1) + (d & 1);
167
168 return (d << 1) + (s & 1);
169}
170
171static void copy_conditional(BN_ULONG dst[P256_LIMBS],
172 const BN_ULONG src[P256_LIMBS], BN_ULONG move)
173{
174 BN_ULONG mask1 = 0-move;
175 BN_ULONG mask2 = ~mask1;
176
177 dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
178 dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
179 dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
180 dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
181#if P256_LIMBS == 8
182 dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
183 dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
184 dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
185 dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
186#endif
187}
188
189static BN_ULONG is_zero(BN_ULONG in)
190{
191 in |= (0 - in);
192 in = ~in;
193 in >>= BN_BITS2 - 1;
194 return in;
195}
196
197static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
198 const BN_ULONG b[P256_LIMBS])
199{
200 BN_ULONG res;
201
202 res = a[0] ^ b[0];
203 res |= a[1] ^ b[1];
204 res |= a[2] ^ b[2];
205 res |= a[3] ^ b[3];
206#if P256_LIMBS == 8
207 res |= a[4] ^ b[4];
208 res |= a[5] ^ b[5];
209 res |= a[6] ^ b[6];
210 res |= a[7] ^ b[7];
211#endif
212
213 return is_zero(res);
214}
215
216static BN_ULONG is_one(const BIGNUM *z)
217{
218 BN_ULONG res = 0;
219 BN_ULONG *a = bn_get_words(z);
220
221 if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
222 res = a[0] ^ ONE[0];
223 res |= a[1] ^ ONE[1];
224 res |= a[2] ^ ONE[2];
225 res |= a[3] ^ ONE[3];
226#if P256_LIMBS == 8
227 res |= a[4] ^ ONE[4];
228 res |= a[5] ^ ONE[5];
229 res |= a[6] ^ ONE[6];
230 /*
231 * no check for a[7] (being zero) on 32-bit platforms,
232 * because value of "one" takes only 7 limbs.
233 */
234#endif
235 res = is_zero(res);
236 }
237
238 return res;
239}
240
241/*
242 * For reference, this macro is used only when new ecp_nistz256 assembly
243 * module is being developed. For example, configure with
244 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
245 * performing simplest arithmetic operations on 256-bit vectors. Then
246 * work on implementation of higher-level functions performing point
247 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
248 * and never define it again. (The correct macro denoting presence of
249 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
250 */
251#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
252void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
253void ecp_nistz256_point_add(P256_POINT *r,
254 const P256_POINT *a, const P256_POINT *b);
255void ecp_nistz256_point_add_affine(P256_POINT *r,
256 const P256_POINT *a,
257 const P256_POINT_AFFINE *b);
258#else
259/* Point double: r = 2*a */
260static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
261{
262 BN_ULONG S[P256_LIMBS];
263 BN_ULONG M[P256_LIMBS];
264 BN_ULONG Zsqr[P256_LIMBS];
265 BN_ULONG tmp0[P256_LIMBS];
266
267 const BN_ULONG *in_x = a->X;
268 const BN_ULONG *in_y = a->Y;
269 const BN_ULONG *in_z = a->Z;
270
271 BN_ULONG *res_x = r->X;
272 BN_ULONG *res_y = r->Y;
273 BN_ULONG *res_z = r->Z;
274
275 ecp_nistz256_mul_by_2(S, in_y);
276
277 ecp_nistz256_sqr_mont(Zsqr, in_z);
278
279 ecp_nistz256_sqr_mont(S, S);
280
281 ecp_nistz256_mul_mont(res_z, in_z, in_y);
282 ecp_nistz256_mul_by_2(res_z, res_z);
283
284 ecp_nistz256_add(M, in_x, Zsqr);
285 ecp_nistz256_sub(Zsqr, in_x, Zsqr);
286
287 ecp_nistz256_sqr_mont(res_y, S);
288 ecp_nistz256_div_by_2(res_y, res_y);
289
290 ecp_nistz256_mul_mont(M, M, Zsqr);
291 ecp_nistz256_mul_by_3(M, M);
292
293 ecp_nistz256_mul_mont(S, S, in_x);
294 ecp_nistz256_mul_by_2(tmp0, S);
295
296 ecp_nistz256_sqr_mont(res_x, M);
297
298 ecp_nistz256_sub(res_x, res_x, tmp0);
299 ecp_nistz256_sub(S, S, res_x);
300
301 ecp_nistz256_mul_mont(S, S, M);
302 ecp_nistz256_sub(res_y, S, res_y);
303}
304
305/* Point addition: r = a+b */
306static void ecp_nistz256_point_add(P256_POINT *r,
307 const P256_POINT *a, const P256_POINT *b)
308{
309 BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
310 BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
311 BN_ULONG Z1sqr[P256_LIMBS];
312 BN_ULONG Z2sqr[P256_LIMBS];
313 BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
314 BN_ULONG Hsqr[P256_LIMBS];
315 BN_ULONG Rsqr[P256_LIMBS];
316 BN_ULONG Hcub[P256_LIMBS];
317
318 BN_ULONG res_x[P256_LIMBS];
319 BN_ULONG res_y[P256_LIMBS];
320 BN_ULONG res_z[P256_LIMBS];
321
322 BN_ULONG in1infty, in2infty;
323
324 const BN_ULONG *in1_x = a->X;
325 const BN_ULONG *in1_y = a->Y;
326 const BN_ULONG *in1_z = a->Z;
327
328 const BN_ULONG *in2_x = b->X;
329 const BN_ULONG *in2_y = b->Y;
330 const BN_ULONG *in2_z = b->Z;
331
332 /*
333 * Infinity in encoded as (,,0)
334 */
335 in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
336#if P256_LIMBS == 8
337 in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
338#endif
339
340 in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
341#if P256_LIMBS == 8
342 in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
343#endif
344
345 in1infty = is_zero(in1infty);
346 in2infty = is_zero(in2infty);
347
348 ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
349 ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
350
351 ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
352 ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
353
354 ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
355 ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
356 ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */
357
358 ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
359 ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
360 ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */
361
362 /*
363 * The formulae are incorrect if the points are equal so we check for
364 * this and do doubling if this happens.
365 *
366 * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
367 * that are bound to the affine coordinates (xi, yi) by the following
368 * equations:
369 * - xi = Xi / (Zi)^2
370 * - y1 = Yi / (Zi)^3
371 *
372 * For the sake of optimization, the algorithm operates over
373 * intermediate variables U1, U2 and S1, S2 that are derived from
374 * the projective coordinates:
375 * - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
376 * - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
377 *
378 * It is easy to prove that is_equal(U1, U2) implies that the affine
379 * x-coordinates are equal, or either point is at infinity.
380 * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
381 * equal, or either point is at infinity.
382 *
383 * The special case of either point being the point at infinity (Z1 or Z2
384 * is zero), is handled separately later on in this function, so we avoid
385 * jumping to point_double here in those special cases.
386 *
387 * When both points are inverse of each other, we know that the affine
388 * x-coordinates are equal, and the y-coordinates have different sign.
389 * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
390 * will equal 0, thus the result is infinity, if we simply let this
391 * function continue normally.
392 *
393 * We use bitwise operations to avoid potential side-channels introduced by
394 * the short-circuiting behaviour of boolean operators.
395 */
396 if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
397 /*
398 * This is obviously not constant-time but it should never happen during
399 * single point multiplication, so there is no timing leak for ECDH or
400 * ECDSA signing.
401 */
402 ecp_nistz256_point_double(r, a);
403 return;
404 }
405
406 ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
407 ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
408 ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
409 ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
410 ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
411
412 ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
413 ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
414
415 ecp_nistz256_sub(res_x, Rsqr, Hsqr);
416 ecp_nistz256_sub(res_x, res_x, Hcub);
417
418 ecp_nistz256_sub(res_y, U2, res_x);
419
420 ecp_nistz256_mul_mont(S2, S1, Hcub);
421 ecp_nistz256_mul_mont(res_y, R, res_y);
422 ecp_nistz256_sub(res_y, res_y, S2);
423
424 copy_conditional(res_x, in2_x, in1infty);
425 copy_conditional(res_y, in2_y, in1infty);
426 copy_conditional(res_z, in2_z, in1infty);
427
428 copy_conditional(res_x, in1_x, in2infty);
429 copy_conditional(res_y, in1_y, in2infty);
430 copy_conditional(res_z, in1_z, in2infty);
431
432 memcpy(r->X, res_x, sizeof(res_x));
433 memcpy(r->Y, res_y, sizeof(res_y));
434 memcpy(r->Z, res_z, sizeof(res_z));
435}
436
437/* Point addition when b is known to be affine: r = a+b */
438static void ecp_nistz256_point_add_affine(P256_POINT *r,
439 const P256_POINT *a,
440 const P256_POINT_AFFINE *b)
441{
442 BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
443 BN_ULONG Z1sqr[P256_LIMBS];
444 BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
445 BN_ULONG Hsqr[P256_LIMBS];
446 BN_ULONG Rsqr[P256_LIMBS];
447 BN_ULONG Hcub[P256_LIMBS];
448
449 BN_ULONG res_x[P256_LIMBS];
450 BN_ULONG res_y[P256_LIMBS];
451 BN_ULONG res_z[P256_LIMBS];
452
453 BN_ULONG in1infty, in2infty;
454
455 const BN_ULONG *in1_x = a->X;
456 const BN_ULONG *in1_y = a->Y;
457 const BN_ULONG *in1_z = a->Z;
458
459 const BN_ULONG *in2_x = b->X;
460 const BN_ULONG *in2_y = b->Y;
461
462 /*
463 * Infinity in encoded as (,,0)
464 */
465 in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
466#if P256_LIMBS == 8
467 in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
468#endif
469
470 /*
471 * In affine representation we encode infinity as (0,0), which is
472 * not on the curve, so it is OK
473 */
474 in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
475 in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
476#if P256_LIMBS == 8
477 in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
478 in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
479#endif
480
481 in1infty = is_zero(in1infty);
482 in2infty = is_zero(in2infty);
483
484 ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
485
486 ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
487 ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */
488
489 ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
490
491 ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
492
493 ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
494 ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */
495
496 ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
497 ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
498 ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
499
500 ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */
501 ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
502
503 ecp_nistz256_sub(res_x, Rsqr, Hsqr);
504 ecp_nistz256_sub(res_x, res_x, Hcub);
505 ecp_nistz256_sub(H, U2, res_x);
506
507 ecp_nistz256_mul_mont(S2, in1_y, Hcub);
508 ecp_nistz256_mul_mont(H, H, R);
509 ecp_nistz256_sub(res_y, H, S2);
510
511 copy_conditional(res_x, in2_x, in1infty);
512 copy_conditional(res_x, in1_x, in2infty);
513
514 copy_conditional(res_y, in2_y, in1infty);
515 copy_conditional(res_y, in1_y, in2infty);
516
517 copy_conditional(res_z, ONE, in1infty);
518 copy_conditional(res_z, in1_z, in2infty);
519
520 memcpy(r->X, res_x, sizeof(res_x));
521 memcpy(r->Y, res_y, sizeof(res_y));
522 memcpy(r->Z, res_z, sizeof(res_z));
523}
524#endif
525
526/* r = in^-1 mod p */
527static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
528 const BN_ULONG in[P256_LIMBS])
529{
530 /*
531 * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
532 * ffffffff ffffffff We use FLT and used poly-2 as exponent
533 */
534 BN_ULONG p2[P256_LIMBS];
535 BN_ULONG p4[P256_LIMBS];
536 BN_ULONG p8[P256_LIMBS];
537 BN_ULONG p16[P256_LIMBS];
538 BN_ULONG p32[P256_LIMBS];
539 BN_ULONG res[P256_LIMBS];
540 int i;
541
542 ecp_nistz256_sqr_mont(res, in);
543 ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
544
545 ecp_nistz256_sqr_mont(res, p2);
546 ecp_nistz256_sqr_mont(res, res);
547 ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
548
549 ecp_nistz256_sqr_mont(res, p4);
550 ecp_nistz256_sqr_mont(res, res);
551 ecp_nistz256_sqr_mont(res, res);
552 ecp_nistz256_sqr_mont(res, res);
553 ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
554
555 ecp_nistz256_sqr_mont(res, p8);
556 for (i = 0; i < 7; i++)
557 ecp_nistz256_sqr_mont(res, res);
558 ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
559
560 ecp_nistz256_sqr_mont(res, p16);
561 for (i = 0; i < 15; i++)
562 ecp_nistz256_sqr_mont(res, res);
563 ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
564
565 ecp_nistz256_sqr_mont(res, p32);
566 for (i = 0; i < 31; i++)
567 ecp_nistz256_sqr_mont(res, res);
568 ecp_nistz256_mul_mont(res, res, in);
569
570 for (i = 0; i < 32 * 4; i++)
571 ecp_nistz256_sqr_mont(res, res);
572 ecp_nistz256_mul_mont(res, res, p32);
573
574 for (i = 0; i < 32; i++)
575 ecp_nistz256_sqr_mont(res, res);
576 ecp_nistz256_mul_mont(res, res, p32);
577
578 for (i = 0; i < 16; i++)
579 ecp_nistz256_sqr_mont(res, res);
580 ecp_nistz256_mul_mont(res, res, p16);
581
582 for (i = 0; i < 8; i++)
583 ecp_nistz256_sqr_mont(res, res);
584 ecp_nistz256_mul_mont(res, res, p8);
585
586 ecp_nistz256_sqr_mont(res, res);
587 ecp_nistz256_sqr_mont(res, res);
588 ecp_nistz256_sqr_mont(res, res);
589 ecp_nistz256_sqr_mont(res, res);
590 ecp_nistz256_mul_mont(res, res, p4);
591
592 ecp_nistz256_sqr_mont(res, res);
593 ecp_nistz256_sqr_mont(res, res);
594 ecp_nistz256_mul_mont(res, res, p2);
595
596 ecp_nistz256_sqr_mont(res, res);
597 ecp_nistz256_sqr_mont(res, res);
598 ecp_nistz256_mul_mont(res, res, in);
599
600 memcpy(r, res, sizeof(res));
601}
602
603/*
604 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
605 * returns one if it fits. Otherwise it returns zero.
606 */
607__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
608 const BIGNUM *in)
609{
610 return bn_copy_words(out, in, P256_LIMBS);
611}
612
613/* r = sum(scalar[i]*point[i]) */
614__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
615 P256_POINT *r,
616 const BIGNUM **scalar,
617 const EC_POINT **point,
618 size_t num, BN_CTX *ctx)
619{
620 size_t i;
621 int j, ret = 0;
622 unsigned int idx;
623 unsigned char (*p_str)[33] = NULL;
624 const unsigned int window_size = 5;
625 const unsigned int mask = (1 << (window_size + 1)) - 1;
626 unsigned int wvalue;
627 P256_POINT *temp; /* place for 5 temporary points */
628 const BIGNUM **scalars = NULL;
629 P256_POINT (*table)[16] = NULL;
630 void *table_storage = NULL;
631
632 if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
633 || (table_storage =
634 OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
635 || (p_str =
636 OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
637 || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
638 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
639 goto err;
640 }
641
642 table = (void *)ALIGNPTR(table_storage, 64);
643 temp = (P256_POINT *)(table + num);
644
645 for (i = 0; i < num; i++) {
646 P256_POINT *row = table[i];
647
648 /* This is an unusual input, we don't guarantee constant-timeness. */
649 if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
650 BIGNUM *mod;
651
652 if ((mod = BN_CTX_get(ctx)) == NULL)
653 goto err;
654 if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
655 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
656 goto err;
657 }
658 scalars[i] = mod;
659 } else
660 scalars[i] = scalar[i];
661
662 for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
663 BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
664
665 p_str[i][j + 0] = (unsigned char)d;
666 p_str[i][j + 1] = (unsigned char)(d >> 8);
667 p_str[i][j + 2] = (unsigned char)(d >> 16);
668 p_str[i][j + 3] = (unsigned char)(d >>= 24);
669 if (BN_BYTES == 8) {
670 d >>= 8;
671 p_str[i][j + 4] = (unsigned char)d;
672 p_str[i][j + 5] = (unsigned char)(d >> 8);
673 p_str[i][j + 6] = (unsigned char)(d >> 16);
674 p_str[i][j + 7] = (unsigned char)(d >> 24);
675 }
676 }
677 for (; j < 33; j++)
678 p_str[i][j] = 0;
679
680 if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
681 || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
682 || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
683 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL,
684 EC_R_COORDINATES_OUT_OF_RANGE);
685 goto err;
686 }
687
688 /*
689 * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
690 * is not stored. All other values are actually stored with an offset
691 * of -1 in table.
692 */
693
694 ecp_nistz256_scatter_w5 (row, &temp[0], 1);
695 ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2 */
696 ecp_nistz256_scatter_w5 (row, &temp[1], 2);
697 ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*2+1=3 */
698 ecp_nistz256_scatter_w5 (row, &temp[2], 3);
699 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4 */
700 ecp_nistz256_scatter_w5 (row, &temp[1], 4);
701 ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6 */
702 ecp_nistz256_scatter_w5 (row, &temp[2], 6);
703 ecp_nistz256_point_add (&temp[3], &temp[1], &temp[0]); /*4+1=5 */
704 ecp_nistz256_scatter_w5 (row, &temp[3], 5);
705 ecp_nistz256_point_add (&temp[4], &temp[2], &temp[0]); /*6+1=7 */
706 ecp_nistz256_scatter_w5 (row, &temp[4], 7);
707 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8 */
708 ecp_nistz256_scatter_w5 (row, &temp[1], 8);
709 ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */
710 ecp_nistz256_scatter_w5 (row, &temp[2], 12);
711 ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */
712 ecp_nistz256_scatter_w5 (row, &temp[3], 10);
713 ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */
714 ecp_nistz256_scatter_w5 (row, &temp[4], 14);
715 ecp_nistz256_point_add (&temp[2], &temp[2], &temp[0]); /*12+1=13*/
716 ecp_nistz256_scatter_w5 (row, &temp[2], 13);
717 ecp_nistz256_point_add (&temp[3], &temp[3], &temp[0]); /*10+1=11*/
718 ecp_nistz256_scatter_w5 (row, &temp[3], 11);
719 ecp_nistz256_point_add (&temp[4], &temp[4], &temp[0]); /*14+1=15*/
720 ecp_nistz256_scatter_w5 (row, &temp[4], 15);
721 ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*8+1=9 */
722 ecp_nistz256_scatter_w5 (row, &temp[2], 9);
723 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */
724 ecp_nistz256_scatter_w5 (row, &temp[1], 16);
725 }
726
727 idx = 255;
728
729 wvalue = p_str[0][(idx - 1) / 8];
730 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
731
732 /*
733 * We gather to temp[0], because we know it's position relative
734 * to table
735 */
736 ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
737 memcpy(r, &temp[0], sizeof(temp[0]));
738
739 while (idx >= 5) {
740 for (i = (idx == 255 ? 1 : 0); i < num; i++) {
741 unsigned int off = (idx - 1) / 8;
742
743 wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
744 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
745
746 wvalue = _booth_recode_w5(wvalue);
747
748 ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
749
750 ecp_nistz256_neg(temp[1].Y, temp[0].Y);
751 copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
752
753 ecp_nistz256_point_add(r, r, &temp[0]);
754 }
755
756 idx -= window_size;
757
758 ecp_nistz256_point_double(r, r);
759 ecp_nistz256_point_double(r, r);
760 ecp_nistz256_point_double(r, r);
761 ecp_nistz256_point_double(r, r);
762 ecp_nistz256_point_double(r, r);
763 }
764
765 /* Final window */
766 for (i = 0; i < num; i++) {
767 wvalue = p_str[i][0];
768 wvalue = (wvalue << 1) & mask;
769
770 wvalue = _booth_recode_w5(wvalue);
771
772 ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
773
774 ecp_nistz256_neg(temp[1].Y, temp[0].Y);
775 copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
776
777 ecp_nistz256_point_add(r, r, &temp[0]);
778 }
779
780 ret = 1;
781 err:
782 OPENSSL_free(table_storage);
783 OPENSSL_free(p_str);
784 OPENSSL_free(scalars);
785 return ret;
786}
787
788/* Coordinates of G, for which we have precomputed tables */
789static const BN_ULONG def_xG[P256_LIMBS] = {
790 TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
791 TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
792};
793
794static const BN_ULONG def_yG[P256_LIMBS] = {
795 TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
796 TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
797};
798
799/*
800 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
801 * generator.
802 */
803static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
804{
805 return (bn_get_top(generator->X) == P256_LIMBS) &&
806 (bn_get_top(generator->Y) == P256_LIMBS) &&
807 is_equal(bn_get_words(generator->X), def_xG) &&
808 is_equal(bn_get_words(generator->Y), def_yG) &&
809 is_one(generator->Z);
810}
811
812__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
813{
814 /*
815 * We precompute a table for a Booth encoded exponent (wNAF) based
816 * computation. Each table holds 64 values for safe access, with an
817 * implicit value of infinity at index zero. We use window of size 7, and
818 * therefore require ceil(256/7) = 37 tables.
819 */
820 const BIGNUM *order;
821 EC_POINT *P = NULL, *T = NULL;
822 const EC_POINT *generator;
823 NISTZ256_PRE_COMP *pre_comp;
824 BN_CTX *new_ctx = NULL;
825 int i, j, k, ret = 0;
826 size_t w;
827
828 PRECOMP256_ROW *preComputedTable = NULL;
829 unsigned char *precomp_storage = NULL;
830
831 /* if there is an old NISTZ256_PRE_COMP object, throw it away */
832 EC_pre_comp_free(group);
833 generator = EC_GROUP_get0_generator(group);
834 if (generator == NULL) {
835 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
836 return 0;
837 }
838
839 if (ecp_nistz256_is_affine_G(generator)) {
840 /*
841 * No need to calculate tables for the standard generator because we
842 * have them statically.
843 */
844 return 1;
845 }
846
847 if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
848 return 0;
849
850 if (ctx == NULL) {
851 ctx = new_ctx = BN_CTX_new();
852 if (ctx == NULL)
853 goto err;
854 }
855
856 BN_CTX_start(ctx);
857
858 order = EC_GROUP_get0_order(group);
859 if (order == NULL)
860 goto err;
861
862 if (BN_is_zero(order)) {
863 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
864 goto err;
865 }
866
867 w = 7;
868
869 if ((precomp_storage =
870 OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
871 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
872 goto err;
873 }
874
875 preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
876
877 P = EC_POINT_new(group);
878 T = EC_POINT_new(group);
879 if (P == NULL || T == NULL)
880 goto err;
881
882 /*
883 * The zero entry is implicitly infinity, and we skip it, storing other
884 * values with -1 offset.
885 */
886 if (!EC_POINT_copy(T, generator))
887 goto err;
888
889 for (k = 0; k < 64; k++) {
890 if (!EC_POINT_copy(P, T))
891 goto err;
892 for (j = 0; j < 37; j++) {
893 P256_POINT_AFFINE temp;
894 /*
895 * It would be faster to use EC_POINTs_make_affine and
896 * make multiple points affine at the same time.
897 */
898 if (!EC_POINT_make_affine(group, P, ctx))
899 goto err;
900 if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
901 !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
902 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
903 EC_R_COORDINATES_OUT_OF_RANGE);
904 goto err;
905 }
906 ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
907 for (i = 0; i < 7; i++) {
908 if (!EC_POINT_dbl(group, P, P, ctx))
909 goto err;
910 }
911 }
912 if (!EC_POINT_add(group, T, T, generator, ctx))
913 goto err;
914 }
915
916 pre_comp->group = group;
917 pre_comp->w = w;
918 pre_comp->precomp = preComputedTable;
919 pre_comp->precomp_storage = precomp_storage;
920 precomp_storage = NULL;
921 SETPRECOMP(group, nistz256, pre_comp);
922 pre_comp = NULL;
923 ret = 1;
924
925 err:
926 BN_CTX_end(ctx);
927 BN_CTX_free(new_ctx);
928
929 EC_nistz256_pre_comp_free(pre_comp);
930 OPENSSL_free(precomp_storage);
931 EC_POINT_free(P);
932 EC_POINT_free(T);
933 return ret;
934}
935
936/*
937 * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great
938 * code processing 4 points in parallel, corresponding serial operation
939 * is several times slower, because it uses 29x29=58-bit multiplication
940 * as opposite to 64x64=128-bit in integer-only scalar case. As result
941 * it doesn't provide *significant* performance improvement. Note that
942 * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work,
943 * you'd need to compile even asm/ecp_nistz256-avx.pl module.
944 */
945#if defined(ECP_NISTZ256_AVX2)
946# if !(defined(__x86_64) || defined(__x86_64__) || \
947 defined(_M_AMD64) || defined(_M_X64)) || \
948 !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
949# undef ECP_NISTZ256_AVX2
950# else
951/* Constant time access, loading four values, from four consecutive tables */
952void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in,
953 int index0, int index1, int index2,
954 int index3);
955void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in);
956void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4);
957void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4,
958 const void *Bx4);
959void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4,
960 const void *Bx4);
961void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4);
962void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4);
963void ecp_nistz256_avx2_set1(void *RESULTx4);
964int ecp_nistz_avx2_eligible(void);
965
966static void booth_recode_w7(unsigned char *sign,
967 unsigned char *digit, unsigned char in)
968{
969 unsigned char s, d;
970
971 s = ~((in >> 7) - 1);
972 d = (1 << 8) - in - 1;
973 d = (d & s) | (in & ~s);
974 d = (d >> 1) + (d & 1);
975
976 *sign = s & 1;
977 *digit = d;
978}
979
980/*
981 * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
982 * precomputed table. It does 4 affine point additions in parallel,
983 * significantly speeding up point multiplication for a fixed value.
984 */
985static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
986 unsigned char p_str[33],
987 const P256_POINT_AFFINE(*preComputedTable)[64])
988{
989 const unsigned int window_size = 7;
990 const unsigned int mask = (1 << (window_size + 1)) - 1;
991 unsigned int wvalue;
992 /* Using 4 windows at a time */
993 unsigned char sign0, digit0;
994 unsigned char sign1, digit1;
995 unsigned char sign2, digit2;
996 unsigned char sign3, digit3;
997 unsigned int idx = 0;
998 BN_ULONG tmp[P256_LIMBS];
999 int i;
1000
1001 ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 };
1002 ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 };
1003 ALIGN32 P256_POINT_AFFINE point_arr[4];
1004 ALIGN32 P256_POINT res_point_arr[4];
1005
1006 /* Initial four windows */
1007 wvalue = *((u16 *) & p_str[0]);
1008 wvalue = (wvalue << 1) & mask;
1009 idx += window_size;
1010 booth_recode_w7(&sign0, &digit0, wvalue);
1011 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1012 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1013 idx += window_size;
1014 booth_recode_w7(&sign1, &digit1, wvalue);
1015 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1016 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1017 idx += window_size;
1018 booth_recode_w7(&sign2, &digit2, wvalue);
1019 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1020 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1021 idx += window_size;
1022 booth_recode_w7(&sign3, &digit3, wvalue);
1023
1024 ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0],
1025 digit0, digit1, digit2, digit3);
1026
1027 ecp_nistz256_neg(tmp, point_arr[0].Y);
1028 copy_conditional(point_arr[0].Y, tmp, sign0);
1029 ecp_nistz256_neg(tmp, point_arr[1].Y);
1030 copy_conditional(point_arr[1].Y, tmp, sign1);
1031 ecp_nistz256_neg(tmp, point_arr[2].Y);
1032 copy_conditional(point_arr[2].Y, tmp, sign2);
1033 ecp_nistz256_neg(tmp, point_arr[3].Y);
1034 copy_conditional(point_arr[3].Y, tmp, sign3);
1035
1036 ecp_nistz256_avx2_transpose_convert(aX4, point_arr);
1037 ecp_nistz256_avx2_to_mont(aX4, aX4);
1038 ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]);
1039 ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]);
1040
1041 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1042 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1043 idx += window_size;
1044 booth_recode_w7(&sign0, &digit0, wvalue);
1045 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1046 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1047 idx += window_size;
1048 booth_recode_w7(&sign1, &digit1, wvalue);
1049 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1050 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1051 idx += window_size;
1052 booth_recode_w7(&sign2, &digit2, wvalue);
1053 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1054 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1055 idx += window_size;
1056 booth_recode_w7(&sign3, &digit3, wvalue);
1057
1058 ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1],
1059 digit0, digit1, digit2, digit3);
1060
1061 ecp_nistz256_neg(tmp, point_arr[0].Y);
1062 copy_conditional(point_arr[0].Y, tmp, sign0);
1063 ecp_nistz256_neg(tmp, point_arr[1].Y);
1064 copy_conditional(point_arr[1].Y, tmp, sign1);
1065 ecp_nistz256_neg(tmp, point_arr[2].Y);
1066 copy_conditional(point_arr[2].Y, tmp, sign2);
1067 ecp_nistz256_neg(tmp, point_arr[3].Y);
1068 copy_conditional(point_arr[3].Y, tmp, sign3);
1069
1070 ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1071 ecp_nistz256_avx2_to_mont(bX4, bX4);
1072 ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1073 /* Optimized when both inputs are affine */
1074 ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4);
1075
1076 for (i = 2; i < 9; i++) {
1077 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1078 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1079 idx += window_size;
1080 booth_recode_w7(&sign0, &digit0, wvalue);
1081 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1082 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1083 idx += window_size;
1084 booth_recode_w7(&sign1, &digit1, wvalue);
1085 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1086 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1087 idx += window_size;
1088 booth_recode_w7(&sign2, &digit2, wvalue);
1089 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1090 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1091 idx += window_size;
1092 booth_recode_w7(&sign3, &digit3, wvalue);
1093
1094 ecp_nistz256_avx2_multi_gather_w7(point_arr,
1095 preComputedTable[4 * i],
1096 digit0, digit1, digit2, digit3);
1097
1098 ecp_nistz256_neg(tmp, point_arr[0].Y);
1099 copy_conditional(point_arr[0].Y, tmp, sign0);
1100 ecp_nistz256_neg(tmp, point_arr[1].Y);
1101 copy_conditional(point_arr[1].Y, tmp, sign1);
1102 ecp_nistz256_neg(tmp, point_arr[2].Y);
1103 copy_conditional(point_arr[2].Y, tmp, sign2);
1104 ecp_nistz256_neg(tmp, point_arr[3].Y);
1105 copy_conditional(point_arr[3].Y, tmp, sign3);
1106
1107 ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1108 ecp_nistz256_avx2_to_mont(bX4, bX4);
1109 ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1110
1111 ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4);
1112 }
1113
1114 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]);
1115 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]);
1116 ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]);
1117
1118 ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4);
1119 /* Last window is performed serially */
1120 wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
1121 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1122 booth_recode_w7(&sign0, &digit0, wvalue);
1123 ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r,
1124 preComputedTable[36], digit0);
1125 ecp_nistz256_neg(tmp, r->Y);
1126 copy_conditional(r->Y, tmp, sign0);
1127 memcpy(r->Z, ONE, sizeof(ONE));
1128 /* Sum the four windows */
1129 ecp_nistz256_point_add(r, r, &res_point_arr[0]);
1130 ecp_nistz256_point_add(r, r, &res_point_arr[1]);
1131 ecp_nistz256_point_add(r, r, &res_point_arr[2]);
1132 ecp_nistz256_point_add(r, r, &res_point_arr[3]);
1133}
1134# endif
1135#endif
1136
1137__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
1138 const P256_POINT_AFFINE *in,
1139 BN_CTX *ctx)
1140{
1141 int ret = 0;
1142
1143 if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
1144 && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
1145 && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
1146 out->Z_is_one = 1;
1147
1148 return ret;
1149}
1150
1151/* r = scalar*G + sum(scalars[i]*points[i]) */
1152__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
1153 EC_POINT *r,
1154 const BIGNUM *scalar,
1155 size_t num,
1156 const EC_POINT *points[],
1157 const BIGNUM *scalars[], BN_CTX *ctx)
1158{
1159 int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
1160 unsigned char p_str[33] = { 0 };
1161 const PRECOMP256_ROW *preComputedTable = NULL;
1162 const NISTZ256_PRE_COMP *pre_comp = NULL;
1163 const EC_POINT *generator = NULL;
1164 const BIGNUM **new_scalars = NULL;
1165 const EC_POINT **new_points = NULL;
1166 unsigned int idx = 0;
1167 const unsigned int window_size = 7;
1168 const unsigned int mask = (1 << (window_size + 1)) - 1;
1169 unsigned int wvalue;
1170 ALIGN32 union {
1171 P256_POINT p;
1172 P256_POINT_AFFINE a;
1173 } t, p;
1174 BIGNUM *tmp_scalar;
1175
1176 if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
1177 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1178 return 0;
1179 }
1180
1181 BN_CTX_start(ctx);
1182
1183 if (scalar) {
1184 generator = EC_GROUP_get0_generator(group);
1185 if (generator == NULL) {
1186 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
1187 goto err;
1188 }
1189
1190 /* look if we can use precomputed multiples of generator */
1191 pre_comp = group->pre_comp.nistz256;
1192
1193 if (pre_comp) {
1194 /*
1195 * If there is a precomputed table for the generator, check that
1196 * it was generated with the same generator.
1197 */
1198 EC_POINT *pre_comp_generator = EC_POINT_new(group);
1199 if (pre_comp_generator == NULL)
1200 goto err;
1201
1202 ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
1203 if (!ecp_nistz256_set_from_affine(pre_comp_generator,
1204 group, &p.a, ctx)) {
1205 EC_POINT_free(pre_comp_generator);
1206 goto err;
1207 }
1208
1209 if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1210 preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1211
1212 EC_POINT_free(pre_comp_generator);
1213 }
1214
1215 if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1216 /*
1217 * If there is no precomputed data, but the generator is the
1218 * default, a hardcoded table of precomputed data is used. This
1219 * is because applications, such as Apache, do not use
1220 * EC_KEY_precompute_mult.
1221 */
1222 preComputedTable = ecp_nistz256_precomputed;
1223 }
1224
1225 if (preComputedTable) {
1226 if ((BN_num_bits(scalar) > 256)
1227 || BN_is_negative(scalar)) {
1228 if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1229 goto err;
1230
1231 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1232 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
1233 goto err;
1234 }
1235 scalar = tmp_scalar;
1236 }
1237
1238 for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1239 BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1240
1241 p_str[i + 0] = (unsigned char)d;
1242 p_str[i + 1] = (unsigned char)(d >> 8);
1243 p_str[i + 2] = (unsigned char)(d >> 16);
1244 p_str[i + 3] = (unsigned char)(d >>= 24);
1245 if (BN_BYTES == 8) {
1246 d >>= 8;
1247 p_str[i + 4] = (unsigned char)d;
1248 p_str[i + 5] = (unsigned char)(d >> 8);
1249 p_str[i + 6] = (unsigned char)(d >> 16);
1250 p_str[i + 7] = (unsigned char)(d >> 24);
1251 }
1252 }
1253
1254 for (; i < 33; i++)
1255 p_str[i] = 0;
1256
1257#if defined(ECP_NISTZ256_AVX2)
1258 if (ecp_nistz_avx2_eligible()) {
1259 ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable);
1260 } else
1261#endif
1262 {
1263 BN_ULONG infty;
1264
1265 /* First window */
1266 wvalue = (p_str[0] << 1) & mask;
1267 idx += window_size;
1268
1269 wvalue = _booth_recode_w7(wvalue);
1270
1271 ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1272 wvalue >> 1);
1273
1274 ecp_nistz256_neg(p.p.Z, p.p.Y);
1275 copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1276
1277 /*
1278 * Since affine infinity is encoded as (0,0) and
1279 * Jacobian ias (,,0), we need to harmonize them
1280 * by assigning "one" or zero to Z.
1281 */
1282 infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1283 p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1284#if P256_LIMBS == 8
1285 infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1286 p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1287#endif
1288
1289 infty = 0 - is_zero(infty);
1290 infty = ~infty;
1291
1292 p.p.Z[0] = ONE[0] & infty;
1293 p.p.Z[1] = ONE[1] & infty;
1294 p.p.Z[2] = ONE[2] & infty;
1295 p.p.Z[3] = ONE[3] & infty;
1296#if P256_LIMBS == 8
1297 p.p.Z[4] = ONE[4] & infty;
1298 p.p.Z[5] = ONE[5] & infty;
1299 p.p.Z[6] = ONE[6] & infty;
1300 p.p.Z[7] = ONE[7] & infty;
1301#endif
1302
1303 for (i = 1; i < 37; i++) {
1304 unsigned int off = (idx - 1) / 8;
1305 wvalue = p_str[off] | p_str[off + 1] << 8;
1306 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1307 idx += window_size;
1308
1309 wvalue = _booth_recode_w7(wvalue);
1310
1311 ecp_nistz256_gather_w7(&t.a,
1312 preComputedTable[i], wvalue >> 1);
1313
1314 ecp_nistz256_neg(t.p.Z, t.a.Y);
1315 copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1316
1317 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1318 }
1319 }
1320 } else {
1321 p_is_infinity = 1;
1322 no_precomp_for_generator = 1;
1323 }
1324 } else
1325 p_is_infinity = 1;
1326
1327 if (no_precomp_for_generator) {
1328 /*
1329 * Without a precomputed table for the generator, it has to be
1330 * handled like a normal point.
1331 */
1332 new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1333 if (new_scalars == NULL) {
1334 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1335 goto err;
1336 }
1337
1338 new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1339 if (new_points == NULL) {
1340 ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1341 goto err;
1342 }
1343
1344 memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1345 new_scalars[num] = scalar;
1346 memcpy(new_points, points, num * sizeof(EC_POINT *));
1347 new_points[num] = generator;
1348
1349 scalars = new_scalars;
1350 points = new_points;
1351 num++;
1352 }
1353
1354 if (num) {
1355 P256_POINT *out = &t.p;
1356 if (p_is_infinity)
1357 out = &p.p;
1358
1359 if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1360 goto err;
1361
1362 if (!p_is_infinity)
1363 ecp_nistz256_point_add(&p.p, &p.p, out);
1364 }
1365
1366 /* Not constant-time, but we're only operating on the public output. */
1367 if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1368 !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1369 !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1370 goto err;
1371 }
1372 r->Z_is_one = is_one(r->Z) & 1;
1373
1374 ret = 1;
1375
1376err:
1377 BN_CTX_end(ctx);
1378 OPENSSL_free(new_points);
1379 OPENSSL_free(new_scalars);
1380 return ret;
1381}
1382
1383__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1384 const EC_POINT *point,
1385 BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1386{
1387 BN_ULONG z_inv2[P256_LIMBS];
1388 BN_ULONG z_inv3[P256_LIMBS];
1389 BN_ULONG x_aff[P256_LIMBS];
1390 BN_ULONG y_aff[P256_LIMBS];
1391 BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1392 BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1393
1394 if (EC_POINT_is_at_infinity(group, point)) {
1395 ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
1396 return 0;
1397 }
1398
1399 if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1400 !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1401 !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1402 ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
1403 return 0;
1404 }
1405
1406 ecp_nistz256_mod_inverse(z_inv3, point_z);
1407 ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1408 ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1409
1410 if (x != NULL) {
1411 ecp_nistz256_from_mont(x_ret, x_aff);
1412 if (!bn_set_words(x, x_ret, P256_LIMBS))
1413 return 0;
1414 }
1415
1416 if (y != NULL) {
1417 ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1418 ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1419 ecp_nistz256_from_mont(y_ret, y_aff);
1420 if (!bn_set_words(y, y_ret, P256_LIMBS))
1421 return 0;
1422 }
1423
1424 return 1;
1425}
1426
1427static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1428{
1429 NISTZ256_PRE_COMP *ret = NULL;
1430
1431 if (!group)
1432 return NULL;
1433
1434 ret = OPENSSL_zalloc(sizeof(*ret));
1435
1436 if (ret == NULL) {
1437 ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1438 return ret;
1439 }
1440
1441 ret->group = group;
1442 ret->w = 6; /* default */
1443 ret->references = 1;
1444
1445 ret->lock = CRYPTO_THREAD_lock_new();
1446 if (ret->lock == NULL) {
1447 ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1448 OPENSSL_free(ret);
1449 return NULL;
1450 }
1451 return ret;
1452}
1453
1454NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1455{
1456 int i;
1457 if (p != NULL)
1458 CRYPTO_UP_REF(&p->references, &i, p->lock);
1459 return p;
1460}
1461
1462void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1463{
1464 int i;
1465
1466 if (pre == NULL)
1467 return;
1468
1469 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1470 REF_PRINT_COUNT("EC_nistz256", x);
1471 if (i > 0)
1472 return;
1473 REF_ASSERT_ISNT(i < 0);
1474
1475 OPENSSL_free(pre->precomp_storage);
1476 CRYPTO_THREAD_lock_free(pre->lock);
1477 OPENSSL_free(pre);
1478}
1479
1480
1481static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1482{
1483 /* There is a hard-coded table for the default generator. */
1484 const EC_POINT *generator = EC_GROUP_get0_generator(group);
1485
1486 if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1487 /* There is a hard-coded table for the default generator. */
1488 return 1;
1489 }
1490
1491 return HAVEPRECOMP(group, nistz256);
1492}
1493
1494#if defined(__x86_64) || defined(__x86_64__) || \
1495 defined(_M_AMD64) || defined(_M_X64) || \
1496 defined(__powerpc64__) || defined(_ARCH_PP64) || \
1497 defined(__aarch64__)
1498/*
1499 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1500 */
1501void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1502 const BN_ULONG a[P256_LIMBS],
1503 const BN_ULONG b[P256_LIMBS]);
1504void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1505 const BN_ULONG a[P256_LIMBS],
1506 int rep);
1507
1508static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1509 const BIGNUM *x, BN_CTX *ctx)
1510{
1511 /* RR = 2^512 mod ord(p256) */
1512 static const BN_ULONG RR[P256_LIMBS] = {
1513 TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1514 TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1515 };
1516 /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1517 static const BN_ULONG one[P256_LIMBS] = {
1518 TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1519 };
1520 /*
1521 * We don't use entry 0 in the table, so we omit it and address
1522 * with -1 offset.
1523 */
1524 BN_ULONG table[15][P256_LIMBS];
1525 BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1526 int i, ret = 0;
1527 enum {
1528 i_1 = 0, i_10, i_11, i_101, i_111, i_1010, i_1111,
1529 i_10101, i_101010, i_101111, i_x6, i_x8, i_x16, i_x32
1530 };
1531
1532 /*
1533 * Catch allocation failure early.
1534 */
1535 if (bn_wexpand(r, P256_LIMBS) == NULL) {
1536 ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1537 goto err;
1538 }
1539
1540 if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1541 BIGNUM *tmp;
1542
1543 if ((tmp = BN_CTX_get(ctx)) == NULL
1544 || !BN_nnmod(tmp, x, group->order, ctx)) {
1545 ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1546 goto err;
1547 }
1548 x = tmp;
1549 }
1550
1551 if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1552 ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE);
1553 goto err;
1554 }
1555
1556 ecp_nistz256_ord_mul_mont(table[0], t, RR);
1557#if 0
1558 /*
1559 * Original sparse-then-fixed-window algorithm, retained for reference.
1560 */
1561 for (i = 2; i < 16; i += 2) {
1562 ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1563 ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1564 }
1565
1566 /*
1567 * The top 128bit of the exponent are highly redudndant, so we
1568 * perform an optimized flow
1569 */
1570 ecp_nistz256_ord_sqr_mont(t, table[15-1], 4); /* f0 */
1571 ecp_nistz256_ord_mul_mont(t, t, table[15-1]); /* ff */
1572
1573 ecp_nistz256_ord_sqr_mont(out, t, 8); /* ff00 */
1574 ecp_nistz256_ord_mul_mont(out, out, t); /* ffff */
1575
1576 ecp_nistz256_ord_sqr_mont(t, out, 16); /* ffff0000 */
1577 ecp_nistz256_ord_mul_mont(t, t, out); /* ffffffff */
1578
1579 ecp_nistz256_ord_sqr_mont(out, t, 64); /* ffffffff0000000000000000 */
1580 ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffff */
1581
1582 ecp_nistz256_ord_sqr_mont(out, out, 32); /* ffffffff00000000ffffffff00000000 */
1583 ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */
1584
1585 /*
1586 * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1587 */
1588 for(i = 0; i < 32; i++) {
1589 /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1590 * split into nibbles */
1591 static const unsigned char expLo[32] = {
1592 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1593 0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1594 };
1595
1596 ecp_nistz256_ord_sqr_mont(out, out, 4);
1597 /* The exponent is public, no need in constant-time access */
1598 ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1599 }
1600#else
1601 /*
1602 * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1603 *
1604 * Even though this code path spares 12 squarings, 4.5%, and 13
1605 * multiplications, 25%, on grand scale sign operation is not that
1606 * much faster, not more that 2%...
1607 */
1608
1609 /* pre-calculate powers */
1610 ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1611
1612 ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1613
1614 ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1615
1616 ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1617
1618 ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1619
1620 ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1621
1622 ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1623 ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1624
1625 ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1626
1627 ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1628
1629 ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1630
1631 ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1632 ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1633
1634 ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1635 ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1636
1637 ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1638 ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1639
1640 /* calculations */
1641 ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1642 ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1643
1644 for (i = 0; i < 27; i++) {
1645 static const struct { unsigned char p, i; } chain[27] = {
1646 { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 },
1647 { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 },
1648 { 4, i_101 }, { 3, i_101 }, { 3, i_101 },
1649 { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 },
1650 { 2, i_1 }, { 5, i_1 }, { 6, i_1111 },
1651 { 5, i_111 }, { 4, i_111 }, { 5, i_111 },
1652 { 5, i_101 }, { 3, i_11 }, { 10, i_101111 },
1653 { 2, i_11 }, { 5, i_11 }, { 5, i_11 },
1654 { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 }
1655 };
1656
1657 ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1658 ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1659 }
1660#endif
1661 ecp_nistz256_ord_mul_mont(out, out, one);
1662
1663 /*
1664 * Can't fail, but check return code to be consistent anyway.
1665 */
1666 if (!bn_set_words(r, out, P256_LIMBS))
1667 goto err;
1668
1669 ret = 1;
1670err:
1671 return ret;
1672}
1673#else
1674# define ecp_nistz256_inv_mod_ord NULL
1675#endif
1676
1677const EC_METHOD *EC_GFp_nistz256_method(void)
1678{
1679 static const EC_METHOD ret = {
1680 EC_FLAGS_DEFAULT_OCT,
1681 NID_X9_62_prime_field,
1682 ec_GFp_mont_group_init,
1683 ec_GFp_mont_group_finish,
1684 ec_GFp_mont_group_clear_finish,
1685 ec_GFp_mont_group_copy,
1686 ec_GFp_mont_group_set_curve,
1687 ec_GFp_simple_group_get_curve,
1688 ec_GFp_simple_group_get_degree,
1689 ec_group_simple_order_bits,
1690 ec_GFp_simple_group_check_discriminant,
1691 ec_GFp_simple_point_init,
1692 ec_GFp_simple_point_finish,
1693 ec_GFp_simple_point_clear_finish,
1694 ec_GFp_simple_point_copy,
1695 ec_GFp_simple_point_set_to_infinity,
1696 ec_GFp_simple_set_Jprojective_coordinates_GFp,
1697 ec_GFp_simple_get_Jprojective_coordinates_GFp,
1698 ec_GFp_simple_point_set_affine_coordinates,
1699 ecp_nistz256_get_affine,
1700 0, 0, 0,
1701 ec_GFp_simple_add,
1702 ec_GFp_simple_dbl,
1703 ec_GFp_simple_invert,
1704 ec_GFp_simple_is_at_infinity,
1705 ec_GFp_simple_is_on_curve,
1706 ec_GFp_simple_cmp,
1707 ec_GFp_simple_make_affine,
1708 ec_GFp_simple_points_make_affine,
1709 ecp_nistz256_points_mul, /* mul */
1710 ecp_nistz256_mult_precompute, /* precompute_mult */
1711 ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */
1712 ec_GFp_mont_field_mul,
1713 ec_GFp_mont_field_sqr,
1714 0, /* field_div */
1715 ec_GFp_mont_field_inv,
1716 ec_GFp_mont_field_encode,
1717 ec_GFp_mont_field_decode,
1718 ec_GFp_mont_field_set_to_one,
1719 ec_key_simple_priv2oct,
1720 ec_key_simple_oct2priv,
1721 0, /* set private */
1722 ec_key_simple_generate_key,
1723 ec_key_simple_check_key,
1724 ec_key_simple_generate_public_key,
1725 0, /* keycopy */
1726 0, /* keyfinish */
1727 ecdh_simple_compute_key,
1728 ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */
1729 0, /* blind_coordinates */
1730 0, /* ladder_pre */
1731 0, /* ladder_step */
1732 0 /* ladder_post */
1733 };
1734
1735 return &ret;
1736}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette