VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1f/crypto/modes/asm/ghashv8-armx.pl@ 83531

Last change on this file since 83531 was 83531, checked in by vboxsync, 5 years ago

setting svn:sync-process=export for openssl-1.1.1f, all files except tests

File size: 18.8 KB
Line 
1#! /usr/bin/env perl
2# Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
18#
19# June 2014
20#
21# Initial version was developed in tight cooperation with Ard
22# Biesheuvel of Linaro from bits-n-pieces from other assembly modules.
23# Just like aesv8-armx.pl this module supports both AArch32 and
24# AArch64 execution modes.
25#
26# July 2014
27#
28# Implement 2x aggregated reduction [see ghash-x86.pl for background
29# information].
30#
31# November 2017
32#
33# AArch64 register bank to "accommodate" 4x aggregated reduction and
34# improve performance by 20-70% depending on processor.
35#
36# Current performance in cycles per processed byte:
37#
38# 64-bit PMULL 32-bit PMULL 32-bit NEON(*)
39# Apple A7 0.58 0.92 5.62
40# Cortex-A53 0.85 1.01 8.39
41# Cortex-A57 0.73 1.17 7.61
42# Denver 0.51 0.65 6.02
43# Mongoose 0.65 1.10 8.06
44# Kryo 0.76 1.16 8.00
45#
46# (*) presented for reference/comparison purposes;
47
48$flavour = shift;
49$output = shift;
50
51$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
52( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
53( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
54die "can't locate arm-xlate.pl";
55
56open OUT,"| \"$^X\" $xlate $flavour $output";
57*STDOUT=*OUT;
58
59$Xi="x0"; # argument block
60$Htbl="x1";
61$inp="x2";
62$len="x3";
63
64$inc="x12";
65
66{
67my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
68my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));
69
70$code=<<___;
71#include "arm_arch.h"
72
73#if __ARM_MAX_ARCH__>=7
74.text
75___
76$code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/);
77$code.=<<___ if ($flavour !~ /64/);
78.fpu neon
79.code 32
80#undef __thumb2__
81___
82
83################################################################################
84# void gcm_init_v8(u128 Htable[16],const u64 H[2]);
85#
86# input: 128-bit H - secret parameter E(K,0^128)
87# output: precomputed table filled with degrees of twisted H;
88# H is twisted to handle reverse bitness of GHASH;
89# only few of 16 slots of Htable[16] are used;
90# data is opaque to outside world (which allows to
91# optimize the code independently);
92#
93$code.=<<___;
94.global gcm_init_v8
95.type gcm_init_v8,%function
96.align 4
97gcm_init_v8:
98 vld1.64 {$t1},[x1] @ load input H
99 vmov.i8 $xC2,#0xe1
100 vshl.i64 $xC2,$xC2,#57 @ 0xc2.0
101 vext.8 $IN,$t1,$t1,#8
102 vshr.u64 $t2,$xC2,#63
103 vdup.32 $t1,${t1}[1]
104 vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01
105 vshr.u64 $t2,$IN,#63
106 vshr.s32 $t1,$t1,#31 @ broadcast carry bit
107 vand $t2,$t2,$t0
108 vshl.i64 $IN,$IN,#1
109 vext.8 $t2,$t2,$t2,#8
110 vand $t0,$t0,$t1
111 vorr $IN,$IN,$t2 @ H<<<=1
112 veor $H,$IN,$t0 @ twisted H
113 vst1.64 {$H},[x0],#16 @ store Htable[0]
114
115 @ calculate H^2
116 vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing
117 vpmull.p64 $Xl,$H,$H
118 veor $t0,$t0,$H
119 vpmull2.p64 $Xh,$H,$H
120 vpmull.p64 $Xm,$t0,$t0
121
122 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
123 veor $t2,$Xl,$Xh
124 veor $Xm,$Xm,$t1
125 veor $Xm,$Xm,$t2
126 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase
127
128 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
129 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
130 veor $Xl,$Xm,$t2
131
132 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase
133 vpmull.p64 $Xl,$Xl,$xC2
134 veor $t2,$t2,$Xh
135 veor $H2,$Xl,$t2
136
137 vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing
138 veor $t1,$t1,$H2
139 vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed
140 vst1.64 {$Hhl-$H2},[x0],#32 @ store Htable[1..2]
141___
142if ($flavour =~ /64/) {
143my ($t3,$Yl,$Ym,$Yh) = map("q$_",(4..7));
144
145$code.=<<___;
146 @ calculate H^3 and H^4
147 vpmull.p64 $Xl,$H, $H2
148 vpmull.p64 $Yl,$H2,$H2
149 vpmull2.p64 $Xh,$H, $H2
150 vpmull2.p64 $Yh,$H2,$H2
151 vpmull.p64 $Xm,$t0,$t1
152 vpmull.p64 $Ym,$t1,$t1
153
154 vext.8 $t0,$Xl,$Xh,#8 @ Karatsuba post-processing
155 vext.8 $t1,$Yl,$Yh,#8
156 veor $t2,$Xl,$Xh
157 veor $Xm,$Xm,$t0
158 veor $t3,$Yl,$Yh
159 veor $Ym,$Ym,$t1
160 veor $Xm,$Xm,$t2
161 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase
162 veor $Ym,$Ym,$t3
163 vpmull.p64 $t3,$Yl,$xC2
164
165 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
166 vmov $Yh#lo,$Ym#hi
167 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
168 vmov $Ym#hi,$Yl#lo
169 veor $Xl,$Xm,$t2
170 veor $Yl,$Ym,$t3
171
172 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase
173 vext.8 $t3,$Yl,$Yl,#8
174 vpmull.p64 $Xl,$Xl,$xC2
175 vpmull.p64 $Yl,$Yl,$xC2
176 veor $t2,$t2,$Xh
177 veor $t3,$t3,$Yh
178 veor $H, $Xl,$t2 @ H^3
179 veor $H2,$Yl,$t3 @ H^4
180
181 vext.8 $t0,$H, $H,#8 @ Karatsuba pre-processing
182 vext.8 $t1,$H2,$H2,#8
183 veor $t0,$t0,$H
184 veor $t1,$t1,$H2
185 vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed
186 vst1.64 {$H-$H2},[x0] @ store Htable[3..5]
187___
188}
189$code.=<<___;
190 ret
191.size gcm_init_v8,.-gcm_init_v8
192___
193################################################################################
194# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
195#
196# input: Xi - current hash value;
197# Htable - table precomputed in gcm_init_v8;
198# output: Xi - next hash value Xi;
199#
200$code.=<<___;
201.global gcm_gmult_v8
202.type gcm_gmult_v8,%function
203.align 4
204gcm_gmult_v8:
205 vld1.64 {$t1},[$Xi] @ load Xi
206 vmov.i8 $xC2,#0xe1
207 vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ...
208 vshl.u64 $xC2,$xC2,#57
209#ifndef __ARMEB__
210 vrev64.8 $t1,$t1
211#endif
212 vext.8 $IN,$t1,$t1,#8
213
214 vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo
215 veor $t1,$t1,$IN @ Karatsuba pre-processing
216 vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi
217 vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi)
218
219 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
220 veor $t2,$Xl,$Xh
221 veor $Xm,$Xm,$t1
222 veor $Xm,$Xm,$t2
223 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
224
225 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
226 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
227 veor $Xl,$Xm,$t2
228
229 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
230 vpmull.p64 $Xl,$Xl,$xC2
231 veor $t2,$t2,$Xh
232 veor $Xl,$Xl,$t2
233
234#ifndef __ARMEB__
235 vrev64.8 $Xl,$Xl
236#endif
237 vext.8 $Xl,$Xl,$Xl,#8
238 vst1.64 {$Xl},[$Xi] @ write out Xi
239
240 ret
241.size gcm_gmult_v8,.-gcm_gmult_v8
242___
243################################################################################
244# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
245#
246# input: table precomputed in gcm_init_v8;
247# current hash value Xi;
248# pointer to input data;
249# length of input data in bytes, but divisible by block size;
250# output: next hash value Xi;
251#
252$code.=<<___;
253.global gcm_ghash_v8
254.type gcm_ghash_v8,%function
255.align 4
256gcm_ghash_v8:
257___
258$code.=<<___ if ($flavour =~ /64/);
259 cmp $len,#64
260 b.hs .Lgcm_ghash_v8_4x
261___
262$code.=<<___ if ($flavour !~ /64/);
263 vstmdb sp!,{d8-d15} @ 32-bit ABI says so
264___
265$code.=<<___;
266 vld1.64 {$Xl},[$Xi] @ load [rotated] Xi
267 @ "[rotated]" means that
268 @ loaded value would have
269 @ to be rotated in order to
270 @ make it appear as in
271 @ algorithm specification
272 subs $len,$len,#32 @ see if $len is 32 or larger
273 mov $inc,#16 @ $inc is used as post-
274 @ increment for input pointer;
275 @ as loop is modulo-scheduled
276 @ $inc is zeroed just in time
277 @ to preclude overstepping
278 @ inp[len], which means that
279 @ last block[s] are actually
280 @ loaded twice, but last
281 @ copy is not processed
282 vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2
283 vmov.i8 $xC2,#0xe1
284 vld1.64 {$H2},[$Htbl]
285 cclr $inc,eq @ is it time to zero $inc?
286 vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi
287 vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0]
288 vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant
289#ifndef __ARMEB__
290 vrev64.8 $t0,$t0
291 vrev64.8 $Xl,$Xl
292#endif
293 vext.8 $IN,$t0,$t0,#8 @ rotate I[0]
294 b.lo .Lodd_tail_v8 @ $len was less than 32
295___
296{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
297 #######
298 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
299 # [(H*Ii+1) + (H*Xi+1)] mod P =
300 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
301 #
302$code.=<<___;
303 vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1]
304#ifndef __ARMEB__
305 vrev64.8 $t1,$t1
306#endif
307 vext.8 $In,$t1,$t1,#8
308 veor $IN,$IN,$Xl @ I[i]^=Xi
309 vpmull.p64 $Xln,$H,$In @ H·Ii+1
310 veor $t1,$t1,$In @ Karatsuba pre-processing
311 vpmull2.p64 $Xhn,$H,$In
312 b .Loop_mod2x_v8
313
314.align 4
315.Loop_mod2x_v8:
316 vext.8 $t2,$IN,$IN,#8
317 subs $len,$len,#32 @ is there more data?
318 vpmull.p64 $Xl,$H2,$IN @ H^2.lo·Xi.lo
319 cclr $inc,lo @ is it time to zero $inc?
320
321 vpmull.p64 $Xmn,$Hhl,$t1
322 veor $t2,$t2,$IN @ Karatsuba pre-processing
323 vpmull2.p64 $Xh,$H2,$IN @ H^2.hi·Xi.hi
324 veor $Xl,$Xl,$Xln @ accumulate
325 vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi)
326 vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2]
327
328 veor $Xh,$Xh,$Xhn
329 cclr $inc,eq @ is it time to zero $inc?
330 veor $Xm,$Xm,$Xmn
331
332 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
333 veor $t2,$Xl,$Xh
334 veor $Xm,$Xm,$t1
335 vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3]
336#ifndef __ARMEB__
337 vrev64.8 $t0,$t0
338#endif
339 veor $Xm,$Xm,$t2
340 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
341
342#ifndef __ARMEB__
343 vrev64.8 $t1,$t1
344#endif
345 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
346 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
347 vext.8 $In,$t1,$t1,#8
348 vext.8 $IN,$t0,$t0,#8
349 veor $Xl,$Xm,$t2
350 vpmull.p64 $Xln,$H,$In @ H·Ii+1
351 veor $IN,$IN,$Xh @ accumulate $IN early
352
353 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
354 vpmull.p64 $Xl,$Xl,$xC2
355 veor $IN,$IN,$t2
356 veor $t1,$t1,$In @ Karatsuba pre-processing
357 veor $IN,$IN,$Xl
358 vpmull2.p64 $Xhn,$H,$In
359 b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes
360
361 veor $Xh,$Xh,$t2
362 vext.8 $IN,$t0,$t0,#8 @ re-construct $IN
363 adds $len,$len,#32 @ re-construct $len
364 veor $Xl,$Xl,$Xh @ re-construct $Xl
365 b.eq .Ldone_v8 @ is $len zero?
366___
367}
368$code.=<<___;
369.Lodd_tail_v8:
370 vext.8 $t2,$Xl,$Xl,#8
371 veor $IN,$IN,$Xl @ inp^=Xi
372 veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi
373
374 vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo
375 veor $t1,$t1,$IN @ Karatsuba pre-processing
376 vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi
377 vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi)
378
379 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
380 veor $t2,$Xl,$Xh
381 veor $Xm,$Xm,$t1
382 veor $Xm,$Xm,$t2
383 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
384
385 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
386 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
387 veor $Xl,$Xm,$t2
388
389 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
390 vpmull.p64 $Xl,$Xl,$xC2
391 veor $t2,$t2,$Xh
392 veor $Xl,$Xl,$t2
393
394.Ldone_v8:
395#ifndef __ARMEB__
396 vrev64.8 $Xl,$Xl
397#endif
398 vext.8 $Xl,$Xl,$Xl,#8
399 vst1.64 {$Xl},[$Xi] @ write out Xi
400
401___
402$code.=<<___ if ($flavour !~ /64/);
403 vldmia sp!,{d8-d15} @ 32-bit ABI says so
404___
405$code.=<<___;
406 ret
407.size gcm_ghash_v8,.-gcm_ghash_v8
408___
409
410if ($flavour =~ /64/) { # 4x subroutine
411my ($I0,$j1,$j2,$j3,
412 $I1,$I2,$I3,$H3,$H34,$H4,$Yl,$Ym,$Yh) = map("q$_",(4..7,15..23));
413
414$code.=<<___;
415.type gcm_ghash_v8_4x,%function
416.align 4
417gcm_ghash_v8_4x:
418.Lgcm_ghash_v8_4x:
419 vld1.64 {$Xl},[$Xi] @ load [rotated] Xi
420 vld1.64 {$H-$H2},[$Htbl],#48 @ load twisted H, ..., H^2
421 vmov.i8 $xC2,#0xe1
422 vld1.64 {$H3-$H4},[$Htbl] @ load twisted H^3, ..., H^4
423 vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant
424
425 vld1.64 {$I0-$j3},[$inp],#64
426#ifndef __ARMEB__
427 vrev64.8 $Xl,$Xl
428 vrev64.8 $j1,$j1
429 vrev64.8 $j2,$j2
430 vrev64.8 $j3,$j3
431 vrev64.8 $I0,$I0
432#endif
433 vext.8 $I3,$j3,$j3,#8
434 vext.8 $I2,$j2,$j2,#8
435 vext.8 $I1,$j1,$j1,#8
436
437 vpmull.p64 $Yl,$H,$I3 @ H·Ii+3
438 veor $j3,$j3,$I3
439 vpmull2.p64 $Yh,$H,$I3
440 vpmull.p64 $Ym,$Hhl,$j3
441
442 vpmull.p64 $t0,$H2,$I2 @ H^2·Ii+2
443 veor $j2,$j2,$I2
444 vpmull2.p64 $I2,$H2,$I2
445 vpmull2.p64 $j2,$Hhl,$j2
446
447 veor $Yl,$Yl,$t0
448 veor $Yh,$Yh,$I2
449 veor $Ym,$Ym,$j2
450
451 vpmull.p64 $j3,$H3,$I1 @ H^3·Ii+1
452 veor $j1,$j1,$I1
453 vpmull2.p64 $I1,$H3,$I1
454 vpmull.p64 $j1,$H34,$j1
455
456 veor $Yl,$Yl,$j3
457 veor $Yh,$Yh,$I1
458 veor $Ym,$Ym,$j1
459
460 subs $len,$len,#128
461 b.lo .Ltail4x
462
463 b .Loop4x
464
465.align 4
466.Loop4x:
467 veor $t0,$I0,$Xl
468 vld1.64 {$I0-$j3},[$inp],#64
469 vext.8 $IN,$t0,$t0,#8
470#ifndef __ARMEB__
471 vrev64.8 $j1,$j1
472 vrev64.8 $j2,$j2
473 vrev64.8 $j3,$j3
474 vrev64.8 $I0,$I0
475#endif
476
477 vpmull.p64 $Xl,$H4,$IN @ H^4·(Xi+Ii)
478 veor $t0,$t0,$IN
479 vpmull2.p64 $Xh,$H4,$IN
480 vext.8 $I3,$j3,$j3,#8
481 vpmull2.p64 $Xm,$H34,$t0
482
483 veor $Xl,$Xl,$Yl
484 veor $Xh,$Xh,$Yh
485 vext.8 $I2,$j2,$j2,#8
486 veor $Xm,$Xm,$Ym
487 vext.8 $I1,$j1,$j1,#8
488
489 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
490 veor $t2,$Xl,$Xh
491 vpmull.p64 $Yl,$H,$I3 @ H·Ii+3
492 veor $j3,$j3,$I3
493 veor $Xm,$Xm,$t1
494 vpmull2.p64 $Yh,$H,$I3
495 veor $Xm,$Xm,$t2
496 vpmull.p64 $Ym,$Hhl,$j3
497
498 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
499 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
500 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
501 vpmull.p64 $t0,$H2,$I2 @ H^2·Ii+2
502 veor $j2,$j2,$I2
503 vpmull2.p64 $I2,$H2,$I2
504 veor $Xl,$Xm,$t2
505 vpmull2.p64 $j2,$Hhl,$j2
506
507 veor $Yl,$Yl,$t0
508 veor $Yh,$Yh,$I2
509 veor $Ym,$Ym,$j2
510
511 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
512 vpmull.p64 $Xl,$Xl,$xC2
513 vpmull.p64 $j3,$H3,$I1 @ H^3·Ii+1
514 veor $j1,$j1,$I1
515 veor $t2,$t2,$Xh
516 vpmull2.p64 $I1,$H3,$I1
517 vpmull.p64 $j1,$H34,$j1
518
519 veor $Xl,$Xl,$t2
520 veor $Yl,$Yl,$j3
521 veor $Yh,$Yh,$I1
522 vext.8 $Xl,$Xl,$Xl,#8
523 veor $Ym,$Ym,$j1
524
525 subs $len,$len,#64
526 b.hs .Loop4x
527
528.Ltail4x:
529 veor $t0,$I0,$Xl
530 vext.8 $IN,$t0,$t0,#8
531
532 vpmull.p64 $Xl,$H4,$IN @ H^4·(Xi+Ii)
533 veor $t0,$t0,$IN
534 vpmull2.p64 $Xh,$H4,$IN
535 vpmull2.p64 $Xm,$H34,$t0
536
537 veor $Xl,$Xl,$Yl
538 veor $Xh,$Xh,$Yh
539 veor $Xm,$Xm,$Ym
540
541 adds $len,$len,#64
542 b.eq .Ldone4x
543
544 cmp $len,#32
545 b.lo .Lone
546 b.eq .Ltwo
547.Lthree:
548 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
549 veor $t2,$Xl,$Xh
550 veor $Xm,$Xm,$t1
551 vld1.64 {$I0-$j2},[$inp]
552 veor $Xm,$Xm,$t2
553#ifndef __ARMEB__
554 vrev64.8 $j1,$j1
555 vrev64.8 $j2,$j2
556 vrev64.8 $I0,$I0
557#endif
558
559 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
560 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
561 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
562 vext.8 $I2,$j2,$j2,#8
563 vext.8 $I1,$j1,$j1,#8
564 veor $Xl,$Xm,$t2
565
566 vpmull.p64 $Yl,$H,$I2 @ H·Ii+2
567 veor $j2,$j2,$I2
568
569 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
570 vpmull.p64 $Xl,$Xl,$xC2
571 veor $t2,$t2,$Xh
572 vpmull2.p64 $Yh,$H,$I2
573 vpmull.p64 $Ym,$Hhl,$j2
574 veor $Xl,$Xl,$t2
575 vpmull.p64 $j3,$H2,$I1 @ H^2·Ii+1
576 veor $j1,$j1,$I1
577 vext.8 $Xl,$Xl,$Xl,#8
578
579 vpmull2.p64 $I1,$H2,$I1
580 veor $t0,$I0,$Xl
581 vpmull2.p64 $j1,$Hhl,$j1
582 vext.8 $IN,$t0,$t0,#8
583
584 veor $Yl,$Yl,$j3
585 veor $Yh,$Yh,$I1
586 veor $Ym,$Ym,$j1
587
588 vpmull.p64 $Xl,$H3,$IN @ H^3·(Xi+Ii)
589 veor $t0,$t0,$IN
590 vpmull2.p64 $Xh,$H3,$IN
591 vpmull.p64 $Xm,$H34,$t0
592
593 veor $Xl,$Xl,$Yl
594 veor $Xh,$Xh,$Yh
595 veor $Xm,$Xm,$Ym
596 b .Ldone4x
597
598.align 4
599.Ltwo:
600 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
601 veor $t2,$Xl,$Xh
602 veor $Xm,$Xm,$t1
603 vld1.64 {$I0-$j1},[$inp]
604 veor $Xm,$Xm,$t2
605#ifndef __ARMEB__
606 vrev64.8 $j1,$j1
607 vrev64.8 $I0,$I0
608#endif
609
610 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
611 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
612 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
613 vext.8 $I1,$j1,$j1,#8
614 veor $Xl,$Xm,$t2
615
616 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
617 vpmull.p64 $Xl,$Xl,$xC2
618 veor $t2,$t2,$Xh
619 veor $Xl,$Xl,$t2
620 vext.8 $Xl,$Xl,$Xl,#8
621
622 vpmull.p64 $Yl,$H,$I1 @ H·Ii+1
623 veor $j1,$j1,$I1
624
625 veor $t0,$I0,$Xl
626 vext.8 $IN,$t0,$t0,#8
627
628 vpmull2.p64 $Yh,$H,$I1
629 vpmull.p64 $Ym,$Hhl,$j1
630
631 vpmull.p64 $Xl,$H2,$IN @ H^2·(Xi+Ii)
632 veor $t0,$t0,$IN
633 vpmull2.p64 $Xh,$H2,$IN
634 vpmull2.p64 $Xm,$Hhl,$t0
635
636 veor $Xl,$Xl,$Yl
637 veor $Xh,$Xh,$Yh
638 veor $Xm,$Xm,$Ym
639 b .Ldone4x
640
641.align 4
642.Lone:
643 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
644 veor $t2,$Xl,$Xh
645 veor $Xm,$Xm,$t1
646 vld1.64 {$I0},[$inp]
647 veor $Xm,$Xm,$t2
648#ifndef __ARMEB__
649 vrev64.8 $I0,$I0
650#endif
651
652 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
653 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
654 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
655 veor $Xl,$Xm,$t2
656
657 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
658 vpmull.p64 $Xl,$Xl,$xC2
659 veor $t2,$t2,$Xh
660 veor $Xl,$Xl,$t2
661 vext.8 $Xl,$Xl,$Xl,#8
662
663 veor $t0,$I0,$Xl
664 vext.8 $IN,$t0,$t0,#8
665
666 vpmull.p64 $Xl,$H,$IN
667 veor $t0,$t0,$IN
668 vpmull2.p64 $Xh,$H,$IN
669 vpmull.p64 $Xm,$Hhl,$t0
670
671.Ldone4x:
672 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
673 veor $t2,$Xl,$Xh
674 veor $Xm,$Xm,$t1
675 veor $Xm,$Xm,$t2
676
677 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
678 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
679 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
680 veor $Xl,$Xm,$t2
681
682 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
683 vpmull.p64 $Xl,$Xl,$xC2
684 veor $t2,$t2,$Xh
685 veor $Xl,$Xl,$t2
686 vext.8 $Xl,$Xl,$Xl,#8
687
688#ifndef __ARMEB__
689 vrev64.8 $Xl,$Xl
690#endif
691 vst1.64 {$Xl},[$Xi] @ write out Xi
692
693 ret
694.size gcm_ghash_v8_4x,.-gcm_ghash_v8_4x
695___
696
697}
698}
699
700$code.=<<___;
701.asciz "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
702.align 2
703#endif
704___
705
706if ($flavour =~ /64/) { ######## 64-bit code
707 sub unvmov {
708 my $arg=shift;
709
710 $arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
711 sprintf "ins v%d.d[%d],v%d.d[%d]",$1<8?$1:$1+8,($2 eq "lo")?0:1,
712 $3<8?$3:$3+8,($4 eq "lo")?0:1;
713 }
714 foreach(split("\n",$code)) {
715 s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel $1$2,$1zr,$1$2,$3/o or
716 s/vmov\.i8/movi/o or # fix up legacy mnemonics
717 s/vmov\s+(.*)/unvmov($1)/geo or
718 s/vext\.8/ext/o or
719 s/vshr\.s/sshr\.s/o or
720 s/vshr/ushr/o or
721 s/^(\s+)v/$1/o or # strip off v prefix
722 s/\bbx\s+lr\b/ret/o;
723
724 s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo; # old->new registers
725 s/@\s/\/\//o; # old->new style commentary
726
727 # fix up remaining legacy suffixes
728 s/\.[ui]?8(\s)/$1/o;
729 s/\.[uis]?32//o and s/\.16b/\.4s/go;
730 m/\.p64/o and s/\.16b/\.1q/o; # 1st pmull argument
731 m/l\.p64/o and s/\.16b/\.1d/go; # 2nd and 3rd pmull arguments
732 s/\.[uisp]?64//o and s/\.16b/\.2d/go;
733 s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;
734
735 print $_,"\n";
736 }
737} else { ######## 32-bit code
738 sub unvdup32 {
739 my $arg=shift;
740
741 $arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
742 sprintf "vdup.32 q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
743 }
744 sub unvpmullp64 {
745 my ($mnemonic,$arg)=@_;
746
747 if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
748 my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
749 |(($2&7)<<17)|(($2&8)<<4)
750 |(($3&7)<<1) |(($3&8)<<2);
751 $word |= 0x00010001 if ($mnemonic =~ "2");
752 # since ARMv7 instructions are always encoded little-endian.
753 # correct solution is to use .inst directive, but older
754 # assemblers don't implement it:-(
755 sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
756 $word&0xff,($word>>8)&0xff,
757 ($word>>16)&0xff,($word>>24)&0xff,
758 $mnemonic,$arg;
759 }
760 }
761
762 foreach(split("\n",$code)) {
763 s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers
764 s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers
765 s/\/\/\s?/@ /o; # new->old style commentary
766
767 # fix up remaining new-style suffixes
768 s/\],#[0-9]+/]!/o;
769
770 s/cclr\s+([^,]+),\s*([a-z]+)/mov$2 $1,#0/o or
771 s/vdup\.32\s+(.*)/unvdup32($1)/geo or
772 s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo or
773 s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or
774 s/^(\s+)b\./$1b/o or
775 s/^(\s+)ret/$1bx\tlr/o;
776
777 print $_,"\n";
778 }
779}
780
781close STDOUT or die "error closing STDOUT: $!"; # enforce flush
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette