VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1f/crypto/rand/rand_unix.c@ 83531

Last change on this file since 83531 was 83531, checked in by vboxsync, 5 years ago

setting svn:sync-process=export for openssl-1.1.1f, all files except tests

File size: 25.0 KB
Line 
1/*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#ifndef _GNU_SOURCE
11# define _GNU_SOURCE
12#endif
13#include "e_os.h"
14#include <stdio.h>
15#include "internal/cryptlib.h"
16#include <openssl/rand.h>
17#include <openssl/crypto.h>
18#include "rand_local.h"
19#include "crypto/rand.h"
20#include <stdio.h>
21#include "internal/dso.h"
22#ifdef __linux
23# include <sys/syscall.h>
24# ifdef DEVRANDOM_WAIT
25# include <sys/shm.h>
26# include <sys/utsname.h>
27# endif
28#endif
29#if defined(__FreeBSD__) && !defined(OPENSSL_SYS_UEFI)
30# include <sys/types.h>
31# include <sys/sysctl.h>
32# include <sys/param.h>
33#endif
34#if defined(__OpenBSD__) || defined(__NetBSD__)
35# include <sys/param.h>
36#endif
37
38#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
39# include <sys/types.h>
40# include <sys/stat.h>
41# include <fcntl.h>
42# include <unistd.h>
43# include <sys/time.h>
44
45static uint64_t get_time_stamp(void);
46static uint64_t get_timer_bits(void);
47
48/* Macro to convert two thirty two bit values into a sixty four bit one */
49# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
50
51/*
52 * Check for the existence and support of POSIX timers. The standard
53 * says that the _POSIX_TIMERS macro will have a positive value if they
54 * are available.
55 *
56 * However, we want an additional constraint: that the timer support does
57 * not require an extra library dependency. Early versions of glibc
58 * require -lrt to be specified on the link line to access the timers,
59 * so this needs to be checked for.
60 *
61 * It is worse because some libraries define __GLIBC__ but don't
62 * support the version testing macro (e.g. uClibc). This means
63 * an extra check is needed.
64 *
65 * The final condition is:
66 * "have posix timers and either not glibc or glibc without -lrt"
67 *
68 * The nested #if sequences are required to avoid using a parameterised
69 * macro that might be undefined.
70 */
71# undef OSSL_POSIX_TIMER_OKAY
72# if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
73# if defined(__GLIBC__)
74# if defined(__GLIBC_PREREQ)
75# if __GLIBC_PREREQ(2, 17)
76# define OSSL_POSIX_TIMER_OKAY
77# endif
78# endif
79# else
80# define OSSL_POSIX_TIMER_OKAY
81# endif
82# endif
83#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
84 || defined(__DJGPP__) */
85
86#if defined(OPENSSL_RAND_SEED_NONE)
87/* none means none. this simplifies the following logic */
88# undef OPENSSL_RAND_SEED_OS
89# undef OPENSSL_RAND_SEED_GETRANDOM
90# undef OPENSSL_RAND_SEED_LIBRANDOM
91# undef OPENSSL_RAND_SEED_DEVRANDOM
92# undef OPENSSL_RAND_SEED_RDTSC
93# undef OPENSSL_RAND_SEED_RDCPU
94# undef OPENSSL_RAND_SEED_EGD
95#endif
96
97#if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
98 !defined(OPENSSL_RAND_SEED_NONE)
99# error "UEFI and VXWorks only support seeding NONE"
100#endif
101
102#if defined(OPENSSL_SYS_VXWORKS)
103/* empty implementation */
104int rand_pool_init(void)
105{
106 return 1;
107}
108
109void rand_pool_cleanup(void)
110{
111}
112
113void rand_pool_keep_random_devices_open(int keep)
114{
115}
116
117size_t rand_pool_acquire_entropy(RAND_POOL *pool)
118{
119 return rand_pool_entropy_available(pool);
120}
121#endif
122
123#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
124 || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
125 || defined(OPENSSL_SYS_UEFI))
126
127# if defined(OPENSSL_SYS_VOS)
128
129# ifndef OPENSSL_RAND_SEED_OS
130# error "Unsupported seeding method configured; must be os"
131# endif
132
133# if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
134# error "Unsupported HP-PA and IA32 at the same time."
135# endif
136# if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
137# error "Must have one of HP-PA or IA32"
138# endif
139
140/*
141 * The following algorithm repeatedly samples the real-time clock (RTC) to
142 * generate a sequence of unpredictable data. The algorithm relies upon the
143 * uneven execution speed of the code (due to factors such as cache misses,
144 * interrupts, bus activity, and scheduling) and upon the rather large
145 * relative difference between the speed of the clock and the rate at which
146 * it can be read. If it is ported to an environment where execution speed
147 * is more constant or where the RTC ticks at a much slower rate, or the
148 * clock can be read with fewer instructions, it is likely that the results
149 * would be far more predictable. This should only be used for legacy
150 * platforms.
151 *
152 * As a precaution, we assume only 2 bits of entropy per byte.
153 */
154size_t rand_pool_acquire_entropy(RAND_POOL *pool)
155{
156 short int code;
157 int i, k;
158 size_t bytes_needed;
159 struct timespec ts;
160 unsigned char v;
161# ifdef OPENSSL_SYS_VOS_HPPA
162 long duration;
163 extern void s$sleep(long *_duration, short int *_code);
164# else
165 long long duration;
166 extern void s$sleep2(long long *_duration, short int *_code);
167# endif
168
169 bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
170
171 for (i = 0; i < bytes_needed; i++) {
172 /*
173 * burn some cpu; hope for interrupts, cache collisions, bus
174 * interference, etc.
175 */
176 for (k = 0; k < 99; k++)
177 ts.tv_nsec = random();
178
179# ifdef OPENSSL_SYS_VOS_HPPA
180 /* sleep for 1/1024 of a second (976 us). */
181 duration = 1;
182 s$sleep(&duration, &code);
183# else
184 /* sleep for 1/65536 of a second (15 us). */
185 duration = 1;
186 s$sleep2(&duration, &code);
187# endif
188
189 /* Get wall clock time, take 8 bits. */
190 clock_gettime(CLOCK_REALTIME, &ts);
191 v = (unsigned char)(ts.tv_nsec & 0xFF);
192 rand_pool_add(pool, arg, &v, sizeof(v) , 2);
193 }
194 return rand_pool_entropy_available(pool);
195}
196
197void rand_pool_cleanup(void)
198{
199}
200
201void rand_pool_keep_random_devices_open(int keep)
202{
203}
204
205# else
206
207# if defined(OPENSSL_RAND_SEED_EGD) && \
208 (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
209# error "Seeding uses EGD but EGD is turned off or no device given"
210# endif
211
212# if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
213# error "Seeding uses urandom but DEVRANDOM is not configured"
214# endif
215
216# if defined(OPENSSL_RAND_SEED_OS)
217# if !defined(DEVRANDOM)
218# error "OS seeding requires DEVRANDOM to be configured"
219# endif
220# define OPENSSL_RAND_SEED_GETRANDOM
221# define OPENSSL_RAND_SEED_DEVRANDOM
222# endif
223
224# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
225# error "librandom not (yet) supported"
226# endif
227
228# if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
229/*
230 * sysctl_random(): Use sysctl() to read a random number from the kernel
231 * Returns the number of bytes returned in buf on success, -1 on failure.
232 */
233static ssize_t sysctl_random(char *buf, size_t buflen)
234{
235 int mib[2];
236 size_t done = 0;
237 size_t len;
238
239 /*
240 * Note: sign conversion between size_t and ssize_t is safe even
241 * without a range check, see comment in syscall_random()
242 */
243
244 /*
245 * On FreeBSD old implementations returned longs, newer versions support
246 * variable sizes up to 256 byte. The code below would not work properly
247 * when the sysctl returns long and we want to request something not a
248 * multiple of longs, which should never be the case.
249 */
250 if (!ossl_assert(buflen % sizeof(long) == 0)) {
251 errno = EINVAL;
252 return -1;
253 }
254
255 /*
256 * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
257 * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
258 * it returns a variable number of bytes with the current version supporting
259 * up to 256 bytes.
260 * Just return an error on older NetBSD versions.
261 */
262#if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
263 errno = ENOSYS;
264 return -1;
265#endif
266
267 mib[0] = CTL_KERN;
268 mib[1] = KERN_ARND;
269
270 do {
271 len = buflen;
272 if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
273 return done > 0 ? done : -1;
274 done += len;
275 buf += len;
276 buflen -= len;
277 } while (buflen > 0);
278
279 return done;
280}
281# endif
282
283# if defined(OPENSSL_RAND_SEED_GETRANDOM)
284
285# if defined(__linux) && !defined(__NR_getrandom)
286# if defined(__arm__)
287# define __NR_getrandom (__NR_SYSCALL_BASE+384)
288# elif defined(__i386__)
289# define __NR_getrandom 355
290# elif defined(__x86_64__)
291# if defined(__ILP32__)
292# define __NR_getrandom (__X32_SYSCALL_BIT + 318)
293# else
294# define __NR_getrandom 318
295# endif
296# elif defined(__xtensa__)
297# define __NR_getrandom 338
298# elif defined(__s390__) || defined(__s390x__)
299# define __NR_getrandom 349
300# elif defined(__bfin__)
301# define __NR_getrandom 389
302# elif defined(__powerpc__)
303# define __NR_getrandom 359
304# elif defined(__mips__) || defined(__mips64)
305# if _MIPS_SIM == _MIPS_SIM_ABI32
306# define __NR_getrandom (__NR_Linux + 353)
307# elif _MIPS_SIM == _MIPS_SIM_ABI64
308# define __NR_getrandom (__NR_Linux + 313)
309# elif _MIPS_SIM == _MIPS_SIM_NABI32
310# define __NR_getrandom (__NR_Linux + 317)
311# endif
312# elif defined(__hppa__)
313# define __NR_getrandom (__NR_Linux + 339)
314# elif defined(__sparc__)
315# define __NR_getrandom 347
316# elif defined(__ia64__)
317# define __NR_getrandom 1339
318# elif defined(__alpha__)
319# define __NR_getrandom 511
320# elif defined(__sh__)
321# if defined(__SH5__)
322# define __NR_getrandom 373
323# else
324# define __NR_getrandom 384
325# endif
326# elif defined(__avr32__)
327# define __NR_getrandom 317
328# elif defined(__microblaze__)
329# define __NR_getrandom 385
330# elif defined(__m68k__)
331# define __NR_getrandom 352
332# elif defined(__cris__)
333# define __NR_getrandom 356
334# elif defined(__aarch64__)
335# define __NR_getrandom 278
336# else /* generic */
337# define __NR_getrandom 278
338# endif
339# endif
340
341/*
342 * syscall_random(): Try to get random data using a system call
343 * returns the number of bytes returned in buf, or < 0 on error.
344 */
345static ssize_t syscall_random(void *buf, size_t buflen)
346{
347 /*
348 * Note: 'buflen' equals the size of the buffer which is used by the
349 * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
350 *
351 * 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
352 *
353 * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
354 * between size_t and ssize_t is safe even without a range check.
355 */
356
357 /*
358 * Do runtime detection to find getentropy().
359 *
360 * Known OSs that should support this:
361 * - Darwin since 16 (OSX 10.12, IOS 10.0).
362 * - Solaris since 11.3
363 * - OpenBSD since 5.6
364 * - Linux since 3.17 with glibc 2.25
365 * - FreeBSD since 12.0 (1200061)
366 */
367# if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
368 extern int getentropy(void *buffer, size_t length) __attribute__((weak));
369
370 if (getentropy != NULL)
371 return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1;
372# else
373 union {
374 void *p;
375 int (*f)(void *buffer, size_t length);
376 } p_getentropy;
377
378 /*
379 * We could cache the result of the lookup, but we normally don't
380 * call this function often.
381 */
382 ERR_set_mark();
383 p_getentropy.p = DSO_global_lookup("getentropy");
384 ERR_pop_to_mark();
385 if (p_getentropy.p != NULL)
386 return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
387# endif
388
389 /* Linux supports this since version 3.17 */
390# if defined(__linux) && defined(__NR_getrandom)
391 return syscall(__NR_getrandom, buf, buflen, 0);
392# elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
393 return sysctl_random(buf, buflen);
394# else
395 errno = ENOSYS;
396 return -1;
397# endif
398}
399# endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
400
401# if defined(OPENSSL_RAND_SEED_DEVRANDOM)
402static const char *random_device_paths[] = { DEVRANDOM };
403static struct random_device {
404 int fd;
405 dev_t dev;
406 ino_t ino;
407 mode_t mode;
408 dev_t rdev;
409} random_devices[OSSL_NELEM(random_device_paths)];
410static int keep_random_devices_open = 1;
411
412# if defined(__linux) && defined(DEVRANDOM_WAIT)
413static void *shm_addr;
414
415static void cleanup_shm(void)
416{
417 shmdt(shm_addr);
418}
419
420/*
421 * Ensure that the system randomness source has been adequately seeded.
422 * This is done by having the first start of libcrypto, wait until the device
423 * /dev/random becomes able to supply a byte of entropy. Subsequent starts
424 * of the library and later reseedings do not need to do this.
425 */
426static int wait_random_seeded(void)
427{
428 static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
429 static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
430 int kernel[2];
431 int shm_id, fd, r;
432 char c, *p;
433 struct utsname un;
434 fd_set fds;
435
436 if (!seeded) {
437 /* See if anything has created the global seeded indication */
438 if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
439 /*
440 * Check the kernel's version and fail if it is too recent.
441 *
442 * Linux kernels from 4.8 onwards do not guarantee that
443 * /dev/urandom is properly seeded when /dev/random becomes
444 * readable. However, such kernels support the getentropy(2)
445 * system call and this should always succeed which renders
446 * this alternative but essentially identical source moot.
447 */
448 if (uname(&un) == 0) {
449 kernel[0] = atoi(un.release);
450 p = strchr(un.release, '.');
451 kernel[1] = p == NULL ? 0 : atoi(p + 1);
452 if (kernel[0] > kernel_version[0]
453 || (kernel[0] == kernel_version[0]
454 && kernel[1] >= kernel_version[1])) {
455 return 0;
456 }
457 }
458 /* Open /dev/random and wait for it to be readable */
459 if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
460 if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
461 FD_ZERO(&fds);
462 FD_SET(fd, &fds);
463 while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
464 && errno == EINTR);
465 } else {
466 while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
467 }
468 close(fd);
469 if (r == 1) {
470 seeded = 1;
471 /* Create the shared memory indicator */
472 shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
473 IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
474 }
475 }
476 }
477 if (shm_id != -1) {
478 seeded = 1;
479 /*
480 * Map the shared memory to prevent its premature destruction.
481 * If this call fails, it isn't a big problem.
482 */
483 shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
484 if (shm_addr != (void *)-1)
485 OPENSSL_atexit(&cleanup_shm);
486 }
487 }
488 return seeded;
489}
490# else /* defined __linux */
491static int wait_random_seeded(void)
492{
493 return 1;
494}
495# endif
496
497/*
498 * Verify that the file descriptor associated with the random source is
499 * still valid. The rationale for doing this is the fact that it is not
500 * uncommon for daemons to close all open file handles when daemonizing.
501 * So the handle might have been closed or even reused for opening
502 * another file.
503 */
504static int check_random_device(struct random_device * rd)
505{
506 struct stat st;
507
508 return rd->fd != -1
509 && fstat(rd->fd, &st) != -1
510 && rd->dev == st.st_dev
511 && rd->ino == st.st_ino
512 && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
513 && rd->rdev == st.st_rdev;
514}
515
516/*
517 * Open a random device if required and return its file descriptor or -1 on error
518 */
519static int get_random_device(size_t n)
520{
521 struct stat st;
522 struct random_device * rd = &random_devices[n];
523
524 /* reuse existing file descriptor if it is (still) valid */
525 if (check_random_device(rd))
526 return rd->fd;
527
528 /* open the random device ... */
529 if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
530 return rd->fd;
531
532 /* ... and cache its relevant stat(2) data */
533 if (fstat(rd->fd, &st) != -1) {
534 rd->dev = st.st_dev;
535 rd->ino = st.st_ino;
536 rd->mode = st.st_mode;
537 rd->rdev = st.st_rdev;
538 } else {
539 close(rd->fd);
540 rd->fd = -1;
541 }
542
543 return rd->fd;
544}
545
546/*
547 * Close a random device making sure it is a random device
548 */
549static void close_random_device(size_t n)
550{
551 struct random_device * rd = &random_devices[n];
552
553 if (check_random_device(rd))
554 close(rd->fd);
555 rd->fd = -1;
556}
557
558int rand_pool_init(void)
559{
560 size_t i;
561
562 for (i = 0; i < OSSL_NELEM(random_devices); i++)
563 random_devices[i].fd = -1;
564
565 return 1;
566}
567
568void rand_pool_cleanup(void)
569{
570 size_t i;
571
572 for (i = 0; i < OSSL_NELEM(random_devices); i++)
573 close_random_device(i);
574}
575
576void rand_pool_keep_random_devices_open(int keep)
577{
578 if (!keep)
579 rand_pool_cleanup();
580
581 keep_random_devices_open = keep;
582}
583
584# else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
585
586int rand_pool_init(void)
587{
588 return 1;
589}
590
591void rand_pool_cleanup(void)
592{
593}
594
595void rand_pool_keep_random_devices_open(int keep)
596{
597}
598
599# endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
600
601/*
602 * Try the various seeding methods in turn, exit when successful.
603 *
604 * TODO(DRBG): If more than one entropy source is available, is it
605 * preferable to stop as soon as enough entropy has been collected
606 * (as favored by @rsalz) or should one rather be defensive and add
607 * more entropy than requested and/or from different sources?
608 *
609 * Currently, the user can select multiple entropy sources in the
610 * configure step, yet in practice only the first available source
611 * will be used. A more flexible solution has been requested, but
612 * currently it is not clear how this can be achieved without
613 * overengineering the problem. There are many parameters which
614 * could be taken into account when selecting the order and amount
615 * of input from the different entropy sources (trust, quality,
616 * possibility of blocking).
617 */
618size_t rand_pool_acquire_entropy(RAND_POOL *pool)
619{
620# if defined(OPENSSL_RAND_SEED_NONE)
621 return rand_pool_entropy_available(pool);
622# else
623 size_t entropy_available;
624
625# if defined(OPENSSL_RAND_SEED_GETRANDOM)
626 {
627 size_t bytes_needed;
628 unsigned char *buffer;
629 ssize_t bytes;
630 /* Maximum allowed number of consecutive unsuccessful attempts */
631 int attempts = 3;
632
633 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
634 while (bytes_needed != 0 && attempts-- > 0) {
635 buffer = rand_pool_add_begin(pool, bytes_needed);
636 bytes = syscall_random(buffer, bytes_needed);
637 if (bytes > 0) {
638 rand_pool_add_end(pool, bytes, 8 * bytes);
639 bytes_needed -= bytes;
640 attempts = 3; /* reset counter after successful attempt */
641 } else if (bytes < 0 && errno != EINTR) {
642 break;
643 }
644 }
645 }
646 entropy_available = rand_pool_entropy_available(pool);
647 if (entropy_available > 0)
648 return entropy_available;
649# endif
650
651# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
652 {
653 /* Not yet implemented. */
654 }
655# endif
656
657# if defined(OPENSSL_RAND_SEED_DEVRANDOM)
658 if (wait_random_seeded()) {
659 size_t bytes_needed;
660 unsigned char *buffer;
661 size_t i;
662
663 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
664 for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
665 i++) {
666 ssize_t bytes = 0;
667 /* Maximum number of consecutive unsuccessful attempts */
668 int attempts = 3;
669 const int fd = get_random_device(i);
670
671 if (fd == -1)
672 continue;
673
674 while (bytes_needed != 0 && attempts-- > 0) {
675 buffer = rand_pool_add_begin(pool, bytes_needed);
676 bytes = read(fd, buffer, bytes_needed);
677
678 if (bytes > 0) {
679 rand_pool_add_end(pool, bytes, 8 * bytes);
680 bytes_needed -= bytes;
681 attempts = 3; /* reset counter on successful attempt */
682 } else if (bytes < 0 && errno != EINTR) {
683 break;
684 }
685 }
686 if (bytes < 0 || !keep_random_devices_open)
687 close_random_device(i);
688
689 bytes_needed = rand_pool_bytes_needed(pool, 1);
690 }
691 entropy_available = rand_pool_entropy_available(pool);
692 if (entropy_available > 0)
693 return entropy_available;
694 }
695# endif
696
697# if defined(OPENSSL_RAND_SEED_RDTSC)
698 entropy_available = rand_acquire_entropy_from_tsc(pool);
699 if (entropy_available > 0)
700 return entropy_available;
701# endif
702
703# if defined(OPENSSL_RAND_SEED_RDCPU)
704 entropy_available = rand_acquire_entropy_from_cpu(pool);
705 if (entropy_available > 0)
706 return entropy_available;
707# endif
708
709# if defined(OPENSSL_RAND_SEED_EGD)
710 {
711 static const char *paths[] = { DEVRANDOM_EGD, NULL };
712 size_t bytes_needed;
713 unsigned char *buffer;
714 int i;
715
716 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
717 for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
718 size_t bytes = 0;
719 int num;
720
721 buffer = rand_pool_add_begin(pool, bytes_needed);
722 num = RAND_query_egd_bytes(paths[i],
723 buffer, (int)bytes_needed);
724 if (num == (int)bytes_needed)
725 bytes = bytes_needed;
726
727 rand_pool_add_end(pool, bytes, 8 * bytes);
728 bytes_needed = rand_pool_bytes_needed(pool, 1);
729 }
730 entropy_available = rand_pool_entropy_available(pool);
731 if (entropy_available > 0)
732 return entropy_available;
733 }
734# endif
735
736 return rand_pool_entropy_available(pool);
737# endif
738}
739# endif
740#endif
741
742#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
743int rand_pool_add_nonce_data(RAND_POOL *pool)
744{
745 struct {
746 pid_t pid;
747 CRYPTO_THREAD_ID tid;
748 uint64_t time;
749 } data = { 0 };
750
751 /*
752 * Add process id, thread id, and a high resolution timestamp to
753 * ensure that the nonce is unique with high probability for
754 * different process instances.
755 */
756 data.pid = getpid();
757 data.tid = CRYPTO_THREAD_get_current_id();
758 data.time = get_time_stamp();
759
760 return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
761}
762
763int rand_pool_add_additional_data(RAND_POOL *pool)
764{
765 struct {
766 int fork_id;
767 CRYPTO_THREAD_ID tid;
768 uint64_t time;
769 } data = { 0 };
770
771 /*
772 * Add some noise from the thread id and a high resolution timer.
773 * The fork_id adds some extra fork-safety.
774 * The thread id adds a little randomness if the drbg is accessed
775 * concurrently (which is the case for the <master> drbg).
776 */
777 data.fork_id = openssl_get_fork_id();
778 data.tid = CRYPTO_THREAD_get_current_id();
779 data.time = get_timer_bits();
780
781 return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
782}
783
784
785/*
786 * Get the current time with the highest possible resolution
787 *
788 * The time stamp is added to the nonce, so it is optimized for not repeating.
789 * The current time is ideal for this purpose, provided the computer's clock
790 * is synchronized.
791 */
792static uint64_t get_time_stamp(void)
793{
794# if defined(OSSL_POSIX_TIMER_OKAY)
795 {
796 struct timespec ts;
797
798 if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
799 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
800 }
801# endif
802# if defined(__unix__) \
803 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
804 {
805 struct timeval tv;
806
807 if (gettimeofday(&tv, NULL) == 0)
808 return TWO32TO64(tv.tv_sec, tv.tv_usec);
809 }
810# endif
811 return time(NULL);
812}
813
814/*
815 * Get an arbitrary timer value of the highest possible resolution
816 *
817 * The timer value is added as random noise to the additional data,
818 * which is not considered a trusted entropy sourec, so any result
819 * is acceptable.
820 */
821static uint64_t get_timer_bits(void)
822{
823 uint64_t res = OPENSSL_rdtsc();
824
825 if (res != 0)
826 return res;
827
828# if defined(__sun) || defined(__hpux)
829 return gethrtime();
830# elif defined(_AIX)
831 {
832 timebasestruct_t t;
833
834 read_wall_time(&t, TIMEBASE_SZ);
835 return TWO32TO64(t.tb_high, t.tb_low);
836 }
837# elif defined(OSSL_POSIX_TIMER_OKAY)
838 {
839 struct timespec ts;
840
841# ifdef CLOCK_BOOTTIME
842# define CLOCK_TYPE CLOCK_BOOTTIME
843# elif defined(_POSIX_MONOTONIC_CLOCK)
844# define CLOCK_TYPE CLOCK_MONOTONIC
845# else
846# define CLOCK_TYPE CLOCK_REALTIME
847# endif
848
849 if (clock_gettime(CLOCK_TYPE, &ts) == 0)
850 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
851 }
852# endif
853# if defined(__unix__) \
854 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
855 {
856 struct timeval tv;
857
858 if (gettimeofday(&tv, NULL) == 0)
859 return TWO32TO64(tv.tv_sec, tv.tv_usec);
860 }
861# endif
862 return time(NULL);
863}
864#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
865 || defined(__DJGPP__) */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette