VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1f/crypto/rc4/asm/rc4-586.pl@ 83531

Last change on this file since 83531 was 83531, checked in by vboxsync, 5 years ago

setting svn:sync-process=export for openssl-1.1.1f, all files except tests

File size: 12.2 KB
Line 
1#! /usr/bin/env perl
2# Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# ====================================================================
11# [Re]written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16
17# At some point it became apparent that the original SSLeay RC4
18# assembler implementation performs suboptimally on latest IA-32
19# microarchitectures. After re-tuning performance has changed as
20# following:
21#
22# Pentium -10%
23# Pentium III +12%
24# AMD +50%(*)
25# P4 +250%(**)
26#
27# (*) This number is actually a trade-off:-) It's possible to
28# achieve +72%, but at the cost of -48% off PIII performance.
29# In other words code performing further 13% faster on AMD
30# would perform almost 2 times slower on Intel PIII...
31# For reference! This code delivers ~80% of rc4-amd64.pl
32# performance on the same Opteron machine.
33# (**) This number requires compressed key schedule set up by
34# RC4_set_key [see commentary below for further details].
35
36# May 2011
37#
38# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
39# performance in cycles per processed byte (less is better) and
40# improvement relative to previous version of this module is:
41#
42# Pentium 10.2 # original numbers
43# Pentium III 7.8(*)
44# Intel P4 7.5
45#
46# Opteron 6.1/+20% # new MMX numbers
47# Core2 5.3/+67%(**)
48# Westmere 5.1/+94%(**)
49# Sandy Bridge 5.0/+8%
50# Atom 12.6/+6%
51# VIA Nano 6.4/+9%
52# Ivy Bridge 4.9/±0%
53# Bulldozer 4.9/+15%
54#
55# (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
56# but this specific code performs poorly on Core2. And vice
57# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
58# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
59# [anymore], I chose to discard PIII-specific code path and opt
60# for original IALU-only code, which is why MMX/SSE code path
61# is guarded by SSE2 bit (see below), not MMX/SSE.
62# (**) Performance vs. block size on Core2 and Westmere had a maximum
63# at ... 64 bytes block size. And it was quite a maximum, 40-60%
64# in comparison to largest 8KB block size. Above improvement
65# coefficients are for the largest block size.
66
67$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
68push(@INC,"${dir}","${dir}../../perlasm");
69require "x86asm.pl";
70
71$output=pop;
72open STDOUT,">$output";
73
74&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
75
76$xx="eax";
77$yy="ebx";
78$tx="ecx";
79$ty="edx";
80$inp="esi";
81$out="ebp";
82$dat="edi";
83
84sub RC4_loop {
85 my $i=shift;
86 my $func = ($i==0)?*mov:*or;
87
88 &add (&LB($yy),&LB($tx));
89 &mov ($ty,&DWP(0,$dat,$yy,4));
90 &mov (&DWP(0,$dat,$yy,4),$tx);
91 &mov (&DWP(0,$dat,$xx,4),$ty);
92 &add ($ty,$tx);
93 &inc (&LB($xx));
94 &and ($ty,0xff);
95 &ror ($out,8) if ($i!=0);
96 if ($i<3) {
97 &mov ($tx,&DWP(0,$dat,$xx,4));
98 } else {
99 &mov ($tx,&wparam(3)); # reload [re-biased] out
100 }
101 &$func ($out,&DWP(0,$dat,$ty,4));
102}
103
104if ($alt=0) {
105 # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
106 # but ~40% slower on Core2 and Westmere... Attempt to add movz
107 # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
108 # on Core2 with movz it's almost 20% slower than below alternative
109 # code... Yes, it's a total mess...
110 my @XX=($xx,$out);
111 $RC4_loop_mmx = sub { # SSE actually...
112 my $i=shift;
113 my $j=$i<=0?0:$i>>1;
114 my $mm=$i<=0?"mm0":"mm".($i&1);
115
116 &add (&LB($yy),&LB($tx));
117 &lea (@XX[1],&DWP(1,@XX[0]));
118 &pxor ("mm2","mm0") if ($i==0);
119 &psllq ("mm1",8) if ($i==0);
120 &and (@XX[1],0xff);
121 &pxor ("mm0","mm0") if ($i<=0);
122 &mov ($ty,&DWP(0,$dat,$yy,4));
123 &mov (&DWP(0,$dat,$yy,4),$tx);
124 &pxor ("mm1","mm2") if ($i==0);
125 &mov (&DWP(0,$dat,$XX[0],4),$ty);
126 &add (&LB($ty),&LB($tx));
127 &movd (@XX[0],"mm7") if ($i==0);
128 &mov ($tx,&DWP(0,$dat,@XX[1],4));
129 &pxor ("mm1","mm1") if ($i==1);
130 &movq ("mm2",&QWP(0,$inp)) if ($i==1);
131 &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
132 &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
133
134 push (@XX,shift(@XX)) if ($i>=0);
135 }
136} else {
137 # Using pinsrw here improves performance on Intel CPUs by 2-3%, but
138 # brings down AMD by 7%...
139 $RC4_loop_mmx = sub {
140 my $i=shift;
141
142 &add (&LB($yy),&LB($tx));
143 &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
144 &mov ($ty,&DWP(0,$dat,$yy,4));
145 &mov (&DWP(0,$dat,$yy,4),$tx);
146 &mov (&DWP(0,$dat,$xx,4),$ty);
147 &inc ($xx);
148 &add ($ty,$tx);
149 &movz ($xx,&LB($xx)); # (*)
150 &movz ($ty,&LB($ty)); # (*)
151 &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
152 &movq ("mm0",&QWP(0,$inp)) if ($i<=0);
153 &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
154 &mov ($tx,&DWP(0,$dat,$xx,4));
155 &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
156
157 # (*) This is the key to Core2 and Westmere performance.
158 # Without movz out-of-order execution logic confuses
159 # itself and fails to reorder loads and stores. Problem
160 # appears to be fixed in Sandy Bridge...
161 }
162}
163
164&external_label("OPENSSL_ia32cap_P");
165
166# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
167&function_begin("RC4");
168 &mov ($dat,&wparam(0)); # load key schedule pointer
169 &mov ($ty, &wparam(1)); # load len
170 &mov ($inp,&wparam(2)); # load inp
171 &mov ($out,&wparam(3)); # load out
172
173 &xor ($xx,$xx); # avoid partial register stalls
174 &xor ($yy,$yy);
175
176 &cmp ($ty,0); # safety net
177 &je (&label("abort"));
178
179 &mov (&LB($xx),&BP(0,$dat)); # load key->x
180 &mov (&LB($yy),&BP(4,$dat)); # load key->y
181 &add ($dat,8);
182
183 &lea ($tx,&DWP(0,$inp,$ty));
184 &sub ($out,$inp); # re-bias out
185 &mov (&wparam(1),$tx); # save input+len
186
187 &inc (&LB($xx));
188
189 # detect compressed key schedule...
190 &cmp (&DWP(256,$dat),-1);
191 &je (&label("RC4_CHAR"));
192
193 &mov ($tx,&DWP(0,$dat,$xx,4));
194
195 &and ($ty,-4); # how many 4-byte chunks?
196 &jz (&label("loop1"));
197
198 &mov (&wparam(3),$out); # $out as accumulator in these loops
199 if ($x86only) {
200 &jmp (&label("go4loop4"));
201 } else {
202 &test ($ty,-8);
203 &jz (&label("go4loop4"));
204
205 &picmeup($out,"OPENSSL_ia32cap_P");
206 &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
207 &jnc (&label("go4loop4"));
208
209 &mov ($out,&wparam(3)) if (!$alt);
210 &movd ("mm7",&wparam(3)) if ($alt);
211 &and ($ty,-8);
212 &lea ($ty,&DWP(-8,$inp,$ty));
213 &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
214
215 &$RC4_loop_mmx(-1);
216 &jmp(&label("loop_mmx_enter"));
217
218 &set_label("loop_mmx",16);
219 &$RC4_loop_mmx(0);
220 &set_label("loop_mmx_enter");
221 for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
222 &mov ($ty,$yy);
223 &xor ($yy,$yy); # this is second key to Core2
224 &mov (&LB($yy),&LB($ty)); # and Westmere performance...
225 &cmp ($inp,&DWP(-4,$dat));
226 &lea ($inp,&DWP(8,$inp));
227 &jb (&label("loop_mmx"));
228
229 if ($alt) {
230 &movd ($out,"mm7");
231 &pxor ("mm2","mm0");
232 &psllq ("mm1",8);
233 &pxor ("mm1","mm2");
234 &movq (&QWP(-8,$out,$inp),"mm1");
235 } else {
236 &psllq ("mm1",56);
237 &pxor ("mm2","mm1");
238 &movq (&QWP(-8,$out,$inp),"mm2");
239 }
240 &emms ();
241
242 &cmp ($inp,&wparam(1)); # compare to input+len
243 &je (&label("done"));
244 &jmp (&label("loop1"));
245 }
246
247&set_label("go4loop4",16);
248 &lea ($ty,&DWP(-4,$inp,$ty));
249 &mov (&wparam(2),$ty); # save input+(len/4)*4-4
250
251 &set_label("loop4");
252 for ($i=0;$i<4;$i++) { RC4_loop($i); }
253 &ror ($out,8);
254 &xor ($out,&DWP(0,$inp));
255 &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
256 &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
257 &lea ($inp,&DWP(4,$inp));
258 &mov ($tx,&DWP(0,$dat,$xx,4));
259 &jb (&label("loop4"));
260
261 &cmp ($inp,&wparam(1)); # compare to input+len
262 &je (&label("done"));
263 &mov ($out,&wparam(3)); # restore $out
264
265 &set_label("loop1",16);
266 &add (&LB($yy),&LB($tx));
267 &mov ($ty,&DWP(0,$dat,$yy,4));
268 &mov (&DWP(0,$dat,$yy,4),$tx);
269 &mov (&DWP(0,$dat,$xx,4),$ty);
270 &add ($ty,$tx);
271 &inc (&LB($xx));
272 &and ($ty,0xff);
273 &mov ($ty,&DWP(0,$dat,$ty,4));
274 &xor (&LB($ty),&BP(0,$inp));
275 &lea ($inp,&DWP(1,$inp));
276 &mov ($tx,&DWP(0,$dat,$xx,4));
277 &cmp ($inp,&wparam(1)); # compare to input+len
278 &mov (&BP(-1,$out,$inp),&LB($ty));
279 &jb (&label("loop1"));
280
281 &jmp (&label("done"));
282
283# this is essentially Intel P4 specific codepath...
284&set_label("RC4_CHAR",16);
285 &movz ($tx,&BP(0,$dat,$xx));
286 # strangely enough unrolled loop performs over 20% slower...
287 &set_label("cloop1");
288 &add (&LB($yy),&LB($tx));
289 &movz ($ty,&BP(0,$dat,$yy));
290 &mov (&BP(0,$dat,$yy),&LB($tx));
291 &mov (&BP(0,$dat,$xx),&LB($ty));
292 &add (&LB($ty),&LB($tx));
293 &movz ($ty,&BP(0,$dat,$ty));
294 &add (&LB($xx),1);
295 &xor (&LB($ty),&BP(0,$inp));
296 &lea ($inp,&DWP(1,$inp));
297 &movz ($tx,&BP(0,$dat,$xx));
298 &cmp ($inp,&wparam(1));
299 &mov (&BP(-1,$out,$inp),&LB($ty));
300 &jb (&label("cloop1"));
301
302&set_label("done");
303 &dec (&LB($xx));
304 &mov (&DWP(-4,$dat),$yy); # save key->y
305 &mov (&BP(-8,$dat),&LB($xx)); # save key->x
306&set_label("abort");
307&function_end("RC4");
308
309########################################################################
310
311$inp="esi";
312$out="edi";
313$idi="ebp";
314$ido="ecx";
315$idx="edx";
316
317# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
318&function_begin("RC4_set_key");
319 &mov ($out,&wparam(0)); # load key
320 &mov ($idi,&wparam(1)); # load len
321 &mov ($inp,&wparam(2)); # load data
322 &picmeup($idx,"OPENSSL_ia32cap_P");
323
324 &lea ($out,&DWP(2*4,$out)); # &key->data
325 &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
326 &neg ($idi);
327 &xor ("eax","eax");
328 &mov (&DWP(-4,$out),$idi); # borrow key->y
329
330 &bt (&DWP(0,$idx),20); # check for bit#20
331 &jc (&label("c1stloop"));
332
333&set_label("w1stloop",16);
334 &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
335 &add (&LB("eax"),1); # i++;
336 &jnc (&label("w1stloop"));
337
338 &xor ($ido,$ido);
339 &xor ($idx,$idx);
340
341&set_label("w2ndloop",16);
342 &mov ("eax",&DWP(0,$out,$ido,4));
343 &add (&LB($idx),&BP(0,$inp,$idi));
344 &add (&LB($idx),&LB("eax"));
345 &add ($idi,1);
346 &mov ("ebx",&DWP(0,$out,$idx,4));
347 &jnz (&label("wnowrap"));
348 &mov ($idi,&DWP(-4,$out));
349 &set_label("wnowrap");
350 &mov (&DWP(0,$out,$idx,4),"eax");
351 &mov (&DWP(0,$out,$ido,4),"ebx");
352 &add (&LB($ido),1);
353 &jnc (&label("w2ndloop"));
354&jmp (&label("exit"));
355
356# Unlike all other x86 [and x86_64] implementations, Intel P4 core
357# [including EM64T] was found to perform poorly with above "32-bit" key
358# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
359# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
360# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
361# schedule for x86[_64], because non-P4 implementations suffer from
362# significant performance losses then, e.g. PIII exhibits >2x
363# deterioration, and so does Opteron. In order to assure optimal
364# all-round performance, we detect P4 at run-time and set up compressed
365# key schedule, which is recognized by RC4 procedure.
366
367&set_label("c1stloop",16);
368 &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
369 &add (&LB("eax"),1); # i++;
370 &jnc (&label("c1stloop"));
371
372 &xor ($ido,$ido);
373 &xor ($idx,$idx);
374 &xor ("ebx","ebx");
375
376&set_label("c2ndloop",16);
377 &mov (&LB("eax"),&BP(0,$out,$ido));
378 &add (&LB($idx),&BP(0,$inp,$idi));
379 &add (&LB($idx),&LB("eax"));
380 &add ($idi,1);
381 &mov (&LB("ebx"),&BP(0,$out,$idx));
382 &jnz (&label("cnowrap"));
383 &mov ($idi,&DWP(-4,$out));
384 &set_label("cnowrap");
385 &mov (&BP(0,$out,$idx),&LB("eax"));
386 &mov (&BP(0,$out,$ido),&LB("ebx"));
387 &add (&LB($ido),1);
388 &jnc (&label("c2ndloop"));
389
390 &mov (&DWP(256,$out),-1); # mark schedule as compressed
391
392&set_label("exit");
393 &xor ("eax","eax");
394 &mov (&DWP(-8,$out),"eax"); # key->x=0;
395 &mov (&DWP(-4,$out),"eax"); # key->y=0;
396&function_end("RC4_set_key");
397
398# const char *RC4_options(void);
399&function_begin_B("RC4_options");
400 &call (&label("pic_point"));
401&set_label("pic_point");
402 &blindpop("eax");
403 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
404 &picmeup("edx","OPENSSL_ia32cap_P");
405 &mov ("edx",&DWP(0,"edx"));
406 &bt ("edx",20);
407 &jc (&label("1xchar"));
408 &bt ("edx",26);
409 &jnc (&label("ret"));
410 &add ("eax",25);
411 &ret ();
412&set_label("1xchar");
413 &add ("eax",12);
414&set_label("ret");
415 &ret ();
416&set_label("opts",64);
417&asciz ("rc4(4x,int)");
418&asciz ("rc4(1x,char)");
419&asciz ("rc4(8x,mmx)");
420&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
421&align (64);
422&function_end_B("RC4_options");
423
424&asm_finish();
425
426close STDOUT or die "error closing STDOUT: $!";
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette